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Abstract: Thermo-Electric Modules (TEMs) are being increasingly used in power generation as
a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor
Networks, especially for energy harvesting applications. Often, manufacturers provide some essential
parameters under determined conditions, like for example, maximum temperature difference between
the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system
is operated under the best conditions only for a fraction of the time, thus, when dynamic working
conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency.
The focus of this work is on using a novel procedure to estimate the parameters of both the electrical
and thermal equivalent model and investigate their relationship with the operating temperature
and the temperature gradient. The novelty of the method consists in the use of a simple test
configuration to stimulate the modules and simultaneously acquire electrical and thermal data to
obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli,
which use depends on the available test instrumentation, and relative performance are compared
both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty.
Obtained results, besides agreeing with both technical literature and a further estimation method
based on module specifications, also provides the designer a detailed description of the module
behavior, useful to simulate its performance in different scenarios.
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1. Introduction

TEMs are increasingly being used for both power generation and for cooling/heating applications.
In the first case the Seebeck effect is predominant to convert temperature gradient ∆T into electrical
energy, whereas, in the second case, the dual effect—the Peltier effect—is exploited. TEMs’ several
positive features make them reliable [1,2], and thus their use is appealing for both academic and
industrial researchers.

In particular, Thermo-Electric Generators (TEGs) can generate clean energy in a small space
and therefore are being used in an increased number of standalone applications ranging from
aerospace [3,4], to industry [5–7]. Their possible integration with other energy harvesting technologies
was also investigated; for example, for increasing the overall efficiency of photovoltaics [8] by exploiting
the thermal gradient between the back of the panels and the ambient temperature, hence recovering
the otherwise dissipated heat. The inherent restrained necessity of maintenance and the high long-term
efficiency, make TEGs a valid alternative to batteries in providing an autonomous source of energy to
sensor nodes [9–11] or entire Wireless Sensor Networks [12–16].
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In addition, Thermo-Electric Coolers (TECs) have been considered, for a long time, for a number
of applications such in that described in [17], where they are used to keep the chip temperature below
an assigned threshold in electronic packaging systems, or in specialized air conditioning [18,19] and
refrigeration applications [7,20–22].

Performances of a TEC are typically considered in correspondence to an optimal operating current
that yields the maximum heat flux for a given operating condition, but in many cases, a TEC-based
system is operated under the best conditions for only a fraction of the time, unless it is operated at a
fixed heat load and fixed ambient conditions. Thus, the performance of a TEC at off-peak conditions
are of great importance in the design phase and in determining the actual efficiency under dynamic
working conditions.

However, manufacturers often only provide some essential parameters to characterize TEMs.
Regarding the specifications of a TEC, some parameters are specified in correspondence of a couple of
temperature values of the hot side (typically 27 ◦C and 50 ◦C). These usually are the largest temperature
differential ∆Tmax that can be obtained between the two sides along with the input direct current
Imax and the voltage Umax that have produced it. Conversely, for TEG modules they usually provide
the power Pem , the voltage Um and the maximum efficiency ηm at matched load, i.e., when the load
resistance Rm equals the internal electrical resistance of the module. Clearly, these values do not
correspond to actual ones but to maximum theoretical specifications, scarcely significant for practical
use in many applications.

The need to quantitatively characterize TEMs’ behavior, implies the design of a robust testbed
capable of addressing a twofold objective: to estimate the parameters of a TEM for design purposes
and to define a robust method for comparing different TEM models. The development of a useful
testbed for the characterization of TEMs is the main topic of this work. The focus is on using an
appropriate procedure and suitable hardware to investigate the underlying relationship between both
the operating temperature, the temperature difference and the parameters of the electrical and thermal
equivalent model for commercial modules. The novelty consists in applying a proper current stimulus
(for which two alternatives are discussed) to the TEM under test and simultaneously acquire both
thermal and electrical data to automatically derive all parameters in a single test, without using either
a discrete load [9,23,24] nor hot plates or auxiliary TEMs [2,11,17,24–29]. Unlike other approaches, the
developed testbed permit, using a very simple configuration, to quickly obtain all relevant parameters,
making possible an extensive TEM characterization over a wide range of temperature differences,
ambient temperatures and electric loads.

This paper is structured as follows: after the introduction of the thermoelectric Figure of Merit Z,
a typical method to estimate the thermal resistance which involves the measurement of four different
temperatures between the surfaces of a reference material is described in Section 2.1. The state-of-the
art review about electrical characterization is then described in Section 2.2 and subsequently the
proposed method is briefly explained in Section 2.3. In Sections 3 and 4 the electrical and thermal
characterization are analytically approached, respectively, whereas in Section 5 the testbed is presented
and detailed. Finally, results obtained with the two alternatives of the proposed approach are
experimentally compared to each other in Section 6, confirming was expected from the analytical
analysis. The obtained parameters are presented and validated with a third estimate based on the
manufacturers’ specification [30]. Section 7 summarizes the paper’s content drawing the conclusions.

2. State of the Art and Proposed Method

The thermoelectric figure of merit Z is a parameter which summarizes the bulk material proprieties
and allows the comparison among different TEMs. Alternatively, the same meaning is given to a
dimensionless parameter ZT where T is the average absolute temperature between the two surfaces of
the module. It is defined as:

Z =
α2

SΘIN

RIN
(1)
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Expression (1) requires the knowledge of the relative Seebeck coefficient αs, the internal electrical
resistance RIN and the thermal resistance ΘIN of a TEM, all parameters that provide the most
comprehensive description of the physical behavior of a TEM both as TEG and TEC. In fact, by recourse
to them it is for instance possible to express the electrical power Pe delivered to the load and the thermal
power Pt absorbed by the module in variable working conditions for a TEG module:

Pe = VL I =
αs · ∆T · RL
RIN + RL

· αs · ∆T
RIN + RL

→ Pem =

(
αs · ∆T
2
√

RIN

)2
∣∣∣∣∣
RL=RIN

(2)

Pt = ∆q =
∆T
ΘIN

(3)

where VL is the voltage on the load. Furthermore, the efficiency η of a module, i.e., the amount of
thermal power converted in electrical power, may be derived in all working conditions as:

η =
Pe

Pt
=

α2
S · ∆T2 · RL

(RIN + RL)
2 ·

ΘIN
∆T
→ ηm =

α2
S · ∆T ·ΘIN

4RIN

∣∣∣∣∣
RL=RIN

(4)

If Equations (2) and (4) are calculated at match load conditions (i.e., RL = RIN), it is possible
to obtain the maximum value of the electrical power deliverable to the load Pem (or equivalently the
maximum power density if dividing it by the module area) and the maximum efficiency ηm which are
generally reported in datasheets.

Methods used nowadays to estimate such parameters suffer from various limitations, such
as the necessity to realize different experiments to carry out all the requested measurements for
Z calculation [31], or conversely, they directly provide it without letting one extract the single
components [32]. Anyway, none of these is able to provide an extensive description of TEMs behavior
in variable working conditions. In the following, a summary of these methods is reported.

2.1. Thermal Characterization

Among the above mentioned three parameters, the thermal resistance ΘIN results, in principle,
quite simple to be obtained but less immediate to be measured, since it requires different temperature
probes and the realization of a suitable conditioning circuitry. It can be indirectly measured using a
test configuration like the one described in Section 5, measuring the emitted and absorbed heat fluxes
(qem and qabs, respectively) and applying the thermal equivalent of Ohm’s law Θ = ∆T/q.

Once the fluxes are known, it is possible to write down the energy balance (5) between the Peltier
effect, the heat conduction and Joule effect due to the injected current:

qem = T3−T4
Θre f

= αS IstTh − Th−Tc
ΘIN

+
I2
stRIN

2

qabs =
T2−T1
Θre f

= αS IstTc − Th−Tc
ΘIN

− I2
stRIN

2

(5)

where Θre f is the thermal resistance of the reference medium. Its value can be previously fine-tuned
sourcing the module with a known electrical power and solving the energy balancing equation
qem − qabs = VI with no thermal losses considered since they are negligible if the measurement setup
is thermally isolated. Of course, it would be necessary to know the thermal dependence of Θre f for the
adopted material with the mean temperature T. However, if the investigated temperature range is not
too wide, a material with an almost constant thermal conductivity in the given range may be adopted.

Therefore, in order to measure ΘIN , it is necessary to measure the current sourced to the module
and both the emitted and the absorbed heat flux, which in turn require four temperatures to be
measured or equivalently two voltage difference induced across a reference medium with a known
thermal resistance Θre f .
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In Equation (5), Th and Tc refer to those temperatures directly measured at the ends of the internal
thermoelectric elements (pellets) and can be computed taking into account the temperature drops on
the ceramic surfaces of a TEM:

Th = T3 + qemΘcer

Tc = T2 + qabsΘcer
(6)

where Θcer is the thermal resistance of the ceramic surfaces. However, in many cases, the use of
alumina oxide (Al2O3) ceramic external plates in the module fabrication, makes the correction (6)
negligible, since the joint combination of a high thermal conductivity (one order of magnitude higher
than Bi2Te3) and a small thickness (one order of magnitude lower than Bi2Te3 pellets) lead to a thermal
resistance Θcer value that is usually negligible as furtherly demonstrated in Equation (20).

Finally, solving Equation (5) with respect to ΘIN , it is possible to derive a measurement formula
for the unknown thermal resistance:

ΘIN =
2(Th − Tc)

αs Ist(Th + Tc)− (qem + qabs)
(7)

where αs is supposed to have been previously estimated, whereas Ist is the steady-state current injected
into the module under test.

This approach is very common and widely adopted when thermal characterization is required,
using simple or more complex setups, depending on the application and uncertainty requirements.
For example, in [24,25] the TEM is placed between a heat source given by a controlled hot-plate and a
controlled cooling fan, whereas in [26] a shielded heating block and a cold-plate are used to assess
the TEM efficiency, monitoring the heat flux, the delivered power and also the mechanical load to
make a good thermal contact between each component. Another interesting setup is proposed in [27],
where both the heat produced by an electrical resistance and the cooling capacity provided by a TEM,
are controlled by a proportional-integral controller. Other propose the use of one or two opportunely
driven auxiliary TEMs to set the temperature gradient on the TEM under test [2,28,33]. For example,
in [28], ΘIN is obtained measuring only one heat flux induced into an aluminum block with a known
thermal conductivity, interposed between the module under test and an auxiliary TEM used to set the
average temperature, hence requiring only three temperatures to be measured.

2.2. Electrical Characterization

At the end of fifties, Harman [34] developed the method, hence the name “Harman Method” (HM),
used to obtain the constituent parameters of the thermoelectric figure of merit using both AC and
DC measurements; the former to obtain the electrical resistivity whereas the latter to measure the
Seebeck coefficient and the thermal conductivity. Generally, the HM is valid under the hypothesis of
thermal equilibrium:

Th ≈ Tc ≈ Ta (8)

In particular, when the temperature of the hot side Th, the cold side Tc and the ambient one Ta do
not deviate from the average temperature T by more than 0.3%, ensuring a good linear approximation
of the radiative component in heat transmission, accurate to 1% [34]. This condition is typically
achieved by injecting a current, large enough to be measured but sufficiently small (generally in the
order of milliamperes) to meet the condition (8). In this condition it can be proved [34] that the figure
of merit ZT can be written as ZT = Vα/Vr, where Vr is the ohmic component of the voltage across
the sample and Vα is the Seebeck voltage. In the testbed proposed by Harman, these two voltage
components were alternatively measured immediately after switching a mechanical chopper on and
off, responsible for the creation of a square-wave current. The main useful feature introduced by HM,
was indeed the capability to estimate directly ZT in terms of a ratio of two voltages however, because
of the technology limitations at the time, it suffered from a lack of precision and reproducibility [35].
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The method proposed by Harman was further developed by Buist in the so called “Transient
Method” (TM) [35], in which the TEM is driven by a pulsed current like the one reported in Figure 1.
At steady-state, the current is switched on, resulting in an immediate increase in the measured voltage
because of the occurrence of the ohmic voltage component Vr. However, due to the slower characteristic
response of heat phenomena compared to electrical ones, a temperature difference arises across the
sample, generating a Seebeck voltage that slowly increases Vr to Vr + Vα.
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voltage V (Top) vs. time.

The main difference between the HM and the TM is in the use of a modern instrumentation such
as a DAQ board and a PC to reconstruct the entire voltage waveform over time (Figure 1). The use
of the TM implies that, for each electrical working condition, a different current pulse have to be
generated and acquired, but also that to have a good repeatability, a sufficient number of voltage
waveform have to be processed.

The success of the TM is widely demonstrated by the large scientific literature concerning the
TEM characterization that was inspired to it. Only to cite some: in [32], a test facility called “Z-meter”
is proposed to measure the performance parameters of a TEM and some correction factors were
introduced to take into account real environment conditions; in [28], the TM is used to estimate αs and
RIN in a commercial TEM. Another improvement with respect to the HM was proposed in [29], where
both the temperature difference induced by applying a DC current and the heat flow created by a low
frequency AC current, are used to obtain αs, RIN and ZT, whereas ΘIN is indirectly estimated using
Equation (1). In [30] the HM is used to obtain the parameters of the TEM equivalent PSPICE model
and to validate a method for extracting such model parameters from specifications. This latter feature
is also used by the authors to derive a rough estimate of the TEM parameters and furtherly comparing
them with the values obtained using the method proposed in this work.

2.3. Proposed Method

To overcome the limitations of the methods cited above, we propose a procedure which relies on
two different modified versions of the TM for the electrical part while the typical approach described
in Section 2.1 is used for the thermal characterization. The proposed method provides a detailed
description of the three parameters that compose the figure of merit ZT with respect to variations of
the operating conditions, i.e., the temperature of both sides of the module.

Briefly, the proposed method consists in placing the TEM module under test between two
heat-flux sensors; when the desired operating conditions are met, a small signal or a rapid current
variation is applied and the following quantities are measured: the emitted and the absorbed fluxes,
the temperature at cold and hot side (Th and Tc), the voltage VL and the current I at its terminals.
The developed testbed automatically sweeps along a wide range of drive currents using only a
data-acquisition (DAQ) board and a 4-quadrant transconductance amplifier, but if the latter is



Sensors 2016, 16, 2114 6 of 20

not available, similar results may be obtained using the small signal method. Although all above
parameters are measured at the same time, in the following section they are discussed separately to
avoid confusion between electrical and thermal ones.

3. Electrical Measurement

A TEM can be electrically modelled as a voltage source Vth = αs∆T in series with an internal
resistance RIN . Once the TEM reaches a steady-state condition, the voltage VL at its terminals is
measured along with the current I flowing in it using a shunt resistor Rs placed in series (described in
Section 5). In this condition, the total voltage resulting at the power supply output terminals is:

V(I, ∆T) = VS + VL = RS I + RIN I + αS∆T (9)

If a rapid current variation is applied, fast enough to not interfere with its thermal steady-state,
then Vth can be considered constant in such time window and the total voltage (9) is dependent only by
the supplied current, hence on the electrical response of the module. Therefore, the resulting voltage at
the terminals of the module under test is:

VL(I) = RIN I + Vth ↔ τth � τel (10)

To separate the two effects, this condition is obtained when the current variation occurs in a time
window τel which is at least one order of magnitude smaller than the thermal time constant τth.

3.1. Current Sweep (CS) Method

The adopted current variation consists in a CS from the value Ist it has in the steady-state condition
up to its opposite−Ist. Using Equation (10), this CS produces a line drawn in the I−V plane, as shown
in Figure 2, where the slope is given by RIN and Vth is its intercept with the ordinate axis, both referred
to a given temperature Tc and Th.
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3.2. Small Signal (SS) Method

As described further in Section 4, the consistence of the CS method has been validated comparing
it with a second current profile that produces similar results, but consists of a small sinusoidal signal iss

added to the steady-state current Ist, which can be considered to all effects as a perturbation around the
bias point. From the theoretical point of view, such a small current does not require to satisfy condition
(10) on the thermal time constant, since its amplitude is generally negligible with respect to Ist.
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3.3. Analytical Comparison among CS and SS Method

Intuitively, the SS method would seem a better approach since it does not require any additional
hypothesis, but the choice of a CS as current profile provides far more uniform results and a higher
reliability in the estimation of both the involved parameters. This statement can be easily demonstrated
analytically. Indeed, Equation (10) is a linear regression problem [36] where a given set of n pairs
(Ii, VLi) is used to find the best-fit line V̂Li = Vth + RIN Ii, trying to minimize the sum of squared
errors SSE = ∑n

i=1
(
VLi − V̂Li

)2. The regression slope RIN , the intercept Vth and respective standard
deviations are computed using the following expressions [37]:

RIN =
Cov(I, VL)

Var(I)
=

∑n
i=1
(

Ii − I
)(

VLi −VL
)

∑n
i=1
(

Ii − I
)2 (11)

Vth = VL − RIN I (12)

σ2
RIN

=
s2

VL,I

SSI
=

SSE
(n− 2)(n− 1)s2

I
(13)

σ2
Vth

= s2
VL,I

(
1
n
+

I2

SSI

)
= σ2

RIN

(
(n− 1) · s2

I
n

+ I2
)

(14)

where I denotes the mean value of I, SSI = ∑n
i=1
(

Ii − I
)2 is the sum of I squared errors, s2

I is the
sample, not population, variance of I and s2

VL,I is the error variance.
From Equation (14), it is immediate to see that the standard deviation σVth in the estimation of

the intercept Vth for a given σRIN , increases linearly together with the samples standard deviation sI
and with the mean value I, which is always zero if a symmetric CS is used. Conversely, I = Ist when
using a SS current profile and this produces higher errors when the value of the steady-state current is
increased. Similarly, the variance σ2

RIN
in the estimation of the slope RIN is inversely dependent on

the variance of I and increases as long as the samples tend to form a spot instead of spreading on the
plane. This therefore means that using a symmetric CS, hence acquiring wider spread samples, leads
to reduced errors in the estimation of fit parameters with respect to the SS method, but also that the CS
method has a decreasing uncertainty in the slope estimation for increasing currents, whereas the SS
method has a constant uncertainty.

After computing the standard deviations σVth and σRIN , if the estimation errors are unbiased,
normally and independently distributed, the 100(1− α)% confidence intervals on the slope and
intercept can be expressed considering that the errors in the estimations of the same are both distributed
as t random variables [38] with n− 2 degrees of freedom:

uVth = tα/2,n−2σVth

uRIN = tα/2,n−2σRIN

(15)

If the applied CS is not sufficiently fast to satisfy Equation (10), both because of an erroneous
over-estimation of the module thermal time constant (Section 4) or because of intrinsic limits in the
acquisition speed of the implemented test, a correction may be applied to the acquired signals. In fact,
as shown further in Section 6, a quadratic term compares in the Kirchhoff’s voltage law equation, that
induce a bending of the I −V line while the current varies. In this case, all the acquired values can still
be used for parameters estimation, but the actual slope is the one at the beginning of the sweep, before
the bending appears.

Hence, if Equation (10) is weakly satisfied, a linear regression with pure quadratic formula
V̂Li = a + bIi + cI2

i may be applied and the slope RIN and intercept Vth may be computed as follows:
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R′IN = dVLi
dIi

∣∣∣
I0

V′th = VL0 − R′IN I0

(16)

where:
I0 = Ist

VL0 = VLst
(17)

4. Thermal Characterization

Thermal measurements have been carried out using two heat flux sensors while varying the
temperature of the two sides sourcing the module with an adequate current (Figure 3). Each one was
implemented by the authors, as described in a previous work [38], stacking two metal layers (2 mm
thick) for temperature sensing with an interposed medium with known thermal conductivity kre f ,
both with the same geometric area of the module under test. In each metal layer, a small hole was
made to accommodate the thermocouple sensors, whereas the contact resistance between layers was
minimized using a thin layer of high thermal conductivity silver-based thermal paste. In order to
satisfy Equation (10), the thermal transfer function of the module have to be preliminarily estimated;
in this work it was used an Autoregressive Exogenous method included in the MATLAB® System
Identification Toolbox [39].

After applying a current step I(t), four temperatures (T1, T2, T3, T4) are measured and composed
to create two differential temperature signals:

∆T41(t) = T4 − T1

∆T32(t) = T3 − T2
(18)

where ∆T32 should be most representative of the response of the TEM itself, whereas ∆T41 should also
take into account the response of entire system of which it is part. Equations (15) are then used to
estimate two transfer function, expressed as the Laplace transform of a first order system:

H∆T(s) =
L[∆T(t)]
L[I(t)] =

A
s + 1

τth

(19)

where Aτth is the DC gain.
The output differential temperature time constant at external sides of the heat-flux sensors is

always greater than the one at direct contact with the TEM because of the heat propagating time in
a given medium (i.e., τth41 � τth32). Thus, τth32 is taken into consideration to establish the maximum
temporal duration of the electrical perturbation τel .

During the CS, all the four temperatures are acquired and elaborated according to the procedure
described in Section 2.2 to compute the internal thermal resistance of the module ΘIN .

Since, even in the worst examined case (i.e., in correspondence of the highest heat fluxes), the
temperature drops on the ceramic plates of the module (20) are negligible, it results that that Tc ≈ T2

and Th ≈ T3 as previously stated in Equation (6):∣∣∣ T3−Th
Th

∣∣∣ < 0.3%∣∣∣ T2−Tc
Tc

∣∣∣ < 0.007%
(20)

Making also explicit in Equation (4) the dependence of the remaining parameters on the acquired
temperatures, we can rewrite the thermal resistance equation as a function of the measured variables as:

ΘIN =
2(T2 − T3)

2

Vth Ist · (T2 + T3) + kre f (T1 − T2 − T3 + T4)(T3 − T2)
(21)
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where kre f = 1/Θre f is the thermal conductivity of the reference medium, obtained as described
previously in Section 2.1 as calibration factor, minimizing the squared error associated to the
flux/power balancing equation. Therefore, it is necessary to adopt a material that exhibits a low
dependence of its thermal conductivity with the temperature in the investigated range.

At this point, if the following simplifying assumptions are made:

• kre f has no associated uncertainty since it is a calibration factor

• the four temperatures have the same uncertainty uT because they are measured with the same
kind of temperature sensor (type-J thermocouple), they are acquired using the same DAQ board
and referred to the same cold-junction sensor

• all variables are uncorrelated, except Ist and Vth that are obviously correlated

The uncertainty uΘIN on the estimation of the internal thermal resistance can be derived applying
standard uncertainty propagation [40] to Equation (21), hence, the thermal resistance uncertainty may
be expressed as:

uΘIN =
Θ2

IN
2∆T2

32

∣∣T(VthuIst + IstuVth

)
+ 2Vth IstuT

∣∣ (22)

from which is mainly observable a clear quadratic inverted trend with respect to ∆T32.

5. Automatic Test

The implemented automatic test procedure performs the above described measurement over
a matrix of testing points obtained from the combination of two vectors containing respectively
the desired temperatures for the cold side Tc and the desired working ∆T. The whole test is
conducted inside a Discovery Es 250 (DY-250) climate chamber (Figure 3) by Angelantoni Group
S.p.A. (Massa Martana (PG), Italy), which forces the cold side of the module to follow the inner
ambient temperature.

Sensors 2016, 16, 2114 9 of 20 

 

Making also explicit in Equation (4) the dependence of the remaining parameters on the  
acquired temperatures, we can rewrite the thermal resistance equation as a function of the measured 
variables as: 

 
    


 

      

2

2 3

2 3 1 2 3 4 3 2

2
IN

th st ref

T T
V I T T k T T T T T T

 (21) 

where = 1 Θ⁄  is the thermal conductivity of the reference medium, obtained as described 
previously in Section 2.1 as calibration factor, minimizing the squared error associated to the 
flux/power balancing equation. Therefore, it is necessary to adopt a material that exhibits a low 
dependence of its thermal conductivity with the temperature in the investigated range. 

At this point, if the following simplifying assumptions are made: 

  has no associated uncertainty since it is a calibration factor 
 the four temperatures have the same uncertainty  because they are measured with the same 

kind of temperature sensor (type-J thermocouple), they are acquired using the same DAQ board 
and referred to the same cold-junction sensor 

 all variables are uncorrelated, except  and  that are obviously correlated 

The uncertainty  on the estimation of the internal thermal resistance can be derived 
applying standard uncertainty propagation [40] to Equation (21), hence, the thermal resistance 
uncertainty may be expressed as: 

 


  



2

2
32

2
2IN st th

IN
th I st V th st Tu T V u I u V I u

T
 (22) 

from which is mainly observable a clear quadratic inverted trend with respect to  32T . 

5. Automatic Test  

The implemented automatic test procedure performs the above described measurement over a 
matrix of testing points obtained from the combination of two vectors containing respectively the 
desired temperatures for the cold side  and the desired working Δ . The whole test is conducted 
inside a Discovery Es 250 (DY-250) climate chamber (Figure 3) by Angelantoni Group S.p.A. (Massa 
Martana (PG), Italy), which forces the cold side of the module to follow the inner ambient 
temperature. 

 
Figure 3. Automatic measurement setup. 

All measured variables, outlined below, are voltage signals acquired at = 160	Hz by means 
of a 16-bit DAQ board X Series USB 6361 by National Instruments (Austin, TX, USA); in particular: 

  is the voltage at the TEM terminals 
  is the voltage across the shunt resistor  

Figure 3. Automatic measurement setup.

All measured variables, outlined below, are voltage signals acquired at fs = 160 Hz by means of a
16-bit DAQ board X Series USB 6361 by National Instruments (Austin, TX, USA); in particular:

• VL is the voltage at the TEM terminals
• Vs is the voltage across the shunt resistor RS

• Va is the climate chamber ambient temperature measured by means of a LM35 temperature sensor
(Texas Instruments, Dallas, TX, USA)

• V1, V2, V3, V4 are the voltages generated by the four different J-type thermocouples each one
inserted into one surface of the heat-flux sensors

• Vcj is the cold junction compensation temperature acquired by means of a further LM35 sensor
placed close to the DAQ board
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The same DAQ board is also responsible for generating the driving voltage for a 4-quadrant
TOE7621 transconductance amplifier (TOELLNER Electronic Instrumente GmbH, Herdecke, Germany)
that supplies the TEM under test.

The entire acquisition/generation process is handled by a LabVIEW Virtual Instrument (VI)
that runs a proportional-integrative (PI) controller (Figure 4) in a closed-loop feedback to drive the
module to the desired steady state working conditions. Once known the current-to-thermal transfer
function H∆T(s) estimated in Equation (19), the tuning parameters for the PI controller have been
computed using both the closed-loop Ziegler-Nichols method and the MATLAB® Simulink Auto-tune
tool. Although both methods produce good results, the latter has been chosen because of its ability to
produce a desired response in a smaller time with less overshoot.
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Figure 4. TEM control loop.

The steady-state conditions for a given combination of Tc and ∆T are met when the following
two conditions are satisfied over 100 s or 16,000 samples:

|µ∆T − ∆T| < µth = 0.15 ◦C
σ∆T < σth = 0.05 ◦C

(23)

where µ∆T and σ∆T are the mean and standard deviation of the measured temperature gradient,
whereas µth and σth are the respective threshold values. In this case, the VI locks the driving current to
the last current value, waits for a time equal to five thermal time constant (τw = 5τth41) to allow all
transients to run out and then switches from Control Mode to Measure Mode (Figure 5).

The measurement procedure consists of three sections run in sequence (Figure 6), in which three
different current profile are generated, each one with a duration τm that is set to a value sufficiently
small with respect to the module thermal time constant (τm ≤ τel � τth):

(1) steady-state: the last driving current value is applied and the acquired values are used to compute
statistics over Ist.

(2) SS: a small current 10 Hz sinusoidal stimulus is added to Ist, with an amplitude equal to the ratio
of standard deviation threshold to the static gain of Equation (19):

ISS =

√
2σth

H∆T(0)
(24)

(3) CS: the driving current Ist is swept to its symmetric value −Ist with a ramp-like signal that is
finally switched back to the initial value.
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Figure 6. Measurement procedure signal time pattern.

At the end of each test, all raw data (acquired voltage signals) are stored for further post-processing
using MATLAB:

• VL is left as it is.
• Vs is divided by Rs to obtain I.
• Ta and Tcj are obtained from respective voltages using the LM35 nominal sensitivity S = 10 mV/(◦C).

• T1, T2, T3, T4 are computed using the coefficients provided by National Institute of Standards and
Technology (NIST) and applying a software cold-junction compensation.

• qem and qabs are computed as described in Section 2.1.
• Tc and Th are derived by T2 and T3 computing the temperature drop on the ceramic layers induced

by the computed heat fluxes.

Once all the raw signals have been properly scaled, the three parameters composing the
thermoelectric figure of merit ZT can be calculated for each working condition {Tc, ∆T}:
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• Vth and RIN are derived using Equation (10), applying a linear regression to acquired values {I, VL}.
• αs is then obtained as ratio of Vth to ∆T.
• ΘIN is computed using Equation (7).

6. Experimental Results

The above described procedure has been used to characterize the performance of a commercial
low-cost module TES1-12730 from Thermonamic Electronics Corporation (Nanchang, China) [41].
For sake of clarity, the experimental results are split in sub-sections: firstly, the results of the module
identification procedure will be presented, then the consistence of the SS method is shown and finally
the CS method is validated and characterization results will be shown.

6.1. Module Identification

The TEM has been identified applying a 0.1 V voltage step to the amplifier, which results in a
320 mA current step because of the transconductance gain Gm = 3.2 A/V. The measured differential
output signals ∆T32 and ∆T41 are thus used to obtain the two respective transfer functions, which
continuous-time models are resumed in Table 1; H32 (Figure 7) is then used to tune the feedback loop
in Figure 4.
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Figure 7. Measured step response ∆T32 (black) vs. simulated (red) of the identified model H32.

Once the PI controller was tuned, the module was tested over 210 different working conditions
(Tc, ∆T) with a 14 × 15 sampling matrix, where Tc ∈ [10 49] ◦C and ∆T ∈ [3 45] ◦C (with 3 ◦C steps),
for a whole duration of approximately 52 h.

Before starting the test, the adopted value of the time test window τm = 1 s has been considered
sufficiently small compared with the thermal time constant τth32 = 11.5 s of H32. This indeed have
produced Ns = τm fs = 160 samples for each measurement section.

Table 1. Identification Results.

Transfer Function Thermal Time Constant NRMSE 1

H32(s) = 3.75
s+0.0876 11.5 88.79%

H41(s) = 0.095
s+0.0136 73.4 66.51%

1 Normalized Root Mean Square Error [42].
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6.2. SS Method Analysis

After elaborating the acquired data for the SS current stimulus, statistics have shown the
consistence of this measurement method. The linear regression model associated with Equation (10), for
each of the 210 tests, was estimated with a mean value of the determination coefficient R2

= 0.99550 and
a standard deviation σ

R2 = 0.00023. If we consider the test with the worst regression fit (R2 = 0.9919)
relative to TC = 49 ◦C and ∆T = 45 ◦C, the plot of residuals (Figure 8) shows that they are, in any case,
normally distributed with zero mean.
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Furthermore, the probability plot in Figure 9a, shows how the distribution of the estimation
residuals compared with a normal distribution with matched variance, confirms a reasonable fit to
normally distributed residuals with almost no evident outliers. The residual lag plot (Figure 9b) also
shows the absence of any remaining serial correlation among residuals, since they are all distributed
uniformly among the four quadrants.
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Hence, the SS method seems to satisfy all demands for the application of the linear regression and
the confidence intervals relative to the estimated parameters may be expressed as in Equation (15).
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In Figure 10, the RIN and Vth standard deviations obtained using Equations (13) and (14) are reported
for all working conditions, showing that the σRIN is almost constant through all tests. In fact, as
explained in Section 3.3, it mainly depends on the variances s2

I of I data, which is set to a constant value
in Equation (24). Similarly, the linear trend in the intercept standard deviation is due to its dependence
on the mean value of I data, which increases for increasing ∆T.
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6.3. CS Method Analysis

Applying to CS data the same procedure just described, the obtained main determination
coefficient is R2

= 0.999965 with a standard deviation σ
R2 = 2.93× 10−6.

Despite of the high value of R2, the residuals of the linear regression for the same working point
analyzed before (i.e., Tc = 49 ◦C and ∆T = 45 ◦C), show a non-zero mean and a clear non-normal
distribution as evinced from Figure 11a, which means that a linear fit is not able to fully explain the
underlying data relation. This is probably due to the fact that the adopted measure time window
τm, even if one order of magnitude smaller then thermal time constant, is too large to satisfy the
hypothesis in Equation (10). Nevertheless, a visual inspection of residuals plot (Figure 11b) shows a
clear quadratic relation, which suggests to fit the data using a non-linear formula.
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Hence, applying the least squares method with a quadratic formula as described at the end of
Section 3.3, better fit results are obtained (Figure 11a) with a resulting mean determination coefficient
R2

= 0.999996 and a standard deviation σ
R2 = 2.22× 10−6. Also, the resulting residuals mean error is

zero and these are normally distributed, confirming a successful fit.
As mentioned in Section 3.3, the CS method produces far more uniform results with much lower

uncertainties, as showed in Figure 12.Sensors 2016, 16, 2114 15 of 20 
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Since when using this method, the variance of I is not constant and increases for higher ∆T, a clear
downward trend occurs in σRIN ; whereas σVth , which depends both on I and s2

I , shows a growing trend
because of the increment of the latter, while the former tends to zero due to the sweep symmetry.

Conversely, the standard deviation of the thermal resistance σΘIN (Figure 13) follows a trend
similarly to σRIN as expected from Equation (22).
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6.4. Experimental Comparison among CS and SS Method

In order to test the compatibility among the CS and SS method, for all working conditions, a point
by point relative error Equation (25) is computed and mean values as well as standard deviations are
reported in Table 2:
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er =
PCS−PSS

PSS

er =
1

ninj
∑

i∈Tc

∑
j∈∆T

PCSij−PSSij
PSSij

(25)

where Pxx represent the generic estimated TEM parameter (i.e., αS, RIN , ΘIN or ZT).

Table 2. Relative Error of the CS method with linear and quadratic fit with respect to SS method.

Symbol Parameter
Mean Relative Error er% Standard Deviation σr%

Linear Quadratic Linear Quadratic

αs Seebeck coefficient 4.68 2.63 0.17 0.15
RIN Electrical resistance 3.80 1.65 0.11 0.11
ΘIN Thermal resistance 5.50 3.03 0.21 0.19
ZT Figure of merit 7.64 3.91 0.25 0.24

Computed mean relative errors show a good match between the two methods, with halved error
values for CS method using a quadratic formula with respect to SS method and a linear regression.

The result of the characterization process of the module TES1-12730, using the proposed CS
method, produced interesting results. Both the Seebeck coefficient αS (Figure 14a) and the internal
electrical resistance RIN (Figure 14b) increase their value almost linearly as long as TC ∝ T and ∆T
increase. Despite the Seebeck voltage appears smooth and uniform, the trend of the Seebeck coefficient
shows to be more irregular because it is derived as ratio of the former to the temperature difference
∆T, which is less accurate for small values.
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Figure 14. (a) Seebeck coefficient αS; (b) Internal electrical resistance RIN .

Regarding the internal thermal resistance ΘIN (Figure 15a), it shows a strong dependence with
increasing ∆T, whereas it seems to be only slightly affected by variations of TC, which decrease induces
an observed weak resistance increment. The roughness of the surface for small ∆T is due also in this
case to its analytical dependence on measured temperatures.
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The figure of merit ZT (Figure 15b) exhibits a strong linear dependence on ∆T and a weaker one
on TC, and since it is a combination of the previous mentioned parameters, it also shows a bending
that is taken into account using second order terms in the interpolating function.

7. Conclusions

The novelty of the proposed technique consists in using a simple testbed to stimulate the module
and to simultaneously acquire electrical and thermal data so to obtain the three parameters that
compose the figure of merit Z. An extensive characterization of TEMs in many variable working
conditions is hence performed within a single test.

The developed testbed automatically sweeps along a wide range of drive currents using only a
DAQ board and a 4-quadrant transconductance amplifier, but if the latter instrument is not available,
the authors have shown that similar results may also be obtained using a different approach.

To validate the method, we firstly compared the results obtained using two different current
profiles: a small signal one that require no previous assumption and a sweep signal that conversely
requires a preliminary hypothesis to be satisfied, but that produce far more accurate results; furtherly
we compared them with those provided in the datasheet by the manufacturer. The performance of
both approaches was theoretically analyzed and experimentally verified, demonstrating a good match
between the two methods through a comparison among data generated by CS and SS profiles.

If using the current sweep approach, the authors have shown that obtained results may be
furtherly improved without redoing all the tests, but simply applying a numerical correction to
acquired data.

The experimental results (i.e., αS, RIN , ΘIN and ZT) for variable ∆T and TC working conditions
have been reported in exhaustive tri-dimensional graphs, which values (reported in Table 3) are in
agreement with those extrapolated from the datasheet using a different method.

Finally, simple analytical relations were derived from interpolation of obtained data and reported
in Table 4 to provide a simple tool for eventual comparison with other data and methods and to
simulate the TEM performance in different scenarios.

The reported modeling at different operating conditions, may play an important role in estimate
the performance of TEMs for energy generation, affecting for instance the harvestable energy as long
as the internal electrical resistance moves away from designed matched value.
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Table 3. TES1-12730 Parameters.

Symbol Description Value

n Number of thermocouples 127
A Single module area [mm] × [mm] 30 × 30
Th Hot side temperature at environment [◦C] 27 50

∆Tmax Temperature Difference when cooling capacity is zero at cold side [◦C] 68 76
Vmax Voltage applied to the module at ∆Tmax [V] 15.5 17.4
Imax DC current through the modules at ∆Tmax [A] 3.5 3.5

QCmax Cooling capacity at cold side of the module under ∆T = 0 ◦C [W] 34.1 37.4
Rin Module resistance under AC [Ω] 3.5∼3.9 3.8∼4.3
Rds Internal resistance 1 [Ω] 3.42 3.79
αds Seebeck coefficient 1 [mV/K] 51.7 53.7
Θds Thermal resistance 1 [K/W] 3.24 3.27

1 Data derived using method in [30].

Table 4. Interpolating Functions of the TEM Parameters.

Units Function R2[
mV
K

]
αS = ∆T

38.55 + Tc
15.52 + 48.63 0.9967

[Ω] RIN = ∆T
102.3 + Tc

52.48 + 3.256 1.0000[
K
W

]
ΘIN = ∆T

57.43 + Tc
108 + 2.929 0.9992

[−] ZT = ∆T
255.4 + Tc

673.4 + ∆T2 Tc
3.4e6 −

∆T Tc
2

1.24e6 + 0.556 0.9996
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