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1 Polytechnic University of Bari – Via Orabona, 4 – 70125 Bari, Italy

2 University of Camerino – Piazza Cavour 19/f – 62032 Camerino (MC), Italy

Abstract

Providing very accurate recommendations to end users has been nowadays
recognized to be just one of the tasks an effective recommender system
should accomplish. While predicting relevant suggestions, attention needs
to be paid also to their diversification in order to avoid monotony in the
returned list of recommendations. In this paper we focus on modeling user
propensity toward selecting diverse items, where diversity is computed by
means of content-based item attributes. We then exploit such modeling to
present a novel approach to re-arrange the list of Top-N items predicted
by a recommendation algorithm, with the aim of fostering diversity in the
final ranking. An extensive experimental evaluation proves the effectiveness
of the proposed approach as well as its ability to improve also novelty and
catalog coverage values.

1. Introduction

Recommender systems have been proposed as essential tools in assisting
users to face the “information overload” problem and they have been ap-
plied across several domains [8], such as music [26], TV programs [5], taxi
suggestion [22], digital libraries [3], just to cite a few of them. The main task
of a recommendation engine is suggesting unknown items in a personalized
way and recommend the top N items by considering the highest predicted
ratings. As a result, in the recommender systems field new algorithms and
approaches have been proposed over the years mostly devoted to maximizing
recommendation accuracy. However, more recently, the drawbacks of build-
ing recommendation engines focusing exclusively on accuracy maximization
have been also widely explored and highlighted [1, 9, 30]. Simply put, the
most accurate recommendations for a user are often too similar with each
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other (e.g., songs by the same artist), or overspecialized, thus causing user
dissatisfaction and frustration [47]. The so called portfolio effect in recom-
mender systems [10] has been widely recognized as a situation when very
similar, almost identical, items appear in a recommendation list [38], cor-
rectly but bothering the user [49] (see Figure 1).

(a)

(b)

(c)

Figure 1: Example of three recommendation lists with different degree of diversity: (a)
low diversity, all the movies have same actor (Tom Cruise) and genre (Action); (b) the
actor is still the same but there are different genres; (c) higher diversity, in terms of both
actor and genre. We see how the portfolio effect is more evident in (a) and (b).

The need to move beyond traditional accuracy metrics in the evaluation
of a recommendation engine has been originally argued in [37] and several
works have tackled the issue of diversification of recommendations as a way
to increase user’s utility [9, 6, 45, 40, 8], reaching the conclusion that a
degree of diversity in the list can be increased at a cost of reducing system
accuracy [12].
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Since diversity is usually characterized as the dissimilarity degree be-
tween all the items in the recommendation list [27, 49, 47], one of the most
important problems to address is the item-to-item dissimilarity evaluation.
So far, diversity based on only one attribute (e.g. genre in movie and mu-
sic domains, product category in e-commerce) [40] or collaborative filtering
information (e.g. number of co-rating between items) [45] has been mainly
considered in the literature. However, multi-attribute diversity is still under-
explored. The main research questions we address in this paper, aiming at
reducing the portfolio effect in a multi-attribute setting, are:

(i) How to model different users’ attitude with reference to diverse items in
the recommendation list?

(ii) Does each user need diversity for every attribute?

(iii) What is the right level of diversity for each attribute?

The main intuitions behind our work are that: (i) users could be inclined to
diversifying only with respect to some specific item dimensions (e.g., item
attributes as director and year in the movie domain) and not be interested in
diverse suggestions related to other ones (e.g. genre in the movie domain);
(ii) we can extract this information from the user’s past interaction with
the system. Following these ideas, we propose an adaptive multi-attribute
diversification approach able to customize the degree of individual diversity1

by taking into account the inclination of the user to diversifying over dif-
ferent content-based item dimensions. Specifically, we employ Entropy as a
measure for the diversity degree while modeling user preferences and use it
in conjunction with the user profile dimension for calibrating the degree of
diversification of the list.

This paper considerably extends our previous work [15] where the notion
of user quadrants defined in terms of attribute-based Entropy and profile di-
mension was originally introduced to foster the computation of diversified
recommendation lists. The new contributions presented in this paper refer
to different aspects of the overall approach. We introduce a new modeling of
the user propensity towards diversity which is not based on an exclusive clas-
sification in four quadrants but allows the user to belong to all the quadrants
to a certain degree (this is the main reason why we call this new modeling
fuzzy approach). In fact, the classification of users in four quadrants orig-
inally proposed in [15] seemed a too strong hypothesis to be of practical
use. We also compared how the two different modelings affect recommenda-
tion results in terms not just of diversity, but also in terms of accuracy and

1In this paper by individual diversity we mean the degree of diversification in the
recommendations provided to an individual user, in contrast to aggregate diversity across
all users [2]
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novelty of recommendation as well as in terms of catalog coverage (a.k.a.
aggregate diversity) [2]. We show that our approach to diversification on the
one hand reduces the portfolio effect while remaining, on the other hand,
effective compared to the other evaluation dimensions just mentioned. The
two modelings have been tested against two recommendation datasets that
refer to different domains. More specifically, the main contributions of this
paper are:

• Analysis of user needs in terms of individual diversity. Other than
the clustering of users in four disjoint quadrants originally introduced
in [15], here we propose a more fine-grained analysis of users profiles
introducing a fuzzy classification. For each attribute describing an
item and according to the individual values of entropy and profile
length, each user belongs to each quadrant with a certain degree.

• Evaluation Methodology. We propose an evaluation of our approach
for individual diversity by considering also its performance in terms of
accuracy, novelty and aggregate diversity. For the evaluation we tested
both an implicit (MMR [11]) and an explicit (xQuAD [35]) method (see
Section 2). The evaluation has been performed by considering Pareto
optimal solutions.

• Empirical Analysis. We demonstrate the validity of our intuition via
an extensive experimental evaluation on two datasets involving several
baseline systems.

The remainder of the article is structured as follows. We provide a discussion
of related works, followed by an overview on diversity in recommendation
engines, in Section 2. The details of our adaptive multi-attribute diversifi-
cation approach are shown in Section 3. Finally, after the presentation of
the experimental set-up in Section 4, we evaluate the proposed strategies
on two datasets related to the movie and book domains and we present the
performance with different system settings (Section 5). A summary and an
outlook on future research close the paper.

2. Related work

In the last few years, several approaches to the development of recom-
mendation engines have been driven by the goal of improving not only the
accuracy but also some form of utility associated to the recommended list.
The attention to the concept of diversity and thus to the reduction of the
portfolio effect arises from the need of increasing the utility associated to the
returned list of items by avoiding monotony in recommendations. [17] shows
that the diversity of recommendations has a positive influence on user’s sat-
isfaction, and is in turn a strong predictor of the user’s final choice of the
recommender system, at least for general-purpose movie recommendation.
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Approaches to diversity are numerous in the literature. Given a set of
items, most of previous proposals consider a definition of diversity based on
content-based information (including the genre of a movie, the authors of
a book, etc.) or on items feature space and try to maximize the sum of
pairwise distances between elements in a set. [49] places itself in the former
group, by defining the overall diversity of the recommended list through an
intra-list-similarity metric using a taxonomy-based classification, in contrast
for example to [47], which defines the reciprocal distance of a pair of items
starting from the items feature space. Differently from existing diversity-
promoting techniques based on pairwise comparisons, [33] acts on the feature
space of the overall set of items, by adding an Entropy regularizer to the
objective function which, in practice, is able to increase diversity. However,
in offline evaluation settings, accuracy and diversity act in opposition with
each other, since improving one of them usually leads to shrink the other.
The concept of Pareto optimality could be used to face the trade-off of
multi-objective problems [32, 34].

Recently, the idea of considering the user interests in the diversification
approach in order to personalize the recommendation diversity received in-
creasing interest. User modeling techniques have tried to characterize deeply
the users-items interactions and to move beyond the network of users just
based on the rating history, as in [28], where a trustworthy network made of
users in which a user can rely on has been built. In [42] the identification of
diversity within the user profile is carried out through the extraction of user
sub-profiles to reflect the polyfacetic nature of user interests, where the def-
inition of a sub-profile is done by analysing only the genre of a movie. The
authors of [13] point out a causal relationship between personality factors
(such as openness and conscientiousness) and the degree of diversification in
the user choices with respect to genres, actors, directors, country or year of
release of a movie. As a further validation, in [44], the same authors suggest
a solution taking into account personality for generating more personalized
diverse recommendations and consolidating their previous observations. To
the best of our knowledge, [15] proposes the first attribute-based diversifi-
cation approach, which is able to customize the degree of diversity of the
recommendation list by taking into account the inclination to diversity of
the user across different item attributes.

In addition to individual diversity, which is the main focus of this paper,
aggregate diversity and novelty are recognized as essential objectives for user
satisfaction [1, 2, 8] and should be considered for a complete evaluation of a
recommendation engine. The necessity of improving aggregate diversity is
particular important for online stores in the attempt to suggest a broader
range of items including niche ones. [2] calculates rating prediction using
existing filtering techniques and then re-ranks the list of candidate items
thus pushing elements out of long tail. [43] falls in the second research line,
by trying to improve the estimation process especially for rarely used items,
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that is allowing a fair opportunity for most items to be recommended.
Novelty is defined differently in publications depending on the context

and its purpose, e.g., the item novelty with respect to the user, which is
related to the individual diversity, or the item novelty with respect to the
total amount of recommended items, which is related to the aggregate di-
versity. The attempt to improve novelty runs often in parallel with the goal
of increasing diversity, as in [21]. [23] proposes a regression model to predict
the individual novelty preferences of a user analysing her recent past inter-
actions. Its adaptive recommender also includes dynamic user’s preferences
for novelty.

2.1. Greedy algorithms for diversification

The activity of a recommender system can be divided into two phases:
first there is the prediction of the ratings for unrated items and then the
items can be re-ranked to maximize user’s utility. According to [2], in order
to improve the diversity (both individual and aggregate) of recommendations
it is possible to deal only with the second phase. As finding the most diverse
results set is NP-hard, several heuristics have been proposed [25]. Greedy
heuristics, for example, select the next most relevant item only if that item
is diverse with respect to the items already selected [25]. They have proven
to be efficient and effective [16, 11, 35, 4].

Hereafter, we will use overlined bold capital letters to denote lists, e.g.,
X, and bold capital letters to represent the corresponding set of elements
belonging to the list, e.g., X. Let R = 〈1, ..., n〉 be the recommendation
list for user u generated using the predicted ratings and suppose we want
to provide the user with the re-ranked list S of recommendations, such that
S ⊂ R and whose length is N ≤ n. The adopted greedy strategy can be
explained through Algorithm 1. At each step, the algorithm selects the item
which maximizes an objective function fobj (line 3), which in turn can be
defined to find a trade-off between accuracy and diversity, and add it to
the re-ranked list (line 4). Thus, it requires O(N2n) computations of the
function fobj .

As for search results diversification, the diversity in a list of recommen-
dations may be increased in an implicit or explicit manner [6]. The implicit
diversification aims to increase the average distance between pairs of items
in the recommendation list, while the explicit one tries to diversify the list
by covering the user interests represented via categories or other informa-
tion that can describe the items. Explicit diversification is also known as
Intent-Aware. In fact, user intents in information retrieval correspond to
user interests in recommender systems. Among state-of-the-art diversifi-
cation algorithms, Maximal Marginal Relevance (MMR) [41] is an implicit
approach, while Explicit Query Aspect Diversification (xQuAD) [42] repre-
sents an explicit strategy.
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Data: The original list R, N ≤ n
Result: The re-ranked list S

S = 〈〉;1

while |S | < N do2

i∗= argmax
i∈R

fobj(i,S, u);
3

S = S ◦ i∗;4

R = R \ {i∗}5

end6

return S.7

Algorithm 1: The greedy strategy. We remind that the overlined capi-
talized letters are used for lists and capitalized letters for the corresponding
sets. The set cardinality is denoted with | · |, the \ symbol corresponds to
set difference and the symbol ◦ is used for appending new elements to a
list. 〈〉 indicates an empty list.

MMR implicitly diversifies a list considering a trade-off between the
relevance of an item and its amount of new information provided with respect
to previously selected items. More formally, the objective function of MMR is
defined as:

fobj(i,S, u) = λ · r∗(u, i) + (1− λ) · avg
j∈S

(1− sim(i, j)) (1)

where r∗ is a function for rating estimation, sim is a similarity measure
on item pairs and the λ parameter lets to manage the accuracy-diversity
balance.

Differently from MMR, xQuAD is an explicit method since it maximizes
the coverage of the inferred interests while minimizing their redundancy. It
was proposed for search diversification in information retrieval by Santos
et al. [35], as a probabilistic framework to explicitly model an ambiguous
query as a set of sub-queries that are supposed to cover the potential aspects
of the initial query. More recently, it has been adapted for recommendation
diversification by Vargas and Castells [42], replacing query and relative as-
pects with user and items features, respectively. The expression of the xQuAD
objective function is

fobj(i,S, u) = λ · r∗(u, i) + (1− λ) · div(i,S, u) (2)

with div(i,S, u) defined as

div(i,S, u) =
∑
f

p(i|f) · p(f |u) ·
∏
j∈S

(1− p(j|f)) (3)

In (3) p(i|f) represents the likelihood of item i being chosen given the feature
f and is computed as a binary function that returns 1 if the item contains
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f , 0 otherwise; p(f |u) represents the interest of user u in the feature f and
is computed as the relative frequency of the feature f on the items rated by
user u. In other words, xQuAD fosters the idea of promoting items that are
simultaneously highly related to at least one of the features of interest for the
user and slightly related to the features of the items already recommended.

The computational complexity of both MMR and xQuAD is the same of
Algorithm 1, since they do not change the algorithm but merely define the
objective function fobj .
3. Adaptive multi-attribute diversification

In this section we introduce and describe our proposal to model user atti-
tude towards diversification in recommender systems. Figure 2 shows a pos-
sible representation of a recommendation engine that exploits our approach
to mitigate the portfolio effect. To this aim, we adopt a re-ranking procedure
[2] in an adaptive multi-attribute setting that acts on the recommendations
lists provided by a generic recommendation algorithm. Re-ranking has been
shown [2] to be effective in increasing diversity in results while not affect-
ing the computational complexity of the overall recommendation procedure.
Instead of relying on a multi-objective optimization function that tries to
maximize both diversity and accuracy, the recommendation algorithm only
takes care of accuracy and leaves to a simpler re-ranking procedure the task
of increasing the diversity in the final recommendation list.

Before moving into a detailed description of the diversification procedure
we briefly describe the different phases of the complete recommendation
scenario.

• Inputs. The inputs of the system are: (i) the User-Item matrix where
we have the rating history of each user; (ii) a structured description of
the items belonging to the catalog. Such information can be extracted
from external knowledge sources such as Wikipedia, Google, last.fm,
IMDb, MusicBrainz, etc..

• User modeling. Based on the inputs, for each user the system computes
a model of her propensity towards diversified recommendation. In our
case, for each attribute describing the item, the system evaluates the
quadrant the user belongs to (see Section 3.1 for more details).

• Computation of the recommendation list. The recommendation algo-
rithm exploits the User-Item matrix and optionally the description of
the items in the catalog to compute a list of recommended items. If
we are interested in returning the top-N best items to the user, in this
phase the recommendation engine computes the top-M best items,
with M > N . It is noteworthy that we are not interested here in the
specific recommendation algorithm as we only focus on the eventual
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re-ranking phase. Indeed, in our experimental setting (see Section 5)
we evaluated our diversification model against different state of the art
algorithms (BPRSLIM, BPRMF, WRMF, SoftMarginRankingMF, ItemKNN).

• Re-ranking. Based on the user classification into quadrants, the system
re-ranks the recommendation list previously computed.

• Output. The user is returned with the top-N items from the re-ranked
list.

Note that this method needs a sufficient quantity of ratings for each
user, since it relies on Entropy and profile length information. Therefore,
it is not able to work properly for cold-start users, namely those users who
have provided an exiguous number of ratings (usually less than 5) or even
no rating at all. In such situations, additional information is required. For
instance, personality information have been proved to be a good solution for
facing the cold-start problem [18] and for adjusting diversity [44], although
it is not always available or inferable from rating data.

Figure 2: A schematic representation of the overall architecture.

In the following we detail how the adaptive multi-attribute diversification
approach works. We start by introducing the notion of User Quadrants
and then we move to their Fuzzy version. Subsequently, we show how the
diversification approaches MMR and xQuAD, introduced in Section 2, may be
adjusted to adaptive strategies under a multi-attribute setting. In other
words, our intent is to modify the objective functions of MMR and xQuAD

such that the diversification attitude of each user with respect to different
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item attributes (i.e., year, genre, director and actor in the movie domain
and genre, author and subject in the book domain) could stand out.

3.1. User Quadrants

In order to measure user’s propensity to diversity on a specific attribute
we used Shannon’s Entropy which can be used as a measure of the informa-
tion content associated with an attribute A ∈ A for each user u [29]. We
compute Entropy with reference to each attribute A ∈ A to evaluate the
degree of diversity with respect to u. Shannon’s Entropy for user u and
attribute A with |dom(A)| values can be computed as:

HA(u) = −
|dom(A)|∑

k=1

pk · log pk (4)

where pk is the relative frequency of the k-th value of A considering all the
items (elements) belonging to the user profile (collection of the items rated
by the user).
Our model is adaptive in the way that it is based on the classification of
users in four groups, referred to as quadrants, defined by considering as dis-
criminating parameters the medians of the Entropy distribution and user
profile length distribution across all users. A separate clustering is com-
puted for each attribute describing the item. For example a user u is in
the first quadrant for the genre attribute, if her Entropy Hgenre(u) is less
than the median of the Entropy computed across all users and she has a
short user profile (her number of ratings is less than the median of users’
ratings). The same user may belong to different quadrants in relation to
different attributes. All the quadrants are represented in Figure 3.

The rationale behind our clustering hypothesis is that we can look at the
previous interactions of the user with the system to infer whether she likes
to enjoy items which result different with regards to some specific charac-
teristics or not. If she uses to read books of the same subjects regardless
of the author we may interpret this behavior as a clue that she is more
willing to diversify with reference to authors while she is less willing with
reference to subjects. It is noteworthy that such observation is more valid
in the presence of longer interaction of the user with the system. We may
imagine to have more information from a user who, during her whole inter-
action with the system, read dozens of books of the same genre from a high
variety of authors rather than from a user who read only, say, five books
of the same genre from five different authors. In the former case we have a
stronger hint about the user attitude towards author diversification than in
the latter one. Analogously we may say that the former user has a very low
propensity towards genre diversification.
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Given an attribute A, a high value of Entropy is then interpreted as an
attitude of the user to choose items with different values for A. Conversely,
a low value of Entropy is interpreted as her willingness to consider items
similar with reference to that attribute. Furthermore, we are considering
the user’ profile length since we want to allow various values of Entropy to
play a different role for users with a large or respectively short interaction
with the system, making the Entropy computation potentially more mean-
ingful if supported by a longer user experience.
The quadrants the user belongs to, potentially different for each item at-
tribute, are used to rewrite sim(i, j) in Equation (1) and div(i,S, u) in
Equation (2), as better explained in Sections 3.3 and 3.4 respectively. Given
a user u and the set of item attributes A, we then consider a function
qu : A → {1, 2, 3, 4}, which assigns, for each attribute, the quadrant to
which user u belongs. Moreover, we introduce an absolute quadrant weight
ωk ∈ [0, 1], with k ∈ {1, 2, 3, 4}. Of course, more groups can be defined thus
identifying more than four quadrants. However, we have already shown in
[15] that even with such a coarse grained classification we are able to obtain
interesting results in terms of precision and intra list diversity (ILD) values,
and we will see how experiments described in Section 5 confirm this trend.

P
ro

fi
le

L
en

gt
h

Entropy

Quadrant 1 Quadrant 2
Low Entropy High Entropy
Small Profile Small Profile

Quadrant 3 Quadrant 4
Low Entropy High Entropy
Large Profile Large Profile

Figure 3: Quadrants

3.2. Fuzzy Quadrants

Users hard clustering proposed in Section 3.1 and tested in our previous
work [15] could seem too rigid because of a sharp discrimination into four
quadrants. One way to overcome this inconvenience is to introduce a fuzzy
users clustering (a.k.a. soft clustering) that permits a user to belong to more
than one quadrant simultaneously with a different degree. In fact, we defined
functions able to compute a membership degree for each quadrant. This
setting can be regarded as the opposite extreme to the hard clustering in just
four quadrants of the previous section, as it represents potentially infinite
clusters to which a user may belong to. This allows us to get a comparison
between the simplest version of clustering by median values and the fine-
grained version represented by fuzzy clustering. In order to evaluate the
membership grades to quadrants, we reproduced the quadrants subdivision
in the unit square, normalizing in [0,1] the values of Entropy and profile
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Figure 4: f1 function

length and considering them as respectively the x and y coordinates. The x
and y values then become the inputs for four bivariate Gaussian functions
f1, f2, f3, f4 where f1 ∼ N ((0, 0), σ2) (shown in Figure 4), f2 ∼ N ((1, 0), σ2),
f3 ∼ N ((0, 1), σ2) and f4 ∼ N ((1, 1), σ2). Whenever in the experiments we
mention the fuzzy approach, we mean that we substituted the weights ωqu(A)

introduced in Section 3.1 with a weighted sum

ωqu(A) =
4∑

k=1

ωk · fk(x, y) (5)

where x is the value of Entropy and y profile length for user u and ωk are the
absolute quadrants weights for attribute A. The choice of Gaussian functions
was influenced by the need of having circular contour lines. The value of σ2

is the same for the four functions and is chosen so that for point (12 ,
1
2) each

function assumes the maximum value of f divided by 4 (σ2 = 0.1803).

3.3. Adaptive MMR

Here we are going to explain how the diversification algorithm MMR can
be adjusted to incorporate the weights computed with User Quadrants or
Fuzzy Quadrants settings. As we deal with a multi-attribute problem, sim
has to consider similarities with respect to a set of attributes A and, for
each attribute A ∈ A, simA(i, j) will hereafter denote the similarity between
item i and item j with relation to A. The overall similarity between item i
and item j in Equation (1), for the generic user u, becomes tailored to the
quadrants she belongs to and is defined as:

sim(i, j) =

∑
A∈A ωqu(A) · simA(i, j)

m · |A|
(6)

with m = max{ωk | k = 1, 2, 3, 4} and simA(i, j) being a similarity mea-
sure between i and j with respect to attribute A. The weights associated
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to quadrants the user belongs to influence the similarity score in Equation
(6) and hence the resulting objective function of Equation (1). Specifically,
based on our modeling hypothesis, the weights account for the user propen-
sity in diversifying every single attribute. In fact, if a user is in the second
or forth quadrant for a fixed attribute, then assigning a sufficiently big value
to ω2 and ω4 corresponds to keeping a high value for the original similarity
score and thus decreasing the overall value of fobj(i,S, u) for the items i
most similar to the ones already available in S. These are the items we want
to reduce in S, in order to guarantee a higher diversity value. Conversely,
assigning low weights to the first and third quadrant (low values for ω1 and
ω3) results in a significant lowering of the original similarity score and hence
in an increase of the corresponding fobj(i,S, u) values. This corresponds to
preferring items similar to the ones in the re-ranked list S.

3.4. Adaptive xQuAD

For the intent-aware diversification algorithm xQuAD, introduced in Sec-
tion 2, we use the adaptation illustrated in [39] that allows to deal with the
multi-attribute problem. Let A be the set of attributes and let us indicate
with A ∈ A one of these attributes and with f ∈ dom(A) the possible values
or features of A. div in Equation (3) may be reformulated as follows

div(i,S, u) =
∑
A∈A

∑
f∈dom(A) p(i|f) · p(f |u) · (1− avgj∈S p(j|f))∑

f∈dom(A) p(f |u)
(7)

While MMR contains a simple similarity function where we can inject quad-
rants weights, xQuAD uses Equation (7) to compute the diversity across all
the attributes via an explicit evaluation of the diversity between the features
for each attribute. Therefore, we introduce weights in that formula changing
the sum into a weighted sum. More formally, we rewrite div(i,S, u) as

div(i,S, u) =
∑
A∈A

ωqu(A) ·
∑

f∈dom(A) p(i|f) · p(f |u) · (1− avgj∈S p(j|f))∑
f∈dom(A) p(f |u)

(8)

4. Experiments

4.1. Datasets

In order to test the effectiveness of our proposal for adaptive multi-
attribute diversification, we carried out experiments on the well known
Movielens 1M2 dataset and on the LibraryThing3 dataset.

2Available at http://grouplens.org/datasets/movielens
3Available at http://www.librarything.com/services/
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MovieLens 1M dataset contains 1 million ratings from 6,040 users on 3,952
movies. The original dataset contains information about genres and year
of release, and was enriched with side information such as actors and direc-
tors extracted from DBpedia4. More details about this enriched version of
the dataset are available in [31]. Since not all movies have a corresponding
resource in DBpedia, the final dataset contains 998,963 ratings from 6,040
users on 3,883 items. We built training and test sets by employing a 60%-
40% temporal split for each user. Moreover, we used the LibraryThing

dataset, which contains more than 2 million ratings from 7,279 users on
37,232 books. As in the dataset there are many duplicated ratings, when
a user has rated more than once the same item, we selected her last rat-
ing. The unique ratings are 749,401. Also in this case, we enriched the
dataset by mapping the books with BaseKB5, the RDF version of Freebase6

and then extracting three meaningful attributes: genre, author and subject.
The subjects in Freebase represent the topic of the book, for instance Pilot
experiment, Education, Culture of Italy, Martin Luther King and so on.
The dump of the mapping is available online7. The final dataset contains
565,310 ratings from 7,278 users on 27,358 books. We built training and
test sets by employing a 80%-20% hold-out split. The different ratio used
for LibraryThing compared to Movielens (60%-40%) depends on its higher
sparsity: holding 80% to build the user profile ensures a sufficient number
of ratings to train the system.

Movielens LibraryThing

Number of users 6,040 7,278

Number of items 3,883 27,358

Number of ratings 998,963 565,310

Data sparsity 95.7% 99.7%

Avg users per item 275.57 20.66

Avg items per user 165.39 77.68

Table 1: Statistics about the two datasets

Since the number of distinct values was too large for year, actors and di-
rector attributes in Movielens and for all the attributes in LibraryThing, we
convert years in the corresponding decades and performed a K-means clus-
tering for other attributes on the basis of DBpedia categories8 for Movielens

4http://dbpedia.org
5http://basekb.com
6https://www.freebase.com
7http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/

BaseKB2LibraryThing.zip
8http://purl.org/dc/terms/subject
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and Freebase classes9 for LibraryThing. Table 2 and 3 report the number
of attribute values and clusters. The number of clusters was decided accord-
ing to the calculation of the within-cluster sum of squares (withinss measure
from the R Stats Package, version 2.15.3), that is picking the value of K cor-
responding to an evident break in the distribution of the withinss measure
against the number of extracted clusters.

Num. Values Num. Clusters

Genres 19 -

Decades 10 -

Actors 14736 20

Directors 3194 20

Table 2: Statistics about Movielens attributes

Num. Values Num. Clusters

Genres 270 30

Authors 12868 22

Subjects 2911 20

Table 3: Statistics about LibraryThing attributes

4.2. Recommendation Algorithms

Differently from [15], where the baseline was a generic user-based kNN
Collaborative Filtering algorithm using Pearson correlation as similarity
measure, here, for both datasets we adopt five different algorithms as base-
lines. We selected five state of the art algorithms available in MyMedi-
aLite10: BPRSLIM, BPRMF, WRMF, SoftMarginRankingMF and ItemKNN. They
were used to create a list of 200 recommendations to build the initial list R
used for performing the re-ranking step shown in Algorithm 1. With refer-
ence to Equation (1) and Equation (2) they represent r∗(u, i). Jaccard index
was used to compute simA(i, j), as in [41, 45, 20], because each feature is
represented by a binary value for each item: 1 if present, 0 otherwise11.

4.3. Evaluation metrics

For evaluating the recommendation quality considering a wide range of
evaluation metrics, we measured Accuracy, Individual Diversity, Aggregate
Diversity, and Novelty in top-N recommendation task. In the experiments,

9http://www.w3.org/1999/02/22-rdf-syntax-ns#type
10http://www.mymedialite.net
11Cosine distance could be used to compute the distance between two items, but it is

more appropriate in presence of weighted values [45].
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the value of N is set to 10. Unless explicitly stated, each of the following
metrics is computed with respect to a single user and then averaged across
all users.

4.3.1. Accuracy

For accuracy, we used Precision@N , Recall@N and nDCG@N . The
first one represents the fraction of relevant items in the top-N recommen-
dations. Let rel(u, i) be a boolean function that represents the relevance of
item i for the user u, with value 1 for relevant and 0 for non-relevant items,
then Precision@N is calculated as follows

Precision@N =

∑N
i=1 rel(u, i)

N
(9)

Recall@N indicates the fraction of relevant items, in the user test set,
occurring in the top-N list. Being test(u) the set of relevant items in the
test set for the user u, Recall@N is defined as

Recall@N =

∑N
i=1 rel(u, i)

| test(u) |
(10)

Although precision and recall are good indicators to evaluate the accu-
racy of a recommendation engine, they are not rank-sensitive. On the other
side, nDCG@N takes into account the position of a relevant item in the
recommendation list. More formally

nDCG@N =
1

iDCG
·

N∑
i=1

2rel(u,i) − 1

log2(1 + i)
(11)

where iDCG is a normalization factor that sets nDCG@N value to 1 when
an ideal ranking is returned [7].

4.3.2. Individual Diversity

The individual diversity of a recommendations set R, whose size will be
denoted as |R| and will match N in a top-N scenario, can be computed as
the average dissimilarity of all pairs of items [21]:

ILD(R) =
1

|R| · (|R| − 1)

∑
i∈R

∑
j∈R,j 6=i

div(i, j) (12)

The distance function may correspond to the complement of some sim-
ilarity measure in terms of the item features (content-based view) or their
user interaction patterns (collaborative view) [41]. We used content-based
ILD, that is we computed div(i, j) as the complement of sim(i, j) = avgA∈A simA,
where the similarity related to attribute A, simA, is given by Jaccard index
computation.

16



Another diversity measure of a recommendation list is Subtopic Recall
(S-Recall), proposed for evaluating subtopic retrieval in the information re-
trieval field, where documents may cover different subtopics of a query topic
[46]. Adapted to recommendation task, S-Recall can evaluate the fraction
of features covered in a recommendation list. More formally:

S−Recall(R) = avgA∈A

∣∣∣∣ N⋃
i=1

FA(i)

∣∣∣∣
|dom(A)|

(13)

where FA(i) represents the set of features of attribute A in the i-th item
in R. Intuitively, indicating the degree of subtopic coverage, S-Recall also
represents the diversity of recommendation list. We used also the metric
α-nDCG, that is the redundancy-aware variant of Normalized Discounted
Cumulative Gain proposed in [14]. We adopt the adapted version for rec-
ommendation proposed in [36]:

α−nDCG(R, u) = avgA∈A
1

α-iDCG
·
|R|∑
i=1

∑
f∈FA(i)(1− α)cov(R,f,i−1)

log2(1 + i)
(14)

where cov(R, f, i − 1) is the number of items ranked up to position i − 1
containing the feature f . The α parameter is used to balance the emphasis
between relevance and diversity. α-iDCG denotes the value of α-nDCG for
the best “ideally” diversified list. Considering that the computation of the
ideal value is NP-complete [14], we adopt a greedy approach: at each step
we select solely the item with the highest value, regardless of the next steps.

4.3.3. Aggregate Diversity

Aggregate Diversity represents an important quality dimension for both
business and user perspective, since improving the coverage of the items cat-
alog and of the distribution of the items across the users may increase both
the sales and the user satisfaction [43]. To evaluate Aggregate Diversity,
we considered catalog coverage [19] (the percentage of items in the catalog
recommended at least once), and Gini coefficient [2, 43] (for the distribution
of recommended items). The latter is useful to analyse the concentration
degree of top-N recommendations across all items and its scale is reversed,
thereby forcing small values to represent low distributional equity and large
values to represent higher equity.

coverage =
|
⋃

u∈U top-N(u) |
| I |

(15)

Gini coefficient = 2 ·
∑
i∈I

(
| I | +1− rank(i)

| I | +1

)
·
(
rec(i)

|U |

)
(16)
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In Equation (16) rec(i) is the number of users to whom i has been rec-
ommended and |U | is the number of users, while rank(i) is the position of
i if items were ordered according to the number of users they have been
recommended to. The coverage metric needs to be considered together with
a distribution metric like Gini coefficient, since the coverage gives an indi-
cation about the ability of a recommender to cover the items catalog, and
the other one shows the ability to equally spread out the recommendations
across all the items. Hence, only an improvement of both metrics indicates
a real increasing of aggregate diversity, that in turn denotes a better per-
sonalization of recommendations [2].

4.3.4. Novelty

We evaluated the popularity-based novelty [41] which measures the un-
expectedness of an object relative to its global popularity [48]. We used two
popularity-based novelty metrics: Expected Popularity Complement (EPC)
and the percentage of long-tail items among the recommendations across
all users [2] (indicated with total in (18)) considering the 80 percent of less
rated items in the training set as Long-tail items.

EPC =

∑
i∈R (1− pop(i))

|R|
(17)

%Long-tail =

∑
i∈Long-tail rec(i)

total
(18)

With pop(i) in (17) we mean the number of users who rated item i,
normalized by the maximum value over the items in the dataset.

5. Experimental Results

We conducted a comparative analysis of the adaptive methods we pro-
pose, the baselines without diversification introduced in Section 4 and the
pure diversification algorithms (MMR and xQuAD). These latter consist of com-
puting recommendations by using respectively Equation (1) and Equation
(2) without considering the adaptive models. This implies that the diver-
sification is applied indiscriminately to all users regardless of whether they
are incline to diversifying their choices or not.

In the following we will indicate with MMRquadr the algorithm that car-
ries out a hard users clustering and, given the list returned by the current
baseline, performs re-ranking according to (1) with (6), as explained in Sec-
tion 3.1. The MMRfuzzy model instead consists of a fuzzy clustering of users
in four quadrants, as introduced in Section 3.2 and with quadrant weights
as in Equation (5). Analogously, xQuADquadr and xQuADfuzzy represent the
corresponding configurations for the diversification algorithm xQuAD.
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It is common knowledge that building multi-objective recommender sys-
tems that suggest items that are simultaneously accurate and diversified may
lead to a conflicting-objective problem, where the attempt to improve an
objective further may result in worsening other competing objectives. We
face the trade-off of multi-objective problems using the concept of Pareto
optimality [34], according to which an individual (meant as the result of an
algorithm in our case) dominates another if it performs better in at least
one of the objectives considered. The Pareto Frontier is the set of all non-
dominated individuals: none of them can get better without making at least
one individual getting worse. We carried out the same type of comparative
analysis based on Pareto frontier for MMR and xQuAD. In those analyses we
vary the available parameters: only the value of λ can be modified for the
diversification baselines, while λ and the quadrant weights w1, w2, w3, w4 are
modified for quadr and fuzzy algorithms. The step size for variation was fixed
in 0.05 for both λ and w1, w2, w3, w4. The results of this analysis are shown
in Figures 5, 6, 7 and 8. However, a Pareto Frontier consists in potentially
many individuals and in a realistic scenario the system designer would want
to choose one or a few of them. In [34], an individual is chosen by means of
a linear search on all of the individuals, selecting the one which maximizes a
weighted mean on the objectives in the objective vector, where the weights
in the weighted mean represent the priority given to each objective. For
instance, if the objectives are accuracy and diversity, the objective vector
[Accuracy = 0.7, Diversity = 0.3] allows the system to find the individual
that strongly preserves the accuracy and slightly improves the diversity. In
this work, in order to demonstrate the validity of the proposed adaptive di-
versification approach, we carried out a further comparison of the analysed
algorithms selecting the most accurate individuals and those with the best
mean between accuracy and diversity. Results are shown in Tables 4–11.

5.1. Comparative Results for MMR

The curves in Figures 5 and 6 show the relation between precision and
other metrics, respectively for Movielens and LibraryThing, using the
baseline BPRSLIM and the diversification algorithm MMR. Focusing on in-
dividual diversity, they point out that there is no particular difference in
terms of ILD and α-nDCG, but there are improvements considering S-
Recall. It means that using the adaptive models there is not an actual
direct improvements on individual diversity, but the number of retrieved
subtopics increases. Analysing aggregate diversity, the adaptive models im-
prove both coverage and Gini coefficient, which indicates a real increment
of aggregate diversity, as explained in Section 4.3. In particular, MMRquadr
leads to a broader range of values compared to the diversification baseline
and MMRfuzzy. When considering the novelty dimension, MMRquadr leads to
the best results, especially in terms of EPC, namely the popularity com-
plement of the recommended items, while there is no relevant difference
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between MMRfuzzy and MMR. The trends of the results are substantially simi-
lar across the other different baselines (BPRMF, WRMF, SoftMarginRankingMF,
ItemKNN)12.
Beyond the Pareto frontier, which is useful to point out the compromise
between the involved objectives through many individuals, we analysed spe-
cific individuals as shown in Tables 4, 5, 6 and 7 [34]. We selected the best
individuals for the algorithms involved in each comparison, according to two
configurations. The first one considers as objective just accuracy, specifically
Precision, while the second one corresponds to an unbiased balance between
accuracy and diversity (ILD).

As already shown in [15], calibrating the diversity among different content-
based attributes may lead to enhance diversity without penalizing accuracy.
The same surprisingly good performance is observed in Tables 4 and 5 with
the most accurate individuals for compared algorithms on Movielens and
LibraryThing, respectively. Consistently with the accuracy-diversity trade-
off, the basic MMR approach improves the diversity at the cost of the ac-
curacy. The adaptive approaches we propose gain statistically significant
improvements with respect to the baseline in terms of diversity, as we ex-
pected, but also accuracy, though non statistically significant. Furthermore
the adaptive approaches significantly overcome MMR in terms of all the met-
rics, except for S-Recall on Movielens where MMRfuzzy obtains the same value
of MMR. The individuals of Tables 6 and 7, related to the balance of accu-
racy and diversity on Movielens and LibraryThing respectively, improve
the diversity with respect to the baseline, closely approaching the values
reached by MMR, keeping high the accuracy values. A further observation
corroborating our modeling hypothesis concerns the weights configurations
〈ω1, ω2, ω3, ω4〉 for the best individuals found. It is useful to recall that, as
explained in Section 3, we introduced quadrants weights in the attempt to
provide recommendations with a diversity degree reflecting users propen-
sity towards diversification. As a general trend, ω4 gains the highest values
while ω1 and ω3 lowest values, which basically means that users with higher
entropy and longer profile will receive more diverse recommendations with
respect to the other users. Interestingly, ω2 shows a discordant behaviour
between Movielens and LibraryThing using MMRfuzzy. This could be a
clue saying that for small profiles the propensity towards diversification is
domain dependent and needs more investigations. As we will see in the next
section, the same behaviour holds for xQuAD.

12For the sake of conciseness we do not report the plots here and
made them available at http://sisinflab.poliba.it/recommender-systems/

adaptive-multi-attribute-diversity.html.
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Figure 5: Pareto Frontiers for Movielens Dataset, using BPRSLIM and MMR

5.2. Comparative Results for xQuAD

In this section we investigate the results of the proposed adaptive meth-
ods used with the diversification baseline xQuAD. Figures 7 and 8 show
the curves between precision and different other metrics, respectively for

21



Figure 6: Pareto Frontiers for LibraryThing Dataset, using BPRSLIM and MMR

Movielens and LibraryThing, using the baseline BPRSLIM and the diversi-
fication algorithm xQuAD. Using the Movielens dataset, the adaptive mod-
els xQuADquadr and xQuADfuzzy lead to improvements in terms of ILD and
α-nDCG, and reductions in terms of S-Recall. With regard to aggregate
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weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.1488 0.0692 0.1634 0.3551 0.2310 0.2773
MMR 0.95 0.1484a 0.0686a 0.1630a 0.3579a 0.2314a 0.2786a

QUADR 〈0.0, 0.0, 0.2, 0.8〉 0.55 0.1492b 0.0690b 0.1637 0.3629ab 0.2321ab 0.2806ab

FUZZY 〈0.0, 0.0, 0.1, 0.9〉 0.6 0.1490b 0.0689b 0.1636a 0.3585ab 0.2314a 0.2789ab

Table 4: Most accurate individuals from Pareto Frontiers for Movielens Dataset, us-
ing BPRSLIM and MMR. The superscripts a and b indicate statistically significant differ-
ences (Wilcoxon signed rank with p < 0.05) with respect to the baseline and MMR algo-
rithms, respectively. Bold superscripts indicate stronger statistically significant differences
(Wilcoxon signed rank with p < 0.001)

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.0132 0.0146 0.0180 0.3993 0.1375 0.2836
MMR 0.95 0.0131 0.0145 0.0179a 0.4099a 0.1385a 0.2859a

QUADR 〈0.1, 0.3, 0.0, 0.6〉 95 0.0135 0.0149 0.0184b 0.4039ab 0.1375ab 0.2846ab

FUZZY 〈0.0, 0.9, 0.0, 0.1〉 85 0.0134 0.0147 0.0183a 0.4100ab 0.1379ab 0.2858ab

Table 5: Most accurate individuals extracted from Pareto Frontiers for LibraryThing

Dataset, using BPRSLIM and MMR

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.1488 0.0692 0.1634 0.3551 0.2310 0.2773
MMR 0.3 0.1377a 0.0569a 0.1509a 0.4203a 0.2391a 0.2999a

QUADR 〈0.1, 0.1, 0.2, 0.6〉 0.15 0.1417ab 0.0616ab 0.1554ab 0.4109ab 0.2377ab 0.2970ab

FUZZY 〈0.0, 0.1, 0.3, 0.6〉 0.1 0.1405ab 0.0610ab 0.1541ab 0.4151ab 0.2395ab 0.2986ab

Table 6: Individuals with best mean between Precision and ILD from Pareto Frontiers for
Movielens Dataset, using BPRSLIM and MMR

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.0132 0.0146 0.0180 0.3993 0.1375 0.2836
MMR 0.7 0.0123a 0.0133a 0.0168a 0.4486a 0.1420a 0.2896a

QUADR 〈0.1, 0.1, 0.3, 0.5〉 0.4 0.0123a 0.0134a 0.0168ab 0.4591ab 0.1425ab 0.2898a

FUZZY 〈0.1, 0.6, 0.1, 0.2〉 0.75 0.0129ab 0.0140ab 0.0176ab 0.4355ab 0.1407ab 0.2887ab

Table 7: Individuals with best mean between Precision and ILD extracted from Pareto
Frontiers for LibraryThing Dataset, using BPRSLIM and MMR

diversity, xQuADquadr is able to improve coverage and Gini coefficient, while
xQuADfuzzy improves the Gini coefficient but not the coverage reached by
xQuAD. Analysing novelty of recommendations, xQuADquadr gives the highest
values of EPC with small loss of Precision and best balance between Preci-
sion and EPC. It is noteworthy that the same trend on EPC occurs using
MMRquadr on Movielens, as we may see in Figure 5.
Considering the LibraryThing dataset, there are relevant differences with
MMR. xQuADquadr and xQuADfuzzy overcome xQuAD only in terms of S-Recall,
while there is no evident difference in terms of ILD. α-nDCG shows a crit-
ical situation: xQuADfuzzy gives the worst results while xQuADquadr is able
to increase the α-nDCG with non significant losses of precision. Moreover,
xQuADquadr and xQuADfuzzy overcome xQuAD in terms of both coverage and
Gini coefficient, therefore giving a real improvement of aggregate diversity.
In particular, xQuADquadr gives the highest values and the best compromise
between accuracy and aggregate diversity. Also analyzing novelty of recom-
mendations, xQuADquadr and xQuADfuzzy overcome xQuAD, giving better bal-
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ance between precision and %Long-Tail and between precision and EPC13.
Just as for MMR, we show in Tables 8, 9, 10 and 11 the best individuals of

compared algorithms according to the configurations of objectives described
above. The situation is analogous to the one depicted for MMR, since the
main outcome is that our adaptive multi-attribute approaches xQuADquadr
and xQuADfuzzy are able to improve the diversity without accuracy loss, while
the pure xQuAD increases the diversity penalizing the accuracy, as expected.
The statistically significance test validate the results even further, especially
for diversity measures. The same considerations made for MMR on weights
ω4, ω1 and ω3 are still effective, and an analogous discordant behaviour for
ω2 can be observed too. In fact, for xQuADquadr on LibraryThing in both
configurations of objectives and xQuADfuzzy on Movielens just in the first
configuration, the value ω2 is even higher than ω4, while is almost zero in
the other cases.

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.1488 0.0692 0.1634 0.3551 0.2310 0.2773
XQUAD 0.95 0.1479a 0.0676a 0.1621a 0.3633a 0.2339a 0.2815a

QUADR 0.0,0.2,0.1,0.7 0.8 0.1494b 0.0692 0.1638 0.3631ab 0.2330ab 0.2806ab

FUZZY 0.1,0.5,0.1,0.3 0.95 0.1489b 0.0688b 0.1634b 0.3575ab 0.2315ab 0.2784ab

Table 8: Most accurate individuals from Pareto Frontiers for Movielens Dataset, using
BPRSLIM and xQuAD The superscripts a and b indicate statistically significant differ-
ences (Wilcoxon signed rank with p < 0.05) with respect to the baseline and xQuAD algo-
rithms, respectively. Bold superscripts indicate stronger statistically significant differences
(Wilcoxon signed rank with p < 0.001)

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.0132 0.0146 0.0180 0.3993 0.1375 0.2836
XQUAD 0.95 0.0131 0.0145 0.0179a 0.4099a 0.1385a 0.2859a

QUADR 0.1,0.8,0.0,0.1 0.90 0.0135 0.0152 0.0184 0.4123ab 0.1404ab 0.2867ab

FUZZY 0.3,0.2,0.0,0.5 0.90 0.0134 0.0152 0.0183a 0.4165ab 0.1410ab 0.2864ab

Table 9: Most accurate individuals extracted from Pareto Frontiers for LibraryThing

Dataset, using BPRSLIM and xQuAD

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.1488 0.0692 0.1634 0.3551 0.2310 0.2773
XQUAD 0.8 0.1433a 0.0620a 0.1566a 0.3859a 0.2405a 0.2907a

QUADR 0.1,0.1,0.1,0.7, 0.35 0.1401ab 0.0578ab 0.1528ab 0.4143ab 0.2395ab 0.2966ab

FUZZY 0.1,0.2,0.0,0.7, 0.35 0.1401ab 0.0581ab 0.1528ab 0.4142ab 0.2401ab 0.2968ab

Table 10: Individuals with best mean between Precision and ILD from Pareto Frontiers
for Movielens Dataset, using BPRSLIM and xQuAD

weights λ Precision Recall nDCG ILD S-Recall α-nDCG

BS 0.0132 0.0146 0.0180 0.3993 0.1375 0.2836
XQUAD 0.7 0.0123a 0.0133a 0.0168a 0.4486a 0.1420a 0.2896a

QUADR 0.1,0.6,0.1,0.2, 0.9 0.0134b 0.0151b 0.0183ab 0.4165ab 0.1410ab 0.2864ab

FUZZY 0.1,0.1,0.0,0.8, 0.9 0.0134b 0.0152b 0.0183ab 0.4165ab 0.1410ab 0.2864ab

Table 11: Individuals with best mean between Precision and ILD extracted from Pareto
Frontiers for LibraryThing Dataset, using BPRSLIM and xQuAD

13According to the Figures available at http://sisinflab.poliba.it/

recommender-systems/adaptive-multi-attribute-diversity.html, the aforemen-
tioned trends on the results are generally confirmed using the adaptive diversification
models upon other recommendation algorithms (BPRMF, WRMF, SoftMarginRankingMF,
ItemKNN).
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Figure 7: Pareto Frontiers for Movielens Dataset, using BPRSLIM and xQuAD

5.3. Results discussion

Summing up, previous results show that our proposed adaptive diver-
sifications model is able to foster the recommendations quality in a multi-
objective scenario. More specifically, considering the individual diversity,
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Figure 8: Pareto Frontiers for LibraryThing Dataset, using BPRSLIM and xQuAD

MMR benefits from the adaptive model in terms of S-Recall on both the
datasets, while there is no significant difference in terms of ILD and α-nDCG.
It is worth to note that the basic MMR gives the best results in terms ILD
and S-Recall among different diversification algorithms, as demonstrated
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in [40] and here the results show that it is possible to further improve
those metrics with the MMRquadr and MMRfuzzy. Moreover, it always obtains
improvements considering novelty and aggregate diversity, especially using
MMRquadr. On the other hand, the adaptive models applied with xQuAD show
different behaviours on the two datasets, especially considering the individ-
ual diversity. They are able to improve the ILD and α-nDCG results on
LibraryThing, but not S-Recall, while on Movielens they improve S-Recall
and only xQuADquadr gives better results in terms of α-nDCG. As for MMR,
also xQuAD obtains better results in terms of novelty and aggregate diversity,
specially using xQuADquadr. In other words, the results suggest that generally
using an adaptive model may improve all the balances between accuracy and
the other quality dimensions, or at least improve some of them and do not
make the other worse. As an additional consideration, the values for quad-
rant weights proposed in Tables from 4 to 11 give worth and effectiveness
to our idea of using profile size and entropy to cluster users into groups and
approaching their predilection to diversity through belonging groups.

The main difference between the hard clustering and the fuzzy one is
that the former assumes that a user can belong to only a quadrant for each
attribute, while the second lets a user belong to different quadrants simul-
taneously with different degree for the same attribute. As a consequence,
the hard clustering is straighter, while the fuzzy version tends to distribute
more equally the quadrants weights since each quadrants gives a more or less
significant contribution. Although the hard version is a simple clustering of
users by means of median values, the results point out a positive impact
of a clear division of users on most of the evaluation metrics. The hard
clustering is able to beat both the fuzzy one and the diversification baseline
in terms of Aggregate Diversity (coverage and Gini coefficient) and also in
terms of novelty. This is more evident when considering EPC. On the other
hand, fuzzy clustering remains very close to the diversification baseline. The
reason of this outcome could be found in the aforementioned difference: the
hard clustering is more straight than the fuzzy one, therefore it is much
more selective during the re-raking phase.

6. Conclusion

Computing effective recommendations calls for approaches which are
able to provide not just accurate lists of results. Modern recommenda-
tion engines need to go beyond accuracy and consider, while computing a
recommendation list, also other dimensions such as diversity in the recom-
mendation list to reduce the portfolio effect, catalog coverage to maximize
the number of items in the catalog recommended to the users and novelty of
results to mitigate the popularity bias thus suggesting also items in the long
tail. In particular, it has been shown [17] that reducing the portfolio effect
by increasing diversity in the recommendation list plays an important role
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on user satisfaction. The task is not trivial especially when we deal with a
multi-attribute personalized diversification results. In the recent years, the
importance of adapting the recommendation diversity to user’s needs with
respect to different attributes has strongly emerged, although research on
multi-attribute diversity is still in its early stage.

In order to fill this gap, in this work we introduced an adaptive multi-
attribute diversification method according to the hypothesis that a user who
selected many diverse items in the past could be more willing to receive di-
verse recommendations. With reference to the research questions pointed
out in Section 1, as an answer to question (i), we proposed to model the
user profile by taking into account her attitude to enjoy (or not) items which
result diverse with regard to different attributes and eventually adopt this
modeling to foster diversity in the list returned by a recommendation en-
gine. Our modeling has been exploited to re-rank the list of items produced
by whatever recommender system to reduce the portfolio effect. In order
to evaluate the effectiveness of our hypothesis we tested two different ver-
sions of our profile modeling (we called them hard and fuzzy), built upon
two different state-of-the-art diversification methods - MMR and xQuAD- in
the movie domain on Movielens 1M dataset and in the book domain on
LibraryThing dataset. As for the evaluation of the recommendation qual-
ity we considered a wide range of metrics to measure four important quality
dimensions: Accuracy, Individual Diversity, Aggregate Diversity, and Nov-
elty in top-N recommendation task. As an answer to question (ii), the ex-
perimental results confirmed our intuition on the need of tailoring diversity
degree to actual user’s interests in a personalized way, pointing out the inad-
equate performances of non adaptive diversification baselines. Finally, our
approach can be considered as a step forward to solve the challenge posed
by question (iii). In fact, the construction of a content-based user profile in
terms of diversity allowed not only to customize the degree of individual di-
versity in the recommendation list but led to better recommendation quality
in a multi-objective scenario. In particular, our adaptive model overcame
the traditional accuracy-diversity trade-off issue, improving different qual-
ity objectives, without affecting the others. Hence, the results let us draw
the conclusion that diversification methods tailored to actual user’s needs
produce better recommendations from a broad user utility perspective.

The outcomes presented in this paper pave the way to further investiga-
tions and research directions in the design and evaluation of multi-attribute
diversity approaches. From the point of view of attributes selection, other
domain independent side information may be taken into account such as
popularity or even latent dimensions. A further related aspect to be consid-
ered is that of time-aware selection of attributes and corresponding values.
Interesting results to estimate and detect peaks of interest have already been
presented in [24] while in [23] the idea to model individual needs is put for-
ward with respect to the novelty property, with emphasis on user’s dynamic
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behaviour and time dependency. Additional investigation to understand the
approach that should be used for users with a small profile and a high value
of entropy needs also to be done together with the role of individual diver-
sity in cold-start situations. Reasonably, a hybrid system like the one used
in [3], able to switch between different approaches depending on the actual
needs, could be conveniently applied to match the demand of both cold and
expert users.
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