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Outline

This thesis is subdivided into two parts: in the first we analyze the transition from static to
dynamic friction with some emphasis on the implication of using more refined friction laws (with
respect to the simple Coulomb model) while in the second part we study the cyclic response of
dynamical systems that experience friction. Particularly, in the first part we will take inspiration
from some recent experiments from the group of Prof. Fineberg to tackle some partial slip contact
problems, with the idea in mind of providing analytical models that can, in some extent, interpreter
some of the numerous experimental evidences that came from the direct observation of the sliding
phenomena. In the chapters 1-2 a brief introduction of the equations that govern the contact of
elastic bodies and the experimental test rig used in the experiments is presented. In chapter 3 the
partial slip problem of a flat square-ended punch pressed against an half-plane and tangentially
loaded above the contact interface is studied, then a FEM of the Prof. Fineberg experimental test
rig will be proposed to avoid the hypothesis of half-plane elasticity, with good agreement between
numerical and experimental results. In chapter 4 the implications of using a slip weakening friction
law instead of the classical Coulomb law are discussed and an energetic criterion for slip inception
is derived, which we will call "Griffith friction model". In chapter 5, using this "Griffith friction",
the partial slip problem for different plane geometries (power law punches and sinusoidal profile)
is solved.
In the second part of the thesis we will focus our attention on the dynamic response of me-

chanical systems subjected to friction. In chapter 7 a very simple model of structure subjected to
dry friction is studied, constituted by a single degree of freedom system subjected to a periodical
tangential excitation and a (possibly) varying normal load. First we compare the quasi-static solu-
tion with the dynamic solution in the limit of very low excitation frequency, then we study (in the
bounded regime) how the peak displacement and dissipation is related to the phase shift between
the normal and the tangential load. In chapter 8 the dynamical behavior of a mass-spring-viscous
damper structure linked to a massless Coulomb damper is studied with attention to the regime
that minimize the vibration amplitude of the mass. Finally in chapter 9, we study a friction-excited
nonlinear oscillator chain, where a polynomial nonlinearity is introduced in the system. We focus
our attention on the multiplicity of solutions that are proven to exist in certain parameter ranges
which leads to a bifurcation pattern similar to the snaking bifurcations. In the end conclusions
and possible developments of the present work are proposed.
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Part I

Part I: Stick-Slip transition in dry
friction

3





Chapter 1

Plane contact of elastic bodies

In this chapter the essential equations for solving plane contact problems are shown. In the
first section the elastic equations governing the plane elastic problem are presented, then starting
form the solution for concentrated normal and tangential load, stress distribution and surface
displacements for a general distribution of normal pressure and shear tractions are derived. The
latter step allows to write the governing equations that solve the plane contact problem. In the
last section the Cattaneo-Mindlin problem for partial slip is presented with the generalization
introduced by Ciavarella and Jäger.

1.1 The elastic half-plane

Usually two elastic non-conforming bodies make contact over a region which dimension is consid-
erably small with respect to the dimensions of the bodies. If the deformations are small, the linear
small strain theory of elasticity can be used. Contact forces are confined to a small region (the area
of contact) and the stresses decay rapidly from the contact region. These features allow to an ap-
proximation which is to consider each body as a semi-infinite elastic body that, in the undeformed
condition, is locally flat in the region of contact. These approximations make the contact problem
feasible to be solved in closed form as the shape of the bodies and the actual boundary conditions
are not at play. Very few three-dimensional solution are known from elasticity, nevertheless in
many situations that are of interest for engineers the displacements can be approximate to lie into
a single plane  −  Assume, for example, that one elastic body is very thin in the  direction
with the stress  that is null on the two surfaces normal to the direction : the  stress can be
neglected and the state is called "plane stress". If, instead, the body is very long in the  direction,
then the strain along  can be neglected and the body is said to be in "plane strain". For two
dimensional problems a wide range of elastic solutions exist that can be used for solving contact
problems (see [1], [2]).

Here we summarize the equations that govern the plane elastic problem, while a comprehensive
derivation can be found in the Timoshenko and Godier book [3]. With reference to the Fig. 1.1
the equilibrium equations in the plane −  have to be satisfied

½

 + 

 = 0

 + 

 = 0
(1.1)

where  () is the direct stress component in the  () direction, and  is the shear stress
component acting on the plane of normal  in the direction . The compatibility equation must
be satisfied
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2
2

+
2
2

=
2


(1.2)

where within the small strain theory of elasticity the strain    are related to the displace-
ments in the horizontal  ( ) and vertical  ( ) direction via the relations

 =

  =


  =


 +




(1.3)

The compatibility equations ensure that during the deformation no holes open up and any material
overlaps. If plane strain is considered  = 0 and  =  ( + ) The last equations that
must be satisfied in each point of the body are the constitutive laws. They are material dependent
as describe how stresses and strains are related each other. If the body can be considered isotropic
linear elastic the Hooke’s law can be written

⎧
⎪⎪⎨
⎪⎪⎩

 =
1−2



³
 − 

1−

´

 =
1−2



³
 − 

1−

´

 =

 = 2(1+)

 

(1.4)

where  is the Young modulus,  is the shear modulus and  is the Poisson ratio of the material.

Figure 1.1 Cross-section of the elastic half-space.

To solve a plane elastic problem means to find the stress components    and the
deformation components    over the plane ( ) using the equilibrium (1.1), compatibility
(1.2) and constitutive (1.4) equations. The plane elastic problem can be reduced to a potential
problem if a scalar function  ( ) is introduced such that the stress components can be evaluated
as

 =
2

2
;  =

2

2
;  = −

2


 (1.5)

It can be shown that the equilibrium, compatibility and constitutive equations are automatically
satisfied if the stress function  satisfies the biharmonic equation

4

4
+ 2

4

22
+

4

4
= 0→ (1.6)

∇4 = 0 (1.7)



7 1.2. Distribution of normal and tangential tractions

The solution obtained has to satisfy the boundary conditions. In particular the half-plane surface
( = 0) is free of stress out of the loaded region and within the loaded region  () =  () and
 () =  ()  hence contact pressure will be always considered negative. Finally, far away from
the loaded region, i.e. (  →∞)  all the stresses have to vanish. A particular contact problem
can be solved when two of the four quantities  ()   ()   ( 0)   ( 0) are specified.

1.2 Distribution of normal and tangential tractions

The analytical solution for a concentrated normal force of magnitude  per unit length was due
to Flamant in 1892. One approach to solve a plane contact problem with a general distribution
of normal pressure is to resort to the superposition of fundamental solutions, as that provided by
Flamant. The same approach can be followed for the tangential load  and the singular integral
equations of contact can be derived which hold for a general distribution of pressure  () and
shear tractions  () 
Consider a normal load  and a tangential load  applied on the surface of a half-plane (loads

are expressed per unit length). A radial distribution of stress is obtained that is easily represented
in the radial coordinate system shown in Fig. 1.1

 ( ) = −
2


( cos  − sin ) (1.8)

 ( ) =  ( ) = 0 (1.9)

The corresponding Airy stress function is

 = −


( sin  + cos ) (1.10)

and the stress components can be projected on the Cartesian system of reference

 ( ) = −
2



¡
 sin2  cos2  − sin3  cos 

¢

 ( ) = −
2



¡
 cos4  − sin  cos3 

¢
(1.11)

 ( ) = −
2



¡
 sin  cos3  − sin2  cos2 

¢

using the transformations

sin  =
p

2 + 2
(1.12)

cos  =
p

2 + 2
(1.13)

Of particular importance are the surface displacements

 ( 0) = −

µ
− 1
8

¶
 () +

µ
+ 1

4

¶
ln ||+

1
2

(1.14)

 ( 0) = −

µ
+ 1

4

¶
ln ||−

µ
− 1
8

¶
 () +

2
2

(1.15)

where  is the tangential displacement,  is the vertical displacement, 1, 2 are two arbitrary
constant and  () function is defined as

 () =

½
+1   0
−1   0

(1.16)
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Notice that due to the logarithmic term in equations (1.14) and (1.15) the displacements are
unbounded and a finite value can be found only taking into account the shape of the body. A
certain symmetry can be seen between the effect that the tangential force has on the tangential
(normal) displacements and the normal force has on the vertical (tangential) displacements

− ( 0)


∝  ( 0)


(1.17)

 ( 0)


∝  ( 0)


(1.18)

Equations (1.11) and (1.14)-(1.15) are the fundamental solutions sought. In fact the solution for
an arbitrary distribution of pressure  () and tractions  () can be obtained via superposition of
the solution due to concentrated loads  = − ()  and  =  ()  where  is an infinitesimal
element on the surface in the loaded region . Integrating over  for a given point ( ) it is found

 =
2


µR


()(−)22

[(−)2+2]
2 +

R


()(−)3

[(−)2+2]
2

¶

 =
2


µR


()4

[(−)2+2]2
+
R


()(−)3

[(−)2+2]2

¶

 =
2


µR


()3

[(−)2+2]
2 +

R


()(−)22

[(−)2+2]
2

¶
(1.19)

In the same way summing up the surface displacements due to normal and tangential forces and
expressing the relations in terms of surface gradients it is found




( 0) =

− 1
4

 () +
+ 1

4

Z



 ()

− 
 (1.20)




( 0) = −− 1

4
 () +

+ 1

4

Z



 ()

− 
 (1.21)

where  is the Kolosov constant and in plain strain is equal to

 = 3− 4 (1.22)

1.3 The plane contact problem formulation

1.3.1 Integral equations governing the contact problem

Consider two elastic bodies that make contact on a region  Assume that 1 ()  2 () describe
the profile of the upper and lower (1 & 2, respectively) contacting bodies, while  and  are
the normal and rotational components, respectively, of the rigid body motion that brings the two
bodies into contact, given in the fixed coordinate system − . The function  () can be defined
as the the amount of overlap if the bodies were allowed to interpenetrate each other freely in the
undeformed state, as

 () =  +− [1 ()− 2 ()]  (1.23)

Using equation (1.21) for both bodies

1


( 0) = −1 − 1
41

 () +
1 + 1

41

Z



 ()

− 
 (1.24)

2


( 0) = −2 − 1
42

 ()− 2 + 1

42

Z



 ()

− 
 (1.25)
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where the change of sign in (1.25) is due to the common system of reference in which the equation
are now written for both the bodies. The compatibility condition in the normal direction imposes
that within the contact area  the −component of relative displacements v = v1 − v2 has to be
equal to the overlap

1 ()− 2 () =  ()   ∈  (1.26)

1 ()− 2 ()   ()   ∈  (1.27)

where the latter condition avoids interpenetration outside the contact area. Using equations (1.24-
1.25-1.26) we write

1



 ()


=
1



Z



 () 

− 
−  ()   ∈  (1.28)

where

 =
1 + 1

41
+

2 + 1

42
(1.29)

 =
2 (1 − 1)−1 (2 − 1)
2 (1 + 1) +1 (2 + 1)

(1.30)

the integral has to be interpreted as Cauchy Principal Value, and appropriate side conditions must
be given to choose the physically meaningful solution from the space of the mathematical solutions,
as discussed in the definitive treatise by Muskhelishvili [4]. These side conditions depends on the
behaviour (bounded /unbounded) of the unknown functions at the ends of contact areas, and on
whether the area is connected or not. Notice that  is a measure of the compliance of the bodies
while  (often called,  Dundurs’ parameter [5]) gives a measure of the ‘elastic mismatch’ between
the two bodies. We will be back on this point in the next paragraph but it’s worth to note that if
 = 0 then the contact problem is uncoupled hence the normal problem can be solved regardless
on the solution in the tangential direction.

The second integral equation defining the problem, relates to displacement of particles parallel
to the surface. It reads, again using displacement derivatives, as

1



 ()


=
1



Z



 () 

− 
+  ()   ∈  (1.31)

where  () is the relative tangential displacements and the integral has to be interpreted again as
a Cauchy Principal Value. It’s worth to note that the material constants enter in the problem only
through the parameters  and  thus whatever pair of materials yielding to the same parameters
  has the same contact solution. This is useful, in particular because the contact between two
elastic bodies can be reduced to the contact between an elastic and a rigid body, provided that
the elastic constants of the elastic body are adjusted accordingly. This is particularly helpful in
visualizing the deformation, as it can be all accommodated in one body. If the body 2 is rigid, in
plane strain condition, the formulas for  simplifies in

 =
1− 1
1

;  =
1− 21
2 (1− 1)

(1.32)

From the equilibrium equations the resultant forces  (positive compressive force), tangential
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force , and moment  are obtained

 = −
Z



 ()  (1.33)

 = +

Z



 ()  (1.34)

 = −
Z



 () (1.35)

where is intended that is the moment with respect to the origin of the coordinate system  = 0,
and the contact area  is not necessarily connected.

1.3.2 Partial slip condition for similar materials

Consider the problem of two elastically similar bodies ( = 0) that are brought into contact by a
normal load  . If the bodies are similar there will be no relative slip between the surfaces due to
the application of a normal load  . Assume that at the interface Coulomb friction is postulated,
that a tangential force is increased from 0 to a value    , where  is the unique coefficient of
friction, and 00 () is the value of  when a point of the surface first enter in the stick zone.
If slip is not permitted in all the contact area then  ≡  and 00 () = 0 as no relative slip has
occurred at the interface during the loading phase. Equation (1.31) reads

1



Z



 () 

− 
= 0 (1.36)

Regardless the shape of the indenter the shear traction distributions take the form

 () =
0q

1−
¡



¢2 (1.37)

where  is the semi-width of the contact and 0 =  is easily found from the equilibrium
equation. It is clear that the shear tractions are unbounded at the edge of the contact and, for
non-conforming bodies, the ratio | ()  ()|→ +∞ for ||→  hence this has to be considered
a limit case. More likely slip will happen at the edge of the contact and the contact zone  will be
split in a slip ”” and a stick ”” zone. In this case not only the shear traction distribution
is unknown but even the location of the slip and stick zones has to be determined. Additionally,
if the Coulomb friction law is used, the shear tractions in the stick zones are limited by  | ()|

| ()|   | ()|   ∈  (1.38)

and in the slip zones are proportional to the local pressure

| ()| = − ()   ∈  (1.39)

As friction is a dissipative phenomenon, we need to impose that the shear traction in the slip zones
always oppose the relative velocity between the two bodies,

 ( ()) = 

µ




¶
  ∈  (1.40)
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1.3.3 The Cattaneo-Mindlin solution

The first partial slip solution was proposed in 1938 by Cattaneo [6] and later (in 1949), inde-
pendently, by Mindlin [7] for the contact of elastically similar cylinders. First the normal load is
applied, then the tangential load is increased from 0 to    As the normal and tangential
problems are uncoupled, regardless from the shear traction distribution, the pressure distribution
is that found by Hertz for two-dimensional problems 1

 () = −0

r
1−

³


´2
(1.41)

where 0 =
2
 (see the Johnson’s book for further details [2]). We have seen in the former

paragraph that the surfaces are more likely to slip at the edge of the contact strip. Due to these
considerations and due to the intrinsic symmetry of the problem, Cattaneo and Mindlin postulate
that the stick zone will be located in the middle and will shrink as the slip zone moves forward
from the edges to the middle. They assume that in the slip zone  the Coulomb law holds,
while in the stick zone  the shear tractions distribution can be written as a correction of the
full sliding term, which we denominate ∗ ()  Hence one has

 () =

½
− () + ∗ ()   ∈ 

− ()   ∈ 
(1.42)

Defining  the semi-width of the stick area, Cattaneo and Mindlin show that ∗ () has the form

∗ () = −0




r
1−

³


´2
(1.43)

and the contact problem is solved. In particular the shear traction distribution is

 () =

⎧
⎪⎨
⎪⎩
−0

∙q
1−

¡



¢2
+ 



q
1−

¡



¢2
¸
 || 6 

−0

q
1−

¡



¢2
   || 6 

(1.44)

and it is proven [2] that satisfies the contact conditions:

| ()|   | ()| in the stick zone;

rigid body displacement in the stick region;

the shear tractions oppose the relative slip between the two contact surfaces;

Integrating  () over the contact area the relation between the semi-width of the stick zone
and the tangential load is easily found




=

µ
1− 



¶12
(1.45)

1.3.4 Partial slip solution for general profiles

Cattaneo-Mindlin solved the partial slip problem between two cylinders by a clever superposition
of a corrective term (1.43) to the full sliding term. The form of the corrective term was found ad
hoc, and not derived from general considerations, nevertheless it has to be noted that it is just

1Hertz found it as the limit case of a three-dimensional elliptic contact where the length of the semi-axes  is
much greater than the length of the semi-axes 
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a rescaled form of the Hertzian pressure distribution (1.41). It was shown by Ciavarella ([8],[9])
and independently by Jäger [52] that for two-dimensional contact problems the corrective term is
always a rescaled form of the normal problem (under the hypothesis that the contact problem is
uncoupled, i.e.  = 0). This is of great importance as allows to derive the partial slip solution for
many profile shapes, where the pressure distribution is usually available ([8],[9]). Note that the
hypothesis  = 0 is not too restrictive, has not only elastically similar material satisfy it but even
the contact of steel over rubber and, in general, all the materials that satisfy the relation

1− 21
1

=
1− 22

2
(1.46)

Here it is shown how to generally derive the form of the corrective term for a given overlap function
 ()  As in the standard Cattaneo-Mindlin solution we write the shear traction distribution in
the stick zone as a superposition of the full sliding term and a corrective term ∗ ()

 () =

½
 () + ∗ ()   ∈ 

 ()   ∈ 
(1.47)

From the integral equation for relative displacements in the tangential direction with 00 () = 0
and  = 0 we write

0 =
1



Z



 () 

− 
=





Z



 () 

− 
+
1



Z



∗ () 
− 

(1.48)

where ∗ () = 0 in the slip zones, by definition. From the integral equation for the normal contact
(1.28) in plane strain condition

1



Z



 () 

− 
=

∗

2
0 () (1.49)

where ∗ is the composite modulus

1

∗
=

µ
1− 21
1

+
1− 22
2

¶
(1.50)

Substituting (1.49) into (1.48) one obtains

∗
2

0 () +
1



Z



∗ () 
− 

= 0  ∈  (1.51)

1



Z



−∗ () 
− 

 =
∗

2
0 ()   ∈  (1.52)

that is exactly the same form as the original equation for normal contact for  = 0, with ()
replaced by −∗ ()  , and integrated only over . This proves the corrective term being
the same form of the normal pressure, as found by Cattaneo and Mindlin. In a later paper [10]
Ciavarella showed that this form of superposition is a good approximation in the general three-
dimensional case. The reader is referred to ([8],[9],[10]) for further details.



Chapter 2

Fineberg’s experiment

In this chapter the experimental set-up used by the Fineberg’s group is described. A literature
review is proposed that briefly summarize the most important results among the others. Possible
interpretation of the results is presented based on the state of the art.

2.1 Introduction

We experience friction in our daily life. Essentially friction is a dissipative phenomenon due to
a plethora of processes that take place at the contact interface. Despite the very complicated
picture the basic concepts that govern friction have been understood thousands years ago. Trace
of lubricants have been found in archeological finds dated back to about 1400 B.C. The Egyptian
used lubrication for moving heavy stone statues. Figure 2.1 reports a painting found in a grotto
at El-Bershed dated about 1880 B.C. which shows an officer while pouring a fluid just in front of
the sledge. Note that there aren’t any rollers or bearings under the sledge.

Figure 2.1 Egyptian while transporting a large stone statue on a sledge. Painting from the tomb
of Tehuti-Hetep, El-Bershed (about 1880 B.C.) (adapted from [11])

The first systematic study on friction is due to Leonardo da Vinci, the eclectic Italian scientist
who firstly said (I) "Friction produces double the amount of effort if the weight be doubled" stating
the proportionality between normal and tangential load. He performed experiments with blocks of
different geometries and recognized that (II) friction is independent on the apparent area of contact.
These two laws were rediscovered and published by the french engineer Guillaume Amontons in
1699. A wide studies on friction were performed by the physicist Charles Augustin de Coulomb

13
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in the 18th century. He showed that friction depends on the length of time that the surfaces are
held in contact and (III) is independent on the sliding velocity, provided that it isn’t too low or
too high. The three laws (I)-(II)-(III) form the Amonton-Coulomb model of friction and

 =



(2.1)

is called "friction coefficient". Within this model, it is considered a constant that characterizes
the couple of materials (more precisely we should write "surfaces") that make contact. The first
modern work (1950) on friction is surely due to Bowden and Tabor [12]. They firstly recognize the
role of roughness saying "putting two solids together is rather like turning Switzerland upside down
and standing it on Austria" and underlined that there is a clear distinction between "apparent"
and "real" contact area. In fact, the real contact area (which uniquely contribute to friction) is
actually proportional to the load and this explains the first two Amonton-Coulomb model laws.
Due to the fact that the contact occurs only on microscopic asperities, the pressure locally is
sufficient to cause yield, hence friction is due to asperity junction plastic failure. The increasing
strength of the interface instead, is possibly due to creep phenomena at asperity scale. Later
on, statistical models explained that the average pressure on each asperity tends to be constant,
and only the number of contacting asperities changes with increasing normal force. Greenwood
and Williamson [13] confirmed the proportionality of contact area and normal force with such a
statistical approach.
Yet, for many scopes (in particular for engineering applications), the Coulomb law is still very

much in use, and more complicated laws are often developed empirically trying to account for the
influence of other factors, such as slip distance, speed, normal load, surface conditions, temperature,
etc. (see Rabinovicz, [14]). When sliding starts, thermal effects are activated, both at bulk and
asperity scales, and this is usually one of the factors called upon to explain the rate-dependence
of friction as part of the difference between static and dynamic friction coefficient (see Rice, [15]).
Dieterich [16] and Ruina [17] (see also Dieterich [18]) suggested a rate-and-state dependent friction
law to explain a large amount of laboratory data on rock friction. To summarize, while the basic
law is still useful for very qualitative results, the understanding of frictional processes is still very
far from even remotely completed.

2.2 Fineberg experimental set-up

Recently, an interesting series of experiments has been conducted by the group of Jay Fineberg in
Israel ([19], [20], [21], [22],[23], [24], [25]), in which a rig has been built with two blocks of PMMA
(polymethyl-methacrylate): the bottom layer ("base") is pushed to one side and the upper block
("sliders") is held from the top or by an optional stopper at some height from the interface. The
base has dimensions ( = 300  = 30  = 27) mm while the sliders have dimensions ( = 140  =
6  = 75) mm and ( = 200  = 6  = 75) mm. The rig is very sophisticated in the measurements,
since the contact area is monitored at very high rate in time (∼ 105 frames per second) and space
(1280 pixel along  dimension) with laser measurements of the real contact area  ( ) which are
averaged over the thickness (direction ). The contact surfaces are lapped to have a roughness of
1 . Additionally, a set of strain gauges is mounted on the upper block close to the interface
(2 mm height) to measure near interface pressure and shear. During the experiment the slider
was tangentially loaded via a "rigid" rod connected to a load cell. Generally, when overall sliding
occurred, a stick slip motion initiated. Many interesting results came out from these experiments
and many research group have been working on it since the last 10 years. A local ratio of 
much higher than the static friction coefficient was observed [22] and dependence of macroscopic
friction coefficient from the loading condition [24]. Real-time visualization of the net contact area
shows a complex pattern of propagating fronts at the interface, from slow to super-shear ([22],[21]).
These fronts either stop in the middle or transverse the entire interface. Notably this rich dynamics
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happens before that the main slip event (overall sliding) occurs. We will concentrate our attention
on the so called "precursor fronts" ([20],[21]). Figure 1 (a) of [20] shows an example of a loading
curve. It is shown that before the main sliding event, during the loading phase, small drops of the
tangential force  where observed and each drop corresponds to a slip precursor front that starts
from one edge, where the load is applied, and transverse the interface (∼ 80% of the Rayleigh
velocity) up to a certain length , then stops. These fronts strongly alter the contact area at
the interface thus changing the interface conditions well before that the main slip event happens.
Figure 1 (a) of [20] (see also [21]) shows that data taken from different experiments all collapse
into a single master curve if  is plotted versus   with  the  dimension of the slider
and  the normal force applied. It has been shown that this linear behavior diverges when the
precursors length reaches about 2.

(a)

Figure 2.2 Fineberg’s experimental setup (adapted from [21])

A great effort has been made to reproduce the complex dynamic at the interface using 1Dmodels
([26],[27],[28],[29]), 2D spring-block models ([30],[31]), 2D finite element models ([32],[33]). In
particular in [33] a model based on Linear Elastic Fracture Mechanics (LEFM) has been proposed,
which can quantitatively predict precursor length. On the other hand little effort has been made
so far (except perhaps [34], [35]) of quasi-static analysis for the problem, despite clearly the loading
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regime is well within quasi-static limits. One concern is that there are many effects at play which
don’t permit a simple analysis, besides the dynamic propagation of slip fronts: the nature of the
contact is not easily manageable with half-space elasticity, since there are end effects at the corners
of the elastic flat block which depend on Poisson’s frustration, and this has been also remarked
in some of the most recent papers where the strong effect of tilting of a small angle has also been
noticed, which affects the apparent friction coefficient for the onset of motion [24].
In the part I of this thesis a quasi-static analysis of Fineberg experiments will be proposed

([36],[37],[38]).



Chapter 3

A Cattaneo-Mindlin problem for a
rigid punch with tangential load
applied above the interface line

In this chapter analytical and numerical models, inspired to the Fineberg experimental set-up, are
proposed to study the partial slip contact problem of a rigid punch with tangential load applied
above the interface line using a quasi-static approach. In particular it will be shown that half-plane
elasticity is not able to reproduce the experimental results found by Fineberg, while a FEM does.

3.1 Analytical solution

3.1.1 Problem statement

An idealized model is considered constituted by a rigid punch with tangential load applied above the
interface line that is in contact with an elastic incompressible half-plane. Friction is described using
the Coulomb law, with no difference between static and dynamic friction coefficient. With these
hypothesis a closed form analytical solution is derived for the slip front quasi-static propagation.

In order to use half-plane elasticity to solve the partial slip problem in Finegerg’s setup the top
block is assumed to be rigid so that detailed elasticity of the square-cornered punch is avoided,
and it indents an incompressible half-space, so that there will be no elastic coupling. The loading
will be that of a centered normal load ( ) and a tangential load () applied in sequence, but the
tangential load will be applied at a given height so as to reproduce the stopper in the Fineberg
rig, and induce tilting effect which is not well known in the standard Cattaneo-Mindlin problem
for the Hertzian (quadratic gap) problem ([2], [39]). The normal load ( ) will remain applied at
 = 0 without being affected by the tilt of the upper block (see Fig. 3.1).

17
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Figure 3.1. Geometrical model considered.

From classical half-planes elasticity, ([2], [39]), the general relations between the traction distri-
butions (pressures  and shear ) and the derivative of surface displacements of an elastic incom-
pressible half space (plane strain condition) indented by a rigid punch are the following Cauchy
integral equations

∗

2

()


=
1



Z 

−

 () 

− 
(3.1a)

and

−∗

2

1()


=
1



Z 

−

 () 

− 
(3.1b)

In general, ∗ is the elastic composite modulus, 1
∗ =

1−21
1

+
1−22
2

but being 1 = 05 (incompress-

ible) ex hypothesis, and 2 =∞ (rigid flat punch), 1
∗ =

3
41

so that Dundurs’ second parameter
is zero and the problem of normal and tangential contacts are uncoupled ([2], [39]). Further, 1
are tangential displacements in the halfplane, and  = 1 − 2 is the total gap between the
two profiles, but in this case both profiles are flat so the gap depends uniquely on tilt and vertical
approach.
The tangential load  is applied above the line of contact causing a moment  = , thus

the punch is tilted of an angle . The contact pressures can be expressed as [40]:

 () =



√
2 − 2

µ
1 +

2





2

¶
(3.2)

Since it is customary to work with displacement derivatives in halfplane elasticity, we use the
equations (3.1a) and (3.2) to find the tilt angle :

 = −
()


= − 2

∗

Z 

−

 () 

− 
=

4

∗2
(3.3)

i.e. 02() =
4

∗2 .
To ensure complete contact, () must be greater than zero on the whole contact surface, and

in particular on the left corner

(−) > 0⇒  ≤ 

2
=  =  (3.4)
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where  is the tangential force at which lift-off occurs, and we have introduced an important
parameter for our investigation

 =


2
 0 (3.5)

The contact starts always from a full-stick condition. In these early stages, the tangential pressures
distribution is:

 () =



√
2 − 2

(3.6)

The standard Cattaneo-Mindlin partial slip solution can be obtained based on the Coulomb-friction
model for which the slip starts when:

 ()

 ()
1  (3.7)

which in our case occurs at  = − (the first point where the condition in eq. (3.7) is verified):

 (−)

 (−)
1  ⇒  1



1 + 
=  (3.8)

Notice that comparison of eq. (3.4) and eq. (3.8) gives:

 =  


1 + 
=  (3.9)

This means that slip between the two surfaces starts always before the contact becomes incomplete.
Complete contact up to full sliding occurs if

 =    = ⇒   1 (3.10)

Otherwise (  1), the punch will tilt at  =  and the normal pressure will vanish at  = −

while it will remain singular at  =  It is convenient to define a new system of reference \000

that has the propriety to remain centered with respect to the stick area. In this reference system
the pressures distribution will be (we shall return later with more details):

(0) =

(
0 −    −


0

q
0+0

0−0 −    
(3.11)

where:

0 = 

µ
2− 



¶
;0 = − (− 0) (3.12)

The tip over condition 0 = 0 is reached when:

2 =
2


⇒  = 2 (3.13)

thus full sliding will occur before tip over if:

2 =    =  (3.14)

i.e. for   12. In the next sections, the cases for   1 (complete contact), 12    1 (partial
contact) and finally   12 will be treated separately. Figure 3.2 summarizes the three possible
scenarios based on the value of the parameter  For each row the tangential load is increased from
the left to the right and each sketch represents the qualitative stick/slip condition for a certain
value of .
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Figure 3.2. Possible scenario as a function of . The stick zone is represented with a bold solid
line, while the slip state is drawn with a dashed line.

3.1.2 Complete contact (  1)

As stated above, when   1 the transition from partial slip to the fully sliding condition is always
with a complete contact between the two surfaces. The point of first slip is at  = − for  = 

(eq. (3.8)). When      a partial slip condition must be defined. The Cattaneo-Mindlin
generalized solution (see [6],[8],[10]) considers the tractions distribution on the contact area as the
superposition of the full-sliding solution () = () for −     and a corrective distribution
∗() for −     such that:

() =

½
() −    

() + ∗() −    
(3.15)

and equilibrium requires

Z 

−
() =

Z 

−

()+

Z 

−

∗() =  (3.16)

This results in the following integral equation

2(1−21)
1

R 

−
()
− = −()

 = 0 −     (3.17)

with
∗(−) = 0 (3.18)

where eq. (3.17) represents the stick condition and eq.(3.18) means that the corrective term must
be zero at the stick-slip boundary1 . Condition (eq.(3.17)), with (3.3), gives

Z 

−

∗ () 
− 

=
1






(3.19)

1 In chapter 5 we will introduce a Griffith criterion for friction which leads to singular shear tractions in  = −.
See Appendix A to check how the shear traction distribution can be obtained when a Griffith friction model is
introduced.
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This is a singular integral equation of the first kind and its general solution is:

∗ () = − 22

2
√
(+)(−)

Z 

−

p
(+ ) (− )

− 
+



2
√
(+)(−)

(3.20)

where

 = 

Z 

−

∗ ()  = (−  ) (3.21)

By replacing  = 0 + −
2 , integral in eq. (3.20) can be solved giving

∗() =
−22(+ −

2 ) + (−  )


√
(+)(−)

(3.22)

and to fulfill the condition (eq.(3.18)), we have

1 +



= 2

µ



− 1
¶

(3.23)

The length of the slip zone is therefore:




= 1− 


= 2

∙
1− 

µ



− 1
¶¸

(3.24)

and this dimensionless ratio is plotted in Fig. 3.3 as a function of tangential dimensionless load,
for  = 1 2 4. Clearly, the transition is most abrupt the higher is  and otherwise it includes
a transition region. For example, for  = 1 , slip doesn’t start until 

 = 05 and only after

this limit, the transition starts. For higher , the minimum 
 is even higher. Notice that this

paragraph includes   1 case only, and hence for 
  05, there is no slip in this regime.

Figure 3.3. Dimensionless slip distance  as a function of 
 for different values of

 = [1− 2− 4]

Deriving  by eq.(3.23) and replacing it in eq.(3.22), ∗() can be expressed as:

∗() = −


q
+
− −     (3.25)

Thus the general form of () is:
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() =

(
() −    

()− 


q
+
− −    

(3.26)

Here we plot the traction () and the pressure () for  = 2 and 
 = 075 made dimensionless

with the mean pressure . Notice how slip occurs from the left corner inwards.

Figure 3.4. Dimensionless shear traction ()
 and pressure ()

 for  = 2 and 
 = 075 with

e = 

3.1.3 Slip in full contact followed by slip in partial contact (12    1)

As in the previous case, the contact starts from complete contact in full stick condition. When
  

1+ , the two surfaces start to slip, keeping a complete contact condition till   , at
which point a partial slip condition with incomplete contact takes place, as the normal pressure
at the left edge of the punch becomes zero (eq. (3.4)) and the punch starts to separate from the
half-space. Hence, for      there will be a partial contact status and the tractions
distribution will be given by a partial slip condition. The contact area decreases from 2 to 20.
The normal load  is no longer centered with respect to the new contact area of width 20 and the
equivalent moment applied to the punch is therefore  −  ( − 0). The pressures distribution
in the coordinates 0 = − (− 0) is:

 (0) =



√
02 − 02

µ
1 +

2[−  (− 0)]



0

02

¶
(3.27)

Eq. (3.27) differs from eq. (3.2) only for the term  ( − 0) in the computation of the global
moment with respect to the new center. By putting (0 = −0) = 0 the expression for 0 is
obtained:

0 = 

µ
2− 



¶
(3.28)

The normal pressures distribution is reported in eq. (3.11). The procedure for the computation of
0 is the same as for the complete contact; the only difference is that this time the Cauchy integral
of the full sliding component of the shear traction leads to:

 [−  (− 0)]

02
(0 + 0) + (−  ) = 0⇒ 1 +

0

0
= 2

µ
1− 



¶
(3.29)

and hence the results plotted in Fig. 3.5.
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Figure 3.5. Dimensionless slip distance  as a function of 
 for different values of

 = [1− 34− 12]
In the slip region (−0  0  −0), the tractions distribution is therefore:

(0) = (0) =


0

r
0 + 0

0 − 0
(3.30)

In the stick region (−0  0  0) the tractions distribution is given by the superposition of (0)
and ∗(0). To find the corrective term ∗(0)

Z 0

−0

∗ () 
0 − 

= −
Z 0

−0

 () 

0 − 
=
2 [−  (− 0)]

02
(3.31)

If we replace in (3.25) 1



 with

2 [− (−0)]
02 of (3.31) we obtain the new corrective term ∗(0):

∗(0) = −2 [−  (− 0)]

02

r
0 + 0

0 − 0
(3.32)

In the stick region (−0  0  0) the tractions distribution hence simplifies to:

(0) =


0

Ãr
0 + 0

0 − 0
−
r

0 + 0

0 − 0

!
(3.33)

which together with the pressure is plotted, in dimensionless form, in Fig. 3.6, 3.7 for  =
05 08, respectively.
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Figure 3.6. Dimensionless shear traction ()
 and pressure ()

 for  = 075 and 
 = 05

(complete contact + partial slip status), where e = 

Figure 3.7. Dimensionless shear traction ()
 and pressure ()

 for  = 075 and 
 = 08

(partial contact + partial slip status), where e = 

3.1.4 Slip in full contact, slip in incomplete contact, tip over (  12)

If   12 then upon increasing the tangential force, we have full stick up to  = 
1+  Then, the

contact status evolve as for the case 12    1 except that when the load reaches  = 2
the punch tips over. (Thus we lose contact before that the full sliding load  =  is reached).
An example of how the slip proceeds into the interface is shown in Fig. 3.8 while Fig. 3.9 reports
the dimensionless shear tractions and pressure distribution for  = 025 and 

 = 03

Figure 3.8. Dimensionless slip distance  as a function of 
 for different values of

 = [12− 14− 18]
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Figure 3.9. Dimensionless shear traction ()
 and pressure ()

 for  = 025 and 
 = 03

(partial contact + partial slip status), where e = 

Figure 3.10 collects all the three cases to have a better comparison of the three regimes:   12
12    1 ,  1

Figure 3.10. Dimensionless slip distance  as a function of 
 for different values of

 = [4− 2− 1− 12− 14− 18]

3.2 FEM modelling

3.2.1 The Finite Element Model

In the previous section halfplane elasticity has been used to study the precursor length in an
idealized version of Fineberg’s setup. We have seen that the dimensionless length of the precursor
fronts  depend on the ratio  and on a parameter  that is inversely proportional to the
height of application of the tangential force. The curves don’t collapse on a single master curve in
this analytical model as found in Fineberg’s experiments. Here a FEM analysis is proposed, taking
into account geometry and elasticity, of the actual experimental test rig. The finite element model
of the two blocks has been built using ANSYS. The geometry is presented in Fig. 3.11: the upper
block unit length 1 ∗1 ∗ 1 and the bottom block 2 ∗2 ∗ 2. Different samples were used
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during the experiments thus we will clarify the dimensions of the two blocks through the text. The
bottom block is constrained to have the nodes at the bottom and right line fixed (Fig. 3.11).

Figure 3.11. Geometrical scheme with applied constraints and loads. (a) edge loading
configuration (length in [mm])

A plain strain condition is applied to the bottom block while a plain stress state is applied
to the upper block. The quadratic element PLANE 183, with 8 nodes, is used to mesh the two
blocks. At the interface the plane elements have been coupled with the elements CONTACT172
and TARGET169. The mesh grid was created to be parametric and structured, driving the code
during the mesh operations using mesh controls, and defining proper areas and lines. The contact is
defined to be surface-to-surface between two flexible bodies. The option "Surface Projection Based
Contact" is used which allows to manage even large slip and nonconforming discretization across
the boundary. For the solution of the contact problem the Augmented Lagrangian algorithm
is adopted which demonstrated to be stable enough to manage our problem in reasonable time
(1 simulation takes nearly 5 minutes using a standard PC desktop). As a drawback this kind of
algorithm allows some spurious displacements even in the stick area. We overcame this limit setting
manually an admissible slip in the stick area 1 orders of magnitude lower than the default value.
Friction has been introduced using the Coulomb model with only one friction coefficient. First the
normal load was applied evenly distributed on the top of the upper block, later the tangential load
was applied on the left edge in displacement control (Fig. 3.11). The Young modulus is  = 3100
MPa while the Poisson ratio is  = 035.

3.2.2 Calibration of the model

To validate our FEM the analytical solution presented in the previous section is used, which is valid
for a rigid punch pressed against an elastic halfplane with Poisson ratio  = 05 in a way that elastic
coupling is avoided. In Fig.3.12 we report the solid lines which refer to the analytical solution (3.24)
and the dots which refer to the FEM results obtained using  = 1200 N,  = 05 and the in plane
dimensions of the blocks respectively (1 ∗1) = (200 ∗ 100) [mm] and (2 ∗2) = (300 ∗ 30)
[mm]. The agreement is satisfactory.
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Figure 3.12. Length of the slip front made dimensionless using the width of the punch 1 for 3
values of the dimensionless parameter  = [125− 25− 5]

3.2.3 Edge Loading: Influence of the height 

The influence that the height of application of the tangential load has on the precursor propagation
is investigated here. We apply a normal load  = 3000 N and we chose  = 047 then compared
the results obtained with the experiments ([20],[21]). The dimensions of the blocks (in [mm]) are
(1 ∗1 ∗ 1) = (140 ∗ 80 ∗ 6) and (2 ∗2 ∗ 2) = (300 ∗ 30 ∗ 30). The results are summarized
in Figure 3.13 and show a semi-quantitative agreement with the experiments. In particular we find
that the height  influences the value of  at which the precursor front starts developing as
observed in the experiments; as soon as the fronts start they merge into one single master curve.
These aspects qualitatively agree with what the experiments showed, and with numerical results
published by Tromborg et al. [30], (b) Taloni et al. [35], (c) Kammer et al. [33].
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Figure 3.13. Length of the precursor fronts: discrete values from experiments, solid lines from
FEM.

In Fig. 3.14 we plot the front length vs  for 2 sizes of the slider ( = 140 and 200 mm)
and different normal forces ( = 27 33 26 35 kN) compared with the experimental results in
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[20] (their Fig. 2 (c)). The numerical results (solid lines) and the experimental results (dots) are
in good agreement.
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Figure 3.14. length of the front vs  for 2 sizes of the slider ( = 140 and 200 mm) and
different normal forces ( = 27 33 26 35 kN)

3.3 Conclusions

Inspired by Fineberg’s experiments the Cattaneo-Mindlin problem for a square-ended block has
been studied. First an idealized model has been studied constituted by a rigid flat punch in contact
with an halfplane. The tangential load is applied at a certain height with respect to the interface.
We have found a parameter  = 

2 which governs the possible regimes: Complete contact (  1);

Slip in full contact followed by slip in partial contact (12    1); Slip in full contact, slip in
incomplete contact, tip over (  12). For each regime the full solution of traction distributions
and the length of the slip zone has been provided. As the latter depend on the height of application
of the tangential load and hence on  doesn’t permit a collapse of the curves, contrary to the data
shown by Fineberg. The deviations from halfplane elasticity (finite thickness of the bottom block,
Poisson’s ratio effects due to finiteness of the top square-ended block) don’t allow to obtain a
closed form solution. To overcome these limits we have developed a 2D FEM of the Fineberg’s
test rig. Results obtained numerically are in quantitative agreement with the experimental results,
and prove that the collapse obtained in Fineberg’s experiment can be obtained only if the actual
geometry and length scales of the test rig are considered.



Chapter 4

Implications of slip-weakening
friction laws

In this chapter we will focus our attention on the implications of using a more refined friction
law (slip weakening) in contact problems. We will show that if the transition from the static to
the dynamic friction coefficient is fast enough the shear traction distribution can be effectively
approximated by the Linear Elastic Fracture Mechanics (LEFM) theory which, in the limit, im-
ply an infinite local static friction coefficient at the asperity scale and lead to a Griffith friction
model. These findings are corroborated by measurements of ratio  as high as 5 in Fineberg’s
experiments [22] and in the effectiveness of using LEFM for predicting precursor length [33]. In
the second part of the chapter partial slip solutions for some profiles are presented (within the
halfplane elasticity framework) using a Griffith friction model.

4.1 Introduction

If a deformable structure with frictional interfaces is subjected to loads that are insufficient to
cause gross slip (sliding), the deformation of the components generally permits some local regions
of ‘microslip’ at the nominally stuck contact interfaces. When the loading is periodic, these regions
contribute to the energy dissipation in the structure and hence influence the dynamic behaviour
([41], [42]). Also, cyclic microslip can eventually lead to the initiation and propagation of fretting
fatigue cracks [43].
Most of the extensive literature on problems involving microslip assumes that Coulomb’s friction

law applies – i.e.

q = −
u̇

|u̇|
; u̇ 6= 0 (4.1)

|q| ≤  ; u̇ = 0  (4.2)

where q is the frictional (tangential) traction,  is the contact pressure, u̇ is the local microslip
velocity, and  is the coefficient of friction. In particular, it is usually assumed that the same
coefficient  governs both the slip and stick regions.
By contrast, dynamicists and tribologists often make a distinction between static and dynamic

friction [14], so that equations (4.1,4.2) are replaced by

q = − 
u̇

|u̇|
; u̇ 6= 0 (4.3)

|q| ≤   ; u̇ = 0  (4.4)

29
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where   are the static and dynamic friction coefficients respectively. In particular, if  
, this friction law provides a mechanism for ‘stick-slip’ frictional vibrations [44]. Numerous
experimental investigations have shown differences between static and sliding friction (e.g. [45]).
These differences are generally small for dry metals [46], but can be substantial for earthquake
fault mechanics, where ratios as high as ten between the coefficients have been reported [47]. Rice
in 1996 [48] characterizes such interfaces as ‘strong but brittle’.
A higher coefficient of static friction can to some extent be explained by noting that the forma-

tion of adhesive bonds, which forms the basis of Bowden and Tabor’s friction theory [12], will be
enhanced by diffusion if asperities remain in contact for some period of time. Similar arguments
can be used to justify the ‘rate-state’ friction model ([17], [49]).
In this section we shall examine the effect of introducing a higher coefficient of static friction

on problems involving microslip. In the interests of simplicity, we shall restrict attention to cases
where Dundurs’ parameter  = 0 ([2]), so there is no coupling between normal and tangential
loading, and the contact pressure can be determined without reference to the friction law. Also,
we shall illustrate our ideas in the context of the two-dimensional Hertz problem, since this is
susceptible to simple analytical solutions, but extension to other two-dimensional cases, and to the
axisymmetric Hertz problem is routine.

4.2 Evolution of frictional traction distributions

4.2.1 Classical solutions

Cattaneo [6] and later Mindlin [7] considered the case where two elastic bodies are first pressed
together by a normal force  , which is then held constant whilst a monotonically increasing
unidirectional force  is applied. The profile of the bodies was characterized by a quadratic
initial gap function 0( ) = 2 + 2, so that the normal loading phase is defined by the
classical Hertz theory. Cattaneo and Mindlin then showed that, subject to a small approximation
associated with the local slip direction [50], the shear traction distribution has the form

( ) =  [( )− ∗( )]  (4.5)

where ( )  0 is the contact pressure and ∗( ) is the contact pressure that would be
developed at some smaller normal force  ∗ given by

 ∗ =  − 


 (4.6)

Ciavarella [8] and Jäger [52] have since shown that this form of superposition is exact for any initial
gap function 0() in the two dimensional case, and that it is a good approximation in the general
three-dimensional case [10].

4.2.2 Static and dynamic friction

Now consider the case where    and the loading scenario is the same as in the Cattaneo-
Mindlin problem. We assume the existence of a slip zone in which ( ) =  ( ), so we write
the complete shear traction distribution as

( ) =  ( )− ∗( )  (4.7)

where ∗( ) is a corrective distribution to be determined from the condition that the slip dis-
placement (i.e. the relative tangential displacement) is zero in the stick area Astick. Conditions
(4.3,4.7) require that ∗( ) be non-zero only in Astick, and hence the stick condition defines a
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well-posed boundary-value problem for ∗( ). The inequality condition (4.4) precludes singular-
ities in the shear tractions, and this imposes uniqueness on the solution for any given     .
It is clear that the original Cattaneo-Mindlin solution (4.5) with  =  satisfies these conditions,
including the inequality, since in Astick, this would give ( )   ( )   ( ).

4.2.3 Dependence on slip distance

The discussion so far is predicated on the assumption that as soon as stick is ‘broken’ there is
an immediate transition to the dynamic coefficient , but in practice we might expect a more
continuous transition as slip occurs. We shall therefore examine the consequences of a friction
law in which the coefficient of friction is a continuous and monotonic function () of the slip
displacement , such that

(0) =  and ()→  ; →∞  (4.8)

Such a law can be regarded as a special case of the rate-state law ([17], [49]) and is also related to
the the shear failure law proposed by Abercrombie and Rice [51]. Applications of similar laws to
fault mechanics are discussed by Ben Zion [53].
In general, solutions of the corresponding contact problem will then require numerical solution,

but it is instructive to consider some simple cases analytically. In particular, we shall consider the
two-dimensional case where the bodies comprise a cylinder of radius  and a half space, so the
contact pressure is given by

() =
∗
√
2 − 2

2
;  =

∗2

4
 (4.9)

where  is the semi-width of the contact area −    , and ∗ is the composite elastic modulus
[2].
We anticipate the existence of two symmetric slip regions −    − and      in which

the slip displacement increases monotonically away from the stick-slip boundaries  = ±. Two
limiting cases can also be identified. If () is a rather slowly decaying function of , the friction
coefficient will be close to  throughout the slip regions and the solution will approximate the
constant coefficient case with  = . At the other limit, if a very small amount of slip displacement
is required to precipitate the change in coefficient, most of the slip area will be at or near , but
we must still allow for the existence of ‘transition’ regions   ||   in which   .
The exact form of the function () is not critical, but it is convenient to define a quantity 

with the dimensions of surface energy through the relation

 =

Z ∞

0

(()− )   (4.10)

which is equivalent to the shear fracture energy defined by Abercrombie and Rice [51]. The contact
pressure  will generally vary in the transition region, but if this is sufficiently short for  to be
regarded as uniform, we can also define a length scale ∆ characterizing the amount of slip needed
to transition to dynamic friction, such that

∆ =


( − )
=

1

( − )

Z ∞

0

(()− )   (4.11)

Rabinowicz [45] conducted some simple but elegant experiments to determine   and ∆ for
metals, his results1 being presented in Table 1.

1 It is difficult to explain why different results might be obtained by simply interchanging the materials in the
mild steel/copper case, but the difference is arguable within the range of likely experimental variance.



Chapter 4. Fineberg’s experiments interpretation 32

Materials   ∆ (m)
copper/mild steel 0.46 0.31 1
lead/mild steel 0.72 0.47 3
mild steel/copper 0.54 0.39 0.9
mild steel/titanium 0.63 0.45 6
mild steel/zinc 0.65 0.47 2

Table 1: Friction coefficients and slip length ∆ for some metal combinations, from [45].

A special case satisfying equations (4.10, 4.11) is the step function  =  − ( − )( −
∆), where (·) is the Heaviside step function. The perceptive reader will notice a similarity
here to Maugis’ approximate formulation of the normal adhesive contact problem [54], where the
adhesion law is also represented by a step function and the outer boundary of the adhered region
is determined from the condition that the separation there is equal to a critical value. Indeed
we shall see that there are significant mathematical analogies between the present problem and
adhesive problems.

A double-Cattaneo-Mindlin solution

The present problem could be formulated using a step function for (), but a simpler mathematical
approximation can be obtained by adapting the ‘double-Hertz’ concept of Greenwood and Johnson
[55]. We first note that the Cattaneo-Mindlin traction distribution () = (  )  = ( ),
where

(  ) =
p

2 − 2 −
p

2 − 2 ; ( ) =
(2 − 2)

2
(4.12)

produces slip displacements (), such that




≡ (  ) = 0 ; −      (4.13)

= −2
√
2 − 2

∗
;   ||   (4.14)

([2]), where the square roots in (4.12) are to be interpreted as zero in any region where their
respective arguments are negative.
We next approximate the solution to the frictional problem as

() =
∗ (  )

2
+ (  ) ;  =

∗ ( )
2

+ ( )  (4.15)

where     . The corresponding slip displacements will then satisfy




() =
∗ (  )

2
+ (  )  (4.16)

and this is zero in −     from (4.13), showing that the stick condition can be satisfied by an
appropriate rigid-body translation.
The shear tractions in   ||   are

() =
∗

√
2 − 2

2
=  ()  (4.17)

and hence satisfy the slip condition at  = , since the other square-root terms make no contri-
bution in this range. In   ||  , the shear tractions are

() =  () + 
p

2 − 2  (4.18)
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and we can choose the constant  so as to ensure that () =  (), giving

 =
∗( − )

2

r
2 − 2

2 − 2
(4.19)

and

() =
∗ (  )

2
+

∗( − )

2

r
2 − 2

2 − 2
(  )  (4.20)

With this choice, the effective local coefficient of friction  =  will decrease monotonically
from  to  in   ||  .
The final step is to determine the unknown radii   from the equilibrium condition (4.15)2,

and from (4.10) which we can write as

 =

Z 



[()−  ()]



  (4.21)

In   ||  , we have




= − 1


Ã
 + ( − )

r
2 − 2

2 − 2

!p
2 − 2  (4.22)

from (4.14,4.19). Using this expression and (4.18) in (4.21) and evaluating the integral, we obtain

 = −∗( − )

62

r
2 − 2

2 − 2

Ã
 + ( − )

r
2 − 2

2 − 2

!

×
£
(2 + 2)()− 22()

¤
 (4.23)

where

2 = 1− 2

2
(4.24)

and

() =

Z 2

0

p
1− 2 sin2 

; () =

Z 2

0

p
1− 2 sin2   (4.25)

are the complete elliptic integrals of the first and second kind respectively. The equilibrium
condition is obtained from (4.12,4.15,4.19) as

 =
∗

4

h
(

2 − 2) + ( − )
p
(2 − 2)(2 − 2)

i
 (4.26)

If  are given, (4.23, 4.26) provide two equations for the two unknown radii  .

The ‘JKR’ limit

If the transition from  to  occurs over a sufficiently small region, we can obtain a limiting
solution analogous to the JKR solution of normal adhesion problems. We write  = + , where
 ¿ , in which case (4.23) can be approximated as

 ≈ ∗( − )
2(2 − 2)

162
implying  ≈ 162

∗( − )2(2 − 2)
 (4.27)

Also, the second term in () in equation (4.15) can be approximated as

(  ) ≈ (  ) + 



(  ) =

√
2 − 2

 (4.28)
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Applying the same approximation to equations (4.19, 4.26) and substituting for  from (4.27), we
obtain

() ≈
∗ (  )

2
+

s
2∗

(2 − 2)
 (4.29)

and



=

4

∗2
≈ 1− 2

2
+

4

 2

r
2

∗
 (4.30)

Equation (4.29) defines a locally singular field, implying the existence of a mode II stress-intensity
factor

II ≡ lim
→−

()
p
2(− ) =

√
2∗  (4.31)

which is exactly analogous with the mode I stress intensity factor I =
√
2∆∗ in normal

adhesion problems in the JKR limit, where ∆ is the interface energy.
In an impressive series of experiments, Svetlizky and Fineberg [25] have observed frictional

slip progressing by the relatively slow propagation of slip zones behind which the shear tractions
approximate a square-root singularity. The strength of this singularity is approximately constant,
indicating a well-defined value of fracture energy  , but they suggest it may depend on the local
pressure, as a result of the area of actual contact being approximately proportional to pressure.
Ciavarella [56] presented solutions of contact problems with a mode II stress-intensity factor

around the stick-slip boundary, motivated by Fineberg’s observations. The present analysis shows
that such an effect can be generated by a slip-dependent friction law of the form (4.8) and provides
a rationale for determining an appropriate value of II. In particular, we notice from (4.31)
that the stress-intensity factor depends only on the composite modulus and  , and is otherwise
independent of the details of the contact problem. Since ex hypothesis, the transition is assumed to
occur over a small region (of width ) in the contact area, we can assume that the contact pressure
 is uniform in this region, and hence use the form (4.11) for  . This leads to a stress-intensity
factor

II =
p
2∗( − )∆  (4.32)

which varies with
√
 and is equivalent to the ‘pressure-dependent toughness’ criterion of Ciavarella

[56].
Using (4.11) to recast equations (4.29, 4.30) in terms of ∆, we have

() ≈
∗ (  )

2
+∗

s
( − )∆

√
2 − 2

(2 − 2)
(4.33)




≈ 1− 2

2
+

4

 2

s
( − )∆

√
2 − 2


 (4.34)

Small-scale transition zone

Equation (4.32) implies that at a sufficiently small distance  from the stick boundary, the frictional
tractions have the singular form

() ≈ +

r
∗( − )∆


 (4.35)

However, this expression violates the stick condition (4.4) in the region 0    0, where

s
∗( − )∆

0
= ( − ) or 0 =

∗∆
( − )

 (4.36)
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An analogous situation is encountered in elastic-plastic fracture mechanics, where the ‘small-scale
yielding’ criterion is used to determine whether the fields far outside the yield zone can reasonably
be described by the elastic solution [57]. In the present case, the singular solution can be expected
to give good results everywhere except very close to  = , provided 0 ¿ .

This criterion depends on  and hence on , but a rough estimate of the applicability of the
JKR solution in the present problem can be obtained by using (0)  for   respectively, defining
the modified criterion

Λ ≡ ∆

( − )2
¿ 1  (4.37)

More general two-dimensional problems

We have analyzed the two-dimensional Hertzian problem in detail because the resulting expressions
are algebraically straightforward, enabling the fundamental structure of the solution to be exposed.
However, the same method can be applied to any two-dimensional problem involving a single
symmetric contact area. We simply replace equation (4.12) by

(  ) = ( )− ( ) ; ( ) =  ()−  ()  (4.38)

where ( ) is the normal contact pressure when the contact area is defined by −    , and
 () is the corresponding normal force. We know from Ciavarella [8] and Jäger [52] that this will
satisfy equation (4.13), so the traction distribution

() = (  )− (  ) (4.39)

will satisfy the stick conditions in −     and the dynamic slip conditions in   ||  . The
rest of the solution can then be completed as in seen before.

If the length scale 0 in (4.36) is sufficiently small to justify the JKR approximation, the second
term will take the universal form (4.28), so the solution can be written down as the superposition
of a conventional Cattaneo-Mindlin solution with coefficient of friction  and equation (4.28). In
this context, it may be helpful to note that the limiting expression for ( ) is

( ) =

Z 

−

(  )→
√
2∗  (4.40)

so the total tangential force is

 =  [ ()−  ()] +
√
2∗  (4.41)

Since  will usually be prescribed, this provides an equation from which  can be determined as
a function of .

4.2.4 Finite element results

The double Cattaneo-Mindlin solution is approximate in the sense that we are able to match a
specific value of the fracture energy  or (equivalently) the length scale ∆, but the exact form
of the function () cannot be prescribed. The implied form of this function depends on the
dimensionless ratios  , some representative curves being shown as dashed and dotted lines
in Fig. 4.1.
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Fig. 4.1. The friction coefficient function () implied by the double Cattaneo-Mindlin solution
for  = 16  = 15 ( ),  = 80  = 45 ( ),  = 80  = 12 ( ).

To assess the effect of this approximation, we constructed a finite element solution of the
problem, as an extension of the "verification manual" VM272 example in Ansys 15 [58], which
in turn is based on the method illustrated in [59] and an example given therein which compares
satisfactorily with the analytical Cattaneo-Mindlin solution. It is based on a mortar formulation of
the contact which is able to deal with nonconforming discretizations across boundaries and large
sliding which is more than adequate for our problem. In [59], several examples and comparisons
are made to show that this method has an optimal convergence rate and robustness with respect
to other approaches. The example considers two parallel linear elastic half cylinders of radius 
and pressed by a small distributed pressure on the diameter. A tangential pressure is then applied
to cause friction at the contact interface, while the top of the upper cylinder is constrained from
rotating. The bottom of the lower cylinder is fixed in all directions. The standard input listing
available in ANSYS is adequate for many problems, but two minor changes made in the present
case were:

1. We used quadratic PLANE183-CONTA172 instead of linear elements PLANE182-CONTA171,
and we modified the mesh parametrically keeping the same ratio of elements, in order to im-
prove marginally the accuracy of the results. For the figures reported in the paper we divided
every element edge by 3 which brings the total number of elements to about 45000, but still
permits a solution of an entire curve of loading in less than a minute.

2. We did not use the ANSYS variant of the friction law with just static and dynamic coefficients,
since this does not permit a dependence on slip displacement. Instead, we defined a table of
friction coefficients in terms of slip displacement.

Fig. 4.2 compares the shear traction () from equation (4.20) for  = 08  =
015  = 01Λ = 005, with finite element results using the ramp (linear) function for ()
from Fig. 4.1. The agreement is clearly extremely good. Also shown on this figure are the con-
ventional Cattaneo-Mindlin prediction (equivalent to taking ∆ = 0) and the JKR approximation
(4.33). The latter gives good predictions everywhere except in the transition region, where of
course the predicted singular stress is unphysical.
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Fig. 4.2. Finite element results ( ) for the shear traction distribution () for = 08  =
015  = 01 and Λ = 005: Double Cattaneo-Mindlin solution (4.20), Conventional
Cattaneo-Mindlin solution (4.5) with  = , ‘JKR’ approximation of equation (4.33).

Fig. 4.3 shows a similar comparison for a larger value of ∆, so that the transition extends over
a larger radius. In this figure, we compare equation (4.20) with finite element solutions using the
ramp function and the step function respectively from Fig. 4.1. This figure shows that the traction
distribution is relatively insensitive the the form of the function () for given values of ( − )
and ∆, and hence that equation (4.20) can be expected to give good results for most practical
slip-weakening laws.

Fig. 4.3. Effect of the function () on the traction distribution (): ramp (finite element),
step (finite element), equation (4.20).  = 09 ,  = 015  = 01Λ = 0277.

4.2.5 Discussion

The principal new result from this analysis is that fracture mechanics concepts are introduced
into the microslip problem, even when the friction law is merely an extension of the Coulomb
law allowing differing static and dynamic coefficients. In particular, if the coefficient of friction
varies with slip displacement over a relatively short slip distance ∆, we can determine a critical
stress intensity factor or fracture toughness (4.32) that depends only on the static and dynamic
coefficients, the form of the slip-weakening law, the composite modulus and the local contact
pressure.
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Equation (4.34) defines the relation between tangential force  and the semi-length  of the
stick area in the JKR limit, which is appropriate if the small-scale transition criterion 0 ¿  is
satisfied. It is plotted in Fig. 4.4 for several values of the dimensionless parameter

Ψ =

µ


− 1
¶

∆

2
=

µ


− 1
¶2
Λ  (4.42)

Fig. 4.4. The tangential force  as a function of the radius  of the stick zone (JKR limit).

All the curves except the limiting case Ψ = 0 exhibit a maximum  = max at a non-zero
value of , implying that under tangential force control, the system would jump unstably to full
sliding once this maximum is reached. The unstable range is shown dotted in Fig. 4.4.
Similar plots were made for the double Cattaneo-Mindlin solution, using equations (4.26, 4.23)

with  = ( − )∆. Fig. 4.5 compares the resulting curves for  = 01 and Λ = 0025 04 with
the JKR solution. Notice that changing Λ at constant  implies a change in the friction coefficient
ratio . The truncation in these curves near  =  occurs because the outer boundary  of
the transition region cannot exceed the boundary  of the contact area. When  = , the double
Cattaneo-Mindlin solution reduces to a conventional Cattaneo-Mindlin solution with  = , so
we have arbitrarily used this result to continue the curves to  =  [shown dotted].

Fig. 4.5. Comparison of the double Cattaneo-Mindlin solution with the JKR limit for  = 01.



39 4.3. Conclusions

As predicted, the curve for Λ = 0025 is very close to the JKR curve, though the maximum
 is shifted slightly to the left. Notice incidentally that we might have chosen to plot the double
Cattaneo-Mindlin curves as functions of the location of the mid-point ( + )2 of the slip-stick
transition region, in which case this shift would be much reduced. For larger Λ, the maximum
occurs at significantly lower values of , but max is still very well predicted by the JKR theory
even for Λ = 04.
Experimental measurements of static friction coefficient are usually obtained by increasing the

applied tangential force until sliding commences. However, it is clear that under these circum-
stances, microslip is likely to occur before gross sliding commences, and hence in the present geom-
etry such experiments would lead to the static coefficient of friction being identified as max ,
which generally differs from .

Fig. 4.6. The coefficient ratio  as a function of the apparent ratio max  .

Fig. 4.6 shows the relationship between  and the ‘apparent’ value of this ratio determined
as max  , for various values of

 =
∆

2
=

µ


− 1
¶
Λ  (4.43)

The dashed lines in this figure correspond to ranges in which the small-scale transition criterion
0 ¿  is not satisfied. We notice that the apparent static friction coefficient is always significantly
lower than . The reason of course is that by the time max is reached, a significant part of
the contact area has slipped sufficiently to transition to a local coefficient , and the measured
coefficient is a weighted average over the whole contact area.
Notice that the limiting case  = 0 can arise only if ∆ = 0, meaning that the transition from

 to  occurs over an infinitesimal slip distance. As explained in §4.1.2, the partial slip solution
is then identical to the conventional Cattaneo-Mindlin solution with  =  and hence slip occurs
for  =  regardless of the static coefficient of friction . This case is defined by the vertical
axis in Fig. 4.6.

4.3 Conclusions

We have shown that the use of a slip-weakening friction law has a qualitative effect on the solution
of microslip problems. The mechanics of the classical Cattaneo-Mindlin problem then have a
mathematical structure similar to that of the adhesive contact problem, and we can identify an
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analogue of the ‘JKR’ solution, in which the extent of the stick zone is governed by the occurrence
of a pressure-dependent mode II stress-intensity factor at the stick-slip boundary. By exploring
the two-dimensional Hertzian geometry, we were able to identify the equivalent fracture toughness,
which is independent of the detailed geometry, but proportional to the square root of the local
contact pressure. We also defined a length scale 0 analogous to the small-scale yielding criterion
whose value enables us to judge whether the singular solution gives a good approximation to the
more exact solution.
The tangential force reaches a maximum before the stick zone has shrunk to zero, at which point

there will be a discontinuous change of state to gross sliding. This implies that estimates of the
static coefficient of friction from experiments on the inception of sliding will generally significantly
underestimate the values appropriate at the microscale.



Chapter 5

Partial slip solutions with Griffith
friction

In the previous chapter we analyzed the microslip problem between bodies when a friction law,
more refined that the classical Coulomb law, is used. In particular we considered a slip weakening
friction law which implies a transition zone where the friction coefficient  () decays from the
static  to the dynamic  value. It was shown that for vanishingly small length of the transition
zone a "JKR" approximation can be used where the shear traction distribution is singular on the
transition line. In this limit the microslip problem is governed by the fracture energy  , and a
"Griffith friction model" is defined. In this chapter we will use this Griffith friction to solve the
partial slip problem for power law and sinusoidal profiles.

5.1 Introduction

Rabinowicz, in 1951, [45] had conducted experiments to determine the transition between static
and kinetic conditions for metal surfaces, measuring the energy that has to be given to one of
the bodies to start it moving by using inclined planes with an angle insufficient to start sliding
statically, but large enough to initiate slip by impacting a small mass. In his case with various
metal surfaces, he found a static coefficient "” persisting for distances "” of the order of ,
and gradually decaying to the kinetic coefficient " "(see Table 1). Specifically, we can define a
frictional "fracture energy" per unit surface

 =

Z +∞

0

(()− ) (5.1)

where () is the function that relates the coefficient of friction with the slip distance "" and  is
the local pressure. The product ( − )  in Table 1 gives a rough idea of the fracture energy for
a given pressure, which we cannot estimate from Rabinowicz’ paper. Slip-weakening friction laws
have been introduced in fault mechanics of earthquakes, which relate inception of slip to concepts
of fracture mechanics: Ida [60] and Palmer and Rice [61] have been the pioneer in this field, but
fracture mechanics is now an established framework for earthquake friction ([62],[63],[53]), although
experimental evidence may have been obtained firstly by Svetlizky and Fineberg [25] following a
series of interesting experiments by the group of Jay Fineberg ([19],[22],[23],[24],[20]). Fineberg’s
group measured a number of effects with accuracy, including the fact that the ratio between shear
and normal stresses along the interface can locally far exceed (a ratio of about 4 to 6) the static
friction coefficient without precipitating slip ([22],[23]), pointing to fracture mechanics singular
shear tractions, as proved more precisely in Svetlizky and Fineberg [25]. In general, this ratio is

41
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correlated to the speed of propagating fronts, but known mode II field seem to correlate well at all
speeds, except perhaps the very fast propagation speeds – however, these dynamic effects cannot
be taken into account in a quasi-static model as we’re going to advance here. The "fracture energy"
as is called by Palmer and Rice [61], or critical energy for propagation, is a constant in Fineberg’s
experiments within the accuracy of experimental evidence, although they suggest it may depend
only on the local pressure, based on an argument on the effective friction dissipation scaling with
the bulk toughness via the real contact area reduction of the nominal interface area. Notice that
the two areas of research, that initiated by Rabinowicz [45] with the experiments with sliding
metals, with that of geophysics, are largely separated and have not been used in connection one
with the other. This may be because in metals the difference between static and dynamic friction
is small, as also mentioned by Richard Feynman in his famous lectures [46], and in agreement with
the data of Table 1. Instead, in fault mechanics [47] the ratio is estimated to be of the order of
a factor 10, and cause the definition “strong but brittle” fault [48]; “strong” because of the high
peak static shear stress but “brittle” because of the low residual shear stress. In the data collected

in Table 2 and extracted in turn from a variety of reliable sources, it seems that values similar to
those in geophysics can be obtained with brittle materials, although the reason for this behavior
requires further investigation.

pair # Material 1 Material 2     [] ( − )  []
1 copper mild steel 0.46 0.31 1.484 1 0.15
2 lead mild steel 0.72 0.47 1.532 3 0.75
3 Mild steel copper 0.54 0.39 1.385 0.9 0.135
4 Mild steel titanium 0.63 0.45 1. 4 6 1.08
5 Mild steel zinc 0.65 0.47 1.383 2 0.36

Table 1. From [45]. Values of static coefficient of friction, kinetic coefficient of friction, the
characteristic distance for which static coefficient of friction  drops to kinetic coefficient of
friction  , the ratio  and an estimated value of "fracture energy" normalized by the local

pressure (which is expected to be equal in all tests, but is not reported).

pair # Material 1 Material 2   
1 Cast Iron Cast Iron 1,1 0,15 7,33
2 Zinc Cast Iron 0,85 0,21 4,05
3 Copper Cast Iron 1,05 0,29 3,62
4 Glass Glass 0,95 0,4 2,38
5 Steel(Hard) Steel (Hard) 0,78 0,42 1,86
6 Steel (Mild) Steel (Mild) 0,74 0,57 1,30
7 Steel (Mild) Lead 0,95 0,95 1,00
8 Aluminum Aluminum 1,2 1,4 0,86

Table 2. Data for the static coefficient of friction  , kinetic coefficient of friction  , and
their ratio  reordered and taken from the list compiled by the late Roy Beardmore using a

variety of handbooks listed in his web site1

Since PMMA in the data obtained by Fineberg’s group shows a ratio of static to kinetic friction
coefficient up to 6, this behaviour seems to correspond to the class of “strong but brittle” interfaces
as Rice [48] defines them, and indeed we also notice that other materials commonly believed to be
"brittle" seem to behave similarly as from the data in Table 2 for Cast Iron vs either Cast Iron
but also Zinc and Copper. It is with these cases in mind that we developed a Griffith theory of
inception of slip in [56], limited to Hertzian 3D geometry, whereas here we shall consider a general

1http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#coef



43 5.2. Theoretical analysis

2D geometry and examine in details the effect of geometry for a few cases of interest. We report,
for completeness, that in some cases (as Al on Al in Table 2), an inverse behavior is reported, with
an increment of friction coefficient when sliding, and some models do show how kinetic friction can
be greater than static friction [64], which would require different modelling strategies.

5.2 Theoretical analysis

5.2.1 Cattaneo-Mindlin solution

For the classical basic case in plane geometry (see Fig. 5.1), the main results of the classical
Cattaneo problem are given in the first chapter and a much deeper analysis can be found in a
number of textbooks, from Hills et al. [1], to Johnson [2], Barber [39], and Popov and Hess [65].
In the standard CM problem, we usually write the Coulomb friction condition, i.e. that shearing
traction must be less than the limiting value in , i.e.

2

| ()|  − ()   ∈  (5.2)

but here, in analogy with what suggested by Ciavarella [56] for the 3D axisymmetric purely Hertzian
case, we are going to define an "energetic criterion" (or a "Griffith" friction condition) as a condition
that defines the boundary between the stick and the slip zone. This will yield the shear traction
to be singular with an imposed strength of the singularity, as it is customary in the Linear Elastic
Fracture Mechanics (LEFM) of proper cracks. Similarly to LEFM, we propose here a solution
involving in principle infinite shear, and not for example the more complete one assuming a finite
static friction (which corresponds to a cohesive model in fracture) as described in [38]. In particular,
as LEFM gives the conditions of small-scale yielding to occur, so does Papangelo et al. [38] for the
solution involving theoretically infinite friction to be valid.

Figure 5.1. Basic set-up considered in the analysis

We seek solutions for contacts with "infinite" friction, where slip occurs at the edge of each
contact area, but the shearing traction distribution can be defined initially in the same manner as
the standard Cattaneo-Mindlin solution, as a correction of the full sliding term in the stick zone,

2Note that the negative sign in due to our convention  () =  ( 0).
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of dimension and location presently unknown, which we denominate ∗ () = ∗ ()  Hence, for
  0, without loss of generality, one has

 () =

½
 () + ∗ ()   ∈ 

 ()   ∈ 
(5.3)

Then, the integral equation for relative displacements in the tangential direction states, using
00 () = 0, and substituting (1.49) for the full sliding component, becomes

0 =
1



Z



 () 

− 
=

∗
2

0 () +
1



Z



∗ () 
− 

  ∈  (5.4)

where ∗ is the composite modulus, ∗ () = 0 in the slip zones, by definition, and in the stick
zone, ∗ () is the solution of the following integral equation

1



Z



−∗ () 
− 

 =
∗

2
0 ()   ∈  (5.5)

which we can recognize as being of exactly the same form as the original equation for normal
contact for  = 0, eq.(1.49) (with () replaced by −∗ ()  , and the domain of the integral
suitably scaled). However, contrary to the standard CM case, where we don’t admit solutions
being unbounded at the edges of the stick zone [8], here we shall permit this variant. We recognize
therefore the problem in the stick zone for the corrective shear as being equivalent to that of JKR
solution for the shape of the punch interested by the stick zone, where JKR is the classical solution
for the normal contact problem in the presence of adhesion [66]. It should be borne in mind,
however, that we are not dealing with the presence of adhesion, as on the contrary, we assume that
classical adhesive-less conditions apply in the normal contact problem.

5.2.2 The JKR solution for plane problems

Here the JKR solution for a general plane problem is derived, which we shall later use as a corrective
solution for the full sliding component of the tangential contact problem. If the contact area is not
symmetrical with respect to the origin, say −+  ≤  ≤ + , on assuming  =  +   =  + ,
the integral equation (1.49) for the pressure distribution becomes

∗

2
0 ( + ) =

1



Z

−

 ( + ) 

 − 
 − ≤  ≤  (5.6)

where  is the semi-dimension of the contact area, and  is the offset with respect to the origin
of coordinates  = 0, in which the function () is defined by eq.(1.49). The solution for the
corrective shear traction in the stick zone is equivalent to a JKR solution for a plane geometry.
We therefore use the case of a general profile in contact over the range − ≤  ≤  (see [8])

 ( + ) = − ∗

2
p

2 − 2

Z

−

0 ( + )
√
2 − 2

 − 
− 1



p
2 − 2

 − ≤  ≤  (5.7)

(notice that a positive load induces a negative, i.e. compressive, pressure) together with the
condition now on the Stress Intensity Factor (SIF)

 = lim
→

p
2 (− ) ( + ) =  (5.8)
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To determine the moment in the case of non-symmetrical punch, we would additionally impose
the condition to have equal SIFs at the two ends. The usual CM solution is obtained back when
 = 0. Equation (5.7) can be separated in the adhesive (subscript ””) and adhesiveless
(subscript ””) contribution

 ( + ) =  ( + ) +  ( + )  − ≤  ≤  (5.9)

 =  −  (5.10)

where

 = −
+Z

−+

 ()   = −
+Z

−+

 ()   =

+Z

−+

 ()  (5.11)

Eq. (5.7) for  ( + ) is rewritten imposing the adhesiveless contribution to be bounded at the
extremes (in particular  ( = ±) = 0),

 ( + ) = −∗

2

p
2 − 2

Z

−

0 ( + ) √
2 − 2 ( − )

 − ≤  ≤  (5.12)

 ( + ) =
1



p
2 − 2

 − ≤  ≤  (5.13)

with the further side conditions (see [8])

Z

−

0 ( + ) √
2 − 2

= 0  = −
∗

2

Z

−

0 ( + ) √
2 − 2

(5.14)

To determine the moment , assuming the flat punch solution is symmetrical (because the 

will not be different on the two sides of the contact), rotational equilibrium is unaffected, and this
gives the additional equation in terms of the adhesive-less pressure only

 = −
+Z

−+

 ()  = −
+Z

−+

 ()  = −
Z

−

 ( + ) ( + ) 

=  −
Z

−

 ( + )  =  +
1



Z

−

0 ( + )
p

2 − 2 (5.15)

In particular, all the solutions shown in (see [8],[10]) can be used in this context as solutions for
the term  . Moving to the new solution of the partial slip Cattaneo problem is therefore
routine, since the side condition on  can now be written due to  alone,

 = lim
→

p
2 (− ) ( + ) =

√


(5.16)

which leads to
 = 

√
 (5.17)

or in terms of a critical energy release rate  =
2


2∗ . Hence, in general we can write

 =  −
√
2∗ (5.18)
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where for the Hertzian geometry we have

 =  =
∗2

4
(5.19)

The pull-off force per unit length is the minimum of (5.18). Equating to 0 the first derivative of
(5.18) with respect to  the critical size of the contact area  is found

 = 

µ
2

∗

¶13
(5.20)

Substituting the latter result into (5.18) the pull-off force is obtained

min =
3

4

¡
4∗ 2

¢13
(5.21)

Notice the weak dependence on elastic modulus, which is not present in the 3D version of the JKR
solution.
For the non simply-connected contact areas, it is clear that the general procedure indicated

here, that of superposing flat punch solutions to the bounded-bounded adhesiveless solutions,
works equally well, as used for example in the case of a sinusoidal profile in [67].
As a consequence of the analogy established, the corrective load to the full sliding tangential

contact will be given by noting that, according to eq.(5.5)

|∗|


=  ∗ (5.22)

where the corrective normal load is is given by (5.18) on which we apply the superscript "*"
to identify this as a corrective tangential contact solution which in turn is composed by two
contributions

 ∗ =  ∗ −
√
2∗ (5.23)

and  is the half-width of the stick zone. It should be borne in mind that, with respect to the
definition (5.1), the fracture energy to use in the corrective problem should consider the way the
corrective problem is defined. In [38], it was shown that in a more refined cohesive model involving
slip-weakening friction laws, when the transition from static to dynamic coefficient of friction takes
place over a sufficiently small slip distance, the shear traction distribution tends to a JKR singular
solution. However, the equivalence of the results is obtained for

 =
1

2

Z +∞

0

(()− ) (5.24)

The stick zone is − + ∗ ≤  ≤  + ∗, and so let us define  =  + ∗  =  + ∗. Hence,
the corrective solution in the stick zone is given by the two contributions: an "adhesiveless"
contribution to the corrective tractions (5.12)  ( + ∗) =  ( + ∗) +  ( + ∗)  where

−∗ ( + ∗)  =
∗

2

p
2 − 2

Z

−

0 ( + ∗) √
2 − 2 ( − )

 − ≤  ≤  (5.25)

−∗ ( + ∗)  =
1



 ∗p
2 − 2

 − ≤  ≤  (5.26)

The conditions ∗ ( = ±) = 0, and equilibrium translate into the following two equations

Z

−

0 ( + ∗) √
2 − 2

= 0 −∗ = −
∗

2

Z

−

0 ( + ∗) √
2 − 2

(5.27)
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These equations give the offset ∗, and the size of the stick zone . Note that, for a non-symmetrical
self-similar profile (i.e. the functions on the right and the left of the  = 0 axes are each self-similar)
the offset of contact area, and offset of stick zone are proportional, i.e. ∗ = , as the rotation
is fixed. The tangential load may be calculated from

|| =  −

⎡
⎣∗

2

Z

−

0 ( + ∗) √
2 − 2

− 
√
2∗

⎤
⎦ (5.28)

If we divide by  (where  is the true normal load, obviously from the adhesiveless solution),
and we define as in [8]

Φ ( ) =

Z

−

0 (+ ) √
2 − 2

 (5.29)

then ||
 , which ranges from 0 to 1 for full sliding in the original CM theory as ||

 = 1− Φ(∗)
Φ() ,

is here changed into

||


= 1−

⎡
⎣Φ ( 

∗)− 2
q

2
∗

Φ ( )

⎤
⎦ (5.30)

5.3 Solution for partial slip contact

5.3.1 Hertzian case

Starting with the Hertzian case, in the usual parabolic approximation is 0 () = , where  is
the radius of the cylindrical punch, and the stick zone is centrally positioned and is of half-width .
The dimensionless normalized shearing force (||  ), as a function of the size of the stick zone

(), is found using (5.28) and the Hertzian equation  = ∗2

4
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2
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2

2

⎤
⎦ (5.31)

but it is convenient to rewrite the adhesion-related term by deriving the "critical size" for the
stick zone size as  which makes eq. (5.31) maximum, writing
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which results in

 = 

µ
2

∗

¶13
(5.33)

and which makes ||
 a maximum.

Hence3 eq. (5.31) can be rewritten as

||


= 1−

³ 



´2 ∙
1− 4
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´32¸
(5.35)

3To have a term of comparison, the 3D Hertzian case leads to [56]
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which is quite similar in form, and therefore we expect the same type of results.
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Figure 5.2. ||  for Hertzian contact plotted against the dimensionless width of the stick zone
 for different values of the ratio  = [0− 02− 04− 06]. For each curve the minimum
||  at which partial slip commences is indicated with a black square, while the maximum

value of the stable branch is indicated with a black circle.

In Fig. 5.2 we plot the ratio ||  as a function of the dimensionless width of the stick zone
 for different values of the ratio  = [0 − 02 − 04 − 06] which corresponds to higher and
higher fracture energy in the transition from stick to slip. For  = 0 the classical CM solution
is retrieved where the maximum shear force (||  = 1) is obtained at  = 0 For   0 it
is seen that no sliding begins until we reach a critical tangential load, after which the stick zone
decreases up to a certain minimum size, corresponding to a maximum tangential load. Turning
back to the minimum load needed to trigger a partial slip condition, this can be easily estimated
putting () = 1 in (5.35),

µ
||



¶

min

= 1−
µ
1− 4

³


´32¶
= 4

³


´32
(5.36)

When
³
||


´
max

is reached, the curves become unstable under load control (hence, we plot them

as dashed curves), with a sudden decrease of  to 0. Notice that
³
||


´
max

can be even interpreted

as the ratio between the apparent static friction coefficient measured during an experiment, and
the dynamic one, which is both the local value in the slip zones, and the global friction coefficient

measured under gross sliding conditions. The maximum
³
||


´
max

can be obtained using (5.32),
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and the highest increase is
³
||


´
max

= 4 which is double of the highest increase obtained in 3D

[56]. In Fig. 5.3, we plot the maximum and the minimum value of the
³
||


´
as a function of


  Notice that increasing the fracture energy, both the maximum and the minimum shear force

increase and for 
 = 1 we have

³
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´
min

=
³
||


´
max

.



49 5.3. Solution for partial slip contact

Figure 5.3. Maximum and minimum values of the ratio 
 for Hertzian contact as a function of

the dimensionless critical size of the stick area 

Shear tractions

For the Hertzian case, in the stick zone we have

() = () + ∗() = (5.38)
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Thus the dimensionless shear tractions are
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In Fig. 5.4 (a) we plot (5.41) as a function of  for a fixed value of  = 02 and for different
radius of the stick zone  = [02− 04− 06− 08] Notice that with this choice of , the red
dashed curve coincides with the last stable solution. In Fig. 5.4 (b) we plot (5.41) for a given stick
radius  = 06 and different critical radius of the stick zone  = [0− 01− 02− 03− 04] It is
seen that increasing the transition energy a stronger strength of the singularity is obtained which
also leads to obtain higher load in the stick zone. This behavior is responsible of the increasing of
the apparent friction coefficient that appears in Fig. 5.2.
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Figure 5.4. Hertzian case (a) Shear tractions for a given  = 02 (read transition energy) and
different stick radius  = [02− 04− 06− 08](b) Shear tractions for a given  = 06 and

different critical radius of the stick zone  = [0− 01− 02− 03− 04]

5.3.2 Power-law punches

This case is useful in view of considering deviations from Hertzian geometry. Consider a punch of
power-law profile 1 () =  ||


, including polynomial of any order, in contact with a half-plane.

The function  () is defined by

0 () = −sign () ||
−1

 (5.42)

one obtains (see App.I of [10] for details)
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where Γ is the usual Gamma function.
Making use of (5.28) and (5.43), the ratio
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In order to compute the maximum
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we equate to 0 the derivative of || with respect to

 and evaluating 
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From (5.45) one can easily get back the Hertzian case putting  = 2 and  = 12 Using
(5.45) and (5.44) one can obtain a clean result for every 
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Putting  = 1, the minimum value
³
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above which the interface leaves the full stick

condition is
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while the maximum value
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is obtained for  =  after some simple algebra

µ
||



¶

max

= 1− (1− 2)
³



´
= 1 +

³


´12µ
1− 1

2

¶µ
||



¶

min

(5.48)

In Fig. 5.5 we plot (5.44) for a profile with  = 1 2 4 6 for  = 04 showing the behavior is

non monotonic with the power . Results specific for
³
||


´
max

and
³
||


´
min

are shown respectively

in Fig.6 (a-b) as a function of  for  = [1 − 2 − 3 − 4 − 5] . It is seen that while
³
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´
max

is relatively insensitive to  at low , the minimum
³
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´
min

is very sensitive in this range.

Further, a significant increase of both
³
||


´
max

and
³
||


´
min

does occur only for large , and

in this region, the actual start of microslip and inception of full slip strongly depend on geometry.

Figure 5.5.  plotted against the dimensionless width of the stick zone  for  = 04
and for power law punches with  = [1− 2− 4− 6] For each curve the minimum ||  at
which partial slip commences is indicated with a black square, while the maximum value of the

stable branch is indicated with a black circle.
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Figure 5.6.
³
||


´
max

and
³
||


´
min
, respectively (a) and (b), plotted against  for

 = [1− 2− 3− 4− 5].

Shear tractions

From [10] the pressure distribution for a power law profile is

 ( ) = −∗
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and || = ||  1. Further, the function 21
¡
1 1− 

2 ;
3−
2 ; 

¢
is the Gauss hypergeometric

function of argument , and the two terms in the function  should be taken with care for odd
integer  as they both diverge. The shear traction then will be (  0) within the stick area
( ∈ )
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where ̄ =  To make (5.51) dimensionless we divide by 0 =
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In Fig. 5.7 (a) we plot the pressure distribution made dimensionless with 0, while in Fig.
5.7 (b) we plot the shear traction made dimensionless with the mean vale  for  = 08 and
 = 06. It is seen that increasing  the shear tractions increase at the edge and the singularity
reduces it strength at the stick-slip boundary.

Figure 5.7. (a) Dimensionless pressure distribution |()0| and (b) dimensionless shear
tractions () plotted against  for  = [2− 4− 6− 8],  = 08 and  = 06

5.3.3 Sinusoidal wave profile

In many engineering applications periodic contact is an important model, either per se or as a basis
for understanding more complicated cases which require an more than the fundamental harmonic.
Let assume that the profile in contact with a half-plane has the form

 () = ∆ cos

µ
2



¶
(5.53)

From the Westergaard’s adhesion-less solution [68], the pressure acting over the regions |− | 
 is given by

 () =
−2

sin2 ()

£
sin2 ()− sin2 ()

¤12
(5.54)

while  () = 0 outside these regions, and

 = −∗∆


sin2 () (5.55)

is the mean pressure acting over the cosine profile.

For periodic contact, it makes sense to consider the ratio between the mean applied shear and
the value for full contact in dynamic conditions, ̄

̄ , which turns out to be

̄

 ̄
= 1−

Ã
sin2 ()

sin2 ()
−f

p
() ()

sin2 ()

!
(5.56)
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where we have defined a dimensionless fracture energy

f =

r
2

∗∆2
(5.57)

For 2¿ 1, we re-obtain curves for ̄
 ̄ as a function of  similar to the Hertzian case, and

thus we omit them here. In Fig. 5.8, instead, we plot ̄
 ̄ for 2 = 1 (full contact state). It can

be seen that differently for the punch-case that we have treated before, in this case the curves are
concave at  = 1 and this leads to a jump from full stick into a partial slip condition without a
continuous transition for load control (see dashed curve). Further increase of the tangential load
result on the progress of partial slip on a stable branch and again a maximum results for which
the curve becomes again unstable under load control. The cases plotted refer to 4 values of the
dimensionless energy f , from 001 to 1

Figure 5.8. ̄
 ̄ plotted versus  for


 = 05 =

¯̄



¯̄
max

and f = 001− 01− 05− 1 For each
curve the minimum ||  at which partial slip commences is indicated with a black square,

while the maximum value of the stable branch is indicated with a black circle.

The minimum
³

̄
 ̄

´
min

required to allow partial slip (not the true minimum) is that obtained

for  = 1 in (5.56)

µ
̄

 ̄

¶

min

= f
p



sin2 ()
(5.58)

and the maximum will be that reached for  =  Making a derivative with respect to  will yield
to a transcendental equation for the critical value 

r


sin

µ
2


¶
=
f
2

(5.59)

which cannot be inverted analytically, but could be computed numerically.

Shear tractions

From (5.54) and (5.3) the shear tractions will be within the stick area ( ∈ )
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=
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1− sin
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¸12
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sin2 ()− sin2 ()

¤12

sin ()
+

+
f

2 sin ()

p
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h
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¡



¢2i
(5.60)

where max = 2∗∆ sin (). Fig. 5.9 plots
³

̄
̄

´
max

and
³

̄
 ̄

´
min

as a function of  for
2
 = [1−08−06−04−02] It is worth noticing that for low 2

 the Hertzian solution is retrieved
(refer to Fig. 5.6 (a-b)), while near the full contact the curves are qualitatively different and we

plot here only the case when  is low enough for
³

̄
̄

´
max


³

̄
̄

´
min

 Above this critical value,

the entire loading curve is actually unstable and we switch directly from full-stick to full-sliding
without partial slip intermediate condition.

Figure 5.9. Maximum
³

̄
̄

´
max

and minimum
³

̄
 ̄

´
min

ratio of average shear to average pressure,

respectively (a) and (b), plotted as a function of  for
2
 = [1− 08− 06− 04− 02]
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5.3.4 Discussion

Interesting experiments were conducted on nominally Hertzian contact by Prevost et al [69]. They
would seem to be a natural comparison element for the present theory, but the effect shown in those
experiments seems opposite to what described in the present theory, namely instead of a (singular)
peak of shear tractions, a distribution even smoother than the classical Cattaneo-Mindlin solution
appears. We attribute this discrepancy to the fact that Prevost et al [69] consider friction between
a rough elastomer and a smooth glass surface. Friction in rubber is certainly very different from
friction between any other materials. For instance, in rubber (at low start velocity), the static
friction coefficient is generally considered to be equal to the kinetic friction coefficient [70]. Prevost
et al [69] attribute the discrepancy with respect to Cattaneo-Mindlin solution to an elastoplastic-
like friction constitutive equation instead of the rigid-plastic behavior of Coulomb’s law. More
investigation is needed to understand why this effect doesn’t seem to appear in Fineberg’s group
experiments. The most important result here is that geometrical effects can play a role due to the
occurrence of the instability point which may explain why very small geometrical differences in the
geometry may alter the apparent friction coefficient.

5.4 Conclusions

The Cattaneo partial slip contact problem has been solved with a Griffith condition for the inception
of slip, and as an example we have shown the case of a single contact area with punches of
power-law profile, or that of a periodic sinusoidal profile4 . The inception to slip condition is
shown to correspond under load control to an instability at a maximum tangential load, which is
mathematically related to the corresponding instability of pull-off for the adhesive contact JKR

solution. The dimensionless tangential force
³
||


´
(normalized by the normal load and the dynamic

friction coefficient) has a non-zero minimum
³
||


´
min

in order to start any amount of slip, and a

maximum value
³
||


´
max

above which a load-control experiment becomes unstable and full sliding

occurs. Hence, the apparent friction coefficient at inception of slip, depends on geometrical effects.
In particular, for a power law profile, it is relatively insensitive to the power of the power-law

polynomial  at low  (i.e. for a low fracture energy), while the minimum
³
||


´
min

(which

gives the point of beginning of partial slip from full stick) is very sensitive in this range. A

significant increase of both
³
||


´
max

and
³
||


´
min

does occur for large friction fracture energy or

, and in this region, the actual start of microslip and inception of full slip strongly depend on
geometry.

4The case of a flat square-ended punch, tangentially loaded above the interface line is reported in Appendix A.
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Chapter 6

Dampers and joints in mechanical
systems

Dynamic frictional problems have received considerable interest in science and technology for the
evident relevance in many fields of application. The most engineering structures from automotive,
aerospace and civil engineering are assembled by joints such as bolted, riveted and clamped joints.
Many of them require specific devices (dampers) to damp vibrations of a structure/component and
decrease peak stresses and wear, increasing life fatigue. Frictional devices make use of many physi-
cal concepts: viscosity and viscoelasticity ([71],[73],[74]), shape memory alloys field [72], hysteresis,
inertia (like in tuned mass dampers) ([75],[76]), and finally dry friction ([74],[77],[78]). The latter
is very commonly used as it is almost always available and low cost devices can be designed by
industry. In many situations damping is ensured by the presence of joints such as bolted, riveted
and clamped joints, that are not designed as a dampers, but can be one of the main sources of
energy dissipation in metal structures ([79],[80],[81]). This is due to the microslip events that take
place at the contact interfaces. One of the biggest challenges for the future mechanical designers
will be to effectively design joints in order to obtain the desired stiffness and damping behavior.
Nowadays, joints are considered a liability and not a resource of the design process as predictive
models are practically not available. One attempt has been done with the Iwan model [82] for
joints, but a lot needs to be done. In fact, we have seen in the first part of this thesis that dry
friction governing laws are highly nonlinear due to the "sign" function corresponding to the step
change of frictional force magnitude with the change of slip direction. In this part of the thesis we
will analyze the dynamic response of some mechanical models, with the aim to gather insights on
what we should expect when analyzing more complicated assembled structure. We will concentrate
our studies on the peak vibration amplitude and energy dissipation of some lumped mechanical
systems, starting from a single degree of freedom oscillator and ending with a chain of nonlinear
oscillators with 12 degrees of freedom. In the latter case we will show that, for a given range of
parameters, friction nonlinearities can lead to a multiplicity of stable/unstable solutions.
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Chapter 7

Coulomb frictional oscillator

In this chapter, we study first a simple Coulomb frictional oscillator with harmonic tangential load,
but with constant normal load. It is found that the quasi-static solution, obtaining by cancelling
inertia terms in the equilibrium equations, does not coincide with the limit of the full dynamic
solution at low frequencies. It captures approximately the displacement peak, but the velocity peak
is not correctly estimated, due to the stick-slip phenomenon. In the second part we let the normal
load to be harmonic. Some additional closed form results are given for this problem for both the
quasi-static limit and the full dynamic regime. We find in particular the regime where normal load
is high enough to obtain a bounded displacement at all frequencies, which is of particular interest
for "optimal" damping. Contrary to the quasi-static prediction, the effect of normal load variation
can decrease the peak displacement amplitude for in phase loading up to the 80% while, similar
to the quasi-static prediction, it can lead to a very large increase for quadrature loading. Similar
pattern is found for the frictional dissipation per cycle.

7.1 Introduction

For viscous damping the resisting force is proportional to the relative speed, and hence becomes
increasingly and monotonically negligible when frequency is reduced, so that the quasi-static limit
is a good approximation to a full dynamic analysis for many problems of engineering interest, as
it is apparent from the widespread use of quasi-static analysis. Vice versa, in dry friction, the
resisting force has no dependence on the velocity (at least, as a first approximation as in Coulomb
law), and only depends on slip direction. This has strong implications for the quasi-static limit,
as it will be made clearer in the following paragraphs in a very simple system subject to harmonic
loading.
Notice that "quasi-static" is a quite confusing term in the literature, since it may have perhaps

three different meanings (see Figure 7.1):

1. in the mechanics of continua, the approximation neglecting wave motion, where the inertia
forces as rigid bodies may be retained, but reducing the bodies to discrete spring-mass models
see eg. ([83]) – we would rather call it a "discrete" model of a continuum.

2. still in mechanics of continua, the "quasi-static" approximation may be intended as the
solution where inertia terms are eliminated from the outset, but the bodies remain continua.
In the context of contact mechanics, this is the case for many classical solutions, from the
Hertz problem, to the Cattaneo-Mindlin one, and so on (see the text of Johnson [2]).

3. finally, as in the present paper, "quasi-static" approximation of a discrete, like spring-mass
model, may be that obtained by removing the mass term from the solution.
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Fig. 7.1 Possible meaning of quasi-static approximation, and our case (QSTC).

At the other extreme, the true "dynamic" of a frictional system, with wave motion, and using
Coulomb law not only requires a very rich and demanding simulation for a mechanical system
[84], but may involve results that are mesh-dependent. In fact, uniform sliding is unstable for a
very wide range of friction coefficient and ratios of elastic constants ([85],[86],[87]). Thus pressure
waves of large wavenumber grow with an increasingly large exponential rate, numerical convergence
with grid refinement may not be achieved [88], unless more sophisticated friction laws are used for
regularization ([88],[89]).
Numerical solutions to cyclic frictional problems typically imply a costly time-marching so-

lution, or else specific algorithms which assume a certain form of the periodic response, like in
the harmonic balance technique. Analytical solutions, even for simple frictional dynamic systems,
are generally approximate, assuming treatable functional form for the displacement and velocity
evolution. Even for the single DOF oscillator, which we will consider in the present paper, con-
siderable effort is required for analytical results ([90],[91]). This makes them valid only for high
enough frequencies when there are zero stops in the steady state trajectory. Towards the quasi-
static limit, the number of stops in the dynamic solution increases, and hence, as we shall see,
the quasi-static "limit" solution is not unambiguously defined. The solution we shall call QSTC
(Quasi-STatiC) is the one obtained by neglecting altogether the inertia term in the equation of
motion, but since this gives only 2 stops per cycle, it does not correspond strictly speaking to any
of the dynamic solutions, not even in the limit. In fact, we shall find that the limit velocity is not
correctly predicted by the QSTC solution.
The idea of examining more carefully the quasi-static limit came to the authors in particular

reading the interesting recent paper of Brake and Hills [92] who have suggested, at least for the
geometry they considered (two coaxial cylinders under constant normal load and torsional oscil-
lations), an interesting 10% rule, which we could summarize as follows: for excitation frequencies
that are 10% of the fundamental resonance of a system, there is a 10% difference between the dy-
namic solution and quasi-static solution, at least as regarding the inception of slip. Their analysis
is considerably different and has more to do with the approximation of a continuum to a discrete
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model of a rather special type (a spring-mass model where stiffness is eliminated as there are no
constraints), rather than our eliminating the mass in a discrete model. However, it is their general
attempt to define rules for the difference between quasi-static and dynamic solutions in frictional
problems that we shall try to follow as example.
Therefore, we considered the simplest frictional system of all, a spring-mass model with just 1

degree of freedom (since the vertical DOF has no dynamics), but we looked more generally than it
has been done so far in the literature, at the difference between the full dynamic solution (DYN)
and the QSTC one (where we eliminate the mass), comparing the two for frequency of loading
decreasing to zero. The results for the QSTC limit can be obtained trivially, whereas the correct
DYN solution require careful numerical investigation, as done here using two possible algorithms:
a standard time-marching Newmark scheme, or a piecewise analytical solution. The results show
that we should reconsider what we mean by "quasi-static" limit in frictional system, since it may
well not be in all respects the solution of the problem when mass is removed. In this sense, looking
for a general rule to replace the full dynamic solution with a QSTC solution may actually be
meaningless, as it may divert attention from the dynamic problems like stick-slip which may occur
(and actually do occur in particular) at low frequency of loading. The QSTC limit turns out to
be close to the dynamic one only in the presence of very large additional viscous damping in the
structure (close to critical).

7.2 The model

Consider a rigid horizontal support on which a concentrated mass slides (Fig. 7.2). The mass is
linked to a fixed wall by means of a spring of stiffness  and the friction between the horizontal plane
and the mass is assumed to be Coulomb-like with a friction coefficient equal to  (no difference
between static and dynamic value).

Fig. 7.2 The spring-mass model oscillator damped by Coulomb friction, under constant normal
load and harmonic tangential load.

We consider a constant normal and tangential load of the form

() = 0 (7.1)

() = 1 sin() (7.2)

where 0  0, 1  0 is the amplitude of tangential load and  is the angular frequency of the
loading. This case corresponds to that considered by Hong and Liu in ([93],[91]).
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7.3 Quasi-static solution

Let us first consider the quasi-static limit (no inertia) for the system in Figure 7.2; if the mass is
moving towards the positive direction due to equilibrium we can write the displacement as

() =
1


sin()−

0


(7.3)

The maximum positive displacement will be reached when sin() will reach its maximum value
1, so

+max =
1


− 0


=

1


(1− )  0 (7.4)

where  is a dimensionless parameter

0   =
0

1
 1 (7.5)

The condition   1 is needed to avoid full stick for constant normal load. If the mass is moving
towards the negative direction the equation of motion leads to:

() =
1


sin() +

0


(7.6)

The maximum negative displacement will be reached when sin() will reach its minimum value
−1, so

−max = −
1


+

0


= −1


(1− )  0 (7.7)

Of course the (7.4) and (7.7) are equal in modulus as the loading is symmetric, so the absolute
maximum displacement is

|max =
1


(1− ) (7.8)

Equating equation (7.4) with equation (7.6) the onset of backward slip , is obtained

1 = sin () = 1− 2 (7.9)

Following the same reasoning for the onset of forward slip, we equate (7.7) and (7.3), to obtain

2 = sin () = −1 + 2 (7.10)

As −1 6 sin () 6 1 we have solutions only for 0 6  6 1. Notice that the equations (7.9) and
(7.10) are the simplified version of those found by Jang and Barber in [94] for the case of varying
normal load.
Differentiating with respect to the time (7.6) and (7.3) the velocity is obtained, for both the

cases of backward and forward slip


() = 

1


cos() (7.11)

If backward slip commences when 1 > 0, then cos() hasn’t already reached its minimum value,
so the maximum negative velocity in magnitude will be

¯̄ 
()

¯̄
= 

1

 whereas if 1  0 the
maximum negative velocity in magnitude will be exactly that reached in the time instant for which
the backward slip starts which yields to cos() =

p
1− 21. For the case of forward slip we

need a similar reasoning, that leads to the following general rule:
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¯̄ 


¯̄
max

=

½


1

 for 0 6  6 1
2

21

 

p
 (1− ) for 12 6  6 1

(7.12)

Due to the symmetry of the load, the dissipated energy per cycle within the quasi-static limit can
be calculated for half cycle (for example for the backward slip) which leads to

 = −2
Z 





 = −2

Z −1

1

0
1


 →

 = 4
2
1


 (1− ) (7.13)

where we define () = sin(), and use equation (7.9).

7.4 The dynamic solution

7.4.1 Piecewise analytical solution

Consider that the system sketched in Figure 7.2 is in a phase of slip; from the linear momentum
balance in the horizontal direction



() + () = 1 sin()− (


)0 (7.14)

where () is the position of the mass at the time . To obtain the temporal evolution of the
system, we subdivide our temporal window in intervals in which the mass is in stick or in slip. For
the first case the solution of the problem is trivial, while for the slip phase Hong and Liu found
the solution of (7.14) in [93] that rearranged is also reported hereafter:

() = ()−
∙
() + (


)

0



¸
{1− cos [ (− )]}+

+


()


sin [ (− )]+

+
1

 (1−Ω2) {sin()− sin() cos [ (− )]+

−Ω cos() sin [ (− )]} (7.15)

where () and

() are the initial conditions.

Notice that the mass in a forward slip phase could turn both to a backward slip phase and to a
stick phase. In each of those cases, there will be a time instant in which the velocity vanishes. To
simplify the solution of the problem, we look for a piecewise analytical solution for which, in each
interval considered, the velocity retains the same sign. Due to this assumption, in each time interval

() = 0 except for  = 0 for which


(0) comes from the initial condition of the problem that

is always set to 0. Differentiating with respect to time equation (7.15) once and twice we obtain
respectively velocity and acceleration for the slip phase considered. The solution (7.15) holds up
to the time instant in which the velocity vanishes again. At this point the algorithm checks if
the mass is starting to move in the other direction or if it will retain its position. This task is
performed comparing the actual external force applied with the maximum friction force available
at the contact. Moreover, if the mass is in a phase of stick of finite duration, we evaluate the onset
of slip looking for the time instant in which the external tangential force applied overcomes again
the frictional force. Joining all the solutions, the complete response of the system to the applied
loads is obtained.
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7.4.2 The approximate solution for zero-stops

Den Hartog [90] and later Hong and Liu [91] give approximate formulas for the maximum dis-
placement and velocity for a steady state non-sticking solution (i.e. 0 stop per cycle). Firstly in
1931, Den Hartog [90] proposed an approximation for the maximum displacement assuming that
the trajectory in the phase and state plane is symmetric with respect to the  axis. More recently,
in 2001, Hong and Liu [91] assumed that the trajectory is symmetric with respect to the origin,
extended Den Hartog’s results [90] obtaining the same formula for the maximum displacement,
and a new formula for the maximum velocity:

max =

s

2 −
∙

 sin (1)

Ω(1 + cos (1))

¸2
(7.16)


max = ||

s

1−
µ
 +

∆1
1

¶2
+

+ 

s
22

1 + cos (1)
−
µ
 − − Ω2∆1

1−Ω2
¶2

(7.17)

where  = 1

(1−Ω2) ,  = 0

 , 1 =

Ω and ∆1 is the displacement at the time instant for which

the maximum velocity is reached.

7.4.3 Time-marching algorithm

To check the results obtained eq. (7.14) is solved using a direct numerical integration. Different
numerical methods are available to perform this task; we used the implicit Newmark method [110].
Briefly, this method assumes a form for the acceleration within the timestep, and integrating finds
the resulting velocities and displacements:


+1 =


 +∆

£
(1− )


 + 


+1

¤
(7.18)

+1 =  +∆

 +∆2

∙µ
1

2
− 

¶

 + 


+1

¸
(7.19)

Using the parameters  and  respectively equal to 14 and 12 the method is unconditionally
stable and conservative, thus no damping or excitation comes from the numerical integration. In
each timestep, a "state" is assigned to the mass that indicates if the mass is in backward slip,
forward slip or in stick. On the basis of the previous "state" of the mass the proper equilibrium
equation is solved, and then the results are checked to ensure that they are coherent with the
"state" guessed. If the results obtained are not coherent, a new state is assumed on the basis
of the check result. The numerical simulation goes ahead up to the end of the temporal window
considered, until the steady-state cycle is reached. It is assumed that the steady state condition is
reached if for the last 2 cycles the dissipated energy per cycle is changed less then the 001%.

7.4.4 Results

To compare the solution obtained from a quasi-static analysis (QSTC) with that obtained from the
dynamic one (DYN), in Figure 7.3 the two solutions (QSTC -DYN) for displacements are plotted
with respect to time and in the phase and state plane, setting  = 051 and Ω = 005 009 047 076
respectively for the graphs (a-b), (c-d), (e-f), (g-h). Perhaps surprisingly, it should be remarked
that a perfect match between QSTC and DYN solution is never obtained, because of the presence
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of a certain number of stops in the DYN solution, which is evident particularly in the phase and
state plane. Looking to the temporal evolution of displacements during the slip phase (see Figure
7.3 (a) and (c)) one can see that for the quasi-static solution a smooth curve links the two extended
phases of stick (the displacement is sinusoidal for QSTC, see eqt.(7.6) and (7.3)), while the dynamic
solution presents oscillations at the natural frequency during the slip phases, that in the most cases
imply a state of stick for the mass (but not always). The phase and state plane (Figure 7.3 (b) and
(d)) shows more clearly the stick-slip behavior of the dynamic solution, which results in a jumpy
shape of the velocity. For small Ω, the dynamic and quasi-static displacement match, whereas,
even for small Ω, the velocities seem to differ considerably. Upon increasing Ω, the maximum
displacement and the maximum velocity in the dynamic solution grow up, and the number of
stops obtained from the dynamic integration decreases. In particular the solutions reported in
the Figure 7.3 (b-d-f-h) are respectively characterized by 10, 6, 2 and 0 stops. Notice that it is
not possible to distinguish a solution with 2 stops (see Figure 7.3 (f)) with one with 0 stops (see
Figure 7.3 (h)) looking only at the phase and state plane, as the shape of the solution remains the
same. Vice versa, if one looks to the time evolution of displacements (see Figure 7.3 (e-g)) it is
clear that when we have only 2 stops they are located in correspondence to the maximum positive
and negative displacement where can be seen a plateau when the stop occurs. The DYN solution
shape obtained is in agreement with that obtained by Hong and Liu in [91], who did not compare
to the QSTC solution.
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Fig. 7.3 On the left column: displacements (dashed line = QSTC solution, solid line = DYN
solution) vs time. Right column: phase and state plane for (a-b) Ω = 005, (c-d) Ω = 009, (e-f)
Ω = 047, (g-h) Ω = 076. All the simulations were run using  = 051. From the top to the

bottom the solutions are characterized by 10 - 6 - 2 - 0 stops.

In order to assess whether a small amount of additional viscous damping in the system changes
completely the behavior, Figure 7.4 shows results with 4 levels of damping factor ( = 

2
√


=
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[0− 015− 1− 3] respectively solid, dotted, dash-dotted, dashed thin line) compared with the no-
damped QSTC solution (dashed thick line) for  = 051 and Ω = 005. Only for a critical damping
does the DYN solution get close to the no-damped QSTC limit.
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Fig. 7.4 Effect of additional viscous damping in the model. The viscous damping increases in this
order solid, dotted, dash-dotted, dashed (thin) line compared with the no-damped QSTC solution
(dashed thick line). Left column: displacements vs time. Right column: trajectory in the phase

and state plane.

Having obtained that viscous damping alters the results qualitatively only for very high damp-
ing, we return in the following to the case of pure frictional damping. Similarly to Hong and Liu in
[93], we run 5000 DYN simulations to characterize the number of stops per cycle of the solution as
a function of Ω and  when the steady-state is reached. As the quasi-static limit requires a detailed
analysis, the plane (Ω ) is further subdivided into 2 grids. The first is characterized by 50 points
for  [002 098] and 50 for Ω [002 01], while for the second grid the interval for  remains the
same but Ω [01 15]. This choice gives us the possibility to directly compare our results to those
proposed by Hong and Liu in ([93], [91]). In particular in this work a more complete pattern for
 [002 098] is provided that shows an herringbone distribution of stops for low Ω (see Figure 7.5
(a)).

In the range Ω [01 15] (see Figure 7.5 (b)) we found the area of 0 stop at the far right as
found by Hong and Liu in [93] Fig. 7.8-7.9, but our results differ for the zone nearby. In fact,
we always find a continuous transition in number of stops – from 0 stop in black to 2 stops per
cycle in dark gray, and so on. Our results were verified carefully with the independent transient
numerical solution — other small discrepancies with Hong and Liu results appear ([93], [91]) later
in the region above resonance (leading even to a better comparison with the analytical solutions
provided by those authors).
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Fig. 7.5 Number of stops of the solution as a function of  and Ω. We set for  50 points
ranging from 002 to 098; On the left side Ω [002 01]  while on the right side Ω [01 15].

Making use of the piecewise analytical solution, the maximum displacement and the maximum
velocity is computed when the steady state is reached. In Figure 7.6 (a) the maximum displacement
(made dimensionless by 1 i.e. the frictionless maximum displacement) reached is plotted, for
different value of the parameter  ranging from 01 to 09. When Ω → 0 each curve tends to
1 − , following a jumpy shape due to the fact that the number of stops of the solution changes,
upon changing Ω1 . At a given value of Ω the displacements start to increase markedly. Looking
carefully, this seems to happen at the particular Ω for which the solution turns from 4 to 2 stops
for the given value of . The careful reader will note that we marked the limit using a white line,
indicated as "a" in Figure 7.5 (b). For the highest values of  (08 − 09), the resonance peak is
completely erased due to the high damping introduced by the friction. Generally speaking, with
this choice of dimensionless parameters, for a given Ω the higher is  the lower is the maximum
displacement reached.

In order to compare more effectively with the QSTC solution, in Figure 7.6 (b), the maximum
displacement is made dimensionless by the quasi-static maximum displacement given analytically
in (7.8). When Ω is sufficiently small, the quasi-static solution is approached and for all the values
of  the curves go to 1 following the known jumpy shape. This dimensionless representation makes
it clear that for the maximum displacement, the QSTC limit can be accepted. In general, the
departure form the QSTC limit occurs at a larger value of Ω the lower is . This effectively
introduces a pressure-dependence on the distance to the QSTC limit.

Turning back on a comparison with Hong and Liu [93], their Fig.13 shows results that are
similar to our Fig. 7.6 (a) in the region of very low Ω. However, for higher Ω, we find smooth
curves, whereas they continue to find bumps and discontinuous curves, even in the region above
resonance for which the number of stops is zero both according to our and theirs results.

1The jumps in the results of steady state amplitude of motion seem to happen for any value of  and hence
are not associated to "high friction" and multiplicity of quasi-static solutions (see Klarbring, [95], [96]) which is
generally related to the presence of off-diagonal stiffnesses, which is not the case here. It seems more like a jump
phenomena typical of non-linear systems, involving discontinuous and significant changes in the response of as some
forcing parameter is slowly varied – in this case, due to the change of number of stops in the solution. A different
"jump" is the change of slope in the displacement amplification for high  for a certain frequency, which correspond
to a "damped" resonance similar to what happens with an oscillator with viscous damping.
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Fig. 7.6 On the left side the maximum displacement made dimensionless by 1; On the right
side the maximum displacement made dimensionless by the quasi-static one |max.

Moving to a comparison for the velocities, in Figure 7.7 (a) we plot the maximum velocity as
a function of Ω made dimensionless with 1 i.e. the quasi-static frictionless amplitude for
velocity, for different . For Ω → 0 each curve tends to a value below 2. Notice that this ratio
is more or less constant up to a certain Ω, between 05 and 08 in the case of the Figure. For
even larger Ω the dynamic effects show up considerably up to the resonance peak. If we compare
carefully the curves for  [01− 07], we will see that those dynamic effects show up when the
dynamic solution enters in the field of 0 stop, i.e. black region in Figure 7.5 (b) (the line "b"
indicates the limit). Starting from  = 07 the friction force is high enough to reduce markedly
the maximum velocity. Notice that at Ω = 15 all the curves are below 1.
In order to elucidate more specifically the QSTC limit, in Figure 7.7 (b) we plot the maximum

velocity made dimensionless with the quasi-static value (7.12). Notice that this change doesn’t
affect the curves for   05 since the QSTC limit corresponds exactly to the frictionless solution.
With this dimensionless formulation, for Ω → 0 the curves are closer and tend to a factor that is
comprised between 15 − 2 for all the curves. The discrepancy between the QSTC limit and the
DYN solution was already remarked in the previous paragraph and Figure 7.3 (a-b-c-d) and in
particular (b) and (d). Strictly speaking, the 10% rule of Brake and Hills [92] cannot be applied
in the present context.
Finally, in comparison with the results of Hong and Liu [93] (specifically, their Fig.13), our

results are again in agreement in the low region of Ω, but, similarly to the displacements, there
are discrepancies at intermediate and high Ω for low  where they find jumpy curves, whereas our
results are smooth and continuous.
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Fig.7.7 On the left side the maximum velocity made dimensionless by (1); On the right
side the maximum velocity made dimensionless by the quasi-static one




¯̄
max

.

Finally, we shall not present results for energy dissipation in the joint, since, for normal constant
load, these are proportional to the displacements.

Due to the discrepancies in displacements and velocities with those obtained by Hong and
Liu [93], we further carefully checked the results obtained with our piecewise analytical solution
using the time-marching numerical algorithm – finding out that correspond more closely to the
Den Hartog [90] and Hong and Liu [91] own estimates eqt. (7.16)-(7.17) in the region where we
expect 0 stops. In Figure 7.8-7.9, the result of the comparison is plotted: it is fair to say that the
displacements compare favorably each other for all the values of  used, while looking to Fig. 4
in Hong and Liu paper [91] one can see that they don’t find a good match, in particular for low 
(i.e. 1 in Hong’s papers [93],[91]) where the bumpy shape appears. In Fig. 7.9, we compare the
maximum velocity for different  In this case we obtain a good match for  [01− 02− 03− 04],
whereas in Figure 7 of Hong and Liu [91] there are differences. Finally, some discrepancies appear
for  = [05− 06] in the zone above the resonance, also found by Hong and Liu [91]. This is due
evidently to the simplifications in the shape of the solution trajectory.

The solution with the fully transient time-marching algorithm also permitted to explore if non-
periodic solutions could emerge, since they are in principle also possible: however, we did not find
evidence of non-periodic solutions.
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Fig. 7.8 Dimensionless maximum displacement obtained using the Den Hartog estimation (solid
line), piecewise analytical solution (dots) and the time-marching algorithm (cross).
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Fig. 7.9 Dimensionless maximum velocity obtained using the Hong and Liu estimation (solid
line), the piecewise analytical solution (dots) and the time-marching algorithm (cross).

7.5 Normal load variation effects on vibration amplitude
and dissipation

7.5.1 The model

In the first part of this chapter the behavior of a single degree of freedom damped with Coulomb
friction has been studied with the hypothesis that the tangential load is harmonic and the normal
load is kept constant. Here it is assumed that both the variation of normal and tangential load is
harmonic (Fig. 7.10), which yields

() = 0 +1 sin(+ ) (7.20)

() = 1 sin() (7.21)

where 01  0 are constant and amplitude coefficients of the normal load, and 1  0 is the
amplitude of tangential load.  is the phase shift of the normal load. Finally,  is the angular
frequency of the loading.
It is convenient to introduce a new dimensionless parameter  (besides )

0   =
1

0
 1 (7.22)

To avoid contact separation  was assumed to be less than unity in eq. (7.22). Contact separation
will involve impact and it is most likely that engineering judgement suggests to avoid this range,
particularly as friction damper. To avoid "shakedown" of the system, the simple condition   1
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holds in the case of constant normal load, whereas we will find a  value more in general in a
later paragraph.

The case considered by Hong & Liu [93],[91] corresponds to  = 1 = 0 and hence here we
have 2 additional parameters ( ).

Figure 7.10 Harmonic oscillator damped by Coulomb friction

7.5.2 In phase loading

Hereafter, we follow again the argument presented by Jang and Barber [97] for the quasi-static
behavior of the system with  = 0◦, to set the scene for the more general case. Jang and Barber in
[97] considered the loading (7.20, 7.21) where the periodic function is a more general −1 ≤ () ≤ 1.
The case () = sin () is considered, but we maintain the notation of [97] to make a comparison
easier.

First, consider the mass is sliding towards the positive direction. According to equilibrium in
the quasi-static case (no inertia)

1 sin()−  [0 +1 sin()]− () = 0 (7.23)

and hence

() =

µ
1 − 1



¶
sin()−

0


(7.24)

where () is the displacement of the mass according to the system of reference in Fig. 7.10. The
maximum positive displacement will be reached when sin() will reach its maximum value, so

∼
max = 1− (1 + ) (7.25)

where the dimensionless displacement
∼
 = 

1
has been introduced. Rewriting the equilibrium

in the case in which the mass is moving towards the negative direction, the minimum displacement
is reached when sin() reaches its minimum value −1, so

∼
min = − [1− (1− )] (7.26)

The absolute maximum displacement is then the largest in modulus, and this happens to be
∼
min(keep in mind that for in phase loading 0 ≤   1)

∼
max = max(

¯̄
¯∼max

¯̄
¯ 
¯̄
¯∼min

¯̄
¯) =

¯̄
¯∼min

¯̄
¯ = 1− (1− ) (7.27)
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Also, from (7.25) and (7.26), the dimensionless amplitude of displacement

∼
 =

∼
max −

∼
min

2
= 1−  (7.28)

which does not depend on .
It is possible to estimate also the velocity and the velocity peak, which results after some algebra

in

¯̄
¯̄

∼


¯̄
¯̄
max

=

(
1 +  for 0 6  6 1

2+

2
p

 (1− ) (1 + ) for 1
2+ 6  6 1

(7.29)

Moving to energy dissipation, for in phase loading Jang and Barber in [97] already found

g |=0◦ =


0
1



¯̄
¯̄
¯
=0◦

= 4
(1− )

¡
1− 2

¢

1− 22
(7.30)

7.5.3 Quadrature loading

Here some formulas for the case of quadrature loading ( = 90◦) are reported, while the most
general case is treated in Appendix B. Quadrature loading can occur whenever there is an eccentric
rotating mass, and loosely speaking, it can also correspond to small imperfections in the symmetry
of rotating systems, including gas turbines (mistuning).
Following the analysis in Appendix B, the maximum dimensionless displacement is equal to

∼
max

¯̄
¯
=90◦

=
p
1 + 22 −  (7.31)

which, due to symmetry, coincides with the displacement amplitude. Notice that, contrary to the
in phase loading case, there is dependence on .
The maximum velocity is given by


∼
max

¯̄
¯̄
=90◦

=

( p
1 + 22 for  6 1

2
q


p
1 + 22 − 2 for   1

(7.32)

where 1 =
1√
4−2

.

A simple formula for dissipation (B.31) is also derived in Appendix:

g |=90◦ =


0
1



¯̄
¯̄
¯
=90◦

= 4

Ãp
1 + 22 − 

1 + 22

!
(7.33)

which, together with the case  = 0◦ was covered by Jang and Barber [97], permits to have a
clear idea of the most important regimes. In fact systems which experience quadrature loading are
widely spread, for example machine excited by a rotating eccentric mass.

7.5.4 The shakedown limit

The SDOF oscillator in Fig. 7.10 will reach a "shakedown state", a steady-state stick condition,
in case where there is a possible such state. This is because this system has no coupling between
tangential displacements and normal load, and will obey Melan’s theorem [98](2), that is, a final
state of shakedown will be reached, if there is one. Writing the condition for shakedown

2Strictly speaking, the theorem has been proved only under quasi-static conditions.
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|1 sin()− ()| ≤  [0 +1 sin(+ )] ∀ (7.34)

and rearranging

− +
p
1 + 22 − 2 cos() ≤ ∼

() ≤  −
p
(1 + 22 + 2 cos())→ (7.35)

where the condition

 ≥
s
1− 2 cos2 ()

1− 2
=  (7.36)

ensures that a shakedown solution exist. For  = 0◦, and any normal load variation,  = 1.
Fig. 7.11 plots 1 as a function of  for  [0◦ 30◦ 60◦ 90◦]. For   0◦, the factor 

increases always up to infinity for  = 1. The highest values of  are obtained for quadrature
loading, corresponding to the fact that shakedown is obtained with much higher normal loads.
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Figure 7.11 
−1 plotted against  for the following  = [0◦ 30◦ 60◦ 90◦]

7.5.5 The dynamic solution

Consider that the system sketched in Fig. 7.10 is in a phase of slip; from the linear momentum
balance in the horizontal direction



() + () = 1 sin()− (


) [0 +1 sin(+ )] (7.37)

where () is the position of the mass at the time . We subdivide our temporal window in intervals
in which the mass is in stick or in slip. For the first case (stick), the solution of the problem is
trivial, while for the slip phase we need to solve (7.37). Notice that the mass could turn from a
forward slip phase both to a backward slip phase and to a stick phase. In both those cases, there
will be a time instant in which the velocity vanishes. To simplify the solution of the problem, we
look for a piecewise analytical solution for which, in each interval considered, the velocity retains
the same sign. Under the latter hypothesis, the (7.37) is a linear, second order ODE thus making
use of the superposition principle and summing up the transient and the steady-state solutions we
obtain
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() = ()−
∙
() + (


)

0



¸
{1− cos [ (− )]}+

+


()


sin [ (− )]+

+
1

 (1−Ω2) {sin()− sin() cos [ (− )]+

−Ω cos() sin [ (− )]}+

+ (

)

1

 (1−Ω2) {sin( + ) cos [ (− )]+

+Ω cos( + ) sin [ (− )]− sin (+ )} (7.38)

where  =
p

 Ω =  () and

() the initial conditions. Differentiating with respect

to the time equation (7.38) once and twice, respectively velocity and acceleration are obtained for
the slip phase considered. The solution (7.38) holds up to the time instant in which


() = 0. At

this point the algorithm needs to check if the mass is starting to move towards the other direction
or if it will retain its position. This task is performed comparing the actual external force applied
with the maximum friction force available at the contact. If the mass is in phase of stick we
evaluate the onset of slip looking for the time instant in which the external tangential force applied
overcomes the frictional force. Joining all the solutions found the complete response of the system
is obtained to the applied loads.

With the aim to check the results obtained with the semi-analytical solution, we have solved
(7.37) also using a direct numerical integration by an implicit Newmark method.

7.5.6 Results

It is impractical to give results for the entire range of possible parameters, since there are 4 of
them:   Ω. In Fig. 7.12, we give for example some results for the displacement amplitude

∼


for a case with low or high pressure  = 02 (a,c), 09 (b,d) and either in phase loading  = 0◦

(a,b) or quadrature  = 90◦ (c,d). The results show that the effect of normal load variation is very
small in the  = 02 case, and the response is unbounded. On the other hand for  = 09 the effect
of the normal load variation is important, in particular in the zone before the resonance for  = 0◦

and for all frequencies Ω for  = 90◦. Notice that for  = 0◦ the quasi-static limit predicted no
effect of the normal load variation  whereas the dynamic model shows a significant dependence
at intermediate frequencies. Also, for ( ) = (09 90◦) (see Fig. 7.12 (d)) an increasing trend of
∼
with  for all Ω is obtained.
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Figure 7.12 Dimensionless displacement amplitude for  = 02 (a,c),  = 09 (b,d) and either in
phase loading  = 0◦ (a,b) or quadrature  = 90◦ (c,d).
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Figure 7.13 Dimensionless dissipation for  = 02 (a,c),  = 09 (b,d) and either in phase loading
 = 0◦ (a,b) or quadrature  = 90◦ (c,d).

In Fig. 7.13 the dimensionless dissipation per cycle is plotted which shows a similar behavior
with respect to displacement. Moreover, since even in the in-phase loading case, the quasi-static
prediction shows here a dependence on normal load variation, the difference between quasi-static
and dynamic prediction is somehow smaller.

The effect of normal load variation is important only at high  values (see Fig. 7.12-13),
while for small amplitude of tangential force  (small ) the effect is negligible. In Fig. 7.14 the
frequency response function of the system is plotted for  = 09 and  = [02 04 06 07 08 09]
respectively for in-phase loading (a) and quadrature loading (b). The figures show that the normal
load variation and its phase are important approximately for  & 07
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Figure 7.14 Dimensionless displacement amplitude for  = [02 04 06 07 08 09] and  = 09.
(a) in phase loading  = 0◦ (b) quadrature loading  = 90◦.

Given the best use of frictional dampers is a regime where the displacement is bounded, we
shall concentrate in this region: first, we find the range of parameters to obtain this regime in the
following paragraph.

7.5.7 Bounded response regime

Optimal damping is achieved by making sure the displacement is bounded in the entire frequency
range, and that it is the smallest possible value. In the present simple system without damper
stiffness, the model predicts obviously a full stick condition which is trivially "optimal", involving
no displacement and no dissipation at all. But this is a limit of the simplification in the model,
as with a finite damper stiffness, too high normal load implies the resonance of the system with
the two spring in parallel – possibly implying an infinite peak in the response again. Hence, we
can have an idea of the "optimal" regime by looking at the range of normal loads for which there
is some slip, but for which the response of the system is bounded. For constant normal load,
this is ([100], [99]) 4    1. For a general out-of-phase loading we compute the maximum
displacement amplitude changing  for all the range of Ω, and collect all the results in Fig. 7.15 for
in phase loading (a) and quadrature loading (b). The results obtained indicate the same inferior
boundary ( = 4 w 078) for both the case in phase (Fig. 7.15 (a)) and quadrature (Fig. 7.15
(b)) loading, to have a bounded solution, as it is for normal constant load. We checked this limit
even for  = [30◦ − 60◦ − 120◦ − 150◦], thus we deduce that it should be a general feature of such
a system. The superior boundary (corresponding to shakedown limit) for  = 0◦ is   1 (see Fig.
7.11), while for  = 90◦ it is a function of  , as shown in Fig. 7.11.



79 7.5. Normal load variation effects on vibration amplitude and dissipation

0.7 0.78 0.9 1 1.1
0

0.5

1

1.5

2

2.5

3

3.5

β
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Figure 7.15 Dimensionless displacement amplitude vs  for in phase loading (a), and quadrature
loading (b).

For in phase loading, there is a first range for low  (about 078 .  . 085) for which the
amplification increases with , and a second range (for 085 .  . 1 ), for which the amplification
decreases with  This second regime is most interesting for optimal dampers design. Notice that
the static prediction was 1− , independent on , which is very close to the dynamic result when
 is high. For quadrature loading, higher  yields higher amplification.

Comparison with quasi-static solution

For the quasi-static prediction, the amplitude of displacements, with respect to the case with
constant normal load, can be obtained from the formulae above in closed form for in-phase and
quadrature loading, (7.28), (7.31), as

∼


∼
=0

¯̄
¯̄
¯
=0◦

= 1 (7.39)

∼


∼
=0

¯̄
¯̄
¯
=90◦

=

p
1 + 22 − 

1− 
(7.40)

Given the bounded response dynamic regime has a finite peak amplitude, it would be interesting
to see if the dependence on the various parameters is similar to the quasi-static model.
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Figure 7.16 (()(

=0)) i.e. the ratio between the dimensionless displacement amplitude and

the respective but with constant normal load, for  = 0◦ (circle) and  = 90◦ (square). In both
cases  = 09 The dotted line refers to the quasi-static case, the solid line to the dynamic.

In Fig. 7.16, the peak of displacement amplitude is plotted divided by the respective case but
with constant normal load. We used dashed lines for the Quasi-STatiC case and solid line for the
full DYNamic results. Fig. 7.16 shows the effect of normal load is an amplification of vibrations
for the case of  = 90◦ and a decrease for  = 0◦, which was unexpected from the quasi-static
prediction. In particular, the maximum vibration amplitude reduction to about 025, while the
maximum increment is about 3.
If the same arguments are repeated for the frictional energy dissipation, from (7.30) we obtain

f
f=0

¯̄
¯̄
¯
=0◦

=
1− 2

1− 22
(7.41)

which decreases with . Also, for  = 90◦ (eq. (7.33))

f
f=0

¯̄
¯̄
¯
=90◦

=
1

1− 

p
1 + 22 − 

1 + 22
(7.42)
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Figure 7.17 (a) ff=0 i.e. the ratio between the dimensionless dissipation and the respective
but with constant normal load. The dotted line refers to the quasi-static case, the solid line to
the dynamic. (b) The loss factor  =12

2
 versus  In both (a)-(b)  = 09 and  = 0◦

(circle),  = 90◦ (square).

Fig. 7.17 (a) plots the amplification of dissipation with respect to the constant normal load
case, for both quasi-static and dynamic models. In this case, contrary to the displacements, the
trends of the two models are similar. Dissipation increases for the case  = 90◦ up to a factor
∼ 25 while it decreases to a factor ∼ 02 for in-phase loading.
To better compare the damping efficiency of the system, the loss factor  (i.e. the ratio between

the dissipated energy and the maximum elastic energy stored in the spring during the vibration
 =

1
2

2
) is plotted in Fig. 7.17 (b). The result plotted against  for both in-phase and

quadrature loading confirms that the in-phase case is favorable.

7.6 Conclusions

In this chapter, we studied the dynamics of the elementary frictional system made of a concentrated
mass that slides against a frictional plane loaded by a periodic tangential force. In the first the
normal has been considered constant, and the limit towards zero loading frequency has been
investigated comparing with the solution obtained neglecting the mass (QSTC approximation). It
was found that the maximum displacement is given correctly by the QSTC approximation, and
this holds up to frequencies when the dynamic solution is characterized by more then 2 stops.
Interestingly this may sound counterintuitive as the QSTC solution per se contains only 2 stops.
As regards the maximum velocity, in a dynamic solution it never matches the QSTC limit, due
to the multiple stops in the low frequency end. However, there is a ratio between the QSTC and
the DYN maximum velocity that remains nearly constant up to a certain frequency ( Ω ' 06, for
  09), but again this depends on the pressure level, i.e. on . We show that further dynamic
effects show up when the solution turns from 2 to 0 stop per cycle. If significant additional viscous
damping is added, it suppresses stick-slip and for values of the order of critical damping ratio, the
DYN solution is close to the QSTC limit.
In the second section of the chapter harmonic varying normal and tangential forces, with relative

phase, have been considered. It was shown that dissipation can be much higher for quadrature
loading, as noticed also by Jang and Barber [94] for the model under quasi-static loading. However,
in terms of "vibration", this does not correspond to higher "damping" of vibrations for our system.
The regime of "bounded" response of the system, which is given by  ≥ 4 as for the case of
constant normal load, has been studied. For in-phase loads, variation of normal load can lead to a
large reduction of both dissipation and displacement, and this is not expected from the quasi-static
prediction. These results are relative to a very simplified model, and hence, definitive indications
on the optimal design of dampers are not possible within this analysis.
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Chapter 8

Dynamical behaviour of a linear
oscillator coupled with a massless
Coulomb damper

In the previous chapter we have studied the dynamical behaviour of a simple Coulomb frictional os-
cillator under both a constant and tangential normal load. Due to the high simplifications adopted
no firm conclusion could be gained about damper design. Here we consider a lumped structure
(mass spring damper model) that is elastically coupled to a massless damper. Particularly we will
consider the case of wedge shaped frictional dampers which are widely used in civil, mechanical
and aeronautical engineering with the purpose to limit and damp vibrations, increase component
fatigue-life, or resist seismic loads. The wedge shape obviously couples normal and tangential
loads, which complicates the analysis. The model adopted can be considered a generalization of
the Griffin model, originally devised for underplatform dampers in turbine blade attachments. It
is found that the damper is more effective when normal and tangential loads vary in-phase.

8.1 Introduction

Wedge shaped Coulomb dampers are often used not because it is considered to be superior in
dissipating energy, but because it can be convenient for practical reasons: stability, self-aligning
capabilities, self-locking etc. In the EDR seismic dampers [101] (Fig. 8.1 (a)), the wedges are easily
included in helicoidal springs and a variable normal load is induced, linearly with the tangential
displacement of the structure during the loading phase, and in fact more suddenly decreasing dur-
ing the unloading phase, giving a triangular hysteresis loop. Sometimes [102], friction-variable
characteristics of the device are obtained. In railways, wedge shaped dampers are used in suspen-
sion systems ([103], [104], [105]), and in aeronautical engineering examples are the underplatform
frictional dampers used in gas turbines (Figure 8.1 (b), [106], [107], [108], [109]). In more gen-
eral mechanical engineering joints, and many frictional interfaces, frictional damping is a primary
source of damping, often greater than the internal damping in the materials.
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Figure 8.1 (a) Energy Dissipating Restraint from [102] (b) Underplatform dampers from [106] (c)
Friction shock absorber for railway car truck from [105] (d) Damping device for railway car truck

from [104]

A simple but effectively lumped system was studied by J. H. Griffin [108] with the underplatform
dampers application in mind. It consists (see Fig. 8.2) of a mass-spring-dashpot system to model
the structure, and a spring linked to a massless Coulomb damper to model the contact interface
on which a constant normal load is applied (because the damper itself has inertia force due to the
constant centrifugal field).

In this chapter we further explore the effect of a variable normal load in damping vibration
in such a simple model, modified in that the wedge shape induces a coupling of normal and
tangential load variations. In particular, we introduce a sinusoidal variation of the normal load
with an arbitrary phase shift with respect to the tangential load applied to the structure. The in
phase loading and the quadrature loading are analyzed more in detail with a comparison to the
quasi-static solution of the problem.

8.2 The model

The model used is sketched in Fig. 8.2. The mass , the stiffness  and the damping coefficient
 take into account respectively of an equivalent inertia, stiffness and damping of the structure
considered, while the damper is considered massless and is linked to the mass via a contact stiffness
. This model has two degrees of freedom: () is the horizontal displacement of the mass and
() is the damper displacement, both are taken positive towards the right as shown in Fig. 8.2.
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Figure 8.2 Single Degree Of Freedom (DOF) model coupled with a massless Coulomb damper
(Griffin model), where the normal load  () is made variable.

Consider a normal and tangential load of the form

() = 0 +1 sin(+ ) (8.1)

() = 1 sin() (8.2)

() is the normal force applied to the damper, () is the tangential force applied to the mass.
The loads have the same frequency  but the normal load has a mean component 0, a sinusoidal
amplitude 1 and a general phase shift  with respect to the tangential load, which has only the
sinusoidal component 1 It is useful to introduce two dimensionless parameters

 =
0

1
 0 (8.3)

and

0   =
1

0
 1 (8.4)

The upper bound introduced for  guarantees that no separation occurs. Amonton-Coulomb
model is used for dry friction (8.5) with no difference between the dynamic and the static friction
coefficient 

⎧
⎨
⎩

 () = −
·

() ·()

()

·
() 6= 0

 () ≤ |()| ·
() = 0

(8.5)

8.3 The dynamic solution

8.3.1 Direct numerical integration

We integrate numerically the equation of motion using the Newmark method [110] with the para-
meters  and  respectively equal to 14 and 12This choice makes the method unconditionally
stable and conservative, thus no damping or excitation comes from the numerical integration.
Specifically, mass velocity and displacement for the step + 1 are evaluated as follow
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In each timestep, a "state" is assigned to the damper which gives the rule to compute the force
that the damper transmits to the mass →

→ =

½
− (()− ) 


 = 0

−(

)()


 6= 0

(8.8)

where  is the last stuck position of the damper. Clearly, this equation simply says that the possible
states are only three: stick or slip (backward or forward slip), as separation is avoided. The results
of each timestep are checked to ensure that they are coherent with the guessed "state". If the
results obtained are not coherent, a new state is assumed. The numerical integration goes ahead
until a steady-state condition is reached: within the last 3 loading cycles the dissipated energy per
cycle, the root mean square for mass and damper displacement should change less than 01%.

8.3.2 Harmonic Balance Method

Harmonic Balance Method (HBM) is a good method to find the best approximate harmonic solution
of the problem in the steady state with harmonic forcing ([111] [112]). The following assumptions
are the basis for the first order harmonic balance formulation:

1. All the system responses are harmonic with the same frequency of the excitation forces;

2. Only the first Fourier component of the non-linear force has a significant participation in the
response of the system;

We write the dynamic equilibrium in the horizontal direction for the mass  in Fig. 8.2 in the
most general case where it is subject to linear and non-linear forces.



() + 


() + () = () + () (8.9)

According to the assumptions (1.) the displacement can be expressed using a harmonic function
with the same frequency of the excitation force and a general phase, i.e. () = ∗1

, where
∗1 ∈ C and () = () = ∗1

 where the projection on the real axis is the response to
cosine loading while the projection on the imaginary axis is the response to sine loading. We can
substitute into (8.9) the first harmonic of displacement, linear and non linear force and dropping
 we obtain:

−2
∗
1 + 

∗
1 + ∗1 = ∗1 + ∗1 (8.10)

To obtain ∗ we hypothesize a ∗1 reconstruct the hysteresis loop using transition angle in
([111], [113]), find the first order Fourier approximation of the non-linear force obtained, and then
solve for ∗1 . Iterations are performed using a non-linear solver to obtain the solution which satisfies
the dynamic equilibrium (8.10). Further details about the method can be found in [114].

8.4 Results

8.4.1 Frequency Response Function of the mass

To assess the effect of each parameter on the system response, we vary each of them and compute
the Frequency Response Function (FRF) looking for the optimal working condition (minimum
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displacement amplitude |∗1 |) for such a damper, using the HBM. The static solution  = 1
is used to make the displacement dimensionless (e = |∗1 | ) and, defining Ω =

√


, we

plot in Fig. 8.3 the dimensionless displacement e of the mass as a function of Ω using the following
parameters:  = 15,  = 09  = 90

◦  = 01  = [02 − 06 − 15 − 25 − 4] Increasing the
normal load on the damper (i.e. ) the resonance peak of the system shifts from Ω = 1 to Ω ' 16

The last is of course approximately the value of Ω =
p
1 +  ' 158 which corresponds to the

natural frequency of the system when the damper sticks. In the middle, the optimum response
of the system is obtained, which minimizes the maximum oscillation amplitude at the resonance
frequency. It can be seen that the optimum value of  for the parameters chosen, is ∼ 1 and that
the FRF moves in between the free response and the stick response, as in the middle the departure
is due to damper stick-slip behavior.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

Ωf

ṽ
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Figure 8.3 FRF for  = 15,  = 09  = 01  = [02− 06− 15− 25− 4]

In Fig. 8.4 (a), the frequency response functions for  = 15  = 09  = 11  = 01 are
plotted for 6 values of phase shift  = [0◦ − 10◦ − 30◦ − 50◦ − 70◦ − 90◦]

Looking at the effect of phase shift , moving from in phase loading ( = 0◦) to quadrature
loading ( = 90◦) there is a general increment of the displacement amplitude up to the resonance
peak that is actually well damped, whereas after the peak all the response collapse towards the
stick case, broadly speaking without dependency on the phase shift. Fig. 8.4 (b) shows the ratio
between e and e=0 that is the correspondent response of the system with constant normal load
on the damper. It shows that for quadrature loading the displacement increment is around 60%
while the decrement after the peak is only of the 10%.
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Figure 8.4 FRF for  = 15  = 09  = 01  = 11  = [0
◦ − 10◦ − 30◦ − 50◦ − 70◦ − 90◦]

In Fig. 8.5 (a) the vibration amplitude as a function of  is shown, with a focus on the in-phase
loading. We choose the following parameters:  = 15  = 11  = 01  = [0−03−06−09]
Figure 8.5 (b) shows the ratio between the displacement and the correspondent case with constant
normal load. It seems that for in-phase loading the parameter  has a little influence on the system
response, which causes a variation within ±5% In particular, the increments are evaluated near
the peak and decrement on both sides.

More interesting is the effect of  when quadrature loading occurs; Fig. 8.6 (a) reports the
FRF for the same parameters used before, but for  = 90◦ and in Fig. 8.6 (b) we plot the ratio
ee=0The last figure allows to note that if normal load is varying enough, the increment in
vibration can be around 60% in the zone of the system resonance, whereas afterwards a decrement
of 15% can be reached. This shows that nearby the optimum  the key parameter is the phase
shift  rather than the magnitude of normal load variation. If in-phase loading occurs, the system
response is very marginally affected by normal load variation, while quadrature loading is very
detrimental to effectively damp vibrations.
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So far we showed how the system is affected by the parameters  and  near the "optimum ",
which we further specify here. Increasing , the system moves from the free to the stick response,
reaching a minimum in the middle (see Fig. 8.2). Hence, we drew the optimization curve of the
system taking the maximum value of the vibration amplitude (at the resonance) for each . The
result is shown in Fig. 8.7 (a), while for a better comparison in Fig. 8.7 (b) the ratio ee=0
is plotted. The curve in blue (triangle marker) shows the case for constant normal load. It is
worth saying that such a model for constant normal load was solved by Griffin in closed form [108],
which was used as reference to validate our codes. Turning back to Fig. 8.7 (a), the curve in
green (asterisk markers) represents the case  = 09 and in-phase loading, while that in red (dot
markers) refers to  = 09 and quadrature loading. Looking at the shape of the optimization curve,
it is seen that increasing  (i.e. the mean normal load on the damper) the maximum displacement
decreases, than reaches a minimum near  ' 1 and then increases again. Of course when  is high
enough to bring the damper in the stick condition at all loading frequencies, the peak remains
stuck at the same value (' 3) for all 

A closer look to the results obtained shows that for quadrature loading, the vibration amplitude
increases near the minimum, with an increment that is around the 25% If the case of in-phase
loading is considered, the curve behaves as in the constant normal load case up to the minimum,
but for  higher than  = 1 an important reduction in displacement amplitude is registered.
Fig 8.7 (b) shows that the decrement can be larger than 30% for  around 5. This reduction for
   is of particular interest from an engineering point of view as it is worth to work on the
strengthening branch of the curves, which allows a more stable position if little variations of the
parameter  occurs. The design of a damper to operate exactly at the minimum in fact is against
robustness, as it leads to large increments of displacement if any small reduction of normal load
occurs. Above  = 11, all the curves collapse to the stick system response.
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Figure 8.7. (a) Displacement amplitude against  for  = 15 (b) =0 plotted versus 

We reported in Figure 8.8 (a-b-c-d) the result of the transient simulations for  = 15  =
09, = 5,  = 0◦ and 90◦, which, as seen in Fig. 8.7, is of particular interest due to the reduction
of 30% in the vibration amplitude for the case of in-phase loading. In particular in Fig. 8 (a)
and (b) the dimensionless displacement of the mass =0 against the time and in Fig. 8.8 (c)
and (d) the phase plots for the damper are shown, respectively on the left side for  = 0◦ and on
the right side for  = 90◦ It can be seen that after the transient the mass reaches a steady-state
condition with a higher amplitude for the case  = 90◦ This behavior can be clarified looking at
the hysteresis loops of the damper (see Fig. 8.8 (c-d)) which show a higher dissipation for the case
 = 0◦ than for the case  = 90◦
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Figure 8.8 (a-b) Dimensionless displacement of the mass =0 against the time for
 = 15  = 09, = 5,  = 0

◦ and  = 90◦. (c-d) For the same simulations, phase plot for the
damper respectively for  = 0◦ and  = 90◦

8.4.2 Comparison with quasi-static predictions

It is interesting to compare the prediction of the quasi-static response which is much easier to
obtain (it would be even more in large systems), with the full dynamic case. The authors showed
in [115] that for a single concentrated mass model, the dynamic solution tends to the quasi-static
one in terms of displacement, while this is not true for velocities, because of a possibly large number
of intermediate stops. In this case, the response for Ω = 005 against  is shown in Fig. 8.9,
which allows a direct comparison with Fig. 8.7 as the same parameters were used. It is shown
that in the quasi-static limit, the displacement amplitude decreases with  and near  = 1 all
the curves approach e = 04 which is the static solution when the damper sticks. Afterwards, the
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system response starts always from the stick case so no differences occur when increasing . The 
dependence towards the stick quasi-static value is the same for constant normal load and in-phase
loading, while the case of quadrature loading is only in qualitative agreement with the dynamic
case.

The authors checked the solution on a wide range of  ratios concluding that the stiffness
ratio changes quantitatively the curves due to system strengthening, but qualitatively the behavior
results always in an important vibration reduction when the loading is in-phase. To give a closer
look to the effect of the stiffness ratio we computed the optimization curves in a range spanning
2 orders of magnitude from  = 01 to  = 10 always using  = 09  = 01 and working
on the two cases of interest:  = 0◦ and 90◦ Note that over all the range for  the ratio ee=0 is
bigger than 1 for quadrature loading and is almost always lower than 1 for in-phase loading (see
Fig. 8.7 (b)). Thus to have a satisfactory summary of the results obtained for different stiffness
ratio is sufficient to plot the maximum ee=0 for  = 90◦ and the minimum ee=0 for in-phase
loading.
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Figure 8.10 reports the results obtained: the red solid line (circle markers) refers to the quadra-
ture loading case while the blue solid line (square markers) refers to the case  = 0◦ The curves
indicate that for  → 0 both the ratios (ee=0)max min go to 1 This is due to the fact that the
system tends towards a mass-spring-dashpot without Coulomb damper whose contribution is can-
celled out by the vanishing stiffness  When  is increased, a large increment in displacement
amplitude is obtained for quadrature loading that seems to saturate when  → 10 just over the
40% while for in-phase loading a decrement of 40% when  → 10 is shown. A breakthrough for
the model is obviously  = 1 as for  ¿ 1 the model tends to a viscous damped harmonic
oscillator, whereas for  À 1 the model tends to the Den Hartog single degree of freedom
Coulomb damper ([90]).
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8.5 Conclusions

In this chapter we studied a lumped model which is composed of a system mass-spring-dashpot
linked by a spring to a Coulomb damper. Our scope was to further clarify the effect that the
normal load variation has on the effectiveness damping of vibration with respect to the results of
a simpler model [113], which wasn’t able to make optimal choice criteria. We show that such a
model is a general scheme that could be useful for better understanding of friction dampers used
in both civil and mechanical engineering. The minimum of the optimization curve seems to be not
affected by the normal load variation and the optimum  still lies where predicted by Griffin in
[108] for constant normal load. Nevertheless, in engineering practice the optimum solution (that
with the minimum displacement amplitude) should be avoided as it is very close to resonance of
the free system. More useful for practical scope is the curve branch with    as due to the low
slope the system response is not largely affected by a variation of the mean normal load. In this
branch, if the loading is varied in-phase, for example coupling it with the tangential vibration of the
structure, a reduction of the 30% in vibration amplitude can be achieved. Vice versa, quadrature
loading is detrimental near  as it leads to increment of vibration amplitude of about 30%: for
higher  the response tends to match the case of constant normal load. We conclude that damper
designer should prefer to use in-phase normal load variation to more effectively damp the system
vibrations.



Chapter 9

A self-excited nonlinear oscillator
chain with cyclic symmetry

In the previous chapters we have studied the dynamic of a single mass tangentially loaded, that
slides against a frictional plane or is elastically linked to a massless damper. Here we will consider
a chain of mechanical nonlinear oscillators, weakly coupled and subjected to self-excitation. The
nonlinearity is described via a polynomial force of degree five which incorporates all the nonlinear
effects. In some ranges of the parameters governing the problem multiple stable and unstable
solution are found which are very similar to the snaking bifurcations, well known in other physics
fields.

9.1 Introduction

Spatially localised states of dynamical systems have been studied in a large number of different
fields in the sciences and in engineering. While for linear systems Anderson localisation was the
key to quite a satisfactory understanding, in nonlinear dynamical systems the quest to understand
localisation seems far from settled. For a long time progress seems to have been largely confined to
conservative nonlinear systems, where solitons and breathers made their appearance. Only later,
dissipative systems have come into focus, with first work based on tracing solitons into the driven
and dissipative regime, introducing dissipative solitons. In parallel to the study of solitary states
in conservative and dissipative systems, another breakthrough to the understanding of spatial
localisation in dissipative localisation was accomplished in the study of subcritical bifurcations in
pattern-forming systems, where the concept of branching has emerged and is a well-established
field of study today.

Branching is today well known in a number of disciplines, amongst others in optics [116],
granular matter [117], structural mechanics ([118], [119], [120], [121], [122], [123]), and mostly in
fluid dynamics ([116], [124], [125], [126], [127], [128]), and magnetohydrodynamics ([129], [130]).
The first studies into the topic have probably emerged in the field of binary-fluid convection,
where spatially localised convection rolls have been observed in water-ethanol mixtures [124] or
helium [125]. There localised convection domains of arbitrary length are found to be stable, being
surrounded by the conductive state.

In terms of bifurcation diagrams, the localised states have shown to be arranged in a unique
and fascinating way, giving birth to what is called a snaking structure ([126], [127], [130], [121]).
The snaking structure has e.g. been studied a lot in the one dimensional [131] and the two
dimensional [132] Swift-Hohenberg equation, which is a convenient and general model system to
study fundamental properties of the arising dynamics.
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A typical snaking bifurcation diagram involves two snaking solution branches, intertwined into
each other. Figure 9.1 gives an example from convection [127] to illustrate the phenomenon. For
the bifurcation diagram (left panel), the average kinetic energy “E” of the flow is plotted versus
the Rayleigh number “Ra” and two intertwined branches appear. In the right panel, nineteen
solutions are shown, which correspond to the numbers positioned close to the snaking structure,
in which spatially localised convective rolls can be identified. Notice that the higher the energy of
the solution, the larger the number of convection cells. Often the two snaking branches are also
interconnected through a number of unstable branches, and a ladder like pattern emerges [132].

Although snaking bifurcations are now generally known and studied in many fields of dynamical
systems, it seems that there is hardly any study into the phenomenon in the context of structural
vibrations in engineering. In many respects this is quite surprising, since non-linear oscillators
with subcritical Hopf bifurcations, often coupled to neighbouring oscillators of the same type into
chains or arrays, are actually very common models for a number of systems from engineering
vibrations. And also the appearance of bi- or multi-stability, which is obviously at the core of
the phenomenon ([128], [131], [132]), is well established in many of these engineering systems.
Moreover, the emergence of spatially localised vibration states in structural dynamics is also a
well known observational fact: e.g. in turbo-machinery, there is the so-called effect of ’mis-tuning
in rotors’ ([133], [134]). Traditionally, the origin of the localisation is thought to have its root
in slight system inhomogeneities, leading to linear localisation in the sense of Anderson. From
testing, strong localisation is confirmed, but proper validation of the theory has up to now not
been accomplished in the linear framework. In a sense it is tempting to hypothesise that one of
the key reasons behind might be the non-linearity involved, which definitely becomes substantial
for the large local vibration amplitudes observed. To the best of our knowledge, in model systems
for turbo-machinery dynamics, snaking behaviour has never been investigated. Also systems from
fluid-structure-interaction, may show weak non-linearity, Hopf bifurcation, and bi-stability, like
models for aerofoil flap dynamics ([135], [136], [137], [138]). Similarly in friction induced vibrations
the emergence of snaking could be well expected, with all the necessary ingredients like flutter
instability and bi-stability already known to exist, cf. e.g. ([139], [140]).

We will thus consider a model system as simple as we can think of, but derived from models
actually in use in the turbo-machinery community and the field of fluid-structure interaction and
friction-induced vibration. We choose a chain of (weakly non-linear) oscillators coupled into a
linear oscillator chain. For simplicity we close the chain into a cyclically symmetric ring, which
moreover has the advantage of bringing it even closer to models used widely in turbo-machinery
for rotors with a small but finite number of blades attached. To obtain or model instability and
spatially local bifurcation, i.e. the bi-stability of the individual oscillator, we introduce non-linear
damping terms, i.e. non-linear terms depending on velocities. This approach is heuristic and rather
for simplicity at the present stage of understanding, but can be thought of bringing into our purely
structural model the corresponding non-linear forcing and dissipation terms from surrounding flow,
or an involved friction interface.

With a velocity dependent force arising from a fifth order polynomial representation, our system
results in individual uncoupled oscillators showing subcritical Hopf bifurcations and bistability,
while the oscillator chain, i.e. the coupled oscillators, yield snaking bifurcations that we determine
by solving algebraic equations or time-integration. Interestingly, the results do turn out different
to many of the hitherto reported snaking bifurcation patterns. The snaking observed in our study
seems to show more than a single snake-and-ladders pattern, and much of the pattern as a whole
seems to have disintegrated into isolated branches, now usually called isolas. Reviewing where these
differences might come from, shows that the key features where our system is different, can easily
be identified. First of all, our system is discrete. Individual self-excited oscillators are coupled,
as e.g. in the work of Yulin and Champneys in [141], where a one-dimensional periodic array of
optical cavities pumped by coherent light were studied. As in our results, the effect of discreteness
was studied, showing that the pinning region (the parameter interval where the snaking occurs)
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gets progressively narrower as the continuum limit is approached. The second characteristic of our
system that is slightly unusual is its finite size due to the cyclic symmetry, which does not allow
arbitrary wave-numbers or wavelengths to appear, and so does put a constraint onto the system.
Formally similar, Taylor and Dawes in [142], studied snaking and localised states in spatially
discrete problems for modified periodic or phase shifted boundary conditions. Also in their case,
isola rather than continuous snakes have been observed.

Figure 9.1 An example for snaking in a convection system. Adapted from [127]. Left: typical
snaking pattern with two intertwined solution branches in the bifurcation diagram with kinetic
energy “E” of the fluid plotted versus the Rayleigh number “Ra” . Right: The stream-functions

for solutions as marked in the snaking pattern. The graphs show the spatially localised
convection patches.

9.2 The mechanical system

We consider a cyclic system of  non-linear oscillators, see Fig 9.2, which are coupled via a
weak linear spring of stiffness ∆. Each oscillator has mass  and is linked to the ground via a
linear spring  and a non-linear damper which introduces a velocity proportional force of the form

 = −1
·
+ 3

·

3
− 5

·

5
 (9.1)

Here  denotes the displacement of the individual oscillator,
·
 the velocity, and we introduced the

coefficients 1 3 5 to parametrise the velocity-dependent force.
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Figure 9.2 The model system under study.

The evolution equations for the individual oscillators read


··
 + 1

·
 − 3

·

3

 + 5
·

5

 +  − ∆ (+1 + −1 − 2) = 0 (9.2)

where the stiffness ∆ couples the -th mass with the neighbouring ones. We introduce the
quantities 0 =

p
 ∆ = ∆  =


2
√


  = 0, divide the equation (9.2) using the

group 200, with 0 a reference displacement, obtaining

1
··

e + 2
·

e − 3
·

e
3

 + 4
·

e
5

 + 5e − 6 (e+1 + e−1 − 2e) = 0 (9.3)

where

1 = 1 2 = 21 3 = 23
2
0
2
0 4 = 25

4
0

4
0 5 = 1 6 = ∆ (9.4)

and the e¤ superposed indicates that the new displacements are dimensionless, e () = ()0
In (9.3) we defined a dimensionless time  = 0, which allows to replace


 with 0


 . Notice

that we choose 3 5  0, thus the third degree term of the velocity-dependent force introduces
a destabilizing force into the system, while the fifth degree term tends to stabilize it. Figure 9.3
(a) lists the arbitrary but characteristic parameters that will be used in the next sections. We will
choose 1, i.e. the linear damping coefficient, as our primary control parameter in a range from
−04 to +06. In this range the velocity dependent force changes its shape in a way such that
for low 1 values a negative damping is introduced, which is often used in the literature to model
self-excited vibrations, such as in fluid- or friction-induced flutter [143] or squeal [144].

9.3 Numerical algorithm

9.3.1 Harmonic Balance Method (HBM)

The problem to solve is composed of second order differential equations. In this study periodic
vibrations will be considered only. We therefore apply the Harmonic Balance Method (HBM) as
an efficient numerical technique to obtain an approximation to the steady-state solution of the
system. In the following we briefly recall the main steps of the HBM, further details can e.g. be
found in [114]. Consider a time dependent signal  () and express it in a Fourier series

() =
0
2
+

X

=1

( cos () +  sin ())  (9.5)
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where  is the fundamental frequency,  is the number of harmonics considered and

 =
2



Z 2

−2

() cos ()  (9.6)

 =
2



Z 2

−2

() sin ()  (9.7)

A set of non-linear algebraic equations is obtained by substituting the dimensionless form of eq.
(9.5) into (9.3) and projecting the equilibrium equations on the Fourier basis 1 sin ()  cos ()
for  = 1   The projection gives back a system of algebraic equations in which the unknowns
are the Fourier coefficients   of the  degrees of freedom (dof) considered. In our particular
case the dynamical system is autonomous (there is no forcing term) and therefore the angular
frequency of the solution  is also treated as an unknown.

9.3.2 Numerical solution and continuation

The number of algebraic equations to be solved is (2 + 1). If only one harmonic is consid-
ered ( = 1) the system of equations for the -th mass is

⎧
⎪⎪⎨
⎪⎪⎩

5
84

5
¡
2 + 2

¢2
 − 3

43
3
¡
2 + 2

¢
 +  (2 − 1)+

+ (5 + 26)− 6 (−1 + +1) = 0
5
84

5
¡
2 + 2

¢2
 − 3

43
3
¡
2 + 2

¢
 +  (2 + 1)+

− (5 + 26) + 6 (−1 + +1) = 0

(9.8)

where  () is the first harmonic cosine (sine) coefficient. It will be shown later that in most
parameter ranges even with just one harmonic the approximate solution is very close to the exact
one, therefore we will mostly use one harmonic only, which leads to a system of 2 polynomial
equations of the fifth order. The other equation comes from the projection of the equilibrium
equation on 1 which would allow for evaluation of the mean displacement over a period. As the
non-linearities are odd and there is no constant term in the equations, the mean displacement
always vanishes. The system of 2 polynomial equations has been solved using a Newton-
Raphson scheme implemented in the MATLAB R° function fsolve. For a fixed value of 1, a set of
initial conditions has been provided using steady state solutions obtained from a time integration
algorithm. Localised as well as non localised solutions were used as a starting point for the Newton-
Raphson algorithm. To solve the system we set for one mass 1 = 0, which allows us to solve for
the fundamental frequency of the solution too. A continuation algorithm, also implemented in
MATLAB R°, continued the solution using a pseudo arc-length scheme [145] which allowed to
follow the solution trajectory even when turning points were encountered [145].

9.4 Simulation Results

9.4.1 Single oscillator dynamics

Here we concentrate our attention on the behaviour of a single oscillator when it is isolated from
the rest of the chain. The following parameters will be used:

0 = 2 0 = 1 3 = 03 5 = 01 ∆ = 0 (9.9)

In Figure 9.3 (b) we plot the maximum potential energy of the mass in dimensionless form: emax =
1
2e2max, where emax is the vibration amplitude at the steady-state condition. The results have been
obtained using three different approaches: circles represent the result of the Time Integration (TI),
the solid line shows the result obtained using the HBM where  () is approximated with only the
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first harmonic, while the dashed line is the result obtained using the HBM with two harmonics,
the first and the third. The choice of the first and third harmonics takes into account the fact that
the non-linearities introduced are odd and symmetry breaking bifurcations are not considered in
this work. We start focusing on the TI results (circles). When 1 & 02 only one solution exists
in which for every initial condition the vibration is damped and vanishes. Decreasing 1, in the
range 0  1 . 02 another solution appears with emax  0 which corresponds to a stable limit
cycle of finite amplitude. The single oscillator experiences a subcritical Hopf bifurcation, and in
the interval 0  1 . 02 two different stable solutions exist. Notice that using TI, only the stable
solutions can be found (Figure 9.3 (b) circles), while HBM also allows to obtain the unstable ones
and to follow them. If 1  0 the steady state is not stable and the vibration amplitude grows
up to the upper branch with emax  0. In this range the only stable solution is a limit cycle
for which the amplitude grows when 1 is further reduced. Figure 9.3 (b) also shows the results
obtained using HBM with one harmonic (solid line) and with two harmonics (dashed line). First
we note that in the interval 0  1 . 02 another solution appears which represents an unstable
limit cycle. Differences in the two curves obtained with HBM appear for the upper branch when
1 decreases, as higher vibration amplitude implies higher contribution of the non-linearities. The
solution which includes two odd harmonics approximates very well the exact solution obtained
with TI scheme. Nevertheless if we just focus on the interval 0  1 . 02 we can see that even the
single harmonic approximation is never too far from the exact solution1 . In the following sections
the oscillator chain dynamics is studied in the bistability zone (0  1 . 02), and all the results
presented will be obtained using HBM with one harmonic.
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Figure 9.3 (a) Dimensionless velocity dependent force plotted versus the velocity for
1 = [−04−025−01  06] 3 = 03 5 = 01 0 = 2 0 = 1 (b) Maximum potential

energy of one single oscillator plotted against the bifurcation parameter 1 Blue dots: results of
the time integration at the steady state. Solid line: HB solutions with a single harmonic. Dashed

line: HB solutions with two odd harmonics.

1Also in Figure 8 (left panel) we will plot in the bifurcation diagram TI solutions superposed to the HB solutions
to demonstrate that the first order truncation is able to capture the basic features of the exact solution. We are
aware that this approximation can smooth out some fine details of the true solution, but the aim here is to focus
on the overall result.



99 9.4. Simulation Results

9.4.2 Oscillator chain dynamics: linear system

Before studying the dynamical behaviour of a cyclically symmetric chain of  = 12 non-linear
oscillators we analyse the response of the underlying undamped linear system with a dimensionless
coupling stiffness ∆ = 001. Due to the cyclic symmetry this system presents mostly pairwise
degenerate eigenfrequencies that can be computed as [146]

 = 1 + 2∆

µ
1− cos

µ
2



¶¶
 (9.10)

where N and 0 ≤  ≤ 2 for even  or 0 ≤  ≤ ( − 1) 2 for odd   Due to the
weak coupling among the oscillators the natural frequencies will lie on a narrow band. A possible
set of orthogonal normal modes is [146]

0 = [1 1  1]
  (9.11)


 = [cos ()  cos (2)   cos ()]

  (9.12)


 = [sin ()  sin (2)   sin ()]

  (9.13)

The following table lists the natural frequencies [rads] and Fig. 9.4 shows the normal mode shapes
of the undamped linear system.

0 = 1 1 = 1001 2 = 1005 3 = 1010
4 = 1015 5 = 1019 6 = 1020

1 2 3 4 5 6 7 8 9 101112
-1

0

1

D
im

e
n

s
io

n
le

s
s
 D

is
p

la
c
e

m
e

n
t

(0s)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(1s)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(2s)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(3s)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(4s)

1 2 3 4 5 6 7 8 9 101112

mass number

-1

0

1

(5s)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(1c)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(2c)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(3c)

1 2 3 4 5 6 7 8 9 101112
-1

0

1

(4c)

1 2 3 4 5 6 7 8 9 101112

mass number

-1

0

1

(5c)

1 2 3 4 5 6 7 8 9 101112

mass number

-1

0

1

(6c)

Figure 9.4 Mode shapes of the underlying linear system.

9.4.3 Oscillator chain dynamics: non-linear system

We now study a cyclically symmetric chain of  = 12 non-linear oscillators in the bistability
zone. The parameters used are the same we used for the single oscillators above, except for
∆ = 001, which introduces a small coupling between the oscillators. The results obtained from
time integration were used to derive initial conditions for the continuation algorithm. Figure
9.5 shows, in the left panel, the sum of the maximum potential energy of each mass emax =
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1
2

P
=1 e2max = 1

2

P
=1

³
e2 +e2

´
plotted against the linear damping coefficient 1Many solutions

appear to be entangled, making it almost impossible to distinguish one from the other. Looking
more closely at the overall structure created by the superposed solutions we can observe trajectories
similar to snake and ladder branches ([126], [127], [121], [130]) and twelve ’steps’ (corresponding
to the number of oscillators) can be identified. Each step is labelled with a red circle and the
corresponding energy distribution is plotted in the twelve bar plots on the right-hand side of
Figure 9.5. In each bar plot the mass number has been reported on the x-axis, while the bar height
is computed as

e =
e2max

max
¡
e2max

¢
=112

 (9.14)

such that the energy of each oscillator is normalized with respect to the one which is vibrating
with the largest amplitude.
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Figure 9.5 Left: bifurcation diagram for the non-linear oscillator chain. The subcritical Hopf
bifurcation of the individual oscillator is indicated, and the complex snaking pattern linking the
spatially homogeneous stationary static state with the state where all oscillators are vibrating
fills the zone of bistability. Middle and Right: the average dimensionless energy of each mass for

the 12 equilibrium solutions which are marked with a red circle in the snaking pattern.
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Figure 9.6 In each subplot from 1 to 12 the vibration shape, i.e. with the corresponding phase
information, of the solutions in Fig. 9.5 (left panel, red circles) is shown.

The bar plots 1 − 12 in Fig. 9.5 shed some light on the system dynamics: each step can be
easily related to the number of masses on which the vibration is localised. From the bottom to
the top, at the first step one mass is moving while the others are more or less motionless, at the
second step two masses are moving and so on up to the twelfth. This resembles the usual snaking
behaviour, where, for example in fluid dynamics, the steps can be related to the increasing number
of convection rolls. Especially in the bottom part of our snaking (Fig. 9.5, left panel) it is possible
to see very close similarities with the classical snaking picture. On the other hand, when increasing
the energy, and thus the influence of the non-linearities, the picture gets more and more distorted
and only seems to be bounded by the very last branch in which all the masses are moving.
Consequently one might conjecture that the relative phases between the individual oscillators

play a special role in our system. Figure 9.6 thus shows the vibration mode shape, indicating the
relative phasing between the oscillators, in 12 bar plots numbered from 1 to 12, each-one related
to one of the red circles in the bifurcation diagram (Fig. 9.5, left panel). It seems that there is an
additional sub-structure due to relative in- or out-of-phase behaviour within our localised vibration
zones. Sometimes an oscillator is out of phase with both of its neighbours, sometimes two adjacent
oscillators go in phase, but out of phase to their respective other neighbours. At the present state
of our study, we have not yet succeeded to obtain a deeper understanding of this result, but think
it is at the very heart of the multiplicity of solutions observed. Further studies will need to follow.
At this point it also seems useful to have another look at the numerical accuracy of our com-

putational approach. Figure 9.7 shows in each column results obtained from TI for four solutions
using 1 = 01 and different initial conditions. In particular from the left to the right the vibration
is localised on one mass, five masses, eight masses and on all the twelve masses. In the first row
the displacement time history is shown at the steady-state, in the second row the solution is shown
in the phase space and in the third row the dimensionless maximum potential energy of each mass
is given (TI results, dark blue). To assess the effect of the first harmonic truncation on the energy
distribution among the different oscillators, HBM results are computed for the same parameter sets
and using the TI solutions as starting point. The maximum potential energy, shown in Fig. 9.7
(HBM results, pale yellow bars), proves that the energy is distributed exactly in the same manner
and that the low-order approximation causes only a very small reduction in the potential energy
of each mass (due to the loss of solution details) which seems acceptable for our purposes. Notice
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also that the shape of the solution with all the masses vibrating corresponds very well to the last
mode of the linearised system, in which the motion is out-of-phase.
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Figure 9.7 Each one of the four columns corresponds to one solution obtained with TI. In the

first row the displacement time history, in the second row the space state trajectories (


e vs e), in
the third row the dimensionless maximum potential energy of each mass in steady state condition
is shown (dark blue). In the third row, the energy distribution obtained with single harmonic

HBM is plotted (pale yellow).

9.4.4 Isolas: closed solution branches

Figure 9.5 has suggested that our snaking picture in the bistability zone is more complex than
the usual one. In Fig 9.8 (left panel) the snaking picture observed before is thus plotted again,
but this time the ensemble of all the solutions is drawn in the background in pale gray, while four
branches of solutions are highlighted using thick lines. It turns out that they have a well defined
shape resembling a figure eight. Hereafter we will refer to these branches as isolas, since they are
isolated. Despite the whole picture seems really intricate, it is made up of a number of such isolas.
Closer study shows that our isolas are actually not strictly speaking isolated in the sense that
there are no other solutions branching off, but that there are further bifurcations and interlinking
solutions and connecting branches involved. We will come back to this point below.
In obtaining the snaking picture we found and plotted 53 isolas and connecting branches.

Following the branches of the isolas, localised solutions with a different number of vibrating masses
are linked together, which is conceptually linked to the snaking phenomenon. In Figure 9.8 four
isolas are selected with the peculiarity to have all the masses moving in out-of-phase manner. On
the left panel eight points, lying on the straight line 1 = 015, are marked with a red circle. The
dimensionless vibration shape of each point is graphed in the correspondent bar plot on the right
side. Focusing on the pair of points that belongs to the same isola, we can see that increasing
the energy of the vibration leads to a higher number of masses involved: for example the first
isola links solutions localised on one and three masses vibrating, the second isola links solutions
localised on three and five masses vibrating, and so on. Compare the points 2− 3 or 6− 7: they
belong to different isolas, nevertheless they are close in the bifurcation diagram. It can be seen
that in fact those points have a slightly different vibration shape. Notice that the points 4 and 5
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deserve some further attention: both of them involve five vibrating masses, but the solution has
a different vibration shape (compare the bar plots of Figure 9.8). These considerations indicate
how complicated the snaking phenomenon for our vibration system is, as not only the number of
vibrating masses matters, but also the relative phases, i.e. the vibration shape plays a fundamental
role.
Again, and just to double-check, in the bifurcation diagram (Figure 9.8, left panel) points ob-

tained via time integration are denoted as red stars to show which branch of the isola is stable.
Discrepancies between TI and HBM results are apparent and due to the one harmonic approxima-
tion, but small.
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Figure 9.8 Left: The overall snaking pattern is kept in the background, while four isolas are
highlighted. On each isola two points are marked with a red circle and a number. Stars indicate
time integration results. Right: eight bar plots visualise the shape of the vibration for the

corresponding solution marked.

9.4.5 Isolas and connecting branches superposition

We study in some more detail the bifurcation structures of the isolas found. In Figure 9.9 the left
panel shows on the background the snaking picture (pale gray), while six solutions are emphasised
to show on which part of the pattern they lie. We chose isolas in the bottom part of the pattern
because they are less distorted than those in the upper part, and the picture is thus easier to
explain. Nevertheless any other choice of the isolas would show the same main features. The six
solutions are drawn in pairs, using a solid and a dashed line, into the subplots (a), (b), (c) to show
to the reader how they are linked together. Looking at the subplot (a) one can see that the left
hairpin bends of the isolas are connected through an independent branch which bifurcates from
the isola. The same behaviour can be observed in Figure 9.9 (b) where the branch drawn with the
dashed line bifurcates from the isola drawn with the solid line. Figure 9.9 (c) shows two solutions
which are very close to each other along one branch. All these six solutions are then superposed to
each other in Figure 9.9 (d) to show how the complex overall snaking pattern emerges. Looking at
the six solutions as a whole, it can be clearly seen that the snaking branches appear and even the
peculiar structure of the ’ladder’ (in the sense that they connect two different points of the same
isola) is there, indicated by arrows in Figure 9.9 (d).
In sum it almost seems that the usual snaking picture to be found in more strongly non-linear,

and perhaps more strongly dissipative systems, is kind of broken into smaller elements, i.e. isolas
and connecting branches. Further work on clarifying these aspects is necessary.
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Figure 9.9 Left: Bifurcation diagram in the plane
³
emax 1

´
 The snaking structure is left in the

background, while six families of solutions are highlighted (thick line). On the right-hand side the
six solutions are plotted in pairs (using one dashed and one solid line) into the subplots

(a),(b),(c). In the subplot (d) all the six solutions are plotted together to show how they arrange
in the overall snaking structure.

9.4.6 Vibration shapes for different solution branches

Here an analysis of the vibration shapes is carried out to show how the solution branches shown in
Figure 9.9 relate to different vibration shapes. In Figure 9.10 we plot in the left panel the solution

branches again (from Figure 9.9 (a)) in the plane
³
emax 1

´
. On the isola of solutions (Figure

9.10) eight points labeled from 1 to 8 are marked with a red circle. We note that the points 8-1-2-3
belong to a part of the isola on which the vibration remains mostly localised on one single mass.
After the solution number 3 a hairpin curve brings us to another part of the isola on which the
solutions 4-5 show a vibration localised on three masses which vibrate in an out-of-phase manner.
Then, for the solutions 6 and 7 the vibration of two of the masses reduces again and the vibration
comes back to be localised one on just one mass. We look now at the thick branch of solutions
(Figure 10 left panel) which connects two points of the same isola (thin solid line). The solution
11 shows a vibration localised on one mass in a similar manner as for the solutions 7 and 8 on the
previous isola. Moving towards the solutions 12-13-...-18 the neighbouring mass starts vibrating in
phase with the previous one and the vibration remains localised on two masses (Figure 10) up to
the intersection between the connecting branch and the isola. To sum up: while the isola comprises
solutions localised on one or three masses, the connecting branch corresponds to solutions localised
on one or two masses.
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Figure 9.10 Left: two solution branches, or isolas, are drawn (Figure 9.9 (a)) in the plane³
emax 1

´
. On each branch eight points are marked and labelled. For each point the

corresponding bar-plot shows the shape of the vibration.

Figure 9.11 shows in the left panel the branches presented in Figure 9.9 (c). In this case the
two patterns have both a figure eight shape and they approach each other in the middle zone. The
subplots on the right-hand side of Figure 9.11 give the shape of the vibration, while in Fig. 12 the
dimensionless energy of each mass e is plotted for the points marked with squares/circles in Fig.
9.11 (left panel). The isola of solutions drawn with a thin solid line connects solutions localised on
two masses with others localised on three masses (Fig. 9.11 - Fig. 9.12). The thick solid line isola,
instead, links solutions with three vibrating masses with others with four vibrating masses. Moving
to the top of the isola, a smooth transition happens from one kind of localisation to the other. It
is interesting to compare the solutions 4-5-6-7 with the solutions 18-11-12-13. The two branches
are very close together but are not coincident. The solutions (18-4) (11-5) (12-6) (13-7) have the
same number of masses involved in the vibration, but with a different shape. Figure 9.12 shows
that even if the overall energy of the solutions (in pairs) is broadly the same, it is just distributed
differently among the masses due to the different shape. For example if in the subplot 18 of Fig.
9.12 the mass 7 is exchanged with the mass 8 the same distribution that appears in the subplot 4
is obtained, and the same reasoning can be done for the other three pairs, and so on for the whole
two branches of the two isolas. Note that this is a feature that enriches the general picture of the
snaking phenomena in vibrating systems as the appearance of the many different branches could
be thought of to arise from some symmetries in the system. This could explain even why in the
upper part of our snaking structure (Fig. 9.5 left panel) the solutions appear more entangled: the
larger the number of the masses involved in the vibration, the larger the possibilities to arrange
them in different ways.
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Figure 9.11 Left: two solution branches (Figure 9.9 (c)) in the plane
³
emax 1

´
. On each

trajectory eight points are marked and labelled with a number. For each number the
corresponding bar plot shows the shape of the vibration.
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Figure 9.12 Dimensionless energy plotted for each solution marked with the corresponding
number from Figure 11.

9.5 Conclusions

In this work we have studied snaking bifurcations of a non-linear cyclically symmetric oscillator
chain. Bistability has been introduced in a heuristic manner through non-linear velocity dependent
forces. Solutions have been obtained by time integration and harmonic balance techniques. The
bifurcation diagrams resulting in the bistability zone resemble typical snaking patterns, but also
show marked differences. The solution branches are composed of isolas, which have a figure eight
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shape in the bifurcation diagram. When the isolas are put together, they picture a typical snaking
pattern, which has been observed in many other fields of physics. Still, our findings suggest that
the snaking behaviour in structural dynamics could be more complicated due to the superposition
of different non-linear mode shapes: solutions which have very different shapes present almost the
same energy content and thus the corresponding solution branches overlap or are very close to each
other in the bifurcation pattern.
Physically the snaking phenomenon is due to the weak nearest neighbor coupling among the

oscillators and to the positive linear damping coefficient (1  0) which damps the small oscillations.
In fact when one or few masses are in the high amplitude limit cycle the neighbors can be still
stable under small oscillations and don’t necessary jump on the high energy solution (limit cycle).
We obtain therefore a multitude of solutions (from which, the snaking behavior) because of this
bistability between low and high amplitude limit cycles.
From the present results it has become clear that more work on snaking in engineering structures

is necessary. Future work will need to focus both on conceptual aspects, as well as on evaluating
engineering relevance and impact. As for conceptual understanding, more work is necessary on
understanding analogies and differences between the systems under study here and elsewhere. The
larger number of states found in the present work needs to be clarified, and the relevance of sym-
metries, symmetry breaking and imperfect bifurcations, as observed here, needs to be understood
better. As for engineering relevance, probably first another set of simplified and idealised model
systems, ideally extracted from fluid-structure-interaction, friction-induced vibration, or similar
fields, will need to be studied. Thereafter more realistic models, e.g. derived from larger scale
computer assisted modelling systems (like finite element analysis or computational fluid mechan-
ics) could be studied.
As for our personal impression about future impact, a deeper understanding of snaking phenom-

ena in engineering systems could make engineers able to better and quantitatively more accurately
predict localised non-linear vibration states, which are known to be a source of numerous issues
in engineering and technology, like fatigue, strength, or noise. For these reasons we hope that this
work might serve as a starting point to conduct further studies on localisation phenomena and
snaking in vibration engineering.
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Conclusions and outlook

Here the key results of this thesis are summarized to provide to the reader an overall picture of
the conclusion that can be drawn from the present manuscript.

In the first part of the thesis the transition between stick and slip has been investigated taking
inspiration from some outcomes from the Fineberg’s group experiments on the inception of sliding.
We have shown that the linear scaling relation between the length of the precursor fronts and the
tangential load in Finebger experiments is due to the peculiar geometry used in the experiments
and can’t be found using halfplane elasticity. Another evidence of those experiments was that close
to the interface a local static friction coefficient much higher than the global one, was measured. We
proposed a possible explanation that is simply related to the possibility of using a slip weakening
friction law at the interface in place of the common and oversimplified Coulomb friction coefficient.
Using a double Cattaneo-Mindlin approximation we have shown that when the transition from the
static to the dynamic friction coefficient is rapid this model leads to a fracture mechanics field of
shear tractions and the inception of slip is controlled via an energetic criterion, a "Griffith friction
model". Finally the global static friction coefficient is found when the load-control experiment
becomes unstable and overall sliding occurs. Thus, the apparent friction coefficient depends on
geometrical effects and external loading configurations, as observed in Fineberg’s experiments.
In the second part of the thesis the cyclic response of systems experiencing friction has been

studied. First the dynamical behavior of a single degree of freedom with constant normal load and
tangentially harmonically loaded was analyzed showing that the dynamic solution for low excitation
frequency doesn’t converge (for the velocity) to the quasi static solution obtained neglecting the
mass terms into the equations. In the bounded regime, if the normal load varies harmonically, the
vibration is damped more effectively if normal and tangential loads vary in-phase. We obtained
the same conclusion when a more appropriate model was used with a lumped structure linked to
a massless damper.

In the last chapter a chain of nonlinear oscillators has been studied inspired to classical mod-
els used in turbomachinery. We have shown that in such a system multiple stable equilibrium
states exist leading to a bifurcation pattern which is well known in other physics fields, named
"snaking bifurcations". It is surprising that such a pattern is, to the best of author knowledge,
almost unknown in the mechanical vibration community, although it has been shown elsewhere
([135], [136], [137], [138], [139], [140]) that mechanical systems have all the ingredients (i.e. bi-
or multistability) to experience snaking bifurcation as well. In particular, Hoffmann [147] studied
a mechanical friction-excited two degrees of freedom system showing that it can experience sub-
critical Hopf bifurcation (bistability) when, at the contact, the Coulomb friction model with two
friction coefficients (  ) is used. Moreover, if the static friction coefficient is assumed equal to
the kinetic  =  the bifurcation becomes supercritical and the bistability disappears. There is a
plenty of literature where friction and nonlinear oscillations are addressed, but in the most of the
cases when friction is treated the dynamical properties of the bodies are neglected (Quasi-Static
approximation) viceversa when the focus is on the dynamical behavior of systems friction is highly
simplified (e.g. Coulomb friction with only one friction coefficient). A natural developments of the
work presented in those pages would be to use the knowledge gained into the stick-slip transition
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to solve dynamical problems, as different phenomena can emerge that with simpler friction models
don’t occur.



Appendix A

In this appendix we will solve the partial slip problem presented in chapter 3 (square ended flat
punch loaded above the interface line, see Fig. 3.1) using the Griffith friction model presented in
chapter 5. All the derivation up to equation (3.17) remains the same except that the condition
∗(−) = 0 translates into a condition on the strength of the singularity (see chapter 5 for the
details on the "Griffith friction"), mathematically

 = lim
→−+
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where ∗() is reported in eq. (3.18). Using (A.2) in (3.18)
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From equation A.2 the length of the precursor slip front e = 1−e is evaluated
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with e = 
Equations (A.4,A.5) hold when all the punch is in contact with the half-plane. If the tangential

load is further increased e =  lift-off happens at  = − and a partial contact condition is
obtained. In the latter case the normal load is no longer center positioned with respect to the
actual contact area of width 20 thus the equivalent momentum is −  (− 0) Replacing 
with −  (− 0) in (3.2) the pressure distribution is

e(0) = 


³
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´
r

0 + 0

0 − 0
(A.6)

with
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0 = 
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¶
; 0 = − (− 0) (A.7)

and e(0) = (0)
()  When 0 = 0 the tip over occurs so

 = 2 (A.8)

In the range −0  0  −0 the shear tractions are proportional to the pressure via the coefficient
of friction 
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In the stick zone −0  0  0 the dimensional shear tractions are
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If we define
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equation (A.10) becomes
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which is identical to eq. (??) but with ∗ = 0
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e Following the same argumentation presented

before, the solution of eq. (A.12) is
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thus the shear traction within the stick zone will be (−0  0  0)
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that for  = 0 (i.e.  = 0) coincides with the adhesiveless solution already found in [36]. After
some algebra the dimensionless length of the slip front is
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Appendix B

Consider the most general case in which the normal load has a general phase  with respect to the
tangential load. For positive velocity, we have from equilibrium,

() =
1


sin()−




[0 +1 sin(+ )] (B.1)

The temporal evolution of the displacement depends on

1


sin()−




1 sin(+ ) (B.2)

Notice that if we turn to the phasor representation, the (B.2) is the projection on the y-axis of
the two rotating vectors of magnitude 1

 and 1

 , those rotate counterclockwise at the angular

velocity . Our scope is to reduce those to a single equivalent vector
_

 of magnitude
°°°
_


°°° that

rotates at the same angular velocity but with an arbitrary phase . Looking to the Fig. 9 on the
left and making use of some geometric laws we obtain:
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The terms (B.2) during the forward slip phase can be replaced by
°°°
_



°°° sin(−) using (B.3)

and (B.4) and thus the displacements and velocities are equal to

∼
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where we introduced the function 2() = sin( − ), as the analogue of the function ()
introduced previously. Looking to the Fig. A.1, on the right side we can see the rotating vectors

plane for the case of backward slip. The equivalent rotating vector has magnitude
°°°
_



°°°
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Hence, we can express displacements and velocities as

∼
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where we have introduced the function 1() = sin(+ ).

Figure A.1 Displacements as rotating vectors. On the left for forward slip, on the right for
backward slip.

Looking to (B.1),(B.9),(B.3) we can derive that the maximum displacement will be reached
when 2() will reach its highest value (=1), while the minimum displacement will correspond to
1() = −1, obtaining

∼



max = − +
p
1 + 22 − 2 cos() (B.11)
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p
1 + 22 + 2 cos() (B.12)
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From (B.11) and (B.12) for
³∼



max
∼



min

´
 0 is straightfoward to deduce a general formula to

predict the dimensionless maximum displacement in modulus
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otherwise the simplest way is of course to compare
∼



maxand
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min. The reader will be careful in
this comparison as the minimum (maximum) displacement is not necessarily negative (positive).
Obviously, we can give the result in terms of amplitude as

∼
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Switching to velocity, in the rotating vector plane, equations (B.9) and (B.10) define two rotating
vectors rotating at the same angular frequency with a phase angle of 90◦. When the backward slip

commences, if
°°°
_



°°° sin(+) is still positive, then the maximum velocity will be reached when


_



 will cross the y-axis otherwise if
°°°
_



°°° sin(+) has become negative then the maximum

velocity will be that exactly in the instant in which the backward slip commences. For the first

case, the magnitude of the maximum velocity is exactly 

°°°
_



°°° (i.e. cos( + ) = −1),
while for the second we can equate equations (B.11) and (B.9) at the time instant  in which the
backward slip commences obtaining
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Studying the sign of the equation (B.15), we obtain that
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 cos()−

p
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2 − 4 (B.16)

When the condition (B.16) holds we need to compute the velocity at the onset of slip (i.e. the
maximum reached in the backward slip phase). For this purpose we compute  +  =
−arcsin(1()) and thus substituting into (B.10) after some mathematics we obtain in magnitude
the maximum velocity reached during the backward slip
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The mass is moving now towards the negative direction and will reach the maximum negative
displacement reported in (B.12). The mass will be stuck for a while, then will start again to

move, but in the positive direction. If
°°°
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°°° sin( − ) is still negative when the forward

slip starts then the maximum positive velocity will be that corresponding to the maximum value

of
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sign then we need to compute the value of 2() at the time instant in which the forward slip
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minthus equating (B.12) and (B.5) we obtain:
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Studying the sign of 2() we find that
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For this case  −  = arcsin(

2()) , and computing


() we obtain
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To sum up all the relations found
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The inequalities introduced in (B.21) and (B.22) divide the plane ( ) into 3 regions (which
collapse in 2 regions for  = 90◦). In each region 2 of the above equations hold, one for the forward
the other for the backward slip phase, thus in general given (  ) one needs to check which of
the two velocity is greater in magnitude.
Starting from the above results we provide the general formula for energy dissipation for out-of-

phase loading. Firstly we evaluate the energy dissipated during backward slip phase i.e. between
 and 

1 =

Z 





 =

Z 



−

 (B.23)

where  =  (0 +1 sin(+ )). Solving the integral (B.23), we obtain

1 =
2
1



p
1 + 22 + 2 cos()

n
1 + 1()−



4
[cos(2 +  + )+

− cos(2 +  + )− 2 ( − ) sin( − )]} (B.24)

where 1() is computed with (B.15), while  and  are respectively

 =
1



£
 − arcsin(1())− 

¤
(B.25)

 =
1



∙
3

2
 − 

¸
(B.26)

During the forward slip phase, the dissipated energy is

2 =

Z 




 =

Z 



−

 (B.27)

where  = − (0 +1 sin(+ )). Solving (B.27) we obtain

2 =
2
1



p
1 + 22 − 2 cos()

n
1− 2() +



4
[cos(2 −  + )+

− cos(2 −  + ) + 2 ( − ) sin( + )]} (B.28)

where 2() is computed with (B.18) while  and  are respectively
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 =
1



£
arcsin(2()) + 

¤
(B.29)

 =
1



h
2
+ 

i
(B.30)

The total amount of energy dissipated in a cycle will be  =1+2. For the case of quadrature
loading (B.24) and (B.28) give

 |=90◦ = 40
1



Ãp
1 + 22 − 

1 + 22

!
(B.31)
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