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Water distribution networks (WDNG5) are an essential element of urban infrastructure. To achieve a good level of performance,
the traditional design of WDNs based on expected future conditions should be replaced by a flexible design, using real options
(ROs), that accounts for uncertainty by taking a broader view of possible future options. This work proposes a multiobjective
ROs framework that sets out to reduce costs, minimize hydraulic pressure deficiency, and a third objective for minimizing carbon
emissions. A multiobjective simulated annealing algorithm is used to identify the Pareto-optimal solutions, thus enabling a trade-
off analysis between solutions. These trade-offs show that a low pressure deficit solution is achieved by increasing investment at a
much faster rate after a certain pressure deficit threshold (60 m). Also, the pressure deficits can only be reduced by increasing carbon
emissions. Finally, this work also emphasizes the importance of including carbon emissions as a specific objective by comparing the
results of the proposed model and another one that did not cover the environmental objective. The results show that it is possible to
reduce CO, for the same level of capital expenditure or the same level of network pressure deficits if carbon emissions are minimized

in the optimization process.

1. Introduction

Water distribution networks (WDNSs) are an important ele-
ment of urban infrastructure whose purpose is to deliver
water of appropriate quality and quantity to users without
major interruptions. People normally have high expectations
regarding the level of service provided by water utilities. Fail-
ure should be prevented at all costs, and so water companies
wish to maintain high performance and quality standards.
The proper functioning of these infrastructure elements
under normal and abnormal operation conditions can only
be guaranteed if uncertainty is proactively taken into account
at the planning stage. In the traditional design of WDNS,
a fixed design is determined by assuming a deterministic
projected future demand. This can lead to the underdesign
or overdesign of WDNs. With this shortcoming in mind, the
paradigm has to be changed by using real options (ROs) to
achieve a flexible design.

Myers [1] was the first to propose ROs and mention
using option pricing theory to value nonfinancial or “real”
investments with learning and flexibility. A number of studies
have been published where the ROs concepts have been
applied in various fields, such as industrial processes [2],
energy systems [3], mining projects [4], flooding problems
[5], and maritime costal defences [6]. For the design of
WDNs, ROs have been explored by Huang et al. [7], who use
ROs accounting for future demand uncertainty in a single-
objective approach. Basupi and Kapelan [8, 9], also consid-
ering demand uncertainty, propose a flexible design using a
multiobjective optimization model with two objectives, cost
minimization and the maximization of end resilience. The
intervention plans set out in these papers [7-9] are defined
in stages but they do not allow for different expansion areas
for the WDN during the planning horizon. Here we aim to
introduce a different analysis by proposing a ROs approach
that considers expansion scenarios of the network at different



time phases and by taking into account environmental
concerns using a multiobjective optimization model with
three objectives. In Marques et al. [10], the carbon emissions
were included in the costs objective. This is not satisfactory
as carbon prices are very volatile and the consideration of a
fixed value for the entire planning horizon of the network can
lead to the impact of carbon emissions being misrepresented.
Furthermore, there are aspects of pipe manufacturing and
energy production where, in some cases, the carbon emis-
sions related to the industrial process are already included
in the final price of the product and thus should not be
duplicated in the model. To overcome the shortcomings of
past works in which carbon emissions are monetized and
minimized within a cost minimization function [10], we
propose to evaluate the impact of carbon emissions in a
separate objective. Additionally, some comparisons are made
to identify the advantages of considering these environmental
concerns in the ROs approach.

The initial attempts to achieve optimal design and oper-
ation of WDNs focused on a single-objective strategy, that
is, solving a least-cost optimization problem whose primary
decision variables were the pipe diameters. One of the first
attempts was made by Alperovits and Shamir [11]. However,
a number of investigators have noted that, from a technical
standpoint, the design of WDNs could be improved by
using a multiobjective strategy. That approach allows the best
trade-offs to be identified among different objectives, such
as cost, reliability and environmental issues. As explained
by Savic [12], single-objective optimization approaches have
a number of limitations and a multiobjective technique is
proposed to avoid these difficulties. Therefore, this work
presents a multiobjective optimization model that includes
the traditional objectives of minimizing costs and improving
hydraulic performance, along with a third objective in the
optimization process to explicitly take into account environ-
mental concerns by minimizing the carbon emissions. Some
studies even include environmental impacts in the water
infrastructure planning, e.g., Herstein et al. [13], who present
an index-based method to assess the environmental impact
of WDN and D’Ercole et al. [14] who optimize the WDN
performance by taking environmental impacts into account.
However, there is a gap in the literature with respect to
handling environmental issues in a multiphase design scheme
through the use of real options (ROs) to achieve a flexible
design. Our work intends to fill this gap.

This work presents an optimization method for the
design and operation of WDNs that implements a multiphase
strategy to achieve a flexible design by taking uncertainty
into consideration when planning short- to long-term invest-
ments. The multiphase design of WDNs can be defined as
design that is carried out in phases using small time horizons
at each phase (rather than considering the full planning
horizon). This enables decision makers to actively manage
the configuration of the network and easily adapt it to new
situations. A multiphase design is more cost effective for a
long planning horizon than a single-phase design because the
construction costs are incurred progressively over time and
not all at once (year zero of the planning horizon), which
is the case for a single phase. Deferring costs saves money.
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Furthermore, multiphase design makes it possible to adjust
the WDN’s capacity if conditions turn out to be different
from those projected. The traditional single-phase solutions,
however, can result in a system that may need upgrading from
time to time or require excessive initial investment in capacity
that may not be required for a long time.

The rest of the paper is organized as follows: Section 2
sets out the multiobjective optimization algorithm, followed
in Section 3 by the multiobjective decision model established
according to the ROs approach. Then a detailed description
of the case study is presented in Section 4, including the
future scenarios options, after which the results are given in
Section 5 and some comparisons drawn. Section 6 lists some
conclusions.

2. Multiobjective Simulated Annealing

The multiobjective optimization problem is solved by a
simulated annealing heuristic [15]. Simulated annealing is
a popular search algorithm based on an analogy with the
physical process of cooling a material in a heat bath [16].
Annealing is the process of heating a solid until its melting
temperature and then slowly reducing the temperature. If
the cooling process is sufficiently slow the process forms a
new material with a well-organized structure and the lowest
internal energy state. The notion of slowly decreasing the
temperature is adapted in the simulated annealing algorithm
to guide the optimization process by slowly reducing the
probability of accepting worse solutions (those that have
worse values of the objectives) during the exploration of the
solution space. The possibility of accepting worse solutions is
a crucial property that allows the algorithm to escape from
local optimums and enables a more widespread search. The
algorithm comes to an end when the temperature parameter
achieves the desired level.

A literature review shows that simulated annealing has
been used in various fields, including regional wastewater
system planning by Zeferino et al. [17] and groundwater mon-
itoring networks by Nunes et al. [18], where it performed well.
Cunha and Sousa [19] and Reca et al. [20, 21] have demon-
strated the successful use of simulated annealing in WDNs
for single-objective optimization models. In a previous work
by Marques et al. [10], a simulated annealing algorithm was
proposed and used in a two-objective optimization model for
the design of WDNs. A three-objective optimization model
(the type of model proposed here) is more complex than
a two-objective model, because the search for the Pareto-
optimal front becomes harder due to the increase of the
number of incomparable solutions and also because it is
more difficult to classify the dominance relationship between
solutions to guide the search.

The multiobjective simulated annealing algorithm is used
in a three-objective model to search for the Pareto-optimal
front by generating potential solutions in the solution space
and evaluating the domination status between new solutions
and solutions that have already been found. The domination
status is represented schematically by Figure 1 between two
solutions “a” and “b” and is computed by multiplying the
change in values (if this is a nonzero value) of the objectives
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FIGURE 1: Dominance between solutions “a” and “b.”

(01,02, and O3). In a three-objective optimization problem,
the domination is given by a parallelepiped volume, as shown
in Figure 1, where the lengths of the edges are given by the
change in values of the three objectives. If these differences
are large, the volume or dominance between solutions is
high. But if the volume is small, so is the dominance of the
solutions.

Depending on the domination status, the potential solu-
tions are accepted or rejected according to the Metropolis
criterion [16], which guides the optimization process until the
stop criterion is met. In addition, the ROs approach divides
the planning horizon into design phases where different
decisions are taken. These multiple design phases increase the
complexity of the problem. Furthermore, to easily explore the
solutions provided by the optimization model, a visualization
tool AEROVIS [22] is used to plot the Pareto solutions.

3. Multiobjective Optimization
Model Formulation

3.1. Decision Variables. The approach described here aims
to define the flexible design for WDNs by achieving the
minimization of three objectives: investment and operation
costs, pressure deficit, and carbon emissions. The decision
variables are the commercial pipe diameters of the WDN.
The flexible design strategy determines the value of the
decision variables for the first phase and also for all the future
decision options that arise from all the possible decision paths
(corresponding to different scenarios of expansion of the
network for different time periods). However, the values of
the decision variables that are determined for the first phase
are effectively the ones that are required now, and therefore it
is very important to ensure that these decisions are flexible
enough to cope with the network conditions in the next
phases. The values of the decision variables for the future time
periods (phases) can be adjusted as new information arises.

3.2. Objective Functions. We formulated the multiobjective
optimization model to minimize costs, pressure deficits,
and carbon emissions. These three objectives are minimized
simultaneously to allow identifying the major trade-offs
between them and are represented in the following expres-
sions:

O1 = min (Ci + Cf) 1)
02 = min (HPD) (2)
03 = min (tonCO,), (3)

where Ci is cost of the initial solution to be implemented in
the first period (USD); Cf are future costs (USD); HPD are
hydraulic pressure deficits (m); and ton CO, are tonnes of
CO, emitted (ton).

Equation (1), representing the first objective, is given as
the sum of the initial solution costs to be implemented in the
first period or phase and the future costs for the planning
horizon. The term Ci computes the cost for the first period
and is calculated by

NPI NPU NDC
Ci=) (Cpipe;;,)+ Y (Cpsj)+ ) Ceqpp  (4)
j=1 d=1

i=1

where NPI is number of pipes in the network; Cpipe; ; is
cost of pipe i in period t = 1; NPU is number of pumps
in the network; Cps;, is pumping station costs of pump j
in the period t = 1; NDC is number of demand conditions
considered for the design; and Ce,; is present value cost
of energy (computed for the time period) under demand
condition d in period ¢ = 1.

Summing the cost of pipes, the cost of pumps, and the
present value of the energy cost we get the total cost for the
solution of t = 1. The other term of the objective function
O1 in (1) represents the future cost of pipes, pumps, and
energy of all the scenarios. These costs are weighted by the
corresponding probability of each scenario of expansion as
showed in

NSNTI t
Cf = ZZ <Cfuturet)s . Hprobm,s> , (5)

s=1t=2 nt=2

where NS is number of scenarios; NTI is number of periods
into which the planning horizon is divided; Cfuture,  is cost
of future designs in scenario s for period t; and prob,, is
probability of s in period nt (nt represents the number of time
periods, from the second to the one under analysis).

The future costs are computed, for each path, by summing
all costs incurred in each period, starting from the second
time period. In each future option the costs are computed by
multiplying the cost of each design option by the probability
of taking that option. The term Cfuture, ; is computed in (6),



for all future options established after ¢ = 1 (the costs for the
first period are already calculated by Ci).

Cfuture,
NPI NPU NDC
Zcpipei,t,s + Z (Cpsj,t,s) + Z (Ced,t,s) (6)
i=1 =1 d=1
1
———» VteNTL Vs eNS,
(1+IR)"

where Cpipe;, ; is cost of pipe i installed in period ¢ and in
scenario s; Cps;, ; is pumping station costs of pump j installed
in period t and in scenario s; Ce;, is present value cost
of energy (updated for the first year of the time period t)
under demand condition d for period t and in scenario s; IR
is annual interest rate for updating cost; and Y, is year when
costs will be incurred for period t.

The future costs are computed by a sum of 3 terms:
the first term computes the cost of pipes, the second term
computes the cost of installing pumps, and the last term
computes the energy cost of pump operation in the time
period. The present value of these costs is then computed for
the year when the costs will be incurred. Summing the terms
Ci with Cfin (1), the total cost for the whole planning horizon
is determined. The uncertainty of future network expansion
is taken into account, according to a decision tree, where each
path has its own probability.

The second objective function (O2), given in (2), aims to
minimize the total pressure deficits, considering all possible
future options that can be taken for the planning horizon.
This is computed by summing the node pressure deficits for
the different possible scenarios according to

Pdm ndts)} (7)

"MZ

22 2m

LMZ
||M_]

where NN is number of nodes; Pdm,, ; is minimum desirable
pressure at node n for demand condition d; and P, ;, ; is
pressure at node n at demand condition d for time period ¢
and in scenario s.

Equation (7) computes the pressure deficits for all scenar-
ios, all time periods, after t = 1, for all the demand conditions,
and for all the nodes. For t = 1, nodal pressures have to be
totally satisfied (i.e., nodal pressures equal to or higher than
minimum desirable pressures). This sum can be used as a
measure of the network performance over the entire planning
horizon.

Finally, the third objective (O3) in (3) includes the
minimization of carbon emissions due to installation and
operation of the WDN and is defined in (8). The car-
bon emissions are evaluated by considering the whole life
cycle, including the extraction of raw materials, transport,
manufacture, assembly, installation, disassembly, demolition
and/or decomposition [23]. The carbon emissions from the
energy used during the network’s operation, mainly by
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pumping stations, are also computed. We do not consider the
other elements of the network, for simplification purposes.

NPI NDC
tonCO, = ) (CO,pipe;;) + ¥ (CO,Cey)

i=1 d=1
NS NTI
)
s=1t

=2

NPI NDC
Z (COZPipei,t,s) + Z (Cozced,t,s) (8)

i=1 d=1

t
’ HprObnt,s} >
nt=2

where CO,pipe;,; is carbon emissions of pipe i installed
in period t and in scenario s and CO,Ce;, are carbon
emissions of energy consumed by pump operation under
demand condition d for period t and in scenario s.

The carbon costs are given by summing the emissions
related to pipeline construction with the carbon emissions
by pump operation. These emissions are computed for the
first time period or phase by the first two terms in (8)
and by a weighted sum of the carbon emissions of all
the possible future scenarios that can be taken. The future
carbon emissions are also computed by summing the pipeline
construction with the pump operation carbon emissions.

3.3. Constraints. The multiobjective model also includes a set
of constraints. The minimum admissible pressures are used
to compute the lowest value of pressure that can be reached
according to the probabilities of scenarios and calculated by
the following expression:

P

1,y

H prob ;| + Pam, 4
nt=2 (9)

Vn € NN; Vd € NDGC; Vt € NTT; Vs € NS,

dts > | (Pdm,, ; — Pam, 4

where Pam, ; is minimum admissible pressure at node # for
demand condition d.

The constraint of (9) is intended to obtain higher mini-
mum pressures, and thus fewer pressure violations, for sce-
narios with high probabilities of occurrence. This can be seen
as a procedure to increase the performance of the network
to handle certain, more probable, situations. The model also
includes other constraints to verify nodal continuity (see
(10)), to compute the head loss of the pipes (see (11)), and to
guarantee a minimum pipe diameter (see (12)) for each pipe,
the use of a set of commercial diameters (see (13)) and the
assignment of only one commercial diameter for each pipe
(see (14)).

NPI

Zln,iQi,d,t,s = QCn,d,t,s
= (10)

Vn € NN; Vd e NDC; Vt € NTI; Vs € NS

AHi,d,t,s = Kind,t,s )

Vn € NN; Vd € NDC; Vt € NTI; Vs € NS

D, > Dmin, Vi€ NPI (12)
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D;= ) YD, Dcom,; Vi€ NPI (13)
d=1
ND
YYD, =1 VieNPlL (14)
d=1

where I, ; is incidence matrix of the network; Q; 4, ; is flow in
pipe i under demand condition d for period ¢ and scenario
s (m’/s); QC, 4.5 is consumption at node n under demand
condition d for period t and scenario s (m*/s); NN is number
of nodes; AH,,, is head loss in pipe i under demand
condition d for period t and scenario s; K;, « are coeflicients
that depend on the physical characteristics of pipe i; D; is
diameter of pipe i; Dmin; is minimum diameter of pipe i
YD, is binary variable to represent the use of diameter d in
pipe i; Dcom,; is commercial diameter d assigned to pipe i;
and ND is number of commercial diameters.

The optimization model was linked to EPANETpdd [24]
pressure-driven hydraulic simulator to verify the hydraulic
constraints. This is an extension of the EPANET [25]
demand-driven simulator. Water distribution simulation
models are usually divided into two groups, the demand-
driven and the pressure-driven models. Demand-driven is
the traditional analysis and assumes that nodal demands
are known and are supplied independently of the pressure
values. The pressure-driven analysis is based on a more
recent modelling strategy that considers demand not fixed
but depending on the pressures in the network [26, 27].
Pressure-driven analysis allows a more realistic prediction
of the hydraulic system behaviour of WDN [27, 28]. From
a computational point of view, demand-driven analysis is
more efficient than pressure-driven due to the increased
complexity of the hydraulic modelling problem as set out
by Giustolisi and Walski [28]. However, pressure-driven
analysis is required here to predict the hydraulic behaviour
of the network in pressure-deficient conditions. EPANETpdd
is used to calculate the hydraulic equations by an iterative
procedure presented by Morley and Tricarico [24]. This
procedure follows the head-flow relationship proposed by
Wagner et al. [29].

4. Case Study

We use a WDN adapted from Walski et al. [30] to demon-
strate the applicability of our approach, and this is presented
in Figure 2. It is a small network supplied by three reservoirs
with fixed levels and a pumping station at link 1 to transfer
energy to the flow from reservoir 1.

The grey areas (Al to A5) of the network in Figure 2
are explained at the end of this section. The grey shades are
used to identify the network areas that will be expanded at
different phases of the planning horizon or with a population
shrinkage. Light grey represents the network areas to be
installed in near future (Al, A2) and dark grey represents the
areas that will be installed over the long term (A3, A4) and
A5 where a population shrinkage is considered.

The characteristics of the nodes including the areas, the
ground elevation, the demand for conditions (1) and (2), and

FIGURE 2: Water distribution network.

two different minimum pressures for each demand condition
are given in Table 1. We consider two different minimum
pressure values to design the network for the long term,
the desired pressure (minimum pressure to provide a good
level of network service) and admissible pressure (minimum
allowed pressures in the network below which no demand
can be delivered). Pressure at the nodes can be lower than the
desired pressure but not lower than the admissible pressure.

The characteristics of the pipes are given in Table 2,
namely, the initial and final nodes, the length, and the pipes
to be installed according to the areas of Figure 2.

In relation to the pump (pipe ID 1), the efficiency is 75%
and the daily consumption is 20 hours at demand condition
(1) and the other 4 hours at demand condition (2). The energy
costs are 0.075 USD/kWh and should be evaluated for a 60-
year period at a discount rate of 4% per year. This rate was
fixed based on recommendations by Wu et al. [31].

Eight possible commercial diameters are considered for
the optimal design of the WDN and these are presented
in Table 3, including (for each commercial diameter) the
unit cost, the Hazen-Williams coeflicients, and the carbon
emissions. These carbon emissions are computed by the
procedure described by Marques et al. [23].

The planning horizon for this case study is set at 60
years and divided into three periods or phases of 20 years
each, when different options can be taken. These options are
stated according to the uncertainty of future outcomes and
are organized by ROs in terms of possible future scenarios.
The dynamics of urban growth over the lifetime horizon have
a considerable impact on the WDN and should therefore be
taken into account at the infrastructure planning stage.
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TaBLE 1: Characteristics of the nodes.
Nodal demand Minimum desirable Minimum admissible
Node Area Ground elevation (m) condition (I/s) pressure (m) pressure (m)
(1) (2) 1) (2) 1) (2)
1 36.5 Reservoir at the level of 30.5 m
2 30.5 0 0 28.1 17.6 21.1 10.6
3 106.7 31.6 473 28.1 17.6 21.1 10.6
4 117.4 Reservoir at the level of 143.3 m
5 106.7 31.6 47.3 28.1 17.6 21.1 10.6
6 A5 106.7 126.2 189.3 28.1 17.6 21.1 10.6
7 A5 106.7 63.1 94.6 28.1 17.6 21.1 10.6
8 121.9 Reservoir at the level of 147.8 m
9 Al 106.7 31.6 47.3 28.1 17.6 21.1 10.6
10 Al 106.7 31.6 47.3 28.1 17.6 21.1 10.6
1 Al 106.7 31.6 47.3 28.1 17.6 21.1 10.6
12 A2 106.7 31.6 473 28.1 17.6 21.1 10.6
13 A2 106.7 31.6 47.3 28.1 17.6 21.1 10.6
14 A3 106.7 31.6 47.3 28.1 17.6 21.1 10.6
15 A3 106.7 31.6 47.3 28.1 17.6 21.1 10.6
16 A4 106.7 31.6 47.3 28.1 17.6 21.1 10.6
17 A4 106.7 31.6 473 28.1 17.6 211 10.6
TaBLE 2: Characteristics of the pipes. TaBLE 3: Diameter, unit costs, carbon emissions, and Hazen-
Williams coefficients.
Pipe ID  Initial node Final node Length (m) Area
1 1 2 Pump Diameters Unit costs H.az'en- Cgrb.on
Williams emissions
2 2 3 3218.7 (mm) (USD/m) coeflicients (ton CO,/m)
3 3 4 3218.7 152.4 495 100 05
4 2 5 1609.3
203.2 63.3 100 0.6
5 3 6 1609.3
6 5 6 318.7 254 94.8 100 0.7
7 6 7 32187 A5 304.8 132.9 100 0.8
8 7 8 1609.3 355.6 170.9 100 0.9
9 5 9 1609.3 Al 406.4 194.9 100 1.0
10 6 10 1609.3 Al 457.2 225.1 100 1.1
1 7 1 1609.3 Al 508 262.8 100 1.1
12 9 10 3218.7 Al
13 10 1 3218.7 Al
14 2 12 1609.3 A2 The planning horizon, represented in the decision tree, is
15 3 13 1609.3 A2 divided into three time periods. In the first time period, t = 1,
16 12 13 32187 A2 the network design is required for pipes 1 to 8, allowing for
17 9 14 1609.3 A3 future uncertainty. Int = 2 (light grey), there are four options
18 10 15 1609.3 A3 available, expansion to Al and A2, expansion to Al, expansion
19 14 15 3218.7 A3 to A2 and do not expand. For the last time period (dark
20 12 16 1609.3 Ad grey), t = 3, other options are possible, that is, expansion
1 13 17 1609.3 Ad to A3 and A4, expansion to A3, expansion to A4, and do
” 16 17 3218.7 Ad not expand. A population shrinkage is also considered, A5,

A decision tree is built for the case study using the various
decision paths that can be taken in future and it is presented
in Figure 3.

that sees consumption fall by 30%. These future conditions
are considered the most probable and are organized in the
decision tree by phased interventions in the network that can
be made by following a decision path in the decision tree.
Each decision option has a probability shown in the squares
in Figure 3 and the probabilities of scenarios given in the last
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Time period t = 1
(0-20 years)

Time period t =2
(20-40 years)

5| Expansion to Al
and A2 0.1

Initial design 1 Expansion to A1 | 0.4

—>| Expansionto A2 | 0.4

—>| Donotexpand | 0.1

Scenarios
(0-60 years)

Expansion to A3

and Ad Scenario 1 | 0.06

Expansion to A3 Scenario 2 | 0.02

Expansion to A4 Scenario 3 | 0.02

Expansion to A3 Scenario 4 | 0.24

Do not expand Scenario 5 | 0.16

Expansion to A4 Scenario 6 | 0.2

Do not expand Scenario7 | .2

Scenario 8 | 0.1

Depopulation A5

FIGURE 3: Decision tree for the planning horizon and occurrence probability.

branches of the decision tree are computed with these values
by multiplying all the probability values on the decision path
of the scenario. In real world applications these probabilities
can be given by expert judgement.

5. Results

Keeping the problem formulation and the case study in mind,
the results are identified for all the design phases and for all
scenarios of the planning horizon. However, as previously
stated, just the first phase of the design has to be built
now and the process can be reassessed in subsequent phases
to find more accurate solutions once some uncertainty has
been eliminated. The solutions were obtained by using the
multiobjective simulated annealing algorithm and the results
are plotted in Figure 4.

A global view of the three objectives’ possible Pareto
front is shown in Figure 4 by a set of 600 solutions. This
representation makes use of the AEROVIS visualization tool
developed by Kollat and Reed [32] and Kollat et al. [22].
These solutions are plotted for different perspectives to try
to facilitate the visualization of the shape of the Pareto front
surface so as to indicate the type of trade-off between the
different objectives.

The colour scheme of the figures shows the cost of the
solutions in US dollars. The colder (blue) shades represent the
lower values of cost and the warmer (red) shades represent
the higher values. The colour scheme and the relevant cost
values are indicated in the colour bars above the figures.

The trade-offs between the multiobjective optimization
solutions are explored in detail by plotting these results
in two-dimensional graphs by pair of objectives. This is
done using the AEROVIS visualization tool to emphasize
the nondominated solutions between each pair of objectives
and soften the others. Figure 5 shows the costs plotted with
pressure deficits.

This figure shows that increasing the cost leads to decreas-
ing the hydraulic pressure deficits. For total pressures deficits
below approximately 60 (m), the rate of cost increase is much
higher than for pressure deficits above 60 (m). In relation to
cost and carbon emissions, the trade-offs between these two
objectives are presented in Figure 6.

It can be seen from the figure that the carbon emissions
are not in conflict with the cost objective. Roughly, decreasing
the amount of material for pipes and the energy consumed
by pumps makes it possible to reduce both the cost and
the carbon emissions. Finally, Figure 7 shows the relation
between the carbon emissions and the pressure deficits.

It can be seen from this figure that the hydraulic pressure
deficit is reduced by increasing the carbon emissions. In
fact, the reduction of the pressure deficits is achieved by
increasing the network’s hydraulic capacity. This can be done
by introducing large-diameter pipe sections or by increasing
the energy used for pumping. Both imply more carbon
emissions through the rise in the quantity of pipe material
needed and in the energy consumed by pumps.

To understand the importance of including a carbon
emissions objective in the optimization model, the results
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Cost (x10%)
5.0 5.4 5.8 6.1

Cost (><106)

4.7 5.0 5.4

5.8 6.1

4.7 300

FIGURE 4: Pareto front from different perspectives.

of the optimization model described previously, abbreviated
as OML1, are compared with the results of the optimization
model OM2 that do not include carbon emissions as an
objective to minimize. OM1 (described in Section 3) has three
objective functions included in expressions (1), (2), and (3),
to minimize costs, pressure deficits, and carbon emissions,
respectively. The OM2 model has the two objective functions
presented in expressions (15). These expressions are equal to
expressions (1) and (2) of OML.

O1 = min (Ci + Cf)
(15)
02 = min (HPD).

The OM2 constraints are included in (9) to (14) (the same
as for OM1). The results of OM2 are compared with the
OMI solutions in Figures 8 and 9. As before, the AEROVIS
visualization tool is used to show the results. In OM2 the
carbon emissions are not minimized, although to allow
the comparison, carbon emissions are computed after the
optimization run to enable these solutions to be shown in the

same layout scheme. Figure 8 compares the OMI solutions
(Figure 8(a)) with the OM2 solutions (Figure 8(b)) in terms of
cost and carbon emissions. Two solutions are marked inside
a black box. The cost of these solutions is practically the same
(4.89 x 10° USD versus 4.86 x 10° USD), but the OMI solution
has 722 tonnes less CO, emissions than the OM2 solution.
Figure 9 shows the comparisons of solutions, in terms of
carbon emissions and pressure deficits, identified by OM1
(Figure 9(a)) with the OM2 (Figure 9(b)). Two solutions are
also marked inside a red box. This means they have almost
the same value of pressure deficits (146 m versus 145 m), but
the OMI solution has 948 tonnes less CO, emissions than the
OM2 solution.

These results show the advantage of using a three-
objective optimization model (OM1) to design WDNs. The
ROs approach used here includes a multiphased design of
the WDN that has to define the initial design (for the first
phase) and helps decision makers to investigate different
future options during the planning horizon. The results for
the case study that are presented in Figure 4 show the values
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for the three objective functions for each solution. Each of
these solutions can be detailed according to the effective
WDN design for the different possible future options.

The effective design of three different WDN solutions
of the Pareto front is presented in Figure 10, taking the
decision path of scenario 1 into account, in which all the
expansion areas are developed. Although only this scenario is
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FIGURE 7: Pareto front of ton CO, versus pressure deficits.

represented, the approach presented does identify the designs
for all the other scenarios. Furthermore, these designs are
presented according to the three phased interventions in
the network. The first design phase (t = 1) is in fact the
solution that has to start being implemented now, taking
the future expansion options into account. In this phase,
pipes 2 to 8 are designed with enough hydraulic capacity to
cope with all possible future scenarios. Nonetheless, the case
study includes a pumping station downstream of reservoir
Rl (see Figure 2) that can be used to increase the network
node pressures, if required. There is therefore a compromise
between increasing the hydraulic capacity of pipes with an
initially high construction investment or increasing the head
of the pumps and spending more on energy.

Figure 10 is divided into three to show the solutions for
the phased designs, using light grey for the network areas to
be installed in phase (t = 2) and dark grey for the areas that
will be installed in phase (t = 3). Figure 10(a) shows the lowest
cost design solution. Figure 10(b) shows a solution with the
lowest hydraulic pressure deficit, and Figure 10(c) represents
a solution with the lowest carbon emissions.

It is possible to draw some conclusions from Figure 10. In
terms of pipe diameters, the solution with the lowest cost uses
the smallest pipe diameters (Figure 10(a)). Conversely, the
solution with large pipe diameters is also the most expensive
solution and has the lowest pressure deficit (Figure 10(b)).
To reduce the pressure deficit, the pipe diameters need
to increase, which in turn will increase the cost and also
the carbon emissions. Finally, low carbon emissions can be
obtained with a low cost solution, but with high hydraulic
pressure deficits (Figure 10(c)). It should be emphasized that
Figure 10 shows only the design of the WDN for one of the
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FIGURE 10: Water distribution network considering scenario 1 and the lowest cost solution (a); the lowest pressure deficit solution (b); and the

lowest carbon emissions solution (c).

possible scenarios (scenario 1). However, all the solutions of
the Pareto front, which are obtained by the multiobjective
model, include the designs for all the other scenarios.
Summing up, the results and the comparisons set out
in this work comprise the optimal solutions in terms of

the diameter of the pipes to be laid in each of the design
phases. The proposed approach has the advantage of offering
stakeholders trade-offs between the objectives of cost, pres-
sure deficits and carbon emissions, while at the same time
supporting decision making by identifying solutions for the
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first design phase and keeping the temporal development of
WDN:ss in sight. Furthermore, comparison of the results of
the OM1 and OM2 models shows that there are advantages
in including carbon emissions as a specific objective in OM1,
which can find solutions with lower carbon emissions for the
same level of costs and same level of pressure deficits as the
OM2 solutions.

6. Conclusions

This paper describes a ROs multiobjective and multiphase
optimization approach for the flexible design and operation
of WDNs under uncertainty. The proposed optimization
model minimizes the costs, the extent of hydraulic pressure
deficits and the total carbon emissions. A case study has been
used to validate the approach and the results are presented in
a Pareto front by using an appropriate visualization tool. The
Pareto front surfaces obtained show the trade-off between
the three objectives. The geometry of Pareto fronts enables
some interesting conclusions to be drawn in terms of the
possible compromise between the objectives and how a
decrease achieved in one objective influences the increase
in the others. For example, to achieve a low pressure deficit
solution, the rate of increase in the required investment must
grow much faster beyond certain pressure deficit threshold
(60 m). On the other hand, carbon emissions do not appear
to be in conflict with the cost objective as reducing the
pipe material quantities and the energy consumed by pumps
lowers both the cost and the carbon emissions. Finally, the
results show that pressure deficit reduction can only be
achieved by increasing carbon emissions.

The results of this paper also stem from comparisons
between two models to ascertain the importance of including
carbon emissions minimization as an objective in the opti-
mization model. The results show that it is possible to reduce
the CO,emitted for the same level of capital expenditure or
the same level of network pressure deficits if carbon emissions
are minimized in the optimization process. Finally, three
particular solutions for the network design, retrieved from
the edges of the Pareto front, are detailed to compare the pipe
size changes when preference is given to one of the objectives.
The results indicate the increase in pipe sizes observed for a
solution with the lowest demand deficits relative to solutions
obtained for the lowest cost and with the lowest carbon
emissions. From a decision-making point of view, results of
this kind can help decision makers to better understand the
impact of assigning more importance to one objective relative
to another.

The consideration of ROs permits uncertainty to be
included in the decision process by using phased planning
that makes it possible to undertake midcourse adjustments
or make additional investments. It should be emphasized that
the multiphase design of WDNs enables decision makers to
postpone interventions in the network until such time as
they are required, thus reducing the construction costs at
year zero compared with the traditional single-phase design.
The methodology proposed in this paper supports decisions
taken for the first phase that can be adjusted if required, and
as new information becomes available. The adjustments are

Journal of Optimization

predefined in a decision tree where different scenarios with
specific occurrence probability are stated. However, given the
large uncertainty in such long planning horizon, the process
can be reassessed at the end of each phase in response to
inaccuracies in the scenario or demand forecasts. The use of
ROs gives a measure of flexibility to decision making.
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