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ABSTRACT English 

 
 The occurrence of the Olive Quick Decline Syndrome (OQDS) caused by Xylella 

fastidiosa (Xf) in Apulia region (Italy), with the strain Co.Di.RO (Complesso del Dissec-camento Rapido dell’Olivo) affecting mainly the olive trees, poses a serious threat for olive production in all Mediterranean countries. 
Xf is a regulated pathogen in Europe (EPPO A1 list) because it affects more than 350 plant species worldwide. Infected olive trees may die as a consequence of the multi-plication of the bacterium inside the vascular system which restricts the water flow from the roots to the canopy of the tree. Around 95% of olive cultivation is concentrated in the Mediterranean region and Italy ranks second worldwide. Accordingly, Xf represents the main threat of olive trees worldwide due to the se-vere symptoms induced (mainly leaf scorch, dieback and quick decline of the tree), the long list of sap-feeding insects which may efficiently spread the pathogen, as the Phi-

laenous spumarius in Apulia, and the large number of secondary hosts. 
Xf restricts the cultivation of olive trees and the preservation of the historical heri-tage of olive trees in the Mediterranean region. Currently, no control measures are fully effective in the control of the bacterium and in the management of the olive quick decline; therefore the early detection of infected trees, their immediate eradication and vector con-trol strategies are the only means of avoiding or containing the risk of contamination. These measures could be more effective if the infection is identified at early stages of disease development, in order to mitigate the spread of the pathogen and infections to neighbouring trees. However, visual inspections in the field are time-consuming and ex-pensive. 
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To this aim, remote sensing could be a useful tool to detect water stress induced by Xf infection in olive trees at early stages.  Recently, an increase in research occurred in the application of Geomatic tech-niques, due to a greater availability of Remote and Proximal Sensing (RS, PS) instru-ments which has led to significant progress in the monitoring of complex biological phe-nomena and relative data management for running in, stand-alone, or web-based Geo-graphic Information System (GIS) platforms. In this way it is possible to integrate hetero-geneous spatial data in a single operative environment. Such data can be obtained by means of direct methods or indirect methods. The resulting data can be used for the im-plementation of provisional models to identify a plant adversity in order to rationalize the intervention strategy. The first research of this work, the suitability of photointerpretation techniques to recognize and classify the plants damaged by OQDS in GIS environment was evaluated, for this purpose very high geometrical resolution aerial images were used by processing visible (VIS) and near infrared (NIR) data on a study area in South of Apulia region, which represents the first outbreak area of Xf. The remotely acquired radiometric measurements were aimed at identifying ap-propriate photo-types, morphologically suitable in detecting the alteration of olive trees associated to different levels of OQDS-like symptoms. The use of spatially defined im-ages strengthened by the presence of the near infrared band has greatly facilitated the identification of signs of OQDS starting with key photo types which are well correlated to the expression of the disease. The technique made it possible to identify 20% of the photo interpreted OQDS-trees and infected by Xf. This achievement is the prerequisite to thoroughly examine and improve the methodology through the use of stereoscopic restitution in the GIS environ-ment.  However, a second research was aimed at assessing the potential of hyperspec-tral reflectance data (HR) to identify the infection of Xf in olive at early stages of develop-ment. Sampling was carried out on infected plants belonging to the two main olive varie-ties varieties (cvs. “Cellina di Nardò” and “Leccino”) grown in a commercial grove located in the outbreak area of Xf in south Apulia. Each sample was made of leaves collected 
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from 10 twigs/tree with different levels of infection. The study focused on the: (i) the dis-crimination between infected asymptomatic and non infected leaves; (ii) the selection of the best wavelengths for highlighting this discrimination and (iii) the identification of bio-physiological indicators (vegetation indices) correlated to the OQDS induced by Xf. The discrimination of infected leaves has been made using pre-elaborated data acquired with a field spectroradiometer, in the spectral wavelengths range between 400 and 1830 nm. A heuristic approach to variable selection, used in literature (Lambda-
Lambda R2 model - LLR2, Principal Component Analisys model - PCA and Wilks' 
Lambda) and a combined general purpose detection method, proposed in this research, named interval PCA Internal Clustering Validation, iPCA-ICV have been compared. The unsupervised method proposed, divides the spectrum of reflectance data into a determined number of intervals, calculates the PCA within them (iPCA) and validates the goodness of the groupings obtained (classes) through Cluster Validity index meas-urement. The discriminative ability of selected wavelengths by the two methods was as-sessed by generalized discriminant analysis based on canonical correlation and meas-urement of error type such as leave-one-out cross-validation, through confusion matrices. From both methods it was possible to discriminate leaves infected by Xf and to select specific narrowbands. However, the best discriminative power was obtained from iPCA-ICV for both varieties (error rates of 23.7% and of 22.02% respectively for cv. Cel-lina di Nardò and cv. Leccino), compared to the reference method (error rates equivalent to 42.47% and 22.02% respectively for cv. Cellina di Nardò and cv. Leccino). The two methods have shown differences in number and in the position in the narrowbands selected (each of 10 nm) between the two varieties. In particular, both agree with the VIS regions (close to the blue and the red) and that of Short Wave Infrared (SWIR) as portions of the spectrum increase the discrimination of Leccino, the variety less affected by the infection (23.1%), while, for Cellina, the species more affected (85.7% of positive findings). The iPCA-ICV identifies the absorption bands of water around 1180 and 1400 nm (and many bands of SWIR). The heuristic method identifies two bands of 705 and 805 nm, as determinants in the identification of Xylella. The identification of critical regions of the spectrum, therefore, is the first logical step towards the development of indicators of robust stress based on hyperspectral im-ages. The band selection techniques, also, are extremely useful not only to improve the 
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power of predictive models, but also for the interpretation of the data or design of specific sensors for Pest Disease Detection (PDD).  
key words: Xylella fastidiosa, Hyperspectral proximal sensing, Stress detection, Feature election, Principal Component Analysis, Cluster Validity index.   
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ABSTRACT Italiano   La presenza in Puglia (Italia) del Complesso del Disseccamento Rapido dell’Olivo (CoDiRO) causato da Xylella fastidiosa (Xf), il cui ceppo Co.Di.RO colpisce pre-valentemente gli alberi di olivo, rappresenta una seria minaccia per la produzione olivicola in tutti i Paesi mediterranei. 

Xf è un patogeno regolamentato in Europa come organismo di quarantena (lista EPPO A1) perché colpisce più di 350 specie vegetali in tutto il mondo. La maggior parte degli olivi infetti muore a seguito della moltiplicazione del batterio all’interno del sistema vascolare che limita il flusso dell’acqua dalle radici alla chioma dell’albero. Circa il 95% della coltivazione olivicola è concentrata nella regione mediterranea e l’Italia è il secondo Paese produttore a livello mondiale. Quindi, Xf rappresenta una seria minaccia per l’olivo nel mondo a causa della gravità dei sintomi indotti (soprattutto bruscatura delle foglie, disseccamento dei rami e deperimento rapido dell’albero), della lunga lista di vettori che possono diffondere efficientemente il patogeno, come il Philaenous spumarius in Puglia, e l’elevato numero di ospiti secondari del patogeno. 
Xf rappresenta un limite per la coltivazione dell’olivo e per la tutela del patrimonio storico olivicolo nella regione mediterranea. Ad oggi, non esistono misure efficaci di con-trollo e di lotta diretta al batterio e al CoDiRO; quindi, l’identificazione precoce degli alberi infetti, la loro immediata eradicazione e le strategie di controllo dei vettori sono gli unici mezzi per impedire o limitare il rischio di contaminazione. Tali misure potrebbero essere più efficaci se l’identificazione dell’infezione avvenisse nei primi stadi di sviluppo della ma-lattia, in modo da poter contenere la diffusione del patogeno e la sua trasmissione agli al-beri circostanti. Comunque, i rilievi visivi in campo richiedono tempo e sono costosi. 
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A questo scopo, il telerilevamento potrebbe essere uno strumento utile all’identificazione di stress idrici causati dai primi stadi dell’infezione di Xf negli alberi di o-livo. In tempi recenti si è assistito ad un aumento della ricerca nelle applicazioni delle tecniche Geomatiche, favorito dalla maggiore disponibilità di strumenti di rilevazione da remoto e da vicino, che ha condotto ad un significativo avanzamento della possibilità di monitorare fenomeni biologici complessi e di gestire, in ambiente Geographic Information System (GIS), i relativi dati sia in modalità stand-alone che in rete. In tal modo è possibile integrare, in un unico ambiente operativo, dati spaziali eterogenei derivanti dall'impiego di metodi diretti, come le azioni di monitoraggio, o dall’utilizzo di metodi indiretti, come l'ela-borazione dei dati telerilevati. I dati così prodotti possono essere utilizzati per l'implemen-tazione di modelli previsionali nella difesa delle avversità sul territorio e per potere così adattare la strategia di intervento e razionalizzare la difesa delle colture. La prima ricerca in questo lavoro ha come obiettivo la valutazione dell’idoneità delle tecniche di fotointerpretazione per riconoscere e classificare piante colpite dal Co-DiRO in ambiente GIS. A tal fine sono state utilizzate immagini da aereo ad alta risoluzio-ne geometrica nel visibile e nell'infrarosso vicino relative ad un’area di studio nel sud della Regione Puglia, che rappresenta la prima area focolaio di Xf. Le misure radiometriche rilevate da remoto sono state orientate all'individuazione di appropriati fototipi, morfologicamente in grado di rilevare l’alterazione associata a di-versi livelli di sintomi ascrivibili al CoDiRO. L’uso di immagini spaziali definite, rafforzato dalla presenza della banda nel vicino infrarosso, ha facilitato notevolmente l’identificazione dei segnali di CoDiRO a partire dai fototipi chiave che sono ben correlati all’espressione della malattia. La tecnica ha reso possibile l’identificazione del 20% di alberi fotointerpretati con CoDiRO ed infetti da Xf. Questo risultato rappresenta un buon presupposto per poter e-saminare in modo approfondito e migliorare la metodologia attraverso la restituzione ste-reoscopica in ambiente GIS. La seconda ricerca è stata invece finalizzata all’accertamento del potenziale dei dati di riflettanza iperspettrale (HR) per poter identificare l’infezione di Xf nei primi stadi di sviluppo su olivo. 
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I campionamenti hanno riguardato piante infette delle due principali varietà di oli-vo (cvs “Cellina di Nardò” e “Leccino”) coltivate in un campo commerciale localizzato nell’area focolaio di Xf nel Sud della Puglia. Ogni campione era composto da foglie rac-colte da 10 rametti/albero con diversi livelli di infezione. Lo studio ha avuto come obiettivo la: (i) discriminazione tra foglie infette asintomatiche e foglie non infette; (ii) la selezione delle migliori bande per evidenziare tale discriminazione e il (iii) confrontato tra due meto-di di selezione delle variabili a sostegno dell'analisi delle riflettanze iperspettrali.  La discriminazione delle foglie infette asintomatiche da quelle non infette, utiliz-zando dati pre-elaborati acquisiti con uno spettroradiometro da campo, è stata definita nell’intervallo di lunghezze d’onda 400 - 1830 nm dello spettro. Un approccio euristico di selezione delle variabili, utilizzato in letteratura (Lambda-Lambda R2 model - LLR2, Prin-
cipal Component Analisys model - PCA e Wilks' Lambda) e un combined general purpose detection method, proposto in questa ricerca, denominato interval PCA Internal Clustering Validation (iPCA-ICV) sono stati messi a confronto. Il metodo non supervisionato proposto, divide lo spettro dei dati di riflettanza in un numero determinato di intervalli, calcola la PCA all'interno di essi (iPCA) e convalida la bontà dei raggruppamenti ottenuti (classi) attraverso misure di Cluster Validity index. La capacità discriminante delle lunghezze d'onda selezionate dai due metodi è stata valutata mediante analisi discriminante generalizzata basata sulla correlazione canonica e sulla misura dell'errore di tipo leave-one-out cross-validation, attraverso matrici di confusione. Da entrambi i metodi è stato possibile discriminare foglie infette da Xylella fasti-
diosa e selezionare bande strette specifiche. Tuttavia, il miglior potere discriminante è stato ottenuto da iPCA-ICV per entrambe le varietà (percentuale di errore del 23.7% e del 22.02% rispettivamente per cv. Cellina di Nardò e cv. Leccino), rispetto al metodo di rife-rimento (percentuale di errore del 42.47% e del 22.02% rispettivamente per cv. Cellina di Nardò e cv. Leccino). I due metodi hanno evidenziato differenze nel numero e nella posizione delle bande strette selezionate (ciascuna di 10 nm) tra le due varietà. In particolare, entrambi concordano con le regioni del VIS (vicini al blu e al rosso) e dello Short Wave Infrared (SWIR) come porzioni dello spettro a maggior peso sulla discriminazione della Leccino, varietà meno colpita dall'infezione (23.1%), mentre, per la Cellina, varietà più colpita (85.7% di positività riscontrata), i due metodi risultano discordanti. Il iPCA-ICV individua le 



 24 

bande di assorbimento dell'acqua intorno a 1180, 1400 nm e in molte bande dello SWIR, il metodo euristico individua due bande a 705 e 805 nm, come determinanti nell'individu-azione di Xylella. L'identificazione di regioni critiche dello spettro, dunque, costituisce il primo pas-so logico verso lo sviluppo di indicatori di stress robusti basati su immagini iperspettrali. Le tecniche di selezione delle bande, inoltre, risultano estremamente utili non solo per migliorare il potere dei modelli predittivi, ma anche per l'interpretazione dei dati o il design di sensori specifici Pest Desease Detection (PDD).  
key words: Xylella fastidiosa, telerilevamento prossimale iperspettrale, rilevazione di forme di stress, Feature selection, Analisi delle Componenti Principali, indici per la validità dei raggruppamenti.   
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CHAPTER 1: INTRODUCTION    

1.1 Contest and justification  Agriculture currently faces the great challenge of guaranteeing future food securi-ty to the increasing worldwide population (Fereres et al., 2011). A sustainable rural econ-omy is highly dependant on healthy plants. Unfortunately, plant pests (pathogens and insects), including invasive alien spe-cies, are having unprecedented impacts in yield and quality losses, which could be esti-mated between 20 and 40% of global agricultural productivity (Oerke, 2006). However, impacts can be wide-ranging and include not only direct economic impacts (crop yields, employment, tourism, etc.), but also environmental impacts (loss of habitats and biodiver-sity) and social/anthropological impacts (religious and spiritual values, educational values and cultural diversity and heritage). The phytosanitary threat is significantly enhanced due to the worldwide increase in global trade and the movement of people, which are responsible for human-mediated introductions of invasive pests and diseases over long distance, and to climate changes (increase of temperatures, decrease of rainfall, thus increasing droughts), which favour the establishment of infectious agents in regions where they have not been previously re-ported, or emerge from indigenous vegetation to invade plant species. Control means against most of invasive pests are difficult or may not even exist. Preventive measures based on the early pest surveillance and detection are economically and environmentally more efficient than eliminating phytosanitary outbreaks from which the infestation/infection can fast spread, even by vectors as for some severe pests. 
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Therefore, the early detection of plant diseases in the field (before the onset of disease symptoms) could be a valuable source of information for the application of specif-ic measures to prevent the development and the spread of plant pathogens (Mahlein et al., 2012). Current techniques are not sufficiently advanced to manage large numbers of samples and to early detect all relevant pests; moreover, National Plant Protection Organ-izations (NPPO) and phytosanitary stakeholders need an efficient support for the decision they have to take at territorial and farm scales (Steiner et al., 2008).  Furthermore, diseases as well as abiotic stress conditions are commonly hetero-geneous in time and space in a production field. Thus, site-specific disease management has to be assessed by detailed recording of spatial distribution and disease development, requiring large-scale and geo-referenced monitoring of diseases in the crop for precise timing and application of control measures (Nutter et al., 2010). Consequently, precise and time saving methods are essential for early disease surveillance and detection. Therefore, in the last decade remote sensing methods and modelling supported by high statistic approaches have made progress in order to provide useful tools to detect disease symptoms at early stages of development and spatial heterogeneities due to pa-thogens at canopy scale (Bock et al., 2010, Nutter et al., 2010, Mahlein et al., 2012). The early detection of within-field differences in crop status or growth conditions caused by diseases would enable the farmer to streamline input factors thereby optimiz-ing his profit margin, while simultaneously improving the overall stability of the agro-system.   
1.2. The Olive tree  Olive (Oleaeuropea L.) is the most cultivated non-tropical fruit tree in the world, with 97% of world production located in the Mediterranean Basin (Figure 1/1) and the re-maining 3% spread among other geographical areas (López-Escudero and Mercado-Blanco, 2011). Olive cultivation occupies 10 million hectares, which include an estimated 865 million trees (IOC, 2013). Olive is therefore the traditional and characteristic tree in the Mediterranean region, but it represents the symbol of peace worldwide, too.  
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Olives have characteristics beneficial for human health related to their unique composition of fatty acids and to numerous minor components. Olive trees have also been a powerful tool in the protection of the environment and are still important in sustai-nability of agriculture in extreme or near extreme environments. Especially for the Euro-pean Union, the production of extra virgin and virgin olive oil (EVOO and VOO) is one of the most economically significant, as it generates and exports more of these products than any other single country or trading bloc. Italy ranks second in Europe after Spain, with a total producing area of 1.110.701 hectares (ISTAT, 2016). Conversely, Italian olive oil production is only one third of the Spanishproduction due to the high costs for olive cultivation and harvesting. Therefore, the olive oil sector in Italy depends onolive oil importations, primarily from Tunisia (IS-MEA, 2016). Most of the olive farms are located in the South of Italy and the olive production in Apulia is 30% of the national production. In this region, the olive tree is not only a crop of economical importance but characterises the landscape and the heritage of the region with great impact from asocial and environmental point of view. Indeed, Apulia ranks first in Italy for the number of centennial olive trees, about 40% of the national heritage,which are protected by regional law for their monumental value (Law 144 of 14/02/1951). The olive tree is therefore grown in the whole Apulian territory which has different pedoclimatic characteristics; therefore a number of varieties and different agricultural practices are adopted, such as traditional cropping in marginal areas to intensive planta-tions in irrigated areas (De Gennaro and Roselli, 2013). Main cultivar is “Coratina” with 90.000 hectares of cultivation, followed by “Ogliarola Salentina”, “Cellina di Nardò” and “Ogliarola Barese”. The year 2015 has been considered the worst year for olive oil, due to a consi-derable decrease in production and quality of olives not only in Apulia, but in the whole of Europe. According to UNAPROL (Unione Nazionale tra le Associazioni di PRoduttori di OLive), this situation was mainly caused by strong attacks of the olive fly (Bactrocera 
oleae Rossi) and damages mainly caused by the diseases of anthracnose (Colletotrichum spp.) and Vertifcillium wilt (Verticillium dahliae). Unfortunately, the Apulian olive trees are now threatenedby a newly introduced bacterium, Xylella fastidiosa, which has already 
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 Fig. 1/2 - World distribution of Xylella fastidiosa (EPPO, 2016).   The bacterium is persistently transmitted by adults in which they multiply at the foregut level. Both nymph and adult vectors soak up the bacteria by feeding on an in-fected plant xylem, but only winged adults, because of their high mobility, can inoculate the bacteria in healthy plants immediately after acquisition. Indeed, Xf is associated with economically important diseases, such as Pierce’s disease of grapevine, Plum leaf scald, Phony disease, Almond leaf scorch, Citrus varie-gated chlorosis and Coffee leaf scorch (Janse and Obradovic, 2010). However, some host plants remain symptomless and can serve as a source of inoculum for vectors (Hopkins and Purcell, 2002). Colonization of the xylem vessels results in their clogging by the bacterial biofilm which impairs water uptake (Newman et al., 2003). The discovery of Xf in Italy (Saponari et al., 2013) has made more evident the risk that this pathogen represents for European and Mediterranean commercial crops, landscape trees and ornamentals. The Italian Xf subspecies pauca strain CoDiRO detected in olive trees and other host species was the same Strain Typing to theone infecting oleander and coffee in Costa Rica (Nunney et al., 2014). In Europe, the green leafhopper Cicadellaviridis L. (Cicadelli-dae) and the meadow spittlebug Philaenus spumarius L. (Aphrophoridae) were reported 
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as potential vectors for Xf (Janse and Obradovic, 2010). However only P. spumarius was proven to be an effective vector in Apulia region of Italy (Saponari et al., 2014). The Olive Quick Decline Syndrome induced by Xf is initially characterized by the heterogeneous desiccation of twigs and small branches. The majority of local cultivars is highly susceptible and dies within a few years. Experimental evidence shows that grape-vines and citrus are not infected by the CoDiRO strain. The most severe symptoms are displayed on centenarian olive trees infected by Xf, in which tracheomicotic fungus spe-cies are more considered as aggravators of the OQDS. Observations of preliminary investigations suggest that, under the same natural conditions, old and new Italian olive cultivars expressed different levels of symptom se-verity to the infection: the old cultivars (e.g. Ogliarola Salentina, Cellina di Nardò), largely grown in Apulia, showed more susceptibility, regardless the age of orchard, compared to new varieties (e.g. Leccino, Coratina, Nociara) that show less symptoms under same growing conditions (Boscia et al., 2014).   Fig.1/3 - The Quick Decline of Olive trees in the outbreak area of Xylella fastidiosa. 
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After this finding, several reports on Xylella in olive occurred in Argentina (Haelterman et al., 2015) and in Brazil (Della Coletta-Filho et al., 2016). Being a quarantine pathogen, Xf is regulated in the European Union by Directives 2000/29/CE, followed by the Decision 2015/789/CE. Drastic control methods were soon adopted in the outbreak areas of Apulia for pathogen containment (e.g. mandatory uprooting of the infected trees and the nearby hosts; mandatory control of the vector P. 
spumarius) and in the Xf-free areas for preventing pathogen introduction. As shown in Figure 1/4 a demarcated area (infected zone and buffer zone) was officially established in Apulia region for the application of different phytosanitary measures. The emergency posed by Xf prompted the Italian Ministry of Agriculture to appoint a special Commission-er for its control and to establish a national advisory scientific committee. More than 80.000 trees were monitored and new foci have been found outside the initial outbreak area of Lecce province (Brindisi and Taranto provinces), showing the rapid spreading of the infection. Nurseries are submitted to regulatory restrictions concerning the production and movement of Xf-host plants. Within this contest the early pathogen surveillance and detection is of utmost importance for supporting the National Plant Protection Organiza-tion (NPPO) in the rapid application of containment measures.   Fig. 1/4 - The official demarcated area for Xylella fastidiosa in Apulia Region (EU Decision 2015/789). 
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1.4 Remote sensing of plants  With the rise of space technology, Remote Sensing, a technique that allows the collection of information from a remote acquisition system without coming into contact with the object “to be observed”, has, in the last fifty years permitted the obtaining of vari-ous and important information regarding the characteristics of the land and ocean surfac-es over large areas across the planet (Jones and Vaughan, 2010). These techniques have been made possible according to the physical principle that different materials reflect, absorb and transmit light radiation in a different way, ac-cording to the different wavelength of electromagnetic energy that intercepts them. In es-sence, different materials may be characterized by a specific spectral signature that uni-quely characterizes them. Regarding the different types of sensors, those that dominate major ground-based observations, operate in the “optical region” of the electromagnetic spectrum (VIS, NIR and SWIR), especially for applications that involve studies on vegetation, where the main absorption diagnostic characteristics basically fall in this region of the spectrum (Ustin et al., 2009, Kokaly et al., 2009). The first sensors used for remote sensing, acquired the reflected energy of the light coming from the objects hit (target) in a few wavelength ranges (broadband or mul-
tispectral sensor). Since the early 1980s, instead, it was possible to develop hyperspectral sensors, that increase the availability of the number of information channels (reflectance) (passing from 3 - 10 bands to 100 - 1000 bands, approximately), increasing the spectral resolution through the reduction of the bandwidth (Full Width Half Maximum - FWHM), from over the 100 nm in multispectral sensors to approximately 1-10 nm in new technology hyperspec-trals (Hunt, 1980). The hyperspectral data have led to improved estimates of biochemical indicators and their morphological and structural characteristics correlated with the vegetation com-pared to those obtained from traditional broadband multispectral data (Lee et al., 2004, Zhao et al., 2007). In particular, if starting from the traditional multispectral data, containing informa-tion limited to a few broad bands of the ElectroMagnetic(EM) spectrum (typically the red 
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and the NIR such as Normalized Differential Vegetation Infex - NDVI - for example), a single index was made to correlate with almost all the features of the vegetation. Through the use of hyperspectral data (hundreds of narrowbands) connections unique to the characteristics of the vegetation can be established (Hyperspectral Narrow Band Vegetation Index) as an example, hyperspectral indices associated with water con-tent of the plant, soil moisture, structure of the biomass, plant pigments (chlorophyll, an-thocyanins etc.). Hyperspectral vegetation indices have therefore improved the accuracy in model-ling and in vegetation mapping up to thirty percent more compared to the use of broad-band indices (Thenkabail et al., 2013, Bolton and Friedl, 2013). The use of hyperspectral data finds its applicationin the recovery of biochemical parameters related to the nutritional status of the plant, such as nitrogen (Ramoelo et al., 2013), phosphorus (Mutanga and Skidmore, 2004), lignin/cellulose (Daughtry et al., 2004), water content (Mirzaie et al., 2014), to biochemical pigments such as carotenoids (Blackburn, 2007), anthocyanins and in particular cholorophyll (Huang and Blackburn, 2011, Navarro-Cerrillo et al., 2014). Biophysical/structural indicators starting from hyperspectral data provide instead, information regarding the vegetation fractional coverage of the plant (Guerschman et al., 2009, Somers et al., 2009), biomass content per unit area (Casas et al., 2014), the leaf area index (Darvishzadeh, 2008), specific leaf area (Van Wittenberghe et al., 2014), the diameter of the trunk and the average height of trees (Cho et al., 2009), etc.. The increasing availability of hyperspectral data therefore, acquired from aerial and satellite platforms more frequently, has stimulated and interested worldwide research towards the development of new methodologies for the recovery of the vegetation para-meters (Lee et al., 2004).   
1.4.1 Aerial photography and photogrammetry  Photogrammetry applies the principles of optics and knowledge of the interior geometry of the camera and its orientation to reconstruct dimensions and positions of ob-jects represented within photographs (Campbell and Wynne, 2011). 
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The photogrammetric images are created by a sensor that transforms the elec-tromagnetic radiation flux into electrical impulses subsequently converted in numeric for-mat. The resulting image (Red, Green, Blue, NIR) is formed by basic elements, generally of square shape, called pixels (picture elements). Each pixel has orthogonal Cartesian coordinates, which define the spatial location within the image, and a numerical value called Digital Number (DN) that defines the brightness. One of the most valuable regions of the spectrum is the NIR region, characterized by wavelengths just longer than the longest region of the visible spectrum. This region carries important information about vegetation and is not subject to atmospheric scattering. The colour infrared model (CIR) creates a three-band colour im-age by discarding the blue band from the visible spectrum and adding a channel in the NIR. It shows living vegetation and water bodies very clearly and greatly reduces at-mospheric effects compared with the natural-colour model, so it is very useful for high-altitude aerial photography, which otherwise is subject to atmospheric effects that de-grade the image. This band combination is important for studies in agriculture, forestry, and water resources, to list only a few of many (Campbell and Wynne, 2011). An early link between crop stress and a remote measurement was made in 1956 when Colwell showed that infrared photography could be used to record the changes in internal leaf reflectance that were caused by disease (Colwell, 1956). His work, as well as that on potato late blight by Manzer and Cooper (1967) in which they displayed the possibility to detect the disease on photographs 2-3 days before the symptoms became evident on ground surveys, has inspired many researchers in agriculture and forestry Since then a number of researchers have demonstrated the utility of colour infra-red photography in detecting diseases in the field.  Photointerpretation is based on three steps: image interpretation process, ele-ments of image interpretation, image interpretation keys.   
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Image Interpretation process For purposes of clarification, it is important to distinguish between these separate functions:  
Classification is the assignment of objects, features, or areas to classes based on their appearance on the imagery. 
Enumeration is the task of listing or counting discrete items visible on an image. 
 
Measurement, or mensuration, is an important function in many image interpreta-tion problems. Two kinds of measurement are important. First is the measurement of distance and height and, by extension, of volumes and areas as well. The practice of making such measurements forms the subject of pho-togrammetry, which applies knowledge of image geometry to the derivation of accurate distances. A second form of measurement is quantitative assessment of image brightness. The science of photometry is devoted to measurement of the intensity of light and in-cludes estimation of scene brightness by examination of image tone, using special in-struments known as densitometers. If the measured radiation extends outside the visible spectrum, the term radiometry applies. 
 
Delineation is the identification of edges or boundaries between different areas, in order to separate distinct areal units that are characterized by specific tones and textures (Campbell and Wynne, 2011).  Elements of Image Interpretation The combination of the eight elements of image interpretation describes charac-teristics of objects and features as they appear on remotely sensed images:  

 image tone denotes the lightness or darkness of a region within an image; 
 image texture refers to the apparent roughness or smoothness of an image region; 
 shadow is an especially important clue in the interpretation of objects; 
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 pattern refers to the arrangement of individual objects into distinctive recurring forms that facilitate their recognition on aerial imagery; 
 association specifies the occurrence of certain objects or features, usually without the strict spatial arrangement implied by pattern; 
 shapes of features are obvious clues to their identities; 
 size can be the relative size of an object in relation to other objects on the image, or can be the absolute measurements (Campbell and Wynne, 2011).  Image Interpretation Keys Image interpretation keys are valuable aids for summarizing complex information portrayed as images. They have been widely used for image interpretation. An image in-terpretation key is simply reference material designed to permit rapid and accurate identi-fication of objects or features represented on aerial images. A key usually consists of two parts: (1) a collection of annotated or captioned im-ages or stereograms and (2) a graphic or word description, possibly including sketches or diagrams (Campbell and Wynne, 2011).   

1.4.2 Use GIS environment to create the plants disease database  Advances in computing technology has led to form an automated cartography that played the main role in the development of Geographical Information System (GIS). The GIS tool can help in mapping strategies and in the application of plant protec-tion measures with a high precision manner. GIS can overcome the heterogeneity issue related to pests and abiotic factors, in time and space. This tool has a strong influence on spatial analysis. The increasing ability to capture and handle geographic data means that the spatial analysis is occurring within data-rich environment, where GIS provides plat-form for managing geographic data. The main advantage of the photointerpretation in GIS environment, from aeri-al/satellite images with high spatial resolution, is to have a continuous view of the study area (large territorial scale), the integration with other geographic data and especially the ability to create easily updated geo-referenced databases. 
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1.5 Proximal and remote sensing of plants  As a technique without physical contact, RS, by definition, includes the use of spectral measurements derived from handheld instruments at small distances (less than a few meters), such as PS. These measurements are calculated and analyzed to retrieve information from the object observed (in this instance, the diseased trees) (De Jong and Van der Meer, 2007). RS and PS are indirect evaluation techniques, capable of monitoring the charac-teristics of vegetation and its state of health at various distances and over vast territorial areas. The sensors used in applications for the study of the vegetation can be distin-guished as “active” or “passive” depending on the artificial radiation emitted, by directly measuring reflected or scattered energy of the object that is hit (active sensors), or by di-rectly measuring reflected solar radiation or the thermal radiation emitted (passive sen-sors). Radar and Lidar are examples of active RS and PS instruments. Passive or optic instruments are capable of measuring solar radiation in the visi-ble (VIS, wavelength 400-700nm), near infrared (NIR, wavelength 700-1.100nm), in shortwave infrared (SWIR, 1.100- 2.500nm) and the energy emitted by thermal infrared (TIR, 3 to 15 micron) of the electromagnetic spectrum for applications related to Plant Disease Detection. From the point of view of the optical properties of a plant system, the path that the light accomplishes when it enters into contact with a leaf is characterized by the following processes:  
 transmission through the surface; 
 absorption by internal chemical substances (example, pigments, water, sugars, lignin and amino acids); 
 partial reflection by internal structures or total reflection from the contact surface (Figure 1/5A).  It is therefore clear that the process of reflection of light in plants is a complex phenomenon and is associated with numerous biophysical and biochemical interactions. 





 39 

in the structures of leaves, biochemical constituents of optical characteristics, dielectric, or thermal, of vegetation elements (Kumar et al., 2001, Baret et al., 2007). These properties are quantified by the dimensionless physical magnitudes of ref-lectance (R), transmittance (T) and absorbance (A) and defined by the following mathe-matical equations:  
R(λ) = E(λ)R / E(λ)I × 100 Equation 1/1 - Reflectance.   
T(λ) = E(λ)T / E(λ)I × 100 Equation 1/2 - Transmittance.   A(λ) = E(λ)A / E(λ)I × 100 Equation 1/3 - Absorbance.   where E(λ)R, E(λ)T and E(λ)A, respectively, express reflected energy, transmitted and ab-sorbed by the plant system (e.g. leaves), conforming to wavelength and E(λ)I the incident energy from the rising sun.  The magnitude of spectral response, reflectance R, is generally obtained from multispectral or hyperspectral sensors displayed in the functions of the spectral resolu-tion. The resulting curve which shows the values of reflectance in the varied wavelengths is defined as the spectral signature and is typical of the kind of vegetation which was measured. Figure 1/6 shows the typical spectral signature of vegetation in the range of wa-velengths between 350 and 2500 nm (Pu and Gong, 2011). A plant in biotic stress conditions (e.g. affected by bacteriosis) reacts with a pro-tection mechanism which manifests itself in impairments in the leaf structure, and specific changes in the chemical composition of the tissue (Figure 1/4B) which generally lead to suboptimal growth. All of this is expressed by a spectral signature different from that of a healthy plant. 
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spread, which increase VIS reflectance, causing a displacement of the spectral signature in the position in the spectrum. Specific spots and effects of browning and/or of senescence, furthermore, may manifest on the leaves (linked to the nature of the pathogen), and influence the areas of VIS and NIR due to a possible condition of water shortage. At the foliage level, instead, the disease can cause thinning of the leaf surface density of the foliage which can be observed in the NIR area (Franke and Menz, 2007).   
1.5.1 Hyperspectral RS of plant diseases  Spectroscopy Spectroscopy is among one of the techniques most used in RS PDD, VIS and/or SWIR both imaging type or nonimaging. The regions of the visible and infrared of the electromagnetic spectrum are known to provide maximum information on the levels of physiological stress of plants (Muhammed, 2005) and, therefore, some of these wave-lengths (specific of a disease) could be used for early detection (West, 2003), even before the symptoms are visible. These techniques are considered promising for the monitoring of crop diseases. Below, some of the most recent and relevant spectroscopy-based techniques applied on different crops and measurement conditions are discussed. Naidu et al. (2009) use spectral reflectant of the leaves to identify viral infections (in the field) in vine (Vitisvinifera L.) that cause grapevine leafroll disease, using a portable spectrometer to collect data from each leaf of the plant. Yang et al. (2007) have studied brown planthoppers and leaf-folder infestations in rice plants. The conditions of infestation of plants were classified and further efforts have been conducted to identify the extent of the infestation, using spectroradiometric reflec-tance measurements (350-2400 nm) of data collected in field conditions. A combined study on the differentiation of winter wheat diseases due to patho-gens (powdery mildew and yellow rust) and insect infestation (wheat aphid) was recently carried out (Yuan et al., 2014). 
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The methods of early diagnosis of diseases are of particular interest (Malthus and Madeira, 1993, Rumpf et al., 2010), although their actual application in crop management was inconsistent between crops. The available studies have been conducted only on specific crops and therefore the results obtained cannot be generalized to other crops and/or locations. Delalieux et al. (2007) used hyperspectral reflectance data (350-2500 nm) to detect apple scab caused by Venturia inaequalis. The study involved the identification of infected plants and selection of appropriate wavelengths to classify between healthy and infected leaves. Wu et al. (2008) used hyperspectral refelctance data, in laboratory conditions,for the detection of fungal infections of eggplant infected by Botrytis cinerea before visible symptoms. Ray et al. (2010) used spectral signatures of leaves acquired in the field to distin-guish potato varieties, nitrogen levels, irrigation levels and the early detection of late blight disease by selecting optimal wavelengths. Gualano et al. (2012) produced vegetation indices by the algebraic combinations of reflected or emitted energy values measured in the different bands of the electromag-netic spectrum. Measurements highlighted a difference in the spectral signatures of trees infected by Citrus tristeza virus (CTV) with respect to the CTV-negative trees; thus, spe-cific indices were selected for the implementation of a detection algorithm, which was ap-plied to a processed multispectral satellite image. Alnaasan (2015) assessed the potential of the hyperspectral reflectance and a set of derived Spectral Vegetation Indices (SVIs), in the range of Visible-Near Infrared wavelength, to detect fire blight infections (Erwinia amylovora Burrill) on inoculated apple seedlings in glasshouse and on symptomatic trees in the field.   Imaging tools Lately, hyperspectral imaging tools have been introduced for the evaluation of plant disease at leaf and canopy levels. Laboratory-based studies include for example Fusarium fungal infection and head blight disease in wheat (Bauriegel et al., 2011) and early detection of sugar beet diseases (Mahlein et al., 2012). 
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The possibility to differentiate infections in a certain stage of their development is of particular interest for the efficient operation of RS PDD (Mahlein et al., 2012). In this regard, studies of yellow rust disease in the field of wheat plants (Bravo et al., 2003) tried to distinguish among wheat diseases and abiotic stress conditions (Moshou et al., 2004). Reynolds et al. (2011) and Huang et al. (2007) used hyperspectral data in the field as well as in flight to evaluate the gravity of Rhizoctonia crown and root rot disease in sugarbeet and yellow rust in wheat, respectively. The hyperspectral data obtained in flight resulted in being better suited for RS PDD application both at farm and regional levels. Zhang et al. (2003) used Airborne Visible Infrared Imaging Spectrometer (AVI-RIS) data to identify the late blight disease on tomato crops, while Hillnhütter et al. (2011) studied soil pest-induced sugarbeet disease using two different airborne sensors (AISA and HyMap).  UAV (Unmanned Aerial Vehicle) technology represents a possible solution for the monitoring of plant health issues in the field, reducing the cost of data acquisition. How-ever, even fewer scientific works have analysed the use of these platforms at a regional level for PDD applications. In that respect, Wheat streak mosaic was assessed using mul-tispectral satellite data. Wang et al. (2012) instead, analyze the multilevel capacity (from leaf-to-satellite observation) offered by RS to detect winter wheat stripe rust. There is a possibility, still unexploited, to integrate the Spectroscopy based imag-ing technique (VIS and SWIR ranges) with fluorescence imaging. The application of this integrated method has so far been exploited to improve the detection of winter wheat yel-low rust in the field and through use of UAV aerial platforms (Panigada et al., 2014). Recently, the merger of airplane data from thermal sensors, fluorescence and hyperspectral optics has been successfully experimented on olive trees to evaluate those infected by Verticillum wilt (Calderón et al., 2013).   
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Statistical methods One of the limitations of hyperspectral optical sensors is the vast amount and complexity of data gathered. In order to effectively utilize the data from the optical sensors (imaging and non-imaging-based) for the identification and diagnosis of the disease, advanced methods of statistical analyses are essential. In general, tasks such as the following are required from RS data:  
 early identification of a disease; 
 differentiation between different diseases; 
 separation between biotic and abiotic stress; 
 quantification of the seriousness of the disease.  These requirements must be achieved with a higher accuracy or be equivalent to the requirements achieved from methods of traditional evaluation and with shorter re-sponse times.  Hyperspectral RS data analysis methods are continually introduced in the science of plant diseases and may be classified in four large-scale groups which include:  a. univariate techniques of correlation, regression and analysis of variance (ANOVA) of the presence of disease and/or its seriousness with the spectral response, in specific or subinterval narrowbands of the wave-lengths of the spectrum (Huang et al., 2012);  b. univariate techniques of evaluation and identification of specific spectral indices of the vegetation by narrowband (SVIs) sensitive to the presence of the disease (Reynolds et al., 2011, Mahlein et al., 2013, Stilwell et al., 2013);  
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c. multivariate techniques of Data Mining applied to processing of spectral data for the reduction of dimensionality and extraction/selection of fea-tures (Grisham et al., 2010, Bauriegel et al., 2011);  d. techniques of Machine Learning and of Classification, parametric and non-parametric, supervised and unsupervised for cluster identification (classes of homogeneous groups) based on the presence/absence of the disease and/or of relative levels of seriousness (Moshou et al., 2012, Mahlein et al., 2012).  In this context, recent scientific researches have identified sensors and methods of Data Mining for the survey/collection of data, identification and the quantification of dis-eases in plants (Sankaran et al., 2010). If the sensors are able to capture subtle optical properties of plants in different regions of the electromagnetic spectrum (also beyond the range of the visible), thereby al-lowing for the detection of early changes in plant physiology induced by forms of biotic and/or abiotic stress (colour of the tissue, shape the leaf, rate of transpiration, morphology and density of foliage, photosynthetic changes etc.), the possibility of better analysing the enormous wealth of information contained in the RS data is relied upon for the appropri-ate choice of the techniques of the processing statistics used. For example, Chen et al. (2008), utilizing a portable spectroradiometer in field conditions, made use of a linear model of correlation between the levels of severity (LS) and the spectrum of the foliage to precisely identify the presence of Verticillium wilt in dis-eased cotton plants. The authors reported that the first derivative of the reflectance of the infrared, in the wavelength range comprised between 731 and 1317 nm, was more effec-tive in predicting the presence of Verticillium wilt. In addition to the statistical classification models, many nonimaging spectrosco-py-based studies utilize vegetative indices (univariati methods) to evaluate the variance of spectral reflectance in various dichotomous conditions (healthy or diseased plants).  Some of the vegetative indices used for the diagnosis of plant diseases are re-ported in Table 1/1.   
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Table 1/1 - Major Vegetation indices employees in Plant Disease Detection.  
Vegetation Index Equation Reference Photochemical Reflectance In-dex (PRI) (R531 - R570) / (R531 + R570) Gamon et al. (1992) Normalized Difference Vegeta-tion Index (NDVI) (R800 - R670) / (R800 + R670) Rouse Jr et al. (1974) Modified Chlorophyll (a and b) Absorption in Reflectance Index (MCARI) [(R701 - R670) -0.29 * (R701 - R550)] * (R701 / R670) Daughtry et al. (2000) Chlorophyll Normalized Differ-ence Index (ChlNDI) (R750 - R705) / (R750 + R705) Gitelson and Merzlyak (1994) Water Index (WI) (R900) / (R970) Pen¯Uelas et al. (1995) Plant Senescence Reflectance Index (PSRI) (R680 - R500) / R750 Merzlyak et al. (1999) Structure Insensitive Pigment Index (SIPI) (R800 - R445) / (R800 + R680) Pen¯Uelas et al. (1995) Red Edge Position (REP) R700 + 40*[((R670 - R780) / 2) - R700] / (R740 - R700) Curran et al. (1995) Yellow Index (YI) - (R580 + R668 - 2*(R624)) / (0.044^2) Adams et al. (1999) Optimal Vegetation Index (Viopt) (1.45) × (R8002 + 1)/(R670 + 0.45) Reyniers et al. (2006) Pigment Specific Normalized Dif-ference (PSNDa) (R800 nm − R680 nm )/(R800 nm + R680 nm ) Blackburn (1998) Pigment Specific Normalized Dif-ference (PSNDb) (R800 nm − R635 nm )/(R800 nm + R635 nm ) Pigment Specific Normalized Dif-ference (PSNDcar) PSNDcar =  (R800 nm − R470 nm )/(R800 nm + R470 nm ) Modified Simple Ratio (mSR) �R800 nmR670 nm − 1� /��R800 nmR670 nm +  1� Chen (1996) Anthocyanin Reflectance Index (ARI) (1/550nm) - (1/700nm) Gitelson et al. (2001) Blue/Green Index (BIG2) R450 nm /R550 nm  Zarco-Tejada et al. (2005) Double Difference Index (DD) (R749 nm − R720 nm ) − (R701 nm + R672 nm ) le Maire et al. (2004) 
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Normalized Phaeophytinization Index (NPQI) R415 nm − R435 nmR415 nm + R435 nm  Barnes et al. (1992) Modified Chlorophyll Absorption Integral (mCAI) (R545 nm − R752 nm )2 (752 − 545)− �� R × 1.423R752R545 � Laudien et al. (2003) Red Edge Vegetation Stress In-dex (RVSI) R714 nm + R752 nm2 − R733 nm  Naidu et al. (2009) Index-SPAD K log10 �R940 nmR650 nm � Unpublished Lichtenthaler Indices (Lic) R440 nm /R690 nm  Lichtenthaler et al. (1996)   Imaging techniques are an improvement compared to spectroscopic techniques. (Nonimaging spectroscopy approaches). The data from this type of sensors involves larg-er surfaces and provides information in the form of three-dimensional images. In hyper-spectral imaging, the reflectance of each pixel is acquired for each range of wavelength of the electromagnetic spectrum, thereby generating large “volumes” of spectral data.  This type of data, therefore, requires statistical methods for the analysis of the images such as PCA, Spectral Angle Mapper (SAM) classification and Support Vector Machine (SVM) classification that improve the accuracy of detection of the disease. Moshou et al. (2004) utilized a spectrograph to acquire spectral images from 460 to 900 nm to detect yellow rust in wheat. Statistical techniques such as Quadratic Discri-minant Analysis (QDA), Self-Organizing Maps (SOM), and multilayer perceptrons (MLP) and based Artificial Neural Networks (ANN) were used to classify the diseased from healthy wheat plants. Information from four wavebands, namely 543, 630, 750 and 861 nm were used for the classification models. The classification accuracies based on QDA and neural network (MLP) for the discriminating of individual healthy plants were 92.0% and 98.9%, and diseased plants were 97.8% and 99.4%, respectively. Li et al. (2012) studied the applicability of aerial hyperspectral imaging to detect greening of canopy in citrus plants. The analyses carried out made it possible to classify images through the Spectral Angle Mapping and Spectral Feature Fitting (SFF) tech-niques, although they did not provide high accuracy.  
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1.5.3 From univariati methods to multivariati statistics  In the context of RS applied to the vegetation, the simplest statistical model that is considered is fundamentally based on empirical relationships (correlation) between the spectral information available (bands or a transformation of same) and the properties of the vegetation under observation (univariate regression analysis). The spectral characteristics extracted from RS data are mainly synthesized through vegetation indices, developed and calculated as a mathematical combination of several spectral bands (at least 2), linked through a mathematical structure ranging from simple or difference ratio, in the form of normalized difference which is slightly more com-plex (Jones and Vaughan, 2010). With the advent of hyperspectral RS a great variety of indices of vegetation have been defined with narrowband (SVIs) sensitive to different biochemical and biophysical parameters (Pu and Gong, 2011). Vegetation indices have always been supported by the scientific community be-cause they are deemed beneficial. In fact, given the mathematical structure that defines them, they minimize the variability of the spectral reflectance (normalization) induced by external and internal factors such as lighting differences of the scene, reflectance of the soil, atmospheric dispersion, leaf angle distribution and foliage structure in relation to Sensor Acquisition Geometry.  Specific chlorophyll indices (PSNDa, PSNDb) and caretenoids (PSNDcar) have been developed in order to estimate the concentration of these pigments in plants (Blackburn, 1998). Photochemical Reflectance Index (PRI) has been found to be a good indicator of photosynthetic efficiency (Gamon et al., 1992). In particular, if the plant is healthy, then through a physiological process called the “xanthophyll cycle”, carotenoids quickly dissi-pate excess light energy that can accumulate in excessive lighting conditions, to protect the photosynthetic apparatus (Demmig-Adams and Adams, 1996). In the past few years many studies have focused on the ability of SVIs to meas-ure specific diseases (Mahlein et al., 2013) and many studies have been conducted to improve the performance related to sensitivity and linearity with the biochemical or bio-physical quantity which are associated (Ustin et al., 2009). 
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However, despite the development and the proposed amendments to the ma-thematical form or of the optimal wavelength indices (e.g. the issue of Off-Absorption-Center Waveband, Majeke et al. (2008), there is currently, no broad consensus regarding the best Spectral Vegetation Index (SVI) that is able to globally predict the most common forms of biotic stress (Main et al., 2011). The modifications, in general, do not translate into substantial improvements of the performance index, because even if key parts of the answer sought can be highligted, they tend to be sensitive to minor errors or noise in the spectral measurement mode (Rivera et al., 2014). As a result of this uncertainty there has been an increasing application of multiva-riate statistical methods that take advantage of the full spectrum of hyperspectral data. Statistical techniques such as Stepwise Multiple Linear Regression (SMLR), PCA, Canon-ical Correlation Analysis (CCA) and Partial Least Squares Regression (PLSR), mentioned in part in the previous paragraph, are among the most popular methods of data mining employed in many works on plant diseases. The complete exploration of all the wavelengths of the spectral signature often reveals its usefulness in improving the estimation of the parameter, and resolving the problem of Off-Absorption-Center Waveband (especially at canopy scale). SVIs, relying on centers and absorption intervals (especially In-Chlorophyll Cen-tre Waveband: 640 – 680 nm, for indices sensitive to chlorophyll), and being constructed on a few bands, weaken their performance (sensitivity to parameter), due to the structure of the foliage (effect of the propagation of the leaf signal and diffusion at canopy level) (Asner, 1998). This effect occurs even when it is required to classify the different species on the basis of SVIs in a broader spectrum such as Normalized Difference Vegetation Index, NDVI (Majeke et al., 2008), or, finally, when there is overlapping absorption characteris-tics that share the same chemical bonds (Kumar et al., 2001). For example, the strong O-H bond present in plant tissue is a component of the water absorption characteristic, of cellulose, sugar, starch and lignin.  Therefore, the use of spectral vegetation indices (constructed on a few bands) may not be sufficient to represent a specific biophysical parameter or biochemical proper-ties compared to the use of multiple bands (optimal spectral analysis) or even all bands 
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(full spectral analysis) that would require a multivariable analysis which is able to better represent the vegetation property (Darvishzadeh, 2008) and explain the various sources of variability of the spectra. 
 
 
1.6 Necessity and objective of the research  

Xylella fastidiosa (Xf), named the “bacterium killer of olive trees” by the media, is the most severe phytosanitary emergency that Italy, other European countries and the Mediterranean region are facing in the last few years. It is a recent invasive bacterium of quarantine importance which is killing thousands of olive trees in Apulia, South of Italy, inducing the Olive Quick Decline Syndrome mainly in ancient trees. Considering the economic, landscape and religious importance of the olive tree in Italy as in the whole Mediterranean region and the lack of efficient control measures, the impact of this infection is inestimable. Preventive measures based on early pathogen sur-veillance (before the onset of disease symptoms) are the most valuable for supporting NPPO in applying immediate phytosanitary measures to avoid the development and the spread of this pathogen. The monitoring of Xf is very difficult due to the great number of host species, the efficiency of spread by insect vectors and the huge economic and hu-man resources needed.  With the aim of promptly identifying the presence Xf, soon after its discovery, various emergency methods have been adopted in Apulia to counter the spread of the bacterium in the whole territory. A demarcation area with different interventions was de-fined by the EU Commission (EU Decision 2015/789) to separate the infected zone and the buffer zone from the pathogen-free areas. In the buffer and pathogen-free zones the monitoring is focused on early identification of olive trees showing OQDS symptoms. With the aim of promptly ascertaining the presence of Xylella in OQDS or symp-tomless olive trees “mass” diagnostic tools (fast, reliable and low cost) were soon devel-oped (Djelouah et al., 2014, YASEEN et al., 2015) with different sampling methods.  Unfortunately, current techniques are not sufficiently advanced to survey large areas and to manage large numbers of samples for early pathogen detection after its first establishment in South of Apulia. 
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In the last few years several studies were carried out on the use of geomatic techniques in the framework of pathogen monitoring programmes. These techniques al-low for the integration in one operational environment of heterogeneous spatial data which are from direct methods such as “the monitoring actions” or from indirect methods such as “the elaboration of remote sensing data’. Acquired data can be used for the im-plementation of forecasting models for the phytosanitary surveillance of the territory. On this premise, the overall goal of this research is aimed at using the remote sensing technology for supporting the official programme for the monitoring of Xf in Apulia in the rapid identification of infected olive trees, either showing OQDS-like symptoms ei-ther at early stages of symptom development. To this aim the research is presented as two scientific works (Chapters 2 and 3): the first entitled “Assisted analysis of aerial images at high geometric resolution for the identification of Olive Quick Decline Syndrome associated with the Xylella fastidiosa bac-terium in Apulia” and the second entitled “Determining Optimal Hyperspectral Wavebands for detection of Xylella fastidiosa using Reflectance data: a Internal Clustering Criteria ap-proach”. In the first work the specific objective has been addressed at experimenting with the effectiveness of the manual technique of photointerpretation in GIS environment for the classification of phytosanitary information (OQDS-suspected olive trees) starting from aerial images (RGB and NIR) at high geometric resolution related to the outbreak areas of 
Xf. This remote sensing approach which was the only available approach at the time of the first pathogen outbreak in Apulia could soon be adopted in the official pathogen moni-toring programme because it is affordable.  The second work is focused on the analysis of data from high spectral content (hyperspectral reflectance) of asymptomatic leaves of infected plants, for early detection of infection in specific sections of the spectral signature, through the development of a multivariate method of spectral precision. This approach will allow for the selection or definition of optimal narrowband sen-sors (multispectral and/or hyperspectral) useful for the early detection of the presence of infection from remote platforms (aircraft, UAV).  
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As a method of reference a multivariate heuristic method (based on LLR2, PCA and Stepwise Discriminant Analysis (SDA) was selected from literature (Thenkabail et al., 2004), that combines the Feature Selection Methods (FSM) and Full-Spectral-Analysis (FSA) methods, capable of addressing the high multicollinearity and dimensional nature of the hyperspectral data, and correlate “optimal” narrowbands to biochemical character-istics.   The specific objectives are therefore aimed at:  1. developing a combined general purpose detection method, interval PCA and Internal Clustering Validation (iPCA-ICV), for selection of excellent narrow-bands; 2. identifying narrow spectral bands of the spectrum, suitable for distinguishing 
Xf infection from the early stages in cultivars with different degrees of suscep-tibility.  The first objective will address the critical aspects of the management and proc-essing of hyperspectral data, the problem of collinearity of this type of data, the lack of statistical methods applicable to different phytosanitary issues and not related to the spe-cific disease and/or culture, overfitting data of some supervised methods and manage-ment of outliers always present large amounts of data. The above will be achieved through the development, in Matlab environment, of a general purpose detection method of hyperspectral data browsing with many “collinear” variables, unsupervised, able to search among the cluster spectral signatures (observations) and provide a measure of separation. By these methods spectral bands of variable width will be selected, starting from the reflectance spectra of leaves infected and not infected by Xf. It is a combined approach of multivariate Principal Component Analysis and Cluster Analysis (CA) tech-niques.  In the second specific objective, two statistical methods of variable selection will be compared in order to discriminate leaves infected by Xf and to select specific narrow-bands of reflectance spectra of olive leaves. A heuristic approach to variable selection, 
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used in literature (LLR2, PCA and SDA) will be implemented in Matlab environment and compared with the combined general purpose detection method, proposed in this re-search (iPCA-ICV). The discriminative ability of the selected wavelengths of the two methods was as-sessed by Generalized Discriminant Analysis (GDA) based on canonical correlation and error measurement type Leave-One-Out Cross-Validation (LOOCV), through confusion matrices.      
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CHAPTER 2: Assisted analysis of aerial images at high geometric resolution for 

the identification of “Olive Quick Decline Syndrome” 
associated with the Xylella fastidiosa bacterium in Apulia 

   
2.1  Introduction  The discovery of quarantine pathogen Xf in olive trees (Olea europea L.) in southern Apulia has raised strong concerns, which are unfamiliar and critical in plant health emergency management, and which is unique due to its peculiarity. 

 
Xf is a gram negative bacterium which reproduces in the xylem vessels of certain plants and blocks the conducting system of raw sap, provoking a series of physiological alterations capable of causing even the death of infected plants (Saponari et al., 2013). In fact, the symptomatology observed in olive trees in Apulia has also attracted the presence of other parasitic agents which have further aggravated the plant health framework (Nigro et al., 2013).  The damage observed and diagnosed was derived from collection of woody ma-terial, and from phloem and xylem with blockage of the lymphatic vessels of affected plants. This symptomological framework suggests the definition and characterization of the disease that has affected the olive trees in Apulia as OQDS (Saponari et al., 2013), which has frequently been associated with the presence of Xf (Figure 2/1).  
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scape heritage), other relevant host species (fruit and ornamental), prove to be infected by Xf. As a matter of fact, Xf has been detected in the province of Lecce in several spe-cies ofalmond, cherry, oleander, Vinca minor, Polygala myrtifolia, Westringia fruticosa, 
Catharanthus roseus etc.. Other possible plants that are host to the bacterium can be added to the list (which is still in the stage of experimental verification) and can further burden plant health conditions in the province of Lecce, which is already heavily compro-mised.  In actions to be conducted for the containment of Xf it is essential to effect con-stant monitoring of the implicated area in order to identify the symptoms of OQDS in olive tree species and to accurately measure the spread of the infection to implement the ac-tions necessary to combat it. It is, therefore, considered appropriate to carry out research that would be able to examine the possibility of providing for the management of classic monitoring from ground level, and the support of aircraft based remote sensing with the aim of identifying the symptoms of OQDS in olive trees from an elevated level. It is, therefore, considered appropriate to carry out research that would be able to provide technical support to the conventional monitoring from ground level with aircraft remote sensor equipped with the aim of identifying the symptoms of OQDS in olive trees remotely. This current effort necessitated the verification of the effectiveness of visual pho-tointerpretation (Jones and Vaughan, 2010) within the GIS framework, to classify plant health information, starting from aerial images of high geometric resolution (in the visible and near infrared closeups), related to study areas of outbreaks in Salento where the presence of Xf was ascertained.  In the context of the proposed work, the methodology taken into consideration is best suited for a solid application of the remote sensored area, which is generally the most utilized method in forestry and environmental fields (Malthus et al., 2000).   
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lenzano. In particular, the molecular test, which is more sensitive than the serological test, was applied to all samples that turned out to be serologically negative or dubious, to con-firm the absence of the pathogen.   
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identified and tested have shown infection of the bacterium) and establishes the premise to examine in depth and improve the methodology through the use of stereoscopic restitution in the GIS environment.  The perspective of the ground pixel resolution can also be improved with the use of Unmanned Aerial Vehicle (UAV). Research aimed in this direction will effectively allow for the better understanding of the symptoms of the disease at its initial stages (e.g. drying out of shoots), thereby allowing for an early intervention in areas of outbreak.  In contrast, the necessity to investigate vast areas of Apulia motivates the consideration of the use of aerial images of higher resolutions (or satellite images) and of “textbook” methods for processing derived data, capable of intercepting the symptoms of the disease timeously.   
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CHAPTER 3: Determining Optimal Hyperspectral Wavebands for detection of 

Xylella fastidiosa using Reflectance data: an Internal Clustering Criteria approach 
 
 
 

3.1 Introduction  
Xylella fastidiosa (Wells et al., 1987), is a negative gram bacterium, transmitted by xylem feeding insects (Janse and Obradovic, 2010) and provokes serious diseases in many species, including economically important crops, such as grapevine, citrus and al-mond. In just California alone, Pierce’s disease in vines, costs the wine grape industry 104 million euro per annum (Tumber et al., 2014). In the last few years, this pathogen has spread from its origin (the Americas), and has colonized new parts of the world. It has spread to Asia, where it has caused outbreaks of Pierce’s disease and pear decline in Taiwan and in Iran (EPPO, 2013a); (Amanifar et al., 2014). In Europe, the pathogen was first detected in Kosovo, as the causative agent of Pierce's disease of vine (Berisha et al., 1998), and then in 2013 in southern Italia (Apulia), through Olive Quick Decline Syndrome (OQDS), where it infected thousands of hectares of olive (EPPO, 2013b); (Nigro et al., 2013, Saponari et al., 2013, Martelli et al., 2016). The resistance of the cultivars to the bacterium is an important aspect in the management strategies of any plant disease. This aspect has been well studied in the case of Xf in vine and citrus; however, it still remains to be ascertained in the case of olives. Even though field observations, in some hotbeds in Apulia, suggest the possible resistance in some new Italian cultivars, (Boscia et al., 2014), further studies should be 
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conducted on the subject. Unfortunately, the pathogen agent is noted for its “uncertain presence” within the xylem vessels of plants that it colonizes (in addition to its wide range of hosts); this characteristic manifests both at plant spatial level (presence of mottled fo-liage) (Zhang, 2008) as well as at temporal level (differential bacterial count title of a few seasons) (EPPO, 2004b). These aspects make the control of the bacterium even more difficult and for these reasons there is a strong need for methods of detection, and accurate and efficient moni-toring. Conventional methods for determining the presence of the pathogen are based on destructive laboratory measures related to the plant tissue sampled in the field (Loconsole et al., 2014). A newly introduced detection method is Direct Tissue Blot Immuno Assay (DTBIA), suitable and validated in the case of Xf in Apulian vine. The application of this techique in situ has proved to be reliable in detecting infection (Djelouah et al., 2014), but moreover, it is useful because it provides an early diagnostic tool for monitoring infection at a large scale, without the need to handle infectious material with the risk of infection. Even though other in situ diagnostic techniques (more sensitive to the bacterium) are available, (YASEEN et al., 2015), there remains the cost of essential human re-sources and of the implementation time of the monitoring plan on large scale, which is necessary for the detection and elimination of the source of infection. The potential of hyperspectral RS PDD in the field of plant protection has been studied at length (Sankaran et al., 2010, Calderón et al., 2013, Mahlein et al., 2013, Calderón et al., 2015). The analysis and development of remote sensors for the mea-surement of spectral reflectance has created new opportunities for a rapid, non destruc-tive, and relatively inexpensive approach for the estimation of biochemical and biophysi-cal properties associated with vegetation stress.  Spectral reflectance is defined as the ratio of radiant flux reflex to incident solar reflex, when plants exposed to pathogens activate defense responses, which in the initial stages react with physiological mechanisms such as reduction in the rate of photosynthe-sis, which induces an increase of fluorescence and emission of heat (Erdle et al., 2011). Specific spots and effects of browning and/or of senescence may further more manifest on the leaves (associated to the type of pathogen agent) affecting the VIS and 
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NIR areas due to a possible condition of water shortage. In a subsequent phase (visible expression of the symptom), the activity of the pathogens shows a reduction in the chlo-rophyll content of leaves, with widespread necrotic or chlorotic lesions that increase VIS reflectance causing a displacement of the position of the specral signature in the spec-trum. Of recent, various remote sensing systems have been introduced for the evalua-tion of diseases of the plants at leaf and foliage level. Laboratory-based studies include Fusarium fungal infection and head blight disease in wheat (Bauriegel et al., 2011), early detection of sugar beet diseases (Mahlein et al., 2012), and detection of Cercospora leaf spot, sugar beet rust, and powdery mildew on sugarbeet leaves (Mahlein et al., 2013). Reynolds et al. (2011) and Huang et al. (2007) have used, both in fields and in flight, hyperspectral data to evaluate the gravity of Rhizoctonia crown and root rot disease in sugarbeet and yellow rust in wheat, respectively. The hyperspectral data obtained in flight tests are more suitable for RS PDD applications both at farm and regional levels. Zhang et al. (2003) utilize AVIRIS data to identify mildew disease in tomato crops, while Hillnhütter et al. (2011) study soil pest-induced sugarbeet disease utilizing two dif-ferent airborne sensors (AISA e HyMap). Unmanned Aerial Vehicle technologies represent a possible solution for the moni-toring of plant health issues in the field compared to conventional photo-reconnaissance aircraft (small dimensions, low mass, slow flight speed etc.), by reducing the cost of data acquisition and supplying images with very high spatial resolution in near real time (Ballesteros et al., 2014, Herwitz et al., 2004, Pelosi et al., Torres-Sánchez et al., 2014). However, even fewer scientific works have analyzed the use of these platforms at a re-gional level for PDD applications, especially in relation to the availabilty of efficient hyper-spectral sensors. Given the opportunity to conduct continuous low cost sampling, hyspectral RS has in the past few years focused on the possibilty of selecting “ad hoc”, the length of the narrow wave sensitive to specific physiological variations for early diagnosis of the dis-ease (Malthus and Madeira, 1993, Laudien et al., 2003, Rumpf et al., 2010). The available studies on the statistical models used, however, show inconsistent results, because they are conducted on specific crops, and therefore cannot be genera-lized with other crops and/or locations. 
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With reference to hyperspectral RS imaging techniques, the continuous spectrum of each pixel provides very narrow (<10 nm) and contiguous spectral band, compared to multispectral systems that acquire images in a few broad bands (> 50 nm) (Hansen and Schjoerring, 2003). Narrowband hyperspectral sensors (integrated with thermal and fluorescence sensors), are therefore, able to provide a significant improvement on the ability of accu-rate estimates of biophysical characteristics, caused by biotic stress, compared to tradi-tional broadband sensor (Shi et al., 2015, Calderón et al., 2015). Hyperspectral data containing hundreds and even thousands of wavelengths, narrow and contiguous, (high-dimensional data), although containing richer information of that of the multispectral data, constitute a real challenge for their analysis and selection of the most suitable multivariate statistical models (Rinaldi et al., 2015). Finding effective solution statistics becomes a precondition to fully exploit the in-formation potential of hyperspectral data. The elimination (dropping) of redundant bands is a necessary and indispensable choice for the realization of optimal specialized sensors, that focus and collect data related to forms of stress (e.g. such as radiometers) on board UAV/air platforms for PDD applications. The spectral characteristics extracted from RS data are primarily summarized through vegetation indices (commonly applied), developed and calculated as a mathe-matical combination of spectral bands, arranged through a mathematical structure that goes from the simple or difference ratio, to a slightly more complex normalized difference form (Jones and Vaughan, 2010). Specific chlorophyll indices (PSNDa, PSNDb) and carotenoids (PSNDcar) have been developed in order to estimate the concentration of these pigments in plants (Blackburn, 1998). PRI has been found to be a good indicator of photosynthetic efficiency (Gamon et al., 1992). Different studies in the last few years have focused on the ability of SVIs to detect specific diseases and many have been conducted to improve performances related to the sensitivity and linearity with biochemical or biophysical quantities that correlate (Ustin et al., 2009). However, despite the development and the proposed amendments of mathe-matical formsor of the optimal wavelength index (e.g. problem of Off-Absorption-Center Waveband, Majeke et al. (2008)), at present there is no broad consensus with regards to 
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the best SVIs that are able to globally predict the most common forms of biotic stress. Because of these concerns, there has been a growing application of multivariate statistic-al methods that takes advantage of the full spectrum of hyperspectral data.  The complete exploration of all the wavelengths of the spectral signature often reveals its usefulness in improving the estimate of the parameter, thereby resolving the problem of Off-Absorption-Center Waveband (especially at foliage level).  SVIs, in effect, relying on centers and intervals of absorption (e.g. In-Chlorophyll Centre Waveband: 640–680 nm, for indices sensitive to cholrophyll) and constructed on a few bands, weaken their performance (sensitivity to parameter), due to the structure of the foliage (effect of propagation of the signal leaf and spread of the canopy level) (Asner, 1998). This effect occurs even when it is required to classify the different species on the basis of SVIs of a wider spectrum such as Normalized Difference Vegetation Index (NDVI) (Blackburn, 2007); (Majeke et al., 2008) or when there are overlapping absorb-ment characteristics that share the same chemical bonds (Kumar et al., 2001). For exam-ple, the strong O-H bond present in plant tissue is a component of the water absorption characteristic, of cellulose, sugar, starch, and lignin. Therefore, the use of spectral vegetation indices (constructed on a few bands) may not be sufficient to represent a specific biophysical parameter or biochemical proper-ties compared to the use of multiple bands (Optimal spectral analysis) or even all bands (Full spectral analysis) that would require a multivariable analysis which is able to better represent the vegetation property (Darvishzadeh et al., 2008) and explain the various sources of variability of the spectra.  To reduce the dimension of hyperspectral data and eliminate redundancy, hyper-spectral data mining and Dimension Reduction techniques are applied through two of the following approaches:  
 Feature Selection Methods (FSM) approach;  
 Full-Spectral-Analysis (FSA) approach.  
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The FSM (also known as optimal-spectral-analysis method) translates into the search for a subset of wavelengths appropriate to the original, while with the FSA method all wavelengths are used and it includes methods of characteristic extraction that create combinations of new functions different from the original wavelengths (function of the processing space), as the main components (Bajwa and Kulkarni, 2011). One method of spectral characteristics selection (FSM or FSA) aims at selecting “optimal” narrowbands with the objective of capturing those that contain the most informa-tion “sought” (the form of biotic stress), which is of fundamental importance to maximize the discrimination in the group (classification between healthy and diseased plants. However, the optimal bands obtained are not always “invariant” in the spectrum (in time and space), but can vary depending on the phenological stage, types of cultivars within the same species, climatic conditions, providing a different “spectral contribution” in different portions of the spectral signature, throughout the growth cycle. This is very im-portant in terms of design and optimal use of future multi-super spectral sensors with op-timized bandwidth (10-50 bands max), dedicated to the recognition and monitoring of dis-eases (Verrelst et al., 2012). There is no single approach for selecting the best narrowbands (Thenkabail et al., 2004) among the numerous statistical models of supervised or unsupervised classification methods, but there is an objective necessity to understand which is the most appropriate statistical method for the selection. The FSM methods of Multiple Linear Regression (MLR), such as the Stepwise 
Multiple Linear Regression (SMLR) represent the most widely used standard regressive procedure not only to establish relationship between data from the spectral signature and characteristics of interest of the crops, but also to select the wavelength correlated with the properties of the crop. However, given the high multicollinearity nature of hyperspectral data (the adja-cent bands are similar), the SMLR technique has been widely criticized as vulnerable be-cause of the problem of overfitting (Curran, 1989). Grossman et al. (1996), in effect, have shown that the bands selected by the SMLR method are not related to known absorption bands, as they were selected in similar studies. In other words, when the number of wa-velengths (p) is large compared to the number of samples of plant observations (n), the method tends to exaggerate “the goodness of fit” because of regression coefficients that 
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are not bounded and are highly distorted. This increases the risk of selecting irrelevant wavebands, simply because the noise model is related to chemical response of the chem-ical prediction model calibration. Multivariate statistical methods such as Principal Component Analysis, Principal 
Component regression (PCr), Partial Least Squares Regressionand Stepwise Discrimi-
nant Analysis, are FSA methods, where their main objective is to reduce the space of the original wavelengths within a space of a few latent variables (t<p), where the new va-riables, called principle components (pcs), pls factors or variable root, are simply the li-near combination of the original variables (Bajwa and Kulkarni, 2011). PCA and SDA are two non supervised methods. While in PCA, the minimum threshold of the variance is preset to determine the optimal number of pcs, the SDA clas-sification technique allows for the selction of variables that maximize the distinction be-tween classes. In addition, to identify the optimal parameters of discrimination between the different samples (better separation between classes), SDA uses multivariate meas-ures of separability, such asWilks’ Lambda, F-Value and average canonical correlation as criteria to identify the narrowbands. The supervised PLSR model is a powerful statistical tool used in chemometrics for predictive purposes and less used for the selection of vari-able importance. The FSM and FSA methods presented for the analysis of hyperspectral RS PDD data, demonstrate advantages and disadvantages. Given the redundancy, the collinearity and high-dimensional hyperspectral data, FSM models guarantee on the one hand, a careful selection of bands related to the bio-chemical/biophysical parameter (good interpretation, in terms of physiological importance associated with the selected wavelength), and on the other hand, the use of latent varia-ble transformation (principle components, factors etc.) that make better use of all the spectral information available (guaranteed by the FSA methods). Therefore, it can be concluded that both the FSA and FSM methods are equally valuable for RS PDD data analysis, and the need arises to be able to use them simulta-neously. Thenkabail et al. (2004), through a heuristic approach, combine the salient fea-tures of the two methods, by selecting “optimal” narrowbands related to biochemi-cal/biophysical characteristics. 
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The authors, pinpoint with their method i) bands with minimal correlation (to solve the problem of collinearity and the correlation between portions of the spectral signature, i.e. eliminate similar or redundant information), ii) those with the highest informative con-tribution and finally iii) the bands able to better identify a property among many others (that correlate better with a “specific feature”). These properties have been modeled through the analysis of correlation between all bands (LLR2), PCA and SDA. The three methods used provide complementary and additional information.  This combined heuristic approach has been successfully used to also discern the effect of nitrogen availabilty and to differentiate between different conditions of water re-gimes and discern plant diseases (Ray et al., 2010). Cluster Analysis is one of the most widely used techniques for exploratory data analysis, with applications that include image processing, voice processing, information retrieval and web applications.  Data mining in agriculture is a relatively new field of research and the use of clus-ter analysis has only just been introduced. Worner et al. (2013), apply the first neutral Kohonen Self-Organizing Map (SOM) algorithm for the prioritizing of risk of plant pests originating from the introduction of insect pests at territorial level. Other examples of applications in agriculture reported in the literature concern the use of the technique in the epidemiological field, in crop management, estimates of preci-pitation on crops and others. Clustering is defined as the partitioning of a set of data into groups (cluster), such that the points of the same group are similar, while the points of the different groups must be dissimilar (von Luxburg, 2007). This basic rule is critical, both for the design of new al-gorithms, as well as for the evaluation of the classification results. The Cluster validity provides tools to validate the quality of the results of cluster-ing algorithms applied, through the use of validity indices. In general, these are classified as internal indices, based on intrinsic information to the data and external indices based on prior knowledge about the data (Rendón et al., 2011). 
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regular matrix of 6x5 m and distributed in similar percentages (approximately 53 trees-from a total of 174 trees). Other varieties were also present, including 12 trees of the Cima di Meli cultivar and 1 tree of the Carolea cultivar. The varieties selected for the study were (cv.) Cellina di Nardò, an old variety present in almost all of the southern Apulia territory, and (cv) Leccino, a recently intro-duced variety (approximately 40 years old) mainly present in intensive orchards in various areas in Apulia. Both cultivars in the orchard were planted in the same year, and culti-vated under the same agronomic conditions.   
3.2.2  Plant sampling collection  For each of the varieties considered, 5 adult trees were selected for the study and chosen from adjacent rows as shown in Figure 3/2.     Fig. 3/2 - Localization of the plant subjects according to the cultivar.  
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So, for example, for the spectral signature acquired from the first leaf (defined 000000 by spectroradiometer) of sample 20150410_CN1L1B3, the spectral signature was codified as: “20150410_CN1L1B3_000000”. All the spectral signatures obtained were stored by the spectroradiometer management software in a proprietary format (.asd).   
3.2.4  Spectral pre-processing:Savitzky-Golay filter  The Hyperspectral RS data were appropriately processed before being analyzed by statistical models.Through the proprietary softwareViewSpecPro® ASD the raw data of the original reflectance were exported in a text format (American Standard Code for In-formation Interchange, ASCII) and imported into a routine Matlab R2011b (MathWorks, Inc., USA). The Matlab script has corrected and filtered parts of the spectral signature that showed distortions or presence of instrumental noise (related to the measure). In particu-lar, the “noise bands” close to near ultraviolet, were terminated (new range: 400-1830 nm) and in all the remaining bands a moving Savitzky-Golay with a frame size of 15 data points (2nd degree polynomial) was applied. Mathematically, the filter operates simply as a weighted sum of neighbouring val-ues as follows:  Equation 3/1 - Savitzky Golay polynom.   Where xj* as the new value, N is a normalizing coefficient, k is the number of neighbour values at each side of j and ch are pre-computed coefficients, that depends on the chosen polynomial order and degree. The routine in the end, corrected small spikes and offsets of misalignment of lin-ear reflectance (at 1000 nm), due to the different nature of the VIS and SWIR detectors that couple around that wavelength (ASD Technical Guide 3rd Ed.). 
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The data thus processed, for both varieties, were collected in matrices of reflec-tance values (dataset) in different wavelengths and saved in excel format.    
3.2.5  Dimensionality reduction of hyperspectral reflectance data  The statistical analyses of spectral reflectance data have been limited to subin-tervals of constant width of the original range which is considered noise-free (400-1830 nm). In this new spectral subdivision, which reduces the predictive variables (averages of the corresponding reflectance), the average value of each subinterval was considered the center of a narrowband with a width of around 10 nm. The reason for reducing the variables is justified by the strong collinear nature of hyperspectral data. Previous studies, in fact, have shown that the near wavelength often provides similar information, thus becoming redundant (Thenkabail et al., 2004). The choice of the width of the subintervals, instead, was subjected to spectral resolutions of RS hyperspectral sensors available today. In effect, the first space-borne hyperspectral sensor, Hyperion, on board the EO-1 platform, has a spectral range of 400-2500 nm, withbroad band of 10 nm (Thenkabail et al., 2004). Lastly, the problem of convergence of some multivariate algorithms applied to very large data sets, implemented in most of commercial statistical programs, is not to be underestimated. The 1430 original bands have been reduced to 143 new bands, each one with constant width of around 10 nm. The two datasets were structured in the following manner: the columns represent the predictor variables (averages of the spectral reflectance in the central band) and the lines represent the spectral signatures of infected or healthy leaves (cases or observa-tions). Basic statistical exploratory analysis, in conclusion, was performed on the two datasets to check the condition of normality (asymmetry and kurtosis) and the presence of outlier. For this purpose, the Grubbs test and Henze-Zirkler algorithm (Mecklin and Mundfrom, 2004) were selected and the relative routine was implemented in Matlab Soft-ware.   
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3.2.6  Statistical methods: selection of optimal spectral bands  In this paragraph two multivariate statistical methods will be presented. They are able to select narrow spectral bands, starting from the reflectance spectra of leaves in-fected by Xf, of the two varieties of olive trees under study (Cellina di Nardò and Leccino). For each of the two methods, one of which is proposed by the author, a brief description of the procedure follows and explains how it was applied in this study.   
3.2.6.1  Heuristic approach with combined models  For optimal narrowbands we mean a subgroup of narrowbands, of all bands of radiometric magnitude (reflectance in our case), that illustrate among themselves: i) minimum correlation; ii) high information content and iii) high discriminative power of a target characteristic (Thenkabail et al., 2004). These three properties are modelled in the following way:  

 Lambda-Lambda model (LLR2); 
 Principal Component Analysis model; 
 Stepwise Discriminant Analysis model.  The combined application of statistical models defines the Heuristic Approach model (HAM).  

LLR2model This model seeks the Pearson linear correlation (elevated to the square), r2, be-tween pairs of wavelengths ʎi and ʎj (related to reflectances R(ʎi) and R(ʎj)) (with i = 1, 2, p; j = 1, 2, p; with p = number of total wavelengths of the spectral signature). Every single ʎi wavelength “is correlated” with every other ʎj wavelength. Byit-erating this operation across the spectrum, a positive matrix (p x p) of r2 coefficients that have values between 0 and 1 is constructed, which are visible on a graph.  
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A very high correlation between the two wavelengths (high value of r2) indicates similar or redundant information. The lowest correlation areas instead (low value of r2), indicate that the wavelengths concerned contain only unique information (Thenkabail et al., 2004, Jain et al., 2007). The LLR2 model was implemented in Matlab R2011b (MathWorks, Inc., USA) us-ing the Statistics Toolbox library. Starting from the matrix of the correlation coefficient (squared) of the 143 narrowbands constructed (dimension 143x143), only the r2 values less than or equal to a post correlation threshold equal to 0.005 were considered for analyses, with a more conservative level of significance α (equal to 0.01). The reasons for the choice of the threshold value have been dictated by common sense, because they are not comparable with those available in literature (Jain et al., 2007, Ray et al., 2010).  
Principal Component Analysis model PCA is a multivariate statistical technique used in the exploratory analyses of data. The aim of PCA is: i) to extract the most important information from the data set; ii) to compress its original dimensions, allowing for a simplified view in the transformed level and iii) to highlight “hidden structures” in the original data (observations and variables) if present. PCA analysis can be conducted both through the data covariance matrix as well as through correlation (essentially normalized data). To use the covariance matrix, the predictor variables must have the same order of magnitude and no significant difference between their variances. If the data do not meet this condition, the use of the covariance matrix produces an increase of the variance and a greater allocation of weights, with con-sequent errors of the results. In this study, the PCA model was implemented in Matlab R2011b (MathWorks, Inc., USA) using the Fathom Toolbox library (Jones, 2014). The PCA analysis has been applied to the covariance matrix of the 143 reflec-tance media to obtain new variables able to explain the maximum information content of the originating data. In order to select the excellent bands that distinguish the leaves in-fected by Xf, only the principal components were maintained which explained more than 97% of the total variance. For these, the variables of loading that contributed with greater weight were selected. Within each main component extracted, therefore, all those bands 
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with the highest loading (in absolute value) were selected through a specific routine im-plemented in Matlab. The literature suggests a number of bands equal to five (Jain et al., 2007). However, in the examples, application of the method related more to macroscopic aspects of a discrimination process (classification). So for this study, which analyzes pre-cise asymptomatic leaves, it was decided to select all bands with the highest loading.  
Stepwise discriminant analysis model Discriminant Analysis is a multivariate statistical technique that is commonly used as a powerful classification approach for data mining, as it uses multiple quantitative at-tributes to discriminate single classification variables. A discriminant model, also known as a classification criterion, is determined by a measure of generalised squared distance. The classification criterion can be based on either the individual within-group covariance matrices or the pooled covariance matrix; it also accounts for the prior probabilities of the groups.  The Stepwise techniqueis a widely used method for the selection of variables in discriminant analysis. This method uses the combination of two algorithms: at each step (of analysis) it retains or eliminates a variable predictor, in function of the significance of their discriminatory capacity (using Wilks' Lambda, Pillai trace and average squared ca-nonical correlation). The SDA technique was used with success to distinguish plant species of differ-ent cultures through hyperspectral RS (Thenkabail et al., 2004). However, only the Wilks' Lambda values were indicative of the discriminatory power of spectral bands between the types of species. Several researchers have highlighted three basic problems inherent in the use of stepwise methodologies: i) incorrect degrees of freedom; ii) sampling error capitalization and iii) failure to select the best subset of variables of a given size. They presented harsh criticisms for applications of these techniques.  The discrimination power of variables can be evaluated by means of the Wilks' Lambda which is defined as:  
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Λ =  |W||W + B|   Equation 3/2 - Wilks' Lambda parameter.   where W is the within sum of squares and cross-products matrix and accounts for the av-erage within class variability; B is the between sum of squares and cross-products matrix and accounts for the average between class variability. The Wilks' Lambda is related to the likelihood ratio criterion and ranges between 0 and 1, where values close to 0 indicate that the class means are different. Consequently, variables with the lowest Wilks' Lambda values can be retained in the classification model as optimal variables for separating the considered classes. In light of these observations to determine the bands that maximize the discrimi-nation between the leaves (property required by the heuristic model), it was decided to evaluate the “discriminant power” directly by applying the Wilks' Lambda test (measure of separability between bands) starting from knowledge of the categorical variable, infected and healthy plants on the basis of laboratory results.  The Wilks' Lambda test was implemented in Matlab R2011b (MathWorks, Inc., USA) using the Classification Toolbox library, version4.2 (Ballabio and Consonni, 2013). The procedure was applied to the dataset of reflectance average of leaves and to the dichotomous vectors of the results, to identify the bands with the higher degree of separability between the originating bands (a conservative level of significance α equal to 0.01 was set for Λ). In light of these observations, to determine the bands that maximize the discrimi-nation between leaves (property required by the heuristic model), it was decided to evalu-ate the “discriminatory power” by directly applying Wilks' Lambda test (measure of sepa-rability between bands) starting from the knowledge of the categorical variable, infected and healthy trees, on the basis of laboratory results.  Wilks' Lambda test was conducted in Matlab using the Classification Toolbox version 4.2 library. 
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The procedure was applied to the average reflectance dataset of leaves and to the dichotomous vector results, to identify the bands with the higher degree of separability among the originating bands (for Λ a conservative level of significance α equal to 0.01 was set).   
3.2.6.2  Combined general purpose detection method: interval PCA Internal Cluster-

ing Validation (iPCA-ICV)  From a detailed analysis of the literature the following critical aspects emerge for the management and the processing of Hyperspectral RS Data:  
 data contains hundreds and even thousands of narrow and collinear wave-lengths: problem of convergence of multivariate algorithms;  
 the statistical methods employed for the early diagnosis of the disease are not general purpose: they are specific to the disease studied and are not gener-alizable to other crops and/or locations;  
 statistical methods for selecting variables such as supervised classifiers tend to lean towards overfitting; a major complexity of the model does not corre-spond to a “good” classification; a large amount of training data is necessary;  
 the supervised models are sensitive to anomalous data.  In light of what has emerged, an unsupervised general purpose detection method of hyperspectral data browsing with many collinear variables is proposed, which is able to search for clusters between spectral signatures and furnish a measure of separability, and provide a discrimination measure, for selection of bands with variable width, starting from reflectance spectral signatures of leaves infected by Xf and healthy leaves. This deals with an approach combined with the PCA and Cluster Analysis mutli-variate techniques which follow the following logical steps:  
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 Step-1: apply proximity measures to detect outliers starting from processed post data;  
 Step-2: subdivide the range of the hyperspectral data into a selected number of equal intervals; 
 Step-3: apply the PCA analysis in each interval. It is assumed that the maxi-mum information content is directly correlated to the maximum variance of the data. Retain the PCs that explain at least 80% of the variability of the total variation; 
 Step-4: construct a geometric relationship (Euclidean) between the predictor variables and observations, on the basis of vectors from laboratory results at the level of the most informative PCs; 
 Step-5: apply Internal Clustering Validation measures to select the “optimal” spectral bands.  All iPCA-ICV operating routines were developed and implemented in Matlab.  

iPCA-ICV model: step 1 - outlier identification In exploratory data analysis, a first step is to identify moderate or extreme “out-liers” that perhaps should receive special scrutiny and possible action. This is accom-plished by a ranking of data points according to “outlyingness”, which then also can be used to determine boundaries delineating a “middle half” or “middle 75%” of the data set. For example, many practical classification problems are imbalanced; i.e., at least one of the classes constitutes only a very small minority of the data. Proximities describe the similarity or dissimilarity between items or objects in a numerical way. Proximities are typically used for analyzing and visualizing hidden similar-ity structures by graphical displays or when looking for homogeneous clusters in a set of data (Van Mechelen et al., 2004). The proximity measure can for example be used to de-tect outliers. For each sample, the average squared proximity to the other samples in the class is calculated. The raw outlier measure is the number of samples divided by this av-erage proximity (that is, the raw outlier measure will be large if the squared average prox-imity is small). The median and absolute deviation are calculated for the raw outlier measures of each class, and the raw measure for each sample in that class is then nor-
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malized by subtracting the median from the raw score and then dividing by the absolute deviation. The outlyingness measure, described by Breimanand Cutler (Breiman, 2006), was implemented in Matlab R2011b (MathWorks, Inc., USA) using the Fathom Toolbox library (Jones, 2014). In general, a value greater than 10 indicates that it is in the pres-ence of an outlier. Unlike the analysis required by the heuristic model, the model pro-posed directly analyzed the post processed data sets, with no further verification on nor-mality of data.  
iPCA-ICV model: step 2-4 interval PCA In a previous paragraph, the salient principles of the PCA technique have already been summarily described. It is worth mentioning that the decomposition of the original X matrix by PCA results in two matrices known as scores and loadings. The scores (t) cor-respond to the coordinates of the projection of the samples onto each PC and those that have similar scores will cluster together. The loadings (p) describe the way in which the original variables are linearly combined to new variables and define the direction of the principal components (Abdi and Williams, 2010). The graphical visualization of the scores (scores plot) can be very informative as it reveals the inherent clustering, trends and outliers in a data matrix. The graphical visu-alization of the loadings (loadings plot) describes the influence of the measured variables in the model plane, and the relation among them. The direction of the measured variables corresponds to the observed patterns in the scores plot. The graphical output of the scores and loadings matrices can be visualized separately, as scores plot and loadings plot, or in the same graph as biplots. The biplot is a two-dimension data visualization method that overlays samples (scores) and variables (loadings) of a data matrix, highlighting the relations existing within samples, within variables and between samples and variables. It provides a useful tool of data analysis and leads to capturing the most relevant features in the multivariate data set (clustering and correlations among variables) (Bro and Smilde, 2014). For this part of the model development the Matlab iToolbox was used (Leardi and Nørgaard, 2004, Nørgaard, 2005), developed by the author for exploratory investigations 
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of data with many collinear variables (normal used in chemometrics), which make up an important part of the model. The iTools library applies PCA analysis (globally and locally), permits the subdivi-sion in subintervals and generates the graphs of the analysis results. Since this concerns the absorption spectra of chemical substances similar in complexity and structure to the nature of a spectral signature obtained by a spectroradi-ometer, it was considered useful to use the code already developed, making the appro-priate changes and corrections.  
iPCA-ICV model: step 5-Internal Clustering Validation Clustering, one of the most important unsupervised learning problems, is the task of dividing a set of objects into clusters such that objects within the same cluster are simi-lar while objects in different clusters are distinct.  Clustering validation, which evaluates the goodness of clustering results, has long been recognized as one of the vital issues essential to the success of clustering ap-plications. External clustering validation and internal clustering validation are the two main categories of clustering validation. Unlike external validation measures, which use exter-nal information not present in the data, internal validation measures only rely on informa-tion in the data. The internal measures evaluate the goodness of a clustering structure without respect to external information. As the goal of clustering is to make objects within the same cluster similar and objects in different clusters distinct, internal validation measures are often based on the following two criteria: compactness and separation.  

Compactness: it measures how closely related the objects in a cluster are. A group of measures evaluate cluster compactness based on variance. Lower variance in-dicates better compactness. Also, there are numerous measures estimate the cluster compactness based on distance, such as maximum or average pairwise distance, and maximum or average center-based distance.  
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Separation: It measures how distinct or well-separated a cluster is from other clusters. For example, the pairwise distances between cluster centers or the pairwise minimum distances between objects in different clusters are widely used as measures of separation.  Most indices consider both of the evaluation criteria (compactness and separa-tion) in the way of ratio or summation Index = (a * Separation) / (b * Compactness) where 
a and b are weights, or differences. One category of internal indexes is based on these properties, and examples of this type are given by Dunn (1973), Davies and Bouldin (1979), Caliński and Harabasz (1974) and Silhouette index (Rousseeuw, 1987). Two indices were considered in the iPCA-ICV model as evaluation parameters of the validity of the grouping results between infected and healthy leaves within each sub-interval (narrowband): Calinski-Harabasz index and Silhouette index. The Calinski-Harabasz index (CH) evaluates the cluster validity based on the av-erage between and within cluster sum of squares. Assumes positive integer greater than 1. Two groups are well separated if very high values are assumed: the higher the value, the more obvious is separation and unity between the two groups. The Silhouette index (S) validates the clustering performance based on the pair-wise difference of between and within-cluster distances. In addition, the optimal cluster number is determined by maximizing the value of this index. Assumes values including between -1 and 1. The Silhouette value ranges from -1 to 1. A high Silhouette value indi-cates that is well-matched to its own cluster, and poorly-matched to neighbouring clus-ters. If most points have a high Silhouette value, then the clustering solution is appropri-ate. If many points have a low or negative Silhouette value, then the clustering solution may have either too many or too few clusters. The Silhouette clustering evaluation crite-rion can be used with any distance metric. The two internal indices, CH and S were calculated with Matlab R2011b (Math-Works, Inc., USA) using the Cluster Validity Analysis Platform library - CVAP (Wang et al., 2009).  
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3.2.6.3 Heuristic Approach Model vs interval PCA Internal Clustering Validation  Classification among groups of infected leaves asymtomatic and healthy leaves, for both varieties of olive trees (with different susceptibility), on the basis of optimal band spectral profile selected from HAM and iPCA-ICV models, constitutes an important aspect of the research, given the different natures of the two classification approaches. Therefore, to provide an objective assessment of performance a method of Gen-eralised Discriminant Analysis based on a dissimilarity matrix to test for differences in prior groups of multivariate observations has been applied. This consists of using classi-cal multidimensional scaling to obtain a low dimensional representation of the data for which Euclidean distances approximate the original dissimilarities. The scores in this rep-resentation are used in discriminant analysis for groups giving tests based on the canoni-cal correlations (Anderson and Robinson, 2003). Classification is then achieved in the usual manner of discriminant analysis. Namely, we consider the Euclidean distance from the new point to each of the group centroids in the canonical space and classify where this function is minimised. A measure of the apparent error rate for this classification method has been obtained using the leave-one-out cross-validation method (Lachenbruch and Mickey, 1968), through a confusion matrix. The strategy is to leave one of the observations out of the analysis, then allocate that observation into one of the groups, as if it were a “new” observation, as described above. The proportion of incorrect allocations is then a measure of the error. The GDA-LOOCV classification process was calculated with Matlab R2011b (MathWorks, Inc., USA) using the Fathom Toolbox library (Jones, 2014).      
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3.3  Results  This paragraph presents the results in the following sequence:   
3.3.1  Laboratory analysis  Table 3/1 shows the overall statistics of the field and laboratory results, related to the variety, the day of sampling, the number of trees selected, number of branches sam-pled, the number of single samples extracted (small sprigs with 2-5 leaves) and the infec-tion rate obtained by the outcome of the laboratory analysis of Xf.   Table 3/1 - Statistics related to samples taken from the field and the related tests for the assessment of Xf.  

 

Variety DoY Trees [count] Branches [count] Single Samples [count] Percentage [%]      Xf infected Non infected Cellina di Nardò 103 5 60 180 85.7 14.3 Leccino 105 5 60 180 19.1 80.9 Total  10 120 360      
3.3.2  Comparison of the cultivars: infection rate  The laboratory results obtained, for the total number of samples (360), were compared statistically using the two cultivars, utilizing One Way ANOVA Staistica 7 (Stat-Soft, Inc., USA). The evidence of the difference in the infection of the two varieties is represented in Figure 3/7. Apparently, the Cellina di Nardò variety appears to be more prone to Xf infection. Future research will surely provide answers; however, at the end of this research, this is 
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of Leccino leaves. In other words, only 585 spectra of Leccino were analyzed, of which 450 resulted negative (76.9%) and 135 positive (23.1%). It is necessary to clarify that for each single sample (basal, medium or apical part), only about 90% of the total plant ma-terial was tested for Xf (sum of 90% of the leaves present). Thereis no 1 to 1 match be-tween the spectral signature of a single leaf and the respective laboratory results. It is reasonable to assume, given the high percentage of leaves tested for eachbranch (more than 90%), that the “infected” and “notinfected” property of the single sample is the same for every single leaf attached to it. Despite a small error, it is assumed that the result of the outcome of the group of leaves tested for Xf is the same for all leaves that make up the single sample. From a statistical point of view this does not involve great loss of in-formation seeing as there is a large number of reflectance spectra available. Table 3/2 reports the number of spectral signatures acquired in the field (DoY 103 e DoY 105) and the respective leaves of the two laboratory processed varieties.  Table 3/2 - Spectral signatures and related leaves tested for Xf in the sampling period.  
 

Variety DoY Spectral signature [count] Leaf [count]    Xf infected Non infected Cellina di Nardò 103 795 681 114 Leccino 105 585 135 450  Total  
1380     The spectral curve obtained at leaf level of the two species of olive trees wereac-quired under controlled conditions (light and temperature). This has limited the reflec-tances to be excluded from the analysis of the models, however, their pre-processing is thus required as described in paragraph 3.2.3.  Figure 3/8 shows the variability detected by the spectral reflectances of 795 leaves from Cellina di Nardò (A) and and 585 leaves from Leccino (B). 
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 Fig. 3/8 - Field hyperspectral measurement (n=1380): (cv.) Cellina di Nardò (A) and (cv.) Leccino (B). 
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For both varieties, the lowest variation is found in the visible region (VIS) (~ 400-700 nm), especially in blue (~450-495 nm), red (~650-680 nm) and in the infrared region of shortwave (SWIR) for the Leccino variety (~1300-1830 nm). Light variation, instead, occurs in the green region (~520-610 nm), probably linked to the presence of younger leaves. In VIS, the reflectance varies greatly, towards the near infrared region (NIR) (~800-1300 nm), as a result of light diffusion with in the internal structure of the leaf. The red-edge area (~680-730 nm) is quite narrow for both species. Two water absorption regions are evident in the NIR around 970 nm and 1170 nm. Moving to the longest wavelengths (SWIR), two deep absorption characteristics around 1449 nm and 1966 nm are observed, mainly caused by water that is still in the leaf, and to a lesser extent, by ligno cellulosic compounds in the mesophyll (their absorp-tion characteristics are identified in this region). The difference between the two spectra is clear, both in shape and in dispersion (especially in NIR) but above all it is worth highlighting the “apparently healthy” nature of the spectra obtained (asymptomatic, in the presence of Xf infection).   
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3.3.4  Selection of optimal spectral bands through Heuristic Approach model 
(HAM): LLR2, PCA and Wilks' Lambda methods  All Matlab libraries that implement statistical methods contained in the HAM mod-el have been implemented in one main code. A logical intersection condition was adopted in the developed code to select the optimal narrowbands, from those with low correlation, greater information and high dis-criminative potential. This choice appeared to be the most obvious, although the literature has adopted the solution of “increased occurrence” bands (Thenkabail et al., 2004, Jain et al., 2007, Ray et al., 2010). Although it is shareable because it is linked to the low flexibility of soft-ware statistics adopted by the authors, this approach highlights inconsistencies on the precision that they then impose on the minimum/maximum selection threshold of the “property” of the relationship, information or discrimination applied by three of the HAM model methods. The HAM model, in the Matlab framework, was carried out with the following set parameters:  number of sub-intervals equal to 143, maximum variance explained by prin-cipal components equal to 97% (of total variability), maximum correlation allowed be-tween the variables equal to 0.005 (p value < 0.01) and the separation ability of leaves in-fected or not infected by Xf in the 143 narrowband range, with a < 0.01 p value. Even though the 143 narrowbands showed a normal univariate distribution (Sha-piro-Wilk test), the Henze-Zirkler test demonstrated that the Cellina di Nardò and Leccino datasets are not distributed normally. The HAM procedure, however,was performed without further recommendations (Ray et al., 2010, Stellacci et al., 2016, Jain et al., 2007, Thenkabail et al., 2004).  Figure 3/9, shows the matrix of the combination of the 143 bands, generated by the Matlab code, with the lowest significant correlation (almost black sections), or mini-mum redundancy of information, for both varieties. 
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(a
     Fig. 3/9 - Correlation matrix LLR2, relative to both varieties, in function with the 143 narrowbands: (a) Cellina di Nardò and (b) Leccino.   The unique matrices of the 143 bands are instead reported in Figure 3/10 for both varieties. 

(a) 
(b) 
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  Fig. 3/10 - UNIQUE correlation matrix (LLR2 ), relative to both varieties, in funzione with the 143 narrow-bands: (a) Cellina di Nardò and (b) Leccino.   The section in cyan represents the combination of bands with lowest correlation coefficient squared (r2< 0.005, p value < 0.01) or unique bands, compared with those of higher correlation (highlighted in blue). The two varieties have different unique bands. With regards to the PCA analyses, for both varieties, the threshold set to 97% retained the first two or three main components (PC1, PC2 and PC3) which explains the cumula-

(a) 
(b) 
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tive percentage of the total tax variance. At the time of acquisition of the spectral reflec-tance, the olive leaves appeared to be apparently healthy. Therefore, the variability be-tween the state of infection and non infection was minimum (it must be noted that the sampling design was meant to maximize the effect of early recognition of Xf). This justi-fies the retention of the noisier principal components in the code (e.g. PC3 or PC4). Regarding the separation capacity among the 143 narrowbands defined, imple-mented by the Wilks' Lambda tests Figure 3/11 further highlights the difference between the two varieties.  
 Fig. 3/11 - Spectrum of separable potentials between healthy and infected leaves of both varieties: (a) Cel-lina di Nardò and (b) Leccino. 

(a) 
(b) 
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The two graphs generated by the program demonstrate areas of the spectrum with different discriminating power. While for Cellina di Nardò the SWIR bands appear to prevail (area of water absorption, lignin and cellulose, mainly), Leccino tends to mainly differentiate healthy and infected leaves in the visible region. The excellent narrowbands selected for early detection of Xf (synthesis and over-lapping patterns of LLR2, PCA and Wilks' Lambda), obtained by the implementaion of HAM; are reported in Figure 3/12 for both varieties.  
  Fig. 3/12 - Excellent narrowbands selected from HAM model to select leaves infected or not infected by Xf, superimposed on the relative spectral signature average: (a) Cellina di Nardò and (b) Leccino. 

(a) 
(b) 
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The bars in blue represent the bands that are capable of better separating the disease, those in green are the bands with the most information and the brown bars represent the bands that are non redundant. The excellent bands are those represented by the superposition of the three ef-fects. According to the HAM model, Xf can be distinguished through the spectral reflec-tance of the leaves, in the narrowbands (10 nm) centered at 405, 535.5, 545.5, 665.5, 695.5, 1535.5, 1605.5, 1645.5, 1745.5, 1805.5 nm, for Cellina di Nardò and 705.5, 805.5 nm for the Leccino variety. The two varieties show different conditions of Xf detection. It is only in the vicinity of the red-edge that they show similar conditions of recognition.    
3.3.5  Selection of optimal spectral bands through a combined general purpose 
detection method: iPCA-ICV  The general purpose detection model, iPCA-ICV, proposed in this research, al-lows for the outlier management, and to create subdivision conditions from the original spectrum in subintervals in the desired width, to apply PCA to each of them, to constructa Euclidean metric and apply an evaluation measure on groupings (infected and non in-fected categories). Many of these actions have been implemented in the model from libraries, others have been improved and some entirely developed according to need. In particular, for a consistency in the results a portion of the code that implements the PCA has been aligned with the theoretical basis (Legendre and Legendre, 1998) implemented in the li-brary Fathom (Jones, 2014). Additional minor adjustments concerned improvements in the management of the input dataset formats and in the graphical display of some typical parameters of the PCA (explanation of variance etc.). A Euclidean metric was developed and integrated in the iTools model to evaluate the centroids of the two groups (infected and non infected) and to calculate the classifica-tion distance not available in the library.  The iPCA-ICV model, in the Matlab framework, was executed following the fol-lowing parameters: number of subintervals equal to 143 and an outlyingness threshold of 
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5 (conservative conditions compared to 10, proposed in the literature. Compare para-graph 3.2.6.2).  Figure 3/13, shows the effect of outlyingness function on datasets of both varie-ties with a threshold equal to 5 (displayed in blue horizontally).     Fig. 3/13 - Selection of the observations (spectral signatures of the leaves) deemed “extreme cases”, rela-tive to the two varieties, through the dissimilarity function. The observations that exceed 5 are dis-carded from the model: (a) Cellina di Nardò and (b) Leccino. 

(a) 
(b) 
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The spectral reflectance variabilty highlighted in paragraph 3.3.3 is reflected from a point of view of outliers. Once put into action,for both varieties, the iPCA-ICV, generates, in the processed level of the principal components PC1 - PC2, the outputs of an global analysis (less im-portant), conducted across the reflectance spectrum and a local analysis conducted in all of the 143 subintervals of the average reflectance (Figure 3/14).     Fig. 3/14 - Global and local analyses of PCA relative to the Leccino variety. 
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From the table two groupings (classes of presence of pathogen) in red (leaves in-fected by Xf) and green (non infected leaves) are deduced. Two blue star shaped points identify the centroid of the two classes, which pro-vide through their distance, a measure of the separation between the groups. At this point the function of PCA at local level is clear. In a very narrow range (10 nm), in which the reflectance collinearity is strong, PCA naturally creates two groups that explain almost 100% of the total variance of the range. In the HAM method this translated into a single value: the average reflectance value. The availabilty of having two inherent clusters, strongly linked to the presence of in-fection (vectors of laboratory results), permits the application of methods and techniques of cluster analysis. In this case, the algorithm that groups the best data is not sought (e.g. k-means) but the separation condition imposed by health of the leaves is taken advantage of. The collinearity associated with each interval is related to the section of the spec-tral signature typical to the variety.  The principal components levels generated by the model can highlight this strong relationship, as can clearly be seen from the charts of the scores. It is easy to infer that the narrowbands capable of early detection of Xf are deduced from analysis of internal in-dices.  Calinski-Harabasz index and Silhouette index average, applied to groupings iden-tified by PCA in each range (Figure 3/15).  
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  Fig. 3/15 - Internal indices overlap the average spectral signature used to identify the excellent bands re-lated to the Cellina di Nardò variety: (a) Calinski-Harabasz index, (b) Silhouette index.   The best narrowbands for Xf detection are calculated from iPCA-ICV, on the ba-sis of an objective function that extracts the maximum for the Calinski-Harabasz envelope index (high-performing in terms of Separation). 

(a) 
(b) 
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According to the iPCA-ICV model, Xf can be distinguished through spectral ref-lectance of the olive leaf, in the bands (751-760 nm), (901-910 nm), (971-980 nm), (1191-1200 nm), (1381-1390 nm), (1601-1610 nm), (1821-1830 nm), for Cellina di Nardò and in the bands (451-460 nm), (481-490 nm), (671-680 nm), (721-730 nm), (1141-1150 nm), (1321-1330 nm), (1451-1460 nm), (1571-1580 nm), (1721-1730 nm) for the Leccino varie-ty. Figure 3/16 compares the CH index for both varieties.  
 

 Fig. 3/16 - Spectrum of Calinski-Harabasz index related to both varieties superimposed on the spectral sig-natures: (a) Cellina di Nardò and (b) Leccino. 

(a) 
(b) 
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The two varieties show different conditions for Xf detection, combined in some ranges. In relative terms, the smallest value of the CH index calculated for Cellina di Nardò (approx. 40) is evaluated at about 10 times more compared to the biggest value for Leccino (approx. 3.5). In Figure 3/17 the average Silhouette index between the two varie-ties is compared.  
  Fig. 3/17 - Spectrum of average Silhouette index related to both varities superimposed on the spectral sig-natures: (a) Cellina di Nardò and (b) Leccino.  The two spectra are comparable in the distant part of SWIR.  

(a) 
(b) 
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3.3.5  Best overall model: optimal band identification  The results of the Generalized Discriminant Analysis based on canonical correla-tion, GDA-LOOCV (through a measurement of error such as leave-one-out cross-
validation), for both methods and both varieties, are reported in Table 3/3 and 3/4.   Table 3/3 - Confusion matrix derived from GDA-LOOCV applied to the bands selected through the (i) HAM (LLR2, PCA, Wilks' Lambda) and (ii) iPCA-ICV.  Generalized Discriminant Analysis Leave-One-Out Cross-Validation-GDA-LOOCV Confusion Matrix (%)   HAM iPCA-ICV 

Xf infected Non infected Xf infected Non infected Cellina di Nardò Xf infected 58.1 41.9 76.2 23.8 Non infected 45.9 54.1 22.9 77.1 Leccino Xf infected 10.2 89.8 10.2 89.8 Non infected 74.4 25.6 74.4 25.6   Table 3/4 - Cross-validation error rates (%) calculated through a confusion matrix derived from GDA-LOOCV applied to the bands selected through the (i) HAM (LLR2, PCA, Wilks' Lambda) and (ii) iPCA-ICV. The number of bands used.  Generalized Discriminant Analysis Leave-One-Out Cross-Validation-GDA-LOOCV  HAM (LLR2, PCA, Wilks' Lambda) iPCA-ICV Cellina di Nardò 42.27 (10) 23.70 (7) Leccino 22.02 (2) 22.02 (9)  
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The results of the GDA-LOOCV analyses (Table 3/4) show, in general, a rather high Error Rate. This may be due to the hypothesis of work: there is no 1 to 1 correspon-dence among the spectral signature of single leaves and the respective laboratory result (compare paragraph 3.3.3). In general, the maximum discriminating power was obtained from the iPCA-ICV model proposed for both varieties (error rate equal to 23.7% and 22.02% respectively for cv. Cellina di Nardò and cv. Leccino). To support the performance of the results shown in the table, a discriminant anal-ysis was conducted on the narrowbands selected from two models, for each variety. The discrimination results are shown in Figure 3/18 and are quantified by Wilks' Lambda (Ta-ble 3/5).   Fig. 3/18 - Canonical Discriminant Analysis applied to the bands selected by the two models: (1a) HAM on Cellina di Nardò, (2a) HAM on Leccino, (1b) iPCA-ICV on Cellina di Nardò, (2b) iPCA-ICV on Leccino. 
(1a) (1b) (2a) (2b) 
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Table 3/5 - Wilks' Lambda calculated through Canonical Discriminant Analysis applied to the bands se-lected through the (i) HAM (LLR2, PCA, Wilks' Lambda) and (ii) iPCA-ICV. The number of bands used.  
 HAM (LLR2, PCA, Wilks' Lambda) iPCA-ICV  Wilks' Lambda  Cellina di Nardò 0.9727 (10) 0.7874(7) Leccino 0.6718(2) 0.6634(9)      
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3.4  Conclusions  The problem of dimensionality reduction of hyperspectral data, selecting a subset of bands from the signal, is a key aspect for efficiently and completely capitalizing on the potential of hyperspectral data. An important aspect of this processis to maintain all the key wavelengths, that contain significant information without losing the discriminative power, downlining the sta-tistical method which it processes (Thenkabail et al., 2012). Choosing the right data is therefore, an important aspect of Data Mining. The research conducted in this direction has shown that the early symptoms of the Xylella fastidiosa infection can be detected using hyperspectral reflectance measure-ments acquired from olive leaves. The identification of the presence of the pathogen, however, cannot be generalized between the different varieties. The bands used in this research were found to depend on the model and on the variety.  For the Leccino variety, two different methodologies selected bands that correlate in proximity in the blue area, the red and SWIR from a distance. In particular, the closest bands are found in the range comprised between 660 and 690 nm and 1720 and 1750 nm.  For the Cellina variety, the methods selected bands that overlapless, the heuristic method, HAM, identified a band in the red-edge and one in the immediate plateau (805 nm), while the proposed iPCA-ICV method was able to reveal all the water absorption le-vels (971-980 nm, 1191-1200 nm and 1381-1390 nm) further with in the SWIR spectrum. The bands selected with both methods showed coherence with the level of infec-tion detected in the asymptomatic leaves of the two varieties (19.1% in Leccino and 85.7% in Cellina di Nardò). A lower level of infection, probably, was expressed, from the spectral reflectance aspect, through disorders mainly in the visible region (at the turn of the peaks of chloro-phyll absorption in the blue and red regions); levels of higher infection, instead, that mani-fested in the more susceptible variety, highlight a condition closer to the manifestation of the symptoms, expressed through increasedloss of water content of the plant, together with structural changes of the leaf (SWIR region according to Thenkabail et al., 2014).  
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The iPCA-ICV method proposed was high-performing compared to the heuristic model selected from the literature (HAM), for both varieties, also for its characteristic of supplying n easily interpretable graphical representation and coherence with the devel-opment of the symptoms of the disease. With regards to the HAM model, unstructured with respect to the spectral signa-ture (to minimize the complexity of the data), iPCA-ICV follows through values taken on from Calinski-Harabasz index or from Silhouette index the maximum difference between classes (distance), if it exists, through the natural separation between gruops in the spec-trum (infected and non infected for every narrowband). The separation value and that of the compactness of the indices showed to be different and directly proportional to the level of infection found in the two cultivars stu-died. It would be an advantage to be able to select specific bands for two reasons: i) it helps to select the wavelength more correlated to the phenomena which the object of the study and ii) allows for the development strategies to select the wavelengths for the reali-zation of specific sensors, such as those on board new generation satellites or UAV, in particular in the application of precision agriculture.  
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CONCLUSIONS   The Mediterranean area is home to a wide biodiversity of olive plants which must be protected for social, economic and environmental reasons from potential genetic erosion caused by the recent phytosanitary emergency of Xylella fastidiosa, recently introduced in Apulia, South of Italy. Indeed, this pathogen is severely affecting olive trees with inestimable impact for the whole Mediterranean region. The lack of direct control measures emphasizes the need for early surveillance and detection of the infection on a large scale. This approach will support the official programme of NPPO in the rapid adoption of quarantine measures such as the eradication of infected trees for preventing the spread of the pathogen in virgin areas. To this aim the activities conducted in this research have allowed for the evaluation of the potentiality of remote and proximal sensing in early surveillance and detection of Xf. In particular, the focus was on the use of tools, to assess plant health of the olive trees implicated in the disease, and to accurately identify the suspect trees.  Among the different methodologies, in the present work, assisted photointerpretation was employed as a rapid method for recognizing visible symptoms of OQDS in olive trees and a study was conducted on the analysis of spectral data for early detection of the infection in specific portions of the spectral signature so as to choose or define sensors (multispectral and/or hyperspectral) aimed at early detection of the presence of infection through the use of remote platforms (aircraft, UAV). Given the state of emergency, assisted photointerpretation was the primary tool used to begin to provide information, in a short period of time about the potential presence of symptoms attributable to OQDS in areas still considered harmless. The use 
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of images sospatially defined and strengthened by the presence of the NIR band, greatly facilitated the identification of signs of OQDS starting from key photo types, well correlated to the expression of symptoms of the disease. The recognition process in the outbreak in Trepuzzi has allowed for the classification of about 450 specimens of olive trees, specifying the class of gravity of OQDS. Data analyses shows that 430 olive trees were classified in the map as trees with OQDS symptoms. Of these, in about 20% of the trees, the presence of Xf was confirmed with light to medium gravity; in the rest of the 80% of trees signs of deterioration caused by (i) diseases such as leprosy, (ii) shortage/lack of agronomic practices, (iii) burning by fire and, finally, (iv) the presence of dead trees, were detected. In all these cases the depletion of the foliage, detected through assisted photointerpretation, made it difficult to distinguish between trees that were symptomatic of OQDS and others. The presence of Xf in the plants implicated in the study was supported by laboratory tests. Moreover, the comparison with the previous results of monitoring, showed that OQDS trees identified in the hotbed, coincided in part with plants that tested positive for the bacteria (especially for the high gravity condition).  Therefore, with the photointerpretation technique, olive growing areas that are healthy can be quickly distinguished from areas that are suspect or compromised, limiting to the latter, diagnostic investigations to be carried out in the field with visual surveys and any sampling and analysis in the laboratory. In this way precise monitoring can be adopted by directing inspections at suspect sites on plants well-georeferenced, allowing for the optimization of both human and financial resources. Moreover, photointerpretation carried out on images acquired in different periods can: (i) provided for comprehensive picture on the evolution of space-time of incidence and severity of the infection and (ii) can provide information on plants to be sampled even in periods subsequent to pruning on the basis of symptoms photo interpreted before pruning. Because of the state of emergency prevailing in the Phytosanitary Service of the Apulia Region, photointerpretation developed in this work has permitted the quick detection, remotely and from geolocation, photo of the types of trees that show symptoms of drying (OQDS-similar), there by becoming to valid tool in official monitoring of Xf. In 
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greatly facilitating additions to the work of the inspectors in the field, photointerpretation has supported the territorial epidemiological analysis on the infection for the implementation of appropriate containment measures. The problem of dimensionality reduction of hyperspectral data, selecting a subset of bands from the signal, is a key aspect for efficiently and completely capitalizing on the potential of hyperspectral data. An important aspect of this process is to maintain all the key wavelengths, that contain significant information without losing the discriminative power, downlining the statistical method which it processes (Thenkabail et al., 2012). Choosing the right data is therefore, an important aspect of Data Mining. The research conducted in this direction has shown that the early symptoms of the Xylella fastidiosa infection can be detected using hyperspectral reflectance measurements acquired from olive leaves. The identification of the presence of the pathogen, however, cannot be generalized between the different varieties. The bands used in this research were found to depend on the model and on the variety.  For the Leccino variety, two different methodologies selected bands that correlate in proximity in the blue area, the red and SWIR from a distance. In particular, the closest bands are found in the range comprised between 660 and 690 nm and 1720 and 1750 nm.  For the Cellina variety, the methods selected bands that overlapless, the heuristic method, HAM, identified a band in the red-edge and one in the immediate plateau (805 nm), while the proposed iPCA-ICV method was able to reveal all the water absorption levels (971-980 nm, 1191-1200 nm and 1381-1390 nm) further with in the SWIR spectrum. The bands selected with both methods showed coherence with the level of infection detected in the asymptomatic leaves of the two varieties (19.1% in Leccino and 85.7% in Cellina di Nardò). A lower level of infection, probably, was expressed, from the spectral reflectance aspect, through disorders mainly in the visible region (at the turn of the peaks of chlorophyll absorption in the blue and red regions); levels of higher infection, instead, that manifested in the more susceptible variety, highlight a condition closer to the manifestation of the symptoms, expressed through increasedloss of water content of the 
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plant, together with structural changes of the leaf (SWIR region according to Thenkabail et al., 2014).  The iPCA-ICV method proposed, show edit was high-performing compared to the heuristic model selected from the literature (HAM), for both varieties, also for its characteristic of supplying an easily interpretable graphical representation and coherence with the development of the symptoms of the disease. With regards to the HAM model, unstructured with respect to the spectral signature (to minimize the complexity of the data), iPCA-ICV follows through values taken on from Calinski-Harabasz index or from Silhouette index the maximum difference between classes (distance), if it exists, through the natural separation between gruops in the spectrum (infected and non infected for every narrowband). The separation value and that of the compactness of the indices showed to be different and directly proportional to the level of infection found in the two cultivars studied. It would be an advantage to be able to select specific bands for two reasons: i) it helps to select the wavelength more correlated to the phenomena which the object of the study and ii) allows for the development strategies to select the wavelengths for the realization of specific sensors, such as those on board new generation satellites or UAV, in particular in the application of precision agriculture.    
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Abstract

The Olive Quick Decline caused by Xylella fastidiosa in Italy is se-
riously threatening olive trees.
In this study remote sensing was applied for the identification and 
early detection of infected trees which should be eradicated. The 
photo interpretation of aerial images of high geometrical resolution 
was used to recognize and classify about 20% symptomatic/infected 
trees. Moreover, the early identification of Xylella infection was 
achieved by using hyperspectral reflectance data of leaf samples 
from infected olive cvs. Cellina di Nardò (the most susceptible) and Leccino (the less susceptible). In order to locate the optimal bands 
that identify the infection from the earliest stages of development, a 
heuristic approach from literature (LLR2, PCA and Wilk’s Lambda) 
and a new combined general purpose detection method (interval 
PCA Internal Clustering Validation, iPCA-ICV) were compared. 
Using both methods, it was possible to distinguish leaves infected 
by Xylella fastidiosa and to select specific narrow bands. In par ti-
cular, both methods agree with the VIS regions (close to blue and to 
red) and with the SWIR, as regions of the spectrum with greater em-
phasis on the discrimination of Leccino (451-490 nm, 671-680 nm, 
1451-1460 nm, 1571-1580 nm, 1721-1730 nm), the variety that is 
less affected by the infection (23.1%), while, for Cellina (85.7% of 
positive findings), the two methods produced contrasting results. 
iPCA-ICV mainly identifies the water absorption bands around 970, 
1200 and 1400 nm, compared to the reference method that identi-
fies the bands around 705 and 805 nm, as determiners in the iden-
tification of Xylella. In par ticular, and though to a lesser extent, the 
proposed method identified discriminating bands in the vicinity of 
the water absorption peaks for the less susceptible variety (appro-
xiamately at 1200 nm).
The best discriminatory power was obtained from iPCA-ICV for both 
varieties (error rates from 23.7% and from 22.02% respectively for 
cv. Cellina di Nardò and cv. Leccino), compared to the reference 
method (error rates equal to 42.47% and 22.02%).
The identification of critical regions of the spectrum, thus, repre-
sents the first logical step towards the development of robust stress 
indicators based on hyperspectral images. The techniques for band 
selection, fur thermore, are extremely useful, not only to improve the 
power of predictive models, but also for the interpretation of data or 
the design of specific sensors (Pest Disease Detection).
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