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We report on the observation of stochastic resonance phenomenon of a single domain wall in a
ferromagnetic stripe with two pinning sites. Under a weak oscillating field, the wall performs
irregular transitions between both constrictions in the presence of thermal fluctuations. Ours results
indicate that synchronized wall transitions with the driving field can be achieved at the optimal level
of noise. The stochastic resonance is quantified by computing the output signal power as a function
of temperature. The analysis points out that this system could be used to design well-controlled
amplification devices, which could find application as nanodetectors. © 2011 American Institute of
Physics. �doi:10.1063/1.3556314�

The appearance of noise in dynamical systems has been
usually considered a nuisance, for example, to design elec-
tronic circuits and communication systems, wherein the
noise has to be minimized in order to optimize their func-
tionality. However, its presence in certain nonlinear systems
can in fact enhance the detection of weak periodic signals,
via a mechanism known as stochastic resonance �SR�. The
phenomenon of SR consists of a nonlinear cooperative effect
between periodic and random fluctuation signals, wherein
the response of the system modulated by a weak external
periodic signal is enhanced at an optimized nonzero noise
level. SR was initially introduced by Benzi and co-workers1

to describe how small periodic perturbations due to earth’s
wobble could lead to large-scale climatic changes. It took
two more years before the first experimental observation of
the SR by Fauve and Heslot2 in a noise-driven electronic
circuit known as a Schmitt trigger, and since then SR has
become one of the most widespread topics in many different
branches of science �see Refs. 3–6 for extended reviews�. In
the framework of nanomagnetism, the first experimental evi-
dence of the thermally activated switching of a single-
domain ferromagnetic particle over a single-energy barrier
was addressed by Wernsdorfer et al.7 Although the SR was
not analyzed there, their measurements of the telegraph noise
suggested that these systems can also be candidates for ob-
serving the phenomenon of SR under oscillating fields. More
recently, Cheng and co-workers8 observed the appearance of
SR in a spin valve under the combined action between oscil-
lating spin torque and thermal noise.

Although nowadays it is known that SR is even more
general than the bistable scenario implies, SR is usually il-
lustrated by considering the overdamped motion of a particle
in a bistable potential.5,6 If the system was noise-free, the
particle would relax within the potential well where it was
initially launched. However, if the system is coupled to a
heat bath, the particle experiences random kicks, so that it
can eventually hop over the potential barrier and, therefore,
undergoes irregular noise-assisted transitions to the neigh-
boring well with a thermal activation rate which depends on

the ratio of barrier height to noise level. If a weak periodic
force is applied, the double-well potential is modulated up
and down, periodically raising and lowering the potential
barrier between both minima. Here, weak means that the
modulation is small enough to not excite the particle over the
barrier in the absence of noise. However, for some optimal
finite amount of noise, the weak force entrains the noise-
induced hopping, so the transitions between wells are sur-
prisingly regular. This cooperative effect occurs when the
thermal activation rate matches approximately half signal
period.5,6 From a technological point of view, a problem con-
cerns detecting weak signals in a noisy environment. If the
system and signal are hidden from view, and information can
be only gained by observing the system’s output, the phe-
nomenon of SR can be used to enhance the detection output
signal.

In this letter, we describe the stochastic resonance in the
presence of thermal fluctuations, wherein a single domain
wall �DW� is driven by a weak periodic external field along
a Permalloy9 stripe with Ly �Lz=60�3 nm2 cross section.
A computational region of Lx=1.2 �m in length was dis-
cretized by means of a finite-difference scheme using cubic
computational cells of �x=3 nm in side. Figures 1�a� and
1�b� depict the two possible equilibrium states of a head-to-
head transverse DW at rest in a stripe with two constrictions,
each one consisting of two rectangular notches �15 nm long
and 6 nm wide� at both edges of the stripe. The spatial de-
pendence of the pinning potential Vpin�X� was computed by
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FIG. 1. �Color online� Micromagnetic configurations of a DW pinned at two
pinning sites: �a� at the left and �b� at the right. �c� Spatial dependence of the
pinning potential Vpin�X� produced by the constrictions for two separations:
S=30 nm and S=60 nm. Dots corresponds to micromagnetic results, and
lines are the fits to Eq. �1� �see Ref. 11 for details�.
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means of quasistatic micromagnetic simulations as described
elsewhere.10 It is worth to note that the energy barrier be-
tween two pinning sites does not only depend on the indi-
vidual constriction dimensions, but also depends on the sepa-
ration S between them. This is evidenced in Fig. 1�c�, which
shows that the micromagnetically computed pinning poten-
tial profiles Vpin�X� �see dots in Fig. 1�c�� are satisfactorily
fitted to the following function:

Vpin�X� = V0 − Vd�exp�−
�X + xL�2

L2 � + exp�−
�X + xR�2

L2 �	 ,

�1�

where xL and xR are the centers of each pinning site, and the
constants V0, Vd, and L determine the curvature of individual
pinning sites and the different energy barriers of the
system.11

Once addressed how the energy barrier between the two
wells can be controlled by manipulating the dimensions of
the constrictions and the separation between them, we
focus our attention on the analysis of the DW dynamics
between two constrictions separated by S=30 nm driven
by a sinusoidal external field along the x-axis �B� ext�t�
=Be sin�2�fHt�u�x�. In order to do it, a linearized one-
dimensional model �1DM� considering the DW as a rigid
object is adopted. The DW dynamics is determined by the
Langevin equation10

�1 + �2�mw
d2X

dt2 = Ffric + Fpin�X� + Fext�t� + Fth�t� , �2�

where � is the damping parameter and X�t� is the DW posi-
tion. The DW mass is given by mw=2�0MsLyLz /�0

2HK�0,
where �0 is the gyromagnetic ratio, �0 is the magnetic
permeability of the vacuum, HK is the shape anisotropy
demagnetizing field, and �0 is the DW width. The terms at
the right hand side are the different forces on the DW. Ffric
=−�dX /dt is the friction viscous force, where �=�mw	d
1
+ �1 /	d

2���Vpin
2 �X� /�X2�� and 	d=�0HK represents the angu-

lar frequency of magnetization oscillations around HK. The
next force Fpin�X�=−�Vpin�X� /�X is the local pinning force
as derived from the pinning potential Vpin�X� of Eq. �1�. Fext

represents the driving force, which for a time varying
magnetic field is given by Fext�t�=mw�0�0�	dHext�t�
+���Hext /�t��. Finally, thermal fluctuations are included in
the formalism by means of a random thermal force Fth�t�
which is assumed to be a Gaussian-distributed stochastic
white-noise process with zero mean value �Fth�t�
=0 and
is uncorrelated in time �Fth�t�Fth�t��
=2��	dmwKBT / �1
+�2��
�t− t��.12,13

The inputs ��0, HK, and Vpin�X�� for the 1DM �Ref. 14�
were obtained from full micromagnetic simulations as it was
described in detail in Ref. 10, where it was verified that 1DM
results are not only qualitatively similar to the ones obtained
from full micromagnetic simulations, but also they are in
good quantitative agreement. It is worthy to note that DW
dynamics in this system cannot be described by an over-
damped equation because of the low damping of the system
��=0.02�. This fact, along with the spatial dependence of the
viscous coefficient �=��X�, does not allow us to adopt the
analytical description of typical overdamped approach.5,6

Therefore, Eq. �2� is numerically solved by means of a
fourth-order Runge–Kutta scheme starting from the initial

state depicted in Fig. 1�a�. Figure 2 shows typical single-
realization under a sinusoidal field with amplitude Be
=0.5 mT and frequency fH=5 MHz, and under three differ-
ent temperatures T. Note that Be is significantly smaller than
the static value required to promote the DW jump to the right
state ��2 mT�. It is also one order of magnitude smaller
than the Walker breakdown field �BW=6 mT�, so that the
assumed rigid approximation captures the essential physics
of the DW dynamics.

At low temperature �see Fig. 2�a�, for T=50 K�, the av-
erage residence time in the two states is much longer than the
period of the driving field �TH=1 / fH=0.2 �s�. Conse-
quently, the DW transitions between both pinning sites occur
at unpredictable times. However, if the temperature is in-
creased to T=100 K we observe periodic transitions �Fig.
2�b�� where the DW jumps from the left state �xL, Fig. 1�a��
to the right one �xR, Fig. 1�b�� and back again once per
modulation period. Transitions are most likely at those in-
stants when the corresponding transition rates are maximized
and the average residence times in both metastable positions
equal half the modulation period. Upon further increasing the
noise strength �see Fig. 2�c� for T=900 K�, too many tran-
sitions are thermally activated during 1 cycle of B� ext�t�, and
the cooperative between the DW position X�t� and the noise
is lost again. This is the SR effect: The system’s response is
most regular at a given finite temperature.

For a more quantitative analysis of the synchronization
effect visualized in Fig. 2�b�, we need a measure of the SR.
The most common approach5,6 is via the power spectrum
P�f� of the output variable of the system, the DW position
X�t�. Right graphs in Fig. 2 display P�f� corresponding to the
single-realization depicted at the left side. At low tempera-

FIG. 2. �Color online� Linearized 1DM results of the DW dynamics driven
by a periodic magnetic field Bext=Be sin�2�fHt� with Be=0.5 mT and fH

=5 MHz for three different temperatures: from top to bottom T=50 K, T
=100 K, and T=900 K, respectively. Graphs at the left side depict the
temporal evolution of the DW position X�t�, whereas graphs at right side
show the power spectrum P�f� as a function of the frequency f as computed
from Fourier transform of X�t�.
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tures �see an example in Fig. 2�d� for T=50 K�, the main
peak of P�f� is observed at a smaller frequency than the
driving one �fH=5 MHz�, an evident sign of the absence of
synchronization of the DW position X�t� with the driving
field Bext�t�. As the synchronization appears �see Fig. 2�e� for
T=100 K�, the power spectrum depicts a main peak at the
input driving frequency �f = fH� and a secondary peak at
f =3fH. The generation of only odd higher harmonics of the
input frequency in Fig. 2�e� is a typical fingerprint of peri-
odically driven symmetric nonlinear systems.15 Optimal syn-
chronization is reached when the mean residence time, de-
fined as the interval between two subsequent jumps, matches
half the period of the driving frequency.5 The height of both
peaks in the power spectrum starts to decrease as tempera-
ture is further increased from the optimal value. The lost of
synchronization becomes evident in Fig. 2�f� corresponding
to T=900 K, where the height of the main peak has de-
creased with respect to the optimal case, and the secondary
peak has completely disappeared.

Having elucidated the main physical issues of SR in our
DW system, we characterize and quantify its temperature �T�
dependence. There exist several ways to do it in a bistable
system, and the most proper one depends on the experimen-
tal accessible observable.5,6 In the present letter, we adopt the
seminal criterion by Benzi et al.,1 where SR was simply
quantified by the so-called output signal power S1, which
represents the weight intensity of the peak �S1� at the fre-
quency of the field, fH, in the power spectrum. It is defined
as the area under the main signal peak at f = fH, and it is
independent of the time tmax.

6 S1 reaches a maximum when
the DW jumps occur synchronized with B� ext�t�, and therefore
it can be regarded as a quantitative measure of SR. The re-
sults are shown in both Figs. 3�a� and 3�b�, where the depen-
dence of S1 on T is depicted for a fixed frequency �fH

=5 MHz� and three different amplitudes, and for a given
amplitude �Be=0.25 mT� and different frequencies, respec-
tively.

Upon decreasing Be, the position of the maximum of S1
�optimal synchronization� moves toward smaller tempera-
tures �see Fig. 3�a�� because by increasing Be the energy
barrier between both pinning sites is reduced. For a given
temperature, S1 increases substantially with Be. On the other
hand, if the amplitude remains fixed as in Fig. 3�b� for Be
=0.25 mT, the optimal synchronization �maximum of S1�
occurs at larger temperatures as the frequency of the driving
field is increased in the analyzed range �fH from 1 to 10
MHz�.

In summary, we have found that thermal activation can
be used to synchronize the DW dynamics between two adja-
cent pinning sites driving by a weak amplitude driving field
and therefore resulting in a SR effect. The system represents
a ready candidate to theoretically study and characterize such
SR effect in the underdamped limit, because the DW behaves
as a rigid object with well-defined mass and position, and
more importantly the energy landscape and the energy bar-
rier between pinning sites can be controlled by manipulating
both the constriction dimensions and their separation. From a
technological point of view, DWs have been proposed to
develop memory and logic devices. Our study also predicts
the possibility of taking advantage of SR effect to use the
DW system as a low frequency detector: for instance, placing
two electrodes at both sides of a pinning site in order to
measure the anisotropic magnetoresistance �AMR�. If the
DW is �is not� inside the constriction between electrodes, the
AMR signal has a high �low� value. For a given temperature,
the DW dynamics between both pinning sites is synchro-
nized with respect to the weak input signal �driving field in
this study, but similar results can be obtained by driving
current�, and therefore a high amplitude periodic AMR signal
could be detected. It has to be mentioned that it is also pos-
sible to fix the temperature and obtain synchronization if the
driving frequency is tuned against the escape rate between
both pinning sites. As said, the system presented here can be
also used as a frequency nanodetector, which can find appli-
cation in a wide range of disciplines. We hope that the
present work will motivate experimental progress in the di-
rection of characterizing the stochastic resonance effect of a
single DW in a ferromagnetic stripe with two pinning sites.
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FIG. 3. �Color online� Output signal power �S1� as a function of temperature
T. �a� The frequency of the field remains fixed �fH=5 MHz�, and the am-
plitude Be is varied. �b� The amplitude of the driving field remains fixed
�Be=0.25 mT�, and the frequency fH is varied.
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