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Abstract

The work described in this thesis falls in the general category of computer
vision. More specifically, 3D modeling, reconstruction and analysis of envi-
ronments is treated from multiple points of view in order to provide effective
and efficient methods to capture data and perform complex processing tasks.
Building a model by means of an automated machine vision system induces
the research of constantly new techniques to make the final system both able
to fulfill the requirements and optimized to efficiently perform proper tasks.

The problems that need to be solved relatively to these topics spread
from the background modeling of a scene to moving object tracking, from
3D point cloud analysis to the identification of a motion, a trajectory or
a particular feature of an object in the three dimensional space. All these
tasks are related to open problems in the image/video processing field, since
their efficient implementation is strictly related to the ability of a system to
correctly represent a 3D complex scene or to the effective understanding of
the semantics of an acquired video. For this reason, the main focus of this
thesis is on the analysis of complex situations (i.e. indoor, outdoor, with and
without controlled illumination, with many moving subjects) by means of
innovative data acquisition and processing techniques.

Two types of point clouds actually exist – dense and sparse – depending
on the number of 3D points that are contained in the acquisition. Both of
them will be treated in this thesis, along with proper methodologies to deal
with the specific type of data.

Laser based sensors are largely employed to create a 3D model of a generic
scene, since they are able to provide detailed information (the so called
Dense point clouds) about the depth of an object that is illuminated by the
light source, guaranteeing one of the two following capabilities: high data
throughput or large sensor field of view, up to 360◦.

The first objective of this thesis will be the design, prototype and test of
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a miniaturized omnidirectional 3D catadioptric sensor capable of both high
throughput and large field of view. Also, a new methodology to perform
3D dense point clouds registration will be investigated and detailed. Such
systems are of relevant interest and can be effectively employed in industrial
applications for monitoring purposes, to perform non destructive tests, quality
control or – more generally – objects analysis.

Another well known technique used to solve the 3D modeling problem is
stereovision, that is used to evaluate the depth information about a point that
is simultaneously captured by two or more sensors (cameras). Stereovision
avoids the use of laser sources, but produces highly redundant data that needs
to be exploited to compute a sparse point cloud. In fact, it is mandatory
to collect and process at least two distinct videos to obtain 3D information
about the scene, regardless the effort that is needed to estabilish the correct
correspondence between points from distinct views.

The other objective of this thesis will be the design and development of a
semi-engineered stereo system prototype for evaluating complex situations,
applied to the sportive context (in particular, the tennis one). This system
will be able to analyze game tactics of a specific player by logical inferences
that will take place after having executed specific queries that should properly
combine data extracted from each software module.

In summary, the aim of this thesis is the design and development of
intelligent systems for the analysis of complex scenes by using 3D information.
This leads to the study of novel techniques, as well as the optimization of
known algorithms. In fact, once the 3D point cloud is extracted, it needs to
be appropriately processed to perform, for example, the identification of an
object or a subject, its tracking in the 3D space or the semantic analysis of the
scene. The ability of interpreting a scene via software starting from the output
of a camera or a depth sensor is an ambitious objective of certain scientific
interest. Nevertheless, it is necessary to develop new methodologies as well
as optimize and revise the known ones to achieve this goal, because semantic
analysis highly depends on all the other software modules of the vision system
(both 2D or 3D). Good models and effective processing algorithms are the
keys to enable reliable high level modules on complex systems.
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Chapter 1

Introduction

1.1 Dense Point Clouds

The problem of 3D reconstruction of environments founds application in
many fields of computer science and engineering [1] – like video surveillance
or robot automation [2] – and is particularly interesting for researchers and
engineers coming from both academia and industry. The systems that are
mostly used to solve this problem are typically based on laser profilometry
or laser scanners, since both approaches are not affected by typical optical
based system problems like, for example, illumination changes in a scene
[3], [4]. Systems based on laser profilometry [5, 6, 7, 8, 9, 10] are basically
composed of a laser source and a camera, whose position with respect to
the source is properly calibrated. Supposing that the laser emits a line, the
camera captures an image of that line that is altered by the object that is hit,
allowing the system to compute the distance of each illuminated point of the
line from the camera. These techniques are based on trigonometry and are
known as laser triangulation. Even if these approaches can reach very high
precision in the reconstruction task, the field of view is relatively small. This
drawback can be overcome by using multiple pairs of laser and camera, but
the resulting complexity in terms of calibration increases significantly [11, 12].

On the contrary, laser scanners measure the reflection of a point-like laser
beam by means of a photo diode [13]. The difference of phase of the reflected
beam with respect to the emitted one, or the time of flight estimation of the
reflected beam are both techniques that enable the sensor to compute the
distance of the illuminated object with respect to the laser source. One of
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the limits of this technique is the emission of a point-like beam, that implies
the measurement of one point at a time. However, this issue is easily resolved
by employing a mechanical setup like a rotating mirror that reflects the beam
on a circular trajectory, increasing the throughput of the sensor in terms
of returned measures over time. Such systems do not show a limited field
of view, but data acquisition speed is lower than laser profilometers whose
throughput basically depends on the chosen camera. At the moment, these
two approaches are the most used to obtain 3D point clouds [14] that are
processed and employed in multiple applications, like for example:

• implementation of collision avoidance algorithms [15];

• resolution of navigation and localization problems [16];

• object tracking in the 3D space [17];

• or, more generally, robot control and 3D scene reconstruction [18, 19,
20, 21].

From a comparative analysis of these two approaches it is reasonable to assert
that:

• laser scanners can inspect an environment with a field of view of about
360◦, despite the low speed of data acquisition (a commercially available
example is [22]);

• laser profilometers can reach a very high throughput that depends only
on the camera, but with a sensibly reduced field of view.

Finally, another approach that can be used to deal with these problems is
represented by catadioptric systems [23], that combine a certain number
of mirrors and lenses along with laser and cameras. The union of a laser
profilometer with a parabolic mirror and a camera can represent an effective
solution to exploit the high acquisition rate of profilometers (limited only by
camera temporal resolution) combined with the parabolic mirror that enlarges
the field of view reaching performance typical of laser scanners [24, 25, 26].
This way, the strengths of both approaches can be exploited to perform three
dimensional environment reconstruction. An example of such catadioptric
sensor is the one proposed in [27], that is mainly composed by a laser source,
a high framerate camera, a telecentric lens, a parabolic mirror and a moving
vehicle (whose motion is supposed along the optical axis). However, the
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practical use of this solution is limited by its huge dimensions. For this
reason, one of the objective of this thesis will be the study and development
of a miniaturized solution of this catadioptric sensor. The whole setup will
be optimized by integrating the camera and the lens on a specific support
created ad hoc, equipping a mobile robot and making it able to perform real
acquisition. Also the calibration phase of this sensor will be regarded, as it is
a mandatory step to obtain the desired level of precision and efficiency.

A miniaturized omnidirectional high throughput 3D sensor can be effecti-
vely employed in industrial applications for monitoring purposes, to perform
non destructive tests, quality control or – more generally – objects analysis.
The railway scenario can be one example, as trains represent a good test bed
for such systems. Another example can be a car (or mobile robot) equipped
with such sensor that should help in monitoring road surfaces (especially after
adverse climatic events), subways, bridges or buildings. For this reason, a
prototype will be tested on real life cases by acquiring specific targets, like:

• the 3D profile of a road or a building, in order to highlight roughness,
holes or, more generally, defects or dissimilarities between multiple
observations in time;

• the detail of scenarios that can be scanned along a pathway (railway
tunnels or a covered parking), to perform structural monitoring.

along with a new methodology to perform 3D dense point clouds registration.

1.2 Sparse Point Clouds

Another particularly interesting research topic in the field of 3D image proces-
sing is stereovision, that consists of observing the same scene from multiple
points of view in order to evaluate the 3D representation of what is being
observed. Compared to the other methods discussed beforehand, this one
is certainly applicable both in indoor and outdoor setups (because it only
relies on cameras) but generally produces sparse point clouds, since it is
mandatory to establish the exact correspondence of the same point across
all the views that should be used to extract depth information [28]. This
mechanism is the numerical equivalent of the human depth representation,
since everyone that observes the world with two eyes (cameras) is able to
estimate the distance of an object with respect to himself. Nowadays, many
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systems rely on stereovision for telemedicine, robotics, video surveillance or
cinema applications. However, regardless of the specific application, each
stereo system needs some mandatory steps in order to be properly configured
and perform an acceptable 3D scene reconstruction. Thus, artificial vision
systems should be able to perform fundamental tasks [29, 30, 31], such as:

• background modeling;

• background/foreground segmentation;

• morphological filtering of foreground masks;

• construction of the ground truth of a scene;

• analysis and labeling of connected components;

• feature extraction;

• object tracking.

It is worth observing that all the information need to be properly combined
to infer new knowledge. Among all the application contexts, the sportive one
represents a good benchmark for developing and testing innovative algorithms
that implement such tasks that have been listed beforehand. In fact, in
literature there are many systems or algorithms that are employed to analyze
tactics and teams in multiple sports – for example soccer – that start from
the identification and tracking of both ball and players, the active entities
during game. For example, in [32] a system that extracts useful information
for coaches is presented, in [33] and [34] players’ skills are evaluated while in
[35] and [36] the overall game trend is analyzed. A multicamera (six cameras)
approach to the activity recognition problem is presented in [37], where the
authors estimate how long a player has been active during the game by
means of posture analysis, ball control and eventual actions in which he has
a strategic role.

Another objective of this thesis is the development of a semi-engineered
system prototype for evaluating tennis game scenes, based on an artificial
vision system. The principal requirements of such system are:

• recording of all game actions;

• identification and 3D tracking of active game entities (ball/players);
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• identification and understanding of the whole game.

This system will be able to analyze game tactics of a specific player by logical
inferences that will take place after having executed specific queries that
should properly combine data extracted from each software module. The first
problem to deal with is the hardware choice and setup that will be used to
equip a private tennis test court. Hence, several factors need to be considered
in order to correctly identify:

• the number of cameras to be installed;

• the type of cameras to install (in terms of sensor type, sensor size,
framerate, etc...);

• the lenses;

• the position of the cameras with respect of the tennis court;

• the proper video acquisition and synchronization sub systems;

• the connection and communication protocol between camera and recor-
ding system;

• a custom illumination system, if needed.

Proper attention should be payed to the data acquisition task, since it is
strictly related to the study of appropriate methodologies that will be used
to process 3D data. It will be necessary to:

• identify and track the ball, i.e. recognize the object among multi-
ple views at the same time in order to estimate its 3D position and
reconstruct its trajectory in the 3D space;

• identify and track players to extract statistical parameters that enable
further analyses, such as position and speed;

• recognize players’ behaviors by combining high level data acquired
during the game play.

The effective implementation of these features requires the application of
advanced image processing techniques to perform segmentation, tracking and
analysis of the interactions between the objects of the scene. Specifically it
will be necessary to define and optimize:
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• a proper background subtraction algorithm;

• the methodology to robustly identify the ball and the players in the
videos;

• the algorithms to extract a sparse point cloud;

• the algorithms to track the ball in the 3D space;

• the algorithm to perform the scene understanding task and save the
information in a database for further exploitation.

The description of these requirements gives a clear idea of a contextualized
application of this research topic. However, it is worth observing that each
software module can be also encapsulated on other kind of systems, not only
related to sports. As a matter of fact, the 3D information extraction modules
and data processing techniques that will be presented can be seen as a part
of more complex high level expert systems that can be employed to analyze
the behaviors of one or more subjects acting in a specific context.

Structure of the thesis

The thesis is organized as follows:

Chapter 2 contains the literature review related to each topic that will be
covered in the subsequent chapters;

Chapter 3 presents an accurate miniaturized catadioptric range sensor that
has been designed and developed. It combines a high-resolution and
high-frame-rate camera with a telecentric lens that collects the laser
light reflected by a parabolic mirror and is employed to perform the
three-dimensional reconstruction of environments. The results presented
in this chapter have been published in [38];

Chapter 4 presents an accurate method for the registration of point clouds
returned by a 3D rangefinder. The method modifies the well-known
iterative closest point (ICP) algorithm by introducing the concept of
deletion mask. In this way, spatial regions of implicit ambiguities, due to
edge effects or systematical errors of the rangefinder, are automatically
found and neglected, lowering the errors made during the 3D registration
task. The results presented in this chapter have been published in [39];
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Chapter 5 is devoted to the design and implementation of real time algo-
rithms that represent the building blocks of more complex 3D vision
systems. In particular, three background models and a 3D tracking
method will be detailed. The results presented in this chapter have
been published in [40, 41, 42, 43];

Chapter 6 shows a system for the automated analysis of a sportive event
applied to the tennis context. The system consists of a dedicated har-
dware setup (cameras and computer) and a number of software modules
for the automatic processing of the recorded video sequences. The aim
of the work is to support coaches in the evaluation of tennis players
performance properly interpolating 3D data and semantic information
about the context. The results presented in this chapter have been
published in [44, 45];

Chapter 7 presents the conclusions of the thesis along with a description of
future works.
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Chapter 2

Literature review

2.1 Dense Point Clouds

2.1.1 3D Omnidirectional Range Sensor

The world today can be inspected in detail by exploiting three dimensional
data thanks to the more recent technology developments. In fact, the infor-
mation contained in a 3D image can be effectively used to address details
about a specific target or an entire environment that should be analyzed.
3D data have been initially employed in robotics, where it is mandatory to
build a complete map of the robot surroundings to perform self-localization
or collision avoidance [46, 47, 48, 49]. Moreover, these kind of 3D images
(or range images) gained increasing importance and interest among private
companies to implement efficient quality control tasks. Industrial processes
can be dramatically improved and speeded-up via unsupervised inspection
techniques that are the basis for industrial standardization and automatized
production of manufactured goods [50, 51, 52]. Finally, it is worth mentioning
other kind of applications that today benefit from the exploitation of 3D data,
such as medicine [53, 54], biology [55], archaeology [56, 57, 58], geology [59]
or reverse engineering [60, 61]. Range sensors for three dimensional mapping
of both indoor and outdoor scenes have been developed in the last years,
basically relying on stereo imaging, time of flight principles, structured light
or laser triangulation. Some commercially available products, along with
their main features like acquisition rate, resolution, accuracy and precision
are shown in Table 2.1.
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Table 2.1: Detail of commercially available devices for 3D environment reconstruction

Model name Accu-
range

AR4000
[22]

RIEGL
VQ-250
[62]

RIEGL
VZ-400 [62]

Optech ILRIS
[63]

Bum-
blebee
BB2-
08S2
[64]

Kinect
v2 [65]

Type Laser
Scanner

Laser
Scanner

Terrestrial
Scanner

Terrestrial
Scanner

Depth
camera

Depth
camera

Acquisition rate 50 kHz 50 kHz 122 kHz 10 kHz 1032 x
776 @
20 Hz

512 x
424 @
30 Hz

Maximum distance 2 m 180 m 350 m 400 m 10 m 4.5 m

Resolution 5 mm Not
reported

Not reported Not reported Not re-
ported

2 mm

Accuracy 5 mm @
9 m

10 mm 5 mm 4 to 7 mm @
100 m

Not re-
ported

1 mm

Precision Not
reported

5 mm 3 mm Not reported Not re-
ported

Not re-
ported

(I)n – (O)utdoor I/O I/O O O I/O I

Applications 3D envi-
ronment
recon-

struction

Mobile
mapping
from

moving
platforms.

Large
environments

recon-
struction end
inspection

Large
environments

recon-
struction end
inspection

3D en-
viron-
ment
mo-

deling

3D en-
viron-
ment
mo-

deling

As highlighted in the previous chapter, stereo imaging [66] computes
depth information starting from multiple views of the same scene, but its
applicability its limited due to the need of point correspondence between the
images and the complexity of mathematical models that are employed to
triangulate the points. A certain number of sensors based on this principle
has been proposed (e.g. [64, 67, 68]), but they are hardly employable in
the context of dense point cloud extraction and environment inspection that
involves precise measurements. For this reason, stereo vision is often used
for qualitative real time analysis of sparse point clouds extracted by dynamic
scenes [69, 70] and will be discussed further in Chapters 5 and 6.

Time of flight (ToF) range finders measure the distance of a target estima-
ting the time elapsed between the emission of a laser beam and its reflection
on the sensor. Many devices (e.g. [71, 72]) known as lidar, deflect the beam
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with moving mirrors and are able to scan wider areas. For example, the
AccuRange AR4000 [22] reflects a single laser spot with a rotating mirror that
allows it to describe circular profiles. However, as introduced in the previous
chapter, whenever a mechanical component is used, the throughput in terms
of sample rate of the whole 3D system decreases. In fact, although the single
spot could be acquired up to 50 kHz, the value is limited by the rotating
mirror to 1 kHz, that correspond to few tens of profiles per second. ToF
sensors try to overcome this limitation increasing the number of detectors
– i.e. adding redundancy – as in the commercial products [73, 74]. In this
case, the emitting lasers shed light over wider areas, whereas the matrix
of detectors compute the phase difference between the sent signals and the
returned ones. A depth image having the size of the matrix of detectors
is thus computed in a single shot. Increasing the number of camera pixel,
the corresponding equivalent sample rate can surge of orders of magnitude.
On the contrary, the achievable field of view is implicitly bounded, so that
multiple acquisitions are necessary to get a full mapping of the surroundings,
with problems residing in the registration of the different unknown views.
Moreover the cost of such systems is still impressive because of the number
of laser sources illuminating the environment. Further commercial sensors,
devoted to the home entertainment (Microsoft Kinect v2 [65]), employ diffused
modulated light to illuminate the scene, thus downing the overall costs at
expanses of the final measurement resolution.

Terrestrial Laser Scanners (TLSs) are devices used for the modelling of
complex targets under outdoor conditions, with maximum ranges of hundreds
of meters [62]. Such systems are based on the principles of time-of-flight
or of phase difference and typically return range data as a function of the
angular position of the emitted laser line. Their typical applications fall in
the monitoring of extended areas for the detection of landslides and terrestrial
deformations, or in the field of 3D reconstruction of cultural heritage sites
[75, 76]. However, the main drawbacks reside in the huge cost of TLSs, their
dimensions and weights and the limited Field-of-View (FoV) which makes
them suitable mostly for long range measurements, and often not adaptable
for several applications which require environmental scans of complex scenes.

Structured light patterns are often used to compute the 3D shape of
objects, since they are deformed in accordance with the profile of the surface
under investigation. Light patterns can be made of stripes (as in [77, 78])
or points (see [79]), whose distribution in the camera image is preliminary
determined with reference to a calibration plane. Each alteration of the target
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surface with reference to this plane returns a shift of the detected pattern,
depending on the change of depth. The main limit of this technique resides
in the mere indoor use, where fringes and spots are highly distinguishable.
Outdoor application requires the use of coherent light, such as laser beams.

Laser profilometers follow the same principles of structured light, for which
a laser line impinging a target is accordingly deformed. Knowing the relative
position of laser and camera, triangulation laws can derive the position of the
line in an absolute reference system [80]. As for the ToF range camera, the
weakness of this technique is related to the bounded field of view of the sensor,
which does not permit the full mapping of the sensor surroundings. For this
reason mirrors can be added to collect a wider sight of the environment in a
single frame. These complex systems belong to the category of sensors based
on catadioptrics [81, 82, 83] and will be investigated to develop a miniaturized
sensor, as described in Chapter 3.

2.1.2 3D Point cloud registration

The research on the use of laser scanners as a tool to produce 3D point clouds
of complex scenes for structural engineering applications has received a great
impulse thanks to the continuous improving of laser scanning technology.
3D geometric models from building, terrains, and infrastructure systems,
can be used for preventing geological hazards, such as landslides, debris-
flows, rockfalls and floods [84, 85]. At the same time, the high accuracy of
measurements achievable with 3D models permits the reliable check of the
conditions of existing buildings and roads [86, 87, 88, 89, 90, 91, 92, 93, 94].

In the context of infrastructures monitoring, registration of point clouds is
a crucial preliminary step to compare data acquired at different epochs and to
document changes and geometric deformations of the observed surfaces. The
capability of the processing methods to detect variations is strictly dependent
on the registration process which has to transform all acquired point clouds
to a common coordinates system. In the chapter, the problem – crucial for
infrastructures monitoring – of developing a point cloud registration approach
which improves the accuracy of 3D data alignments when reliable results are
required will be addressed.

Generally speaking, point cloud registration refers to two categories of
problems:

• the precise localization of navigation systems during the acquisition of
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the dense 3D models of targets;

• the exact matching of datasets acquired at different epochs for structural
monitoring.

The registration of laser scans for the creation of dense 3D models can
be increasingly performed by matching the newest scan over the acquired
ones while the surroundings are sensed. In this context, the literature on
3D scene recovery is mainly related to trajectory-based methods. Among
these methods for laser scan matching, those based on Self Localization And
Mapping (SLAM) are the most used [95, 96, 97]. They can produce dense
3D models in real time by updating an even more detailed map of the scene
together with the information on the sensor position. As an example, a more
sophisticated method [98] exploits the knowledge on the topology of the scene
to simultaneously update both the 3D map and the sensor pose by means
approximate surface reconstructions.

On the other hand, point cloud registration for structural monitoring is
aimed to align different datasets, even acquired with SLAM methods, in order
to achieve meaningful comparisons on a common reference system. These
approaches can be classified as follows [99]: marker-based, sensor-based and
data-driven registration methods.

Marker-based registrations can be very precise but require that artificial
control points, with an easy-to-recognize pattern, are placed in the scene [100,
101, 102].

In the sensor-based category [103, 104], the position and orientation of the
scanner is determined by GPS and an Integrated Measurement Unit (IMU),
limiting the application of these methods to outdoor contexts, where the lines
of sight to the GPS satellites are not occluded.

Data-driven approaches use the point clouds properties to find the regis-
tration parameters. A widely used algorithm belonging to this category is
the ICP (Iterative Closest Point), originally introduced in [105, 106]. Given
two clouds of points (a reference and a source), the algorithm finds 3D corre-
spondences between them and tries to determine the translation and rotation
matrices whose application to the source can lead to the best match on the
reference in terms of minimum distance. Although the method is simple and
easy to implement, a drawback resides in the need of a user control for the
validation of results, since it often reaches a wrong convergence. Specifically,
an erroneous point correspondence between the source and the reference can
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increase the value of the distance function under optimization, even if the
models are overlapping.

Many techniques have been presented to overcome this problem, such
as: using the calibration equation of the sensor [107]; weighting the input
surface depth data for the integration of the views in a continuous surface
[108]; including color information, if available, or more generally intensities, in
the comparison of the datasets [109, 110, 111]); extracting invariant features
for the selection of points [112]; applying geometrical constraints on the point
collinearity and closeness [113]; employing a global consistency measure to
detect incorrect, but locally consistent matches [114]; using general-purpose
non-linear optimization, such the Levenberg–Marquardt algorithm [115]. At
the same time many speeded-up variants of this method have been also
presented [116], including the approximation of the nonlinear optimization
problem with a linear least-squares one [117] and an efficient evaluation of
the meaningful points [118]. All these techniques can be also used in the case
of registration of scans which are individually subjected to local deformations
[119].

In Chapter 4 a data-driven approach for the 3D registration of point clouds
acquired at different epochs will be detailed.

2.2 Sparse point clouds

2.2.1 Real time algorithms for high throughput data
processing

Background models

The analysis of high-throughput data has always been a challenging task
in computer science, especially in the computer vision field. Any artificial
vision system must deal with the background (BG) modeling as a low level
computational task: the model must be fast, reliable and fault adaptive if a
real time processing constraint has to be satisfied. Moreover, the backgroun-
d/foreground segmentation is generally the first operation that an intelligent
system has to implement. It represents the input for many other modules that
can do for example object tracking, gesture analysis or semantic interpretation
of the scene. Therefore, an artificial vision system has to be improved by
doing this segmentation in real time. Generally speaking, background models
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can be classified as Temporal difference methods and Background subtraction
methods : the first ones are based on the idea that the foreground objects can
be obtained subtracting two consecutive frames and applying a threshold to
the output image; the second ones build a dynamic model and subtract it
to the following frames that have to be processed. The BG model is usually
updated over time in order to adapt it to the environment changes.

One of the most used BG methods is the Adaptive Mixture of Gaus-
sians (MoG) proposed by Stauffer and Grimson [120] and its subsequent
improvements. This algorithm uses Gaussians distributions to represent the
variation of pixel intensity, so it is suitable to model complex and dynamic
backgrounds. Moreover, Zivkovic [121] has introduced a technique to adap-
tively update the parameters of the MoG algorithm. Other BG algorithms
known in literature are, for example:

• the Eigenbackground [122] introduced by Oliver et al., where the model
is a PCA-based subspace representation of a certain number of static
frames that represent the background;

• the Codebook [123] proposed by Kim et al., that implements a quan-
tization of the pixel values using codebooks in order to compress the
model size;

• models that use Hidden Markov Models (HMMs) [124] to represent
pixel intensity variations as discrete states.

Many algorithms work well under varying light conditions or during dyna-
mic scenes, but are computationally complex or threshold-dependent. Non-
parametric models as the GMG by Godbehere et al. [125] try to resolve this
dependence estimating the entire pixel intensity distribution rather than its
parameters, using dynamic information. Only the probability distributions
associated with background pixels are finally updated.

The advent of smart cameras with embedded processing units involves
intelligent vision systems design improvements, because some tasks, such as
the background/foreground segmentation, can be directly implemented on
the camera. An example is the Adaptive light-weight algorithm presented in
[126], whose application in athletic video processing is of relevant research
interest. According to [127], this type of scenes can be used to:

• detect relevant events, for example offsides or goals during football
matches [128, 129, 130];
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• analyse and track relevant objects, for example ball and players;

• do 3D reconstruction;

• analyse tactics and so on.

Moreover, the athletic video processing represents one of the most challenging
real time applications, because, in this context, there are many critical aspects
that should be taken into account when designing a BG model: no a-priori
knowledge of the static scene, sudden illumination changes and many moving
objects that slow down the upgrade phase. In order to solve these issues a
reliable computer vision system has to:

• build the model without bootstrapping frames;

• be responsive to light variations;

• be fast in the updating phase.

In Chapter 5 particular attention will be given to the design and implementa-
tion of three background algorithms able to deal with high throughput data
in real time.

3D Tracking

Research in sports field considerably gained importance in the last decades
due to meaningful technology improvements that totally changed our way of
thinking. A huge number of sensors is now available for almost everyone and
reasonably cost-effective solutions are provided to bring digital innovation
inside sports. In addition, the constant growth of devices’ pervasiveness
provide “fertile ground” for investigating new and optimized techniques
for extracting significant information from the integration of multiple data
streams [131]. Many applications like tactics analysis, automatic key events
identification and highlights extraction as well as statistical approaches to
game evaluation and human performance analysis have been developed and
represent the desiderata for specialized software that helps coaches, players
and involved people in both supporting and enjoying innovation in sports
[132] [133] [134] [129].

A key role is undoubtedly played by computer vision because cameras –
either monocular or arranged in stereoscopic configurations – represent one
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of the most used sensor technology in almost every sport [135]. It is worth
pointing out that problems such as object recognition and tracking are well
known in scientific literature, but the need of achieving high performance
is moving researchers towards the integration of domain knowledge inside
machine vision algorithms [42] [136]. Sports involving moving ball and players
like soccer or tennis represent a good test-bed for intelligent agents that have
been successfully implemented to extract and understand active entities and
their relationships during the game [137]. In addition, whenever a sport is
followed by a large audience both broadcast and private videos are available
and can be used as feeds for algorithms [138]. These videos represent a vast
dataset that can be exploited to perform a certain number of tasks by working
on single camera bi-dimensional recordings.

A remarkable work in this field has been done by Yan et al., that introdu-
ced a methodology to process low quality single camera videos by enhancing
low level elliptical features to identify and track a tennis ball with the aid
of a modified particle filter [139]. Moreover, the same authors improved
tracking efficiency overcoming the issues introduced by Robust Data Associa-
tion (RDA), a non-iterative tracking algorithm inspired by the well known
RANSAC approach [140] [141]. Basically, the authors claim that the RDA
approach suffers from growing complexity issues in cluttered environments
and is based on independent models estimated over time. For this reason,
they introduce the concept of seed triplet instead of pure random sampling,
fitting the models only after evaluating a small ellipsoid that should embrace
points that are likely to be part of the same trajectory. The final step is a
layered data association method that exploits graph theory to link pieces of
trajectories that have been recognized. In recent years other sophisticated
approaches have been developed, trying to combine machine learning techni-
ques with computer vision ones [142] or extending Kalman filter theory and
employing a neural network approach to predict ball trajectories [143].
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Figure 2.1: Example of a private tennis court equipped with a monocular camera.

Bi-dimensional approaches can be useful to solve tracking problems at
image plane level or coarse key events annotation, but more sophisticated
applications may not fulfill the requirements imposed by coaches. An algo-
rithm that runs only on a single camera that covers a large court can not
guarantee the same performance on every zone of the court. Looking at Fig.
2.1 it is immediate to notice that the zone opposite to the camera is penalized
with respect to the nearest one. Moreover, the lack of the third dimension
makes data not usable for high precision applications such as line calling or
player performance analysis in terms of posture or behavior. For this reason,
in these cases dealing with 3D data become a mandatory step. Pingali et al.
can be considered as pioneers of multi camera real time ball tracking system
based on six cameras arranged to form four stereo pair per each side of the
court [144]. In that work player-ball interactions and ball occlusions were
left as future works, as well as the improvement of tracking accuracy. Today,
the de facto standard for 3D tracking and line calling is represented by the
Hawk-eye technology, whose preliminary results were presented in [145] and
now is available as a service provided by a dedicated company [146]. The
system achieves extremely precise results (mean error rating of 2.6 mm) as it
employs 6 to 10 cameras to equip the court. It is reasonable to say that with
such setup the ball is visible at almost every frame.

However, in this work particular attention is focused on semantic data
fusion for ball recognition and tracking purposes applied to tennis, adding
domain knowledge to 3D data coming from a stereo system made of only 4
cameras arranged in two stereo pairs, one per each half court. This configura-
tion is less precise than the Hawk-eye system, but hardware reduction enables
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to lower the costs in terms of time, space and money. Many applications
aimed to semi-professional players can take the advantage of a 3D system,
for example if the coach needs to analyze how the player is performing a
particular stroke. Of course the ball is not always available in the three
dimensional space, since the lack of information in just one camera makes the
3D estimation not possible. For this reason, an algorithm that recovers and
interpolates the most probable trajectory is essential. Details will be given in
Chapter 5.

2.2.2 A technology platform for automatic high-level
tennis game analysis

Sports analysis can provide a complete survey of sport events to interested
parties. This kind of systems produces objective feedback helping players and
coaches to improve performance in a field that is competitive by nature. For
this reason, several commercial solutions are available, sometimes addressing
analysis in more than one sport discipline. Most of them provide only support
for manual annotations of video sequences. Manual annotations can either
be done off-line or in real-time. Dartfish Video Analysis Software [147] and
Sportscode Performance Analysis [148] are examples of commercial systems
in which video sequences are manually annotated off-line on desktop-class
computers with the latter being used by important football clubs [149]. Match
Analysis [150] is a further example where manual annotations are created,
although in this case the operation is remotely outsourced to other companies.
TenniVis is a tennis match visualization system that relies entirely on data
such as score, point outcomes, point lengths, service information, that can be
easily collected by a human operator watching videos that are captured by
one consumer-level camera [151]. Other systems [152, 153] offer support for
smart-phones and tablets, while still requiring manual annotations.

Few systems try to provide a solution to sport analysis without requiring
human supervision. A recent trend is represented by the acquisition of data
directly from the player using wearable devices in several sports in general
[154, 155] and in tennis in particular [156, 157]. However, intrusive systems
can be either sensible to signal collisions and interferences for operating and
communicating in real-time [158], or are limited to off-line processing [159,
160]. Additionally they are rarely accepted by players as they have to be
small enough to be comfortable and not perceived as an obstacle to their
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movements and performance [161]. Non intrusive solutions are based on
broadcast cameras or dedicated cameras placed around the game court and
use computer vision techniques to process the acquired videos. ProZone [162]
provides automatic video analysis for soccer and rugby. This system is based
on the automatic processing of NTSC/PAL video. The system can operate in
almost every professional match broadcasted in TV. Human intervention is
sometimes required to correct errors done by the system. TennisSense [136]
has been developed to use custom-installed cameras, optimized for automatic
processing. The system has been designed and developed by Dublin City
University in partnership with Tennis Ireland, the Irish tennis governing body,
using a UbiSense spatial localization system and requiring the installation
of nine IP cameras with pan, tilt and zoom capabilities, surrounding the
instrumented tennis court. Cameras position and setup are optimized to
cover specific areas and perform specific tasks. Ball and players tracking is
therefore performed synchronizing and fusing these data streams. A system,
operating in real time and aimed at enhancing broadcasts as well as coaching
activities, is proposed in [163, 144], where computed motion trajectories,
along with compressed video streams, are stored in a database system. The
system proposed in [163] also provides a way to customize information to be
shown using a proprietary Application Programming Interface (API).

Other works focus their attention on a more limited set of topics, such
as stroke detection or ball trajectories reconstruction. In [164] strokes are
detected and recognized through player tracking and skeletonization, although
under restrictive assumptions. Ball trajectory is the focus of the work des-
cribed in [165], that is performed on soccer matches using broadcast video.
Novel in this work is their focus on recognizing the ball through the evaluation
of the followed trajectory rather than its low-level visual features. The ability
of discerning event cues starting from the evaluation of ball trajectories is
the focus of the work [139] on broadcasted tennis matches, enabling therefore
automatic annotation of broadcasted videos. Issues on the reconstruction of
ball trajectories are also common in table tennis games, with the aggravating
problem imposed by frequent occlusions between ball and racquet. The paper
[166] addresses this challenge through the evaluation of trajectory planes.
Misdetection and abrupt changes of ball trajectories are addressed in [140]
using a layered data association scheme. Last but not least, ball tracking
can be done in 3D using a physics-based approach (as in [167]), when sports
events are acquired using multiple synchronized views.

In this work an innovative approach for event recognition such as strokes,
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bounces and serves will be proposed. It is based on the analysis of the
reconstructed 3D ball trajectory which can be used for automatic annotations
of video sequences and high level semantic analysis. The extracted action
sequences with the associated data can effectively support coaches for the
evaluation of game tactics and for improving players performance. Details
about this system will be given in Chapter 6.
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Chapter 3

3D Omnidirectional Range
Sensor

As introduced beforehand, the main idea of the proposed sensor setup comes
from the contributions described in [26, 25, 27] – where an omnidirectional
sensor for high-resolution 3D mapping has been proposed – but adding
compactness and applicability to the whole approach. Here a laser profilometer
assisted by a parabolic mirror is designed to reconstruct spaces when a mobile
robot flows through them. The achievable resolutions (10mm at 5m of
distance from the laser source) have demonstrated the capability of the
previous approach to precisely model both indoor and outdoor scenes, going
beyond the mere 3D mapping devoted to robot navigation and obstacle
avoidance. Previous results have enabled novel applications, such as the
detection of wall cracks or the prevention of geological hazards, as landslides
and rockfalls, just to mention a few. A step forward in the sensor development
consists of reducing the size of the whole experimental setup, without altering
the final accuracy. In fact, downsizing the setup enables the possibility of
using it in further applications, including pipe inspection and monitoring
of dangerous and confined spaces. For this reason the prototype has been
completely redesigned with state-of-art devices (lasers and camera) able to
further increase the acquisition rate. Furthermore, the calibration phase has
been eased by means of a novel numerical approach for the exact computation
of the actual parameters involved in the measurements. In this way, precise
mechanical alignment of the optical components which constitute the system
is no longer required.
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3.1 Working principle

This Section aims to describe the working principles of the presented setup,
showing how the components cooperate to sense the surroundings. Starting
with the description of the setup components, this Section flows through the
investigation of the mathematical formulations that lead to the design of the
sensor prototype.

3.1.1 Geometry description

The proposed sensor is designed to map environments with high resolutions
and high frame rates, exploiting the principles of laser triangulation. Although
profilometry is a rather simple way to retrieve the 3D shape of objects, or
more generally of any surrounding, its fundamental limit resides in the short
available FoV. In the simplest case of a laser generating a line over the target
and a receiving camera, which directly looks at the illuminated surface, the
FoV is limited by the sensor width times the lens magnification. Since short-
focal lenses are not suitable for measuring because of the huge distortions, the
magnification is not small enough to increase the FoV to a full representation
of the environment. To achieve this result exploiting the advantages of
laser profilometry, it is mandatory to increase the component redundancy or
combine one or more mirrors with one or more cameras. These systems are
referred as catadioptric systems.

In general, catadioptric systems are made of a standard camera, with
perspective or orthographic projection models, pointing upward a convex
mirror (parabolic, hyperbolic, conic, etc.). As a consequence the FoV of the
camera is opened to the surrounding regions beyond the limit imposed by the
camera lens. On the other hand, such systems introduce deformations of the
acquired images. As a consequence, image distortions have to be compensated
to produce effective measurements, taking advantage of the knowledge of the
mirror equation.
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Figure 3.1: Sketch of the presented laser profilometer. Note the parabolic mirror is mounted
onto micrometric rototranslational stages, whereas the camera is fastened on the metallic
stand. Lasers are placed across from the parabolic mirror, behind the camera.

Following the approach described in [27], the proposed sensor falls in the
category of the catadioptric laser profilometers, since it is made of a laser
source, a parabolic mirror and an optical receiver. With reference to Figure
3.1, three laser sources are used to emit light, forming a plane with an overall
fan angle of 270◦ (90◦ each laser). When the light strikes a target of the
surrounding environment, a complete line is displayed on the surfaces. Each
point of the line describes a measurement sample where the scene will be
mapped in the global reference system. The parabolic mirror deflects light
on the camera plane, throughout the lens. Since a parabolic mirror reflects
light always following directions parallel to its axis of symmetry, a telecentric
lens is the best candidate for the image formation. The resulting image has
information about the position only of the illuminated targets. It is worth
noticing that the sensor must be aided by an encoded movement to perform
a complete scan of the whole environment. For this reason a mobile vehicle is
used to carry the sensor through the scene, sense its spatial pose via standard
odometry and send this information to the data collector.

Once the fundamental active devices are chosen and arranged in the setup,
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it is mandatory to derive the triangulation laws that govern the process of
image formation on the camera. This aspect will be treated in the next
section.

3.1.2 Triangulation equations

The aim of the proposed range sensor is the measurement of distances starting
from the inspection of where the laser line is displayed in the image. The next
steps are derived following the notation reported in Figure 3.2, where the
setup scheme is proposed. Here the reference system (x, y, z) is centered in
the vertex of the parabolic mirror, having symmetry axis along the z-direction
and focus at coordinates (0, 0, F ). It follows that the parabolic mirror has
equation:

z =
1

4F
(x2 + y2) (3.1)

The laser plane intercepts the z-axis at b (baseline), whereas the camera plane
intercepts the z-axis in WD (working distance). For the sake of simplicity,
Cartesian (x, y, z) and polar (ρ,Θ, z) coordinates are both used within the
next lines to refer the points in the world absolute system. Finally, the camera
plane has a proper 2D reference system (x′, y′), assisted by the corresponding
polar coordinates (r, φ).
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Figure 3.2: Schematic view of the proposed setup. The final goal of the analytic model
is the translation of the known coordinates (rC , φC), recovered on the camera plane, in
world coordinates (ρT ,ΘT , zT ), having origin in the mirror vertex.

When the laser plane strikes a target, a line emerges. Each point PT

belonging to the line has coordinates (ρT ,ΘT , zT ) and is detected on the
camera plane in PC , having coordinates (rC , φC) in the reference system of
the camera (x′, y′). In summary, the problem can be formulated in deriving
the world coordinates (ρT ,ΘT , zT ) knowing the terms (rC , φC). The following
steps start from two fundamental initial hypotheses:

1. Both the laser and camera planes suffer from negligible alterations of
their normal vectors with respect to the z-axis. This implies that the
laser line is always across from the focus of the paraboloid, behind the
camera. Equivalently each point of the line can be detected on the
camera plane whenever its sight is not occluded by other objects;

2. The z-axis crosses the image plane in its center, or equivalently the

30



vertex of the mirror is displayed in the center of the image plane. This
condition will lead to a simplification of the model, as the image pro-
jection can be referred in both absolute and camera reference systems.
In other words, the point PM is projected in PC keeping the transversal
coordinates (xC , yC)|(x,y,z) = (xC , yC)|(x′,y′). The last condition is valid
when the magnification M of the lens does not scale the metric coordi-
nates. Otherwise, the term M has to be added to the formulation as a
multiplicative factor.

It is easy to understand that the calibration phase has to be run to ensure
the meeting of the initial hypotheses. As an example, the mirror has to be
placed properly in order to achieve its centering in the image plane. These
procedures will be further described in the next section. Any generic point PT

of the laser line produces a reflection on the parabolic mirror at coordinates
defined by the point PM . Because of the properties of a parabolic mirror, the
projection of the laser spot onto the mirror is equal to the intersection of the
ray that connects the spot itself with the focus of the paraboloid with the
paraboloid itself shown in Equation 3.1. This ray has equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x =
ρT cosΘT (F − z)

F + b

y =
ρT sinΘT (F − z)

F + b

(3.2)

The corresponding analytical system, result of the ray incidence on the mirror,
admits two solutions of PM :

PM,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2F cosΘT

ρT

(
F + b+

√
ρ2T + (F + b)2

)
−2F sinΘT

ρT

(
F + b+

√
ρ2T + (F + b)2

)
F

ρ2T

(
F + b+

√
ρ2T + (F + b)2

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.3)
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PM,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2F cosΘT

ρT

(
F + b−

√
ρ2T + (F + b)2

)
−2F sinΘT

ρT

(
F + b−

√
ρ2T + (F + b)2

)
F

ρ2T

(
F + b−

√
ρ2T + (F + b)2

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.4)

Both solutions are valid in the set of real numbers, but only one of them is
physically possible. In particular, the geometry of the system imposes a strict
constraint: only that point that hits the mirror at the lowest z-coordinate
is solution of the analytical system. It follows that PM,2 (from now on PM)
solves the specific problem. Consequently, the coordinates of PC on the
camera plane are:

PC =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M
2F cosΘT

ρT

(√
ρ2T + (F + b)2 − (F + b)

)
M

2F sinΘT

ρT

(√
ρ2T + (F + b)2 − (F + b)

)
−WD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.5)

being WD the nominal working distance of the lens-camera set. The trans-
versal coordinates can be also expressed in polar coordinates, thus giving
(rC , φC) equal to:⎧⎪⎪⎨⎪⎪⎩

rC = M
2F

ρT

(√
ρ2T + (F + b)2 − (F + b)

)
φC = ΘT

(3.6)

Since the final goal of the presented framework is the estimation of (ρT ,ΘT , zT )
knowing the terms (rC , φC), the relationships in Equation 3.6 have to be
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inverted, thus obtaining:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρT =

4MF (F + b)

4M2F 2 − r2C
rC =

1 + 4ab

1− 4a2r2C
rC

ΘT = φC

(3.7)

where a is the curvature of the parabolic mirror, equal to 1
4F

.
The results in Equation 3.7 are thus able to transfer the points belonging

to the laser line detected on the camera plane in an absolute reference system.

3.1.3 Design strategy

Starting from the deep knowledge of the triangulation laws in 3.7, a prototype
can be designed in terms of selection of active devices, namely camera and
laser sources, and passive components, i.e. telecentric lens and parabolic
mirror. The geometrical and physical parameters involved in the actual design
of the experimental setup are reported in Table 3.1.

Table 3.1: List of geometrical and physical parameters involved in the range measurements.

Components Parameter name Description

Passive
Mirror a Curvature of the mirror [m−1]

Lens M Magnification of the lens

Active
Camera

W ×H Camera resolution

p Pixel size [m]

f Frame rate [s−1]

Laser b Baseline [m]

The choice of the model parameters in Table 3.1 is linked to a set of initial
specifications:

• the maximum measurable range dMAX ;

• the maximum acceptable uncertainty in range estimation ∆ρT,MAX

obtained at ρT = dMAX ;

• the number of profiles per second that are returned by the sensor (herein
Profile Acquisition Rate, PAR).
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The estimation of the device parameters starts with the analysis of the
specified PAR. In particular, this requirement defines a first and unavoidable
constraint on the choice of the camera, which is the only device responsible
for the measurement rate. On the other hand, the requirements on the
measurement quality have effects on the choice of the mirror equation, in
terms of its curvature a, and of the baseline b between mirror and lasers. Also
the lens magnification M has to be defined properly in order to adapt the
properties of the camera (pixel size and resolution) to the specific problem
under analysis.

Figure 3.3: Error components related to the quantization of the image plane due to the
finite area of pixels. Each pixel of the plane is square and has side equal to the pixel pitch
p

In this context, errors are ascribable to the quantization induced by the
matrix of pixels on the camera plane. Figure 3.3 shows a sketch of the
quantization and the corresponding effects on the determination of the beam
coordinates. In particular, for any point PC , projection of the laser line
within the pixel area, the resulting actual coordinates (rC , φC) are always
associated to the coordinates of the center of the illuminated pixel (rC0, φC0).
The error contribution can be described by the vector ε, which has origin in
the center of the pixel PC0 and ends in PC , corresponding to the actual range
measurement. The pixel area determines a region of uncertainty. This region
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can be shifted in the absolute reference system, thus defining an ambiguous
spatial region where differences in (ρT ,ΘT ) cannot be resolved. In this case,
the measurement is: ⎧⎪⎨⎪⎩

ρT = ρT0 +∆ρT

ΘT = ΘT0 +∆ΘT

(3.8)

where ∆ρT and ∆ΘT refer to the range and angular uncertainties. The
following formulations aim to detect the worst condition for the measurement,
or equivalently the highest contribution of the error vector ε to the coordinates
(rC , φC). It is easy to understand that the vector ε has maximum modulus
when the point PC exactly lies on the corners of the pixel area. In this case
the modulus is equal to half the diagonal of a pixel, i.e.:

|ε|MAX =
p
√
2

2M
(3.9)

It is mandatory to observe that the pitch term p in Equation 3.9 has been
divided by M before being reported in the world reference system. In the
following lines, the ratio p

M
will be named as effective pixel size p′. In a

similar manner, when PC lies on the corners of the pixel area, the uncertainty
in the determination of ΘT experiences its lowest or highest values. Also in
this case, the peak of uncertainty is reached along the pixel diagonal, which
represents the maximum range of angles that can be spanned within the pixel
itself. In summary, given the extension of the pixel diagonal and the analytic
model derived before, the maximum error can be directly estimated at a
specific region of the mirror, or, equivalently, at every distance from the laser
sources. Following Equation 3.7, the generic pixel of coordinates (rC0, φC0)
corresponds to a target placed at position:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρT0 =
1 + 4ab

1− 4a2r2C0

rC0

ΘT0 = φC0

(3.10)

As effect of the image quantization, the returned measurement is affected by
the two contributions of uncertainty, ∆ρT and ∆ΘT . Given the hypothesis in
Equation 3.9, the expression of ∆ρT can be easily derived as:

∆ρT =
1 + 4ab

2

2rC0 + p′
√
2

1− a2
(
2rC0 + p′

√
2
)2 − ρT0 (3.11)
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which leads to:

∆ρT =
p′
√
2

2

1 + 4ab

1− 4a2r2C0

1 + 2a2
(
2rC0 + p′

√
2
)
rC0

1− a2
(
2rC0 + p′

√
2
)2 (3.12)

Equation 3.12 can be further manipulated to derive the expression of ∆ρT
as a function of the measurement ρT0. This result can be easily obtained
inverting the first equation of 3.10:

rC0 =

√
(4ab)2 + 16a2ρ2T0 − (1 + 4ab)

8a2ρT0

(3.13)

At the same time, the maximum angular uncertainty in target measurements
can be derived knowing the coordinates of the point PC and PC0 in the
x′ − y′-plane and how they are related to the pixel size. For instance, if PC

lies on the north-west corner of the pixel depicted in Figure 3.3, it is possible
to derive ∆ΘT as follows:

∆ΘT = arctan

(
2rC0 sinΘT0 + p

2rC0 cosΘT0 − p

)
−ΘT0 (3.14)

which can be further developed as a function of the range measurement, by
replacing the expression in Equation 3.13. Equations 3.12, 3.13 and 3.14
are necessary but not sufficient to achieve the complete design of the sensor,
which requires the last constraint: the mirror has to be in the FoV of the
selected camera. When the mirror is acquired by the camera, its edges define
a circle of diameter DM . It is easy to understand that this area has to be
included within the camera plane in order to be captured, and, consequently,
the mirror diameter has to be at least equal to the smallest size of the camera
sensor. Specifically, being W and H the number of pixels along the horizontal
and vertical directions (H ≤ W ), DM has to be equal to h = H · p′. Since
the sensor has to return measurements at a maximum distance dMAX from
the laser sources, equation 3.13 can be rewritten imposing that a laser beam,
impinging on a target at distance dMAX , is detected on the most external
regions of the mirror. Mathematically, this condition leads to impose that
rC0 =

DM

2
when ρT0 = dMAX . This can be exploited to define the unknown

baseline b as a function of the mirror curvature a:

b =
2 (1− a2h2) dMAX − h

4ah
(3.15)
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As a consequence, the design can be shifted to the evaluation of the unknown
a, which is the only term that has to be dimensioned to match the specifi-
cation on the maximum error. Equation 3.12 can be developed considering
rC0|ρT0=dMAX

= DM

2
= h

2
, together with the expressions 3.9 and 3.13, thus

obtaining:

a =

√
h∆ρT,MAX − p′

√
2dMAX

h
(
h+ p′

√
2
) (

h∆ρT,MAX + p′
√
2(dMAX +∆ρT,MAX)

) (3.16)

Note that only the positive solution of a has been considered, accordingly
with the sketch in Figure 3.2, where a concave up paraboloid is presented. In
summary, the first specifications on the maximum measurement range and
the maximum acceptable error define univocally the geometrical parameters
that determine the shape of the parabolic mirror, in terms of its curvature a
in equation 3.16, and the position of the laser sources along z, assessed by
the baseline b in equation 3.15.

3.2 Experimental analysis

3.2.1 Prototype description

As described in details, the proposed range sensor is based on the principle
of laser triangulation. Following the early idea given in [26, 25, 27], the
triangulation process is assisted by a parabolic mirror in order to achieve a
wide FoV of 270◦.

The aim of this investigation is a further improvement of the previous
setup in terms of the reduction of the sensor size and the increase of the
measurement rate. Specifically, the first prototype implements a parabolic
mirror whose radius is equal to 60 mm. The corresponding telecentric lens,
chosen to capture the whole mirror area, has the same radius of the reflector,
and a length of about 600 mm. At the same time the distance between the
vertex of the mirror and the laser plane, from now on baseline b, has been
dimensioned equal to 1.5 m to acquire measurements with a maximum relative
error of 0.1% at a distance of 3 m from the emitters. Finally the PAR, which
determines the number of slices per seconds that maps the environment, is
equal to 5.

The novel design fixes new initial specifications. As a first step the setup
has to be reduced in size to a maximum total length of 1 m, keeping the
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measurement resolution ∆ρT,MAX to 10 mm at a maximum distance dMAX

of 3 m. At the same time the PAR has to be improved reaching 25 profiles
per second. These aspects imply the use of state-of-art devices, together with
the redefinition of the design parameters, to fit the new requirements.

Figure 3.4: Picture of the actual prototype: (a) Overall setup; (b) Optical receiver made of
the parabolic mirror and the lens-camera set; (c) Laser sources and lenses and data logger
connected to the camera.

With reference to Figure 3.4, where a first prototype is presented, the
sensor exploits fiber optic lasers, namely CUBE Laser by Coherent [168], with
a built-in thermal management. Furthermore, the use of fiber tails assisted by
cylindrical lenses enables the reduction of the space required for its mechanical
assembling. At the same time, the initial specification of high measurement
rate is ensured by the use of the camera CL-400 Bonito by Allied Vision
Technology [169], which exploits the double and full Cameralink protocol
with frame rates f up to 386 frames per second. The main features of this
camera are reported in Table 3.2.
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Table 3.2: Specification of the implemented camera (AVT CL-400 Bonito [169]).

Parameter Description Value

Interface 2× 10-tap CL Full+

Image resolution (W ×H) 2320× 1728

Sensor size 4/3”

Pixel size (p) 7µm

Max frame rate at full resolution 386 fps

Once the camera has been selected, the unknowns a, b and M have to be
properly dimensioned to match the initial specifications on the measurement
error and sensor size. As stated previously, the error analysis leads to
Equations 3.15 and 3.16 which can be easily exploited to derive the mirror
curvature and the baseline, as a function of the magnification of the telecentric
lens, implicitly held in p′. Typical values of the magnification M are 0.75,
1 and 2 (e.g. see Ref. [170]). These numbers have been tested, producing
the results in Figure 3.5, where the maximum error ∆ρT,MAX is reported
as a function of the mirror curvature and the laser-mirror distance. The
presented plots are computed for realistic values of a and b. Specifically, the
mirror curvature spans describing a maximum mirror depth of about 13 mm,
corresponding to a = 100m−1 with M = 0.75. It is important to notice that
high-curvature mirrors are not suitable for the specific application, since their
depths are much over the limit imposed by the depth of field of the lens,
typically close to few millimeters. In this case, the telecentric lens would
not be able to focus the mirror over its entire depth, or equivalently over its
whole area. At the same time, the trial values of the baseline are limited
to 1.3 m, anyway higher than the desired maximum length of the sensor.
Before going through the inspection of Figure 3.5, it is worth observing that,
within the considered boundaries of a and b, a magnification M equal to 2
does not produce visible reflections on the mirror, i.e. in the camera FoV,
when the target is 3 m far from the laser sources. This value defines the
maximum range of the proposed device, which makes it most suitable for
indoor applications. At the same time, those outdoor applications where the
main interest is focused on the closest targets (see railway monitoring) can
be faced, taking advantage of the coherent nature of the laser line, which
is highly recognizable against the ambient light. Nevertheless, also higher
maximum ranges can be reached by changing properly the optical components
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involved in the presented setup.

Figure 3.5: Maximum errors ∆ρT,MAX at dMAX = 3 m as a function of the mirror
curvature and the baseline, computed for magnification equal to: (a) 0.75, (b) 1. Regions
where the laser incidence is out of the camera FoV are displayed in white.

The insight of Figure 3.5 demonstrates that when the magnification is
equal to 0.75, the lower values of a and b that allows ∆ρT,MAX = 10 mm are
48.22m−1 and 756.9mm, respectively. On the other, the same specification
is matched for a = 64.29m−1 and b = 758.2mm, when M = 1. Although
baselines are almost equal, the mirror curvatures change considerably. As
stated previously, a conscious design would prefer lower curvatures, since
the corresponding mirrors have shorter depths. In this way, the telecentric
lens can extend its working distance over increasing areas of mirror, keeping
the laser line focused. Hence, the telecentric lens VS-LTC075-70-35/FS by
VS-Technology [170], having magnification equal to 0.75, has been chosen
for the presented prototype. The final design parameters that allow the
specification compliance are thus summarized in Table 3.3.
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Table 3.3: List of design parameters that allow maximum error of 10 mm at a distance of
3 m.

Parameter Value

a 48.22m−1

b 756.9mm

M 0.75

Once the design parameters have been selected, the maximum error in
the computation of the angular component of PT can be estimated. With
reference to equation 3.12, this error contribution depends on the exact
angular component of the point PC0. Figure 3.6 (a) shows the dynamics of
the error term ∆ΘT,MAX as a function of the angle ΘT0, equal to φC0.

Figure 3.6: (a) Angular component of the maximum measurement error at dMAX = 3m as
a function of the estimated angle ΘT0. (b) Maximum estimated shift, due to the presence
of angular uncertainty ∆ΘT,MAX , in the computation of the y-coordinate of the point PC

at dMAX equal to 3 m.

The analysis of Figure 3.6 demonstrates that the angular component of
the maximum error due to image quantization is always below 3.5 × 10−2

degrees. As a consequence, the estimation of the target position in the (x, y, z)
system of coordinates is altered as results of the application of sine and cosine
functions to the term ΘT0 +∆ΘT,MAX . Quantitatively the maximum error
due to ∆ΘT,MAX in determining the x and y coordinates of the point PC is
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at most equal to 1.6mm at a distance of 3m (see Figure 3.6 (b)), i.e. about
one order of magnitude lower than the specified ∆ρT,MAX .

3.2.2 Setup calibration

However precise and mechanically stable the experimental setup can be, the
actual geometrical parameters differ from the nominal one. As a consequence,
the setup calibration has to compensate for it, estimating the unknown
parameters F (or equivalently a) and b that govern the triangulation process.
This task is mandatory within a calibration phase, which is driven by the
inspection of a completely-known target.

Before going through the estimation, it is important to mention the
preliminary assumption of the model, regarding the relative position of the
mirror and the image plane. Specifically, the camera plane has to intercept
the axis of symmetry of the mirror in its center. Since the camera has greater
sizes than the mirror, it is more convenient to change the position of the
latter, keeping the camera fixed at a distance from the mirror close to WD.
Consequently, the mirror has been bracketed on mechanical handles, taking
advantages of micrometric shifts in the xy-plane and rotations around the x-
and y-axis.
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Figure 3.7: Example of frame captured by the camera for the estimation of the mirror
position in the image plane.

Once the mirror has been equipped with micrometric rototranslational
stages, a processing pipeline is needed to estimate its position within the
image plane. The algorithm of mirror identification has been developed in the
MVTech Halcon 11 [171] environment. In this case, the position of the mirror
vertex can be estimated by searching for the mirror circular boundary in a
set of sample frames captured by the camera. Figure 3.7 shows an example of
image returned by the camera, where a self-reflection of the telecentric lens
can be observed in the image center, whereas the mirror boundary can be
easily recognized on the outer regions.

With reference to Figure 3.8, where the contour extraction is presented
step by step, the implemented algorithm processes the returned frames (e.g.
Figure 3.7) to estimate the mirror position through the following steps:

1. A process of image threshold highlights the pixels of intensity higher
than 20, returning the green area in Figure 3.2 (a);

2. Given the areas of high intensity, the method extracts the region contours
in Figure 3.2 (b);

3. The longest boundary is selected and fitted on a two-dimensional ellipse
in the least squares sense, producing the green curve in Figure 3.2 (c);
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4. The center coordinates are consequently derived (red cross in Figure
3.2 (d)), whereas the eccentricity of the estimated ellipse is evaluated
to measure the alteration of the normal vector of the image plane with
respect to the z-axis.

Figure 3.8: Image processing steps for the determination of the mirror position in the
camera plane. (a) Threshold image; (b) Boundaries extracted from the threshold regions
of high intensity; (c) Start image and corresponding fitting ellipse (in green); (d) Final
results with the estimation of the center coordinates (red cross).

The presented algorithm controls the mirror position in real time, thus
enabling the direct use of the micrometric stages for its exact placement. In
this way, the initial hypothesis that leads to the model in equation 3.7 is
verified.

The calibration phase can thus proceed with the estimation of the unknown
model parameters. For this purpose, a wood structure made of 45-mm-thick
strips has been realized and scanned by the proposed sensor in order to frame
couples of laser points belonging to the strip corners. The Euclidean distance
computed in the image plane between corresponding corner points is then
compared to the actual corner distance, implicitly equal to the thickness of
the laths. Figure 3.9 reports an example of an acquired frame used for the
setup calibration, whereas the inset shows the corresponding couple of points
named as the structure edges.
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Figure 3.9: Example of a frame captured by the camera during the setup calibration.
The laser line illuminates a target of completely known geometry. The inset highlights
the extracted points belonging to the structure edges, whose distance corresponds to the
thickness of the wood strips.

The experimental calibration is treated as an optimization problem. As a
first step the couples of edges are extracted, passing through the following
steps:

1. The image is cropped in order to eliminate secondary reflections due
to the presence of external light sources, returning the region enclosing
the sample target (see the inset of Figure 3.9);

2. The ROI is treated by a threshold process to highlight the laser points.
This step generates a binary image where white pixels are candidate
laser points;

3. A region growing approach is applied, after a morphological dilation
filter, to detect continuous region that resamples the laser line;

4. The resulting regions are individually fitted on an ellipse. The limits of
the major axis determine the edges of the laser line impinging on the
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sample target. These points are derived with subpixel resolution.

Once the edges are extracted, these are transformed in world coordinates,
using trial parameters. An objective cost function is thus defined as the square
error between the computed edge distances and their nominal counterparts.
The problem is thus solved in the non-linear least squares sense.

An overdetermined system is built exploiting more than 100 frames and
solved in the model parameters, thus obtaining the resulting values in Table
3.4, with a corresponding residual of the cost function of 3.205× 10−4.

Table 3.4: Results of the calibration process.

Parameter Calibration results

F 5.166mm

b 702.12mm

The actual values of the model parameters determine a drift of the me-
asurement obtained under ideal conditions. From a quantitative point of
view, compensating for the presence of setup alterations allows the deletion
of additional systematic errors. With more details, considering the nominal
parameters instead of the calibrated ones generates a peak error of 144.19mm
at the maximum range of 3m, i.e. one order of magnitude higher than the
required range resolution (10mm).

3.2.3 Experiments and discussions

The experimental validation of the sensor setup can be performed in two
different ways:

1. Inspecting the movement of a target, which is mechanically controlled
via encoded slits and rotational stages. This technique requires the
perfect understanding of the mathematical relationships between the
world reference system, where the target shift is defined, and the mirror
reference system, where actual results are determined;

2. Scanning the shape of a known object, placed at increasing distances
from the laser sources. This method returns relative measurements,
which are characteristics of the target itself. It follows that the knowledge
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of the object pose in the mirror system of coordinates is no longer
required. The comparison is self-consistent, given the shape of the
target.

For these reasons, several acquisitions have been performed with the aim
of determining the size of a square board, placed at increasing distances.
Moreover, experiments have been run changing the direction of the radial
shifts in order to cover many spatial regions. This results will be of interest
since the goal of the proposed system is the inspection of surroundings,
wrapped around the range sensor. In this case, it is mandatory to ensure that
the measurements are always reliable, regardless the target position. Figure
3.10 reports an example of frame, acquired when the laser line impinges on a
square paperboard having side equal to 310mm. The base of the board has
been perfectly aligned to the ground, in order to ensure that the line crosses
it parallel to its vertical sides.

Figure 3.10: Example of frame acquired by the camera for testing the sensor accuracy. The
rectangle encloses the laser line impinging on the board.

The edges of the laser line have been extracted by means of the same
algorithm used in the calibration phase for the corner extraction from the
known target. In summary, a ROI including the laser line is extracted and a
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binary image is built by means of a threshold process; after the application
of a dilation filter, a region growing approach is used to determine the actual
laser line, which is fitted on an ellipse. The edges of the laser line on the
board sample are equal to the limits of the major axis of the fitting ellipse.

The results of the proposed algorithm, applied to the frame of Figure 3.10,
are shown in Figure 3.11.

Figure 3.11: Results of the edge extraction algorithm used for the detection of the board
sizes. The inset shows a magnified view of the extracted points; the green line identifies
the fitting ellipse.

Once the edges of the laser line are extracted from the image, they can be
reported in the (x, y, z) reference system, thus obtaining their positions in
space. It is evident that the spatial distance between the edges is implicitly
equal to the side of the panel. Figure 3.12 points out the estimated dimension
of the board as a function of the target distance. Plots are obtained spanning
the target movement around the sensor for discrete angles α, which defines the
direction of the target shifts with reference to the ground (assumed parallel
to xz-plane).

48



Figure 3.12: Estimation of the size of the sample board as a function of the distance of the
target from the light sources. Measurements have been performed changing the direction
of the radial shifts, accordingly with the axis defined by the angle α, referred to the ground
plane: (a) α = 25.96◦; (b) α = 15.92◦; (c) α = 6.98◦; (d) α = −5.44◦.

Results clearly show the good agreement of results in computing the
dimension of the board side, regardless the target position, which qualitatively
does not alter the measurement error. In particular the average values of the
estimated dimensions of the board are reported in Table 3.5.
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Table 3.5: Average values of the measured size of the square paperboard under analysis.
The target has a nominal dimension of 310mm.

α Paperboard size [mm]

25.96◦ 309.77

15.92◦ 310.62

6.98◦ 310.23

−5.44◦ 309.39

Moreover, range samples have been collected in equally spaced bins in
order to derive information about the noise statistics, leading to Figure
3.13. At this stage, quantization errors are compensated by the process of
point extraction, which computes the position of the panel borders with
subpixel precision. Here, the main contributions to the measurement errors
are related to a superposition of two mechanisms of degradation. First the
laser line is defocused on the camera plane as effect of the finite depth of
field of the camera and the divergence of the laser light. Then, the image
processing introduces implicit approximations, since curve lines corresponding
to straight segments are actually fitted by ellipses. Nevertheless, the data
collection in Figure 3.13 follows a Gaussian-shaped function centered on the
expected measurement, thus proving the good accuracy of the proposed sensor.
Measurements are altered by noise contribution with standard deviation of
1.74mm and a consequent ∼ 99% confidence interval of about 10.44mm.

Furthermore, the presented error estimation is uncorrelated with respect
to the camera frame rate, till the limit fixed by the inverse of the exposure
time used in the presented experiments (30ms). When the frame rate is
higher than 33 fps, the exposure time has to be reduced properly, thus
downing the intensity amplitude of the detected laser line. As a consequence,
the decreasing signal-to-noise ratio can produce effects on the measurement
quality. Nevertheless, the initial requirement of fast acquisitions (25 fps) can
be matched within the limit of precision discussed before.

The presented results can be compared with those returned by the Accu-
Range AR4000 rangefinder, whose range measurements are affected by a
statistical white noise with standard deviation of 2.5mm when the target is
placed 1m far from the emitter [172]. Although noise contributions seem
comparable, the frame rate of the AR4000 rangefinder imposed for these
experiments is equal to 1 kHz. On the other hand, the presented sensor
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produces about 5× 104 samples per second at the current frame rate of 25
fps. This behavior is due to the camera resolution which allows the proper
decomposition of the detected laser line of a single frame in more than 2000
samples, without any degradation of the measurements.

Figure 3.13: Collection of samples returned by the analysis of the board side.

3.2.4 3D reconstruction

As a proof of the actual capabilities of the presented range sensor in 3D
reconstruction, an example of acquisition is briefly reported in this Section.

The sensor is fastened on a mobile robot, which flows through an indoor
environment (in this example a corridor) following straight trajectories at
a constant speed of 400mm/s. The camera is triggered by a TTL signal
generated by the robot encoders. Given the resolution of the encoders and
the robot speed, the camera sends a frame to the data receiver every 5mm,
exploiting the full camera link protocol. This data is a raw matrix with
1728× 2320, full of unsigned char representing the image intensities. Frames
are then processed to extract the position of the laser line in the image plane.
At this stage, the image is sectioned following 2048 radial directions, starting
from the image center. Each section can include at most one laser peak,
whose position can be easily computed applying the standard center of mass
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approach [173]. Knowing the exact position of the laser line with subpixel
accuracy and the robot pose returned by odometry, it is possible to derive
the corresponding coordinates in three-dimensions. These samples are finally
ordered in a Wavefront .obj file, filled by the vertex of the dataset. The
reconstruction has produced a point cloud having size equal to 2.4 × 106

points. This outcome is shown in Figure 3.14.

Figure 3.14: (a) Acquired corridor and (b) corresponding 3D reconstruction; (c) picture of
a particular object with maximum size of 10cm and (d) corresponding 3D model.

3.3 Summary

In this chapter, an omnidirectional range sensor for the inspection of surroun-
ding spaces has been developed. Following the principles of laser profilometry,
the range sensor estimates the distance of targets by looking at the displace-
ments of a laser line projected onto the environment. When the vision system
is assisted by a parabolic mirror, high FoV can be reached in a single scan,
i.e. a camera frame, thus increasing the number of profiles, up to the limit
fixed by the camera electronics. The experimental setup has been designed
following analytic expressions to meet initial specification on its overall size
and the measurement resolution at a distance of 3m from the emitters. A
novel calibration phase devoted to the alignment of the optical component
involved in the acquisition has been described, together with the estimation
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of the actual geometrical parameters that lead to the range measurements.
Several experiments had been run in order to establish whether the propo-
sed system can inspect accurately the surface of known calibrated targets,
using effective image processing techniques. Measurements returned by the
sensor for the estimation of the size of the known target had been compared
with nominal values. Experimental results have demonstrated that the noise
contribution follows a Gaussian shape with standard deviation of 1.74mm
and negligible systematic error (mean value close to 0.31mm), regardless
of the target distance from the sensor. All noise sources are ascribable to
the defocusing effect induced by the finite depths of field of both emitting
lasers and receiving system. Keeping the same exposure of the camera, the
profile acquisition rate can reach 33 profiles per second, as required by the
specifications, without increasing the maximum error.
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Chapter 4

3D Point cloud registration

In this Chapter a modified ICP algorithm for the registration of datasets
acquired at different epochs for structural monitoring is described. The
proposed approach belongs to the data-driven category, i.e. it uses information
within point clouds, without artificial markers or GPS/inertial information.
As a matter of fact, computer aided methods that do not use markers can
speed up registrations, since the time spent for structuring the environment
is no longer required. Furthermore, in this way alignments of point clouds
are always enabled, also when the environments can not be structured or the
GPS information is not available (e.g. indoor scenes).

The underlying idea comes from the observation of some limitations
common to many ICP approaches. First of all, most of them neglect the
properties of the acquisition and the environment under investigation. In fact,
when laser rangefinders are used, the mechanisms of ray projection can induce
the presence of different shades when objects are observed from altered points
of view. As an example, pillars and columns, typical of civil infrastructures
(buildings, road and underground infrastructures, such as covered parking,
metro tunnels, etc.) can introduce implicit artifacts in the measurements
and hence errors in the registration process. In Figure 4.1, two 3D models
of the same environment acquired from different points of view are shown:
the red points represent the differences, due to the change of the view-point,
which can not be matched in the registration process. Furthermore, when
point clouds are acquired at different epochs for structural monitoring, the
inspected scene can experience changes (object shifts, plane rotations, etc.)
with respect to the reference point cloud. If both implicit artifacts and actual
changes are neglected, and all the points are considered in the registration
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process, wrong registration parameters can be obtained.

Figure 4.1: Comparison of two 3D models of the same environment. Red dots are implicit
differences due to the change of the sensor point of view. (a) Reference and (b) source
point clouds.

These critical aspects are the main topic of the methodology described in
this chapter, which modifies the standard ICP implementation by introducing
deletion masks, i.e. binary weighting matrices made of 0s and 1s. This
strategy is able to remove the measurement artifacts due to the changes
of the sensor point of view, reaching higher robustness against the possible
environmental changes between the two different acquisitions. Deletion masks
are defined at each iteration as a function of the estimated sensor positions
and are applied before the evaluation of the distance between the source
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and reference point clouds. The aim of this mask is the deletion of pairwise
comparisons altered as effect of estimated changes of the sensor point of view.
Experimental evidence demonstrates that the proposed method can improve
the accuracy of the standard ICP method and its variants, also in presence of
alterations of the environments under inspection.

4.1 Methodology

Whenever the processing of 3D models is aimed to monitoring infrastructures,
high accuracy and high resolution are necessary. Laser rangefinders are
the best sensors to achieve this goal since they can reach and measure
hardly-positioned structures in narrow spaces, without any difficulty and
regardless the lighting conditions. Typically, laser rangefinders are bracketed
on mobile vehicles, which proceed through the environment, and collect
distance measurements ρ as a function of the vehicle position. As a result,
the position in space of the samples gives a representation of the acquired
targets, namely of their external surfaces. Two examples of point clouds
acquired in indoor environments are reported in Figure 4.2. In particular,
Figure 4.2a represents a generic entrance hall, whereas Figure 4.2b models
a covered parking. These environments will be the specific case studies for
the presented algorithm of point cloud registration. The arrows in Figure 4.2
display the directions followed by the mobile vehicle during the acquisitions.
At this stage, it is important to notice that the method, and its underlying
ideas, can be applied to any dataset produced by a generic laser scanner.
Nevertheless, for the sake of simplicity, the following treatments will refer
to the specific case of a moving sensor which collects samples as the vehicle
moves through the environment.
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Figure 4.2: Example of point clouds derived from (a) a generic indoor environment and
(b) a covered parking. The arrows represent the directions followed by the mobile vehicle
which carries the sensor through the environment under analysis.

The following subsections will describe the best processing for the align-
ment of two or more datasets modelling the same environment, i.e. an indoor
infrastructure. The presented method can find application for any kind of
measurement scheme aiming the environmental modeling. Attention will be
focused to the reduction of the size of the point clouds, together with the
description of the main limits of the existing algorithms. Then, the method
will be explained in details, pointing out the most important features that
will carry to the improvement of the results.

4.1.1 Preprocessing steps

The first step in the processing of point clouds aims to the datasets simplifica-
tion, which is often mandatory to derive lighter datasets, full of information,
that can be easily treated by the algorithms. Well-known techniques and
methods are often used to extrapolate the meaningful parts of the datasets
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and to simplify them without any loss of information ([174, 175, 176]). This
phase can be summarized in the following steps: outlier removal, reduction of
useless samples and surface analysis.

Typically, secondary reflections or high-absorbing targets can lead to noisy
measurements. As a consequence, many points acquired by the range sensor
are outliers which can be removed exploiting the dataset statistics [177]. Since
the point clouds are dense of samples, a point is an outlier when it belongs
to a low-density region. In practice, a sphere is centered on the investigated
point in order to compare the number of samples within this region with the
expected one. In a more efficient way, the acquired samples are clustered
following a distance criterion and then processed in order to find isolated
points, i.e. those points, or sets of points, which have a small number of
neighbors, lower than a threshold Sth. This processing is general and can
be applied regardless the kind of scene under analysis. Its effectivity only
depends on the properties of the point cloud produced by the sensor: size,
resolution and accuracy, which implicitly define the threshold parameters.
For instance, laser rangefinders able to produce tens of samples of a surface of
1cm2 at 1m of distance, can return dense point clouds. In this case, setting
the radius of the sphere to 1cm and the threshold Sth = 5 can ensure the
removal of the only outliers due to measurement errors.

Since the method is defined for processing indoor datasets, it is possible
to design smart filters, able to exploit this domain knowledge for the removal
of those samples that do not add significant information to the model. This
result can be achieved by extending the principles of the Split and Merge
algorithm (also known as Ramer-Douglas-Peucker algorithm, RDP [178])
to the input dataset. In more details, the range values belonging to an
ordered vector of indices generate a curve which is decomposed in a set
of line segments, whose edges define a subset of the exact samples. The
simplified curve is derived by deleting the points that have a distance from
the corresponding line segment lower than a tolerance value, named as RDPtol.
Some results, obtained by changing the tolerance value, are shown in Figure
4.3. The method operates searching for the most informative points and
deleting the ones which are unnecessary. In this way, range sets extracted
from indoor transport infrastructures, which are of interest in this framework,
are approximated by line segments with low residuals. This representation
is the most suitable for the processing of the specific environments, since
scenes are usually made of planes. Finally, it is important to observe that
the tolerance RDPtol can be chosen proportional to the range measurement,
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since many sensors produce results with different resolutions, depending on
the distance of the target.

Figure 4.3: RDP results on a pseudo-random array of range values. The tolerance value is
constant and equal to: (a) RDPtol = 0.5, (b) RDPtol = 1 and (c) RDPtol = 2.

As a final step in the model creation, information about the point position
in space are merged with surface data [179]. The task of surface reconstruction
from 3D range data has been deeply developed and many algorithms have been
already proposed. Among them, the most important are the Ball Pivoting
Algorithm [180], the Powercrust [181], the Poisson Surface Reconstruction
[182, 183] and the Multi-level Partition of Unity Implicits (MPU) [184].
When the point cloud is ordered, this goal can be achieved easily. Whenever
each range value ρ that belongs to the i-th point cloud Pi (i identifies the
acquisition) is obtained at specific discrete indices, a surface mesh Si, made
of triangular patches, is directly created by linking consecutive indices (points
become vertices of the triangles of the mesh). It is clear that the preliminary
simplification produces holes in the map of range values given by the sensor.
In this context, Figure 4.4 reports an example of the generation of holes in
the triangular mesh. When the green dot in Figure 4.4a is deleted by the
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previous simplification, the reconstruction of the triangular patches fails since
the theoretical correspondence of adjacent indices is no longer valid. These
issues are overcome by connecting vertices whose indices satisfy a criterion of
minimum distance, instead of connecting vertices which are close in space,
thus reaching the final result in Figure 4.4c. In this way, the construction of
wrong patches made of edges that actually belongs to different surfaces is
avoided.

Figure 4.4: Example of the process of hole generation due to the simplification of the point
cloud. (a) Starting mesh; (b) Hole formation due to the simplification of the green dot in
(a); (c) Final result of the surface reconstruction.

Once the set of ordered connections defined by the surface mesh is defined,
it is used to create point normal vectors, which are defined as the average
value among all the normal vectors of the triangular patches that include
the specific point. Each sample is further compared with the closest ones in
terms of normals and it is deleted from the dataset if all surroundings have
the same properties.

4.1.2 ICP and its drawbacks

The task of registration of clouds of points is mostly per-formed applying the
Iterative Closest Point (ICP) algorithm [105, 106]. A simplified scheme of
the standard ICP algorithm is summarized in the flow chart in Figure 4.5.
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Figure 4.5: Flow chart of the standard ICP implementation.

Starting from its first formulation, the method considers two point clouds,
a reference P0 and a source P1, each one constituted by a set (vector) of
distance measurements ρ0 and ρ1, respectively. The ICP tries to establish
the transformation parameters which carry to the best matching of the
overlapping regions, solving an optimization problem in the least squares
sense. In summary, the point clouds are first subsampled uniformly or trying
to extrapolate the most significant points (discontinuities). Then, the ICP
algorithm establishes Γ point correspondences between the two datasets and
transforms the source point cloud, following the rotation R and translation T
guess matrices. Then it directly computes the cost in terms of sum of squared
differences between the Γ range values of the matched samples. The cost
function is defined as follows:

C(R, T ) =
Γ∑

j=1

(ρ0,j − ρ1,j(R, T ))2 (4.1)

where ρ1,j(R, T ) are the range values extracted from the source P1, after
the transformation defined by the guess matrices (R, T ). The cost is thus
optimized as a function of the trial matrices, which are full of entries. As a
consequence, the alteration of the point of view can be compensated exploiting
six degrees of freedom.
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Further ICP variants exploit a different estimation of the cost function.
As an example, the use of a point-to-plane metrics is used in [117] in order
to weight the correspondences between homologous points by means of the
surface properties. In this case each addend of the cost function is multiplied
by a weighting term wj, equal to the normal vector of the specific j-th point
of the reference. Here the problem of estimating point normals deserves
attention since its accuracy and reliability are mandatory to achieve good
results [185].

Although the ICP formulation is very simple and often allows a closed
form solution, many drawbacks can emerge in actual contexts [186]. First of
all, it is straightforward to understand that this cost term is also linked to
the possible modifications of the environment. If the environment is heavily
altered or the points of view significantly change, the perfect alignment of
the datasets produces higher values of the cost function. As an effect, the
ICP algorithm can fail since it reaches a minimum of C for incorrect entries
of the matrices (R, T ).

Moreover, the different points of view of the sensor among the acquisitions
can further weight this aspect, since they generate measurement artifacts near
the object edges, even if the environment is not altered. This issue is of great
importance, since the ICP algorithm filters out these wrong correspondences
before the cost estimation by means of median filters. However, when the
datasets are obtained from altered environments, the distances among points
are higher in values. As a consequence, the median value raises till the limit of
being comparable with the distance between points in wrong correspondence,
which can not be deleted by the median analysis. In this case, the effective
contribution of this approach vanishes.

Moreover, if the dataset is firstly subsampled non-uniformly to preserve
information, i.e. discontinuities [187], the comparison can be additionally
affected by errors, since edge regions are the ones carrying the main contribu-
tions of implicit ambiguities. Rejecting edges from the comparison, without
any smart control, removes almost all the information, inducing registration
uncertainty. For this reason the strategy must be improved by taking into
account the three-dimensions in order to understand how view-points differ
in space, and remove the spatial regions that lead to errors.
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4.1.3 Point cloud registration with deletion mask

As described before, the proposed method intends to overcome the drawbacks
of the standard ICP technique and its variants. The method modifies the
standard implementation of the ICP algorithm following the processing steps
depicted in the flow diagram in Figure 4.6. Specifically, deletion masks,
or DMs (see the dashed box in Figure 4.6), are introduced to remove the
erroneous point correspondences which are extracted from ambiguous regions,
where implicit differences can raise as a consequence of the change of the
sensor view-point.

Referring to the nomenclature of the previous section, the two datasets P0

(reference) and P1 (source) differ by the goal rotation R and translation T
matrices. Moreover, the starting dataset is completed by the corresponding
surface meshes S0 and S1.

Each box of the flow chart describes a specific operation on the input data,
made of the full model (vertices and faces). In summary, the reference and
the source point clouds are compared by means of a cost estimation, after
that the reference point cloud is analyzed to derive the deletion mask. Since
the problem is solved iteratively, trying to find the values of the objective
matrices R and T that approximate the alteration of the sensor point of view,
it is possible to exploit R and T to find the implicit differences due to the
change of the sensor trajectory.
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Figure 4.6: Flow chart of the presented method for point cloud registration.

64



S0 is scanned in synthetics, exploiting the concepts of virtual measurement
to replicate the expected point of view of P1, iteratively defined by R and T .
This virtual point cloud is then compensated by the same parameters R and T
and compared to the actual reference. This comparison generates the deletion
mask for the specific parameters of R and T . The mask is thus applied
in product in the cost estimation, removing wrong correspondences due to
implicit and unavoidable alterations of the point clouds under registration.

It is important to notice that the use of deletion masks in the selection of
suitable point correspondences prevents the task from being solved in a closed
form. As for the vast majority of the ICP variants, the hypotheses that lead
to a close analytical solution are no longer valid, and thus its solution has to
be found by means of a trial-and-error approach.

The following subsections highlight the bases of the proposed algorithm,
focusing on the two main concepts of virtual measurement and deletion mask.

4.1.4 Virtual measurements

Before going through the description of the methodology, it is mandatory to
focus on a preliminary task. Actually, the implementation of the deletion
masks follows the definition of virtual measurements. The aim of this task
is the extraction of a new arrangement of Q samples of the starting surface
mesh Si from a user-defined point of view.

Since the environment is scanned with the aim of a complete reconstruction,
it is possible to suppose that the whole surroundings are modeled by a set of
surfaces wrapped around a specific direction (e.g. the arrows in Figure 4.2).
Under this hypothesis, the processing intends to create a novel set of points
by looking at the whole surfaces from specific positions.

In summary, the virtual scan resamples the reconstructed surfaces starting
from positions defined by the direction of a unit vector u = [ux, uy, uz]

T ,
having origin in a specific initial point p0. The direction τ of this vector is
sampled in (S + 1) points, labelled as ps, from the origin of u(p0) till the end
of the spatial domain (pS). Consequently, (S + 1) planes πs, orthogonal to
τ in the 3D positions of ps, can be defined. The intersection between these
planes and the surface mesh Si returns a closed curve, which can be further
sampled at discrete angular steps around the direction of u.

As a result, the process gives a new set of range measurements ρvi,j,
where j = 1, . . . , Q. Here the apex v underlines the virtual nature of this
measurement.
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It is important to notice that this process is intended to replace the
original measured points with equivalent ones coming from the intersection
with the three-dimensional mesh. Then the registration of datasets will be
performed over this new set of points. This process adds an advantage to the
methodology in terms of a better response against noise. Specifically, if noise
mainly follows a zero-mean Gaussian statistic, each patch takes into account
the influence of three points experiencing different corruptions. Consequently,
the virtual resampling of the triangular patches acts as a smoothing filter
since the noise over the three ranges is ”averaged” by the patches. Further
numerical analyses have proven a reduction of the dispersion of the set of
samples of about 30%.

4.1.5 Deletion masks

Virtual measurements constitute the basis for deletion masks, which are the
focus of interest of the presented method. With reference to the diagram
in Figure 4.6, the starting mesh S0, made of a set of contiguous triangular
surfaces, is first resampled at the beginning of the algorithm along a reference
path which identifies the direction over which the source point clouds will be
registered. Although any direction can be equivalently set as the reference,
for the sake of simplicity, S0 is resampled along the z-axis. The resulting set
of range values is labelled as ρv0,j(ẑ). This task is out of the iterative process
and thus is computed once when the algorithm starts and aims to determine
Q reference samples which will be used to create the deletion masks.

The iterative process begins with the choice of the trial compensation
matrices (Rt, Tt), full of non-vanishing entries. The reference P0 is scanned
virtually from the view-point u, defined accordingly with the trial parameters
(Rt, Tt). The resulting dataset of range values ρv0,j(u) is further rototranslated
to compensate for the superimposed changes defined by (Rt, Tt), giving a
new set of range samples ρ

′v
0,j. It is easy to understand that the pairwise

comparison of ρv0,j(ẑ) and ρ
′v
0,j highlights the only ambiguous regions which

can introduce an overestimation of the cost function. Equivalently, ρ
′v
0,j is

found numerically by looking at exactly the same scene of ρv0,j(ẑ), but from a
different point of view. This replicates on P0 the same corrupted conditions
that are iteratively estimated to affect the source P1, responsible for the
unavoidable implicit differences between the two acquisitions.

Given the information on the ambiguous regions, a deletion mask can be
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created to prevent these points from entering in the computation of the cost
function. Analytically, the entries of the deletion mask are:

mj(Rt, Tt) =

{
0,

⏐⏐ρv0,j(ẑ)− ρ
′v
0,j

⏐⏐ > λ · σn

1,
⏐⏐ρv0,j(ẑ)− ρ

′v
0,j

⏐⏐ ≤ λ · σn

(4.2)

being σn the noise standard deviation, whose amplitude will be discussed in
the next sections, and λ a positive number identifying the mask strength. The
latter term should be chosen properly in accordance with the noise statistics.
As an example, if range measurements are mostly degraded by white noise, a
value of this product greater than three times the variance (λ = 3) is enough
to ensure that differences between couples ρv0,j(ẑ) and ρ

′v
0,j are only due to

implicit alterations, out of the statistics with a confidence equal to 99.7%.
The iteration process is finally completed by the surface resampling of

the source input mesh. This dataset is first rototranslated applying the trial
parameters at each iteration. Then, it is resampled following the procedure
of virtual measurements with u = ẑ (misalignments have been already com-
pensated). It is important to notice that the surface resampling of the source
mesh still gives Q range values, named as ρv1,j (ẑ|Rt, Tt), which are implicitly
in pairwise correspondence with those extracted from the reference dataset
ρv0,j(ẑ). As a consequence, the point matching is guaranteed without the
application of any a priori condition.

Starting from its ICP formulation in Equation 4.1, the cost function can
be finally redefined as:

C(Rt, Tt) =

Q∑
j=1

mj(Rt, Tt) ·
(
ρv0,j(ẑ)− ρv1,j (ẑ|Rt, Tt)

)2
(4.3)

The method can be thus iterated improving the solutions for the cost
optimization, within a termination criterion. The final trial matrices R0 and T0

that give the minimization of the cost are those of the refined transformation
that best approximates the actual values of R and T .

4.2 Experiments and discussion

4.2.1 Case study

The proposed technique has been developed for the registration of point clouds
acquired in the context of indoor infrastructures, where GPS localization
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is no longer available. The following subsections describe the experimental
setup used for the acquisitions, the choice of the preprocessing parameters
and the error metrics that will be used for the comparison of results with
further ICP variants.

Experimental setup

In the presented experiments, 3D datasets are referred to a local reference
system (xi, yi, zi) of the i-th acquisition, where the xizi-plane is assumed
parallel to the ground. A mobile vehicle proceeds through the environment
following straight trajectories along the zi-axis, and carries a laser rangefinder
which samples the surroundings by slices. The origin of the local reference
system is placed on the position assumed by the sensor when it acquires
the first slice of points. Each slice has N distance measurements expressed
in terms of pairs (ρk,Θk), k = 1, . . . , N , belonging to planes parallel to
(xi, yi). Therefore, the resulting point cloud is implicitly ordered in discrete
indices, since each range value ρk can be labeled by increasing angles Θk and
slices. Without any loss of generality, the registration is applied to distance
measurements performed using the time-of-flight laser scanner AccuRange
AR4000-LIR [22] in Figure 4.7.
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Figure 4.7: (a) Experimental setup used for actual inspections. (b) Picture of the laser
rangefinder, underlining the optical source and the rotating mirror.

It is made of a laser source working at a wavelength of 780nm. The
generated beam is deflected of 90◦ by a rotating mirror (2600rpm) and then
swept through 360◦, to sample the environment by slices with a maximum
range distance of 15m. It is worth noticing that acquisitions are actually
obtained following a helix, having axis along zi. Nevertheless, range values
are assumed to lie on sampling slices, which are formed anytime the mirror
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performs a 360◦ revolution. The position of the slice origin on the ground
is equal to the average value of the xizi-coordinates returned by the vehicle
odometry. The vehicle speed has been set to 0.2m/s, whereas the sample
rate of the rangefinder has been fixed to 1kHz. Virtual measurements have
been performed following the approach described in Section 4.1.4 in order to
resample the point cloud. This way, a number of total slices between 200 and
250 has been collected, obtaining a spatial resolution along the direction of
the vehicle movement of about 75mm. Finally the range resolution is equal
to 0.25mm.

Preliminary analyses on the collected samples had demonstrated the
existence of three noise sources [172]:

• statistical white noise with standard deviation equal to 2.5mm at a
distance of 1m;

• colored noise due to the temperature control with a slow time constant
of about 2.1s;

• an amount of failed acquisitions (5% of the total number of the acquired
samples).

Knowing the statistics of the point cloud, it is possible to determine the
parameters of the preprocessing steps described in Section 4.1.1. With more
details, the threshold value Sth for the choice of the poorer cluster made of
outlier candidates is equal to 5. The Ramer-Douglas-Peucker algorithm has
been applied to the range values belonging to each slice of the dataset with a
tolerance value RDPtol = 1mm at 1m of distance from the sensor source.

It is worth noticing that these parameters are chosen in order to prevent
the lack of information due to the dataset simplification. This ensures that
the application of the preprocessing steps does not impact in the results of
the point cloud alignment.
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Figure 4.8: (a) Covered parking acquired by the laser rangefinder. (b) Corresponding
reference dataset obtained by the AccuRange AR-4000 laser rangefinder. (c) Simplified
point cloud obtained by the application of the preprocessing procedures.

To prove the efficiency of the preprocessing procedures, Figure 4.8a displays
an example of indoor environment acquired with the proposed setup. A
covered parking is modeled by the point cloud in Figure 4.8b, whose samples
are referred to a local system of coordinates, having origin in the center of
the first slice of points. The application of the preprocessing steps produces
the point cloud in Figure 4.8c, which is almost three times smaller in size
than the starting one. In summary, as an effect of the preprocessing steps, all
point clouds considered in these experiments have sizes in the range between
7× 104 and 105 points.
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Error metrics for result comparison

The results of the registration processes will be compared with those returned
by other ICP algorithms. In this case three variants of the ICP implementation
have been considered: the standard linear ICP (Lin-ICP) solved by means
of the Single Value Decomposition (SVD) [105, 106], the non-linear ICP
(NL-ICP) proposed in [115] which is directly solved as a Levenberg-Marquardt
(LM) optimization problem, and an optimized linear ICP variant with the
point-to-plane (Pt2Pl) metrics [117]. All algorithms used for the comparison
are available online as a part of the point cloud library (PCL) [188].

Following the same strategy adopted by marker-based approaches, several
landmarks are used to obtain an effective comparison with a reliable ground
truth. In the proposed experiments, the environment under analysis has
been structured with seven high-reflection markers (see Figure 4.9), named as
Mk, k = 1, . . . , 7, whose position is chosen in order to investigate all degrees
of freedom (four markers on the side walls of the parking area, two on the
ground, and one on the floor) and to obtain their detection from each point
of view. These markers can be easily distinguished within the datasets by
looking at the intensity of the laser spot (this value is returned by the sensor
for each range sample). Hence, the error metric is defined as the distance (dx,
dy, and dz along the three corresponding axes) between homologous markers
extracted from the reference cloud P0 and the source one, after its registration.
Specifically, the exact marker position is assumed as the center of mass of the
cluster which models the marker. In this way the measurement uncertainty is
divided by the number of points of the cluster, thus becoming negligible in
the evaluation of the registration error.
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Figure 4.9: Reflective marker used for the point-by-point comparison of registrations.

Furthermore, it is worth noting that the position of the markers in the
point clouds is established through odometry, since the dataset creation makes
use of the position of the vehicle to translate range values into spatial 3D
coordinates. This gives in turns an error in the localization of such points,
since the vehicle position is determined with the measurement uncertainty
of the encoders. Nevertheless, the comparison of results obtained by the
proposed method and the others ICP variants is consistent, since all the
methods are applied on the same datasets. As a consequence, the uncertainty
will produce the same bias errors in the distance measurements between the
homologous markers.

Model optimization

Although the formulation of the presented method is general and can be
applied in any context, given the specific case of study, some simplifications
are imposed to increase efficiency, downing computational requirements. As a
first step, it is possible to take advantage of the measurements purposes. As
stated before, environmental monitoring aims to understand whether changes
affects the scene under analysis. Consequently, the vehicle has to sense the
environment from points of view that have to be close to the one of the
reference. In this case the comparison makes sense since the same targets,
which are constitutive of the scene, can be compared. As a consequence, all
paths followed by the vehicle are almost comparable, but not equal.

Moreover, in the scenario of environmental monitoring, 3D reconstructions
will be performed exploiting the same experimental setup, i.e. with fixed
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elevation of the sensor on the mobile vehicle. Hence, consecutive measurements
are affected by relative alterations of the reference system in the xz-plane.
Analytically, any alteration of the vehicle trajectory can be compensated by
means of two translations X, Z along the xi- and zi-axis, respectively, and a
rotation H around the yi-axis. This hypothesis introduces a simplification
in the registration scheme and consequently reduces the computational time
required to perform the cost optimization described in Section 4.1.3, without
a corresponding degradation of the final results, as it will be shown in the
next subsections.

4.2.2 Experiments and results

Several experiments have been run to compare the results of the registration
obtained with the proposed method with those returned by three ICP variants.

Two different conditions are discussed in the next subsections to prove
the robustness of the registration. In the first case the datasets are extracted
from the same environment (static environment), sensed from different points
of view, i.e. trajectories. Then, the acquisitions will be performed still on the
same environment, but introducing some alterations (changing environment).

Finally, acquisitions of an indoor environment, the entrance hall of a buil-
ding under construction, will be registered, to further compare the proposed
methodology with the existing ones.

Acquisitions of static environments

In the first experiments, the dataset registration is performed on static
environments, i.e. perfectly equal scenes. As an effect, although surroundings
do not change with respect to the reference dataset, relative differences among
the point clouds arise because of the alteration of the vehicle trajectories and
the measurement noise.

Three source datasets P1, P2, and P3, in addition to the reference P0, have
been acquired at different epochs following different trajectories. Here, to
prove the robustness of the method, P3 has different spatial resolution along
the direction of motion of the vehicle. In particular its size is almost halved
with respect to P0. As an example, the comparison of the datasets P0 and P3

is shown in Figure 4.10.
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Figure 4.10: Original datasets referred on the local reference system of the laser rangefin-
der. Blue and red dots belong to different datasets to be registered, namely P0 and P3,
respectively.

Following the theoretical description in Section 4.1.3, the deletion masks
have been determined starting from the choice of the trial parameters Xt, Zt

and Ht. In this case the number of points Q drawn from the input datasets in
the surface resampling task has been imposed equal to 38400, corresponding
to 160 slices having 240 samples. An example of deletion mask is reported in
Figure 4.11, where the points of the resampled data extracted from P0 are
colored accordingly with the values assumed by the mask.
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Figure 4.11: (a) Effects of the masking process: red points are neglected in the pair-wise
registration of datasets; (b) Magnified view of the deletion mask applied to the samples
extracted from the reference.

Figure 4.12 shows the first results of the registration of P3 on the reference
P0 performed by the linear ICP algorithm and the proposed variant, which
employs the deletion masks (see Figure 4.12a and 4.12b, respectively).
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Figure 4.12: (a) Results of the dataset registration performed with the Lin-ICP algorithm.
(b) Point clouds registered by the use of the proposed algorithm based on the use of deletion
masks.

Although the results seem to be comparable, the estimated correction
parameters differ in values. This consideration is further proved by the
analysis of Table 4.1, which reports the correction parameters estimated by
the four considered ICP algorithms. In particular, the parameters obtained
by the Lin-ICP and the DM-ICP produce the vehicle trajectories described
by the vectors in Figure 4.13.
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Table 4.1: Results of the registrations of the source datasets P1, P2 and P3 on the reference
dataset P0. X0 and Z0 are expressed in millimeters (Lin: standard linear ICP; NL: non-
linear ICP; Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask).

X0

Lin NL Pt2Pl DM

P1 -1121.1 -998.06 -1239.06 -1230.1

P2 61.14 29.25 109.75 138.11

P3 -1341.7 -1118.27 -1570.83 -1598.3

Z0

Lin NL Pt2Pl DM

P1 152.81 118.53 191.85 242.61

P2 259.08 196.4 441.96 461.68

P3 240.38 174.2 356.87 370.72

H0

Lin NL Pt2Pl DM

P1 4.94◦ 4.29◦ 5.67◦ 5.49◦

P2 -2.35◦ -2.01◦ -2.75◦ -3.09◦

P3 4.73◦ 3.5◦ 6.13◦ 6.19◦

Figure 4.13: The red and green arrows are the robot trajectories within the reference point
cloud, estimated by the Lin-ICP and the proposed method, respectively.

Table 4.2 summarizes the minimum, maximum and average values of the
distances computed between corresponding reflecting markers extracted from
the reference dataset and the registered ones. Bold values indicate the best
results achieved by the comparisons.

The insight into the results of Table 4.2 reveals that the use of the deletion
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Table 4.2: Minimum, maximum and mean distance values [mm] between corresponding
reflective markers extracted from the registrations of P1, P2 and P3 on P0. The best
results are highlighted in bold (Lin: standard linear ICP; NL: non-linear ICP; Pt2Pl:
Point-to-Plane metrics; DM: Deletion Mask).

dx

Lin NL Pt2Pl DM

P1

Min 69.85 92.93 4.75 2.23

Max 343.17 251.66 75.41 76.33

Mean 192.77 156.33 39.88 37.94

P2

Min 2.82 5.89 6.37 19.48

Max 63.44 112.96 77.78 125.19

Mean 30.01 38.7 30.48 44.77

P3

Min 57.73 157.39 17.26 10.05

Max 246.7 426.76 89.62 63.89

Mean 152.39 273.28 45.9 36.85

dy

Lin NL Pt2Pl DM

P1

Min 0.24 3.32 0.53 1.08

Max 8.92 21.94 21.43 21.59

Mean 2.34 8.55 6.41 6.45

P2

Min 1.99 5.98 3.89 3.76

Max 40.27 33.87 29.05 28.72

Mean 20.43 16.16 17.47 15.06

P3

Min 0.08 0.85 3.02 1.7

Max 23.9 43.01 50.01 33.05

Mean 6.92 22.54 17.23 13.83

dz

Lin NL Pt2Pl DM

P1

Min 1.62 2.49 13.75 0.41

Max 104.88 205.21 105.53 58.25

Mean 38.47 118.1 60.55 34.31

P2

Min 69.7 175.78 1.04 6.43

Max 301.18 348.24 136.18 130.88

Mean 186.78 260.21 41.15 39.5

P3

Min 10.35 99.12 14.6 10.82

Max 237.19 321.71 133.61 112.55

Mean 117.02 194.91 68.2 62.97
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masks can improve the estimation of the registration parameters, since the
distance components dx and dz are always lower when the deletion masks are
used. This scenario is altered only in the case of the analysis of P2, whose
registration performed by the linear ICP induces the lowest values of the term
dx. However, the decrease of the mean value of dx is much lower in magnitude
than the improvements produced by the DM-ICP in the remaining cases (see
the registrations of P1 and P3).

At the same time, results in Table 4.2 show a different behavior of the
distance term computed along the y-axis (dy). The linear ICP often carries to
the best results in comparison with the other methods, although improvements
are in any case below those obtained for the comparison of the other two
components dx and dz. This behavior is mainly ascribable to the experimental
setup used for the experiments. In fact, the only contribution responsible for
the distance component dy is the measurement noise. It is clear that changing
the algorithm, making it heavier, with the sole intention of compensating
for noise would not produce appreciable improvement of the overall results.
In other terms, although the analytical formulation of the Lin-, Nl- and
Pt2Pl-ICP considers rototranslation matrices full of non-vanishing entries, it
does not improve significantly the results.

An easier comparison can be derived by means of the figure of merit εM
which depends on the global average value of the distance vectors made of
the three components (dx, dy, dz). Analytically, it is equal to:

εM = mean
Mk

{
√

d2x + d2y + d2z} (4.4)

where the mean function is first computed among the corresponding marker
distances. This figure of merit is plotted in Figure 4.14.
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Figure 4.14: Comparison of results obtained by the use of the four ICP variants. The
bar plot displays the values of the figure of merit εM , defined to compare the registration
outcomes.

The analysis of the results states a clear reduction of the distance errors.
Specifically, averaging the εM values among the three registrations, the mean
values of εM are equal to 197.02mm for the Lin-ICP, 273.94mm for the NL-
ICP and 83.75mm for the Pt2Pl-ICP, whereas the homologous term for the
proposed algorithm is equal to 62.46mm. Also, this result proves that the
initial hypothesis of alteration of the vehicle trajectory in the xz-plane, does
not lead to appreciable registration errors.

Finally, it is important to notice that the numerical gap found by the
comparison of the εM values is much higher than the measurement uncertainty
produced by the sensor, close to few millimeters. As a consequence, this result
is only attributable to the effective contribution brought by the methods to
the registration process.

Acquisitions of changing environments

The comparison of changing environments, i.e. scenes with small differences,
is the most challenging problem in the dataset registration, since the cost
function takes into account also the presence of scene alterations. In this case,
the distance between the two considered point clouds can be significantly
different from zero, till the limit of turning into a local minimum. In this
case, the ICP algorithm reaches the convergence with registration parameters
which can be significantly different from the correct ones.

These experiments have considered three new acquisitions, namely P4,
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P5 and P6, acquired at different epochs within the same environment, after
that the position of several foreground objects has changed. In particular,
another car is added in the parking, producing an alteration of 2% of points of
the reference dataset. Quantitatively, the point cloud P4 shows 1463 altered
points over the total size of 79073 samples. A comparison between the dataset
P4 and the reference P0 is reported in Figure 4.15, where the two point clouds
are displayed.

Figure 4.15: . Comparison between (a) the reference P0 and (b) the source point cloud P4.
The circle includes the altered points.

Also in this case, the P6 dataset has been created by halving the spatial
resolution along the straight trajectory followed by the vehicle, i.e. doubling
the speed of the vehicle that carries the sensor, but keeping the remaining set
of measurement parameters. The results of the registration process are thus
reported in Table 4.3, where the estimated parameters derived by the four
methods under analysis are shown.

Results are once more in contrast and produce different distances between
corresponding markers. As shown in Table 4.4, which describes the minimum,
maximum and mean distance contributions computed among the homologous
markers of different datasets, the use of deletion masks can reduce the
registration errors. This consideration is verified for the analysis of the
dx component, whose values obtained by the DM-ICP are better than the
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Table 4.3: Results of the registrations of the source datasets P4, P5 and P6 on the reference
dataset P0. X0 and Z0 are expressed in millimeters (Lin: standard linear ICP; NL: non-
linear ICP; Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask).

X0

Lin NL Pt2Pl DM

P4 -154.06 -123.95 -173.29 -237.29

P5 -935.13 -820.66 -1062.38 -1085.5

P6 118.53 -253.26 107.22 86.2

Z0

Lin NL Pt2Pl DM

P4 219.71 167.16 515.26 482.02

P5 142.2 109.1 232.78 291.26

P6 315.91 207.09 674.43 674.42

H0

Lin NL Pt2Pl DM

P4 1.5◦ 1.27◦ 1.65◦ 2.3◦

P5 2.3◦ 1.8◦ 2.96◦ 2.95◦

P6 -5.54◦ -3.6 -8.05 -7.81◦
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Table 4.4: Minimum, maximum and mean distance values [mm] between corresponding
reflective markers extracted from the registrations of P4, P5 and P6 on P0. Best results
are highlighted in bold (Lin: standard linear ICP; NL: non-linear ICP; Pt2Pl: Point-to-
Plane metrics; DM: Deletion Mask).

dx

Lin NL Pt2Pl DM

P4

Min 18.02 38.55 4.9 1.19

Max 55.66 83.35 72.35 72.08

Mean 36.46 51.36 35.67 33.96

P5

Min 9.62 17.29 6.89 7.91

Max 205.36 294.92 109.33 83.49

Mean 95.14 141.38 41.32 38.21

P6

Min 45.8 71.47 5.06 14.12

Max 126.27 149.42 49.6 49.23

Mean 78.55 110.44 28.23 25.93

dy

Lin NL Pt2Pl DM

P4

Min 2.90 4.06 1.26 1.25

Max 24.29 28.57 26.58 33.32

Mean 13.95 14.48 10 14.24

P5

Min 0.46 0.34 2.67 2.81

Max 38.03 59.04 63.96 62.47

Mean 18.16 20.13 24.07 22.13

P6

Min 0.7 24.75 3.23 13.81

Max 14.38 27.31 14.96 16.4

Mean 5.59 26.03 8.14 15.72

dz

Lin NL Pt2Pl DM

P4

Min 73.88 141.06 1.46 9.73

Max 302.65 364 166.24 160.59

Mean 200.59 275.02 59.76 59.02

P5

Min 34.09 36.48 11.26 59.33

Max 126.49 457.62 190.22 132.22

Mean 91.96 148.09 38.3 71.48

P6

Min 132.43 149.82 68.56 90.3

Max 422.07 524.92 270 233.8

Mean 310.31 337.37 136.53 174.24
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others in most cases. On the contrary, the inspection of results shows again
comparable values of dy obtained by the four methods, although Lin-, NL-
and Pt2Pl-ICP exploit the full transformation matrices, whereas the proposed
technique simplifies the problem to the optimization of only three terms.
Although measurement noise determines a contribution to the overall cost
function, which cannot be compensated by the DM-ICP, its outcomes are
in any case comparable. Once again it justifies the initial downgrade of the
problem to the compensation of the vehicle trajectory with only three degrees
of freedom.

Results obtained by the Pt2Pl-ICP and the DM-ICP in terms of the dz
component are highly comparable in magnitude. In this case, it is important
to observe that the point-to-plane metrics allows the reduction of the contri-
butions to the objective cost function of erroneous correspondences between
samples. This filtering effect is noticeable especially in these last experiments,
when the environments under testing show relative changes. In principle, the
method weights such correspondences, exploiting the surface similarity. With
more details, the point distance is multiplied by a term (dot product of surface
normals) which is 0 when the two surfaces are orthogonal and 1 when the
two surfaces are parallel. At a first glance, this metrics seems to limit wrong
correspondences in the cost computation in a similar way to the DM approach,
thus producing comparable results. Actually, given the weight formulation,
the Pt2Pl metrics is not able to discriminate the presence of scene changes
due to the movement of objects having parallel surfaces to the ones placed
in the corresponding regions of the reference point cloud. Consequently, the
point-to-plane metrics fails and the cost term can grow as much as the objects
position changes. On the contrary, the use of virtual resampling and DMs
can automatically and perceptively remove wrong point correspondences, re-
gardless the relative direction of the surface normals. Nevertheless, results in
Table 4.4 demonstrate that the point-to-plane error metrics can add reliability
to convergence of ICP algorithms. Its implementation in the proposed method
will be the aim of future investigations.

Then, with reference to the outcomes displayed in Figure 4.16, where
the figure of merit εM is presented, the use of deletion masks improves the
registration process in two cases out of three. Quantitatively, the average
value among registrations of εM reaches 223.28mm in the case of the Lin-ICP,
297.6mm for the NL-ICP, 86.27mm for the Pt2Pl-ICP and 65.06mm for the
proposed algorithm. By a comparison of these results with those displayed in
the previous subsection, it can be stated that the proposed method is robust
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against consistent scene alterations, since the average value of εM does not
change as scene differences arise.

Figure 4.16: Comparison of results obtained by the use of the four ICP variants. The
bar plot displays the values of the figure of merit εM , defined to compare the registration
outcomes.

Further analysis of an indoor environment

The proposed method has been further tested for the registration of two
point clouds obtained by the inspection of another environment, namely the
entrance hall of an under-construction building, in order to prove the quality
of the algorithm. The specific entrance hall constitutes a challenging indoor
environment because of its spatial uniformity due to the lack of pillars, whose
shapes and position were highly informative in the previous registrations.

As already discussed for the previous investigations, the experiment has
been performed by changing the pose assumed by the vehicle before starting
its movement: two point clouds model the same environment from different
points of view. Figure 4.17 shows the two point clouds extracted from the
inspection of the entrance hall and referred to the local reference system of
the corresponding acquisition.
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Figure 4.17: Original datasets acquired from an entrance hall. Point clouds are referred
on the local reference system of the sensor.

Also in this case, the proposed method for point cloud registration has
been compared with the three considered ICP implementations (Lin, NL and
Pt2Pl), giving raise to the results in Figure 4.18, which plots separately the
top views of the source point clouds, registered on the reference one.
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Figure 4.18: Top views of the source point clouds (colored data) registered on the reference
one (black data). The registration process is performed exploiting the (a) Linear ICP, (b)
the Non-linear ICP with kD-tree representation of points, (c) the standard ICP with point-
to-plane metrics and (d) the proposed ICP with deletion mask.

With more details, Figure 4.19 highlights the differences between the
reference dataset and the source one registered by means of the Lin-ICP, the
Pt2Pl-ICP and the proposed method. The focus on Figure 4.19 reveals that
the Lin-ICP can poorly register the input datasets. On the other hand, the
Pt2Pl-ICP and the proposed DM-ICP are in good agreements with comparable
results, although the DM-ICP makes use of a simpler distance metrics and
a registration scheme dealing with three parameters. Quantitatively, the
three correction parameters found by the Pt2Pl-ICP are X0 = 810.92mm,
Z0 = 1089.96mm, and H0 = −8.12◦, whereas the DM-ICP returns X0 =
813.48mm, Z0 = 1071.09mm, and H0 = −8.18◦. Here, differences between
corresponding parameters are negligible, since these terms are slightly higher
than the measurement uncertainty of the sensor. In summary, as stated by the
inspection of the previous experiments, it is possible to envisage even better
results by implementing in the proposed algorithm the point-to-plane distance
metrics, which weights correspondences between points on the similarities
between planes.
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Figure 4.19: Comparison of the reference point cloud (blue dots) and the registered one
(red dots) extracted from the results in Figure 4.18. Results of (a) the Lin-ICP, (b) the
Pt2Pl-ICP and (c) DM-ICP.

4.3 Summary

In this work, a numerical approach for point cloud registration returned by
a laser rangefinder has been presented. The analysis has been focused on
the topic of remote sensing of indoor civil infrastructures, where standard
approaches based on GPS are no longer available. Acquisitions are thus
referred to a local reference system having origin in the starting position of
the vehicle that carries the sensor. In this case, occlusions can emerge when
the point of view of the sensor changes, and thus consecutive reconstructions
of the same environment can suffer from implicit differences. For this reason
deletion masks have been introduced iteratively within the standard ICP
technique to delete those points that can induce erroneous registrations.
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The method has been applied for the registration of datasets extracted
from actual environments, namely a covered parking and an entrance hall,
where scenes are equal or slightly altered. Several comparisons with three
well-known ICP variants have been performed by computing the distances
between distinguishable markers extracted from the reference dataset and
the registered ones. Outcomes have proved a reduction of the registration
errors, with respect to the other implemented ICP variants. Only the use
of the point-to-plane distance metrics between the datasets has lowered the
negative effects of erroneous correspondences, with results often similar to
those of the presented method, which implements the simpler point-to-point
metrics. This behavior suggests that future developments of the method will
use a more effective error metrics to further minimize the negative effects of
wrong point correspondences.
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Chapter 5

Real time algorithms for high
throughput data processing

As introduced in Chapter 1, there is a certain number of features that needs to
be implemented in an artificial vision system to perform high level tasks. The
technology available nowadays is capable of producing high throughput data
and opens new perspectives in data processing and analysis, since algorithms
should be properly designed and implemented to meet the most challenging
system requirements. Special attention needs to be given to the development
of real time algorithms that represent the building blocks of more complex
3D vision systems. In particular, the methodologies used to pre process the
images that lead to the extraction of sparse point clouds will be presented, as
well as the methodology defined to perform three dimensional tracking.

For this reason, three background models have been developed with the
aim of fulfilling both real time and effectiveness constraints and will be
presented in this Chapter. The first, named Parallel Integer Incremental
Background (PIIB) is an adaptive background model for high frame rate video
applications suitable for smart cameras embedding due to its implementation.
The second, named Likelihood Bayer Background (LBB), is a BG model
based on statistical likelihood that directly works on Bayer images taking into
account the intrinsic variance of each gray level of the sensor. The last one,
named Global Intrinsic VariancE BACKground (GIVEBACK), starts from
the formulation of LBB and adds some processing modifications essential
to address the specific problems related to the tennis context. Finally, a
tennis ball tracking method that exploits domain knowledge to effectively
recognize ball positions and trajectories starting from a sparse but cluttered
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point cloud that evolves over time – basically working on 3D samples only –
will be introduced.

5.1 PIIB

5.1.1 Algorithm description

The proposed algorithm, named Parallel Integer Incremental Background
(PIIB), can be divided into three main steps, as it is shown in figure 5.1:

1. background initialization (in blue);

2. foreground extraction (with energy and threshold processing) (in green);

3. background update (in red).
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Figure 5.1: PIIB high level flowchart.

The first step is executed only once and prepares the environment. In this
phase, the width (w) and the height (h) of the frames are saved and the new
data structures are allocated in memory taking advantage of the Streaming
SIMD Extensions 2 (SSE2) [189], an instruction set that enables multiple
data operations on Intel CPUs. Then, the whole frame is divided in

(
w·h
16

)
Update Rectangle Structures (URSs), which are row vectors of 16 entries,
assisted by a corresponding boolean flag which sets the pixel update (initially
set to true). Finally, if a background file that contains a valid preprocessed
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background is missing, the model is initialised to 128. This all gray logic is
due to the absence of any a priori knowledge about the scene.

The other steps need to be extremely efficient in order to match the real
time, high frame rate constraint of this procedure. The foreground extraction
takes place for every incoming frame, calculating the binary foreground
mask at the time t (Mt). Each frame is processed

(
w·h
16

)
times because

SSE2 instructions can execute 16 operations simultaneously, boosting the
performances of the whole procedure. Therefore, this approach makes the
algorithm parallel because it works on 16 pixels at the same time. Assuming
that It is the frame at the time t, BGt−1 is the background image at the time
(t− 1) and Thr is the gray threshold, the Addition and Subtraction Vector
(ASV ) can be defined as follows:

ASV = (S1 ⊖ Thr)⊕ (S2 ⊖ Thr) (5.1)

where
S1 = (BGt−1 ⊖ It) (5.2)

S2 = (It ⊖BGt−1) (5.3)

⊖ and ⊕ are the saturated version of the subtraction and the addition
operations in the range [0 . . . 255]. Then, the values of the foreground mask
corresponding to the considered URS are calculated from the ASV and are
defined as follows:

Mt = [M0
t . . .M

15
t ] (5.4)

Mk
t =

{
0 ifASV k = 0

255 ifASV k ̸= 0
(5.5)

where k is the index of the pixel in the URS.
If the background is not completely learned and the frame number is lesser

than 128, the energy processing is invoked in order to evaluate the energy of
the background signal. Then, the image histogram is used to calculate the
best gray threshold value. Further explications will be provided in the next
paragraph.

The third step is the background model update, which works according
to the 16 bytes logic presented beforehand. The basic idea is that every pixel
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of BGt can increase or decrease by 1 its gray intensity depending on S1 and
S2. The generic background pixel of coordinates (x, y) will be:

BGt(x, y) =

⎧⎪⎨⎪⎩
BGt−1(x, y)− 1 ifBGt−1(x, y) > It(x, y)

BGt−1(x, y) ifBGt−1(x, y) = It(x, y)

BGt−1(x, y) + 1 ifBGt−1(x, y) < It(x, y)

(5.6)

This extremely simple and fast instruction is adapted to the SSE2 logic,
through the use of the URSs. If and only if the allowance flag is set to true,
the 16 pixels of the structure are updated as shown before. The flag value can
be set by a procedure that identifies stopped objects on the scene, making
the algorithm able to update the background only if a foreground object is
stationary.

5.1.2 Energy and threshold processing

The energy processing is a task that is executed during the background
learning phase monitoring the energy ε = ||BGt−1 − It|| in order to stop
the learning phase when it reaches its minimum value. In the worst case,
128 update frames must be analyzed to obtain a stable background model,
since the initial background is supposed gray (see the previous paragraph).
Nevertheless the background can become stable after n < 128 iterations
and the learning process can be stopped earlier than the worst case. The
evaluation of ε sets up a flag which is true if the energy computed in two
consecutive frames does not decrease. In this case the learning process is
stopped.

The threshold processing with reference to the flowchart in figure 5.2 and
calculates the threshold value Thr defined as the gray intensity limit used
to classify a background/foreground pixel. The PIIB initially sets Thr = 10
and then adaptively updates it during the threshold processing. This task is
performed evaluating the gray scale image histogram with respect to the SSE2
instructions programming rules, i.e. approximating it using 1× 16 vectors.

Let It−1 be the previous frame, It be the incoming frame at time t and
Ht the generic 256 bins histogram of |It−1 − It| at the same time t. Once the
histogram is computed, this is normalized and smoothed via low-pass filtering
in order to deal with isolated peaks and avoid local maxima. The smoothed
curve St is used to calculate dynamically the gray threshold with the following
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procedure: for every i = 2, . . . , 255, the quantity y = St(i+1)−St(i−1)
2

+St(i− 1)
is evaluated and if y > St(i), the threshold value is set to Thr = i+ 1.

Figure 5.2: Threshold processing flowchart.

5.1.3 Computational complexity

The computational complexity of PIIB can be calculated splitting the analysis
into the three building blocks, according to the flowchart in figure 5.1. Let
(w · h) = n be the single frame dimension, where w is the frame width and h
is the frame height, then the complexities are the following:

1. Background creation has a complexity of O(n) in the worst case, i.e.
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when the BG is not known and the all-gray logic is implemented with
n assignments;

2. Foreground extraction requires O(n) operations because the main
loop repeats a small number of operations (absolute values and saturated
differences)

(
n
16

)
times;

3. Background update is done in O(n) operations, similarly to what
happens in the previous phase

For these reasons, PIIB has a linear computational complexity that makes
possible the actual implementation.

5.1.4 Experiments and results

PIIB is evaluated comparing its performances with the GMG and MoGv2
algorithms implemented in the BGS Library [190]. It has been tested on five
different athletic videos taken with a Dalsa Pantera SA 2M30 camera and
representing a football match, named AR1, AR2, AR3, FG1 and FG2. The
AR- sequences are focused on the penalty area and each frame has a size of
1600× 736 pixels. In the FG- sequences a larger area is filmed and the frame
size is 1920× 1280 pixels because the cameras are used to monitor the offside.
Every background model is evaluated after 20, 40, 60 and 80 seconds after
the starting frame f0. At least 128 frames are used to build the BG model.
Here it is a brief description of the scenes:

AR1 in this video the referee gives the signal for a penalty kick and there
are many players on the scene. The illumination is changing due to a
cloud on the outdoor field;

AR2 in this video a penalty kick is shooted. The scene is occupied by the
attacking and defending players, together with the referee and about 10
other players from the two teams;

AR3 in this recording a free kick is shooted from the limit of the penalty
area;

FG1 in this video the frames are taken from a wider point of view. The
sequence starts with the goal keeper alone and ends while an action is
being played;
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FG2 this sequence is similar to the FG1 one, but here some players are doing
the warm up, making the scene more dynamic.

The first column of table 5.1 displays some examples of the acquired frames.
In every football match the advertising behind the touchline periodically
changes over time modifying the background. The foreground masks are
not postprocessed with morphological filters and the quantitative results are
obtained calculating the F-Measure, Precision and Recall on four different
frames, representing the considered time interval. Each evaluated frame has
been manually segmented in order to obtain the ground truth. Let TP be the
number of true positives pixels, FP be the number of false positives pixels,
TN be the number of true negatives pixels and FN be the number of false
negatives pixels on the foreground mask. Accordingly, Precision P , Recall R
and F-Measure F are defined as:

P =
TP

TP + FP
(5.7)

R =
TP

TP + FN
(5.8)

F = 2 · P ·R
P +R

(5.9)

Table 5.1 contains the qualitative analysis of some frames in terms of ground
truth and foreground masks, while table 5.2 summarizes the metrics calculated
for every video sequence. The comparison of PIIB Precision and Recall values
against the best value among GMG and MoGv2 shows that the average
PIIB R value is 22% better than the others, even if the P value is generally
lower. This result demonstrates that PIIB is robust to false negative outputs.
Figures 5.3 to 5.7 show the bar chart representation of the F-measure. In
the AR1 and FG2 sequences (figures 5.3, 5.7) the F-Measure of PIIB and
GMG is generally comparable. In the AR2 and AR3 sequences (figures 5.4,
5.5) PIIB is able to model a complex dynamic situation with many moving
people in foreground, in fact the F-Measure is 20% better than GMG and
MoGv2 on average. In the FG1 sequence (figure 5.6), PIIB starts with a low
F-Measure (frame 1) because the background is noisy due to an advertising
change, but the model is correctly updated in the subsequent frames (the
F-Measure increases).
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Figure 5.3: Bar chart representing the F-Measure comparison for the AR1 sequence.
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Figure 5.4: Bar chart representing the F-Measure comparison for the AR2 sequence.
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Figure 5.5: Bar chart representing the F-Measure comparison for the AR3 sequence.
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Figure 5.6: Bar chart representing the F-Measure comparison for the FG1 sequence.
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Figure 5.7: Bar chart representing the F-Measure comparison for the FG2 sequence.

Table 5.1: This table contains the qualitative analysis of some frames in terms of ground
truth and foreground masks.

Original frame Ground truth GMG mask MoGv2 mask PIIB mask
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Table 5.2: This table summarizes the results in terms of F-Measure, Precision and Recall
for the five scenes. In bold the best value among the three algorithms.

F-Measure Precision Recall

GMG MOG2 PIIB GMG MOG2 PIIB GMG MOG2 PIIB

AR1

0.56 0.29 0.70 0.89 0.76 0.69 0.41 0.18 0.71

0.50 0.27 0.66 0.93 0.88 0.68 0.35 0.16 0.64

0.57 0.29 0.58 0.74 0.61 0.51 0.46 0.19 0.67

0.28 0.13 0.48 0.98 0.88 0.85 0.16 0.07 0.33

AR2

0.58 0.42 0.65 0.83 0.82 0.66 0.44 0.28 0.63

0.31 0.16 0.57 0.95 0.82 0.68 0.19 0.09 0.49

0.19 0.09 0.46 0.58 0.59 0.62 0.11 0.05 0.36

0.11 0.05 0.46 0.90 0.62 0.72 0.06 0.03 0.34

AR3

0.39 0.21 0.67 0.93 0.89 0.74 0.25 0.12 0.61

0.47 0.24 0.64 0.92 0.83 0.70 0.31 0.14 0.59

0.51 0.27 0.72 0.92 0.86 0.69 0.35 0.16 0.76

0.64 0.35 0.70 0.88 0.83 0.64 0.50 0.22 0.77

FG1

0.66 0.48 0.27 0.87 0.51 0.18 0.54 0.45 0.58

0.24 0.18 0.50 0.99 0.60 0.74 0.14 0.11 0.38

0.73 0.52 0.72 0.91 0.84 0.75 0.61 0.38 0.69

0.43 0.30 0.41 0.66 0.81 0.36 0.32 0.19 0.48

FG2

0.67 0.49 0.70 0.92 0.79 0.80 0.53 0.36 0.63

0.25 0.13 0.38 0.93 0.70 0.59 0.15 0.07 0.28

0.56 0.38 0.63 0.84 0.71 0.78 0.42 0.26 0.53

0.68 0.52 0.65 0.86 0.77 0.60 0.57 0.39 0.72
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5.2 LBB

5.2.1 Algorithm Description

LBB is divided in three main building blocks that are summarized in Listing
5.1, namely initialization, processing and update and has been designed to
work directly on raw data coming from a camera, namely a Bayer image
[191]. The first step is executed only once and initializes the BG image
setting each pixel to half intensity. This all gray logic is due to the absence of
any a priori knowledge about the scene. The processing phase is composed
of: variance, likelihood, fine tuning and energy. The last one is the same
presented in the previous Section, while the other are detailed singularly in
the following Sub sections. The BG image is updated according to PIIB logic,
but it is enriched by a binary update mask M . Hence, each BG pixel value is
increased or decreased by κ if the corresponding M value is set to true (in our
implementation κ = 1). In addition, LBB calculates a second version of the
background that does not take care of M (BGnu) with the aim of avoiding
ghosts on the scene, as it will be described later.

Listing 5.1: Algorithm pseudocode

Background I n i t i a l i z a t i o n
for each frame

Variance proce s s
for each patch

L ike l i hood proce s s
i f ( Background i s l ea rned )

Fine tuning proce s s
Background Update
Energy Process

5.2.2 Variance Process

The variance considered in the this method is not related to the observations
of a single pixel over time, but is a function of the gray level and so it models
the different responses of the sensor to different light intensities. Therefore,
for each frame, the location of the occurrences of each generic gray value γ is
first stored in a set

Obs(γ) = {k = (u, v)|BG(u, v) = γ} (5.10)
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Then, the variance V at the time t, associated to the γ-th gray level is
iteratively updated with the following formula:

Vt(γ) =
Vt−1(γ) ·Nt−1(γ) +

∑
k |It(k)−BG(k)|2

Nt(γ)
(5.11)

where k ∈ Obs(γ), N(γ) is the number of times the γ-th gray level occurred
over time and BG is the background. In the equations BG is substituted
with the latest available frame (It−1) while the BG is being learned, namely
until the energy gradient descent reaches its minimum value. Figures 5.8 and
5.9 show an example of convergence of this model while estimating µ and σ
values of known normal distributions, that will be discussed later.

5.2.3 Likelihood Process

This task is executed for each Bayer squared patch Pi = (p1, . . . , p4)
T of

the image, so that Pi contains two green level values, a red one and a
blue one. Considering the pixels as normal independent random variables,
the likelihood of observing a background patch given a set of parameters
θ = (µ1, . . . , µ4, σ1, . . . , σ4) can be calculated with the formula:

L(θ|Pi) =
4∏

j=1

fµj ,σj
(pj) = ℓi (5.12)

where µj = BG(pj), σj = Vt(BG(pj))
1
2 and fµj ,σj

(pj) is the normal probability
density function with mean µj and standard deviation σj computed in pj.
Therefore, the mean value of a pixel is its corresponding BG value, while the
variance depends on its gray level, since different intensity values might have
different variances. Following the same steps described in the previous section,
the BG is substituted with the latest captured frame until the model is in the
learning phase. Formally, a threshold τL = 0 is used to classify each patch as
background or foreground, but in our implementation τL = 10−10, considering
that 0 can not be achieved due to noise and floating point representation
issues. Experiments show that the value is small enough to guarantee a stable
and reliable BG. The binary update mask of a BG patch is set to true, while
it is false in case of a foreground patch. This selective update is useful to
achieve robustness and to avoid useless updates when an object is moving on
the scene.
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5.2.4 Fine Tuning Process

The fine tuning task takes place only when the BG has been learned by the
system and enriches the pipeline with two modules: a cosine similarity filter
[192] and a ghost filter. The first one exploits the dot product between two
vectors, specifically a foreground Bayer patch (Pf) and its corresponding
background (Pb), both ∈ N4. The cosine of the angle between the two patches
is filtered to blacken the foreground if it is similar to the background according
to the following equation:

Pf = 0 if
Pf · Pb

|Pf ||Pb|
> τs (5.13)

where τs ∼ 1.
The ghost filter is needed when there are no stable background frames

at the beginning of a video, i.e. when the bootstrap phase contains almost
stationary objects that are likely to be inserted in the background. In these
cases, a movement of the object when the BG has been learned causes the
presence of a ghost in the foreground. This phenomenon is removed comparing
the incoming frame It with the background fully updated at each iteration
BGnu in correspondence of the ghost patch Pg. If |It(Pg)− BGnu(Pg)| = 0,
then the background is updated setting BG(Pg) = BGnu(Pg).

5.2.5 Experiments and Results

The model presented in Section 5.2 has been first tested in Matlab in order
to numerically confirm its correctness. For this reason, samples from ∼ 200
normal distributions with known (µ, σ) have been extracted. Figure 5.8 shows
that, starting from 128 (half intensity for 1 byte unsigned variables), each
estimated mean tends to the input one in ∼ 100 frames in the worst case.
The distribution with input mean µ = 119 (magenta) converges immediately
in a couple of iterations, while for µ = 20 (blue) more iterations are needed
to achieve the result. This is due to the update process that consists of unary
increments or decrements at each iteration, as pointed out in Section 5.2.1.
Figure 5.9 shows the convergence of the standard deviation estimator after
∼ 10M iterations. In particular, the estimated σ tends to the input one
subtracted by a bias due to the iterative formulation showed in Equation
5.11.
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Moreover, LBB has been evaluated against the GMG and MoGv2 algo-
rithms implemented in the BGS Library [190]. The test has been conducted on
the same dataset presented in the previous Section, that contains five videos
that represent a football match. AR- scenes are focused on the penalty area
and the size of each frame is 1600× 736, while a larger area of 1920× 1080
pixels is captured in the FG- ones. The five scenes contain some typical
situations of a soccer match, for example: a cluttered scene with illumination
changes (AR1); the shoot of a penalty kick that implies almost all players
around the penalty area (AR2); the shoot of a free kick (AR3) and two actions
that are filmed from a wider point of view (FG1 and FG2). In FG2 some
players are warming up, so the scene is more dynamic than the one in FG1.
Each BG model is evaluated after 20, 40, 60 and 80 seconds after the starting
frame f0.

Figure 5.10 contains the qualitative analysis of some frames in terms of
ground truth and foreground masks. Rows 1 and 3 contain a cluttered scene
where a high number of players is moving in in the penalty area. Here, the
MoGv2 (Figure 5.10 (d)) shows a weak output due to the constant update of
model parameters that is including the players in the BG, while the other
approaches (Figures 5.10 (c) - (e)) produce a more stable output. The frames
in the second row show a scene where the advertising is changing. Here, LBB
is updating the BG mask while the other algorithms already did it, due to
the updating speed implemented by the unary increment described in Section
5.2.1. This corresponds to the LBB outlier in Figure 5.11 with low precision
and high recall, that gradually tends to a stable configuration when the BG
mask is updated. The quantitative results have been extracted calculating
the F-Measure, Precision and Recall (see Equations 5.9, 5.7 and 5.8) on four
different frames per each sequence, representing the considered time interval.
Each ground truth frame has been manually obtained starting from the raw
video. Figures 5.11 and 5.12 summarize the metrics calculated for each video
sequence. The comparison of LBB Precision and Recall values against the
best value among GMG and MoGv2 shows that the average LBB R value is
39% better than the others, while the P value is generally comparable. This
result is shown in Figure 5.11 where each point in the P-R plane is referred
to a run of a specific algorithm (red for MoGv2, blue for GMG and green for
LBB). According to this representation, the ground truth has coordinates
(1, 1), therefore points in the upper right part of the figure correspond to the
best results. High R values for LBB demonstrate that the approach is robust
to false negative outputs. Figure 5.12 shows the 3D bar chart representation
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of the F-measure. The AR sequences represent a complex situation with a
high number of moving people in foreground and here the F-Measure of LBB
is higher than the other methods used for the comparison. In the FG ones
LBB and GMG behave in a similar way and show comparable results in terms
of F-Measure. In particular, the FG1 sequence starts with an advertising
change and here LBB has a low F-Measure in the first frame (FG1 - 1) because
the foreground mask is noisy, but then the F-Measure increases, so the model
is correctly updated in the subsequent frames. The overall average of the
LBB F-Measure is 18% better than GMG and MoGv2, thus confirming that
the proposed method is capable of modeling such scenarios.

(e)(d)(c)(b)(a)

Figure 5.10: Qualitative results for some frames. The columns contain, respectively, the
original frame (a), the ground truth (b) and the foreground masks obtained with GMG
(c), MoGv2 (d) and LBB (e).
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Figure 5.12: Quantitative results on the dataset in terms of F-Measure
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5.3 GIVEBACK

5.3.1 Algorithm Description

The proposed algorithm can be divided in three main building blocks, as
shown in Listing 5.2: initialization, processing and update. The first step is
executed only once and initializes the BG image setting each pixel to half
intensity. Therefore, the produced image is gray and reflects the absence of
any a priori knowledge about the scene. The processing phase is composed
of: variance, one step frame differencing, fine tuning and energy. The ones
marked with an asterisk in Listing 5.2 are referred to PIIB and described
in Section 5.1 and variance process is related to the formulation shown in
Equation 5.11. The other modifications are detailed singularly in the following
Sub sections. Also here the update phase is assisted by a binary update mask
Mupd that increases or decreases by κ = 1 a background pixel value if its
corresponding Mupd value is set to true. Finally, the fine tuning phase exploits
the output of two blob analyses — one on the foreground mask and the other
on the one step frame differencing one — with the aim of giving robustness
to the BG model, as it will be described later.

Listing 5.2: Algorithm pseudocode

Background I n i t i a l i z a t i o n ∗
for each frame

Variance p roce s s
One step frame d i f f e r e n c i n g
i f ( Background i s l ea rned )

Foreground ex t r a c t i on
Fine tuning proce s s

Background Update∗
Energy Process ∗

5.3.2 One step frame differencing

This task is executed at each iteration and produces a binary mask obtained
by thresholding the absolute difference of the last captured frame and the
one being processed. First, the absolute difference image is calculated with
the formula:

AD = |It − It−1| (5.14)
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Then, for each pixel (u, v) the binary mask Mos is calculated in the following
way:

Mos =

{
0 if AD(u, v) ≤ τ (It−1(u, v))

255 if AD(u, v) > τ (It−1(u, v))
(5.15)

Each pixel is considered as a normal random variable: the mean value is
represented by its corresponding value in the last captured frame, while
the variance depends on its gray level, since different intensity values might
have different variances. The threshold τ(·) used to classify each pixel as
background or foreground is a function of a specific gray value and in our
implementation it is set to τ(γ) = 3.5σγ, where σγ =

√
V (γ). Hence, each

black pixel lies in an interval [γ − 3.5σγ, µ+ 3.5σγ] while the white ones
represent the tails of the corresponding normal distribution. The binary mask
obtained at this stage is useful to achieve robustness during the subsequent
phases, for example avoiding the BG model update in correspondence of a
moving player.

5.3.3 Foreground extraction

The foreground extraction phase is similar to the one step frame differencing
one, except from the fact that the background image is exploited instead of
the last captured frame. The output of this module is a binary mask Mfg

obtained with the same thresholding process presented in Eq. 5.15, in which
the absolute difference image is AD = |It −BGt−1|. Mfg is the mask used to
compare the model with other approaches in the next section.

5.3.4 Fine Tuning Process

After the BG model has been learned by the system, the fine tuning process
module is switched on to calculate the binary update mask Mupd. This
task is achieved by means of a blob analysis done on both Mos and Mfg to
obtain two sets of connected regions — namely Bos = {b1, b2, . . . , bn} and
Bfg = {b1, b2, . . . , bm} — that are processed according to the following rule:

Mupd = {p(bi, bj)q|bi ∈ Bos, bj ∈ Bfg, bi ∩ bj ̸= ∅} (5.16)

where p(bi, bj)q is the minimum circumscribed rectangle that embeds both
bi and bj. Each region extracted from the foreground mask is compared to
each region extracted by the one step frame differencing process in order to
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find overlapping blobs that do not produce an empty set when intersected.
As a consequence, the update mask keeps trace of robust foreground areas in
which the BG update does not take place, allowing the algorithm to easily
filter ghosts or static subjects that stand still on the scene.

5.3.5 Experiments and Results

Figure 5.13: Example of silhouette extracted with all the algorithms tested in the experi-
ment. Here, the proposed approach is the one that better preserves the entire silhouette of
the player finding a trade off between computational load and reliable results. The amount
of false positive or negative pixels in the proposed approach is reduced when compared to
the other statistical methods considered.

Two variants of the methodology described in the previous section have been
tested and compared with other statistical based background models available
in the BGS library [190] (GMG and MOGv2) and the adaptive background
estimator based on kalman filtering [193] implemented in MVTec Halcon
suite[194]. The first variant of the proposed algorithm models the background
skipping the fine tuning process, while the complete method — with the fine
tuning process in place — is tested separately as well.

Both qualitative and quantitative tests have been done on recorded se-
quences that represent a tennis training session. Four raw videos have been
taken with AVT Prosilica GT1920C cameras capable of acquiring 1936× 1456
frames at 40Hz and configured to capture 1920 × 1024 frames at 50Hz in
order to avoid flickering issues exploiting the hardware setup. Moreover,
cameras are equipped with auto iris lenses which enable to ensure a constant
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brightness level in the whole recordings. As a consequence, results obtained
on a single camera are reproducible on the other ones when recording the
same event from different points of view. Starting from a reference frame
f0, ten images sampled every 500 frames have been manually annotated and
quantitatively analysed exploiting the corresponding ground truth masks.
Only moving players and balls have been segmented on the ground truth
image, while inactive balls (always present in tennis courts, especially during
training sessions) have not been annotated as foreground objects.

Figure 5.14: Example of player silhouette extracted from four syncronized views. CAM0
and CAM1 refer to Player 1, while CAM2 and CAM3 to Player 2. The performance of
the proposed approach is the same independently from the specific point of view, thus
confirming that the reproducibility of the results.

Qualitative results in terms of player silhouette segmentation can be
inferred from the visual inspection of the foreground objects resulting from
different algorithms, as reported in Figure 5.13. Here, GMG algorithm
handles effortlessly shadows near the players feet and shows a tendency
to consider background some parts of the legs, performing poorly on the
lower parts of the player body because of color similarity between the court
and the skin of the player. Kalman fitering based backgound estimator is
sensitive to ghosting issues that appear when the player moves after having
stationed elsewhere. The proposed approach is able to produce a well-cut
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player silhouette, especially in the fine tuned variant where the ghost is being
reduced while preserving the whole shape of the player.

Figure 5.15: Quantitative results on the dataset in terms of Precision and Recall. Each
point corresponds to a comparison between a foreground mask obtained with a specific
algorithm and the corresponding ground truth. The upper right corner represents a FG
mask that that is exactly the same as the ground truth (both P and R values equal 100%).
Points that tend to (1, 1) are the best among the considered ones.

Figure 5.15 summarizes the algorithms performance in terms of Precision
P and Recall R for each annotated frame. Here, each point in the P −R plane
refers to a run of a specific background subtraction method where different
algorithms are shown with different marker shapes and colors, while variants
are presented as color-filled or white-filled. According to this representation
the ground truth has coordinates (1, 1), therefore points that lie in the upper
right part of the figure correspond to the best results.

In the comparison, both MOGv2 and the Kalman filter based background
FG masks have been post processed with a morphological opening operation
employing a circular structuring element of 2 pixels radius. The GMG
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algorithm did not require any additional filtering operation since the method
already produces salt-and-pepper noise filtered foreground masks.

Figure 5.16: Quantitative results in terms of F-Measure organized in a boxplot. The
figure summarizes the overall performance of each algorithm. The red marks represent
the median value among the executions, while blue boxes go from the 25th to the 75th

percentile. Small boxes are better because of low variance and high repeatability of the
experiments.

Figure 5.15 shows that both the variants proposed in this paper have
noticeable performance. The variant related to the fine tuned algorithm
shows the best overall results, with average higher scores on both axes (better
precision and recall performances at the same time). MOGv2 is particularly
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sensitive to salt-and-pepper noise and has a global tendency to show low
recall values. This implies a high number of false negatives pixels in the FG
masks, as it can be seen analysing the silhouettes in Figure 5.13. The Kalman
filtering based background results (highlighted by blue diamonds) in terms
of precision are not constant during the acquisition. This means that the
approach is affected by the production of false positive pixels in the form
of player ghosts, as shown in Figure 5.13. Finally, GMG algorithm shows a
precision comparable with the reference performance of the Kalman based
one, trading some precision for better recall scores.

In some respects, the GMG algorithm and the “complete” variant of the
algorithm described in this paper perform similarly well, with the GMG
algorithm being better in the precision score and the ones proposed here
showing better recall. However, as will be shown shortly, the adaptive BG
model presented here seems more dependable, with a uniform behavior while
working on different frames, while scores obtained by the GMG algorithm are
more scattered.

Figure 5.16 shows a boxplot of the F-Measure calculated during the
experiment. There are seven boxes, one for each algorithm. Inside each box,
the median value is highlighted with a red line, while the edges of the box are
the 25th and 75th percentiles. The whiskers extend to the most extreme data
points not considered outliers, and outliers are marked individually with a
red cross. Hence, small boxes refer to algorithms whose results are repeatable
over time, while big boxes show that the range of F is wide (reflecting high
variance in the results). The only algorithm that produces outliers is the
Kalman filter-based one, due to not constant precision values among the
executions as highlighted beforehand. However, it is the one with the smaller
box.

In summary, the best algorithm among the ones tested is the proposed
method enriched by the fine tuning module, as its median F value is 80%,
the associated box is the second smallest and there are no outliers in the
statistic.
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5.4 Real time 3D tracking

5.4.1 Methodology

The tennis ball detection and tracking algorithm presented in this Section
makes use of three dimensional data and domain knowledge to effectively
identify and understand ball positions during tennis training sessions and
matches. The input of our algorithm is a 3D point cloud enriched by temporal
information about ball samples, therefore each point can be seen as a quadruple
Pi = (fi, xi, yi, zi), where fi is the frame index of the specific ball candidate of
coordinates (xi, yi, zi). An example is shown in Figure 5.17, where each blue
point represents an observation of a ball candidate coming from a stereoscopic
system.

Figure 5.17: Example of input point cloud for the proposed algorithm. The black triangles
represent the position of the four cameras used to extract 3D information. Blue points are
the ball candidates collected over time.

The proposed method can be summarized in five steps, as reported in
Figure 5.18:

1. Ground points removal;
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2. Tracklets initialization;

3. Compatible ground points recall;

4. Sub-tracklets identification and polynomial model definition;

5. Final trajectory assembly.

Figure 5.18: Graphical explanation of the proposed tracking method. In all the subfigures
the straight line represents the ground truth trajectory while points represent input data
for the algorithm. First, all 3D points near to the ground plane are removed from the set of
input values. This way, noise due to the misclassification of players’ feet or to swipes on clay
court is negligible. Then, a nearest neighbor approach is responsible for choosing candidate
tracklets that are labelled as T1, T2, T3, T4. Once tracklets are initialized, ground points
compatible with them are recalled in the respective sets of points as reported in the third
step. Tracklets can be now split in sub-tracklets to deal with bounces on the ground and
changes of direction: both T2 and T3 are effectively divided in two distinct subsets of points.
For each sub-tracklet the coefficients of a polynomial model are used to project it forward
and backward. The final trajectory can be then assembled choosing the appropriate points
from each interpolated sub-tracklet.

The first step basically consists of a temporarily removal of points near to
the ground plane (i.e. zi < τground) and is a necessary pre processing step in
our algorithm since 3D information is retrieved from a stereoscopic imaging
system and is affected by noise. Image processing by background subtraction
and foreground analysis can generate false positive candidates when players’
feet are misclassified, when the player swipes to make a strike leaving a sign on
the clay court or simply when slow balls are left on the ground. False positive
ball candidates are then included in the 3D point cloud until the background
model is able to update itself, even if this can lead to the formation of small
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red near ground clusters as the ones in Figure 5.18.1. In our implementation
τground is set to 0.2 meters.

The resulting point cloud is then scanned in order to initialize pieces of
valid trajectories, called tracklets. All the points observed at the initial frame
f0 are associated to different tracklets. Then, a frame counter increased at
each iteration filters all the candidates observed at a frame index to perform
temporal and spatial distance filtering. Given two candidates Pi and Pj , their
temporal distance is defined as φji = |fj − fi|, while their distance in space

is the Euclidean one δji = [(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2]

1/2
. Assuming

that Pi is the last valid point of a tracklet, Pj is linked to Pi if

φji < τtime

δji < τspace · (2− 21−φji)
(5.17)

In our implementation τtime = 10 frames and τspace = 0.7 meters. Values have
been experimentally chosen as they depend on both hardware setup (cameras
temporal resolution) and players’ skills (ball speed during the gameplay). At
the end of this stage, 3D balls that are close both in time and space are
labelled with the same tracklet number as shown in Figure 5.18.2.

Each identified tracklet is then scanned again to detect any hole that is
of up to two frames and near to the ground plane. Ball candidates filtered
in the first step that are compatible with tracklet segments (with respect
to their x, y, z position) and temporarily coherent are then joined inside the
tracklet as depicted in Figure 5.18.3. Thanks to this two-steps check, ball
candidates near to the ground – excluded at the beginning of the algorithm –
are effectively reinserted in the most probable tracklet without introducing
noise as described beforehand.

Now, tracklets need to be divided in sub-tracklets before evaluating po-
lynomial models for reducing the computational complexity of the whole
procedure. This step leads to the reconstruction of information when they are
not available and is motivated by the absence of ball candidates in a certain
number of frames. There are situations that for several reasons hinder the
detection of a ball in the 3D space and produce a partially filled point cloud,
for example due to the ball being visible only from one camera of the pair,
or due to a false negative affecting the ball detection phase. Three curves
are therefore modelled for each sub-tracklet, one for each axis. A polynomial
degree is chosen separately for each one. Polynomial models in the vertical
direction are always chosen to be parabolic, while models for the remaining
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directions are chosen relatively to the number of points of the considered
segment: segments with more points are considered more reliable and hence
a parabolic description is computed. On the other hand if there are just a
few points, linear interpolation is preferred. To do this, we have chosen the
center of our reference system exactly in the middle of the court so that the
X-Y plane matches the ground plane (z = 0) and z coordinate represents the
ball height. Under this assumption, each sub-tracklet STij with at least three
points can be processed in order to find its kinetic model with respect to the
time (frame index f). It is immediate to notice that this step is concerned
with the identification of domain specific events affecting the ball: collision
with the ground (local minima around zero on the Z axis), collision with the
net (intersection on the X-Z plane at a specific height) or collision with a
player’s racquet (changes of the sign of speed on the Y axis). All these cases
affect ball trajectory and ultimately are events that start a new course for the
ball. Looking at the example in Figure 5.18.4, T2 and T4 are divided in two
sub-trackets, respectively ST21 and ST22 (ball bounce), and ST31 and ST32

(stroke). Model evaluation is then followed by an interpolation step. Each
sub-tracklet is extended in both directions until either the extended curve
collides with the ground or a maximum number of interpolated frames is met.

Finally, the extended sub-tracklets are checked for both contiguity and
validity in the 3D space and are assembled in the final trajectory described
in Figure 5.18.5.

5.4.2 Experiments and results

The tracking approach described in this paper has been tested on real data
coming from a multi camera 3D stereoscopic system. A private club has
been instrumented with four high resolution cameras that have been used to
capture raw data from tennis matches played on a clay court. 3D information
of the ball provided by image processing techniques are the input for the
proposed tracker. The software has been coded in Matlab 2014 and runs on
a Intel i7 CPU @ 2.7GHz, 16 GB RAM in 7.44 seconds for the proposed
experiment. The reference dataset comprises about 38000 raw frames (roughly
280 gigabytes of data) that represent a friendly match. Due to the dataset’s
length in terms of throughput, both qualitative and quantitative experiments
have been conducted.

The first took place on the whole sequence by evaluating key events such as
strokes and bounces, in fact it is possible to indirectly evaluate the capabilities
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of the approach by examining the frames in which those events are recognized.
A total amount of 106 strokes and 96 bounces is correctly reported within 10
frames, meaning that the event is recognized in ±0.2 seconds (because the
frame rate is 50 Hz).

Figure 5.19: Qualitative evaluation of trajectory reconstruction. Since ball trajectory in a
tennis game is mostly determined from interactions with other objects, like the tennis court
ground, the net or the player’s raquets, a qualitative evaluation of trajectory reconstruction
can be achieved by determining key frames in which the ball changes its course and verifying
if they correspond to meaningful events or happen elsewhere. Three key frames that
are representative of the accuracy of an event detection strategy based only on tracklets
evaluation, are shown in the figure. Key frames are recognized within ±0.2 seconds from
the real events.

On the contrary, for the quantitative analysis 893 3D points have been
manually annotated as ground truth that has been acquired by highlighting
the center of mass of the ball in the raw images and then applying the
same projective transformations built in the stereoscopic system to extract
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3D information. Then, each processed point P̂i = (fi, x̂i, ŷi, ẑi) is compared
with its homologous ground truth point Pi = (fi, xi, yi, zi) to compute the
residual error Ei = (xi − x̂i, yi − ŷi, zi − ẑi). Finally, the figure of merit
εi =

1
3
· [(xi − x̂i) + (yi − ŷi) + (zi − ẑi)] is computed and analyzed in the

following figures and table in order to quantify the accuracy of the proposed
tracking algorithm.

Figure 5.20: Average error distribution histogram with respect to the figure of merit ε.
An intrinsic uncertainty is related to the employed cost-effective stereoscopic system setup.
The use of low degree polynomial models due to real time constraints can lead to some
time misalignments as well.

Figure 5.20 shows the average error distribution histogram in which bars
represent the ε percentage evaluated for each error displacement value. The
ideal result for such a plot should be a 100% histogram exactly located in
ε = 0, but in our real case experiment a distribution of roughly 80% samples
is located around zero and an exponential decrease in the range [−0.2, 0.2]
is observed. This behavior is motivated by two important phenomena: first,
an intrinsic uncertainty is introduced by the stereoscopic system used for
evaluating 3D data; second, real time constraints induced the choice of low

122



degree polynomial models that can lead to misalignments when processing
high speed balls (typically serves) with few observed points, as it will be
shown in Figure 5.22.

Figure 5.21: Tracker performance. A plot of the tracker performance is shown here. This
shows that almost 94% of the tracklets points are accurately reported with a maximum
distance 0.1m from the real ball position, as labeled in the ground truth.

Data are also presented in the tracker performances curve shown in Figure
5.21, where the results’ uncertainty can be immediately observed by looking
at the plot. In this case, the uncertainty is defined as the absolute value of the
figure of merit ε so that for each 3D point a portion of the 3D space – i.e. a
cube – is delimited as the region in which the predicted/observed point should
lie. Low uncertainty values for a high number of points reflect a high tracker
accuracy during the experiments, but since the samples are affected by noise
introduced by cameras and projective transformations, we can reasonably
assume that 0.1 meters of uncertainty is an acceptable threshold to evaluate
performances. For this reason, the proposed tracking system achieves 93.6%
accuracy on real data.

Precise quantitative details about the two plots described beforehand are
reported in Table 5.3, where percentages are sampled started from |ε| < 0.01
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Table 5.3: Details of the average error distribution histogram. Tracker performance accu-
racy is presented here in a tabular form.

εmin εmax %
-0.01 0.01 48.0
-0.02 0.02 64.7
-0.05 0.05 84.3
-0.10 0.10 93.6
-0.15 0.15 96.9
-0.20 0.20 97.9
-0.25 0.25 98.5
-0.30 0.30 98.9
-0.40 0.40 99.4
-0.50 0.50 99.6

meters to |ε| < 0.5 meters. The first thing to notice is that half of the
points are almost coincident with their ground truth as the uncertainty cube
defined by |ε| < 0.01 contains 48% of the samples. Then, the curve increases
logarithmically until the figure of merit reaches 0.1 meters. In fact, increasing
|ε| < 0.1 to the upper bound of 0.5 meters enhances the performances of only
6%, from 93.6% to 99.6%.

Finally, qualitative results are provided in Figures 5.22 and 5.23, where
two distinct actions are plotted directly on a virtual tennis court. The first
action is also split in four parts (a), (b), (c), (d) for a better presentation,
while in the second case the whole action is plotted. Black triangles indicate
the position of cameras that are located behind the side line at approximately
6 meters in height, while dots are used to mark ball positions. Yellow balls are
the ground truth and red circles represent the output of the tracker. These
results confirm what has been observed in the previous plots because red
circles are close to their ground truth corresponding points. Moreover, it is
worth focusing on the effects of numerical approximations that are highlighted
by three green rectangles:

1. in the first case the reconstructed trajectory follows a line while the
ground truth is represented by a slightly pronounced curve. This is
due to the fact that only a few high speed points have been correctly
identified on the net, so a first order model has been chosen to reconstruct
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missing data;

2. in the second case the reconstructed trajectory is over estimated, in fact
the ground truth shows that the ball has followed a shorter path with
respect to the output of our algorithm. Two different factors cause this
behavior: the side line is the furthest zone in the field of view of the
stereo pair – approximately 24 meters far from the camera (therefore
losing some accuracy) – and the ball can be occluded by the player in
correspondence of strokes losing a certain number of input points for
the tracker;

3. the third case is similar to the second one, but here the computed
trajectory is under estimated. The causes of this behavior can be
considered the same of the previous case, because the main problem is
that ball candidates are lost when the ball intersects the player’s blob.
Whenever there is no ball correspondence between image pairs, no 3D
point can be extracted.
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Figure 5.22: This figure shows an example action that has been reconstructed with the
proposed approach. Ball candidates (red circles) are plotted against their respective ground
truth (yellow dots). The first image represents the whole sequence that starts with a serve
and ends with a rewarded point. Green rectangles are used to highlight the effects of
numerical approximations that have been commented in the paper. Four sub plots are also
reported for clarity purposes.
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Figure 5.23: Another example of reconstructed action.

Even if the lack of some points could produce unpredictable results,
experimental results shown in Figures 5.22 and 5.23 confirm the correct
path following capability of the proposed approach. In fact, our algorithm
accurately follows the ground truth as soon as newly observed points are
available, as trajectories reconstructed in blind spots are effectively close to
their correspondent ground truth value.

5.5 Summary

In this chapter multiple algorithms for real time processing of high throughput
data have been detailed. In particular, three background models and a 3D
tracking method have been presented.

The first one, namely PIIB, is an adaptive background model for high frame
rate video applications suitable for smart cameras embedding. The algorithm
is designed with respect to the SSE2 instruction set programming rules and
works on grayscale images for speed reasons, but the logic can be extended
also to RGB images. The computational complexity of PIIB is linear and it
shows a really fast responsiveness that enable its implementation on smart
cameras. Moreover, it obtains a good overall performance indicator in athletic
video processing due to the high recall value shown in the experiments, even
if its precision is generally lesser than the other analyzed methods. Precision
can be improved adding some modules to the algorithm, such as a selective
background update or a shadow removal module, in order to enhance the
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overall performances, as it has been done in the other approaches.
The second one, namely LBB, is a likelihood-based background model for

real time processing of CFA images. The algorithm is designed with respect
to the state of the art output format for vision cameras and implements a
statistical model that takes into account the BG as the mean image while
modeling the variance of each gray level processing its occurrences in the
whole frames. For this reason, the variance is not calculated with respect
to the observations of a single pixel over time, but is related to the intrinsic
nature of the sensor. The results obtained in terms of F-Measure overcome
the ones obtained with PIIB and confirm the robustness of the proposed
approach in the athletic video processing context.

The third one, namely GIVEBACK, extends the results obtained with LBB
to the specific context of tennis and represents an efficient method to segment
active entities — players and balls — in this context. The proposed approach
is based on simple but effective operations (from a computational load point of
view) that allow its employment on real time systems. Moreover, it operates
directly on raw videos thus encouraging its implementation directly on smart
cameras. Experiments on tennis training video sequences demonstrate its
effectiveness in tennis players silhouettes processing, even if there usually is a
strong similarity between players skin and the tennis court. The fine tuned
version of the algorithm shows good scores in terms of Precision and Recall
and F-Measure. Its performance on different frames are very similar on each
ground truth annotated test image. These results confirm the robustness of
the proposed method when compared to other statistical approaches evaluated
in the benchmark.

Finally, an effective method to detect and track a tennis ball in a 3D space
has been presented. This approach exploits domain knowledge to recognize
ball positions and trajectories from a sparse but cluttered point cloud that
evolves over time. The tracker has been tested on real data collected by a
stereoscopic system during a friendly match. The results demonstrate that
93.6% accuracy can be achieved within 0.1 meters of uncertainty in the 3D
Euclidean space. This is compatible with the specifications of the stereo
system, that has been developed using the minimum number of cameras to
obtain an acceptable resolution on the side lines of the court. The majority
of errors are due to missing 3D data, as shown in the experiments, because if
the ball is not recognized correctly in one of the cameras, triangulation can
not take place.
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Chapter 6

A technology platform for
automatic high-level tennis
game analysis

6.1 The proposed system

The proposed system consists of a dedicated hardware setup (cameras and
computer) and a number of software modules for the automatic processing of
the recorded video sequences. The aim is to record tennis video sequences
and performs the segmentation and the analysis of significant tennis actions
in order to support coaches in the evaluation of tennis players performance
during training sessions or official matches.

We propose the use of dedicated cameras in order to collect data that cover
all the court and are able to observe simultaneously the positions of players
and ball during actions. Broadcast cameras (which commonly show a single
point of view of the match) are not suitable for this kind of tasks first because
3D reconstruction of the ball trajectory is necessary to evaluate events, and
also because positions of the two teams and the ball in the court are necessary
to evaluate tactics and performance. Moreover, broadcast camera videos are
often chosen for entertainment purposes then they are not suitable to record
all the events necessary for automatic game and players evaluation.

Here, four synchronized cameras are placed on the corners of the court and
connected to a central node, provided with suitable algorithms for processing
the acquired videos. The system reconstructs the 3D ball trajectory and
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recognizes key events by the concatenation of simple action parts which
concern ball rebounds, shots or faults. The main contribution of this work is,
from one side, the system architecture, in terms of number and positions of
dedicated cameras, frame rate and resolutions which respect the constraints
imposed by the tennis domain. On the other side a number of processing
modules has been implemented to perform low level image processing and
high level semantic interpretation and to recognize key events automatically
assigning a score. Finally, large attention has been put on designing a
technology platform that can effectively support coaches with relatively
low cost equipments. The results demonstrate that the proposed system is
able to effectively reconstruct 3D ball trajectories, recognize serves, strokes
and bounces and make a decision about score assignment for each action.
Moreover, coaches can perform strategic queries to analyze players intentions,
behaviors and performance using a combination of both 3D data and key
events annotations.

6.2 System overview

The proposed system is primarily designed to address coaching needs. For this
reason, it is designed to operate in structured environments, typically indoor,
although it can operate outdoor as well. The system can be schematically
decomposed in three sub-systems (see Figure 6.1): data acquisition, data
processing and data storage.

Figure 6.1: Block diagram of the system.
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6.2.1 Data acquisition

In order to design a platform which can operate in every condition, both indoor
and outdoor, the most general conditions have been considered to choose the
proper equipments and functionalities. Most of the tennis training sessions are
performed in indoor environments, generally under shelter structures. Shelter
structures create particularly challenging conditions for image processing,
since they are made to let sunlight in, therefore with varying illumination
from sunny to cloudy as for outdoor condition, and yet allow to switch on
artificial lights when sunlight proves insufficient. In addition, artificial lights
introduce flickering effects which can greatly modify the quality of the acquired
images. For this reason the platform has been designed to operate in the most
challenging situation, i.e. indoor environments, but the same equipments can
be used or either simplified to operate on outdoor courts.

Figure 6.2: The figure depicts the position of the four cameras on the corners of the tennis
court with X marks. Each pair of cameras can acquire the opposite part of the court. The
fields of view of two cameras are highlighted in blue.

The proposed architecture makes use of four high-definition cameras that
are synchronized using a trigger circuit. The model chosen is an AVT Prosilica
GT 1920C. This is a Gigabit camera with a maximum resolution of 1936×1456
with a maximum frame rate of 40 fps. However, since the system has been
designed to operate also with artificial lights, some horizontal scanlines have
been cropped to achieve a fixed frame rate of 50 fps, which is the same of the
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power lights fluctuations (which operates at 50Hz in Europe). This frame rate
boost essentially removes any flickering issues due to the use of artificial lights
and enables the system to operate better during serves, where ball usually
travels at its maximum speed. Under these conditions acquired frames have
a resolution of 1920 × 1024 pixels. These cameras are also equipped with
auto-iris lens control, enabling to stabilize brightness even during extended
recording sessions, spanning several hours.

Figure 6.3: Example of synchronized acquisition. Four frames are captured exactly at the
same time to make the system capable of observing the whole court from at least two
different points of view.

Cameras arrangement requires the use of two pairs of cameras. Each pair
is positioned to cover the half-court on their opposite side. The fields of view
of a pair of these cameras is shown in Figure 6.2 as the blue regions. The
intersection of both fields of view is the area in which 3D reconstruction can
take place by means of triangulation techniques. A central node, equipped
with the trigger generator, synchronizes the four cameras and collects data.
The synchronization task has been implemented with the aid of a low cost
programmable micro controller, namely an Arduino, that has been set to
operate at 50 Hz. A squared wave is then generated accordingly to the selected
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frequency. This way, every installed camera can acquire an image exactly at
the same time, meeting the requirement of each stereo vision system that
needs a synchronized pair of images to compute the 3D information. Cameras
are connected to the central node by using a Power Over Ethernet (PoE)
Gigabit card. The central node is also equipped with dedicated SATA hard
disks hosted on a SAS controller, independent from the operating system boot
disk, providing storage capabilities that are both sized for extended playing
sessions, and shielded from the interference of operating systems tasks. Each
camera stream is physically stored on a dedicated partition of a different
drive, thus enabling the system to store multiple raw data streams in parallel
at the maximum available speed. An example of four synchronized images
acquired by the four cameras is reported in Figure 6.3.

6.2.2 Data processing

The data processing consists of several modules (see Figure 6.1): low le-
vel processing, 3D reconstruction, high level processing, outcome decision
processing.

Thanks to the nature of the dedicated installation, using fixed cameras
with fixed zoom, low level processing performs moving blobs detection on
each camera aided by a background subtraction approach. In this way, low
level entities (i.e. ball and player candidates) present in each camera are
extracted. Therefore for each camera, a temporal and spatial blob analysis is
performed for filtering false candidates due to noise, for recognizing ball and
players and remove artifacts due to shadows or net movements.

The resulting ball and players candidates of the corresponding pair of
cameras of the same side of the court, are then forwarded to the 3D recon-
struction module. For all these candidates, the 3D point cloud is extracted
by applying a triangulation approach which exploits known geometrical rela-
tionships between cameras, and fixed positions of entities and corners of the
court in the real world.

Finally, the 3D point cloud is processed by the high level processing
module which applies semantic analysis for identifying ball trajectories and
game events by using the domain knowledge such as the expected trajectory
of the ball or the change of its direction and speed.

A finite state machine can be eventually used to perform the last step
of outcome decision, by using semantic data stored in the previous step and
by associating to the sequential evolution of the recognized events the score
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assignment dictated by the tennis rules.

6.2.3 Data Storage

A huge amount of redundant data is available, but only few processed data
are stored in a database in a fine-graded fashion: ball positions, events that
change ball trajectory (such as impacts with the ground field or the players’
racquet), players’ positions, and score assignments (the last one resulting from
the outcome decision process). A relational database, namely PostgreSQL,
has been chosen to record the information in order to exploit the hierarchical
structure of tennis domain data. The purpose is to obtain effective storage
while enabling subsequent statistical analyses. Structured meta-data storage
enables fast access to key match events, and, at the same time, provides a
foundation for combining data in more meaningful ways in the future, thus
enabling the system to be customized to coaches needs and easily expandable
to accommodate ever-evolving requirements.

6.3 Processing modules

In this Section all the steps that are performed will be described, from the low
level processing of the raw data coming from the four synchronized cameras up
to the final decision process which collects semantic information and assigns
a score.

6.3.1 Low level Processing

This module is responsible for ball and players detection. Several steps are
needed to identify them:

1. Image acquisition and storage;

2. Robust background estimation and subtraction;

3. Moving region filtering by connectivity and morphological analysis;

4. Ball and Players candidate selection by spatial and temporal filtering.

The chosen sensors produce data in the form of color filter arrays using the
Bayer pattern [191]. Thus, images coming from the camera are stored in their
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raw form for archiving purposes. No conversion is done, so that data requires
fewer resources to be stored. Color conversion is applied only on demand for
display purposes, while for the subsequent processing raw images are used.

Figure 6.4: Graphical output of the low level processing in terms of entities coordinates and
player silhouette. On the left side, two different symbols are used to mark the entities: X for
the player and + for the ball. On the right side, the silhouette of the player is highlighted
in red and ball in green. Data from this stage is essential to reconstruct three dimensional
coordinates and proceed with the analysis of the match performing the subsequent tasks.

A suitable algorithm has been chosen to provide a background estimation
and hence extract ball and players candidates with a high confidence level. In
particular, the GIVEBACK algorithm is applied as described in Chapter 5.
After the background model is learned, the fine tuning procedure continues
with a selective mask update, keeping trace of robust foreground areas in
which the background is not updated. This enables the algorithm to easily
filter ghosts or subjects that stand still on the scene and to retain good player
silhouettes.

After the background modeling and subtraction, a connected component
analysis is applied to the resulting moving regions, to allow an initial es-
timation of the area dimensions. Then, morphological operations such as
dilatation and erosion are used to remove holes and merge neighbor regions.
These preliminary steps allow an initial filtering of noisy regions.

Ball candidates are chosen from blobs that have compatible dimensions
with the tennis ball. In particular the radius of the inscribed and circumscribed
circles of each region is estimated, selecting those having an inner radius
between 5 and 10 pixels and an outer radius between 5 and 30 pixels. This
is necessary to allow the detection of balls even at high speed, that, due to
motion blur, present an ellipsoidal shape. Correct corresponding balls between
consecutive frames are found by evaluating the shape features extracted from
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the two images. For each candidate in one frame, the most similar are first
chosen from the other frame. Then, the selection is refined by associating the
closest balls in space. Moreover, a speed threshold is applied to filter ball
candidates that are not likely to be part of the game. Whenever a match is
played, only the fastest ball candidate is chosen, but during training sessions
many balls can be thrown simultaneously and processed accordingly.

The selection of player candidates is done with a different set of operations.
Since players move at a lower speed and sometimes are in “idle” state, for
example waiting for the serve, there is a chance that parts of the silhouette
might be considered as background. Even if GIVEBACK algorithm redu-
ces the probability of observing such phenomenon, a morphological closing
operation can be necessary to consider only big foreground areas as players
candidates. It is worth noticing that the chosen background algorithm is able
to deal with such situations, as it was developed specifically for this task.

An example of low level processing result is reported in Figure 6.4. On
the left image different marks are used to sign the player and the ball, while
on the right image the segmented player silhouette is shown in red and the
ball in green.

6.3.2 3D reconstruction

This module is essentially responsible for providing 3D information of ball and
players candidates. Each pair of synchronized images is exploited to produce
a sparse point cloud that embeds information about the active entities on the
court during the game. The algorithm is mainly composed of the following
steps:

1. Homography computation;

2. Entity projection on the ground plane;

3. 3D information retrieval.

First of all, for each pair of cameras observing the opposite half of the field,
the homography matrices which map the transformation between the image
planes and the ground plane are estimated. A set of reference points placed
on the ground plane is measured by a theodolite sensor in a global reference
system, and their correspondences in the two image planes are annotated
accordingly. Let (X, Y, Z) with Z = 0 be the coordinate of the a reference
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point in the world reference system and (u, v) its corresponding coordinate
on the image plane. The general transformation is given in the following
equation: ⎡⎣ u

v
1

⎤⎦ =

⎡⎣ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎦⎡⎣ sX
sY
s

⎤⎦ (6.1)

that can be expressed in Cartesian coordinates as:

u =
h11X + h12Y + h13

h31X + h32Y + h33

v =
h21X + h22Y + h23

h31X + h32Y + h33

(6.2)

To estimate the coefficients hi,j at least four corresponding points are needed
thus solving the resulting equation system in the least squares sense. Addi-
tionally, the theodolite sensor is used to measure the position in the world
reference system of the centers of projection (CP ) of all the cameras. It is
worth observing that this procedure is necessary only when installing the
system to generate the four homography matrices for the four cameras. Given
a point observed in the image plane it is possible to detect the corresponding
position P on the ground plane and construct the viewing lines between CP
and P as shown in Figure 6.5. Whenever the same point is observed by two
cameras simultaneously, the intersection of the two viewing lines will then
give a 3D point that represents its position in the world reference system.
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Figure 6.5: Example of 3D information retrieval from a pair of homologous cameras. The
red points represent some of the reference points chosen on the ground plane which are used
to estimate the homography matrices. The green dots represent the ball whose position
is determined by the intersection of the two viewing lines (depicted in blue). The global
reference system is also shown at the center of the court, on the ground plane.

In real cases, each pair of 3D lines constructed this way will not perfectly
intersect in a specific point because of noise or numerical approximations. For
this reason, the segment of minimum distance between the two skew lines is
computed and the 3D point is finally associated to its midpoint.

6.3.3 High level processing

Once 3D positions of ball and players have been retrieved, this module is
responsible to segment the acquired sequence into actions. This is initially
done by detecting idle parts during the game, where no ball is moving, and
splitting the whole sequence accordingly. These chunks of sequences might
contain valid game actions or just show a suspended game where inactive
balls are collected from the tennis court or exchanged between players while
preparing for the next round of serves, a situation very frequent during training
sessions. This classification is done after the ball trajectories evaluation.

The temporal analysis of the 3D coordinates of all ball candidates allows
the reconstruction of the most complete trajectories which respect the kine-
matic constraints of the tennis ball. An interpolation procedure is used to
approximate the real 3D measures and fill the gap due to missing data and
filter out false measures due to noise.
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Trajectory breaking is instead concerned with the identification of events
affecting the ball. They can be classified as collision with the ground or
collision with a player’s racquet. These cases modify the ball trajectories
and ultimately are events that start a new course for the ball. They are also
the key events that are considered by game rules for assigning a score to the
action. They can also be easily classified on the basis of their position on the
court and of the principal axis where the change of direction is detected. In
particular we have that:

• Ball bounces are on the ground, and they can be detected as local
minima around zero on the Z axis.

• Strokes change the trajectory as well. They affect the ball in all directi-
ons and a player must be nearby.

• Serves happen on the border of the court when both players assume
a specific position and are characterized by the initial height of the
trajectory and the high speed.

Particular care in the detection of these trajectory changes must be taken so
that noise due to errors of the background subtraction module or to wrong
association in the triangulation procedure do not add false positives events. A
Gaussian smoothing operation (whose parameters have been experimentally
set) is applied before breaking trajectories.
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Figure 6.6: Example of the 3D ball trajectory and its corresponding X,Y,Z plots studied
separately, called action plot. Bounces can be easily recognized looking at the third subplot
and searching for local minima around zero (reported as green circles). Strokes can be
found exploiting the changes in the sign of the acceleration along the Y-axis (reported as
red circles). The box shows the coordinates of the ball in correspondence of the serve. The
observations of the ball at the end of the rally are reported in the zoomed rectangle.
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Figure 6.6 reports an example of the 3D ball trajectory enriched by separate
plots for the (X, Y, Z) coordinates. The plot is referred to a complete action
that starts with a serve and ends with a scored point, thus the evolution
over time of a multiple rally is shown. As reported in Figure 6.5, the
reference system has the origin in the middle of the court on the ground
plane. Trajectory changes along Y are related to strokes and local minima
and maxima, determined by changes in the sign of the acceleration, can be
exploited to understand when a stroke happened. It is worth noting that
the Gaussian smoothing operation is useful when dealing with real data, as
it reduces the effects due to noise. Bounces on the ground are recognizable
searching for local minima around 0 in the Z coordinates. Serves can be
recognized by evaluating players positions on the court along with the height
of the ball at the beginning of a tracked trajectory and its Y coordinate (that
should be behind the side line), as reported in the box in the figure. Different
ball colors in the 3D map of Figure 6.6 represent the trajectory over time:
blue (serve), cyan, green, yellow, orange and finally red (point). Finally, the
dots between the net and the ground (also zoomed in the figure) represent
the observations of the ball at the end of the rally.

Figure 6.7: Example of invalid action: a ball pass between two valid points.

The resulting trajectory classification is stored in the database together
with the estimated frame number and the ball coordinates in the court
reference system. At the same time, in correspondence of these events players
positions are checked and saved in the database. All this data is used by
the following decision process that assigns a score, but can be used for
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further applications such as query of specific key events, statistics and so
on. Trajectories are considered as not valid when there are no strokes in a
relatively short period of time, as in Figure 6.7 that describes the trajectory
of a simple ball pass event between two valid points. Moreover, it is worth
noting that the hardware setup described in Section 6.2 can also introduce
time duplicated trajectories when the same ball is captured by both camera
pairs (specifically above the net, where all the fields of view are overlapped).

6.3.4 Outcome decision processing

Figure 6.8: Graphical model of the finite state machine used to assign a point at the end
of each action. The orange filled nodes represent the four initial states that can be found
during a tennis match (the serve), while the blue ones are the inner states that describe the
progress of the action. The connection between the nodes represent the allowed transitions
only. The outcome is reported in squared boxes (purple for team T1 and green for team
T2). Each proper event must fire a transition, i.e. the FSM must change its state at each
iteration if the action is not concluded. Otherwise, the point is assigned to the green/purple
highlighted team in correspondence of the node that did not changed its state.
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A score assignment can start only when a complete action has been identified.
A complete action is a sequence of frames which starts and ends with idle
phases (a number of consecutive frames where no movement of the ball is
perceived). The first step searches for a “serve” event, recognized as the first
stroke after an idle period that happens near the side line. Then, the ball
trajectory is analyzed until the end of the action, when a point is assigned
to one of the players. A finite state machine (FSM), which embeds the rules
of the game, has been designed. The finite state machine changes the state
if the ball follows a valid trajectory with respect to the rules. When the
FSM can not reach another valid state in response to an event, the action is
considered completed and a point is assigned. Particular attention should be
given to the repetition of a serve (first or second) that is allowed only when
the served ball touches the net and bounces inside a valid area of the court.
In that case, the particular service should not count and the service needs to
be repeated without cancelling any previous fault. It should be noted that
net events are important in this context only, otherwise they can safely be
ignored to correctly assign a score. Figure 6.8 shows a graphical overview of
the FSM, which resumes all the possible situations that can assign a score,
starting from simple aces (for example Serve T1 L, Inner Bounce T2 side →
score T1) to more complex actions with several strokes and bounces. In Table
6.1 all the possible states with their correspondent outcome are reported.
The states are extracted by the events stored in the database in the previous
step by analyzing both the type of events and the corresponding 3D ball
coordinates. It is worth noting that valid court boundaries depend on both
game type (single/double) and stroke type (serve or other strokes), therefore
the meaning of ”inside” and ”outside” changes according to the rules of the
game. In Figure 6.8 square boxes represent the key-value map that associates
an outcome to the action: if the FSM is not able to change its state, then the
point is assigned to the appropriate team.
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Table 6.1: List of all possible FSM states with the correspondent outcome. The * means
that no point can be assigned in the specific state. This is true only when a fault occurs
and the serve can be repeated.

State Possible Outcome

Serve T1 L/R *

Fault Serve T1 *

II Serve T1 L/R T2

Serve T2 L/R *

Fault Serve T2 *

II Serve T2 L/R T1

Inner Bounce T1 side T2

Inner Bounce T2 side T1

Stroke T1 T2

Stroke T2 T1

In order to explain the decision process by the FSM two examples are
analyzed. Figure 6.9 shows two actions, represented by the sets of events
A1 = [ev1, ev2, ev3] and A2 = [ev1, ev2, ev3, ev4, ev5]. Blue lines represent ball
trajectories between valid states, while the red lines depict the last state
transition in which the decision about the point assignment is made. In the
first case the events are: serve, bounce and another bounce. The associated
states are respectively: Serve T1 R, Inner Bounce T2 side and Inner Bounce
T2 side again. The latter state is due to the fact that the second bounce
takes place on the same side of the court, therefore since there is no valid
state transition, the FSM remains in the previous state. As shown in Figure
6.8 the point is assigned to T1.

Following the same approach, the events of the second action are: serve,
bounce, stroke, bounce, bounce. The corresponding states are detailed in
Table 6.2. The first stroke event ev1 is a Serve made from team T1 on the
right side of the court, so the initial state is ”Serve T1 R”. Then, the following
events are responsible for allowed state transitions as specified in the Table
6.2, until the last state Inner bounce T1 side is repeated. Also in this case
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the last event is another bounce on the same side of the court. Then there is
no valid state transition and the point is assigned to T2.

It should be noted that the entrance state of the FSM cannot be necessarily
a service, as the proposed system can be used also during training sessions
with any kind of action. The FSM in this cases is used to label the observed
actions and to store in the data base all the information about number of
strokes, positions, bounces, with the resulting scores. These data can be used
by coaches to perform useful queries and evaluate player performances both
during training and official matches.

Figure 6.9: Examples of actions that can be processed with the FSM to decide the outcome.
In the first case, the player on the left side performs an ace and wins the point, while in
the second case a longer action is depicted.
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Table 6.2: Analysis of the longer example action in Figure 6.9. The first event initializes
the FSM with a Serve played by team T1 from the right side. Then, other events are
received and the machine changes its state according to the representation in Figure 6.8.
The last state is ”Inner bounce T1 side”, meaning that the point should be assigned to the
team T2 according to the key-map representation in Table 6.1. The last event is not able
to fire a transition, implying the end of the action.

Initial state Event Arrival state

* (ev1) Serve T1 R

Serve T1 R (ev2) Inner bounce T2 side

Inner bounce T2 side (ev3) Stroke T2

Stroke T2 (ev4) Inner bounce T1 side

Inner bounce T1 side (ev5) No valid transition,

end of action

6.4 Experiments and results

The experiments have been performed on a clay court hosted by a private
tennis club that has been equipped with the hardware described in Section
6.2.

Two different experiments have been conducted: the first one to demon-
strate the performances of the proposed approach to recognize serves, strokes
and bounces, by the analysis of the 3D ball trajectory variations; the second
one to test the whole chain, with the FSM that assigns a final score to each
action.

In the first case, a number of 225650 frames have been recorded by four
synchronized cameras during different training sessions for a total of about
75 minutes. In these sessions, players are free to move on the court without
strictly respecting rules and under the supervision of their coach, they can
improve the technique on particular/unusual strokes, control the length of an
action or repeat particular sequences of strokes in order to enhance tactics.
The registration of these video sequences has been used to test the ability of
the proposed system to segment subsequences which contain actions, track
the ball and reconstruct the 3D trajectories in order to recognize services,
bounces and strokes.

Before proceeding in the analysis of the results, it should be observed that
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in this kind of real experiments is actually difficult to establish the ground
truth for 3D ball trajectory evaluation. It would be necessary to employ
external measurement sensors able to exactly measure the ball trajectory.
What is generally done is to manually label the ball position in the images
and reconstruct the 3D ball coordinates by triangulation. In this case also
the resulting measures are affected by errors due to the optical projections of
the system, the matrices approximations, and so on. The scope of this work
is not to exactly evaluate the 3D ball trajectory, but only to establish the
ability of the system to recognize events. The ground truth has been then
generated by manually labeling the frames in which users recognize strokes,
bounces and services, and comparing these results with those produced by
the system.

Table 6.3: Experiment 1: the table reports the results in terms of TP, FP, and FN for the
recognition of strokes, bounces, and service during a training session of 75 minutes. In the
first column the numbers of events manually labelled during the training sessions. The
values of TP, FP, FN, P, R are all percentages.

GT TP FP FN P R

Serve 112 85.8 0.0 14.2 100 85.8

Shot 409 89.6 5.6 4.8 94.1 94.9

Bounce 467 85.9 9.2 4.9 90.3 94.6

In Table 6.3 the results in terms of True Positives, False Positives, False
Negatives, Precision and Recall are provided for a total of 112 services, 409
strokes, and 467 bounces. A detection has been considered correct when an
event is recognized within a temporal window of 20 frames corresponding to
0.4s which seems a reasonable interval in which different events cannot be
found. The detection in terms of true positives are satisfactory for all the
kinds of events. In particular, the number of services which are not recognized
are due to the fact that the ball tracking starts later than the actual ones,
and the constraints for the service detection are not met anymore (a service
is a stroke that happen near the bottom line of the tennis court and with a
certain elevation with respect to the ground). In the shot detection there is a
percentage of False Positive due to the fact that the analysis of the changes in
the sign of acceleration can be caused by local minima which were not filtered
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by the smoothing step. Also for the bounce detection, some false positives
are due to strokes which happen very close to the field and the constraint on
the minimum around 0 in the Z coordinate fails. False negatives are generally
caused by a not precise trajectory reconstruction due to failures in the ball
detection in some frames. For example in Figure 6.10 one of the cameras
cannot see the ball as it is saturated by the lights on the advertisement. The
system overall performance can be then evaluated in terms of Precision and
Recall percentages that have been obtained during the experiment. The first
value indicates how many selected items are relevant, while the second one
expresses how many relevant items have been output by the system. For the
categories Shot and Bounce the system is able to achieve values greater than
90%, proving its capability to output a high number of True Positive values
along with a low number of False Positive or Negatives. The Serve Recall
value scores 85.8% and is degraded by the False Negative values that have
been discussed before.

Figure 6.10: Examples of images in which the ball is not visible by one of the cameras.

Another point which should be considered for the evaluation of the system
is the precision in the evaluation of the ball position when bounces are
recognized as these data are necessary to assess if the ball is outside or inside
the valid court. Certainly the performances of the proposed system cannot
be compared to complex commercial ones (such as Hawkeye [145]) based
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on a greater number of cameras which observe only the lines and perform
3D trajectory reconstruction. Anyway in order to have a general idea about
these measurement errors, the position of the ball in correspondence of the
observed bounces has been manually labeled, thus comparing the ball positions
obtained by our system with those estimated by the manually annotation
procedure. The same observation made beforehand about the ground truth is
still valid. Also these measures are affected by noise, as the variation of one
pixel in the ball manual labeling produces variations in the ball localization
of several centimeters. For this reason, comparative results can be considered
only in a qualitative way. Indeed, for the 91% of bounces the ball position
error is estimated under 15cm. As a consequence, when the ball is close to
border of the valid field, the system could fail in determining inside or outside
situations.

At this point the actions can be preliminarily analyzed for statistical
purposes grouping them with respect to the number of strokes that occur
during the play of a single point. Figure 6.11 shows the distribution of the
actions according to this representation:

• short duration ones are reported in blue and cover about 43% of the
total number of actions and generally refer to faults, aces or points that
finish just after a couple of strokes;

• medium duration actions are the green ones, represent about 39% and
are related to well balanced points in which both players are playing
similarly;

• long duration actions, the red ones, are only 17% and can be exploited
similarly to the previous ones.
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Figure 6.11: Number of strokes histogram.

This kind of statistics can be used by coaches to evaluate performances
and extract video sequences containing specific events such as actions with
one stroke (probably corresponding to fault or winning return), actions with
long exchanges, and so on.

The second experiment consisted of 38000 synchronized frames that cover
a real match made of four games. In this experiment the finite state machine
has been tested to assign points and keep track of the score. It is important to
put in evidence that the FSM just embeds information on game rules that are
fixed. Therefore, its behavior is deterministic. For this reason, the purpose
of this second part of the experiments is to understand whether this system
will be able to effectively assist a coach with a high confidence level. A total
number of 45 actions automatically tagged as valid or invalid by the system
have been identified.

Table 6.4 contains the details about each action. It reports the manually
labeled ground truth (Start frame, End frame, Srv, Str, Bnc), the correspon-
ding system output, and the final evaluations carried out by our system. The
ground truth in terms of start frame and end frame has been reported only for
the valid actions, while for ball pass actions or idle periods are not reported.
Strokes and bounces are correctly detected, while in three cases serves are
not recognized (actions 4, 7 and 42). Ground truth start frame is correctly
identified within a certain number of frames, showing that the system can
effectively segment actions. Only for the three actions (those in which serves
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have not been recognized) the starting frames has been found later than the
actual ones. This is a clear indication that the ball was not initially visible
and the tracked trajectory started later, causing a failure of the constraints for
the serve detection. Moreover, the 1 : 1 correspondence between the evaluated
outcome and ground truth data confirms the capability of identifying bounces
and strokes correctly. Action number 27 is an example of short trajectory
fully contained in action 26 that is neglected because it is a duplicate one.
Actions are considered valid if they start with a serve. When a serve is not
recognized and actions have a long duration with a high number of strokes
and bounces, actions are considered still valid but labeled with Missing serve.
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Table 6.4: This table shows the details about actions, one per each row. Validity and
events count are reported as well as temporal information in terms of starting frame, ending
frame and duration, compared with manually annotated ground truth. Invalid actions are
characterized by one of the following: absence of strokes in combination with a relatively
short duration, sub actions whose temporal boundaries are intersected with a main action
(as explained in Section 6.4) or simple ball pass events between two points. Finally, three
missing serves have been highlighted in bold.

Ground truth System output

Start End Srv Str Bnc Start End Srv Str Bnc Delta Delta Decision

# frame frame frame frame start end

01 47855 47964 1 1 1 47852 47916 1 1 1 3 48 Valid

02 48387 48559 1 2 2 48380 48592 1 2 2 7 -33 Valid

03 49524 49693 1 2 2 49519 49651 1 2 2 5 42 Valid

04 50569 50918 1 3 4 50589 50875 0 3 4 -20 329 Missing
serve

05 51402 51658 1 3 3 51393 51629 1 3 3 9 29 Valid

06 - - 0 0 2 52015 52211 0 0 2 - - Ball Pass

07 52648 52840 1 4 5 52667 52984 0 4 5 -19 -144 Missing
serve

08 54751 55722 1 12 12 54747 55763 1 12 12 4 -41 Valid

09 - - 0 0 0 54879 54912 0 0 0 - - Overlap

10 56425 57129 1 9 9 56416 57135 1 9 9 9 -6 Valid

11 - - 0 0 0 56764 56790 0 0 0 - - Overlap

12 58133 58178 1 0 1 58126 58178 1 0 1 7 0 Valid

13 - - 0 1 1 58424 58546 0 1 1 - - Ball pass

14 59002 59360 1 4 5 58945 59323 1 4 5 57 37 Valid

15 - - 0 0 0 59181 59223 0 0 0 - - Overlap

16 - - 0 1 2 59546 59758 0 1 2 - - Ball pass

17 60731 61350 1 4 5 60673 61099 1 4 5 58 251 Valid

18 - - 0 1 1 61095 61333 0 1 1 - - Overlap

19 - - 0 0 1 61790 61925 0 0 1 - - Ball pass

20 - - 0 1 1 61677 61791 0 1 1 - - Ball pass

21 - - 0 0 0 62348 62483 0 0 0 - - Ball pass

22 63615 64008 1 5 4 63612 64001 1 5 4 3 7 Valid

23 - - 0 1 1 64521 64664 0 1 1 - - Ball pass

24 - - 0 0 1 64633 64782 0 0 1 - - Ball pass

25 65213 65561 1 4 5 65206 65562 1 4 5 7 -1 Valid

26 - - 0 1 3 65892 66106 0 1 3 - - Ball pass

27 - - 0 0 0 65944 66065 0 0 0 - - Ball pass

28 66525 66567 1 0 1 66521 66553 1 0 1 4 14 Valid

29 66968 67189 1 0 1 66970 67002 1 0 1 -2 187 Valid

30 - - 0 1 2 67612 67758 0 1 2 - - Ball pass

31 68113 68956 1 11 11 68107 68928 1 11 11 6 28 Valid

32 - - 0 0 0 68581 68609 0 0 0 - - Overlap

33 70092 70197 1 1 1 70088 70171 1 1 1 4 26 Valid

34 70891 71003 1 1 2 70895 71017 1 1 2 -4 -14 Valid

35 72449 72509 1 0 2 72443 72499 1 0 2 6 10 Valid

36 72705 73241 1 7 7 72702 73228 1 7 7 3 13 Valid

37 74776 75287 1 6 7 74711 75271 1 6 7 65 16 Valid

38 - - 0 0 0 75055 75087 0 0 0 - - Overlap

39 - - 0 1 1 75551 75738 0 1 1 - - Ball pass

40 76289 76357 1 0 1 76227 76335 1 0 1 62 22 Valid

41 - - 0 0 2 76447 76604 0 0 2 - - Ball pass

42 78415 78835 1 4 5 78444 78747 0 4 5 -29 88 Missing
serve

43 - - 0 1 1 84498 84627 0 1 1 - - Match end

44 - - 0 0 2 85286 85469 0 0 2 - - Match end

45 - - 0 2 1 85821 85933 0 2 1 - - Match end
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Table 6.5: The table reports the action number, the initial state of the FSM, the outcome
of each action (Win) assigned by the FSM, and the score of the actions that could be
assigned automatically. The notation W is used to identify the game point.

Action In. State Win Game T1 T2

01 Serve T2 R Fault 1 0 0

02 II Serve T2 R T2 1 0 15

03 Serve T2 L T1 1 15 15

04 In Bnc T1 T2 1 15 30

05 Serve T2 L T2 1 15 40

07 In Bnc T1 T2 1 15 W

08 Serve T2 R T1 2 15 0

10 Serve T2 L T2 2 15 15

12 Serve T2 R T1 2 30 15

14 Serve T2 L T2 2 30 30

17 Serve T2 R T1 2 40 30

22 Serve T2 L T1 2 W 30

25 Serve T1 R T2 3 0 15

28 Serve T1 L Fault 3 0 15

29 II Serve T1 L T1 3 15 15

31 Serve T1 R T2 3 15 30

33 Serve T1 L T2 3 15 40

34 Serve T1 R T2 3 15 W

35 Serve T1 R Fault 4 0 0

36 II Serve T1 R T1 4 15 0

37 Serve T1 L T1 4 30 0

40 Serve T1 R T1 4 40 0

42 In Bnc T2 T1 4 W 0

Then, the 23 valid actions (20 valid and 3 missing serves) extracted by the
previous high level processing, have been analyzed in order to automatically
annotate the score. Table 6.5 shows the action number, the initial state of
the FSM, the outcome of each action (Win) assigned by the FSM, and the
score of the games that could be assigned automatically. Although in the
actions 4, 7 and 42 the initial serves were missed and the initial states of the
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FSM were Inner bounces T1 or T2, the scores were correctly assigned to the
correct team. In this case, as the initial preprocessing correctly recognizes
the other events, the score assignment in the considered sequence of games is
performed correctly as well.

Figure 6.12: Example of wrong serve in which the bounce is outside the allowed area.

Some examples of the reconstructed actions with the ball trajectories
plotted in a 3D Euclidean space are reported in Figures 6.12 and 6.13. Figure
6.12 represents a fault where the ball bounce is outside the side line. Figure
6.13 represents action number 22. The colors change according to the frame
index (blue, cyan, green, yellow, orange and finally red). Some relevant
strokes are highlighted in the Figure 6.13 and represented as players are seen
by the respective cameras. The serve is the starting event of the action and
is depicted with a blue mark: the player is dressed in blue and assumes the
typical serve position (similar to a smash) behind the side line. Other three
examples of strokes are provided in the same Figure: the return, that takes
place outside the single sideline; a shot (highlighted in green) played by the
white-dressed player on the extreme right side of the court and finally a stroke
between the service line and the net (yellow rectangle). The miniatures of
players demonstrate the potential use of data: coaches can perform intelligent
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queries to the database, can extract specific actions and analyze just the
frames in which players hit the ball and perform a stroke.

Figure 6.13: Example of full action with two relevant strokes highlighted per each player.
Since the database contains an event-indexed representation of the match, it is extremely
simple to seek and view key events during a match.

The considered sequence of games was used to demonstrate that the FSM
is able to correctly decide the score assignment whenever the preliminary
decision process (i.e. event recognition) is correct. Anyway, as discussed
beforehand, in some cases bounces can be confused or assigned erroneously
inside/outside. In these cases the score could be wrong. However, since the
scope of the work is neither to do extremely precise measures nor automatic
score assignment but to allow coaches to extract interesting video sequences
for player performances analysis, it is not relevant if some actions terminate
with a wrong score assignment. The wrong decision can be manually adjusted
by the coach in a second time. As the FSM can be used also during training
sessions to label extracted actions with scores, coaches can save long time
analyzing only short video sequences which contain significant exchanges
instead of observing all the recorded sequences that can potentially last for
hours. In particular, coaches can exploit this system functionality to filter
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relevant parts of the recorded sequences according to their training strategies.
As illustrative examples, to improve the attacking capabilities of players, all
the events that occur in the attack zone can be selected, or to evaluate the
reacting capabilities, consecutive actions with lost scores can be analyzed.

Software modules have been developed in C++ and Matlab languages. In
particular, low level processing is the most computationally expensive task,
as it must run on each raw video frame. The current implementation of this
module runs at 30 fps and will certainly benefit from further optimizations.
Once 3D information are extracted from the low level processing module, the
high level processing (trajectories processing, events recognition and outcome
decision) are performed in Matlab environment and do not require further
optimization. However, the whole system architecture will likely benefit from
the integration of all these modules in the same language.

6.5 Summary

The work described in this chapter is a visual system based on four synchro-
nized cameras which is able to record training and official tennis matches,
segment action in frame sequences, recognize significant events such as strokes,
bounces or services, and eventually assign a final score. The system has been
designed to meet requirements coming from domain experts. It can be used by
coaches and players to analyze long training sessions, and without observing
all the sequences, extract significant actions, such as those ending with a
positive score or containing at least a certain number of strokes, etc. . . This is
one of the first systems which tries to automatically segment video sequences
while adding semantic information useful for player performance analysis.

The system integration phase involved an accurate hardware choice for
making the proposed solution modular, scalable and flexible at the same
time. Design and implementation of software integrated solutions have been
investigated as well, in order to obtain an event based indexed representation
of a match starting from big raw data acquired from cameras. A remarkable
feature of the whole approach consists in the absence of invasiveness: players
are simply free to behave like they already do while the system does acquisition
and processing differently from wearable-based solutions. Finally, coaches
can exploit the proposed system to filter relevant parts of the recorded
sequences according to their training strategies saving time and maximizing
their productivity.
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Chapter 7

Conclusions and future works

In this thesis, the problem of 3D modeling, reconstruction and analysis of
environments has been addressed from multiple points of view in order to
provide effective and efficient methods to capture data and perform complex
processing tasks. The work has been focused on the mechanisms that can be
used to produce both dense and sparse point clouds, as well as on real time
data processing techniques. As a matter of fact, the design and development
of efficient algorithms is mandatory in systems that need to correctly represent
three dimensional complex scenes to perform semantic high level analyses.
Both dense and sparse point clouds respectively produced by active and
passive sensors have been analyzed, along with proper methodologies that
can deal with the specific type of data. In details, the following objectives
have been pursued:

1. Design and development of a miniaturized catadioptric sensor capa-
ble of high throughput acquisitions with large field of view (for 3D
reconstruction purposes);

2. Design and development of a proper methodology to perform three
dimensional registration of point clouds acquired at different epochs
(with application to the structural monitoring);

3. Design and development of suitable algorithms for the real time pro-
cessing of high throughput data coming from passive systems (with
application to the athletic scene processing);

4. Design and development of a technology platform for the high level
analysis of complex scenes (applied to the tennis context).

157



Chapter 3 presents an innovative device for the inspection of surrounding
spaces based on catadioptrics. The vision system equipped with a telecentric
lens is assisted by a parabolic mirror in order to inspect the environment with
high resolution and large field of view. Moreover, the initial specification of
compactness has been met, providing a compact device able to perform 3D
reconstruction with the resolution of 10mm for targets that are located 3m
far from the laser emitters. The presented device constitutes one of the best
options for many applications, such as inspection of pipes or monitoring of
confined spaces, where reliable range measurements with high acquisition rates,
high resolution and accuracy are mandatory, especially when miniaturized
solutions are needed to achieve the goal. The flexibility of such sensor is one
of its strengths and suggests a wide variety of future works, as an example
it could be employed in hostile environments – like foggy or low-visibility
ones – if equipped with proper illuminators and mirrors. Also, technology
improvements on cameras will make such sensor capable of better resolutions
with respect to those obtained with the presented prototype. This means
that point clouds will be certainly produced with higher number of samples,
suggesting that also the research on proper processing methodologies is
mandatory to be ready to deal with the challenges that will be faced in the
next years.

The numerical approach for point cloud registration returned by a laser
rangefinder presented in chapter 4 has been focused on the topic of remote
sensing of indoor civil infrastructures at different epochs, where standard
approaches based on GPS are no longer available. It is based on the newly
introduced deletion masks, that are able to iteratively discard the points that
can induce erroneous registrations due to slightly different points of view of
the sensors. Additional contributions will be dedicated to the reduction of
the computational time required by the creation of the deletion masks, that
represent one of the most time consuming tasks in the actual formulation. As
an example, pre-computed look-up tables can be loaded at each iteration in
order to speed up the algorithm. This is strictly connected to the concept
introduced beforehand, because both the academic and industrial world will
certainly benefit from smarter algorithms able to deal with the extremely
high throughput of data coming from newly developed sensors. This is true
not only for active devices, but also for passive ones.

Chapter 5 shows the details about multiple algorithms for real time proces-
sing of high throughput data streams. In particular, for the three background
models, the results prove the effectiveness of the proposed approaches applied
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to the sportive context, along with their robustness when compared to other
statistical non parametric algorithms evaluated in the benchmarks. It is also
reasonable to assert that the presented background algorithms should be
effectively applied to other contexts, for example the intelligent video surveil-
lance. Future works will certainly regard the optimization of the proposed
algorithms with an implementation directly on smart cameras (e.g. on FPGA
cards or ARM cpus), in order to further speed up computations and move
some computational load directly on intelligent cameras. This is a point of
particular interest because of its strong connection with the technological
progress in terms of throughput because sensors will be able to dramatically
increase the amount of produced raw data, as remarked beforehand. The
proposed tracking method, on the contrary, has been developed particularly
for the tennis context starting from a sparse and cluttered point cloud obtai-
ned by a stereo system. It has been designed to follow a point particle that
evolves over time – namely a tennis ball – in order to associate a label to each
trajectory made by the ball. Future direction of this research will certainly
regard extensive tests to prove the multiple balls tracking capability of the
algorithm. If each identified tracklet is treated separately and joined to a
compatible one when the domain constraints are met, the algorithm will be
able to deal with multiple trajectories that are likely to be observed during the
training sequences. Moreover, accuracy improvements of sample estimations
in absence of observed data will be investigated, working on more robust
models for each tracklet.

Finally, the technology platform shown in chapter 6 is a complex system
that meets the requirements coming from tennis domain experts. Particular
attention has been put on maximizing the performance while keeping the costs
as lower as possible. The proposed solution is able to automatically extract
an event based indexed representation of a tennis match starting from data
captured by four cameras assisted by modular and scalable software layers.
Highly redundant data have been processed to compute a sparse point cloud
that embeds information about the active entities of the game in order to save
the results on a database. This kind of architecture enables the exploitation of
high level data to enrich the analysis of game tactics and players intentions by
properly combining the information saved on the database and thus assisting
the coach during intensive training sessions. Future works will involve machine
learning techniques in order to analyze relevant game patterns made by a
specific player during multiple matches, as well as the automatic inference of
winning tactics given specific initial conditions.
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[39] R. Marani, V. Renò, M. Nitti, T. D’Orazio, and E. Stella. “A Modified Iterative
Closest Point Algorithm for 3D Point Cloud Registration”. In: Computer-Aided
Civil and Infrastructure Engineering (2016). url: http://onlinelibrary.wiley.
com/doi/10.1111/mice.12184/pdf (visited on 10/24/2016).
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[47] A. Torres-González, J. R. Martinez-de Dios, and A. Ollero. “An Adaptive Scheme
for Robot Localization and Mapping with Dynamically Configurable Inter-Beacon
Range Measurements”. In: Sensors 14.5 (2014), pp. 7684–7710. url: http://www.
mdpi.com/1424-8220/14/5/7684/htm (visited on 10/10/2016).

164

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5289343
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5289343
http://www.mdpi.com/1424-8220/15/2/2283/htm
http://www.mdpi.com/1424-8220/15/2/2283/htm
http://onlinelibrary.wiley.com/doi/10.1111/mice.12184/pdf
http://onlinelibrary.wiley.com/doi/10.1111/mice.12184/pdf
https://doi.org/10.1145/2659021.2659059
http://www.mdpi.com/1424-8220/12/8/11221/htm
http://www.mdpi.com/1424-8220/14/5/7684/htm
http://www.mdpi.com/1424-8220/14/5/7684/htm


[48] G. N. DeSouza and A. C. Kak. “Vision for Mobile Robot Navigation: A Survey”. In:
IEEE transactions on pattern analysis and machine intelligence 24.2 (2002), pp. 237–
267. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=982903
(visited on 10/10/2016).

[49] C. S. Andersen, C. B. Madsen, J. J. Sorensen, N. O. Kirkeby, J. P. Jones, and H. I.
Christensen. “Navigation Using Range Images on a Mobile Robot”. In: Robotics and
Autonomous Systems 10.2 (1992), pp. 147–160. url: http://www.sciencedirect.
com/science/article/pii/092188909290023R (visited on 10/10/2016).

[50] Q. Li, L. Zhang, Q. Mao, Q. Zou, P. Zhang, S. Feng, and W. Ochieng. “Motion
Field Estimation for a Dynamic Scene Using a 3D LiDAR”. In: Sensors 14.9 (2014),
pp. 16672–16691. url: http://www.mdpi.com/1424-8220/14/9/16672/htm
(visited on 10/10/2016).

[51] R. Marani, M. Nitti, G. Cicirelli, T. D’Orazio, and E. Stella. “High-Resolution
Laser Scanning for Three-Dimensional Inspection of Drilling Tools”. In: Advances
in Mechanical Engineering 5 (2013), p. 620786. url: http://ade.sagepub.com/
content/5/620786.full (visited on 10/10/2016).

[52] R. Marani, G. Roselli, M. Nitti, G. Cicirelli, T. D’Orazio, and E. Stella. “A 3D
Vision System for High Resolution Surface Reconstruction”. In: Sensing Technology
(ICST), 2013 Seventh International Conference on. IEEE, 2013, pp. 157–162. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6727634 (visited
on 10/10/2016).

[53] C. H. Kau, S. Richmond, A. I. Zhurov, J. Knox, I. Chestnutt, F. Hartles, and
R. Playle. “Reliability of Measuring Facial Morphology with a 3-Dimensional
Laser Scanning System”. In: American Journal of Orthodontics and Dentofacial
Orthopedics 128.4 (2005), pp. 424–430. url: http://www.sciencedirect.com/
science/article/pii/S0889540605006761 (visited on 10/10/2016).

[54] S. C. Aung, R. C. K. Ngim, and S. T. Lee. “Evaluation of the Laser Scanner as a Sur-
face Measuring Tool and Its Accuracy Compared with Direct Facial Anthropometric
Measurements”. In: British journal of plastic surgery 48.8 (1995), pp. 551–558. url:
http://www.sciencedirect.com/science/article/pii/0007122695900438

(visited on 10/10/2016).
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[59] H. Surmann, A. Nüchter, and J. Hertzberg. “An Autonomous Mobile Robot with
a 3D Laser Range Finder for 3D Exploration and Digitalization of Indoor Envi-
ronments”. In: Robotics and Autonomous Systems 45.3 (2003), pp. 181–198. url:
http://www.sciencedirect.com/science/article/pii/S0921889003001556

(visited on 10/10/2016).

[60] S. Son, H. Park, and K. H. Lee. “Automated Laser Scanning System for Reverse
Engineering and Inspection”. In: International Journal of Machine Tools and
Manufacture 42.8 (2002), pp. 889–897. url: http://www.sciencedirect.com/
science/article/pii/S0890695502000305 (visited on 10/10/2016).

[61] M. J. Milroy, D. J. Weir, C. Bradley, and G. W. Vickers. “Reverse Engineering
Employing a 3D Laser Scanner: A Case Study”. In: The International Journal of
Advanced Manufacturing Technology 12.2 (1996), pp. 111–121. url: http://link.
springer.com/article/10.1007/BF01178951 (visited on 10/10/2016).

[62] RIEGL - Terrestrial Scanning. url: http://www.riegl.com/nc/products/
terrestrial-scanning (visited on 10/10/2016).

[63] ILRIS Terrestrial Laser Scanner. url: http://www.teledyneoptech.com/wp-
content/uploads/ILRIS-Spec-Sheet-140730-WEB.pdf (visited on 10/04/2016).

[64] Bumblebee2 FireWire Stereo Vision Camera Systems. url: https://www.ptgrey.
com / /bumblebee2 - firewire - stereo - vision - camera - systems (visited on
10/10/2016).

[65] Kinect - Windows App Development. url: https://developer.microsoft.com/
en-us/windows/kinect (visited on 10/10/2016).

[66] D. Marr and T. Poggio. “A Computational Theory of Human Stereo Vision.” In:
Proceedings of the Royal Society of London. Series B, Biological sciences 204.1156
(1979), p. 301. PMID: 37518.

[67] Bumblebee XB3 FireWire Stereo Vision Camera Systems. url: https://www.
ptgrey.com/bumblebee-xb3-1394b-stereo-vision-camera-systems-2 (visi-
ted on 10/10/2016).

[68] SILICON VIDEO R⃝ 2KS. url: http://www.epixinc.com/products/sv2ks.htm
(visited on 10/10/2016).

166

http://www.sciencedirect.com/science/article/pii/S0167865506002030
http://dl.acm.org/citation.cfm?id=344849
http://www.sciencedirect.com/science/article/pii/S0921889003001556
http://www.sciencedirect.com/science/article/pii/S0890695502000305
http://www.sciencedirect.com/science/article/pii/S0890695502000305
http://link.springer.com/article/10.1007/BF01178951
http://link.springer.com/article/10.1007/BF01178951
http://www.riegl.com/nc/products/terrestrial-scanning
http://www.riegl.com/nc/products/terrestrial-scanning
http://www.teledyneoptech.com/wp-content/uploads/ILRIS-Spec-Sheet-140730-WEB.pdf
http://www.teledyneoptech.com/wp-content/uploads/ILRIS-Spec-Sheet-140730-WEB.pdf
https://www.ptgrey.com//bumblebee2-firewire-stereo-vision-camera-systems
https://www.ptgrey.com//bumblebee2-firewire-stereo-vision-camera-systems
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
http://www.ncbi.nlm.nih.gov/pubmed/37518
https://www.ptgrey.com/bumblebee-xb3-1394b-stereo-vision-camera-systems-2
https://www.ptgrey.com/bumblebee-xb3-1394b-stereo-vision-camera-systems-2
http://www.epixinc.com/products/sv2ks.htm


[69] M. Bertozzi, A. Broggi, A. Coati, and R. I. Fedriga. “A 13,000 Km Intercontinen-
tal Trip with Driverless Vehicles: The VIAC Experiment”. In: IEEE Intelligent
Transportation Systems Magazine 5.1 (2013), pp. 28–41. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=6420052 (visited on 10/10/2016).

[70] M. Bertozzi and A. Broggi. “GOLD: A Parallel Real-Time Stereo Vision System for
Generic Obstacle and Lane Detection”. In: IEEE transactions on image processing
7.1 (1998), pp. 62–81. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=650851 (visited on 10/10/2016).

[71] 3D Laser Scanners / SICK. url: https://www.sick.com/de/en/product-
portfolio / detection - and - ranging - solutions / 3d - laser - scanners / c /

g282752 (visited on 10/10/2016).

[72] Photo Sensor — PRODUCTS — HOKUYO AUTOMATIC CO.,LTD. url: http:
//www.hokuyo-aut.jp/02sensor/index.html (visited on 10/10/2016).

[73] Product Overview – FOTONIC. url: http : / / www . fotonic . com / product -

overview/ (visited on 10/10/2016).

[74] SwissRanger. url: http://hptg.com/industrial/ (visited on 10/10/2016).

[75] Z. Xu, L. Wu, Y. Shen, F. Li, Q. Wang, and R. Wang. “Tridimensional Recon-
struction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and
Terrestrial Laser Scanner”. In: Remote Sensing 6.11 (2014), pp. 10413–10434. url:
http://www.mdpi.com/2072-4292/6/11/10413/htm (visited on 10/10/2016).

[76] G. Teza, A. Galgaro, N. Zaltron, and R. Genevois. “Terrestrial Laser Scanner to
Detect Landslide Displacement Fields: A New Approach”. In: International Journal
of Remote Sensing 28.16 (2007), pp. 3425–3446. url: http://www.tandfonline.
com/doi/abs/10.1080/01431160601024234 (visited on 10/10/2016).

[77] G2 Series - ShapeDrive. url: http://www.shape-drive.com/index.php/g2.html
(visited on 10/10/2016).

[78] J. C. Pedraza-Ortega, E. Efren Gorrostieta-Hurtado, M. Delgado-Rosas, S. L.
Canchola-Magdaleno, J. M. Ramos-Arreguin, M. A. Aceves Fernandez, and A.
Sotomayor-Olmedo. “A 3D Sensor Based on a Profilometrical Approach”. In:
Sensors 9.12 (2009), pp. 10326–10340. url: http://www.mdpi.com/1424-8220/9/
12/10326/htm (visited on 10/10/2016).

[79] Kinect — Xbox 360. url: http://www.xbox.com/en-US/xbox-360/accessories/
kinect (visited on 10/10/2016).

[80] J.-H. Wu, C.-C. Pen, and J.-A. Jiang. “Applications of the Integrated High-
Performance Cmos Image Sensor to Range Finders—from Optical Triangulation
to the Automotive Field”. In: Sensors 8.3 (2008), pp. 1719–1739. url: http:
//www.mdpi.com/1424-8220/8/3/1719/htm (visited on 10/10/2016).

167

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6420052
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6420052
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650851
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650851
https://www.sick.com/de/en/product-portfolio/detection-and-ranging-solutions/3d-laser-scanners/c/g282752
https://www.sick.com/de/en/product-portfolio/detection-and-ranging-solutions/3d-laser-scanners/c/g282752
https://www.sick.com/de/en/product-portfolio/detection-and-ranging-solutions/3d-laser-scanners/c/g282752
http://www.hokuyo-aut.jp/02sensor/index.html
http://www.hokuyo-aut.jp/02sensor/index.html
http://www.fotonic.com/product-overview/
http://www.fotonic.com/product-overview/
http://hptg.com/industrial/
http://www.mdpi.com/2072-4292/6/11/10413/htm
http://www.tandfonline.com/doi/abs/10.1080/01431160601024234
http://www.tandfonline.com/doi/abs/10.1080/01431160601024234
http://www.shape-drive.com/index.php/g2.html
http://www.mdpi.com/1424-8220/9/12/10326/htm
http://www.mdpi.com/1424-8220/9/12/10326/htm
http://www.xbox.com/en-US/xbox-360/accessories/kinect
http://www.xbox.com/en-US/xbox-360/accessories/kinect
http://www.mdpi.com/1424-8220/8/3/1719/htm
http://www.mdpi.com/1424-8220/8/3/1719/htm


[81] X. Ying, K. Peng, R. Ren, and H. Zha. “Geometric Properties of Multiple Reflections
in Catadioptric Camera with Two Planar Mirrors”. In: Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1126–1132. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540088 (visited
on 10/10/2016).

[82] S.-h Chang and others. “Fundamental Matrix of Planar Catadioptric Stereo Sys-
tems”. In: IET Computer Vision 4.2 (2010), pp. 85–104. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=5475470 (visited on 10/10/2016).

[83] R. A. Hicks and R. Bajcsy. “Reflective Surfaces as Computational Sensors”. In:
Image and Vision Computing 19.11 (2001), pp. 773–777. url: http : / / www .

sciencedirect.com/science/article/pii/S0262885600001049 (visited on
10/10/2016).

[84] S. S. Deshpande. “Improved Floodplain Delineation Method Using High-Density
LiDAR Data”. In: Computer-Aided Civil and Infrastructure Engineering 28.1 (2013),
pp. 68–79. url: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
8667.2012.00774.x/full (visited on 10/11/2016).

[85] M. Jaboyedoff, T. Oppikofer, A. Abellán, M.-H. Derron, A. Loye, R. Metzger, and
A. Pedrazzini. “Use of LIDAR in Landslide Investigations: A Review”. In: Natural
hazards 61.1 (2012), pp. 5–28. url: http://link.springer.com/article/10.
1007/s11069-010-9634-2 (visited on 10/11/2016).

[86] H. Cai and W. Rasdorf. “Modeling Road Centerlines and Predicting Lengths
in 3-D Using LIDAR Point Cloud and Planimetric Road Centerline Data”. In:
Computer-Aided Civil and Infrastructure Engineering 23.3 (2008), pp. 157–173. url:
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2008.00518.x/

abstract (visited on 10/11/2016).

[87] A. Cord and S. Chambon. “Automatic Road Defect Detection by Textural Pattern
Recognition Based on AdaBoost”. In: Computer-Aided Civil and Infrastructure
Engineering 27.4 (2012), pp. 244–259. url: http://onlinelibrary.wiley.com/
doi/10.1111/j.1467-8667.2011.00736.x/full (visited on 10/11/2016).

[88] F.-A. Moreno, J. Gonzalez-Jimenez, J.-L. Blanco, and A. Esteban. “An Instru-
mented Vehicle for Efficient and Accurate 3D Mapping of Roads”. In: Computer-
Aided Civil and Infrastructure Engineering 28.6 (2013), pp. 403–419. url: http:
//onlinelibrary.wiley.com/doi/10.1111/mice.12006/full (visited on
10/11/2016).

[89] T. Nishikawa, J. Yoshida, T. Sugiyama, and Y. Fujino. “Concrete Crack Detection by
Multiple Sequential Image Filtering”. In: Computer-Aided Civil and Infrastructure
Engineering 27.1 (2012), pp. 29–47. url: http://onlinelibrary.wiley.com/
doi/10.1111/j.1467-8667.2011.00716.x/full (visited on 10/11/2016).

[90] H. S. Park, H. M. Lee, H. Adeli, and I. Lee. “A New Approach for Health Monitoring
of Structures: Terrestrial Laser Scanning”. In: Computer-Aided Civil and Infra-
structure Engineering 22.1 (2007), pp. 19–30. url: http://onlinelibrary.wiley.
com/doi/10.1111/j.1467-8667.2006.00466.x/full (visited on 10/11/2016).

168

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540088
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5475470
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5475470
http://www.sciencedirect.com/science/article/pii/S0262885600001049
http://www.sciencedirect.com/science/article/pii/S0262885600001049
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2012.00774.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2012.00774.x/full
http://link.springer.com/article/10.1007/s11069-010-9634-2
http://link.springer.com/article/10.1007/s11069-010-9634-2
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2008.00518.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2008.00518.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00736.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00736.x/full
http://onlinelibrary.wiley.com/doi/10.1111/mice.12006/full
http://onlinelibrary.wiley.com/doi/10.1111/mice.12006/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00716.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00716.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2006.00466.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2006.00466.x/full


[91] S. W. Park, H. S. Park, J. H. Kim, and H. Adeli. “3D Displacement Measurement
Model for Health Monitoring of Structures Using a Motion Capture System”. In:
Measurement 59 (2015), pp. 352–362. url: http://www.sciencedirect.com/
science/article/pii/S0263224114004436 (visited on 10/11/2016).

[92] L. Truong-Hong, D. F. Laefer, T. Hinks, and H. Carr. “Combining an Angle Criterion
with Voxelization and the Flying Voxel Method in Reconstructing Building Models
from LiDAR Data”. In: Computer-Aided Civil and Infrastructure Engineering 28.2
(2013), pp. 112–129. url: http://onlinelibrary.wiley.com/doi/10.1111/j.
1467-8667.2012.00761.x/full (visited on 10/11/2016).

[93] S. B. Walsh, D. J. Borello, B. Guldur, and J. F. Hajjar. “Data Processing of
Point Clouds for Object Detection for Structural Engineering Applications”. In:
Computer-Aided Civil and Infrastructure Engineering 28.7 (2013), pp. 495–508. url:
http://onlinelibrary.wiley.com/doi/10.1111/mice.12016/full (visited on
10/11/2016).

[94] C. Zhang and A. Elaksher. “An Unmanned Aerial Vehicle-Based Imaging System
for 3D Measurement of Unpaved Road Surface Distresses1”. In: Computer-Aided
Civil and Infrastructure Engineering 27.2 (2012), pp. 118–129. url: http://
onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00727.x/full

(visited on 10/11/2016).

[95] A. Diosi and L. Kleeman. “Laser Scan Matching in Polar Coordinates with Ap-
plication to SLAM”. In: 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2005, pp. 3317–3322. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=1545181 (visited on 10/11/2016).

[96] D. Holz and S. Behnke. “Sancta Simplicitas-on the Efficiency and Achievable Results
of SLAM Using ICP-Based Incremental Registration”. In: Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp. 1380–1387. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509918 (visited
on 10/11/2016).
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