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Abstract 

The work investigates the behaviour of a deep excavation which forms part of a 100 m wide 

basement excavation located in Boston, Massachusetts, USA. Two different types of tied back 

retaining walls were used, i.e. a soldier pile tremie concrete wall and a traditional reinforced 

concrete diaphragm wall. The glacial marine clay (Boston Blue Clay) deposit was modelled with 

the Kinematic Hardening Model for Structured soils (KHSM), its reduced bubble model version 

(KHM) and the well-known Modified Cam Clay (MCC) model. The difference between the models 

is the prediction of softening with loss of structure as plastic strains occur. The values of the 

optimised soil parameters used in the simulations were obtained by a careful calibration of the 

models against a range of advanced laboratory and field tests performed at the site. Comparison of 

the available horizontal wall movements monitoring data with the undrained finite element 

predictions revealed a very satisfactory agreement when the KHM was used in conjunction with a 

small-strain elastic formulation. The relatively small increase in lateral wall deflection in the 

presence of initial structure accounted for in the KHSM confirms that the small-strain properties of 

the soil control the magnitude of excavation deformations. Finally, using a coupled-consolidation 

analysis and the KHSM, an excellent agreement between the observed and measured pore water 

pressures and ground movements of the excavation base was achieved. 

 

CE Database subject headings: 

Excavation; Constitutive models; Finite element method; Diaphragm wall; Instrumentation. 
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Introduction 

In recent years the building engineering industry has become increasingly involved with urban 

environment developments. The limited availability of land for construction in both developed and 

developing regions of the world has seen an increase in urban regeneration projects as well as 

construction of various types of infrastructure such as deep basements, subways and service tunnels. 

For a safely and timely completion of deep excavations, the use of appropriate retaining wall and 

bracing systems is usually required to minimise excessive ground movements. Successful control of 

movements during excavation works is often as imperative as assurance against collapse. As a 

consequence, limiting values of deformation should be carefully prescribed in accordance to the 

serviceability limit state. However, excessive restrictions may well lead to uneconomic designs of 

deep excavations. Two techniques are commonly applied to evaluate the anticipated wall 

deflections and ground settlements. These involve either an interpolation from published empirical 

data sets (e.g. Peck, 1969; Clough and O’Rourke, 1990; Puller, 2003) or analytical and numerical 

methods such as finite element (FE) analyses (e.g. Chang and Duncan, 1970; Burland and Hancock, 

1977; Simpson et al., 1979; Powrie and Batten, 2000). 

Numerical methods used in conjunction with laboratory and field data are nowadays standard 

practice in the research community and geotechnical engineering profession. As an example, the 

top-down construction of a seven-storey underground parking garage at Post Office Square in 

Boston was modelled by Whittle et al. (1993) using coupled FE simulations implementing the 

advanced MIT-E3 model for Boston Blue Clay (BBC). Subsequently, Hashash and Whittle (1996) 

performed a series of non-linear FE analyses to investigate the effects of wall embedment depth, 

support conditions and stress-history profile on the undrained deformations around a braced 

diaphragm wall in a deep clay deposit. Their work provided useful design charts for the estimation 

of ground movements as function of the excavation depth and support conditions. Zdravkovic et al. 

(2005) modelled a deep square excavation at Moorgate station on the Crossrail route in London 

using the Imperial College Finite Element Program (ICFEP). The data used for the calibration of the 
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numerical model were based on the work by Addenbrooke et al. (1997), who undertook small-strain 

triaxial testing on samples of London Clay from the St James’s Park area during the tunnelling for 

the Jubilee Line underground extension. Recently, Nikolinakou et al. (2011) studied the 

performance of a 20 m deep excavation in Berlin Sand using the generalised MIT-S1 model 

calibrated against field dynamic penetration test data, while Whittle et al. (2015) investigated an 18 

m excavation in Boston Blue Clay required for the construction of the Silverline Courthouse Station 

in South Boston using the MIT-E3 model. 

The paper investigates the performance of a 14.6 m deep basement excavation located in Boston 

using an advanced constitutive model for natural clays formulated within the framework of 

kinematic hardening plasticity (Rouainia and Muir Wood, 2000) and implemented as a user defined 

model in a FE procedure (PLAXIS 2D, 2012). The project under consideration contains valuable 

experimental data and provides a useful opportunity to verify the proposed FE elasto-plastic model, 

which in turn can be used to analyse the performance of the excavation retaining systems. The 

modelling framework adopted in this work entails adequate complexity and it is focused on the 

effects of soil constitutive assumptions on numerical predictions by starting with the well-known 

Modified Cam Clay model and consequently adding advanced modelling features such as stress-

history dependency, anisotropy and structure. 

 

The case study 

Site location and geology 

The case study investigated in this work is a 14.6 m deep, 100 m wide basement excavation above 

which four buildings containing up to eight storeys will form the Allston Science Complex at 

Harvard University in Boston, Massachusetts, USA (Buro Happold, 2007). The construction site is 

located off Western Avenue in Allston (Figure 1). Information on ground conditions have been 

collated from three site investigations. In-situ explorations included standard penetration (SPT), 

cone penetration (CPTU) and seismic cone penetration (SCPT) tests, self-boring pressuremeter 

(SBPT), and field vane testing. The location of the different in-situ investigations is reported in 
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Figure 1. SPT and field vane tests were undertaken in the boreholes together with associated 

sampling. In some of the boreholes (as indicated in Figure 1), vibrating wire piezometers were 

installed to determine ground water conditions with depth across the site. The groundwater table 

was encountered at 2.0 m below ground surface with a hydrostatic pore pressure increasing with 

depth. Laboratory testing consisted of K0-consolidated undrained triaxial tests in both compression 

(CK0UTC) and extension (CK0UTE), direct shear tests (DSS), unconsolidated undrained triaxial 

tests, Atterberg limits, and moisture contents. The geological sequence, confirmed by the site 

investigations, included successive strata of made ground, alluvium deposits (occasionally including 

organic peat material), sandy gravel, the BBC marine clay, glacial till, and the Cambridge argillite 

bedrock. The identified soil profile is shown in Table 1.  

The results of moisture content tests on samples of Boston Blue Clay, reported in Figure 2a, 

indicated values between 25% and 44%, with a slight general increase with depth. Atterberg limit 

tests undertaken on BBC indicated that the Plasticity Index (PI) varies between 13% and 29% with 

an average value of 20%; the Liquid Limit (LL) varies between 24% and 48%, and the Plastic Limit 

(PL) varies between 14% and 21% (Figure 2a). The Atterberg limits for the BBC plot parallel to 

and above the A-line. From these data, the BBC can be classified as low-plasticity clay, in line with 

previous research by Ladd et al., 1999. The combined SPT blow count (NSPT) values for all layers 

are shown in Figure 2b. Both in-situ dissipation SBPT tests (undertaken at various depths within the 

two boreholes BH105 and BH106) and CRSC laboratory tests were performed to assess the 

permeability of the BBC layer. All the measured permeability values are shown in Figure 2c. The 

data from the tests indicated that the permeability values ranges between 7.60×10-11 m/s and 

2.20×10-9 m/s. The results from published test data (e.g. Whittle et al., 1993; Whittle et al., 2015) 

and the Allston testing program exhibit good agreement, hence for design purpose a permeability 

value of 3.00×10-10 m/s, typical of clay soils, was considered. Finally, the stress history profile of 

the BBC deposit is summarised in Figure 2d, where the preconsolidation pressures obtained from 

CRSC tests and the piezometric data are also reported. According to the available geological and 

geotechnical data described above, the geotechnical model adopted in this study was composed first 
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by a 2 m thick layer of made ground (L1), followed by a 4 m stratum of fluvial sands (L2), and a 26 

m deep BBC deposit (L3) overlaying 8 m of glacial till (L4) resting on the Cambridge argillite 

bedrock. The BBC deposit was divided in an upper overconsolidated (OC) 19 m thick layer and a 

lower normally consolidated (NC) 7 m thick layer. 

The behaviour of the excavation is expected to be predominantly controlled by the significant 

thickness of the Boston Blue Clay deposit present on site. BBC is a marine deposit generally 

consisting of a stiff crust of lightly overconsolidated clay which becomes normally consolidated 

with depth. Due to its overconsolidation ratio (OCR), the potential for significant heave and 

movement of adjacent ground due to excavation processes exists (Ladd et al., 1999). As a result, 

numerical modelling plays an important role in estimating ground movements associated with the 

excavation, and small-strain models can help to improve the accuracy of the predictions. In 

addition, previous laboratory investigations have indicated that the mechanical behaviour of BBC 

shows anisotropic stress-strain-strength, rate dependency and medium sensitivity (e.g. Santagata, 

1998; Santagata and Germaine, 2002). The presence of an initial structure in the natural BBC soil 

has been confirmed by the results of CRSC tests performed on NC and OC samples from the 

Allston Science Complex (Nikolic et al., 2010). Figures 3a and 3b present the CRSC loading 

curves, together with the intrinsic compression line (ICL) and a range of possible sedimentation 

compression (SC) curves. In Figure 3a the in-situ stress states for the two NC samples are also 

shown, which indicate a substantial agreement between the in-situ stress level and yield stress for 

the normally consolidated BBC. The framework developed by Cotecchia and Chandler (2000) 

indicates that the sedimentation compression curve for a clay deposit should be related to the 

particular clay sensitivity. Therefore, the use of an advanced soil constitutive model, able to 

describe the influence of structure and its subsequent degradation under loading, is deemed to be 

appropriate in this case. 

Stiffness and consolidation characteristics have been determined in order to predict ground 

deformations resulting from the excavation. For the low level of shear strains which is expected to 

be induced by the excavation process, the clay has relatively high stiffness characteristics. 
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Additionally, laboratory tests indicate that the clay formation is characterised by very low 

permeability (see Figure 2c) and, as such, can be expected to behave in undrained conditions during 

short term construction operations. This is of considerable benefit for the temporary excavation and 

allows the design of a practical support structure that would otherwise be unstable. This is, 

however, a critical construction constraint which implies that the stability safety factors of the open 

excavation would decrease with time.  

 

Excavation retaining systems 

Two different types of retaining wall, a diaphragm wall (or reinforced concrete slurry wall) and a 

soldier pile tremie concrete (SPTC) slurry wall, were adopted for this project. The total depth of 

excavation was varying between 13 m and 17 m and the walls were designed to resist the soil and 

water pressure with four rows of tiebacks (ground anchors) at various elevations. Specifically, the 

reinforced concrete diaphragm wall was adopted for particular boundary sections where a 

significant cantilever condition was required above the top tieback level (Section A). The SPTC 

wall was proposed for those sections where the top tieback level was in relative proximity to the 

ground surface (Section B). Both manually read and automated in-place inclinometers were used in 

the project to measure wall horizontal movements (Chartier et al., 2010). The schematic plan view 

of the two analysed Sections A and B is reported in Figure 1, while Figure 4 shows the relevant 

characteristics of the two excavation support systems, in terms of tiebacks spacing, level and 

inclination, together with the excavation stages. 

 

Numerical simulations 

Soil constitutive models 

The made ground, fluvial sand and glacial till layers were modelled using the Mohr-Coulomb (MC) 

soil model for which the material properties were derived from different geotechnical reports on 

Boston soils (i.e. Berman et al., 1993; Whittle et al., 1993; O’Rourke and O’Donnell, 1997; Ladd et 

al., 1999; Terzaghi et al., 1996), including the recommendations for design provided by Buro 
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Happold (2007). The soil properties adopted in the FE simulations for L1, L2 and L4 are summarised 

in Table 2. 

The BBC deposit was modelled with three different soil constitutive models, starting from the well-

known Modified Cam Clay (MCC), followed by the hierarchical extensions of the KHM (bubble 

model) and the KHSM for structured soils. In addition, two different elastic assumptions were 

considered in this work (see Appendix A): a standard hypoelastic formulation and the small-strain 

stiffness equation proposed by Viggiani and Atkinson (1995). This has led to four different FE 

simulations of the excavation, as illustrated in Table 3. The KHSM has been formulated for natural 

clays within the framework of kinematic hardening with elements of bounding surface plasticity 

(Rouainia and Muir Wood, 2000). The model contains three surfaces (see Appendix A). The 

reference surface controls the state of the soil in its reconstituted, structureless form and describes 

the intrinsic behaviour of the clay (Burland, 1990). The outer structure surface represents the 

amount of current bonding in the clay. The bubble acts as the true yield surface enclosing the elastic 

domain of the soil, and moves around within the structure surface following a kinematic hardening 

rule. The centre of the structure surface can be situated off the mean effective stress axis, allowing 

the KHSM to accommodate the inherent anisotropy, which is a common feature of natural 

structured clays. The degree of structure, r, which describes the relative sizes of the structure and 

reference surfaces, is a monotonically decreasing function of the plastic strain thus representing the 

progressive degradation of the material. The KHSM has been implemented in PLAXIS 2D with an 

explicit stress integration algorithm adopting an automatic sub-stepping and error control scheme 

(Zhao et al., 2005). The model has been successfully employed to simulate both static (Gonzáles et 

al., 2012; Panayides et al., 2012) and dynamic geotechnical problems (Elia and Rouainia 2013a and 

2013b). 

The KHSM was calibrated against CRSC, SBPT and K0-consolidated undrained triaxial 

compression and extension tests performed on BBC samples from the Allston Science Complex 

(Nikolic et al., 2010). As a result, a single set of model parameters, listed in Table 4, was derived 

and used to describe the mechanical behaviour of the BBC layer (L3) in the subsequent simulations. 
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The compressibility parameters λ* and κ* were back calculated from the results of CRSC tests for 

the appropriate range of void ratio. The stress sensitivity approach (Burland, 1990; Cotecchia and 

Chandler, 2000) was adopted to quantify the initial degree of structure (i.e. r0). Figures 5a and 5b 

show the comparison, in terms of volumetric strain-logarithm of vertical stress, between the KHSM 

predictions and two CRSC tests, one performed on an OC BBC sample and the other on a NC BBC 

specimen, respectively. Figure 6a depicts the stress paths normalised with respect to the 

preconsolidation pressure for three CK0UTC and three CK0UTE tests on BBC samples from the 

investigated site, together with the KHSM predictions. The corresponding stress-strain response is 

shown in Figure 6b. A critical state stress ratio (M) equal to 1.11, corresponding to a friction angle 

of approximately 28 during triaxial compression, was adopted. The general trend shown by the 

experimental results is well captured by the model in both compression and extension regimes. The 

model predictions are also in good agreement with the laboratory data obtained by Ladd and 

Varallyay (1965), Fayad (1986) and Sheahan (1991) on BBC samples from other Boston sites. In 

addition, the undrained secant stiffness degradation (Eu) curve obtained by Santagata et al. (2005) 

during a K0-consolidated undrained triaxial compression test performed on a NC BBC sample under 

an effective vertical consolidation pressure equal to 299 kPa is shown in Figure 6c. The 

corresponding KHSM prediction is plotted in the same figure and shows how the general trend, in 

terms of stiffness degradation with increasing strain, is well captured by the model. Finally, two 

SBPT tests, performed at two different depths within the same borehole BH106, were simulated 

using the KHSM. The results are presented in Figure 7 in terms of cavity pressure response. The 

model is able to predict satisfactorily the stress-strain curves observed during the expansion and 

contraction stages of the tests.  

 

Finite element model 

Following an initial sensitivity analysis, the typical plane strain FE mesh of the cross-section A is 

shown in Figure 8 and consisted of approximately 2200, 15-noded triangular elements. In the 

analyses, which were assumed to be fully undrained, no movement was permitted at the base of the 
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finite element mesh and only vertical movement was allowed at the lateral boundaries. The 

excavation was supported by a 21 m deep retaining system, with four rows of tieback anchors. The 

left-hand boundary of the model was set at 150 m, which is over four times the depth of the 

excavation and thus is unlikely to interfere with the results (Kung et al., 2009). The right-hand 

lateral boundary represents the axis of symmetry of the analysed section. The excavation sequence 

for both sections consisted in the installation of the retaining wall, followed by a first excavation 

phase under cantilever conditions and then tiebacks installation and consecutive excavation to 0.6 m 

below each level of tieback. Once the last tieback was installed, the analyses simulated the final 

excavation to 14.6 m. During the real excavation at the Allston Science Complex, groundwater 

dewatering was achieved by mean of sump pumping and no drawdown of the external water level 

was permitted. Therefore, the water table outside the wall was kept constant at 2.0 m below ground 

level in the analyses. The retaining systems were modelled using plate elements, with node-to-node 

anchors and geogrid elastic elements adopted to simulate the tiebacks and the grout body, 

respectively. Material parameters for the plates include normal stiffness (EA) and flexural rigidity 

(EI) as given in Table 5. The geogrids’ axial stiffness EA was set equal to 1.12105 kN/m. The 

anchors, which share the same connection with the mesh nodes, were modelled as elasto-plastic 

elements characterised by a normal stiffness of 1.12105 kN/m and a pre-stress force of 383 kN/m. 

Moreover, interface elements were used around the walls with a reduction strength factor of 0.67. 

The K0 profile used in the analysis was based on the design line assumed by the geotechnical report 

(Buro Happold, 2007) from SBPT measurements. Figure 9a shows the K0 values used for each 

stratum together with published data from Berman et al. (1993). The four constitutive models 

adopted for the BBC layer were calibrated and initialised to match the same undrained shear 

strength (cu) profile, which was used in the design of the excavation. This makes the FE simulations 

comparable to simpler total stress-based methods which are usually adopted in the design of deep 

excavations in clayey soils. Although cu is not a soil property in effective stress-based constitutive 

models, it can be indirectly obtained by running a series of undrained triaxial compression model 
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simulations starting from in-situ stress conditions at several points across the entire depth of the 

BBC deposit with varying OCR values. The BBC undrained shear strength at the Allston Science 

Complex was assessed using field vane, CPTU and DSS tests. The corresponding cu values with 

depth, together with the peak shear strength profile assumed in the design, are reported in Figure 9b. 

The shaded area represents the envelope of cu data obtained from DSS tests. It is noted that the cu 

values from the Allston project are in good agreement with the data obtained from other sites (e.g. 

Berman et al., 1993; Hashash and Whittle, 1996). The cu profile predicted by the KHSM and its 

down-scaled versions (i.e. KHM and MCC) is also shown on the same figure, which closely agrees 

with the assumed design profile. Figure 9c shows the two OCR profiles adopted in the FE 

simulations to match the same in-situ undrained strength. The figure also depicts the OCR values 

obtained from in-situ (CPTU and SBPT) and laboratory (CRSC) tests on BBC. It can be seen that 

the adopted OCR profiles are in good agreement with the experimental data. Finally, the BBC 

small-strain shear stiffness G0 was estimated from seismic cone penetration tests (SCPT), which 

were performed at three different locations across the site (see Figure 1). The results of these in-situ 

measurements are reported in Figure 9d in terms of normalised initial stiffness (G0/v0) profiles, 

together with cross-hole data reported by Hashash and Whittle (1996) for a South Boston site. The 

same figure shows the different stiffness profiles adopted in the FE simulations. For the M1 and M2 

analyses, the low values of G0 with depth, which are significantly smaller than those measured in-

situ, were obtained from the calibrated parameter κ* reported in Table 4. This limitation of 

hypoelastic models justifies the use of the Viggiani and Atkinson elastic model in the M3 and M4 

analyses to capture the small-strain elastic stiffness of the soil deposit. In these cases, the stiffness 

parameters A, m and n, equal to 1600, 0.22 and 0.76, respectively, were selected based on the 

average PI of BBC (i.e. 20%). The corresponding normalised stiffness profiles match well both the 

in-situ data from SCPT tests and the measurements from other Boston sites (e.g. Hashash and 

Whittle, 1996). 

 

Results and discussion 
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This section presents the results from the FE simulations, classified as indicated in Table 3. A 

sensitivity analysis to investigate the influence of the used constitutive models, as well as the 

influence of the two adopted elastic formulations on wall movements and surface settlements is 

provided. 

 

Horizontal wall movements 

Figures 10, 11 and 12 present the horizontal wall movements of the retaining structure in Section A 

predicted after excavation phases 1, 3 and 5, respectively. The available field measurements for the 

different excavation levels are also plotted on the same figures. The deflected profiles of the wall in 

Section B are shown in Figures 13, 14 and 15 for excavation phases 1, 3 and 5, respectively, 

together with the measured data. The field measurements shown in these figures were obtained 

from inclinometers embedded within the wall at the two locations (Chartier et al., 2010). 

In general, the results show that FE analyses employing the traditional elasticity law (i.e. M1 and 

M2) generate larger wall deflections during all stages of the excavation process. In terms of 

comparison with measured displacements, these FE analyses employing the conventional elasticity 

law significantly overestimate the wall deflections for all excavation stages. 

The flexibility of the SPTC adopted in Section B relative to the reinforced concrete wall used in 

Section A is evident by the difference in the deflected shape of Section B, where a sharper curvature 

is observed. The simulations suggest that the top-of-wall movement for the SPTC retaining 

structure is significantly limited by the top tieback, an observation which has also been made during 

the monitoring process on site. However, the analyses generally overestimate the wall pull-back 

upon initial application of the pre-stress for Section A which consequently influence the deflections 

at the top of the wall during excavation. During the first excavation phase (under cantilever 

conditions), the wall in Section A exhibits larger deflection than Section B. This is attributed to the 

greater depth of excavation at Section A for this stage (approximately 2.60 m deeper than at Section 

B). 
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With respect to a standard MCC analysis (M1), the introduction of the bubble allows for 

progressive yielding of the clay and invokes plastic deformations from the initial stages of loading. 

For both sections, the results obtained with a M2 analysis are very similar to those of M1 

simulations during the first excavation phase mainly due to the fact that this phase included 

excavation in the made ground and fluvial sand layers only. The subsequent excavation phases, 

however, involve the BBC layer and the application of the bubble model results in increased wall 

deflections for both retaining systems compared to MCC simulations. 

Once the Viggiani and Atkinson formulation for the small-strain stiffness was adopted (M3) and the 

initial degree of structure was also included in the simulations (M4), the numerical predictions are 

strongly influenced by the elastic response, irrespective of the type of retaining system. With 

respect to the M2 simulation, the maximum wall deflection for Section A exhibits a reduction of 

54% from almost 6.0 cm to 2.7 cm at the final level of excavation for the M3 analysis. The 

reduction of the wall deflections in Section B is of similar order to Section A (approximately 58%) 

when the alternative elasticity formulation is employed (M3). This noteworthy difference can be 

attributed to the high initial stiffness at small strains predicted with the Viggiani and Atkinson 

model, a feature which cannot be attained by the traditional elasticity law (see Figure 9d), unless 

unrealistic values for the compressibility parameter κ* are used in M1 and M2 analyses. The soil 

interacting with the excavation produces subtle differences in the numerical predictions between 

M3 and M4 analyses. This is attributed to the fact that the investigated problem is driven by small-

strain non-linearity and the presence of an initial structure in the M4 analysis modifies only 

marginally the predictions. The post peak softening described by the KHSM results in a small 

increase of the simulated wall deflections for the two types of retaining structures, with a difference 

between the predictions of M3 and M4 analyses equal to approximately 10% in Section A and 8% 

in Section B. At excavation level 1, the M3 and M4 predictions are in good agreement with the 

measured wall deflections for Section A (Figure 10). On the contrary, the M3 and M4 analyses for 

Section B underestimate the maximum wall deflection by 0.20 cm (Figure 13). The advanced FE 

predictions are also in fair agreement with measured lateral soil deformations at excavation level 3 
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(Figures 11 and 14) and after the last excavation phase (Figures 12 and 15). The toe and maximum 

wall deflections are well captured by the M3 and M4 simulations, although the top-of-wall 

deflection is somehow underestimated. This could be explained by the reported disturbance caused 

by the use of pressurized drilling fluid with external flush and pressured grout without packers. It 

was in fact reported (Buro Happold, 2007) that this process may have caused hydraulic fracturing of 

the cohesive soils retained by the excavation walls.  

 

Surface settlements 

In view of the actual site geology, ground model and proposed depth, a horizontal extent of ground 

movement in the range of 2.5 to 4.0 times the depth of excavation was anticipated (as suggested by 

Peck, 1969).  

The ground settlement profiles actually predicted by the four types of numerical analyses are 

presented in Figures 10, 11 and 12 for Section A and Figures 13, 14 and 15 for Section B at three 

excavation stages. Consistently with previous observations in terms of wall horizontal 

displacements, the maximum settlement predicted by the analyses employing the conventional 

elasticity model (i.e. M1 and M2) always exceeds those predicted by the Viggiani and Atkinson 

model (M3 and M4) for both sections at the three excavation levels presented. The differences 

between the M3 bubble model simulations and the KHSM analyses (M4) are, instead, always 

negligible. Comparing Figures 10 and 13, the Soldier Pile Tremie Concrete Wall used in Section B 

exhibits considerably smaller vertical settlements, since the first excavation level is significantly 

shallower (0.3 m below ground level). For all the other excavation stages, the difference between 

the settlements recorded behind the two wall is negligible. Finally, settlement results for Sections A 

and B are represented in Figures 16a and 16b with normalised vertical settlement, v/vmax, plotted 

against normalised wall depth (i.e. wall depth divided by maximum excavation depth, He). They are 

compared with the non-dimensional settlement envelopes proposed by Clough and O’Rourke 

(1990), reported on the same figure. The maximum settlement does not occur at the wall, as it 

would typically happen in stiff clays, but at some distance from the retaining system with the 
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displacements extending to more than 4He. The troughs predicted by all four types of analyses in 

both sections somehow resemble the behaviour observed on several case histories for soft to 

medium clays, although they extend more than what suggested by observations. The normalised 

maximum vertical settlements are about 0.20% of He and are in good agreement with the range of 

0.01% and 0.2% reported by Long (2001) for retaining walls in stiff clays with a large safety factor 

against excavation base heave. The predicted settlements are also in good agreement with the 

limiting value of 0.3% given by Clough and O’Rourke (1990) in the vicinity of the wall.  

 

Time dependent behaviour of the excavation 

The time dependent behaviour of the excavation was analysed in order to evaluate the performance 

of the KHSM. During excavation processes in saturated clayey soils, an accumulation of negative 

pore water pressures in the soil below the excavation base is observed. The assessment of time and 

movement dependent uplift soil pressure due to the generation of negative excess pore water 

pressures at the excavation base is a typical finite element soil-structure interaction problem. Based 

on the results from the previous sections, only the KHSM was considered in this part of the work 

and the retaining system adopted for Section B was analysed. The monitoring system, composed by 

vibrating wire piezometers (PZ) and magnetic extensometers (EXT), was used to measure pore 

water generation and dissipation with time, as well as movements of the excavation base. In 

particular, the piezometers PZ4-1, PZ4-2 and PZ4-3, located respectively at 17 m, 22 m and 31m 

from ground surface below the excavation, and the extensometers EXT 02-8, EXT 02-6 and EXT 

02-3, approximately at the same depths below ground level, were considered (Figure 4). A coupled-

consolidation analysis was performed in order to replicate as close as possible the excavation 

sequence of this section of the retaining system. The FE simulations used an isotropic value of 

permeability equal to 3.00×10-10 m/s for the BBC and glacial till layers, evaluated from the self-

boring pressuremeter and CRSC tests (Figure 2c), and 1.50×10-5 m/s for the made ground and 

fluvial sands strata. Impermeable boundaries were imposed at the base and along the lateral sides of 

the mesh while free boundaries were imposed at ground surface behind and in front of the wall. The 
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retaining structure was simulated as an impermeable material. Figure 17a reports the time history of 

the excavation process, while Figures 17b and 17c show the measured and predicted time histories 

of pore pressures and heave movements beneath the centre of the excavation. It can be noted that 

the numerical analysis is able to accurately capture both the pore water pressure changes with time 

due to the unloading phase and the associated heave of the excavation base at the three investigated 

depths. 

 

Conclusion 

The paper examined the undrained behaviour of a deep excavation which forms part of a 100 m 

wide basement excavation located in Boston, Massachusetts, USA. Two different types of tied back 

retaining walls were used, a soldier pile tremie concrete wall and a traditional reinforced concrete 

diaphragm wall. The glacial marine clay foundation was modelled with the Kinematic Hardening 

Model for Structured soils (KHSM), its reduced bubble model version (KHM) and the MCC model 

along with a traditional elasticity and a small-strain stiffness formulation. Also, the pore pressure 

time histories beneath the centre of the excavation and the associated heave of its base were 

modelled with coupled finite element analyses. 

A calibration procedure of the constitutive model parameters was conducted based on various 

sources of experimental data. The calibrated parameters were evaluated by means of numerical 

simulations of undrained triaxial, constant rate of strain and self-boring pressuremeter tests. The 

values for the OCR profile were carefully selected in order to closely reproduce the design profile 

of undrained shear strength.  

The FE analyses revealed that the numerical simulations using the kinematic hardening models 

provide a close match to field monitoring data. The analyses employing the Viggiani and Atkinson 

formulation for the small-strain stiffness indicated that the numerical predictions are strongly 

influenced by the elastic formulation adopted in the constitutive model, irrespective of the type of 

retaining system, with wall deflection reducing to approximately half for both retaining systems. 

This significant change in the predictions is attributed to the high initial stiffness at small strains, a 
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feature which cannot be attained by the traditional elasticity law, unless unrealistic elastic 

parameters are adopted. Introducing structure degradation in this study offered only a relatively 

small increase in the wall deflections, which can be attributed to the post peak softening behaviour 

accounted for in the KHSM. 

Finally, the work examined the time dependent behaviour of the excavation by means of coupled-

consolidation analyses replicating the actual construction timeline. The KHSM was very successful 

in predicting the magnitude and rate of change of pore water pressure and the base heave induced 

by the excavation. 
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Appendix A: Constitutive model formulation 

The mathematical formulation of the model in the general stress space is summarised in the 

following. Since the model describes the response of the soil skeleton, all stresses are effective 

stresses (the primes have been dropped for simplicity). The symbol ‘ :’ indicates a summation of 

products, the dots over symbols indicate an infinitesimal increment of the corresponding quantity, 

whereas bold-face symbols indicate tensors. 

The expression of the reference surface is: 
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2 2
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The bubble surface is written as: 
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The structure surface is given by: 
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where pc is the effective stress which defines the size of the reference surface, R is the size of the 

bubble, 0  a deviatoric tensor controlling the structure, r is the ratio of the sizes of the structure and 

the reference surfaces, p and s  are the mean pressure and deviatoric stress tensor. The 

dimensionless scaling function, M , for deviatoric variation of the critical state stress ratio with the 

Lode angle , is defined by: 
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where M is the slope of the critical state line under triaxial compression ( 30  ) and 

   3 sin / 3 sin      , with   being the internal friction angle. 

The scalar variable r, which is a monotonically decreasing function of both plastic volumetric and 

shear strain, represents the progressive degradation of the material as follows: 

 

 
 

* *
1 d

k
r r 

 
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
          (5)

 

 

where *  and *  are the slopes of normal compression and swelling lines in the lnv : lnp 

compression plane (being v the soil specific volume) and k is a parameter which controls the 

structure degradation with strain. The rate of the destructuration strain d  is assumed to have the 

following form: 
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         (6) 

 

where A* is a non-dimensional scaling parameter and p

q  and 
p

v  are the plastic shear and 

volumetric strain rate, respectively. 

Volumetric hardening rule is adopted in the model, where the change in size of the reference 

surface, pc, is controlled only by plastic volumetric strain rate, 
p

v , given by: 
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If a stress increment requires movement of the bubble relative to the structure surface, the following 

kinematic hardening is invoked: 

 

ˆ ˆ( ) ( )c
c

c

p

p
                   (8) 

 

where   and   0
ˆ 1cp r r    I +  denote the locations of the centre of the bubble and structure 

surface respectively, c  is the conjugate stress and   is a positive scalar of proportionality. It 

should be noted that the centre of the structure surface and the deviator of ̂  represents the 

anisotropy of the soil due to structure. The deviator of ̂  therefore degrades to zero as r degrades to 

unity. 

The plastic modulus H is assumed to depend on the distance between the current stress and the 

conjugate stress and is given by: 
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R b
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where Hc is the plastic modulus at the conjugate stress, B and   are two additional material 

properties, : ( )cb   n  is the normalised distance between the bubble and the structure surface 

and max 2( / 1) : ( )b r R   n  is its maximum value. 

Finally, a classical hypoelastic formulation, accounting for a linear dependence of both bulk and 

shear moduli on mean effective pressure, can be adopted in the model. Alternatively, the well-

known equation proposed by Viggiani and Atkinson (1995) for the small-strain shear modulus (G0) 

can be used: 
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where A, m and n are dimensionless stiffness parameters, pr is a reference pressure (equal to 1 kPa), 

p is the mean effective stress and R0 = 2pc/p is the isotropic overconsolidation ratio. 
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Notation 

A, m, n non-dimensional factors in Equation (10) 

b normalised distance between bubble and structure surface 

bmax maximum value of b 

cu undrained shear strength 

Eu undrained secant modulus 

F structure yield surface 

fr reference yield surface 

fb bubble yield surface 

G0 small-strain shear modulus 

H plastic modulus 

Hc plastic modulus at conjugate stress 

I second rank identity tensor 

K0 at-rest earth pressure coefficient 

n  normalised stress gradient on the bubble 

OCR overconsolidation ratio 

p, p0 mean effective stress 

cp  stress variable controlling size of the surfaces 

q scalar deviator stress 

r parameter describing ratio of sizes of structure and reference surfaces 

s  tensorial deviator stress 

  location of the centre of the bubble 

̂  location of the centre of the structure surface 

a axial strain 

v volumetric strain 

p

v  volumetric strain 

p

q  deviatoric strain 

d  damage strain 

t total unit weight 

 positive scalar of proportionality 

  effective stress tensor 

c  conjugate stress 

v

 vertical effective stress 

 



 

28 

 

Strata Thickness (m) Description 

Made ground 1.2 – 2.7 
Granular silty sand fill with fragments of gravel, concrete, 

clay, brick, ash and wood 

Fluvial sands and gravels 2.1 –5.5 Medium dense to very dense sands and gravels 

Boston Blue Clay 23.8 – 36.5 
Stiff olive grey clay with occasional discontinuous sand 

and silt partings, becoming softer with depth 

Glacial Till 1.5 – 6.4 Very dense grey silty, clayey sand with gravels 

Cambridge Argillite 

(Bedrock) 

encountered at 

33.8 – 45.7 

Medium to moderately hard fresh to slightly weathered 

thinly bedded grey mudstone 

Table 1. Strata encountered during site investigations at the Harvard Allston Science Complex site 

(Buro Happold, 2007) 

 

 

Strata 
c 

(kPa)

 

  

() 

Unit weight 

(kN/m3)

 

E

 (MPa) 0K  
Poisson’s 

ratio 

Made ground – L1 0.0 30 19.0 29 0.5 0.2 

Fluvial sands and gravels – L2 0.0 35 19.0 75 0.43 0.2 

Glacial Till – L4 0.0 37 21.5 100 0.6 0.2 

Table 2. Design soil properties for L1, L2 and L4 

 

 

Analysis 

name 

Model adopted 

for the BBC deposit 
Elastic formulation 

M1 MCC Hypoelasticity 

M2 KHM Hypoelasticity 

M3 KHM Viggiani & Atkinson 

M4 KHSM Viggiani & Atkinson 

Table 3. Classification of FE analyses 
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Parameter/ 

symbol 
Physical contribution/meaning NC BBC OC BBC 

M  Critical state stress ratio for triaxial 

compression 

1.11 1.11 

*  Slope of normal compression line in lnv-lnp 

compression plane 

0.028 0.028 

*  Slope of swelling line in lnv-lnp 

compression plane 

0.004 0.004 

R Ratio of size of bubble and reference surface 0.08 0.08 

B Stiffness interpolation parameter 2.0 2.0 

 Stiffness interpolation exponent 1.35 1.35 

0  Anisotropy of initial structure 0.5 0.3 

r0 Initial degree of structure 1.8 1.5 

A* Parameter controlling relative proportion of 

distorsional and volumetric destructuration 

0.5 0.5 

k Parameter controlling rate of loss of 

structure with damage strain 

1.5 1.0 

 Poisson’s ratio 0.25 0.25 

Table 4. KHSM parameters for L3 

 

Section name Model 
EA 

(kN/m) 

EI 

(kNm2/m) 

Unit weight 

(kN/m3) 

Poisson’s 

ratio 

Section A Elastic 2.28107 1.59106 22 0.2 

Section B Elastic 2.13107 1.03106 22 0.15 

Table 5. Parameters adopted for the two retaining systems 
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Figure 1. Allston Science Complex, Boston, USA and location of in-situ tests 



31 

 

 

 

L4

L3

L2

L1

0 20 40 60

moisture content (%)

40

35

30

25

20

15

10

5

0

d
e

p
th

 b
e

lo
w

 g
ro

u
n

d
 l
e

v
e

l 
(m

)

Plastic Limit (PL)

moisture content

Liquid Limit (LL)

a) b) c) d)

0 50 100 150

NSPT

0

5

10

15

20

25

30

35

40

Made ground

Fluvial sands

Boston Blue Clay

Glacial till

1x10
-11

1x10
-10

1x10
-9

1x10
-8

permeability (m/s)

0

5

10

15

20

25

30

35

40

SBPT-BH105

SBPT-BH106

CRSC tests

0 200 400 600 800

in-situ stress and pre-consolidation (kPa)

0

5

10

15

20

25

30

35

40

pre-consolidation

from CRSC tests

piezometric data

FE model

u0

'v0

 

Figure 2. In-situ stresses and properties of BBC: a) moisture content; b) NSPT data; c) permeability data; d) stress history 
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Figure 3. Results from CRSC tests on: a) natural NC BBC; b) natural OC BBC 

(adapted from Nikolic et al., 2010) 
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Figure 4. Characteristics of the excavation support systems adopted in Section A and Section B 
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Figure 5. Comparison of KHSM predictions and CRSC tests on natural BBC samples: a) CRSC 844, depth 11m; b) CRSC 845, depth 38m 
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Figure 6. Comparison of KHSM predictions and undrained triaxial test results on anisotropically consolidated BBC: a) stress paths; b) stress-strain 

curves; c) undrained stiffness degradation curve 
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Figure 7. Comparison of KHSM predictions and self-boring pressuremeter tests on natural BBC samples: a) BH106-T2, depth 13m; b) BH106-T10, 

depth 35m 
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Figure 8. Geometry and finite element mesh of the excavation - Section A 
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Figure 9. Comparison of numerical profiles with measured data at the Allston Science Complex: a) at-rest earth pressure coefficient; b) undrained shear 

strength; c) OCR; d) normalised G0 
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Figure 10. Predicted excavation performance (Section A - Excavation phase 1) 
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Figure 11. Predicted excavation performance (Section A - Excavation phase 3) 
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Figure 12. Predicted excavation performance (Section A - Excavation phase 5) 
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Figure 13. Predicted excavation performance (Section B - Excavation phase 1) 



 

43 

 

 

0 2 4
(cm)

M1 analysis

M2 analysis

M3 analysis

M4 analysis

measured data

-40

-30

-20

-10

0

Section B

Excavation 3

-2

-1

0

(c
m

)

75 50 25 0 -25

lateral distance from the wall (m)

-40

-30

-20

-10

d
e

p
th

 (
m

)

75 50 25 0 -25

L1

L2

L3

L4

-8.5m

 

Figure 14. Predicted excavation performance (Section B - Excavation phase 3) 
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Figure 15. Predicted excavation performance (Section B - Excavation phase 5) 



 

45 

 

 

4 3 2 1 0

d/He

2

1.5

1

0.5

0


v
 /
 

v
m

a
x

M1 analysis

M2 analysis

M3 analysis

M4 analysis

0 1 2 3 4

d/He

2

1.5

1

0.5

0


v
 / 

v
m

a
x

Section A - Excavation 5 Section B - Excavation 5

a) b)

Settlement envelope - stiff clays

(Clough and O'Rourke, 1990)

Settlement envelope - soft to medium clays

(Clough and O'Rourke, 1990)

 

Figure 16. Normalised predicted settlements behind the wall at the end of Excavation 5: a) Section A; b) Section B 
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Figure 17. Consolidation analysis results: a) excavation stages; b) comparison of KHSM predictions 

with measured pore water pressures; c) comparison of KHSM predictions with magnetic 

extensometer ground movement measurements 

 

 


