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1 Introduction 

“We cannot solve our problems  

with the same thinking we used  

when we created them.”  

Albert Einstein 

The ability of animal and human groups in solving complex problems is widely recognized 

in nature. Flocks of birds, schools of fish, colonies of ants and bees, are just a few of the 

best-known examples in the animal world, where interaction and collaboration between 

agents with limited ability and capabilities, allow them to solve problems exceeding 

individual skills (foraging, defending from predators, building structures, etc.). This 

phenomenon is known as Swarm Intelligence (SI) (Beni, 1989).  

Similarly, human groups, exploiting the potentialities of social interactions and sharing their 

limited knowledge, are collectively able to achieve much better performance than single 

individuals can do. This specific ability of human groups has been defined as Collective 

Intelligence (Woolley, Chabris, Pentland, Hashmi, & Malone, 2010). 

Surprisingly, the complexity of these cooperative behaviors and structures does not reflect 

at all the relative simplicity of the individual actions. A single insect, for example, is not able 

to assess the global situation of its colony, to centralize information about the state of other 

insects, and to find by itself an efficient solution, while the society to which it belongs, finds, 

as a whole, a solution very easily (Camazine, et al., 2001). 

The superior ability of groups in solving tasks originates from collective decision making: 

agents (animals, robots, humans) make choices, pursuing their individual goals (forage, 

survive, etc.) based on their own knowledge and amount of information (position, sight, 

etc.), and adapting their behavior to the actions of the other agents. Even though the single 

agents possess a limited knowledge, and the actions they perform are usually very simple, 

the collective behavior, enabled by group-leaving and social interactions, allows the 

knowledge and information sharing, leading to the development of a superior intelligence of 

the group (Clément, 2013), (Couzin, 2005), (Sumpter et al., 2009), (Ward et al., 2008), 

(Arganda et al., 2012), (Ward et al., 2011), (Perez-Escudero, 2011), (Watts, 2002), 

(Turalaska et al., 2009), (Wang & Szolnoki, 20013). 
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This dissertation deals with the emergence and exploitation of the collective intelligence 

of human groups. Differently from the SI, the topic of the Collective Intelligence is relatively 

new in the field of complexity science and just a few studies have been conducted on it.  

The concept of collective intelligence is generally associated with groups of agents, 

cognitively different, but overall superior in terms of rational capabilities, respect to the 

extremely simple animals to which we refer talking about Swarm Intelligence. This 

principally means that they have an albeit limited overview, taking decisions trying to 

maximize an objective function, and not simply looking for the consensus, that anyway is 

the fundamental tool to get the superior intelligence of the group. 

Different studies have been proposed in the literature, trying to model the human behavior 

(Bordogna & Albano, 2007), (Turalaska et al., 2009), (Turalaska, West & Grigolini, 2009). 

All of them recognize the imitation as the fundamental mechanism by which the phenomena 

of crowds, fads, and crime could be understood. Imitation is, in fact, the basic of learning: 

children imitate their parents and peers, entrants into an industry imitate more established 

firms, governments in less developed countries imitate governments in more developed 

countries. However, if everyone strictly imitates, improvements in choice cannot occur, 

while it is widely recognized that humans’ cooperation led to achieving astonishing 

performances in the history of humanity. One of the main contributions of this dissertation 

has been to fill this gap, trying to model, consensus seeking apart, the rational evaluation 

that characterizes human beings, to compare alternative strategies in terms of costs and 

benefits and efficiently solve a problem.  

This work is organized as follow. Chapter 2 aims to review the mechanisms beyond the 

swarming behaviors in natural systems, focusing on their properties, potentialities, and 

limitations, as well as providing the state of the art in the developing field of swarm robotics.  

In chapter 3, some of the most known biologically inspired optimization algorithms, are 

introduced, highlighting their variants, merits and drawbacks. 

In chapter 4, the author introduces a new decision-making model (DMM), firstly proposed 

by Carbone and Giannoccaro (Carbone & Giannoccaro, 2015) for solving complex 

combinatorial problems, showing a wider detailed analysis of its features and potentialities. 

The DMM attempts to capture the previously mentioned two drivers of the humans’ 

behaviors in groups, i.e., self-interest and consensus seeking: individuals make choices based 

on rational calculation and self-interested motivations. Agent’s choices are made by 

optimizing the perceived fitness value, which is an estimation of the real one, based on the 



INTRODUCTION 

3 

 

level of agent’s knowledge (Conradt, 2003), (Turalska & West, 2014), (Conradt, 2012). 

However, any decision made by an individual is influenced by the relationships he/she has 

with the other group members. This social influence pushes the individual to modify the 

choice he/she made, for the natural tendency of humans to seek consensus and avoid conflict 

with people they interact with (Di Maggio & Powell, 1983). Consequently, effective group 

decisions spontaneously emerge as the result of the choices of multiple interacting 

individuals.  

We found that a moderate strength of social interactions allows for knowledge transfer 

among the members, leading to higher knowledge level of the group as a whole. This 

mechanism, coupled with the ability to explore the fitness landscape, strongly improves the 

performance of the decision-making process. As in the case of a collection of spins, the 

dynamics of such a system is characterized by a phase transition from low to high values of 

the consensus (magnetization), associated with the emergence of a collective superior 

intelligence of the population. We identified that the threshold value of the social interaction 

strength, at which the entire group is characterized by a higher degree of collective 

intelligence, is just the critical threshold at which the flow of information from the fitness 

landscape to the group of agents is maximized, thus improving the abilities of the group to 

explore the fitness landscape searching for the optimal solution. 

In Chapter 5 an application of the DMM to the simulation of a management problem is 

reported. We simulate how a team of individuals with different expertise, appointed to design 

a new product, converge towards a shared solution of the design process by interacting with 

each other. We suppose the interactions among individuals take place for hierarchical or 

social reasons, investigating respectively the influence of the team hierarchical structure and 

social network topology on the team performances, and providing also indications about how 

to effectively design a team. Note that a similar formulation can be easily adapted to the 

simulation of any kind of social decision-making problems, i.e. modeling of parliaments and 

squads’ dynamics, coordination of human crowds, etc.  

In chapter 6 the author introduces a novel optimization algorithm belonging to the class of 

swarm intelligence optimization methods. The proposed algorithm, referred as Human 

Group Optimization (HGO), is developed within the previously mentioned DMM (Carbone 

& Giannoccaro, 2015) and emulates the collective decision-making process of human 

groups. To this end, a continuous-time Markov process is proposed to describe the behavior 

of a population of socially interacting agents, modeling how humans in a group modify their 
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opinions driven by self-interest and consensus seeking. By tuning some control parameters, 

it is possible to make the system undergo a critical transition towards a state of high 

consensus which is always accompanied by an analogs transition from low to high group 

fitness values, leading to the emergence of the collective intelligence of the group. While 

this state being active, a cooling schedule is applied to make agents closer and closer to the 

optimal solution, while performing their random walk on the fitness landscape. To test the 

ability of the HGO algorithm, we compare its performance with those of the Simulated 

Annealing (SA), and Genetic Algorithm (GA) in solving NP-complete problems, consisting 

in finding the optimum on a fitness landscape, the latter generated within the Kauffman NK 

model of complexity (Kauffman & Levin, 1987), (Kauffman & Weinberger, 1989). 

Last but not least, Chapter 8 contains all the mathematical tools and the basic notions, 

necessary for a complete understanding of the models and procedures mentioned in the work. 

 

  



 

2 Collective Intelligence in Natural and Artificial Systems 

“The whole is greater than the sum of its parts” 

Aristotele 

Complexity science has shown that collective behaviors in animal and human groups allow 

them to solve problems that go beyond the capacity of each single agent; this phenomenon 

is known as Swarm Intelligence (SI) (Beni, 1989). 

Swarming systems, be them natural or artificial, are all characterized by similar features: (i) 

lack of central controller overseeing the collective dynamics, that instead emerge through 

self-organization, (ii) local perception of the environment leading to a certain level of global 

knowledge by means of effective distributed information sharing, and (iii) a high degree of 

adaptation to rapidly changing circumstances.  

Not all kinds of collective behavior are evidence of SI. A flock of birds or a crowd of 

humans in which individuals simply stay together through social attraction are not 

necessarily examples of SI. Nevertheless, grouping is known to be advantageous for many 

reasons other than increased cognitive abilities, so it is likely that whenever individuals 

interact and live in groups, there is a potential for a SI developing. 

This chapter aims at reviewing the mechanisms beyond a swarming behavior, taking in 

consideration animals, humans and artificial systems. 

2.1 Collective Intelligence in Animals  

Swarm intelligence, as a scientific discipline, was born from biological insights about the 

incredible abilities of social insects to solve their everyday-life problems (Bonabeau, Dorigo, 

& Theraulaz, 1999). Their colonies display attractive behaviors that combine efficiency with 

both flexibility and robustness (Camazine, et al., 2001). From the traffic management on a 

foraging network (Burd, 2006), (Couzin & Franks, 2003), (Dussutour, Deneubourg, & 

Fourcassié, 2005), (Vittori, et al., 2006), to the building of efficient structures (Buhl, 

Deneubourg, Grimal, & Theraulaz, 2005); (Buhl, et al., 2006), (Theraulaz, Gautrais, 

Camazine, & Deneubourg, 2003), (Tschinkel W. R., 2003), (Tschinkel W. R., 2004), along 

with the dynamic task allocation between workers (Beshers & Fewell, 2001), (Bonabeau, 
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Theraulaz, & Deneubourg, 1998), (Deneubourg, Goss, Pasteels, Fresneau, & Lachaud, 

1987), (Gordon, 1996), examples of complex and sophisticated behaviors are numerous and 

diverse among animals (Bonabeau E. , Theraulaz, Deneubourg, Aron, & Camazine, 1997), 

(Camazine, et al., 2001), (Detrain & Deneubourg, 2006). 

Surprisingly, the complexity of these collective behaviors and structures does not reflect at 

all the relative simplicity of the individual behaviors. Taking in consideration insects for 

example, we can say that in most cases, a single insect is not able to find by itself an efficient 

solution to a colony problem, while the society to which it belongs finds as a whole a solution 

very easily (Camazine, et al., 2001). Behind this organization without an organizer there are 

several hidden mechanisms which enable animal societies to cope with uncertain situations 

and to find solutions to complex problems.  

Insects apart, also other biological systems [Fig. 2.1] share collective properties such as 

colonies of bacteria or amoeba (Ben-Jacob, et al., 1994), (Ben-Jacob, Cohen, & Levine, 

2000), fish schools (Grünbaum, Viscido, & Parrish, 2005); (Parrish, Viscido, & Grünbaum, 

2002), bird flocks (Reynolds, 1987), sheep herds (Gautrais, Michelena, Sibbald, Bon, & 

Deneubourg, 2007) or even crowds of human beings (Helbing, Molnàr, Farkas, & Bolay, 

2001). Nevertheless, we will focus on the cooperative behaviors of social insects because 

they represent the largest research corpus from a theoretical and experimental point of view 

and because their underlying principles are very close to those found in others animals. 

 

Fig. 2.1, Biological system sharing collective properties. (a) fish school of Blue jack mackerel merge into 

a torus that confuses predators; (b) Birds coordinate their speed and direction with just a half dozen of 

their closest murmuration-mates. These interactions are enough to steer the entire group in the same 

direction; (c) Sheep dogs control the flocking behavior ; (d) crowds of human beings. 
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2.1.1 The mechanisms of collective behaviors 

For a long time, the collective behavior of social insects has remained a fascinating issue 

for naturalists. Individual insects were assumed to possess something like a representation 

of the task to solve and then they were supposed to use it to make appropriate decisions 

(Thorpe, 1963). 

Nevertheless, most of the works that have been done in the last 40 years (Theraulaz G. B., 

1998) revealed that individual insects do not need any representation or explicit knowledge 

of the global problem to solve. A single insect is not able to assess a global situation, to 

centralize information about the state of its entire colony and then to control the tasks to be 

done by the other workers. There is no supervisor in these colonies. 

The first serious theoretical explanation to the organization of social insects’ activities was 

provided by French biologist Pierre-Paul Grassé, who introduced the concept of stigmergy 

to explain building activity in termites (Grassé, 1959). Grassé showed that information 

coming from the local environment and the work in progress can guide individual activity. 

For instance, each time a worker performs a building action, the shape of the local 

configuration that triggered this action is changed. The new configuration will then influence 

other specific actions from the worker or potentially from any other workers in the colony. 

This process leads to an almost perfect coordination of the collective work and may give us 

the impression that the colony is following a well-defined plan. 

A good example of the stigmergic behavior is provided by nest building in social wasps. 

Building activities are driven by the local configuration of cells detected by the wasps on the 

nest (Karsai & Theraulaz, 1995). To decide where to build a new cell, wasps use the 

information provided by the local arrangement of cells on the outer circumference of the 

comb. They have a greater probability of adding new cells to a corner area where three 

adjacent walls are already present, while the probability of starting a new row, by adding a 

cell on the side of an existing row, is very low (Camazine, et al., 2001). 
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Fig. 2.2, An external view and a cross section of an Apicotermes lamani nest resulting from the 

coordination of workers building activities. 

Another example of a stigmergic behavior is food recruitment in ants (Hölldobler & 

Wilson, 1990). Ants communicate with each other using pheromones. These pheromones 

are chemical substances that attract other ants. For instance, once an ant has found a food 

source, she quickly comes back to the nest and lays down a pheromone trail. This trail will 

then guide other workers from the nest toward the food source. When the recruited ants come 

back to the nest, they lay down their own pheromone on the trail and reinforce the pathway. 

The trail formation, therefore, results from a positive feedback: the more ants use a trail, the 

more attractive the trail becomes. Of course, the trail will disappear after some time if the 

reinforcement is too slow, which may occur when the food source becomes exhausted. This 

trail recruitment system is not only a mechanism used to quickly assemble many foragers 

around a food source, it also enables a colony to make efficient decisions such as the 

selection of the shortest path leading to a food source. 

 

Fig. 2.3, Ant colonies. (a) Collective selection of one foraging path over a diamond-shaped bridge leading 

to a food source by workers in the ant Lasius niger. (b) Weaver ant workers cooperate to form chains of 

their own bodies, allowing them to cross wide gaps and pull leaves together. 
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Today, we know that most collective decisions in social insects arise through the competition 

among different types of information that can be amplified in various ways. In the case of 

path selection by ants, the information is conveyed by the pheromone trail. However, 

environmental constraints, such as the distance between the nest and the food source, affect 

this positive feedback. In particular, any constraint that modulates the rate of recruitment or 

the trail concentration on a branch can lead that branch to lose, or win, its competition against 

the other one. Thus, an efficient decision can be made without any modulation of individual 

behavior and without any sophisticated cognitive processing at the individual level. 

2.1.2 Principles and properties of self-organizing processes 

Self-organization is the major component of a wide range of collective behaviors in social 

insects, from the thermoregulation of bee swarms to the construction of nests in ants 

(Bonabeau E. , Theraulaz, Deneubourg, Aron, & Camazine, 1997), (Camazine, et al., 2001). 

Self-organization is a set of dynamical mechanisms whereby structures appear at the global 

level of a system from interactions among its lower-level components, without being 

explicitly coded at the individual level. It relies on four basic ingredients: 

1. A positive feedback that results from the execution of simple behavioral “rules of 

thumb” that promote the creation of structures. Trail recruitment to a food source is 

a kind of positive feedback which creates the conditions for the emergence of a trail 

network at the global level. 

2. A negative feedback that counterbalances positive feedback and that leads to the 

stabilization of the collective pattern. In the example of ant foraging, it may result 

from the limited number of available foragers, the food source exhaustion, and the 

evaporation of pheromone or a competition between paths to attract foragers.  

3. The amplification of fluctuations by positive feedbacks. Social insects are well 

known to perform actions that can be described as stochastic. Such random 

fluctuations are the seeds from which structures nucleate and grow. Randomness is 

often crucial because it enables the colony to discover new solutions. 

4. Multiple direct or stigmergic interactions among individuals to produce 

apparently deterministic outcomes.  

Moreover, self-organization is also characterized by a few key properties: 

1. Self-organized systems are dynamic. As stated before, the production of structures 

as well as their persistence requires permanent interactions between the members of 

the colony and with their environment. These interactions promote the positive 
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feedbacks that create the collective structures and act for their subsistence against 

negative feedbacks that tend to eliminate them.  

2. Self-organized systems exhibit emergent properties. They display properties that 

are more complex than the simple contribution of each agent. These properties arise 

from the nonlinear combination of the interactions between the members of the 

colony. 

3. Nonlinear interactions lead self-organized systems to bifurcations. A bifurcation is 

the appearance of new stable solutions when some of the system’s parameters 

change. This corresponds to a qualitative change in the collective behavior. 

4. Self-organized systems can be multi-stable. Multi-stability means that, for a given 

set of parameters, the system can reach different stable states depending on the initial 

conditions and on the random fluctuations. 

2.1.3 Categorizing the collective behaviors of social insects 

According to (Garnier, Gautrais, & Theraulaz, 2007) four functions in the collective 

behaviors of insects are recognized: coordination, cooperation, deliberation and 

collaboration.  

1. Coordination is the appropriate organization in space and time of the tasks required 

to solve a specific problem. This function leads to specific spatial-temporal 

distributions of individuals, of their activities and/or of the results of their activities 

in order to reach a given goal. For instance, coordination occurs in the organization 

of the displacement in bee and locust swarm (Buhl, et al., 2006); (Janson, 

Middendorf, & Beekman, 2005), or in the exploitation of food sources by pheromone 

trail laying ants (Hölldobler & Wilson, 1990), (Traniello & Robson, 1995).  

2. Cooperation occurs when individuals achieve together a task that could not be done 

by a single one. The individuals must combine their efforts to successfully solve a 

problem that goes beyond their individual abilities. Cooperation is obvious in large 

prey retrieval when a single individual is too weak to move a food item. Many cases 

of cooperative transport of prey were reported for several ant species such as weaver 

ants Oecophylla longinoda, army ants Eciton burchelli (Franks, 1986). 

3. Deliberation refers to mechanisms that occur when a colony faces several 

opportunities. These mechanisms result in a collective choice for at least one of the 

opportunities. For instance, when ants of the species Lasius niger have discovered 

several food sources with different qualities or richness, or several paths that lead to 
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a food source, they generally select only one of the different opportunities. In this 

case, the deliberation is driven by the competition between the chemical trails, 

leading ants to forage at the richer food source and to travel along the shorter path 

toward the food source (Beckers, Deneubourg, Goss, & Pasteels, 1990), (Goss, Aron, 

Deneubourg, & Pasteels, 1989). 

4. Collaboration means that different activities are performed simultaneously by 

groups of specialized individuals, for instance foraging for prey or tending brood 

inside the nest (Gordon, 1996), (Wilson, 1971). This specialization can rely on a pure 

behavioral differentiation as well as on a morphological one and be influenced by the 

age of the individuals. The most conspicuous expression of such division of labor is 

the existence of castes. For instance, in leaf-cutter ants, workers may belong to four 

different castes and their size is closely linked to the tasks they are performing 

(Hölldobler & Wilson, 1990). Only the workers whose head size is larger than 1.6 

millimeters are able to cut the leaves that are used to grow a mushroom that is the 

main food source of these colonies. On the contrary, only the tiny workers whose 

head size is about 0.5 millimeters are able to take charge of the cultivation of the 

mushroom. 

As exemplified in this subsection, the organization of collective behaviors in social insects 

can be understood as the combination of the four functions. Together, the four functions of 

organization produce solutions to the colony problems and may give the impression that the 

colony as a whole plans its work to achieve its objectives. 
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2.2 Collective Intelligence in Humans 

The underlying perception in most biological (non-human) case studies of SI has been that 

the individual animal is cognitively relatively simple and restricted in what it can achieve, 

whereas the group collectively is capable of astonishing feats. Differently, in humans, there 

is not only interindividual variation in cognitive abilities, but there are also some individuals 

that are high performers by any standard (Kerr & Tindale, 2004). 

Thus, emphasis in psychology and management has focused on assessing if a group can 

outperform high-performing individuals, in trying to find the limits of what a group of a 

given size and composition can collectively achieve and in understand how to create 

collaborative organizations that result more productive and intelligent. 

Collective intelligence in humans was defined by Thomas Melone (Malone & Bernstein, 

2015), like a condition in which group of individuals acting collectively in a way that seems 

intelligence. By this definition, collective intelligence has existed for a very long time: army, 

countries, families, are all examples of groups of people working together, in a way that 

“sometimes” seems intelligent.  

Experimental tests brought to the deduction that there are two main factors determining the 

collective intelligence of a group: how people are involved in the group and how they work 

together. They indicate that SI performs well if there is diversity and independence of 

opinions, an incentive for truthful reporting, and if estimates of individuals are only 

hampered by imprecision and not by a systematic bias (Kerr & Tindale, 2004), (Wolfers & 

Zitzewitz, 2004), (Laughlin, 2003). 

2.2.1 Possibilities and limitations of Swarm Intelligence in human groups 

Media articles often suggest that SI could be the answer to every decision-making or 

forecasting problem in modern society. The difference between areas in which SI can and 

cannot contribute is, however, easily illustrated by a simple example. At a biomimetic 

exhibition in Berlin, Germany, researchers (Krause, Ruxton, & Krause, 2010) presented the 

public two tasks. In the first problem, they needed to estimate the number of marbles in a 

large glass jar. For the second problem, they had to estimate how many times a coin needs 

to be tossed for the probability that the coin shows heads (and not tails) on all occasions to 

be roughly as small as that of winning the German lotto, which is a probability of 1 in 14 

million. For the first problem, the collective estimate came within 1.5% of the real value 

[Fig. 2.4], an impressive performance of SI, while in the second case the collective guess 
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was poor. For a person with a background in combinatorics, this second task involves only 

a quick calculation that always arrives at the correct answer of 24 coin tosses. Clearly, expert 

knowledge would be superior here. 

An interesting difference is so between imprecision and bias in this context. For the marbles, 

the individual estimate is imprecise and uncorrelated guesses can result in a close 

approximation of the real value. In the second case, there is a huge systematic bias preventing 

useful information extraction. Most real-life problems will have components of both 

imprecision and bias, and the general rule would be that the greater the imprecision 

component (relative to the bias component), the greater the potential for SI solutions. 

 

Fig. 2.4, Possibilities and limitations of SI (Krause, Ruxton, & Krause, 2010). Members of the public 

were presented with two questions. The first question was to estimate the number of marbles in a glass 

jar and the second question was to estimate the number of times a coin needs to be tossed for the 

probability that the coin shows heads on all occasions to be roughly as small as that of winning the 

German lotto, which is a probability of 1 in 14 million. Box-and-whisker plots are shown for the 

questions 1 (number of marbles) and 2 (number of coin tosses). The boxes are bounded by the 0.25 and 

0.75 quantiles, and the whiskers end at the 0.1 and 0.9 quantiles. The means are marked by dotted lines 

and the correct values by dashed arrows. For question 1 (N = 2057), the absolute deviations of mean and 

median from the correct value are small (1.5% for the mean, and 8.2% for the median). For question 2 

(N = 1953), however, the mean is a poor approximation to the correct value (absolute deviation = 1976%). 

The median is better than the mean, but is still far away from the correct value (absolute deviation = 

317%). 
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2.2.2 Consequences of Swarm Intelligence research on human groups 

The finding that the judgment of a diverse group can outperform an expert or even a small 

group of experts under certain circumstances (Laughlin, 2003) has led to speculation that SI 

developments could make experts obsolete to the extent that even company CEOs might be 

in less demand in the future (Surowiecki, 2004). Although this seems unlikely, probably a 

shift might be seen in the type of experts that are needed, towards experts who know the 

mechanisms to harness and implement SI.  

In social insects, the individuals might collectively be able to solve cognitive problems. 

However, even when they have arrived at a solution, a single ant or bee is never going to be 

in possession of the overall information (or solution). By contrast, humans can purposefully 

set out to use SI principles to their benefit to gain, for instance, a competitive advantage in 

business by better predicting market developments. 

The point is that the whole SI mechanism (data collection, processing and solution) can be 

used by single experts or expert teams. Therefore, the potential user of SI in animals and in 

humans is fundamentally different in this respect. In animals, SI acts as an enabler for a 

group of often highly interdependent individuals; in humans, it can be an enabler as well as 

a tool that can be used to aid decision making. 

We may assist to the shift from traditional hierarchies to flatten organizational structures. 

For years, pockets of U.S. military have been slowly taking decisions out of the hands of 

high-ranking commanders and entrusting them to teams of soldiers, who are told what 

problems to solve but not how to solve them. Probably nature is teaching us that sometimes 

the best way to gain power is to give it away. Linus Torvalds, the developer of the Linux 

open-source operating system, or Pierre Omidyar, the founder of Ebay, for example, gave 

power away, respectively to thousands of programmers and customers all over the world, 

and they were rewarded with a different kind of power.  
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2.3 Collective Artificial Intelligence: Swarm Robotics 

Swarm robotics is the study of how large number of simple physically embodied agents 

can be designed such that a desired collective behavior emerges from the local interactions 

among agents and between the agents and the environment, (Şahin, 2005). 

It takes its inspiration from societies of insects that can perform tasks that are beyond the 

capabilities of the individuals. In order to be able to differentiate this definition from other 

multi-robot types of systems, it is complemented with a set of criteria: 

1. The robots of the swarm must be autonomous, able to sense and actuate in a real 

environment.  

2. The number of robots in the swarm must be large or at least the control rules allow 

it.  

3. Robots must be homogeneous. There can exist different types of robots in the swarm, 

but these groups must not be too many. 

4. The robots must be incapable or inefficient respect to the main task they have to 

solve, i.e. they need to collaborate in order to succeed or to improve the performance.  

5. Robots have only local communication and sensing capabilities. It ensures the 

coordination is distributed, so scalability becomes one of the properties of the system. 

Iocchi et al. present a taxonomy (Iocchi, Nardi, & Salerno, 2001) structured in different 

levels. The first level is Cooperation, which includes a situation in which several robots 

perform a common task. The second level is Knowledge, which distinguishes whether robots 

know of the existence of other robots (Aware) or not (Unaware). The third level is 

Coordination, to differentiate the degree in which robots take into account the actions 

executed by other robots. According to the authors of the taxonomy, this can be Strongly 

Coordinated, Weakly Coordinated, or Not Coordinated. The last level is Organization, 

which distinguishes between Centralized systems, where there exists a robot that is in charge 

of organizing other robots’ work, and Distributed systems, where robots are autonomous in 

their decisions, i.e there are no leaders. According to this taxonomy, swarm robotic systems 

are Cooperative, Aware, Strongly Coordinated or Weakly Coordinated, and Distributed.  

A schematic of the taxonomy is shown in Fig. 2.4, where for each level the corresponding 

type of system is marked in dark grey for a swarm-robotic system. 
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Fig 2.5, Taxonomy from (Iocchi, Nardi, & Salerno, 2001). For each level the corresponding type of system 

is marked in dark grey for a swarm robotic system. 

According to (Ronald Arkin, 1998), advantages of multi-robotic approaches, compared to 

single-robot systems, are the following: 

1. Improved performance: if tasks can be decomposable then by using parallelism, 

groups can make tasks to be performed more efficiently.  

2. Task enablement: groups of robots can do certain tasks that are impossible for a 

single robot.  

3. Distributed sensing: the range of sensing of a group of robots is wider than the range 

of a single robot.  

4. Distributed action: a group of robots can operate in different places at the same 

time. 

5. Fault tolerance: under certain conditions, the failure of a single robot within a group 

does not imply that the given task cannot be accomplished, thanks to the redundancy 

of the system. 

Drawbacks are the following. 

1. Interference: robots in a group can interfere between them, due to collisions, 

occlusions, and so forth.  

2. Uncertainty concerning other robots ‘intentions: coordination requires to know 

what other robots are doing. If this is not clear, robots can compete instead of 

cooperate.  

3. Overall system cost: the fact of using more than one robot can make the cost bigger. 

This is ideally not the case of swarm-robotic systems, which intend to use many 

cheap and simple robots which total cost is under the cost of a more complex single 

robot carrying out the same task. 
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2.3.1 Tasks in Swarm Robotics 

A collection of the most representative tasks assigned to swarming robots is depicted in 

this section. They are presented in increasing order of complexity. 

1. Aggregation. The goal of aggregation is to group all the robots of a swarm in a region 

of the environment. Despite being a simple collective behavior, aggregation is a very 

useful building block, as it allows a swarm of robots to get sufficiently close one 

another so that they can interact. Aggregation is a very common behavior in nature. 

For example, it can be observed in bacteria, cockroaches, bees, fish and penguins 

(Camazine, et al., 2001). Garnier et al. (2005) developed a system in which robots 

are used to replicate the behavior observed in cockroaches by (Janson, Middendorf, 

& Beekman, 2005). The robots can collectively aggregate in a circular arena. Other 

examples of an aggregation behavior based were developed by (Soysal & Sahin, 

2005) and (Trianni, Groß, Labella, Şahin, & Dorigo, 2003) [Fig. 2.5]. 

 

Fig. 2.6, Examples of the aggregation collective behavior. (a) (Soysal & Sahin, 2005) (b) 

(Trianni, Groß, Labella, Şahin, & Dorigo, 2003). 

2. Dispersion. The aim of dispersion is to distribute the robots in space to cover it as 

much area as possible, usually without losing the connectivity between them. 

3. Patter Formation. Pattern formation aims at deploying robots in a regular and 

repetitive manner. Robots usually need to keep specific distances between each other 

to create the desired pattern. Pattern formation can be found both in biology and in 

physics. Some biological examples are the spatial disposition of bacterial colonies 

and the chromatic patterns on some animal’s fur (Meinhardt & Meinhardt, 1982). 

Some physics examples are molecules distribution and crystal formation (Langer, 

1980), and Benard cells (Getling, 1998). 

4. Collective Movement. Collective movement is the problem of how to coordinate a 

group of robots and move them together as a group in a cohesive way. It can also 
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serve as a basic behavior for more complicate tasks. It can be classified into two 

types: formations and flocking. In the former, robots must maintain predetermined 

positions and orientations among them. On the other hand, in flocking, robots’ 

relative positions are not strictly enforced (W. M. Spears, 2004). 

5. Task Allocation. Task allocation is a collective behavior in which robots distribute 

themselves over different tasks. The goal is to maximize the performance of the 

system by letting the robots dynamically choose which task to perform. Task 

allocation can be observed in natural systems such as ant and bee colonies, 

(Theraulaz G. B., 1998). For example, in ant or bee colonies, part of the swarm can 

perform foraging while another part looks after the larvae. Task allocation is not 

fixed but can change over time. Jones and Matarić (Jones & Matarić, 2003) present 

a distributed and scalable algorithm for labor division in swarms of robots. Each 

robot maintains a history of the activities performed by other robots based on 

observation and independently performs a division of labor using this history. 

6. Source Search. Swarm robotics can be very useful in search tasks, especially those 

in which the spatial pattern of the source can be complex as in the case of sound or 

odor. 

7. Collective Transport of Objects. Swarm robotics is very promising in solving the 

problem object transportation. The use of many robots can represent an advantage 

because of cooperation handling one object. In addition, the possible parallelism 

dealing with different objects by several robots at the same time might improve the 

performance. 

 

Fig 2.7, Examples of the collective transport behavior. (a) From (Campo, Nouyan, Birattari, 

Groß, & Dorigo, 2006) (b) From (Baldassarre, Parisi, & Nolfi, 2006). 
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Fig. 2.8, Kilobot swarm robot (Rubenstein, Cornejo, & Nagpal, 2014). (A) A Kilobot robot, shown 

alongside a U.S. penny for scale. (B) Each Kilobot has an onboard microcontroller for executing 

programs autonomously, two vibration motors for moving straight or turning on a flat surface, and a 

downward-facing infrared transmitter and receiver. Robots communicate with others within a range of 

10 cm (roughly three robot diameters) by reflecting infrared light off the table below. Communicating 

robots can evaluate relative distance by measuring the strength of the received infrared signal, but they 

cannot sense relative bearing (angle). (C) A 210 Kilobot swarm. The Kilobot design allows for all 

operations on the entire swarm (charging, programming, etc.) to take a constant time to complete, 

independent of the number of robots in the swarm. 

 

Fig. 2.9, Self-assembly experiments (Rubenstein, Cornejo, & Nagpal, 2014) using up to 1024 physical 

robots. (A, C, and E) Desired shape provided to robots as part of their program. (B and D) Self-assembly 

from initial starting positions of robots (left) to final self-assembled shape (right). Robots are capable of 

forming any simply connected shape, subject to a few constraints to allow edge-following (19). (F) 

Completed assembly showing global warping of the shape due to individual robot errors. (G) Accuracy 

of shape formation is measured by comparing the true positions of each robot (red) and each robot’s 

internal localized position (gray). (H to K) Close-up images of starting seed robots (H), traffic backup 

due to a slowly moving robot (I), banded patterns of robots with equal gradient values after joining the 

shape (robots in each highlighted row have the same gradient value) (J), and a complex boundary formed 

in the initial group (dashed red line) due to erosion caused by imprecise edge-following (K). 
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2.3.2 Towards Real World Application 

In sections 2.3 promising properties of swarm robotics have been enlightened. 

Nevertheless, currently, there exist no real commercial applications. The reasons for it are 

varied. Sahin and Winfield (Şahin E. & Winfield, 2008) enumerate three of them as follows.  

1. Algorithm Design. Swarm robotics must design both the physical robots and the 

behaviors of the individual robots, so the global collective behavior emerges from 

their interactions. Right now, no general method exists to go from the individuals to 

the group behavior.  

2. Implementation and Test. The use of many real robots needs of good laboratory 

infrastructure to be able to perform experiments. 

3. Analysis and Modeling. Swarm-robotic systems are usually stochastic and nonlinear, 

so building mathematical models for validation and optimization is hard. These 

models might be necessary for creating safety real world applications.  

Winfield et al. (Winfield, Harper, & Nembrini, 2005) discuss the concept of swarm 

engineering, studying the dependability of swarm-robotic systems through a case of study. 

Higgins et al. (Higgins, Tomlinson, & Martin, 2009.) address the main security challenges 

that swarm-robotic systems should face in a future. They state that due to the simplicity of 

swarm-robotic architectures they have to deal with the following problems: 

1. Physical capture of the robots. 

2. Identity and authentication, a robot must know if it is interacting with a robot from 

its swarm or from an intruder robot. 

3. Communication attacks, communications can be intercepted or disturbed by an 

attacker.  

The possible real applications of swarm robotics will take special importance when robots 

get to be mass produced and the costs of building swarms of robots decrease. This is the 

objective of I-swarm project (Seyfried, et al., 2005) which aimed at building a swarm of 

micro-robots. The development of technologies such as MEMS (Micro-Electro-Mechanical 

Systems) will allow creating small and cheap robots. Swarm robots can perform tasks in 

which the main goal is to cover a wide region. The robots can disperse and perform 

monitoring tasks, for example, in forests, lakes, and so forth. It can be really useful for 

detecting hazardous events, like a leakage of a chemical substance. The main advantage over 

a sensor network is that the swarm can move and focus on the problem and even act to 

prevent the consequences of that problem.  
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In this way, swarms of robots can be useful for dangerous tasks, for example for mining 

detection and cleaning. It can be more useful than a unique specialized robot, mainly because 

of the robustness of the swarm: if one robot fails and the mine explodes, the rest of the swarm 

continues working. In the case of a single robot, this is not possible. The number of possible 

applications is promising, but still the technology must firstly be developed both in the 

algorithmic and modeling part and in the miniaturization technologies. 
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3 Biologically Inspired Optimization Methods 

“Everything you can imagine 

nature has already created.” 

Albert Einstein 

Optimization refers to the process of manipulating a computational structure or system to 

achieve some pre-specified goal. The systems under consideration can often be expressed in 

terms of mathematical function, and the goal is then to find the minimum or maximum of 

this function. Optimization plays a central role in science and engineering. There are so many 

examples of applications involving optimization that any list of such application is bound to 

be incomplete and biased. Nevertheless, some classes of problems where optimization is 

highly relevant include scheduling, decision making, microchip design, transportation-

system design, various engineering problems and so forth. 

For such a problem, all the tools of analysis, algebra and other sub-disciplines of 

mathematics can be summoned and, indeed, many optimization algorithms have been 

developed in mathematics. These algorithms define the field of classical optimization, and 

they are particularly well-developed for a class of optimization problems referred to as 

convex optimization problems. However, classical optimization algorithms also have some 

shortcomings and they are not suitable for all the optimization problems. Fortunately, there 

are plenty of alternative algorithms, most of which have been developed in the last few 

decades and are inspired by biological phenomena.  

This chapter introduces several SI-based algorithms, highlighting their notable variants, 

their merits and demerits, and their applications. These algorithms include Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 

Differential Evolution (DE), Artificial Bee Colony (ABC) and Glowworm Swarm 

Optimization (GSO).  

All these algorithms are stochastic and inspired by biological phenomena. The 

stochasticity of the algorithms implies that different results may be obtained upon running 

such algorithms repeatedly. By contrast, the classical optimization algorithms are 

deterministic, so that, starting from a given initial condition, the results obtained are always 
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the same. To practitioners of classical optimization methods, the stochasticity of the results 

obtained may seem a clear disadvantage, but there are, in fact, advantages as well. An 

example is the ability of stochastic optimization algorithms to find several different, but 

equally, viable, solutions to problems, a property that is used in, for example, design 

optimization. 

The second property, i.e. the inspiration taken from natural processes, may also require the 

reason why one should base an algorithm on biological phenomena. The answer is that 

Nature is all about adaptation, which can be considered a form of optimization; the term 

adaptation refers to the gradual change in properties or behaviors to various in surrounding. 

Thus, for example, the growth of thick fur on artic animals is an adaptation to cold weather. 

Biological organisms display an amazing variety of adaptation. Another excellent example, 

relevant for engineering optimization, is shark skin. Sharks have been around for a long time; 

the ancestors of today’s sharks appeared even before the dinosaurs. Thus, evolution, which 

forms the basis for the evolutionary algorithms, has had a very long time to work on the 

design of these remarkable animals. If one touches a shark, one can feel that its skin is not 

smooth, but covered with small ribs [Fig. 3.1] aligned with the direction of motion (Ball, 

1999). These structures affect the interaction between the skin of the shark and the tiny fluid 

vortices that appear as a result of movement. The net effect is a reduction in friction which 

enables the shark to swim faster. Engineers are testing the effects of adding similar 

microstructures to the surfaces of ships and aircraft as well as the swimsuits of swimmers.  

Obviously, sharks have not evolved their features in isolation: their prey has concurrently 

evolved various means of escaping, for example through coordinated swarm behavior. The 

simultaneous evolution of the properties of both predator and prey is an example of co-

evolution, a phenomenon that has also been exploited about stochastic optimization (Hillis, 

1990). 

 

Fig. 3.1, The skin of a shark (right panel) contains small, riblike structures lying in the direction of 

motion that allow the animal to swim faster.  
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Another prime example is the evolution of the eye. As Dawkins (Dawkins, 1996) has noted, 

the eye has evolved in no less than 40 different ways, independent of each other. Two 

examples, shown in Fig. 3.2, are the compound eyes of insects and the lens eyes of mammals. 

Thus, evidently, there are many different solutions to the problem of generating a light-

gathering device.  

 

Fig. 3.2, Left panel: the compound eye of a fly. Right panel: a human eye. These are only two of the many 

light-gathering devices generated by biological evolution.  

In addition to adaptation, many biological organisms also display cooperation. Even 

though cooperation is omnipresent in nature, nowhere is it as prevalent as in certain species 

of insects, such as ants, bees, and termites. An example is the foraging behavior of ants. 

Using only local communication, ants are able to coordinate their food gathering with 

amazing efficiency, and their behavior forms the basis for ant colony optimization. 

Swarming behavior, as seen in flocks of birds or schools of fish, is another form of 

cooperation which serves several purposes, such as improving the efficiency of food 

gathering and protecting against predators. From the discussion above, it should be evident 

that there is ample motivation for basing optimization algorithms on biological phenomena.  

However, before plunging into the field of optimization methods, it is mandatory to say a 

few words about the so-called No-free-lunch (NFL) theorem (Wolpert & Macready, 1997). 

The theorem concerns optimization algorithms based on search. In such algorithms, 

candidate solutions to the problem at hand are generated and evaluated one after another. 

Essentially, the implication of the NFL theorem is that, averaged over all possible problems, 

or objective functions, no search algorithm outperforms any other algorithm. This would 

imply, for example, that a completely random search would do just as well as any of the 

stochastic optimization algorithms considered in this chapter. Yet, while the NFL theorem 

is certainly valid, it is rarely of practical significance, as one never considers all possible 
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problems; in practice, it is found that, in a typical optimization problem, stochastic 

optimization algorithms such as genetic algorithms easily outperform random search. 

However, the theorem does imply that one should be careful before extrapolating the 

estimated performance of a stochastic optimization algorithm from one problem to another. 

Nevertheless, it is a fact that some algorithms do outperform others on specific classes of 

problems. For example, ant colony optimization, studied in Section 3.2, is particularly 

efficient when applied to problems involving path generation.  

3.1 Genetic Algorithm 

The Genetic Algorithm (GA) introduced by John Holland in 1975 (Goldberg, 1987), 

(Holland, 1992), is a search optimization algorithm based on the mechanics of the natural 

selection process. The basic concept of this algorithm is to mimic the concept of the 

“survival of the fittest”; it simulates the processes observed in a natural system where the 

strong tends to adapt and survive while the weak tends to perish.  

GA is a population-based approach in which members of the population are ranked based 

on their solutions’ fitness. A new population is formed using specific genetic operators such 

as crossover, reproduction, and mutation. The population can be represented in a set of 

strings (referred to as chromosomes). In each generation, a new chromosome (a member of 

the population) is created using information originated from the fittest chromosomes of the 

previous population. GA generates an initial population of feasible solutions and recombines 

them in a way to guide their search toward more promising areas of the search space. 

Each of these feasible solutions is encoded as a chromosome, also referred to as genotype, 

and each of these chromosomes will get a measure of fitness through a fitness function 

(evaluation or objective function). The value of fitness function of a chromosome determines 

its capability to endure and produce offspring. The high fitness value indicates the better 

solution for maximization and the low fitness value shows the better solution for 

minimization problems. A basic GA has five main components: a random number generator, 

a fitness evaluation unit, a reproduction process, a crossover process, and a mutation 

operation. Reproduction selects the fittest candidates of the population, while crossover is 

the procedure of combining the fittest chromosomes and passing superior genes to the next 

generation, and mutation alters some of the genes in a chromosome. 

Fig 3.3 shows the general flow chart of GA and the main components that contribute to the 
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overall algorithm. The operation of the GA starts with determining an initial population 

whether randomly or using some heuristics. The fitness function is used to evaluate the 

members of the population and then they are ranked based on the performances. Once all the 

members of the population have been evaluated, the lower rank chromosomes are omitted 

and the remaining populations are used for reproduction. This is one of the most common 

approaches used for GA. Another possible selection scheme is to use pseudo-random 

selection, allowing lower rank chromosomes to have a chance to be selected for 

reproduction. The crossover step randomly selects two members of the remaining population 

(the fittest chromosomes) and exchanges and mates them. The final step of GA is the 

mutation. In this step, the mutation operator randomly mutates on a gene of a chromosome. 

Mutation is a crucial step in GA since it ensures that every region of the problem space can 

be reached. Elitism is used to prevent the best solution of the population from being 

destroyed during crossover and mutation operation. Elitism guarantees the fitness of new 

generation will be at least as good as the current generation. The evaluation and generation 

of the new populations continue until the maximum number of generations is reached or the 

optimum solution is found. GA is advantageous in terms of requiring limited parameter 

settings and initializing itself from possible solutions rather than a single solution.  

One of the main drawbacks of GA is the lack of fast convergence towards the optimal 

values since the crossover and mutation process are random. The applications of GA are 

wide ranging from scheduling, machine learning, robotics, signal processing, business, 

mathematics, manufacturing, routing, and much more. 

Since the introduction of GA, many researchers have conducted studies to improve the 

performance of the GA. They have introduced several alternative approaches for crossover 

and mutation to enhance the quality of solutions. In crossover, instead of selecting one 

crossover point, De Jong et al. (1992) and Üçoluk (2002) have introduced N-point crossover 

and segmented crossover which selects several points for crossover (Üçoluk, 2002), (De 

Jong & Spears, 1992). The difference between them is N-point crossover is choosing several 

breaking points randomly, while in segmented crossover, only two breaking points are 

utilized. Mutation is one of the most important operators in GA to direct the chromosomes 

towards the better solution. Therefore, several studies have given different methods for 

mutation. By default, each gene in a chromosome is assigned with probability, , and 

mutated depending on that probability. This mutation is known as uniform mutation. The 

other approaches for mutation are bitwise inversion where the whole gene in a chromosome 
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is mutated using a random mutation. Adaptive genetic algorithms have been introduced in 

order to allow the use of precise parameters in setting the population size, the crossing over 

probability, and the mutation probability. All of these parameters are dynamic and changing 

over the iterations. For instance, if the population is not improving, the mutation rate is 

increasing and whenever the population is improving, the mutation rate starts decreasing 

(Chiao Mei, Phon-Amnuaisuk, Alias, Leong, & Adaptive, 2008). Raja and Bhaskaran (Raja 

& Bhaskaran, 2013) have suggested a new approach of GA initialization that improve the 

overall performance of GA. In this approach, they utilized initialization twice where the first 

initialization is used to identify the promising area. After the first initialization, all 

chromosomes are ranked and the best chromosomes are selected. After that, GA has 

initialized again within the area where the best chromosomes have been identified.  

 

Fig. 3.3, Flow Chart of Genetic Algorithm with all steps involved from beginning until termination 

conditions met. 
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3.2 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a metaheuristic approach inspired by the Ant System 

(AS) proposed by Marco Dorigo in 1992 in his Ph.D. thesis (Dorigo M. , 1992), (Dorigo, 

Birattari, & Stutzle, 2006). It is inspired by the foraging behavior of real ants. This algorithm 

consists of four main components (ant, pheromone, daemon action, and decentralized 

control) that contribute to the overall system. Ants are imaginary agents that are used to 

mimic the exploration and exploitation of the search space. In real life, the pheromone is a 

chemical material spread by ants over the path they travel and its intensity changes over time 

due to evaporation. In ACO the ants drop pheromones when traveling in the search space 

and the quantities of these pheromones indicate the intensity of the trail. The ants choose the 

direction based on path marked by the high intensity of the trail. The intensity of the trail 

can be considered as a global memory of the system. Daemon actions are used to gather 

global information which cannot be done by a single ant and uses the information to 

determine whether it is necessary to add extra pheromone to help the convergence. The 

decentralized control is used to make the algorithm robust and flexible within a dynamic 

environment. The importance of having a decentralized system in ACO is due to resulting 

flexibility in the face of ant lost or ant failure offered by such a system. These basic 

components contribute to a cooperative interaction that leads to the emergence of shortest 

paths. Fig 3.4. depicts the initial phase, mid-range status of any system, and the final 

outcomes of the ACO algorithm respectively. The left figure illustrates the initial 

environment when the algorithm starts, where an ant starts moving randomly from the nest 

towards the source and returns. The middle figure illustrates several iterations of execution 

when ants discover multiple possible paths between nest and source. The shortest path is 

chosen, and ants use this path frequently which contributes to high intensity of pheromone 

trail as shown in the in Fig 3.4 (3).  

N, S, a, and b represent nest, food source, on-going path, and returning path respectively. 

The steps involved to find the best solution starts with choosing the next node (from the 

current position in the search space) using following equation:  

  (3.1) 
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Fig. 3.4, Ant Colony Optimization Algorithm processes. N and S denote Nest and Source, while a and be 

respectively the ongoing and returning directions. Fig. 3.4 (1) shows early process where ants start to 

find a path between nest and source and lay pheromone. Fig. 3.4 (2) shows intermediate process where 

ants went through all possible paths. Fig. 3.4 (3) shows most of the ants choose path with the highest 

pheromone.  

 is the probability of going from node  to node .  are the nodes that the ant is allowed 

to travel to from node .  contributes to the visibility between node  and node .  

represents the amount of unevaporated pheromone between node  and node  at time .  

and  in Eq. 3.1 control the influence of  and , where if  is higher, the searching 

behavior of ant is more depending on pheromone and if  is higher, the searching behavior 

of ant is depending on its visibility or knowledge. Each ant also has a taboo list which is 

used to prevent any ants from visiting the same node twice. 

Pheromones, as stated before, are one of the crucial components in ACO as they leave trails 

which increase the probability of the next ant choosing the same path. In order to deposit a 

pheromone, the following equation is used: 

  (3.2) 

 is a constant,  is the cost of the ant's tour, (i.e., the length of the generated path),  is the 

iteration number and  represents a specific ant. The value represents the pheromone rate 

between node  and node  that the ant visited in iteration . The pheromone deposition value 

for a path that is not selected is zero. Another important component is the pheromone 

evaporation rate. This component determines the exploration and exploitation behavior of 

the ant. High and low evaporation rates result in exploration and exploitation behaviors 

respectively. Too high exploration rates result in ants getting lost, while too low values result 

in an inability to acquire the optimal path (Dorigo M. , 1992). The pheromone decay factor 

is utilized using following equation: 
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  (3.3) 

 is the number of ants in the system and  is the pheromone evaporation rate or decay 

factor. ACO has several advantages over other evolutionary approaches including offering 

positive feedback resulting in rapid solution finding and having distributed computation 

which avoids premature convergence. These are in addition to taking advantage of the 

existing collective interaction of a population of agents. However, ACO has drawbacks such 

as slower convergence compared with other heuristic-based methods and lack a centralized 

processor to guide it towards good solutions. Although the convergence is guaranteed, the 

time for convergence is uncertain. Another important demerit of ACO is its poor 

performance within problems with large search spaces. ACO has been applied in various 

optimization problems such as traveling salesman problem (TSP) (Valdez & Chaparro, 

2013), quadratic assignment problem (Tosuna, Dokeroglua, & Cosara, 2013), vehicle 

routing (Yagmahan & Yenisey, 2010) and so on. Several ACO variants have been created 

with the aim to improve overall performance.  

Two years after the introduction of ACO, Dorigo and Gambardella made modifications by 

improving three major aspects (pheromone, state transition rule and local search procedures) 

which produce the variant of ACO called Ant Colony System (ACS) (Dorigo & 

Gambardella, 1997). ACS uses centralize (global) update approach for pheromone update 

and only concentrate the search within a neighborhood of the best solution found so far in 

order to increase efficiency for convergence time. The state transition rule is different from 

ACO where ACS has a stated probability ( ) to decide which behavior is used by the ant. 

 is usually set to 0.9 and compare to a value of  (which ). If the value of  is 

less than that, then exploitation behavior is used and vice versa. For local search procedures, 

a local optimization heuristic based on an edge exchange strategy such as 2-opt, 3-opt or 

Lin-Kernighan is applied to each solution generated by an ant to get its local minima. This 

combination of new pheromone management, new state transition, and local search 

procedures has produced a variant of ACO for TSP problems. Max-Min Ant System 

(MMAS) is considered as another notable variant of ACO. The approach was introduced by 

Stutzle and Hoos in 2000 and it limits the pheromone trail values within the interval of 

 (Stützle & Hoos, 2000). MMAS also modified three aspects of ACO. First, at 

the beginning, the pheromone trails are set to the maximum value which escalates the 

exploration behavior of the ants. Second, the authors introduce an interval of  

which limits the pheromone trails in order to avoid stagnation. Third, only one ant is allowed 
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to add pheromone which helps to exploit the best solutions found during the execution of 

the algorithm. The pheromone may be added by using either an iteration-best approach or a 

global-best approach. In the iteration-best approach, only the ant with the best solution adds 

the pheromone for each iteration while in the global-best approach, the ant with the best 

solution can add the pheromone without considering other ants in the same iteration. 

3.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an optimization technique introduced by Kennedy 

and Eberhart in 1995 (Kennedy & Eberhart, 1995). It uses a simple mechanism that mimics 

swarm behavior in birds flocking and fish schooling to guide the particles to search for global 

optimal solutions. Del Valle and his co-authors (DelValle, Venayagamoorthy, Mohagheghi, 

Hernandez, & Harley, 2008) described PSO with three simple behaviors of separation, 

alignment, and cohesion as shown in Fig 3.5 respectively. Separation is the behavior of 

avoiding the crowded local flockmates while alignment is the behavior of moving towards 

the average direction of local flockmates. Cohesion is the behavior of moving towards the 

average position of local flockmates. The formulas of PSO algorithm are as follows: 

 
 

(3.4) 

  (3.5) 

where  and  are particle velocity and particle position respectively.  is the dimension 

in the search space,  is the particle index, and  is the iteration number.  and  represent 

the speed, regulating the length when flying towards the most optimal particles of the whole 

swarm and the most optimal individual particle.  is the best position achieved so far by 

particle  and  is the best position found by the neighbours of particle .  is the 

random values between  and . The exploration happens if either or both of the differences 

between the particle’s best ( ) and previous particle’s position ( ), and between 

population’s all-time best ( ) and previous particle’s position ( ) are large, and 

exploitation occurs when these values are both small. PSO proved to be an efficient 

optimization algorithm by searching an entire high-dimensional problem space. It is a robust 

stochastic optimization technique based on the movement and intelligence of swarms. It 

applies the concept of social interaction to problem-solving and does not use the gradient of 

the problem being optimized, so it does not require the optimization problem to be 
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differential, as is required by classic optimization methods (Yan, Wu, Liu, & Huang, 2013). 

The optimization of irregular problems that are noisy and change over time can be 

determined using PSO (Arumugam, Rao, & Tan, 2009:). The parameters of PSO consist of 

a number of particles, position of agent in the solution space, velocity and neighborhood of 

agents (communication of topology). 

 

Fig 3.5, PSO Basic Behaviors. Figure 3.5 (1) shows separation behavior where particle avoiding other 

particles. Figure 3.5 (2) shows alignment behavior where particle moving towards head of local 

flockmates and maintain the speed between them. Figure 3.5 (3) shows cohesion behavior where particle 

moving towards the average position of local flockmates (Yagmahan & Yenisey, 2010). 

The PSO algorithm begins by initializing the population first. The second step is calculating 

the fitness values of each particle, followed by updating individual and global bests, and 

later, the velocity and the position of the particles get updated. The second to fourth steps 

get repeated until the termination condition is satisfied (DelValle, Venayagamoorthy, 

Mohagheghi, Hernandez, & Harley, 2008). Fig 3.5 illustrates the PSO algorithm output over 

iterations. In the first iteration, all particles spread out in order to find the best solution 

(exploration). Each particle is evaluated. The best solutions are found with respect to 

neighborhood topology and the personal and global best particles for each member of the 

swarm are updated. The convergence would be achieved through attracting all particles 

towards the particle with the best solution. 

The PSO algorithm has many merits. It is simple to implement, has only a few parameters 

to be set, it is effective in global search, it is insensitive to scaling of design variables, and it 

is easily parallelized for concurrent processing (Poli, Kennedy, & Blackwell, 2007). PSO 

has tendency to result in a fast and premature convergence in mid optimum points, in 

addition to having slow convergence in a refined search area (having weak local search 

ability) (Bai, 2010). PSO is used in networking, power systems, signal processing, control 

system, machine learning, image processing, and much more. 



BIOLOGICALLY INSPIRED OPTIMIZATION METHODS 

34 

 

There are several approaches that can be used to improve PSO in general. The size of the 

population is one of the important factors. Higher population size can increase the chance of 

faster and precise convergence. A second approach is to achieve a balance between 

exploration and exploitation. In the beginning of iteration, high exploration would give a 

high chance to find a solution which is close to global optima. Meanwhile, towards the end 

of iteration, high exploitation would give a chance for particle to find the most accurate 

solution within the promising area. A sub-swarm approach is another way that can be used 

to increase the basic PSO performance which is quite commonly used nowadays. Allocating 

different tasks or objectives to each sub-swarm can also increase the efficiency of PSO in 

the multi-objective problems. Another approach to improve the PSO performance is to set 

the contributing components of the velocity equation (dynamic velocity adjustment). Such 

an approach can direct particles in different directions resulting in faster convergence 

towards a global optimum (Atyabi & Powers, 2013). 

 

Fig 3.6, Particle Swarm Optimization movement towards global optima over iteration numbers. 

The two most notable variants in PSO are the introduction of inertia weight and constriction 

factors. Inertia weight ( ) is introduced by Shi and Eberhart three years after PSO was first 

introduced to regulate the influence of the previous velocity which also controls the 

exploration and the exploitation behaviors of particle (Shi & Eberhart, 1998). If the  value 

is high then the step size is big, resulting in the occurrence of exploration behavior. If the  

value is low then the step size is small and the exploitation behavior occurs. This element 

has been accepted as new standard form of velocity equation for basic PSO as illustrated in 

Eq (3.6): 

  (3.6) 
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The introduction of inertia weight has improved overall performance of PSO in terms of 

the speed of convergence and the quality of solutions. From there, much research has been 

done to find the best configuration for inertia weight in order to optimize the convergence 

speed and the solutions’ quality. Bratton and Kennedy suggested to use an inertia weight 

value higher than 1.0 and decreasing eventually to a value lower than 1.0 with the aim of 

encouraging exploration at an early stage and exploitation of the best area found towards the 

end (Bratton & Kennedy, 2007). Clerc and Kennedy later introduced the constriction factor 

named as  in order to increase the chance of convergence and avoid particles from leaving 

the search space (Clerc & Kennedy, 2002). 

  (3.7) 

Both variants have improved the overall performance of the PSO algorithm. Eberhart and 

Shi have compared these two variants and come to the conclusion that the constricted PSO 

perform better than the improved basic PSO (Eberhart & Shi, 2000).  

3.4 Differential Evolution 

The Differential Evolution (DE) algorithm is a population-based algorithm that can be 

considered to be similar to GA since it employs similar operators: crossover, mutation, and 

selection. The main difference between DE and GA is in constructing better solutions, where 

DE relies on mutation operation while GA relies on crossover operation. This algorithm was 

introduced by Storn and Price in 1997 (Storn & Price, 1997). Since this algorithm relies on 

mutation operation, it utilizes the mutation as a search mechanism and takes advantage of 

the selection operation in order to direct the search towards the potential regions in the search 

space.  

Target Vector, Mutant Vector, and Trail Vector are three properties that DE utilizes for 

generating a new population iteratively. The target vector is the vector that contains the 

solution for the search space, the mutant vector is the mutation of the target vector, and the 

trail vector is the resultant vector after the crossover operation between target vector and 

mutant vector. The basic steps of the DE algorithm as stated before, are similar to GA with 

only slight differences (Price, Storn, & Lampinen, 2005). DE starts with steps such as 

population initialization followed by evaluation to determine the fittest members of the 

population. Later, new parameter vectors get generated by adding the weighted difference 

of the two population vectors with the third vector. This step is referred to as mutation. 
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Within the crossover, the vector is mixed and the algorithm takes a final step of selection. In 

order to see the differences between DE and GA, a more detailed discussion on the three 

main operators in DE is required. 

 

Fig. 3.7, Illustration of Crossover Process of DE with vector dimension (j) of 7. Target vector is current 

solution with mutant vector is another possible solution. Trail vector is new solution after crossover 

process between target vector and mutant vector. 

In the mutation step, each of  parameter vectors goes through mutation. Mutation is the 

operation of expanding the search space and a mutant vector is generated by: 

  (3.8) 

where  is the scaling factor with a value in the range of  with solution vectors , , 

and  being chosen randomly and satisfying following criteria: 

  (3.9) 

where  is the index of the current solution. Fig 3.7 illustrates a two-dimensional vector 

which plays a part in generating the mutant vector. Crossover operation is introduced to 

increase the diversity of the disconcerted parameter vectors. The parent vector is mixed with 

a mutated vector and a trial vector is produced by:  

  (3.10) 

where  is a crossover constant and  is a random real number between  with  

denoting the  component of the resultant array. 

In DE, all solutions in the population have the same probability of being selected as parents 

without considering their fitness value. This is the main difference in the operations of DE 

and GA. Simply put, the child (trail vector) produced is only evaluated after mutation and 

crossover operations. After that, the performance of this child vector is compared to its parent 

and the better vector is retained in the population. The exploitation behavior occurs when 
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the difference between two solution vectors in Eq. 3.8 are small, while the exploration 

behavior occurs when the difference between those two are large.  

DE is advantageous in terms of enhancing the capacity of local search and keeping the 

multiplicity of the population while it suffers from slow convergence and being unstable 

(Wu, Lee, & Chien, 2011). DE is employed in various applications such as electrical 

engineering, image processing, machine learning, and economy.  

3.5 Artificial Bee Colony 

Artificial Bee Colony (ABC) is one of the most recent swarm intelligence algorithms. It 

was proposed by Dervis Karaboga in 2005 (Karaboga, 2005); in 2007, the performance of 

ABC was analyzed (Karaboga & Basturk, 2007) and it was concluded that ABC performs 

quite well compared with several other approaches. 

This algorithm is inspired by the intelligent behavior of real honey bees in finding food 

sources, known as nectar, and the sharing of information about that food source among other 

bees in the nest. This algorithm is claimed to be as simple and easy to implement as PSO 

and DE (Karaboga D., 2010). In this approach, the artificial agents are defined and 

categorized into three types, the employed bee, the onlooker bee, and the scout bee. Each of 

these bees has different tasks assigned to them in order to complete the algorithm’s process. 

The employed bees focus on a food source and retain the locality of that food source in their 

memories. The number of employed bees is equal to the number of food sources since each 

employed bee is associated with one and only one food source. The onlooker bee receives 

the information of the food source from the employed bee in the hive. After that, one of the 

food sources is selected to gather the nectar. The scout bee is in charge of finding new food 

sources and the new nectar. The general process of ABC method and the details of each step 

are as follows (Karaboga, 2005):  

Step 1. Initialization Phase: All the vectors of the population of food source, , are 

initialized ( , where  is population size) by scout bees and control parameters 

being set. Each  vector holds  variables, which is optimized, to minimize the objective 

function. The following equation is used for initialization phase: 

  (3.11) 

where  and  respectively are the lower and upper bound parameters of . 
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Step 2. Employed Bees Phase: In this phase, the search for a new food source, , increases 

in order to have more nectar around the neighborhood of the food source, . Once a 

neighboring food source is found, its profitability or fitness is evaluated. The new 

neighboring food source is defined by using following formula: 

  (3.12) 

where  is a randomly selected food source and  is a random number of . Once 

the new food source, , is produced its profitability is measured and a greedy selection is 

applied between  and . The exploration happens if the difference between  is large 

and the exploitation behavior is when the difference is small. The fitness value of the 

solution, , is determined using following equation: 

  (3.13) 

where  is the objective function value of solution . 

Step 3. Onlooker Bees Phase: Onlooker bees that are waiting in the hive choose their food 

sources depending on probability values measured using the fitness value and the 

information shared by employed bees. The probability value, , is measured using the 

following equation: 

  (3.14) 

Step 4. Scout Bees Phase: The scout bees are those unemployed bees that choose their food 

sources randomly. Employed bees whose fitness values cannot be improved through 

predetermined number of iterations, called as limit or abandonment criteria become the scout 

bees and all their food sources get abandoned. 

Step 5. The best fitness value and the position associated with that value are memorized. 

Step 6. Termination Checking Phase: If the termination condition is met, the program 

terminates, otherwise the program returns to Step 2 and repeats until the termination 

condition is met. 

Advantages of ABC include being easy to implement, robust, and highly flexible. It is 

considered as highly flexible since only requires two control parameters of maximum cycle 

number and colony size. Therefore, adding and removing bee can be done without need to 

reinitialize the algorithm. It can be used in many optimization problems without any 

modification, and it requires fewer control parameters compared with other search 
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techniques. The disadvantages of ABC include the requirement of new fitness tests for the 

new parameters to improve performance, being quite slow when used in serial processing 

and the need for a high amount of objective function evaluations.  

ABC has been implemented in various fields including engineering design problems, 

networking, business, electronics, scheduling and image processing. 

Although ABC algorithm was only being introduced less than ten years ago there are 

already quite a number of variants of ABC available. One of the important ABC variants is 

Interactive ABC (IABC) designed to solve numerical optimization problems (Bolaji, 

Khader, Al-Betar, & Awadallah, 2013). Bao and Zeng have introduced three selection 

strategies of food source by onlooker bees for ABC which form three variants called Rank 

Selection Strategies ABC (RABC), Tournament Selection ABC (TABC) and Disruptive 

Selection ABC (DABC) (Bao & Zeng, 2009). The main aim for all these variants is to 

upsurge the population diversity and avoid premature convergence. Bao and Zeng have 

tested these modified ABCs with the standard ABC and the results showed that these three 

selection strategies perform better search compared with the standard ABC. 

3.1 Glowworm Swarm Optimization 

Glow worm Swarm Optimization (GSO) is a new SI-based technique aimed to optimize 

multimodal functions, proposed by Krishnanad and Ghose in 2005 (Krihnanand & Ghose, 

2009), (Krihnanand & Ghose, 2009). GSO employs physical entities (agents) called 

glowworms. A condition of glowworm , at time  has three main parameters of a position 

in the search space , a luciferin level  and a neighborhood range . 

These three parameters change over time. Initially, the glowworms are distributed randomly 

in the workspace, instead of finite regions being randomly placed in the search area as 

demonstrated in ACO. Later, other parameters are initialized using predefined constants. 

Yet, similar to other methods, three phases are repeated until the termination condition is 

satisfied. These phases are luciferin level update, glowworm movement, and neighborhood 

range update (Krihnanand & Ghose, 2009). In order to update the luciferin level, the fitness 

of current position of a glowworm  is determined using following equation: 

  (3.15) 

where  is the luciferin evaporation factor,  is the luciferin constant and  is an objective 

function. The position in the search space is updated using following equation: 
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  (3.16) 

where  is the step size, and ||.|| is Euclidean norm operator. If the difference between  and 

 is large then exploration behavior takes place and if this difference is small then 

exploitation behavior occurs. Later, each glowworm tries to find its neighbors. In GSO, a 

glowworm  is the neighbor of glowworm  only if the distance between them is shorter 

than the neighborhood range , and on condition where glowworm  is brighter than 

glowworm . However, if a glowworm has multiple choices of neighbors, one neighbor is 

selected using the following probability equation. 

  (3.17) 

where the probability of glowworm at  moving towards glowworm at  is the difference 

of luciferin level between them over difference of luciferin level between all glowworms 

within the range of glowworm . The solution with the highest probability is selected and 

then the glowworm moves one step closer in direction of the chosen neighbor with a constant 

step size . In the final phase, the neighborhood range  is updated to limit the range 

of communication in a group of glowworms. The neighborhood range is calculated using 

following equation: 

  (3.18) 

where  is a sensor range (a constant that limits the size of the neighborhood range), is 

the desired number of neighbors,  is a number of neighbors of the glowworm  at 

time  and  is a model constant. Fig. 3.8 illustrates two possible circumstances in GSO’s 

agents’ evolving procedures in which with respect to agents’ positions in the search space 

and the available neighboring agent’s different behaviors occurs. In (a), ,  and  represent 

the agents of glowworm.  denotes the sensor range of agent  and  denotes the local-

decision range for agent . The same applies with  and  where sensor range and local-

decision range are represented by  and  and and  respectively. It is applied in the 

circumstances where agent  is in the sensor range of agent  and . Since the agents have 

different local-decision domains only agent  uses the information from agent . In (b), , b, 

c, d, e, and f are glowworm agents. 1, 2, 3, 4, 5, and 6 represent the ranking of the glowworm 

agents based on their luciferin values. Agents are ranked based on their luciferin values 

resulting in agent a being ranked 1 since it has the highest luciferin value.  
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GSO is effective within applications with limited sensor range and can detect multiple 

sources and is applicable to numerical optimization tasks. However, it also has low accuracy 

and slow convergence rate (Zainal, Zain, Radzi, & Udin, 2013). GSO has been applied to 

routing, swarm robotics, image processing, and localization problems.  

GSO can be improved in general by considering the following modifications.  

1) Expanding the neighborhood range to include all agents. Once the best solution has 

been determined, all agents can move towards the agent with the best solution. This 

step can increase the efficiency in exploitation since higher number of agents to be 

within the best solution range. 

2) In order to increase GSO’s convergence rate, the number of neighbors considered 

within the neighborhood range need to be as small as possible. This step might reduce 

the time taken for GSO since less calculation required to determine the probability and 

direction of its movement. 

 GSO has several variants that improve the overall performance of GSO. For example, He 

et al. (He, Tong, & Huang, 2012) introduced Improved GSO (IGSO) to take advantage of 

integrating chaos behavior in order to avoid local optima and increasing the speed and 

accuracy of convergence. Zhang et al. (Zhang, Ma, Gu, & Miao, 2011) have proposed two 

ideas to improve the performance of GSO. First, they proposed several approaches to alter 

the step-size of the glowworm such as fixed step, dynamic linear decreasing, and dynamic 

non-linear decreasing. Secondly, they proposed self-exploration behavior for GSO.  

 

Fig. 3.8, Glowworm Search Optimization (GSO) in two possible conditions. a, b, c, d, e, f, i, j, and k are 

the glowworm agents. In subfigure (1), figure illustrates three glowworm agents with different sensor 

range and local-decision range. It shows if agent within local-decision of another agent, the agent with 

lower luciferin values move towards agent with higher luciferin values. In subfigure (2), glowworm 

agents are ranked based on their luciferin values with lower number represent higher luciferin values 

and higher number represent lower luciferin values. 
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4 Decision Making Model of Human Groups 

“It is possible to make things of great complexity  

out of things that are very simple. 

There is not conservation of simplicity.” 

Stephen Wolfram 

The second chapter pointed out on the ability of natural (Conradt 2012; Couzin 2009), 

(Conradt, 2003), (Couzin, 2005), and artificial, (Krieger M. J., 2000), (Rubenstein M. C., 

2014), (Werfel, 2014), (Brambilla, 2013), groups in solving complex problems exceeding 

individual skills, focusing on the mechanisms behind the collective behaviors and 

introducing the concept of swarm intelligence (Vanni, Luković, & Grigolini, 2011). 

The superior ability of groups in solving tasks originates from collective decision making: 

agents (animals, robots, humans) make choices, pursuing their individual goals (forage, 

survive, etc.) based on their own knowledge and amount of information (position, sight, 

etc.), and adapting their behavior to the actions of the other agents. The group-living enables 

social interactions to take place as a mechanism for knowledge and information sharing, 

(Clément, 2013), (Couzin, 2005), (Sumpter et al., 2009), (Ward et al., 2008), (Arganda et 

al., 2012), (Ward et al., 2011), (Perez-Escudero, 2011), (Watts, 2002), (Turalaska et al., 

2009), (Wang & Szolnoki, 2013). Even though the single agents possess a limited 

knowledge, and the actions they perform usually are very simple, the collective behavior, 

enabled by the social interactions, leads to the emergence of a superior intelligence of the 

group.  

In this chapter, the author introduces a new decision making model (DMM), firstly 

proposed by Carbone and Giannoccaro (Carbone & Giannoccaro, 2015) for solving complex 

combinatorial problems, showing a detailed analysis and understanding of its features and 

potentialities. 

The DMM attempts to capture the main drivers of the individual behaviors in groups, i.e., 

self-interest and consensus seeking: individuals make choices based on rational calculation 

and self-interested motivations. Agent’s choices are made by optimizing the perceived 

fitness value, which is an estimation of the real fitness value based on the level of agent’s 

knowledge (Conradt, 2003), (Turalska & West, 2014), (Conradt, 2012). However, any 
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decision made by an individual is influenced by the relationships he/she has with the other 

group members. This social influence pushes the individual to modify the choice he/she 

makes, for the natural tendency of humans to seek consensus and avoid conflict with people 

they interact with (Di Maggio & Powell, 1983). 

The Ising-Glauber dynamics (Castellano et al., 2009), (Glauber, 1963) is used to model the 

social interactions among group members. The NK model (Kauffman & Levin, 1987) 

(Kauffman & Weinberger, 1989) is employed to build the fitness landscape associated with 

the problem to solve. A continuous-time Markov chain governs the decision-making process, 

whose complexity is controlled by the parameter K.  

The transition rate of individual’s opinion change is defined as the product of the Ising-

Glauber rate (Glauber, 1963), which implements the consensus seeking, (Sornette, 2014), 

(Weidlich, 1971), (Ising, 1925), (Brush, 1967), and an exponential rate, (Weidlich, 1991), 

(Schweitzer, 2007), which speeds up or slows down the change of opinion, to model the 

rational behavior of the individual. 

We explore how both the strength of social interactions and the members’ knowledge level 

influence the group performance. We identify in which circumstances human groups are 

particularly effective in solving complex problems. We extend previous studies highlighting 

the efficacy of collecting decision-making in presence of a noisy environment, (Gruènbaum, 

1998), and in conditions of cognitive limitations, (Couzin, 2005), (Laughlin P. R., 2006), 

(Laughlin P. e., 2003), (Faria, 2009).  

4.1 The model 

Here the author presents the decision-making model (DMM) (Carbone & Giannoccaro, 

2015). We consider a set of  interacting agents, which is assigned to carry out a complex 

task. The task consists in solving a combinatorial problem by identifying the set of choices, 

i.e. the set of  binary decisions, with the highest fitness, out of  configurations. More 

precisely, each decision  of the bitstring  is a binary variable , 

. Each bitstring  is associated with a certain fitness value . The discrete 

landscape  must be properly chosen to make the optimization combinatorial problem 

belong to the class of the NP-complete problems. Different choices are possible, e.g. the 

fitness landscape can be represented by the length of the Hamiltonian cycle in the travelling 
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salesman problem (TSP), Knapsack problem, the Kauffman NK landscape, or any other NP-

complex landscape (Garey & Johnson, 1979).  

In this study we will exploit the complex landscape defined within the framework of the 

NK Kaufmann’s model of combinatorial complexity (Kauffman & Levin, 1987), (Kauffman 

& Weinberger, 1989), (Weinberger & others, 1996), as this type of landscape makes it easy 

to model the level of knowledge of each agent in the groups, i.e. to take into account each 

agent in the group has a personal understanding of the problem.  

Within the NK approach the discrete fitness function  is computed as the weighted 

sum of  independent stochastic contributions ,  which only depend 

on the corresponding sub-bitstring  of length , where the  may 

take values  (Kauffman & Levin, 1987), (Kauffman & Weinberger, 

1989), (Weinberger & others, 1996). The number of different values that each contribution 

, may take is , i.e. it is equal to the number of different states that can be 

enumerated with bitstring . The fitness landscape  is then defined as 

  (4.1) 

The integer index , which provides the number of the interacting 

decision, tunes the complexity of the problem: increasing  increases the complexity of the 

problem. For  finding the optimum on an NK Kaufmann landscape is classified as an 

NP-complete problem. For more details on the Kaufmann NK model, the reader is referred 

to Appendix 8.1. 

Each member of the group makes his/her choices driven by the rational behavior, which 

pushes him/her to increase the self-interest, and by social interactions, which push the 

member to seek consensus within the group.  

To model the level of knowledge of the agents, we identify a parameter , i.e. the 

probability that each single agent knows the contribution  to the total fitness. Based 

on the level of knowledge, each agent  computes his/her own perceived fitness (self-

interest) as follows: 

  (4.2) 

where  is the matrix whose elements  take the value  with probability  and  with 

probability . Observe that when  all the elements ; when this happens we 



DECISION MAKING MODEL OF HUMAN GROUPS 

 

46 

 

set . In this condition, the kth member possesses no knowledge about the fitness 

function, and his choices are driven only by consensus seeking. By increasing  from  to  

we control the level of knowledge of the members, which affects the ability of the group in 

maximizing the fitness function equation (4.1). Note that the choice configuration that 

optimizes the perceived fitness equation (4.2), does not necessarily optimize the group 

fitness equation (4.1). This makes the mechanism of social interactions, by means of which 

knowledge is transferred, crucial for achieving high-performing decision-making process. 

All members of the group make choices on each of the  decision variables . Therefore, 

the state of the kth member  is identified by the -dimensional vector 

, where  is a binary variable representing the opinion of the kth 

member on the jth decision. For any given decision variable , individuals k and h agree if 

, otherwise they disagree. Within the framework of Ising’s approach, (Sornette, 

2014), (Ising, 1925), (Brush, 1967), disagreement is characterized by a certain level of 

conflict  (energy level) between the two socially interacting members k and h, i.e. 

, where  is the strength of the social interaction and  the mean degree of 

the network of interactions between agents. Therefore, the total level of conflict on the 

decision  is given by: 

  (4.3) 

where the symbol  indicates that the sum is limited to the nearest neighbors, i.e. to those 

individuals which are directly connected by a social link. A multiplex network, (De 

Domenico et al., 2013), (Lee et al., 2015), (Boccaletti et al., 2014), (Wang et al., 2015), 

(Kivela et al, 2014), with  different layers is defined. On each layer, individuals share their 

opinions on a certain decision variable  leading to a certain level of conflict . The graph 

of social network on the layer  is described in terms of the symmetric adjacency matrix  

with elements . The interconnections between different layers represent the interactions 

among the opinions of the same individual k on the decision variables. Fig. 4.1 shows an 

example of a complete multiplex network, where the dashed lines, connecting the different 

decision layers, represent the interaction between the opinions that each member has on the 

decision variables. This interaction occurs via the NK perceived fitness, i.e. changing the 

opinion on the decision variable j causes a modification of the perceived pay-off, which also 

depends on the opinions the member has on the remaining decision variables.  
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Fig. 4.1, An N-layer multiplex complete network. Each layer is associated with one single decision 

variable. Blue lines represent social links between members, whereas dashed lines represent the 

interconnections between the decisions of each member. 

In order to model the dynamics of decision-making in terms of a continuous-time Markov 

process, we define the state vector  of size  as: 

   

and the block diagonal adjacency matrix . For any given lth 

component  of the vector  it is possible to uniquely identify the member k and the 
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decision variable j by means of the relations , and 

. The total level of conflict can be then rephrased as: 

  (4.4) 

Observe that  (with ). In equation (4.4) the term 1/2 avoids that each 

couple of agents k and h be double counted. Now let be  the probability that, at time 

t, the state vector takes the value  out of  possible states. The time evolution of the 

probability  obeys the master equation 

  (4.5) 

where  and . The transition rate 

 of the Markov chain (i.e. the probability per unit time that the opinion  flips to 

 while the others remain temporarily fixed) is defined so as to be the product of the 

transition rate of the Ising-Glauber dynamics (Glauber, 1963), (see also Appendix 8.2), 

which models the process of consensus seeking to minimize the conflict level, and the 

Weidlich exponential rate  (Weidlich, 1991), (Schweitzer & Farmer, 

2007), which models the self-interest behavior of the agents: 

  (4.6) 

The quantity  is the inverse of the social temperature that is a measure of the degree of 

confidence the members have in the other judgment/opinion. Similarly, the quantity  is 

related to the level of confidence the members have about their perceived fitness (the higher 

, the higher the confidence). In equation (4.6) the pay-off function 

, where , is simply the change of the fitness perceived by the agent 

, when its opinion  on the decision  

changes from  to . Note that equation (4.6) satisfies the detailed balance 

condition (see Appendix 8.3).  

To solve the Markov process equations (4.5) and (4.6), we employ a simplified version of 

the exact stochastic simulation algorithm proposed by Gillespie, (Gillespie, 1976-1977). 

More details about the algorithm are provided in Appendix 8.4. The algorithm allows to 

generate a statistically correct trajectory of the stochastic process equations (4.5) and (4.6). 
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4.2 Measuring the performance of the decision-making process 

As the process evolves the bitstring  of the decisions of the group of 

agents needs to be determined at each time . Different choices can be made. Among these, 

the majority rule seems appropriate, especially in presence of cognitive limits of the agents, 

as it does not need to query the value of fitness perceived by each agent. In this case, given 

the set of opinions  that the agents have about the decision , at time , we 

set: 

  (4.7) 

If M is even and in the case of a parity condition,  is, instead, uniformly chosen at random 

between the two possible values . The group fitness is then calculated as  and the 

ensemble average  is then evaluated. When the landscape is not too large, i.e. 

, it is possible to estimate the efficacy of the group in optimizing  in terms 

of normalized average fitness  where .  

The consensus of the members on the decision variable j is measured as follows. We define 

the average opinion  of the group on the decision j 

  (4.8) 

Note that the quantity  ranges in the interval , and that  only when 

full consensus is reached. Therefore, a possible measure of the consensus among the 

members on the decision variable j is given by the ensemble average of the time-dependent 

quantity , i.e., 

  (4.9) 

Observe that  is the correlation function of the opinions of the 

members k and h on the same decision variable j. Given this, a possible ansatz to measure 

the entire consensus of the group on the whole set of decisions is: 

  (4.10) 

Note that 0 ≤  ≤ 1. 
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4.3 Simulations and Results 

We consider initially a group of  members which have to make  decisions. 

For the sake of simplicity, the network of social interactions on each decision layer j is 

described by a complete graph, where each member is connected to all the others. We also 

set , since we assume that the agents have a good confidence about their perceived 

fitness.  

We simulate many diverse scenarios to investigate the influence of the parameter p, i.e. of 

the level of knowledge of the members, and the effect of the parameter  on the outcome 

of the decision-making process. The simulation is stopped at steady-state. This condition is 

identified by simply taking the time-average of consensus and pay-off over consecutive time 

intervals of fixed length  and by checking that the difference between two consecutive 

averages is sufficiently small.  

For any given p and , each stochastic process equations (4.5) and (4.6) is simulated by 

generating 100 different realizations (trajectories). For each single realization, the 

competence matrix  is set, and the initial state of the system is obtained by drawing from a 

uniform probability distribution, afterward the time evolution of the state vector is calculated 

with the stochastic simulation algorithm [see Appendix 8.4].  

Fig. 4.2 shows the time-evolution of normalized average fitness , for  

(i.e. for a moderate level of knowledge of the members), different values of the complexity 

parameter , and different values of .  

We observe that for , i.e. in absence of social interactions [Fig. 4.2 (a)], the 

decision-making process is strongly inefficient, as witnessed by the very low value of the 

average fitness of the group. Every one of the group makes his/her choices to optimize the 

perceived fitness, but, because of the absence of social interactions, he/she behaves 

independently from the others and does not receive any feedback about the actions of the 

other group members. Hence, individuals remain close to their local optima, group fitness 

cannot be optimized [Fig. 4.2 (a)], and the consensus is low [Fig. 4.2 (b)].  

As the strength of social interactions increases, i.e.,  [Fig. 4.2 (c)], members can 

exchange information about their choices. Social interactions push the individuals to seek 

consensus with the member who is experiencing higher payoff. In fact, on the average, those 

members, which find a higher increase of their perceived fitness, change opinion much faster 

than the others. Thus, the other members, while seeking consensus, skip the local optima of 
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their perceived fitness and keep exploring the landscape, leading to a substantial increase of 

the group performance both in terms of group fitness values [Fig. 4.2 (c)], as well as in terms 

of final consensus [Fig. 4.2 (d)]. Thus, the system collectively shows a higher level of 

knowledge and higher ability in making good choices than the single members (i.e., a higher 

degree of intelligence).  

It is noteworthy that when the strength of social interactions is too large,  [Fig. 4.2 

(e)], the performance of the group in terms of fitness value worsens. In fact, very high values 

of , accelerating the achievement of consensus among the members [Fig. 4.2 (f)], 

significantly impede the exploration of the fitness landscape and hamper that change of 

opinions can be guided by payoff improvements. The search of the optimum on the fitness 

landscape is slowed down, and the performance of the collective decision-making decreases 

both in terms of the time required to reach the steady-state as well as in terms of group 

fitness.  

Fig. 4.2 shows that rising the complexity of the landscape, i.e. increasing , negatively 

affects the performance of the collective decision-making process, but does not qualitatively 

change the behavior of the system. However, figure 4.2 (c) also shows that, to cause a 

significant worsening of the group fitness,  must take very large values, i.e., . 

Instead, at moderate, but still significant, values of complexity (see results for ) the 

decision-making process is still very effective, leading to final group fitness values 

comparable to those obtained at the lowest level of complexity, i.e., at . 

In Figures 4.2 (b, d, f) the ensemble average  of the consensus among the members is 

shown as a function of time , for , and for different values of 

.  

At , the consensus is low. In this case, at each time t, members’ opinions are random 

variables almost uniformly distributed between the two states . Hence, the quantity  

can be analytically calculated as . For  this gives , which is 

just the average value observed in figure 4.2 (b).  

As the strength of social interactions rises, members more easily converge toward a 

common opinion. However, the random nature of the opinion dynamics still prevents full 

agreement from being achieved, see figure 4.2 (d). This, as observed in figure 4.2 (a), has a 

very beneficial effect as individuals continue exploring the fitness landscape looking for 

maxima, thus leading to higher performance of the collective decision-making process.  
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However, when the strength of social interactions is significantly increased, a very high 

value of consensus among members is rapidly achieved [Fig. 4.2 (f)], the exploration of the 

landscape is slowed down, and the performance of the decision making-process significantly 

worsen [Fig. 4.2 (e)]. 

 

Fig. 4.2, The time-evolution of the normalized average group fitness  and statistically 

averaged consensus , for p = 0.5, K = 1, 5, 11 and (a-b) βJ = 0.0, (c-d) βJ = 2.5, (e-f) βJ = 5.0. 

We, then, expect that, given  and K, an optimum of  exists, which maximizes the 

steady-state fitness of the group. This is, indeed, confirmed by the analysis shown in Figure 

4.3, where the steady-state values of the normalized group fitness 

 [Fig. 4.3 (a)], and social consensus  [Fig. 4.3 (b)] are 

plotted as a function of , for  and the three considered values of .  
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Results in Figure 4.3 (a) stresses that the fitness landscape complexity (i.e., the parameter K) 

marginally affects the performance of the decision-making process in terms of group fitness, 

provided that K does not take too high values. In fact, curves calculated for  run 

close to each-other.  

More interesting, Fig. 4.3 shows that increasing  from zero, makes both  and 

 rapidly increase. This increment is, then, followed by a region of a slow change of 

 and . It is worth noticing, that the highest group fitness value is obtained at 

the boundary between the increasing and almost stationary regions of .  

 

Fig. 4.3, The stationary values of the normalized averaged fitness  and statistically averaged 

consensus  as a function of βJ. Results are presented for p = 0.5, K = 1, 5, 11. 

In Figure 4.4 we investigate the influence of the level of knowledge p of members on the 

time-evolution of the normalized average fitness . Results are presented for 

, and for different values of .  

Results show that improving the knowledge of the members, i.e. increasing p, enhances the 

performance of the decision-making process. A higher steady-state normalized fitness 

, and a faster convergence toward the steady state are observed. Note also, that, 

especially in the case of high complexity, [Figs. 4.4 (e, f)], increasing p above 0.2 reduces 

the fluctuations of , because of the higher agreement achieved among the members at 

the higher level of knowledge.  
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Fig. 4.4, The time-evolution of the normalized average group fitness  and statistically 

averaged consensus , for βJ = 2.5, p = 0.05, 0.1, 0.2, 0.6, 1 and (a, b) K =1, (c, d) K = 5 and (e, f) K = 

11. 

In Figure 4.5 the steady-state values of the normalized group fitness  [Fig. 4.5 

(a)], and social consensus  [Fig. 4.5 (b)] are shown as a function of , for  and 

the three considered values of . Note that as  is increased from zero, the steady 

state value  initially grows fast [Fig. 4.5 (a)]. In fact, because of social interactions, 

increasing the knowledge of each member also increases the knowledge of the group as a 

whole. But, above a certain threshold of , the increase of  is much less significant. 

This indicates that the knowledge of the group is subjected to a saturation effect. Therefore, 

a moderate level of knowledge is already enough to guarantee very good performance of 
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decision-making process; higher knowledge levels being only needed to accelerate the 

convergence of the decision-making process.  

Fig. 4.5 (b) shows that for vanishing values of  the consensus  takes high values, as each 

member’s choice is driven only by consensus seeking. Increasing p initially causes a 

decrease of consensus, as the self-interest of each member leads to a certain level of 

disagreement. However, a further increment of p makes the members’ knowledge overlap 

so that the self-interest of each member almost points in the same direction, resulting in a 

consensus increase. 

 

Fig. 4.5, The stationary values of the normalized average group fitness  and statistically 

averaged consensus as a function of . Results are presented for ,  and 

. 

4.4 Critical transition and collective intelligence 

The previously shown results point out that high consensus is necessary to guarantee high 

efficacy of the decision-making process, i.e. high values of . This suggests that 

the decision-making becomes optimal, i.e. the group as a whole is characterized by a higher 

degree of intelligence, at the point where the system dynamics changes qualitatively. This 

aspect of the problem is investigated in Figure 4.6, where the stationary values of efficacy 

 and the degree of consensus  are reported as a function 

of the quantity  for different group sizes , , ,  and for 

an average level of knowledge . In this case,  different realizations of the same 

process have been simulated.  
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Fig. 4.6, The stationary values of the averaged fitness  and statistically averaged consensus  as a 

function of βJ. Results are presented for N = 12, K = 5, p = 0.5, , and for three different team 

sizes: M = 6, 12, 24. 

Results clearly show that a critical threshold value of  exists at which both consensus 

and payoff have a sharp and concurrent increase. Notably, the transition from low to high 

payoff, accompanied by an analogous transition from low to high consensus, becomes 

sharper as the group size  is increased. However, in all cases, given , the transition 

occurs for . Interestingly this threshold value is close to the critical ordering 

transition of the Ising model on a complete graph, in the thermodynamic limit of large .  

This result can be obtained by using the findings by Vespignani and Mendes (Leone, 

Vázquez, Vespignani, & Zecchina, 2002), (Dorogovtsev, Goltsev, & Mendes, 2002), who 

independently demonstrated that for general graphs the critical transition of the Ising model 

occurs at 

  (4.11) 

Thus, considering that for a complete graph ,  and that  is 

large, expanding Eq. (4.11) at first order in  gives .  

However, we expect that the threshold  is affected by the values of . Calculations 

confirm this trend as shown in Fig. 4.7, where the response surfaces in terms of the steady 

state fitness  and the consensus  are plotted as a function of  and  for , 

,  and for two team size,  and . Given the input parameters,  and 

, calculations have been carried out by simulating  different realizations and then 

taking the average. The presence of a critical front (line) is clearly observed. It is identified 

by the values of  and  at which a concurrent transition from low value to high (or vice 

versa from high to low) values of both consensus and group fitness takes place.  

Interestingly there is a relatively small region , very close to the transition front, where 

the performances of the group are maximized.  
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Comparing the surfaces [Fig. 4.7 (a, c)], about the team size , with the ones about 

 [Fig. 4.7 (b, d)], we observe that the overall trend is almost the same, but the region 

of high performance is slightly larger for  compared to , and the critical 

transition less sharp. This explains why in the "social" literature it is well known that bigger 

groups perform worse than small groups in making decisions. Moreover, the performance 

peak is approximatively the same, possibly because  is an already enough group size 

for accurately solve a  problem in complete knowledge . Probably on 

more complex landscapes and uncomplete knowledge , it could result appropriate to 

increase the number of agents to get better performance.  

  

  

Fig. 4.7, Response surfaces in terms of the steady state fitness  and the consensus , as a function of 

 and , for , ,  and  and . 

In all cases, the collective intelligence of the group (i.e. the ability to make decisions 

leading to high values of the group fitness) sets in only if also the consensus sets in, and this 

happens exactly at the critical front. To support this conclusion, we calculate the mutual 

information between the two stochastic variables: the group fitness  and the consensus 
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. The mutual information  between two continuously distributed stochastic 

variables  and  is 

  (4.12) 

This quantity (see Appendix 8.6 for more details) is a measure of the information gained 

about the behavior of one random variable, say , by observing the behavior of the other 

variable . Hence, the mutual information measures the difference between the initial 

uncertainty on the variable  and the uncertainty that remains about  after the observation 

of the behavior of the variable  . Under this perspective, it measures the information flow 

from the variable  to the variable . Also, observe that . 

Fig. 4.8 shows that the quantity  is maximized just at the critical transition, i.e. 

on the critical front the information flow from the complex fitness landscape to the group of 

agents is strongly enhanced. This allows to identify solutions with much higher group fitness. 

In other words, we may say that, at the critical threshold, the exchange of information 

promoted by social interactions, provides the group with higher collective knowledge about 

the group fitness landscape. This leads to an improved exploration of the landscape, to better 

choices and finally to the emergence of the "collective intelligence" of the group. 

  

Fig. 4.8, Mutual information surface  between the group fitness  and the consensus , 

as a function of  and , for , , , (a)  and (b) . 

Figures 4.9 and 4.10 show the response surfaces, analogues to ones reported in figures 4.7 

and 4.8, in the case of limited knowledge of the agents, in particular for  [Fig. 4.9] 

and  [Fig. 4.10]. The trends are similar, with evident lower performance in terms of 

fitness values in the case of extremely low knowledge  [Fig. 4.9], and instead 

almost indistinguishable in the case of medium-good knowledge  [Fig. 4.10], 

compared to the complete knowledge case [Fig. 4.7]. At the critical threshold, the agents 
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with limited knowledge, driven by the social interactions, will follow, in making choices, 

those agents with higher knowledge, thus finally agreeing with them on the “good” choice. 

  

  

  

Fig. 4.9, Response surfaces in terms of (a-b) the steady state fitness , (c-d) consensus  and (e-f) 

mutual information , as a function of  and , for , ,  and  

and . 
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Fig. 4.10, Response surfaces in terms of (a-b) the steady state fitness , (c-d) consensus  and (e-f) 

mutual information , as a function of  and , for , ,  and  

and . 
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4.5 Conclusions 

In this chapter, the author introduces a new model of collective decision-making (DMM). 

The model described the time evolution of group choices in terms of a time-continuous 

Markov process, where the transition rates have been defined to capture the effect of the two 

main forces, which drive the change of opinion of the members of the group. These forces 

are the rational behavior which pushes each member to increase his/her self-interest, and the 

social interactions, which push the members to reach a common opinion.  

Our study provides a contribution to the literature identifying under which circumstances 

collective decision making is more performing. We found that a moderate strength of social 

interactions allows for knowledge transfer among the members, leading to a higher 

knowledge level of the group as a whole. This mechanism, coupled with the ability to explore 

the fitness landscape, strongly improves the performance of the decision-making process. 

We identified that the threshold value of the social interaction strength, at which the entire 

group is characterized by the highest degree of collective intelligence, is just the critical 

threshold at which the flow of information from the fitness landscape to the group of agents 

is maximized, thus improving the abilities of the group to explore the fitness landscape 

searching for the optimal solution.  

We also noticed that increasing the level of knowledge of the members improves 

performance. However, above a certain threshold the knowledge of the group saturates, i.e. 

the performance of the collective decision-making process becomes much less sensitive to 

the level of knowledge of each single member. Therefore, we can state that the collective 

decision-making is very high-performing already at a moderate level of knowledge of the 

members and that very high knowledge of all members only serves to accelerate the 

convergence of the decision-making process.  
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5 The effect of social network structure on team performance 

“The strength of the team  

is each individual member.  

The strength of each member  

is the team.” 

Phil Jackson 

In today’s highly complex and uncertain environment, teams are effective coordination 

mechanisms contributing to firm competitive advantage (Jackson, DeNisi & Hitt, 2003), 

(Kozlowski & Bell, 2003), (Lawler, Mohrman & Ledford, 1995), (Lynn, Reilly, & Akgün, 

2000). Indeed, teams are more and more adopted by the organizations to address a very large 

variety of projects, ranging from new product development, R&D activities, production and 

marketing issues, and so on. For this reason, a wide body of literature has analyzed the 

determinants of team performance with the aim of providing important lessons on how to 

design highly effective teams (Kozlowski & Bell, 2003), (Lepine et al., 2008), (Sanna & 

Parks, 1997).  

A recent stream of research has focused the attention on how social network features relate 

to team performance. Teams are viewed as social communities involving team members and 

members external to the team, such as those belonging to other teams in the organization. 

Nodes (members) are linked one with each other by social relationships (ties). Structural 

features of the team social networks such as density and connectivity have been shown to be 

associated with team performance (Balkundi & Harrison, 2006), (Chung & Jackson, 2013), 

(Newman, 2010), (Stauffer, 2008).  

The relationship between the team organizational features and team performance has been 

also investigated in a parallel stream of research (Clark & Wheelwright, 1992), (Doolen 

Hacker & Van Aken, 2003), (Lawer et al., 1995), (Pelled et al, 1999), which has put in 

evidence that the team organizational structure is one of the most important drivers of team 

performance (Tatikonda & Montoya-Weiss, 2001).  

However, so far these two lines of inquiry have remained independent. No study has 

captured the existence of an interaction between the team social network features and team 

organizational structure in affecting team performance.  
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A relatively recent approach to study teams employs social network theory (Borgatti & 

Foster, 2003). Teams are framed as clusters of nodes (individuals), joined by a variety of 

links (relationships). As to the node, internal and external team networks are commonly 

distinguished. Internal networks are those involving only individuals belonging to the team, 

whilst external networks involve links between team members and external individuals, such 

as the members of others teams or the members of the organizations (Chung & Jackson, 

2013). Social influence theory argues that social interactions are conduits of opinion 

formation, which stimulate convergence towards a common understanding of a situation and 

shared mental models among individuals. During the decision-making process, the team 

members receive two types of influence, because of their involvement in the hierarchical and 

social networks. The hierarchical ties exert pressure on team members because individuals 

usually prefer to avoid contrasts with the members in higher hierarchical positions.   

Team members have an initial opinion on the decision to make, but then change it, because 

of their search for reaching consensus with interacting individuals (Horwitz & Horwitz, 

2007), and at the same time trying to maximize their perceived payoff.  

In this chapter, the effect of the strength of interactions, the team hierarchical structure and 

the topology of the social networks on team performance are investigated. In doing this, the 

decision-making model (DMM) previously proposed has been used with proper changes. 

5.1 The computational model adapted to the case of study 

We consider a team made by  agents (yellow), headed (hierarchical team) [Fig. 5.1 (a)] 

or not (flat team) [Fig. 5.1 (b)] by a Project Manager (PM), in charge to develop a product 

with  features. Each team member reports to the functional managers (nodes 2, 3, 4, 5 in 

fig. 5.2) of the organization (red) from which he/she comes from (same symbol). The 

organization is constituted by  agents, led by a chief executive officer (CEO), and divided 

into a certain number of departments (different symbols), each one with a fixed number of 

hierarchical levels and links per node. Each department, supervised by its functional 

manager, has a specialization, i.e. design, production, marketing, etc. 



THE EFFECT OF SOCIAL NETWORK STRUCTURE ON TEAM PERFORMANCE 

65 

 

 

 

 
(a)  (b) 

 

Fig. 5.1, Examples of hierarchical networks: team members are in yellow color, organization members 
are in red. Blue links identify those members interacting through the external networks. (a) Hierarchical 
team, presence of the project manager (PM), (b) flat team, absence of the PM. 

The individual opinions about the  decisions are modeled as binary variables, where +1 

and –1 are the two possible values that each product attribute can assume. Examples of 

product attributes can be the product size (small or big), the target market (young or classic), 

the quality of materials (low or high), the production process (retail or series), and so on. 

The goal is to find, among the possible, the best set of decisions (product attributes), i.e. the 

one that brings to the highest fitness, that we can imagine directly linked to the gain of the 

organization.  

Social interactions involving team members occur in two networks. The hierarchical 

network considers the hierarchical links, whereas the social network involves informal ties. 

The global network of interaction is the union of them. Between the different kinds of social 

network topology, we concentrated our attention on small-world and scale-free connectivity. 

Figure 5.2 reports an example of both the topologies. The main feature of small-world social 

networks [Fig 5.2 (a)], especially for very low density and rewiring probability values, is 

that they are similar to cyclic networks, with very few far connections. On the other hand, 

scale-free networks [fig. 5.2 (b)] with low-density values are characterized by very few 

nodes (agents) highly connected (hubs of the network) and most of the others poorly 

connected.  

  

(a) (b) 

Fig. 5.2, Examples of social networks with (a) small-world and (b) scale-free connectivity. Team 
members are in yellow color, organization members are in red color. Blue links identify those members 
interacting through the external network.  
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The fitness function is built employing the NK model, (Kauffman & Levin, 1987), 

(Kauffman S. A., 1989), (Weinberger, 1996). A -dimensional vector space of decisions is 

considered, where each choice configuration is represented by a vector . 

As we already mentioned, each decision is a binary variable that may take only two values 

+1 or −1, i.e. , . The total number of decision vectors is, therefore, . 

Each vector  is associated with a certain fitness value  computed as the weighted sum 

of  stochastic contributions , each decision leads to total fitness depending on the 

value of the decision  itself and the values of other  decisions , . 

Following the classical NK procedure, (more details are provided in Appendix 8.1), the 

quantities  are determined as randomly generated -element “interaction 

tables”. The fitness function of the group is defined as: 

  (5.1) 

The integer index  is the number of interacting decision variables and 

tunes the complexity of the problem. The complexity of the problem increases with .  

Each agent has a different level of knowledge, i.e. knows the impact of a limited number 

of decisions on the overall payoff. The  competence matrix  maps 

the knowledge of each agent k.  if the member  knows the contribution of the 

decision  to the total fitness , otherwise .  

We assume that each department of the organization is specialized on a certain number of 

decisions, i.e. the members of the organization have a specialist knowledge: they perceive 

only the contribution to the overall payoff of the decisions concerning the department which 

they belong. Differently, team members have a general knowledge: they have expertise 

about the decisions concerning the department from which they come from, and varying over 

the others with a probability . For these decisions, we randomly choose  with 

probability  and  with probability . By increasing  from  to , we 

control the level of knowledge of the team members. 

Based on the level of knowledge each member  computes his/her own perceived fitness 

(self-interest) as: 

  (5.2) 
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All agents make choices on each of the  decision variables . Therefore, the state of the 

kth member  is identified by the -dimensional vector 

, where  is a binary variable representing the opinion of the kth member 

on the jth decision. For any given decision variable , individuals k and h agree if , 

otherwise they disagree.  

Within the framework of Ising’s approach, (Sornette, 2014), (Ising, 1925), (Brush, 1967), 

disagreement inside the hierarchical network is characterized by a certain level of conflict 

 (energy level) between the two socially interacting members k and h, i.e. 

, where   is the strength of the social interaction and  is the impact of the 

hierarchical status of the individual . The hierarchical status of the individual  is associated 

with his/her hierarchical level . We assume that a disagreement with an individual 

belonging to a higher hierarchical level is weighted more than the disagreement with one 

member belonging to a lower level. This means that the probability to change opinion is 

higher if the individual has a different opinion with his/her chief rather than with an 

individual sharing the same hierarchical status. The quantity  is then defined as follows: 

  (5.3) 

where the hierarchical level  is an integer, which increases as one moves from the top 

(CEO and PM) to the bottom of the hierarchy. The quantity  instead tunes the decay rate of 

 and can be used to model the PM authority on the team members.  

Similarly, the level of conflict on the decision  due to the relationship in the social network 

is characterized by a certain level of conflict  (energy level) between the two socially 

interacting members k and h, i.e. . 

Each agent makes his/her choices driven by the rational behavior, which pushes him to 

increase the perceived payoff and the social interactions, which push him to seek consensus 

with the others agents. 

A multiplex network, (De Domenico et al., 2013), (Lee et al., 2015), (Boccaletti et al., 

2014), (Wang et al., 2015), (Kivela et al, 2014), with  different layers is defined. On each 

layer, individuals interact on the global network, sharing their opinions on a certain decision 

variable  and leading to a certain level of conflict . The graph of the global 
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network on each layer  is the union of the hierarchical and social graphs, i.e. its adjacent 

matrix is the union of the hierarchical and social network adjacent matrixes, . 

In figure 5.3 examples of the global networks for small-world [Fig. 5.3 (a)] and scale-free 

[Fig. 5.3 (b)] social network are shown. The interconnections between different layers (see 

Fig. 4.1 of chapter 4 for analogy) represent the interactions among the opinions of the same 

individual k on the decision variables, while the dashed lines connecting the different 

decision layers represent the interaction between the opinions that each member has on the 

decision variables. This interaction occurs via the NK perceived fitness, i.e. changing the 

opinion on the decision variable j causes a modification of the perceived pay-off, which also 

depends on the opinions the member has on the remaining decision variables.  

  

(a) (b) 

Fig. 5.3, Examples of global networks, unions of the hierarchical and social ones, with (a) small-world 
and (b) scale-free connectivity of the social network. Team members are in yellow color, organization 
members are in red color. Blue links identify those members interacting through the external network. 

Using the adjacent matrixes, we can rephrase the total level of conflict (energy level) on 

decision  as 

  (5.4) 

where  and  for . Observe that in this case 

 is a no symmetric real numbers matrix. 

To model the dynamics of decision-making in terms of a continuous-time Markov process, 

we define the state vector  of size  as: 

 

and the block diagonal matrix . For any given lth component 

 of the vector  it is possible to uniquely identify the member k and the decision variable 

j by means of the relations , and 

. The total level of conflict can be then rephrased as: 
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  (5.5) 

Observe that  (with ).  

Now let be  the probability that, at time t, the state vector takes the value  out of  

possible states. The time evolution of the probability  obeys the master equation 

  (5.6) 

where , . The transition rate  

is the probability per unit time that the opinion  flips to  while the others remain 

temporarily fixed. Recalling that flipping of opinions is governed by social interactions and 

self-interest a possible ansatz for the transition rates is: 

  (5.7) 

In equation (5.6) the pay-off function , where , 

is simply the change of the fitness perceived by the agent 

, when its opinion  on the decision  changes from 

 to . 

The quantity  is instead the inverse of the so-called social temperature and is a measure 

of the chaotic circumstances, which lead to a random opinion change. The term  is related 

to the degree of confidence the agents have about the perceived fitness (the higher  the 

higher the confidence). To solve the Markov process equations (5.6) and (5.7), we employ a 

simplified version of the exact stochastic simulation algorithm proposed by Gillespie 

(Gillespie, 1976-1977), see also Appendix 8.4. 

The group fitness value equation (5.1) and the level of agreement between the team 

members (i.e. social consensus) are used to measure the performance of the collective-

decision making process. To calculate the group fitness value, the vector 

 needs to be determined. To this end, consider the set of opinions 

 that the team members have about the decision j, at time t. The decision  

is obtained by employing the majority rule, i.e. we set 

  (5.8) 
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If M is even and in the case of a parity condition,  is, instead, uniformly chosen at random 

between the two possible values . The group fitness is then calculated as  and the 

ensemble average  is then evaluated. The efficacy of the group in optimizing  

is then calculated in terms of normalized average fitness 

  (5.9) 

where  and .  

Similarly to the DMM, the entire consensus of the group on the whole set of decisions is: 

  (5.10) 

Note that 0 ≤  ≤ 1. 

5.2 Simulation and results 

We consider, unless differently specified, a team composed of  agents with an 

average knowledge level, , and an organization composed of  agents, 

subdivided into 6 departments, headed by their functional manager. Each department has 2 

hierarchical levels (functional managers and operating units) and 4 links per node. 

Two social networks are defined; the first one, external, involves all the agents (team and 

organization), the second one, internal, involves only the team members. In the simulations, 

we assumed that both external and internal social networks have the same topology, i.e. both 

small-world or both scale-free. 

The external social network has a density  and in the case of a small-world 

network, the value of the rewiring probability used is . The internal social 

network has a density  and in the small-world case a rewiring probability 

.  

A ,  landscape has been used so that the agents of each one of the 6 

departments have expertise and knowledge about 2 decisions. We also set , since we 

assume that the agents have a good confidence about their perceived fitness function. 

Vespignani (Leone, Vázquez, Vespignani, & Zecchina, 2002) and Mendes (Dorogovtsev, 

Goltsev, & Mendes, 2002) demonstrated that for general graphs, the critical transition of the 

Ising model occurs at:  
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  (5.11) 

where  and  are respectively the mean degree and the mean squared degree of the 

team global network of interaction. As we have seen in chapter 4, the threshold value  

for the DMM, is affected by the values of , nevertheless, it can be fine approximated by 

equation (5.11) for the case of study, in which . We define a parameter 

, i.e.   describes a subcritical (supercritical) level of interactions 

among agents.  

We simulate many scenarios to investigate the influence of the parameter  on the final 

outcome of the decision-making process. The simulation is stopped at steady-state. This 

condition is identified by simply taking the time-average of team consensus and pay-off over 

consecutive time intervals of fixed length  and by checking that the difference between two 

consecutive averages is sufficiently small. For any given scenario, each stochastic process 

equations (5.6) and (5.7) is simulated by generating 100 different realizations (trajectories). 

Figure 5.4 shows the steady-state values of the normalized averaged team fitness 

 [Fig. 5.4 (a, d)], social consensus  [Fig.5.4 (b, e)] and 

simulation time  [Fig.5.4 (c, f)] as a function of the control parameter , for 

the two topologies of the social networks considered, small-world and scale-free, and for a 

hierarchical and flat team (presence or not of the PM). In the hierarchical case, three 

different knowledge values of the PM have been investigated .  

For both the kind of connectivity, we observe that the best performance of the team in terms 

of averaged final payoff are obtained around the critical value of interaction . In the 

subcritical regime, , the decision-making process is inefficient because each team 

member makes his/her choices to optimize the perceived fitness, but poorly interacting with 

the other members, he/she behaves almost independently, not receiving a sufficient feedback 

on the wisdom of his/her choices. At the criticality, consensus emerges, so agents share 

knowledge and information, finding an agreement on their choices. This brings to an evident 

improvement of the final payoff. Moving to the supercritical regime  the strength of 

social interactions becomes too high and the consensus among members is rapidly achieved, 

not allowing a proper exploration of the fitness landscape. This carries the performance of 

the decision-making process worsening. It is worth nothing that the utilization of equation 

(5.11) for appropriately calculate the critical value of the interaction strength is confirmed 
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by the simulation time  [Fig.5.4 (c, f)] , always maximal at the critical value , as 

predicted in literature. 

Let us concentrate now on the effect of the social network topology on the performances 

reached. Small-world networks with low rewiring probability are similar to cyclical 

networks, where each agent is only connected to its neighbors. In these circumstances the 

PM in the hierarchical network, allows an indirect interaction between agents far from each 

other, that leads to an improvement of the performance in terms of final payoff. Nevertheless, 

compared to the case of a flat team, a hierarchical one, requires a longer time to find a final 

shared solution. The higher the PM knowledge, the higher is the performance reached around 

the critical threshold, nevertheless, the difference in terms of normalized group fitness  

becomes already negligible moving from  to .  

In Scale-free networks only a few agents are very connected, who become hubs of the 

network, through which all agents can indirectly and rapidly communicate. In this kind of 

network the PM in the hierarchical network does not particularly influence the performance. 

Also in this case, the previously observed slight effect of his/her knowledge on the payoff 

outcome is confirmed.  

Finally, we can state that the main difference between the two social networks topologies, 

in terms of final performance, consists in the effect of the PM presence in the hierarchical 

network, fundamental for the small-world case to get higher performance, or not for the 

scale-free one. A notable difference is also observed about the time requires reaching the 

convergence: the brainstorming process of scale-free network is generally faster, compared 

with the one of a small-world network. 
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Fig. 5.4, The stationary values of the (a, d) normalized averaged fitness , (b, e) social consensus  

and (c, f) simulation time , as a function of the control parameter , for small-world and 

scale-free connectivity of the social network. Results for a hierarchical structure of the team, considering 

also a different knowledge of the PM, and a flat structure, are shown.  
 

We also investigated the effect of the density  of the team social network on its 

performance. Increasing , the mean degree  increases and  decreases, according to 

the Vespignani-Mendes formula, eq. (5.10). Working at a fixed value of strength interaction 

, i.e.  in fig. 5.5, the system passes from a subcritical to a supercritical situation, 

with a transition clearly visible on the performance. The critical density value is identified 

by the vertical dashed line in the diagrams. It is worth nothing that the limited amount of 

density values explored is due to the small number of agents considered  and to the 

social network generation strategy. 
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Fig. 5.5, The stationary values of the (a, d) normalized averaged fitness , (b, e) social consensus  

and (c, f) simulation time , as a function of the density  of the social network, with small-world or 

scale-free connectivity. Results for a hierarchical and flat structure of the team are shown. 

Similarly, increasing the team size but working at a fixed team social network density, i.e. 

, the mean degree  increases and decreases, according to the Vespignani-

Mendes formula, eq. (5.10). Working at a fixed value of , i.e.  in figures 5.6, the 

same kind of transitional behavior is observed. This result is quite interesting because it is 

telling us that, given a level of interactions between agents and a density of the social 

network, an optimal size of the team exist, in order to maximize its performance. 



THE EFFECT OF SOCIAL NETWORK STRUCTURE ON TEAM PERFORMANCE 

75 

 

 

Fig. 5.6, The stationary values of the (a, d) normalized averaged fitness , (b, e) social consensus  

and (c, f) simulation time , as a function of the number of team agents , for small-world and scale-

free connectivity of the social network. Results for a hierarchical and flat structure of the team are 

shown. 
 

In conclusion, we analyzed the effect of the PM authority on the performance of the team 

in the case in which his knowledge level is poor, . We model the team authority 

using the parameter  in equation (5.3). We use  for describing a PM with a strong 

authority on the team members and   for one with no authority. The internal team 

social network has a density  and in the small-world case a rewiring probability 

. Results in Fig. 5.7, illustrate that a team guided by a PM with low knowledge 

( M=0.1) and strong authority  on the others team members shows a smoother critical 
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transition and essentially similar performance in terms of payoff and consensus, but in a 

longer time, compared with the case in which the PM has not authority . 

 

Fig. 5.7, The stationary values of the (a, d) normalized averaged fitness , (b, e) social consensus  

and (c, f) simulation time  as a function of the control parameter , for small-world and 

scale-free connectivity of the social network. The team structure is hierarchical, with a PM characterized 

by a strong or not  authority on the team members. 

 

 

 

 

 



THE EFFECT OF SOCIAL NETWORK STRUCTURE ON TEAM PERFORMANCE 

77 

 

5.3 Conclusions 

In this chapter, the author presents an application of the decision-making model (DMM) 

proposed in chapter 4, to the simulation of a management problem, in which a team of 

individuals is in charge to design a new product. We suppose the interactions among 

individuals take place for hierarchical or social reasons, investigating respectively the 

influence of the team hierarchical structure and of social network topology, on the team 

performance. Two kinds of social network connectivity have been considered, small-world 

and scale-free. We simulate how team members converge towards a shared solution of the 

design process by interacting with each other through hierarchical and social networks.  

We found that a critical value of interaction, easily predictable using the Vespignani-

Mendes formula allows for knowledge transfer among the team members and better 

performance of the decision-making process. The main difference between the two social 

networks topologies, in terms of final performance, consists in the effect of the PM presence 

in the hierarchical network, fundamental for the small-world case to get higher performance, 

and not for the scale-free one. A remarkable difference is also observed about the time 

requires reaching the convergence, smaller for scale-free network compared to the small-

world ones. 

We also studied the effects of the density of the social network and of the team size on its 

performance, noticing that working with fixed values of social interaction and team size 

(social network density), an optimal value of the social network density (team size) exists. 

In conclusion, we investigate the effect of the project manager authority on the team 

performance, finding that the only considerable difference is in the time required to reach a 

solution.  

It is worth noting that the application proposed is just an example, considerable interesting 

in the management field for the results obtained, nevertheless is evident how following a 

similar formulation a huge number of decision-making problems, involving for example 

parliaments, squads of soldiers, coordination of human crowds, etc. can be easily modeled.  
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6 Human Group Optimization algorithm 

“All models are wrong, 

but some are useful.” 

George E. P. Box 

A large number of optimization algorithms have been developed by researchers to solve 

a variety of complex problems in operations management area. In this chapter, the author 

presents a novel optimization algorithm belonging to the class of swarm intelligence 

optimization methods. The algorithm mimics the decision-making process of human groups 

and exploits the dynamics of this process as an optimization tool for combinatorial 

problems. To achieve this aim, a continuous-time Markov process is proposed to describe 

the behavior of a population of socially interacting agents, modeling how humans in a group 

modify their opinions driven by self-interest and consensus seeking. As in the case of a 

collection of spins, the dynamics of such a system is characterized by a phase transition 

from low to high values of the consensus (magnetization). We recognize this phase 

transition as being associated with the emergence of a collective superior intelligence of the 

population. While this state being active, a cooling schedule is applied to make agents closer 

and closer to the optimal solution, while performing their random walk on the fitness 

landscape. A comparison with simulated annealing as well as with a multi-agent version of 

the simulated annealing and genetic algorithms is presented in terms of efficacy in finding 

a good solution on an NK-Kauffman landscape. In all cases, our method outperforms the 

others, particularly in presence of limited knowledge of the agents.  

The chapter is organized as follows. In Sec. 6.1 a brief classification of the optimization 

algorithms developed so far and their core applications is provided. In Sec. 6.2 the author 

presents the Human Group Optimization (HGO) algorithm and its main features. Sec. 6.3 

tests the HGO algorithm in solving NP-complete problems of increasing complexity and 

compares it with the Simulated Annealing, a Multi-Agent version of Simulated Annealing 

and Genetic Algorithms. In Sec. 6.6 the main conclusions are drawn, discussing also future 

perspectives. 
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6.1 Introduction 

Researchers have developed many meta-heuristic algorithms inspired by nature with the 

aim of solving combinatorial optimization problems. A common way to classify them is to 

distinguish between trajectory and population-based algorithms.  

Trajectory algorithms, such as Simulated Annealing (SA) (Kirkpatrick, Gelatt, Vecchi, & 

others, 1983) and Quantum Annealing (Kadowaki & Nishimori, 1998), (Farhi, et al., 2001), 

describe a trajectory (usually a random walk) in the search space to reach the solution.  

Population-based algorithms perform multiple search processes, each of them carried out 

by a different agent. Population-based algorithms can be further distinguished in two 

classes: Evolutionary algorithms and Swarm-based algorithms (Binitha & Sathya, 2012).  

The evolutionary algorithms, of which the genetic algorithm is most popular (Simon, 2013), 

mimic the processes of natural evolution, such as mutation, selection, and inheritance, to 

identify the best solution. The swarm algorithms exploit the collective intelligence of the 

social groups, such as flock of birds, ant colonies, and schools of fish, in accomplishing 

different tasks. They include the Ant Colony Optimization (Dorigo M. , 1992), (Dorigo, 

Maniezzo, & Colorni, 1996), (Dorigo & Gambardella, 1997), the Particle Swarm 

Optimization (Kennedy, 2011), the Differential Evolution (Storn & Price, 1997), the 

Artificial Bee Colony (Karaboga, 2005), (Karaboga & Basturk, 2007), the Glowworm 

Swarm Optimization (Krishnanand & Ghose, 2009), the Cuckoo Search Algorithm (Yang 

& Deb, 2010), and very recently the Grey Wolf Optimizer (Mirjalili, Mirjalili, & Lewis, 

Grey wolf optimizer, 2014) and the Ant Lion Optimizer (Mirjalili, 2015).  

All these algorithms have been thoroughly employed to deal with NP-complete 

optimization problems, e.g. Knapsack problem, Makespan Scheduling, Travelling 

Salesman Problem (TSP), Clique problem and others.  

For example, Simulated Annealing has been mainly employed to solve the traveling 

salesman problem (Golden & Skiscim, 1986), scheduling problems (Radhakrishnan & 

Ventura, 2000), (Melouk, Damodaran, & Chang, 2004), facility location and supply chain 

design problems (Arostegui, Kadipasaoglu, & Khumawala, 2006).  

The Genetic Algorithms count a larger number of applications compared to Simulated 

Annealing, even though the wideness of the areas to which they have been applied is quite 

narrow (Chaudhry & Luo, 2005). Aytug et al. (Aytug, Khouja, & Vergara, 2003) provide 

an interesting review of the use of genetic algorithms for solving different types of 
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operations problems including production control, facility layout design, line balancing, 

production planning, and supply chain management. 

  The last years have seen a huge growth of the applications of swarm-based algorithms in 

the field of Swarm Intelligence, which is the specific branch of Artificial Intelligence, 

dealing with the collective behavior of swarms through the complex interaction of 

individuals with no centralized coordination. Swarm optimization algorithms share 

remarkable features, such as decentralization, self-organization, autonomy, flexibility, and 

robustness, which have been proven very useful to solve complex operational tasks (Ottino, 

2004), (Bonabeau, Dorigo, & Theraulaz, 1999). 

Applications of ant colony optimization algorithm mainly concern the traveling salesman 

problem, scheduling, vehicle routing, and sequential ordering (Dorigo, Di Caro, & 

Gambardella, 1999). More recently, they have been also employed in supply chain contexts 

to solve production-inventory problems (Ferretti, Zanoni, & Zavanella, 2006), (Nia, Far, & 

Niaki, 2014) and network design (Moncayo-Martinez & Zhang, 2011). 

  These algorithms reproduce the collective decision process that makes social groups 

superior in solving tasks compared to single individuals. Agents (ants, bees, termites, fishes) 

make choices, pursuing their individual goals (forage, survive, etc.) based on their own 

knowledge and amount of information (position, sight, etc.), and adapting their behavior to 

the actions of the other agents. The group-living enables social interactions to take place as 

a mechanism for knowledge and information sharing (Couzin, 2009), (Sumpter & Pratt, 

2009), (Ward, Sumpter, Couzin, Hart, & Krause, 2008), (Arganda, Pérez-Escudero, & de 

Polavieja and Gonzalo, 2012), (Ward, Herbert-Read, Sumpter, & Krause, 2011), (Pérez-

Escudero & Polavieja, 2011), (Watts, 2002), (Turalska, Lukovic, West, & Grigolini, 2009), 

(Wang, Szolnoki, & Perc, Interdependent network reciprocity in evolutionary games, 

2013), (Wang, Szolnoki, & Perc, 2013). Even though the single agents may possess a 

limited knowledge, and their actions are usually very simple, the collective behavior, 

enabled by the social interactions, leads to the emergence of a superior intelligence of the 

group.  

In this chapter, the author proposes a novel swarm intelligence optimization algorithm to 

solve complex combinatorial problems. The proposed algorithm is inspired by the behavior 

of human groups and their ability to solve a very large variety of complex problems, even 

when the individuals may be characterized by cognitive limitations. Although it is widely 

recognized that human groups, such as organizational teams, outperform single individuals 
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in solving many different tasks including new product development, R&D activities, 

production and marketing issues, the authors are not aware of the presence in the scientific 

literature of optimization algorithms inspired by the problem-solving process of human 

groups. Similarly to other social groups, human groups are collectively able, by exploiting 

the potential of social interactions, to achieve much better performance than single 

individuals can do. This specific ability of human groups has been defined as group 

collective intelligence (Woolley, Chabris, Pentland, Hashmi, & Malone, 2010), (Engel, 

Woolley, Jing, Chabris, & Malone, 2014) that recently is receiving a growing attention in 

the literature as to its antecedents and proper measures (Woolley, Chabris, Pentland, 

Hashmi, & Malone, 2010), (Engel, Woolley, Jing, Chabris, & Malone, 2014).  

The proposed algorithm, hereafter referred to as Human Group Optimization (HGO), is 

developed within the methodological framework recently proposed by Carbone and 

Giannoccaro (Carbone & Giannoccaro, 2015) to model the collective decision making of 

human groups. This model captures the main drivers of the individual behavior in groups, 

i.e., self-interest and consensus seeking, which should lead to the emergence of collective 

intelligence. The group is conceived as a set of individuals making choices based on rational 

calculation and self-interested motivations. However, any decision made by the individual 

is also influenced by the social relationships he/she has with the other group members. This 

social influence pushes the individual to modify the choice he/she made, for the natural 

tendency of humans to seek consensus and avoid conflict with people they interact with 

(Dimaggio & Powell, 1983). As a consequence, effective group decisions spontaneously 

emerge as the result of the choices of multiple interacting individuals. Herewith, we identify 

which circumstances lead to the emergence of the collective intelligence of the group. We 

show that by tuning some control parameters it is possible to make the system undergo a 

critical transition towards a state of high consensus which is always accompanied by an 

analogues transition from low to high group fitness values. We find that at the critical 

transition the flow of information from the fitness landscape to the group of agents is 

maximized, thus improving the abilities of the group as a whole to explore the fitness 

landscape searching for the optimal solution. To test the ability of the HGO algorithm, we 

compare its performance with those of the Simulated Annealing (SA), and Genetic 

Algorithm (GA) in solving NP-complete problems, consisting in finding the optimum on a 

fitness landscape, the latter generated within the Kauffman NK model of complexity 

(Kauffman & Levin, 1987), (Kauffman & Weinberger, 1989). 
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6.2 The Human Group Optimization algorithm 

In this section, the author designs the HGO algorithm, by exploiting the collective 

intelligence property of the decision-making model (DMM) (Carbone & Giannoccaro, 

2015) developed so far to solve discrete NP combinatorial problems (chapter 4).  

To this aim, the process followed to design the Simulated Annealing algorithm (Kirkpatrick, 

Gelatt, Vecchi, & others, 1983) is emulated. We first observe that the Markov process 

defined in Eq. (4.5) with transitions rates Eq. (4.6) converges to the stationary probability 

distribution (Appendix 8.3) 

  (6.1) 

where the total level of conflict is . Eq. 6.1 is a Boltzmann 

distribution with effective energy 

  (6.2) 

where . We then make the parameters  and  change during the process as 

follows: 

  (6.3) 

where  is the time iterator,  is a free parameter tuning the rate of the interaction strength 

growth law, and  is set per Ref. (Ben-Ameur, 2004). The threshold value  is properly 

chosen to guarantee that the critical transition to the collective intelligence state is always 

completed during the process. Also, the procedure leads the ratio  to vanish in 

the long-term limit to allow . Note that, when agents possess complete 

knowledge , the latter condition, akin the Simulated Annealing, makes the proposed 

algorithm converge in probability to the optimum of  (Geman & Geman, 1984), 

(Hajek, 1988). 

    Also, observe that the choice  identifies an optimization algorithm very closely 

related to the Simulated Annealing, except that the fitness landscape is explored by  non-

interacting agents. Hereafter, this algorithm will be referred to as Multi-Agent Simulated 

Annealing (MASA). Observe that MASA is characterized by the absence of social 

interactions among the agents, and, as such, it is unable to exploit the collective intelligence 

properties of the group.  
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6.3 Simulation and results 

In this section, we will analyze the performance of the HGO algorithm for the case of an 

NK Kauffman landscape with two different values of , and , and  ranging from 

 to . Such landscapes are very complex as the entire NK fitness landscape can be 

constructed (see appendix 8.1) by combining, through the Kaufmann determinist rule, 

 different real values, drawn at random from a uniform distribution. We can estimate 

an upper bound for the combinatorial complexity  of the landscape, in a Kolmogorov 

sense, as 

  (6.4) 

Eq. (6.4) shows that the parameter  is much more influential than  in affecting the 

complexity of the landscape. It is worth noticing that for  the complexity 

becomes 

, so that  increases exponentially with . In this case, we also expect that 

the number of local optima exponentially increases with , as indeed found by Kaufmann 

(Kauffman & Levin, 1987), (Kauffman & Weinberger, 1989), who showed that for 

 the number of local optima evolves on the average as . 

We now consider the optimization problem consisting in finding the global optimum on 

different NK fitness landscapes. In all simulations, each stochastic process is simulated by 

generating  different realizations and the ensemble average of the results is calculated. 

The simulation is stopped at steady-state, i.e., when changes in the time-averages of 

consensus and pay-off over consecutive time intervals of a given length is sufficiently small. 

Recall that  is calculated as the average of statistically independent 

contributions  uniformly drawn in the interval . Therefore, for large  the 

distribution of  must converge in probability to a Gaussian distribution of mean 

 (where  is the expected value of each contribution ), and variance 

, where  is the variance of each contribution . Note that this 

property holds for all  values as the correlation between the decisions  introduced by  

is not important when considering individual fitness values. Thus, in order to compare the 

performance of the HGO algorithm on different NK landscapes we need to make these 

landscapes comparable. Hence, we define the rescaled fitness as (Appendix 8.7) 

  (6.5) 



HUMAN GROUP OPTIMIZATION ALGORITHM 

85 

 

The rescaling makes  have always the same variance  not depending on , provided  

sufficiently large. 

Fig. 6.1 reports the HGO outcomes in terms of the time-evolution (  is the time iterator) of 

the fitness values  and consensus . Calculations have been carried out for 

, . The number of agents is . Different levels of knowledge 

ranging from  have been considered.  

The initial parameters , i.e. the level of confidence of the agents about their 

perceived fitness at the beginning of the simulation process (correspondent the inverse 

initial temperature of the Simulated Annealing, see Appendix 8.5), are ,  and . 

They are computed assuming an initial acceptance probability of , respectively to the 

three NK landscape of increasing complexity. 

We observe that independently of the complexity level , the increase of fitness  is 

always accompanied by a simultaneous increase of the consensus . This confirms that, 

as required by the developed methodology, during the optimization process, the critical 

transition to the collective intelligence state of the system always occurs.  

We note that the complexity parameter  influences the performances of the optimization 

method. In fact, increasing , i.e. increasing the complexity of the landscape, only slightly 

reduces the performance of the optimization algorithm (see also Fig. 6.3). In particular, for 

, and , values of  lead respectively to final fitness values 

. In terms of distance from the average fitness , these values 

correspond to  respectively, which are about five times the 

standard deviation of the fitness landscape.  

Results show that improving the knowledge of the members, i.e. increasing p, enhances 

the performance of the optimization process. A higher steady-state fitness , and a faster 

convergence toward the steady state are observed. Note also, that increasing p above  

reduces the fluctuations of , because of the higher agreement achieved among the 

members at higher level of knowledge.  
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Fig. 6.1, The time-evolution of the average group fitness  and statistically averaged consensus 

, for , , , (a, b) , (c, d) , (e, f) . 

Fig. 6.2 reports the time evolution  and consensus χ(t) for the case , , 

and . In this case , assuming the same initial acceptance probability of , is . 

 
Fig. 6.2, The time-evolution of the average group fitness  and statistically averaged consensus 

, for , , , . 



HUMAN GROUP OPTIMIZATION ALGORITHM 

87 

 

The level of knowledge  of the agents, instead, may significantly affect the performance 

of the optimization algorithm. Fig. 6.3, reports the steady-state values of the efficacy  

[Fig. 6.3 (a)], and consensus  [Fig. 6.3 (b)], as a function of the level of knowledge , 

for , , and .  

As already observed, we note that increasing the fitness landscape complexity causes an 

almost negligible efficacy deterioration in all the range of .  

Concerning, the effect of  on the HGO performance at given , the diagrams in Fig. 6.3 

(a), shows that the fitness values increase with  but at a different rate. Indeed, there is a 

region of knowledge values  where the  increase occurs at the highest rate. Above 

this interval the performance negligibly changes, being very good for , which seems 

to be a threshold value that must be exceeded to guarantee a high degree of consensus  

[Fig. 6.3 (b)] among the agents and, in turn, high fitness values [Fig. 6.3 (a)]. As noticed 

for the DMM [Fig. 4.5], this indicates that the knowledge of the agents is subjected to a 

saturation effect: a moderate level of knowledge is already enough to guarantee very good 

performance of the optimization process, while higher knowledge levels being only needed 

to accelerate the convergence of the optimization process.  

Also, the trend of the final level of consensus [Fig. 6.3 (b)] results negligibly influenced by 

. For vanishing values of  the consensus  takes high values, as each agent’s choice is 

driven only by consensus seeking. Increasing p initially causes a decrease of consensus, as 

the self-interest of each member leads to a certain level of disagreement. However, a further 

increment of p makes the members’ knowledge overlap so that the self-interest of each 

member almost points in the same direction, resulting in a consensus increase. 

Fig. 6.3, The stationary values of the average group fitness  and statistically averaged consensus 

as a function of . Results are presented for ,  and . 

Figure 6.4 shows  and  as a function of  for different group sizes  for 

 and . The same interaction increase parameter  in eq. (6.3) is used for the 

team sizes considered. The trend of fitness values with varying  closely follows the ones 
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already mentioned, with a region of low performance at low  and a region of good 

performance at high . For all the group sizes, a rapid transition from low fitness to high 

fitness values is observed, suggesting the presence of a critical threshold of the control 

parameter  which triggers the transition from low to high performance of the HGO 

algorithm. 

It is worth noting that the HGO performances [Fig. 6.4 (a)] of the smallest group, , 

result better of the ones of bigger groups, , especially for very low and high 

levels of agent’s knowledge, and with computational times thousands of times lower [Fig. 

6.5]. Nevertheless, the author expects an optimal group size, in terms of performance, can 

be found for any given optimization problem. 

Fig. 6.4, The stationary values of the average group fitness  and statistically averaged consensus 

as a function of . Results are presented for ,  and . 

 
Fig. 6.5, The average time computation  (seconds) as a function of , for . Results are 

showed for , . 
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6.4 Comparison with other optimization algorithms 

    Fig. 6.6 compares the HGO with the MASA, the latter, as before already mentioned, 

characterized by the absence of social interactions among the agents. Results are shown for 

,  and  , , with  ranging from  to . For both the 

algorithms, a group size of  is adopted, with the same values of  previously 

mentioned. 

In all simulations, each stochastic process is simulated by generating  different 

realizations and the ensemble average of the results is calculated. The simulation for HGO 

is stopped at steady-state, i.e., when changes in the time-averages of consensus and payoff 

over consecutive time intervals of a given length is sufficiently small. Correspondingly, for 

MASA, simulations are stopped when the perceived payoff of each agent becomes invariant 

over successive time intervals. 

In all cases, the HGO algorithm outperforms MASA, especially in the case of limited 

knowledge of the agents. In these situations, the social interaction among the agents pushes 

them, who do not have knowledge about a certain decision, to make good choice following 

the decisions of the agents who instead know the influence of the decision on the fitness 

values, thus making the entire group perform much better compared to the case of non-

socially interacting members. We can state that the considerable gap between the red and 

blue curves in due to the swarm intelligence development in the HGO, absent in MASA. 

A comparison of the computational time required by HGO and MASA is reported in Fig. 

6.6 (b, d, f, h). It is worth noting that an opposite trend of the curves is shown for the 

analyzed algorithms. At low knowledge levels, each agent has a limited perception of the 

real fitness landscape; in these conditions, while MASA agents quickly find inaccurate 

solutions, HGO agents, trying to reach consensus, share knowledge and information, 

leading the group to a wiser and clever final set of decisions. Increasing the parameter , 

the convergence towards a shared solution in HGO is speeded up, while in MASA each 

agent, perceiving a bigger search space, requires a longer time for the exploration. 

At the intersection of the red and blue curves in Fig. 6.6 (b, d, f, h) HGO and MASA require, 

on average, the same computational time , but evidently, the HGO performances result 

constantly better of the MASA ones [Fig. 6.6 (a, c, e, g)]. Just in complete knowledge 

, the performance of the two algorithms are comparable, and MASA lightly 

outperforms HGO, requiring, on the other hand, a longer exploration time. 
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Fig. 6.6, A comparison between HGO and MASA, in terms of steady-state efficacy  and 

computational time required , as a function of the knowledge level , for , , and 

, . 

In conclusion, we test the efficacy of HGO with those of existing optimization algorithms, 

particularly suited for solving combinatorial discrete optimization problems, i.e. Simulated 

Annealing (SA) (see Appendix 8.5) and Genetic Algorithm (GA). For the former, the same 
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initial temperature values , imposed to HGO and MASA, have been used. About GA, 

we used the Global Optimization Toolbox of MATLAB© R2015b with  agents, instead 

of the only , used for HGO and MASA.  

Table 6.1 shows a comparison, in the case of complete knowledge , of the four 

optimization algorithms performance, expressed like commonly happen in optimization, in 

terms of the averaged best fitness values , i.e. averaging for each simulation the best 

fitness value found, not necessarily the one at steady-state. The performance found by HGO 

and MASA are very closed, and always considerably better of the ones of SA e GA.   

p=1 HGO MASA SA GA 

N=27  K= 11 1.993 2.042 1.694 1.565 

N=27  K= 17 1.914 1.947 1.679 1.456 

N=27  K= 23 1.876 2.017 1.578 1.381 

N=100  K= 15 3.005 3.030 1.690 2.420 

Tab. 6.1, The comparison of the averaged best fitness values , found by HGO, MASA, SA and GA, 

for the cases , , and , . 

Moreover, Fig. 6.7 shows the distribution of the best values found by HGO and MASA for 

the cases of , and  . They appear to be very narrow 

around their mean values, compared to SA and GA ones. This is an optimal feature of these 

algorithms, because it ensures, in some way, that we can trust in the accuracy of each single 

simulation process, without the needed to run a lot of simulations.     

  

Fig. 6.7, The distribution of the best fitness values, found by HGO, MASA, SA and GA. Results are 

showed for ,  and , . 

6.5 Conclusions 

    In this chapter, the author proposed a novel swarm-based optimization algorithm 

mimicking the collective decision-making behavior of human groups. This algorithm, 

which we termed Human Group Optimization (HGO), describes the decision process of the 

agents in terms of a time-continuous Markov chain, where the transition rates are defined 

so as to capture the effect of the self-interest, which pushes each single agent to increase 
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the perceived fitness, and of social interactions, which stimulate member to seek consensus 

with the other members of the group. The Markov chain is, then, characterized by a couple 

of parameters that, likewise the Simulated Annealing, are subjected to a specific cooling 

schedule that in the long-time limit makes the system converge in probability to the optimal 

value. The choice of the parameters is made to guarantee the transition to a consensus state 

at which the group of agents shows a very high degree of collective intelligence. While 

being in this state, the agents explore the landscape by sharing information and knowledge 

through social interactions, so as to achieve very good solutions even in the case of a limited 

knowledge. 

    To test the proposed HGO algorithm, we considered the hard-NP problem of finding the 

optimum on NK fitness landscape and compared the methodology with other well 

established algorithms as the Simulated Annealing, a multi-agent version of it and Genetic 

Algorithm. In all cases, the HGO has been shown to significantly outperform the other two 

algorithms, especially under limited knowledge conditions. 

Summarizing, the algorithm presents several advantages that make it very suitable to solve 

complex operation management problems. It is flexible because it can be applied to almost 

any combinatorial problem by identifying the number of decisions the agents should make. 

However, its most attractive feature relies on its ability to identify very good solutions, even 

in presence of partial knowledge of the agents. For this reason, it appears very promising 

for applications in distributed decision-making contexts such as supply chains. 

Furthermore, while the vast majority of swarm intelligent algorithms, mimicking the 

behavior of social groups like insects and animals, are based on the mechanism of the 

stigmergy, our algorithm introduces a mechanism based on the direct communication 

among individuals, which is a more powerful and effective way to achieve coordination. 

Under this perspective, the proposed code is novel and unique within the class of swarm 

intelligent optimization codes.  

The algorithm could be also fine-tuned to solve specific operations management problems 

characterized by distributed decision making and information asymmetry, such as multi-

stage production scheduling, location routing problem, supply chain inventory problem, just 

to name a few. 

Of course, this first version of the algorithm could be further improved in future research 

by identifying better cooling schedules. Additional numerical tests and theoretical 

investigation are however needed to quantify pros and cons. 



 

7 Conclusions 

“Try to learn something about everything  

and everything about something.”  

Thomas Henry Huxley 

The purpose of this dissertation is to study the emergence of the collective intelligence of 

human groups, introducing a new decision-making model (DMM), initially proposed by 

Carbone and Giannoccaro (Carbone & Giannoccaro, 2015) for solving complex 

combinatorial problems. Contrarily to other studies proposed in the literature (Bordogna & 

Albano, 2007), (Turalaska et al., 2009), (Turalaska, West & Grigolini, 2009) based on the 

mechanism of imitation, we recognized that consensus seeking apart, the rational evaluation 

characterizes human beings, driving humans to compare alternative strategies in terms of 

costs and benefits and efficiently solve a problem.  

 The work begins with chapter 2, in which the notion of swarm intelligence in natural 

systems is introduced, reviewing the mechanisms behind these fascinating behaviors and 

providing the state of the art in the developing field of swarm robotics.  

Following, chapter 3 introduces the concept of optimization problems, revising the most 

famous biologically inspired optimization algorithms and highlighting their main versions, 

advantages and drawbacks.  

In chapter 4, the DMM is presented, widely analyzing its features and potentialities. The 

DMM captures the main drivers of the humans’ behaviors in groups, i.e., self-interest and 

consensus seeking. Agent’s choices are made by optimizing the perceived fitness value, 

which is an estimation of the real one, based on the level of agent’s knowledge. 

Simultaneously, social influence pushes the individual to modify the choice he/she made, 

for the natural tendency of humans to seek consensus with people they interact with (Di 

Maggio & Powell, 1983). We found that a moderate strength of social interactions allows 

for knowledge transfer among the members, leading to a higher knowledge level of the group 

as a whole. This mechanism, coupled with the ability to explore the fitness landscape, 

strongly improves the performance of the decision-making process. We also identified that 

the threshold value of the social interaction strength, at which the entire group is 

characterized by a higher degree of collective intelligence, is just the critical threshold at 
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which the flow of information from the fitness landscape to the group of agents is 

maximized, thus improving the abilities of the group to explore the fitness landscape 

searching for the optimal solution.  

In Chapter 5 the DMM is employed to simulate how a team of individuals, in charge to 

design a new product, converge towards a shared solution of the design process by 

interacting with each other. We supposed the interactions among individuals take place for 

hierarchical or social reasons, investigating respectively the influence of the team 

hierarchical structure and social network topology on the team performances, and providing 

indications about how to effectively design a team. It is worth noting that a similar 

formulation can be easily adapted to any real social decision-making problem. 

In chapter 6 a new optimization algorithm, belonging to the class of swarm intelligence 

optimization methods, is introduced. The algorithm, referred to as Human Group 

Optimization (HGO), is developed within the previously mentioned DMM (Carbone & 

Giannoccaro, 2015) and emulates the collective decision-making process of human groups. 

A continuous-time Markov process is proposed to describe the behavior of a population of 

socially interacting agents, modeling how humans in a group modify their opinions driven 

by self-interest and consensus seeking. As for collection of spins, the dynamics of such a 

system is characterized by a phase transition from low to high values of the consensus 

(magnetization), associated with the emergence of a collective superior intelligence of the 

population. While this state being active, a cooling schedule is applied to make agents closer 

and closer to the optimal solution, while performing their random walk on the fitness 

landscape. To test the ability of the HGO algorithm, its performance were compared with 

those of the Simulated Annealing (SA), and Genetic Algorithm (GA) in solving NP-

complete problems, consisting in finding the optimum on a fitness landscape generated 

within the Kauffman NK model of complexity (Kauffman & Levin, 1987), (Kauffman & 

Weinberger, 1989), (Weinberger & others, 1996). HGO always outperforms other 

algorithms, being able to identify very good solutions, even in presence of partial knowledge 

of the agents. This attractive feature, make it particularly suited for applications in distributed 

decision-making contexts such as supply chains. It is worth noting the proposed algorithm 

results flexible because it can be applied to almost any combinatorial problem by identifying 

the number of decisions the agents should make. Furthermore, differently from the majority 

of swarm intelligent algorithms, mimicking the mechanism of the stigmergy characterizing 

the behavior of social groups like insects and animals, HGO introduces a mechanism based 
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on the direct communication among individuals, which is a more powerful and effective way 

to achieve coordination. Under this perspective, the proposed code is novel and unique 

within the class of swarm intelligent optimization codes.  
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8 Appendix 

“If you can’t explain it simply 

you don’t understand it well enough.” 

Albert Einstein 

8.1 The NK fitness landscape  

The NK model is a mathematical model conceived by Stuart Kauffman (Kauffman & 

Levin, 1987), (Kauffman & Weinberger, 1989) to generate tunable rugged fitness 

landscapes. "Tunable ruggedness" captures the intuition that both the overall size of the 

landscape and the number of its local "hills and valleys" can be adjusted changing its two 

parameters, N and K, defined in the following. 

Before getting into the detail explanation of the mathematical formulation of the method, 

the author would like to emphasize the concept of the interdependency of variables in a 

combinatorial optimization problem and how it effects its difficult.  

If variables are independent of  each other, optimization is a relatively simple case of figuring 

out which way to adjust each one of them. However, in most real problems, variables are 

interdependent, and adjusting one might make another one less effective. Language is an 

example of this: the meaning of a word depends on its context and the interrelatedness of 

them is a fundamental issue to well identify their meaning.  

Kauffman had the intuition that two factors affect the complexity of a landscape. These 

factors are , the size of a problem, and  the amount of interconnectedness of the elements 

that make it up. For a better understanding let’s consider some simple examples. Consider a 

network of five binary nodes, with no connections between them [Fig. 8.1 (a)]. 

 

Fig. 8.1, NK networks with  and respectively, (a) , (b) , (c) . 



APPENDIX 

 

98 

 

In such a trivial network, each node has a preferred value, i.e. it is “better” for it to take on 

the value of 1 or of -1. In Kauffman’s research, a table of fitness values is determined by 

random numbers. For instance, if node 1 has a state value of 1, its fitness is 0.123, and if it 

is -1, its fitness is 0.987. We want to maximize fitness, so it is better for this node to have a 

value of -1. A fitness table for this very simple graph is shown in Table 8.1.  

Node 1 2 3 4 5 

Value if -1 0.987 0.333 0.864 0.001 0.789 

Value if 1 0.123 0.777 0.923 0.004 0.321 

Table 8.1, Example of fitness table for simple NK network where  and . 

Since these nodes are binary, we can write the state of the network as a bit-string; for 

instance,  means that the first node has a state value of 1, the second of -1, 

the third of 1, the fourth of -1, and the fifth of 1. Looking at Table 8.1, we note that the best 

possible state of the network is . This pattern of node states results in the 

highest fitness at each site in the graph and thus produces the highest sum over the entire 

graph.  

Observe that we are analyzing a very simple case, because while there are five nodes 

, they don’t interact; i.e. none has any effect on the other. Such a system has , where 

 stands for the average number of inputs that each node receives from other nodes. 

Obviously, with  it is extremely easy to find the global optimum of the network. We 

can simply pick a site at random and flip its sign from -1 to 1 or vice versa; if the network’s 

total fitness increases, we leave it in the new state, otherwise we return it to its original state 

(this is called a Greedy algorithm). We only need to perform N operations; once we have 

found the best state for each node.  

If we increase  to  [Fig. 8.1 (b)], the fitness of a node depends on its own state and the 

state of the node at the sending end of an arrow pointing to it. In this connected situation, we 

have to conduct more than  operations to find the optimal pattern. It is possible in fact, that 

reversing the state of a node will increase its performance but decrease the performance of 

the node it is connected to, or the opposite, its performance will decrease while the other’s 

increases. Further, while we might find a combination that optimizes the pair, the state of 

the receiving node affects the node it is connected to, too, and it is likely that the state of that 

node is best when this node is in the opposite state, and so on. 

When , the fitness of each node depends on its own state (-1 or 1) and the states of 

two other nodes whose arrows point to it [Fig. 8.1 (c)]. The size of the lookup table increases 

exponentially as K increases; its size is . Reversing the state of a node directly affects 
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the fitness of two other nodes, perhaps changing their optimal state, and their states affect 

two others, and so on.  can be any number up to , at which point every node is 

connected to every other node in the whole system. 

It is simple to understand why Kauffman has theorized that two parameters,  and , can 

completely describe the complexity of any system.  

First, as , the dimensionality of the system, increases, the number of possible states of the 

system increases exponentially: remember that there are  arrangements of  binary 

elements. This increase is known as a combinatorial explosion, and even if it seems obvious, 

this is a significant factor in determining how hard it will be to find an optimal configuration 

of elements. Each new binary element that is added doubles the patterns of node activations 

and rapidly becomes impossible to test all possible combinations. 

The second factor, , is also known as epistasis. This term has been borrowed from genetics, 

where it is often seen that the effect of a gene at one site on the chromosome depends on the 

states of genes at other sites. When , there is only one peak, and as we saw, that peak 

is found when each node takes on its better value. Kauffman has shown instead that when  

becomes higher relative to , landscapes become irregular and eventually random. In these 

conditions, the highest peaks are poorer, due to conflicting constraints, and the paths to peaks 

on the landscape are shorter.  

In 1991, Weinberger published a detailed analysis (Weinberger, 1996) of the case in 

which  and the fitness contributions are chosen randomly. His analytical 

estimate of the number of local optima was later shown to be flawed. However, numerical 

experiments included in Weinberger's analysis support his analytical result that the expected 

fitness of a string is normally distributed with a mean of approximately  and 

a variance of approximately . 

Following a three-dimensional representation of NK landscapes of increasing complexity. 

   

Fig 8.2, NK landscapes with  and respectively, (a) , (b) , (c) . 
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Now let’s see how, given a binary -dimensional decision vector , i.e. 

, , we can calculate the associated payoff  following the NK 

procedure. The fitness value  is defined as the weighted sum of  stochastic 

contributions , each decision leads to total fitness depending on the 

value of the decision  itself and the values of other  decisions , . The 

integer index  is the number of interacting decision variables, and 

tunes the complexity of the problem, that increases with . For , in computational 

complexity theory, finding the optimum of the fitness function  is classified as an NP-

complete decision problem (Weinberger, 1996). 

All the information required to generate an NK Landscape can be stored in two matrixes: 

o a positions matrix, , with dimensions , containing for each decision 

variable (row), the  numbers of the interacting decisions variables (columns); 

o a payoff contributions matrix, , with dimensions , containing for each 

decision variable (column),  random values (rows), drawn from a  uniform 

distribution. 

For sake of simplicity let’s transform  in a binary string containing only zeros and ones, : 

  (8.1) 

For each decision :  

o Consider the jth row of , , containing the  numbers of the interacting 

decisions variables with . 

o Select from  the binary substring , and choice the 

stochastic contribution associated with the decision j from the payoff contributions 

matrix , as: 

  (8.2) 

The fitness function, associated with the decision vector , is finally defined: 

  (8.3) 

For a better understanding of the previously steps, let’s consider the simple case of  

and . Following an example of position and payoff contributions matrixes.  
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 ;   

Suppose we want to calculate the payoff associated to the decision vector , 

so that . Table 8.2 contains for each decision variable the correspondent array 

 and the associated stochastic contribution .  

j   

1   

2   

3   

4   

Table 8.2, Stochastic contribution associated at each decision  for the decision vector in consideration. 

Applying eq. (8.3) it is simple to compute :  

   

The reader can also check the fitness values associated with each decision vector of the small 

decision space considered. Their values are reported in Table 8.3. 

      

 0.0489 0.8283 0.3831 0.7455 0.5014 

 0.0489 0.204 0.8969 0.8413 0.4978 

 0.4408 0.8283 0.5645 0.7455 0.6448 

 0.4408 0.204 0.9893 0.8413 0.6188 

 0.8414 0.8546 0.3831 0.2037 0.5707 

 0.8414 0.5863 0.8969 0.7407 0.7663 

 0.7102 0.8546 0.5645 0.2037 0.5832 

 0.7102 0.5863 0.9893 0.7407 0.7566 

 0.834 0.289 0.3806 0.7653 0.5672 

 0.834 0.5458 0.7955 0.1315 0.5767 

 0.4211 0.289 0.9789 0.7653 0.6138 

 0.4211 0.5458 0.4764 0.1315 0.3937 

 0.8041 0.1456 0.3806 0.2011 0.3828 

 0.8041 0.1899 0.7955 0.0143 0.4509 

 0.5036 0.1456 0.9789 0.2011 0.4573 

 0.0489 0.8283 0.3831 0.7455 0.2960 

Table 8.3, Decision vectors, stochastic contributions and fitness values, associated to the ,  

Landscape considered as example. 
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8.2 The Glauber dynamics of Ising model on general graphs 

The statistical study of systems of interacting particles is affected by many problems, largely 

mathematical in nature. Theorists devoted a great effort to devising and studying the simplest 

sorts of model systems which show any resemblance to those occurring in nature. One of the 

most successful models was introduced by Ernst Ising (Ising, 1925) in an attempt to explain 

the ferromagnetic phase transition and completely solved for the first time by Onsager 

(Onsager, 1944) for the two-dimensional case. 

In the Ising model, a general graph is populated by  spins that may take one of two values: 

. The condition of the system can be defined by the state vector .  

Defined the adjacency matrix , the energy of the system can be expressed as: 

  (8.4) 

Observe that  (with ). In equation (8.4) the term 1/2 avoids that each 

couple of spins i and j be double counted, and  is the mean degree of the network. 

Pairs of nearest neighbor spins experience a ferromagnetic interaction that favors their 

alignment. Every parallel pair of neighboring spins contributes  to the energy and 

every antiparallel pair contributes . When the coupling constant is positive, the 

interaction favors ferromagnetic order. The main feature of the Ising model is that 

ferromagnetism appears spontaneously in the absence of any driving field when the 

temperature  is less than a critical temperature  and the spatial dimension . Above 

, the spatial arrangement of spins is spatially disordered, with equal numbers of spins in 

the states +1 and -1. Consequently, the magnetization, , is zero and spatial 

correlations between spins decay exponentially with their separation. Below , the 

magnetization is non-zero and distant spins are strongly correlated.  

All thermodynamic equilibrium properties of the Ising model can be obtained from the 

partition function , where the sum is over all spin configurations of 

the system, with  and  is the Boltzmann constant.  

Contrarily, the non-equilibrium properties depend on the nature of the spin dynamics. There 

is considerable freedom in formulating these dynamics that is dictated by physical 

considerations. For example, the spins may change one at a time or in correlated blocks. 

More fundamentally, the dynamics may or may not conserve the magnetization. This lack 



APPENDIX 

103 

 

of uniqueness of dynamical rules is the reason why there do not exist universal principles 

that prescribe how to solve a non-equilibrium spin system. 

In 1963 Glauber (Glauber, 1963) proposed a non-conservative single-spin-flip dynamic, in 

which spins are selected one at a time in random order and each one changes at a rate that 

depends on the change in the energy of the system as a result of this update. Because only 

single spins can change sign in an update, , where  is the spin value at site , the 

magnetization is generally not conserved. 

Three types of transitions can arise when single spin flips: energy raising, energy lowering, 

and energy neutral transitions [Fig. 8.3]. Energy raising events occur when a spin is aligned 

with a majority of its neighbors and vice versa for energy lower events. Energy conserving 

events occur when the net magnetization of the neighbors is zero.  

 

Fig. 8.3, (a) Energy lowering, (b) energy raising, and (c) energy conserving spin-flip events on the square 

lattice. 

The basic principle to fix the rates of the various types of events is the detailed balance 

condition, mathematically expressed by: 

  (8.5) 

Here  denotes the state of all the spins in the system, 

 denotes the state derived from  in which the spin  flipped to , 

and  represents the transition rate from  to .  

In steady state conditions the stationary probability distribution of the states, , is given 

by the Boltzmann distribution: 

  (8.6) 

The meaning of the detailed balance condition is simple. In the abstract space of all  

possible spin states of a system of  spins, Glauber dynamics connects states which differ 

by the reversal of a single spin. When detailed balance holds, the probability currents from 

state  to  and from  to  are equal so there is no net probability current across any link 

in this state space.  

Now observe that: 
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  (8.7) 

Substituting equations (8.6) and (8.7) in equation (8.5): 

  
 

 

   

Recalling that , and that  and  are 

respectively, even  and odd  functions, we 

get: 

   

Observe that , so that 

   

and we finally obtain: 

  (8.8) 

Therefore, a possible choice for the transition rates for the Ising-Glauber dynamics on 

general graph is: 

  (8.9) 

where  is an arbitrary constant. In our model, we have chosen  This transition rate 

ensures that any initial spin state will eventually relax to the equilibrium thermodynamic 

equilibrium state for any non-zero temperature.  
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8.3 Detailed balance condition 

In this brief paragraph, we show that the transition rate proposed in equation (4.6) fulfills the 

detailed balance condition of Markov chains, which requires the existence of a stationary 

probability distribution  such that 

  (8.10) 

Using equation (4.6) the above condition equation (8.10) writes 

  (8.11) 

and recalling equations (8.5), (8.6) and (8.9) yields 

  (8.12) 

This allows defining the stationary probability distribution 

  (8.13) 

which satisfies the detailed balance condition equation (8.10). 
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8.4 The exponential distribution of events and the Gillespie Algorithm  

In chapter 4 we introduced the decision-making model (DMM), highlighting that the 

process we deal with is a homogenous continues-time Markov chain. This means that the 

evolution of the system depends only on its current state and not on its previous history; 

similarly, the transition rates depend only on the actual state and not explicitly by time. 

Let be  the state vector of the system, containing the opinion of the  agents on the  

decisions, at time .  can evolve in  different state vectors, , each one equal 

to , but with the lth opinion changed from  to . Let us define the probability  that 

one of the possible events  occurs in the time interval , where  is an 

arbitrary waiting time, starting from the observation time . 

For the memoryless property of Markov chains the observation time  does not affect the 

probability that an event occurs, which only depends on the waiting time , such that we can 

always reset  at each new starting observation. Also, we can realistically assume that 

the probability that each one of the possible events, i.e. each one of the possible opinion 

changes, occurs in the time interval  is proportional to the length of that time 

interval , through a constant transition rate . 

  (8.14) 

The probability  that the opinion change  occurs in the time interval  and 

not before, is the joint probability that  does not occur up to time , , and that it 

occurs in the time interval , . Due to the independence of this events, the joint 

probability is equal to the product of the marginals. 

  (8.15) 

Rearranging eq. (8.15) we get a first order constant coefficients linear differential equation. 

  (8.16) 

Solving the latter and imposing the initial condition , we find an exponential 

distribution of the time events: 

  (8.17) 

and its associated probability density function: 

  (8.18) 

Observe that the expected value of an exponential random variable is . 

The time evolution of the probability  obeys the following master equation: 
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  (8.19) 

where ,  and the transition rate 

 is the probability per unit time that the opinion  flips to  while the others remain 

temporarily fixed. To calculate the stochastic time evolution of the system, it is possible to 

follow two different approaches. The first one is the integration of the master equation (8.19), 

a procedure that requires knowing  from the beginning of the process and that, 

although both exact and elegant, results usually not very useful and computational acceptable 

for making practical calculation, considering that the size of the system scales exponentially 

 with the total number of opinions . The second approach consists in using 

of stochastic simulation algorithms, avoiding to deal with the master equation directly. One 

of most famous stochastic simulation algorithm was proposed by Gillespie in 1976 

(Gillespie, 1976), (Gillespie D. T., 1977) to simulate the time evolution of the stochastic 

formulation of chemical kinetics, and currently, it is widely employed to simulate continues 

time Markov Chains models. Two mathematically equivalent procedures were originally 

proposed by him, the “Direct method” and the “First Reaction method”. Both procedures are 

exact and rigorously based on chemical master equations; however, the direct method is the 

one typically implemented due to its efficiency and the one we use and we are going to 

illustrate in this paragraph. 

A state vector , describe the opinions of the  agents 

regarding the  decisions at a specific time  (remember we can always reset the 

observation time  to 0, due to the memoryless property of Markov chains).  

To move the system forward in time we need to answer two questions: 

1. When will the next opinion-change occur?  

2. Which agent and which his/her opinion will change? 

1° STEP. The actual state vector  at time  can evolve in  different state 

vectors, , each one equal to , but with the lth opinion changed from  to , i.e. 

, , … , , and we 

are interested in calculating the time delay , starting from , after that  will evolve in one 

of the , whatever it will be.  

Since all the possible states are independent, the probability  that one of them will occur 

in the time interval  is the sum of the probabilities that each one of them will 

happen in the same time interval and not others before. 
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  (8.20) 

Due to the independence of these events we can expand each : 

 

where is the probability that the event  occur in the time interval , 

while  is the probability that the event  does not occur up to time , 

and so on. Introducing the probability densities  in , we get: 

 

 

 

 

Defining , we discover that the probability  that one of the possible opinion 

changes occur in the time interval  is still an exponential with a transition rate, , 

equals to the sum of all the rates . 

  (8.21) 

At this point, we can calculate the time  to the next opinion flip drawing from an exponential 

distribution with mean . For this purpose, it is helpful to spend some words about the 

problem of drawing numbers from an assigned probability distribution. It is known in fact 

that calculators are just able to draw numbers from a  uniform distribution. In the case 

of our interest, we want to find a relation , such that drawing  from an exponential 

distribution,  results to be  uniform distributed. Supposing  monotone and 

bijective, the following probability equality should be respected: 

  (8.22) 

Let’s call for sake of simplicity . As explained, , where  is a 

constant, while  . Substituting in equation (8.22)  

 

and integrating the previous equation, we get:  
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Imposing the normalization condition  and the stationary solution 

, it is simple to calculate the values of the two constants,  and , getting 

finally  whence . If  is uniformly distributed in  

also  will be, so that choosing a real random number  from a uniform 

distribution and set ,  will result exponentially distributed. 

2° STEP. In the second step of the Gillespie algorithm, we should identify which of the 

possible events  occurs. Let’s call simply  the event “the system goes in one of 

the  possible states , starting from ”; the conditional probability that the generic event 

 occurs, given , is: 

  (8.23) 

Considering a container containing  groups of spheres, each one with a number of spheres 

proportional to the ratio , we can just draw a sphere and consider the correspondent 

event as happened. This operation is equivalent to normalize the transition rates as 

, to construct the cumulative distribution  from the probability mass 

function , and identify the th opinion  which flips from  to  by drawing from a 

discrete distribution with probability mass function , i.e. draw a real random number 

 from a uniform distribution and choose  so that . 

In the following we just summarize the main steps of the algorithm: 

1. Choose a random initial state  of the system. 

2. Calculate the transition rates . 

3. Calculate the total rate . 

4. Normalize the transition rates as . 

5. Construct the cumulative distribution  from the probability mass function . 

6. Calculate the time  to the next opinion flip drawing from an exponential distribution 

with mean  , i.e. choose a real random number  from a uniform 

distribution and set . 

7. Identify th opinion  which flips from  to  by drawing from a discrete 

distribution with probability mass function , i.e. draw a real random number 

 from a uniform distribution and choose  so that . 

8. Update the state vector and return to step 2 or quit. 
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8.5 Simulated Annealing and Optimal Initial Temperature 

The Simulating Annealing (SA) algorithm for solving combinatorial optimization 

problems was independently introduced in the early 1980s by Kirkpatrick et al. (Kirkpatrick, 

Gelatt Jr, & Vecchi, 1983) and Černý (Černý, 1985). 

The concept behind the method is inspired by the physical annealing process of solids, that 

consists in increase the temperature of the heat bath to a maximum value, at which the solid 

melts, and decrease carefully it until the particles arrange themselves in the ground state of 

the solid. If the maximum value of the temperature is adequately high and the cooling is 

performed sufficiently slowly, the particles arrange themselves in a highly-structured lattice, 

for which the corresponding energy is minimal, otherwise, the solid will be frozen into a 

meta-stable state. 

In 1953 Metropolis, et al. (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) 

introduced a simple algorithm, based on Monte Carlo techniques (Binder, 1978), for 

simulating the evolution of a solid in a heat bath to thermal equilibrium: given a current state 

 of the solid with energy , a new state  with energy , is generated by applying a 

perturbation mechanism. If the energy difference, , is less than or equal to zero, the 

state  is accepted as the current state, otherwise it is accepted with a probability 

, where  and  are respectively the temperature of the heat bath and the 

Boltzmann constant.  

If the lowering of the temperature in the Metropolis algorithm is done sufficiently slowly 

(a large number of transitions at a given value of the temperature) the solid can reach thermal 

equilibrium at each temperature. Thermal equilibrium is characterized by the Boltzmann 

distribution, which gives the probability of the solid of being in a state  with energy  at 

temperature : 

  (8.24) 

The summation extends over all possible states.  

Returning to SA, the Metropolis algorithm can be used to generate a sequence of solutions 

of a combinatorial optimization problem assuming the equivalence between problem 

solutions and states of the physical system, and between the cost of a solution and the energy 

of a state. Essentially, SA can be viewed as an iteration of Metropolis algorithms, executed 

at decreasing values of a control parameter, which play the same role of the temperature, and 
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that we will call  for analogy. Let’s assume we are dealing with a minimization problem; 

the discussion easily translates to maximization problems. The following pseudo-code 

summarize the main steps of SA for a combinatorial optimization problem: INITIALIZE 

computes a start solution and initial values of the parameters  and  (number of iterations 

at temperature ); GENERATE selects a solution from the neighborhood of the current 

solution; CALCULATE LENGTH and CALCULATE CONTROL compute new values for the 

parameters  and , respectively. 

_________________________________________________________________________ 

procedure SIMULATED ANNEALING; 

begin 

    INITIALIZE ; 

    ; 

    ; 

    repeat 

        for  to  

        begin 

            GENERATE ; 

            if  then  

            else 

            if  then  

         end; 

         ; 

         CALCULATE LENGTH ; 

         CALCULATE CONTROL ; 

until stopcriterion 

end; 

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Fig. 8.4, The Simulated Annealing algorithm in pseudo-code. 
 

A distinctive feature of simulated annealing is that, in addition to accepting improvements 

in cost, it also accepts deteriorations, proportionally to the value of , i.e. large deteriorations 

at large values of  and small ones at small values of , until as  approaches , no 

deteriorations will be accepted at all. This feature means that simulated annealing can escape 

from local minima, in contrast for example to iterative improvement (SA with ). The 

speed of convergence of the algorithm is determined by the choice of the parameters  and 

 with  where  and  denote the values of  and  in iteration  of the 

algorithm. It has been proved (Aarts, Korst, & Michiels, 2014) that under certain mild 

conditions on the choice of the parameters, SA converges asymptotically to globally optimal 

solutions. 
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It is worth nothing that SA can be also modeled by means of Markov chains (Feller, 1950), 

(Isaacson & Madsen, 1976), (Seneta, 1981). For each value of the control parameter , a 

sequence of Markov chains is generated. Each chain consists of a sequence of trials, where 

the outcomes of the trials correspond to solutions of the problem instance.  

Let  be a minimization problem instance,  a neighborhood function, and  a 

stochastic variable denoting the outcome of the kth trial. The transition probability at the kth 

trial for each pair  of outcomes is defined as:  

  (8.25) 

where  denotes the generation probability, i.e. the probability of generating a solution 

 when being at solution , and  denotes the acceptance probability, i.e. the probability 

of accepting solution , once it is generated from solution . The most frequently used choice 

for these probabilities is the following (Aarts & Korst, 1989): 

  (8.26) 

and 

  (8.27) 

where  is the set of neighbors of . The resulting stationary distribution is then given by: 

  (8.28) 

A finite-time implementation of simulated annealing is obtained by generating a sequence 

of homogeneous Markov chains of finite length at descending values of the control 

parameter . For this scope, a set of parameters, defining the so-called cooling schedule, 

must be specified: 

1. an initial value of the control parameter ; 

2. a decrement function  for lowering the value of the control parameter; 

3. a final value of the control parameter specified by a stop criterion; 

4. a finite length  of each homogeneous Markov chain. 

The search for adequate cooling schedules has been the subject of many studies over the past 

years. Reviews are given by (Aarts E. E., 1985) and (Romeo & Sangiovanni-Vincentelli, 

1991). One of the most used cooling schedules was proposed by Kirkpatrick (Kirkpatrick, 



APPENDIX 

113 

 

Gelatt Jr, & Vecchi, 1983) and it is known as geometrical schedule, summarized in the 

following. 

1. Initial value of the control parameter: , where  is the maximal 

difference in cost between any two neighboring solutions. Exact calculation of 

 is quite time consuming in many cases, but one can at least give estimates of 

its value. 

2. Decrement function: , for , where  is a positive constant 

smaller than but close to 1. Typical values lie between 0.8 and 0.99.  

3. Final value of the control parameter: it is fixed at some small value, generally related 

to the smallest possible difference in cost between two neighboring solutions.  

4. Length  of Markov chain: it is fixed by some number that may be related to the 

size of the neighborhoods in the problem instance at hand. 

Some year later, the optimality of a logarithmic cooling schedule has been proved (Hajek, 

1988) and efficient algorithms were developed for computing the initial temperature .  

In the following we illustrate a summary of the algorithm proposed by Ben-Ameur (Ben-

Ameur, 2004), the author also uses in the optimization algorithm HGO, to compute the 

optimal initial temperature. It requires the definition of an initial acceptance probability , 

i.e. the percentage of pejorative accepted transitions at the beginning of the process. A 

commonly used value is . Let  be a strictly positive transition and let  (resp. 

) be the state after (resp. before) the transition. As we assumed that the transition is 

strictly positive, then . Using the generation strategy (8.26), the acceptance 

probability is given by: 

  (8.29) 

Note that  represents the probability to generate a transition  when the 

energy states are distributed in conformance with the stationary distribution (8.28). 

Moreover,  is the probability to accept a positive transition . 

Thus,  is the conditional expectation of the acceptance of positive transitions. We will 

use an estimation  of this acceptance probability, based on a random set  of positive 

transitions.  is defined as follows: 

  (8.30) 



APPENDIX 

 

114 

 

We are looking for a temperature  such that , where  is the desired 

acceptance probability. The simple iterative method proposed by (Ben-Ameur, 2004) consist 

in consider  instead of . First, we randomly generate a set of positive transitions , 

generating some states and a neighbor for each state. The energies  and  

corresponding with the states of the subset  are stored. Then we use the Johnson formula 

(Johnson, Aragon, McGeoch, & Schevon, 1989) for computing an initial temperature : 

  (8.31) 

 may be far from ; to find  we use the recursive formula: 

  (8.32) 

where  is a real number . When  becomes close to  we can stop:  is a good 

approximation of the desired temperature . Fig. 8.5 shows the flow chart of the algorithm 

to find the optimal initial temperature. and  are the relative errors admitted on the values 

of  and , while  is the increment of the number of positive transitions considered until  

 becomes invariant. 
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Fig. 8.5, The Optimal Initial Temperature flow chart. 
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8.6 Notes of Information Theory 

In this paragraph, the author introduces some basic notions of information theory, useful 

for understanding the meaning of the concept of mutual information, introduced in chapter 

4. The basic concept to introduce is the one of self-information, , a measure of the 

information content associated with a single value of a discrete random variable.  

Let us consider the simple case of a random binary variable, e.g. the toll of a coin which 

may take only two values: head, that will be identified by a 0, and cross, identified by 1. To 

identify the state of the system, i.e. to know the whole information about the state of the 

coin, we need to fill a box with the 0 or the 1. We just need to fill one box, i.e. we need one 

bit (bit because the variable is binary) of information. Now assume that we toss the same 

coins two times. In this case four  possible outcomes can be observed (0, 0) or (0, 1) or 

(1, 0) or (1, 1). In this case, we need to fill-in two different boxes i.e. we need  bits. If we 

toss the same coin  times we will need to fit  boxes i.e. we will need to know  bits of 

information. So, we note that the information is additive, although the number of states 

increase as . Moreover, we require that the information is positive. Note that  

  (8.33) 

and, observe that the probability of each given state of the system for  coins is 

  (8.34) 

where  is the probability to get head or cross in a single toll of a single coin. If we 

take the log of the above relation, we have 

  (8.35) 

  (8.36) 

The mean value of provided information per bit is then: 

  (8.37) 

We also rearranging the terms can rephrase  as 

  (8.38) 

i.e.  
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  (8.39) 

Consider that the quantity  can be interpreted as the uncertainty of the state of the  string, 

and in fact we need to measure (or specify)  bit values to complete specify the state of the 

system of  trials. Also, note that when the coins are the same, then  successive tolls of 

the same coins are equivalent to the tolls of  coins. If the coins are fair, we have 

 (where  is the probability of head i.e. of 0 and  the probability of cross i.e. 1), 

and we may think of generalizing the above equation as (we assume very large ) 

  (8.40) 

where  is the number of times you find heads and  is the number of times 

you find cross. Rearranging the terms, we get 

  (8.41) 

  (8.42) 

from which  

  (8.43) 

We will show now that the above definition  holds true also for 

general values of . But first observe that this definition satisfies an interesting property 

(besides the fact that it is positive and extensive): if , i.e.  we get .  

This is what we want to happen as if we know that the probability of head is 0 there is no 

information gain (no surprise) when we experiment during the toll that we get cross: no 

information is provided during the toll. Also, it can be easily shown that the amount of 

information we get during the experiment takes its maximum value just when the coin is fair, 

i.e. when , this is also what we want as we are most surprised by the 

outcome of the toll when the coin is fair and there is no a priory preference for head or cross. 

In order to understand why we can generalize the definition of , eq. (8.40), to the case 

when  consider the  tolls of the same unfair coin and that we know a-priory which 

are the probabilities  (this is a very important point as if we do not know that the coins are 
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fair then our a priori probability would be  and the gain of information after the toll 

would be the same as for fair coins), or equivalently the contemporary toll of  equally 

coins. We assume that  is very large. 

Let us calculate what is the gain of information that we get after the toll, which is the same 

as the amount of uncertainty before the coins are tolled. Since  is very large, because of 

the central limit, we may assume the number of heads is  and therefore the number 

of crosses is . Therefore, this time we are considering strings of  heads and  

cross where the order of the heads and cross is unknown a priori and of course can be 

considered equally distributed. Thus, specify the state of the systems means that we have to 

specify which one out of the total number  of possible ordering of  heads and  

cross we get when tolling the coins, i.e. we can say that the total information gain after the 

measurement (or the amount of uncertainty before the measurement) is 

  (8.44) 

Observe that in general  can be real and not integer. So, the point is to find the total number 

of possible configurations; this is simply given by recalling that  is not just given by the 

number of permutations of a string of  figures which is  as interchanging the order of 

those figures which have taken the same outcome (head of cross) will not modify the order 

of the resulting string of toll outcomes. Therefore  and can be obtained by dividing 

it for the number of permutations  of  heads and dividing once more by the  

permutation of  heads.  

  (8.45) 

Therefore, we get 

  (8.46) 

Now we need to calculate the logarithm of the factorial. To this end we use the Stirling 

approximation for , i.e. 

  (8.47) 

replacing the above formula into the preceding one we get 

  (8.48) 
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recalling that  and that  and  we also get 

 

 

 

So, the average information per coin is 

  (8.49) 

and recalling that  in our case and taking the limit for  we get 

  (8.50) 

which proves our statement. Of course, more generally, if the number of different states the 

single variable can take is larger than , say  different states, then 

  (8.51) 

and the above formula becomes 

  (8.52) 

which is the information associated to one single toll of the given stochastic variable, we can 

also call it the entropy per single toll of the given variable. Observe that  is the average 

information associated to a single toll of the given discrete stochastic variable. 

Now consider to discrete variables  and  and suppose we know the joint 

probability distribution . We also know that 

  (8.53) 

and 

  (8.54) 

Now observe that given the value of  if we do a certain number of tolls of the variable  

we will found the probability distribution  therefore the average information 

associated to  is 

  (8.55) 
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Now we want to calculate the average information we get when we know the distribution of 

 values. We get  

  (8.56) 

which, can be interpreted as the amount of uncertainty that you have on the variable  when 

you know the variable . Observe that this differs from 

  (8.57) 

we expect , so, if we take the difference we have: 

 

 

  (8.58) 

This is what we call the mutual information i.e. the difference between the uncertainty of the 

variable  when you do not know the variable  and the uncertainty on the variable  when 

you know , this means that you have reduced the uncertainty on variable  if you know the 

variable , i.e. you gained some info about . Observe that if the two variables are 

independent the mutual information is zero.  

 (8.59) 
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8.7 The rescaled NK Landscape 

According to the NK model (Kauffman & Levin, 1987), the payoff  associated with a 

decision vector , is calculated as the average of statistically independent contributions , 

uniformly drawn in the interval .  

 (8.60) 

For large  the distribution of  converge in probability to a Gaussian distribution  

 (8.61) 

with mean  (where  is the expected value of each contribution ), and 

variance  

  

 (8.62) 

where  is the variance of each stochastic contribution .  

Note that this property holds true for all  values as the correlation between the decisions  

does not affect individual fitness values.  

Observing eq. (8.62), it is worth noting that the fitness variance  results to be inversely 

proportional to the size of the problem . In order to relate the performance of the HGO 

algorithm between NK landscapes of different sizes , we need to make them comparable, 

rescaling the fitness landscape, i.e. changing the variable  to , such that the new random 

variable  is always Gaussian distributed around the average value , but with a variance 

, independent by . 

 (8.63) 

To find the relation between  and , observe that  

 (8.64) 

from which we have  

 (8.65) 
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As the variables  and , are both Gaussian distributed around the same average value , 

there must be a linear relation between  and . 

 (8.66) 

By replacing eq. (8.69) in eq. (8.68), we get: 

  

 (8.67) 

To be a constant, the right-hand side of the above equation cannot be dependent on , so 

 (8.68) 

Now, remembering that  and , the constant takes value . 

In conclusion, we get the following rescaling relation: 

 (8.69) 
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