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AD UN GRANDE UOMO, MIO PADRE  

AD UNA DONNA SPECIALE, MIA  MADRE 

AI MIEI FRATELLI 

E A MATTEO E SIMONE  

 

 

“Life is like riding a bicycle. To keep your balance, 

 you must keep moving” 

A. Einstein 
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EXTENDED ABSTRACT (eng) 
 

Intelligent transportation systems (ITS) work by collections of data in real time. Average 

speed, travel time and delay at intersections are some of the most important measures, 

often used for monitoring the performance of transportation systems, and useful for 

system management and planning. In urban transportation planning, intersections are 

usually considered critical points, acting as bottlenecks and clog points for urban traf-

fic. Thus, detecting the travel time at intersections in different turning directions is an 

activity useful to improve the urban transport efficiency. Smartphones represent a low-

cost technology, with which is possible to obtain information about traffic state. How-

ever, smartphone GPS data suffer for low precision, mainly in urban areas.  

In this work, we propose a novel framework for real-time adaptive signal control using 

connected vehicles (CV). This framework is made of two new methods: the first one is 

for lane identification and flow estimation, in which we aim to determine the traffic flows 

on lanes near the intersections controlled by traffic lights, starting from GPS data ac-

quired by smartphones; the second one is for optimal real-time traffic signal settings. 

In the first method, we present a fuzzy set-based method for identification of vehicles 

position within road lanes near intersections using GPS data coming from 

smartphones. We have introduced the fuzzy sets to consider uncertainty embedded in 
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GPS data when trying to identify the position of vehicles within the lanes. Moreover, we 

introduced a Genetic Algorithm to calibrate the fuzzy parameters and to obtain a novel 

supervised clustering technique.   

In more details, for each lane identified by the proposed method, we set up a flow 

estimation method to optimize signal timings. It is based on the evaluation of the length 

of the queues and the speed. Finally, the proposed method has been validated through 

the comparison with the fundamental diagram. Signal timings were optimized using the 

Webster algorithm. 

As for the case study, we have studied a signalized intersection in the city of Bari (Italy), 

considering three main time periods: 8 a.m. – 9 a.m., 12 a.m. - 1 p.m. and 5 p.m-6 

p.m. We acquired data related to location, speed, travel times and trajectories of a ve-

hicle using a smartphone application. Smartphone devices have the advantages of mo-

bile sensors: low investment costs, high penetration, and high accuracy achieved by 

GPS receivers. In addition, GPS-enabled smartphones can provide accurately not only 

the position but also speed and travel direction. 

First results reveal the effectiveness of the proposed method about the lane identifica-

tion in comparison with the outcomes of two well-known clustering techniques (Fuzzy 

C-means, K-means).  

The curves calculated by the Greenshields method are comparable with the fundamen-

tal diagrams. Results regarding the signal optimization show that the improvements 

obtained by our method are remarkable: in some cases, we have achieved improve-

ments around 50% for the delay times and in the reduction of average length of queues.  

Moreover, the computational times are suitable for the use in a real-time traffic control. 

 

 

key words : connected vehicle, GPS data, real time, ITS 

 

 

 

 



 

 

 

 
 
 
 
 

EXTENDED ABSTRACT (ita) 

 

I sistemi di trasporto intelligente raccolgono, elaborano, gestiscono e trasmettono dati 

relativi ai veicoli, allo stato delle infrastrutture e agli utenti integrandoli tra loro in modo 

“intelligente”. Gli ITS lavorano per raccolta dati in tempo reale. La velocità media, il 
tempo di viaggio e il ritardo alle intersezioni sono alcune delle misure più importanti, 

spesso utilizzate per monitorare le prestazioni dei sistemi di trasporto e utili per la ge-

stione e la pianificazione del sistema. Nella pianificazione dei trasporti urbani, le inter-

sezioni sono generalmente considerate punti critici, che agiscono come strozzature e 

punti di intasamento per il traffico urbano. Quindi, rilevare il tempo di percorrenza alle 

intersezioni in diverse direzioni di svolta è un'attività utile per migliorare l'efficienza dei 

trasporti urbani. Gli smartphone rappresentano una tecnologia a basso costo con cui è 

possibile ottenere informazioni sullo stato del traffico. Tuttavia, i dati GPS registrati tra-

mite smartphone hanno una bassa precisione, soprattutto nelle aree urbane. 

In questo lavoro, proponiamo un nuovo modello capace di gestire e controllare i sema-

fori in tempo reale utilizzando veicoli connessi (CV). Questa metodologia è composta 

da due nuovi metodi, il primo necessario all’identificazione della corsia e il secondo, 

invece, permette la stima dei flussi.  

In particolare, ci proponiamo di determinare i flussi di traffico su ogni corsia vicino alle 

intersezioni regolate dal semaforo, partendo dai dati GPS acquisiti dagli smartphone. 

Nel primo metodo, presentiamo un metodo basato sulle funzioni di appartenenza Fuzzy 

per l'identificazione del veicolo in prossimità di intersezioni semaforizzate attraverso 

l’utilizzo di dati GPS provenienti da smartphone. Abbiamo introdotto i set fuzzy per tener 

conto dell'incertezza intrinseca nei dati GPS quando si cerca di identificare la posizione 
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del veicolo all'interno delle corsie stradali. Inoltre, abbiamo introdotto un algoritmo ge-

netico per calibrare i parametri fuzzy per ottenere una nuova tecnica di “clustering su-

pervisionata”. 

Successivamente, per ogni corsia individuata dal metodo proposto, abbiamo definito 

un metodo di stima del flusso per successivamente ottimizzare i tempi di ciclo sema-

forico. Il metodo di stima si basa sulla valutazione della lunghezza delle code e della 

velocità. Infine, i risultati di densità, flusso e velocita ottenuti sono stati calibrati attra-

verso il modello di Greenshield. I tempi del segnale sono stati ottimizzati utilizzando 

l'algoritmo Webster. 

Abbiamo considerato un'intersezione segnalata nella città di Bari (Italia) per valutare i 

risultati del metodo proposto. Abbiamo preso in considerazione tre fasce orarie princi-

pali: dalle 8.00 alle 9.00 dalle 12.00 alle 13.00. e dalle 5.00 alle 6.00. Abbiamo acqui-

sito dati di posizione, velocità, tempi di viaggio e traiettorie del veicolo utilizzando un'ap-

plicazione per smartphone. I dispositivi Smartphone combinano i vantaggi dei sensori 

mobili di cui sopra: bassi costi di investimento, elevata penetrazione e alta precisione 

ottenuti dai ricevitori GPS. Inoltre, gli smartphone abilitati al GPS sono in grado di fornire 

in modo preciso non solo la posizione, ma anche la velocità e la direzione di marcia. 

I primi risultati rivelano l'efficacia della prima metodologia proposta (identificazione della 

corsia stradale) quando si confrontano i risultati del metodo proposto con due tecniche 

di clustering ben noti (Fuzzy C-means, K-means). Dai risultati ottenuti si è riscontrato 

un errore del 3% sull’intersezione a due corsie e del 6% invece sull’intersezione a tre 

corsie.  

La curva stimata utilizzando il metodo di Greenshield segue l’andamento dei diagrammi 

fondamentali. Abbiamo osservato che i dati analizzati sono sempre sul ramo stabile del 

diagramma fondamentale, quindi sempre in condizioni di traffico non congestionato. 

I risultati relativi all'ottimizzazione dei segnali stradali mostrano come i miglioramenti 

ottenuti sono notevoli. Abbiamo ottenuto miglioramenti in alcuni casi nell'ordine del 

50% per i tempi di ritardo e la riduzione delle code medi. 



 

 

Infine, il nuovo modello quindi, può essere utilizzato per il controllo dell’intersezione 

semaforizzata a livello di corsia stradale. Inoltre, i tempi di calcolo ottenuti sono com-

patibili per l'utilizzo nel controllo del traffico in tempo reale tramite smartphone. 

 

 
 

key words : connected vehicle, GPS data, real time, ITS 
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INTRODUCTION 

 

The analysis urban movement cars issues has assumed an increasingly important 

role in recent years. This is due to the fact that the urban traffic conditions greatly 

slowed down and have become congested, creating not only inconveniences to car 

drivers for the increase in the average travel time, but also make a less secure circula-

tion on the road increasing air and noise pollution.  

In this context the Intelligent Transport Systems and info-mobility development become 

an opportunities to reduce costs and road congestion, with sustainable timing. Specif-

ically, in the era of multimedia convergence, communication, and sensing platforms, 

GPS-enabled smartphones are becoming an essential contributor to location-based 

services. These devices combine the advantages of mobile sensors mentioned earlier: 

low investment costs, high penetration, and high accuracy achieved by GPS receivers. 

In addition, GPS-enabled smartphones are able to provide accurately not only position 

but also speed and travel direction. It is worth noting that phones not only can send but 

also receive information. Therefore, traffic information can be delivered through this 

channel. Given the market penetration of mobile phones, this new sensing technology 

can potentially provide an exhaustive spatial and temporal coverage of the transporta-

tion network. In the mobile computing era, due to their numerous sensors (e.g., GPS, 

accelerometers, gyroscopes) smartphones have become instrumental tools capable to 

support innovative mobile context-aware systems development. 

Real-time traffic reports are usually based on statistical methods. These methods 

have been also a common practice in studies that use cell phones as traffic sensors, 
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in which the main goal has been to find the link speed or travel time estimation (Bar-

Gera, 2007). Note that the aforementioned study uses cell phone antennas to obtain a 

cell phone position (i.e. vehicle), which is less accurate than GPS positioning. Krause 

et al. (2008) have investigated the use of machine learning techniques to reconstruct 

travel times on a graph based on sparse measurements collected from GPS devices 

embedded in cell phones and automobiles. 

An overview of the GPS techniques is given in Skog (2009). For mapping the vehicle 

position in the road, sophisticated algorithms have been developed, e.g., Zhao (2015) 

or Fouque et al. (2012). The usual problem in GPS positioning is that the accuracy is 

not within a lane-width. Therefore, solutions have to be found to get the accuracy to a 

lane level. Liu X. et al. (2017) present a recognition system for dangerous vehicle steer-

ing based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the 

accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s an-
gular velocity, which is characterized by gyroscope data from a smartphone mounted 

in the vehicle.  

Sekimoto et al. (2012) proposed a simple method for using the separation distance 

(offset) between a smartphone GPS and the center line on a digital road map to deter-

mine the lane position of a car.  

In this work, we propose a novel framework for real-time adaptive signal control using 

connected vehicles. This framework is composed by two new methods for lane identi-

fication and flow estimation for optimal real-time traffic signal settings. In particular, we 

aim to determine the traffic flows on each lane near the intersections regulated by the 

traffic light, starting from GPS data acquired by smartphones. We have considered a 

signalized intersection in the city of Bari (Italy) to evaluate the outcomes of the proposed 

method. We have considered three main time slots: 8 a.m. – 9 a.m., 12 a.m. - 1 p.m. 

and 5 p.m-6 p.m. 

The first proposed method (road lane identification) is based on the Fuzzy set theory 

(Zadeh,1965) as it is useful in dealing with uncertainty embedded in the observed data. 

We have used fuzzy sets to represent the membership degree of a vehicle position to a 

lane. Moreover, a road reference system has been defined to process GPS track data 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28335540
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obtained by a smartphone GPS. To find the optimal distributions, we have defined a 

supervised clustering technique to efficiently evaluate the lane positioning of a vehicle 

through a Genetic Algorithm.  

Going in further details, for each lane identified by proposed method, we proposed a 

flow estimation method to subsequently optimize signal timings. It is based on the eval-

uation of the length of the queues and the speed. Finally, the Greenshield’s model has 
been calibrated for the validation of the proposed method through the fundamental di-

agram. Finally, signal timings were optimized using the Webster algorithm. 

This thesis is structured as follows: Chapter 1 presents ITS technologies. In Chapter 

2 presents the basic principles of fundamental diagram and traffic lights optimization. 

In Chapter 3 a summary of works in Macro Fundamental Diagram(MFD) and estimation 

traffic flow. In Chapter 4 describes a proposed method and in Chapter 5 presents the 

case of study and shows results.  
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CHAPTER 1 
 

INTELLIGENT TRANSPORTATION SYSTEMS 
 

 

 

1.1 Intelligent Transportation Systems 

 

 

Information technology (IT) has transformed many fields, including indus-

tries, education, health care, government, and is now in the initial stages of transform-

ing transportation systems. While many think that improving a country’s transportation 

system solely means building new roads or repairing aging infrastructures, the future 

of transportation lies not only in concrete and steel, but also increasingly in using IT.  

IT enables elements within the transportation system vehicles, roads, traffic lights, 

message signs, etc. to become intelligent by embedding them with microchips and 

sensors and empowering them to communicate with each other through wireless tech-

nologies. In the leading nations in the world, IT brings significant improvement in trans-

portation system performance, including reduced congestion and increased safety and 

traveler convenience.  

Unfortunately, the United States lags the global leaders, particularly Japan, Singapore, 

and South Korea in ITS deployment. This has been the result of two key factors: a 

continued lack of adequate funding for ITS and the lack of the right organizational sys-

tem to drive ITS in the United States, particularly the lack of a federally led approach, 
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as opposed to the “every state on its own approach” that has prevailed to date. Trans-

portation systems are networks, and much of the value of a network is contained in its 

information. For example, whether a traffic signal “knows” there is traffic waiting to 

pass through an intersection; whether a vehicle is drifting out of its lane; whether two 

vehicles are likely to collide at an intersection; whether a roadway is congested with 

traffic; what the actual cost of operating a roadway is; etc.  

Intelligent Transportation Systems (ITS) include a wide and growing suite of technolo-

gies and applications.  

ITS applications can be grouped within five summary categories:  

1) Advanced Traveler Information Systems provide drivers with real-time information, 

such as transit routes and schedules; navigation directions; information about de-

lays due to congestion, accidents, weather conditions, or road repair work.  

2) Advanced Transportation Management Systems include traffic control devices, such 

as traffic signals, ramp meters, variable message signs, and traffic operations 

centers.  

3) ITS-Enabled Transportation Pricing Systems include systems such as electronic toll 

collection (ETC), congestion pricing, fee based express (HOT) lanes, and vehicle 

miles traveled (VMT) usage based fee systems.  

4) Advanced Public Transportation Systems allow trains and buses to report their po-

sition, so passengers can be informed of their real-time status (arrival and departure 

information).  

5) Fully integrated Intelligent Transportation Systems, such as vehicle-to-infrastructure 

(VII) and vehicle-to-vehicle (V2V) integration, enable communication among assets 

in the transportation system, for example, from vehicles to roadside sensors, traffic 

lights, and other vehicles. 

 
 ITS deliver five key classes of benefits by:  

• increasing safety; 

• improving operational performance, particularly by reducing congestion; 

• enhancing mobility and convenience; 

• delivering environmental benefits; 
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• boosting productivity, expanding economic and employment growth. 

 

Given the wide range of intelligent transportation systems, it is useful to organize dis-

cussion of ITS applications through a taxonomy that arranges them by their primary 

functional intent (with the acknowledgment that many ITS applications can serve mul-

tiple functions or purposes). While this list is not inclusive of all possible ITS applica-

tions, it includes the most prominent ones (see Table 1.1).  

 
 

 

Figure 1.1 Example of Technologies Associated with Real-Time Traffic Information Systems 
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Table 1.1: Classifying Contactless Mobile Payments Applications 

ITS Category Specific ITS Applications 

Advanced Traveller Information 

Systems (ATIS) 

Real-time Traffic Information Provision 

Route Guidance/Navigation Systems 

Parking Information 

Roadside Weather Information Systems 

Advanced Transportation Man-

agement Systems (ATMS) 

Traffic Operations Centres (TOCs) 

Adaptive Traffic Signal Control 

Dynamic Message Signs (or “Variable” Message 

Signs) 

Ramp Metering 

ITS-Enabled Transportation Pric-

ing Systems 

Electronic Toll Collection (ETC) 

Congestion Pricing/Electronic Road Pricing (ERP) 

Fee-Based Express (HOT) Lanes 

Vehicle-Miles Travelled (VMT) Usage Fees 

Variable Parking Fees 

Advanced Public Transportation 

Systems (APTS) 

Real-time Status Information for Public Transit 

System (e.g. Bus, Subway, Rail) 

Automatic Vehicle Location (AVL) 

Electronic Fare Payment (for example, Smart 

Cards) 

Vehicle-to-Infrastructure Integra-

tion (VII) and Vehicle-to-Vehicle 

Integration (V2V) 

Cooperative Intersection Collision Avoidance 

System (CICAS) 

Intelligent Speed Adaptation (ISA) 
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1.1.1 Advanced Traveller Information Systems 

 

Perhaps the most recognized ITS application, Advanced Traveller Information Systems 

(ATIS), provides drivers with real-time travel and traffic information, such as transit 

routes and schedules; navigation directions; and information about delays due to con-

gestion, accidents, weather conditions, or road repair work. The most effective traveler 

information systems can inform drivers in real-time of their precise location, inform 

them of current traffic or road conditions on their and surrounding roadways, and em-

power them with optimal route selection and navigation instructions, ideally making this 

information available on multiple platforms, both in-vehicle and out.  

As Figure 1.1 illustrates, there are three key facets to the provision of real-time traffic 

information: collection, processing, and dissemination, with each step entailing a dis-

tinct set of technology devices, platforms, and actors, both public and private. This 

report will examine several countries’ strategies about the provision of real-time traffic 

information. 

This category also includes in car navigation systems and telematics-based services, 

such as GM’s OnStar, which offers a range of safety, route navigation, crash notifica-

tion, and concierge services, including location-based services, mobile calling, or in-

vehicle entertainment options such as Internet access and music or movie downloads. 

Vehicles in the United States increasingly have telematics devices, whether a factory-

installed GPS system or one purchased after-market, such as those available from Gar-

min or TomTom 

 

1.1.2 Advanced Transportation Management Systems 

 

Advanced Transportation Management Systems (ATMS) include ITS applications that 

focus on traffic control devices, such as traffic signals, ramp metering, and the dynamic 

(or “variable”) message signs on highways that give drivers real-time messaging about 
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traffic or highway status. Traffic Operations Centres (TOCs), centralized traffic manage-

ment centres run by cities and states worldwide, rely on information technologies to 

connect sensors and roadside equipment, vehicle probes, cameras, message signs, 

and other devices together to create an integrated view of traffic flow and to detect 

accidents, dangerous weather events, or other roadway hazards.  

Adaptive traffic signal control refers to dynamically managed, intelligent traffic signal 

timing. Many countries’ traffic lights, including the clear majority of the close to 

300,000 signalized intersections in the United States, use static, outdated timing plans 

based on data collected years or decades before. In fact, an estimated 5 to 10 percent 

of the congestion on major American roadways amounting to 295 million vehicle hours 

is attributed to bad signal timing. Giving traffic signals the ability to detect the presence 

of waiting vehicles, or giving vehicles the ability to communicate that information to a 

traffic signal, through Dedicated-Short Range Communications(DSRC)-enabled com-

munication (assuming both the vehicle and traffic signal are DSRC-equipped), could 

enable improved timing of traffic signals, thereby enhancing traffic flow and reducing 

congestion.  

Another advanced transportation management system that can yield significant traffic 

management benefits is ramp metering. Ramp meters are traffic signals on freeway 

entrance ramps that break up clusters of vehicles entering the freeway, which reduces 

the disruptions to freeway flow that vehicle clusters cause and makes merging safer. 

About 20 U.S. metropolitan areas use ramp metering in some form. 

 

1.1.3 ITS-Enabled Transportation Pricing Systems 

 

ITS have a significant role to play in funding countries’ transportation systems. The 

most common application is electronic toll collection (ETC), also commonly known 

internationally as “road user charging,” through which drivers can pay tolls automati-

cally via a DSRC-enabled onboard device or tag placed on the windshield. The most 

sophisticated countries, including Australia and Japan, have implemented a single na-

tional ETC standard, obviating the need, as in the United States, to carry multiple toll 



 

 

11 

 

collection tags on cross-country trips because various highway operators’ ETC sys-

tems lack interoperability. This particularly has been a problem for the European Union, 

although the European Committee for Standardization is working to resolve this chal-

lenge (and has made considerable progress).  

An increasing number of cities throughout the world have implemented congestion pric-

ing schemes, charging for entry into urban centers, usually at certain peak hours, to 

not only reduce congestion but also to generate needed resources to fund investments 

in public transportation and to reduce the environmental impact of vehicles. Singapore, 

Stockholm, London, Oslo, and Jakarta are just some of the cities that have put conges-

tion-pricing systems in place to reduce traffic congestion, smog, and greenhouse 

gases. By charging more at congested times, traffic flows can be evened out or re-

duced. As half the world’s population now lives in urban areas, some economists be-
lieve that urban congestion and emissions will be virtually impossible to reduce without 

some form of congestion pricing. For example, in Europe, urban areas account for 40 

percent of passenger transport but 53 percent of all transport-related emissions. Stock-

holm’s congestion pricing scheme yielded immediate results, reducing traffic by 20 

percent in the first month alone as many commuters opted for public transportation. 

Statistics gathered since the full implementation of Stockholm’s congestion pricing 

scheme in 2007 show that the initiative has reduced both traffic congestion and carbon 

emissions by 15 percent on a sustained basis. Stockholm’s congestion pricing scheme 

has also generated $120 million in net revenue. If congestion pricing were used in just 

three to five major American cities, it could save as much fuel as is saved with the fuel 

economy standards for light vehicles in the United States (Duvall,2008). 

High-Occupancy Toll (HOT) lanes reserved for buses and other high occupancy vehi-

cles but that can be made available to single occupant vehicles upon payment of a toll 

are another ITS-enabled mechanism to combat traffic congestion. The number of vehi-

cles using the reserved lanes can be controlled through variable pricing (via electronic 

toll collection) to keep free-flowing traffic at all times, even during rush hours, which 

increases overall traffic flow on a given segment of road. For example, Orange County, 

California, found that, while HOT lanes represent only one-third of its highway lane 
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miles, they carry over half of the traffic during rush hours (Ybarra and Staley,2008). By 

the end of 2009, approximately 25 U.S. cities either had deployed or were beginning to 

plan or implement HOT lane proposals. 

Other ITS-enabled alternative countries are evaluating for financing their transportation 

systems is vehicle miles travelled (VMT) fee system that charges motorists for each 

mile driven. VMT fee systems represent an alternative to the current fuel taxes and other 

fees that many countries and states use to finance their transportation systems. Hol-

land’s “Kilometerprijs” (price per kilometer) program is slated to be the world first na-

tionwide VMT system implemented for both passenger vehicles and heavy vehicles. 

The Kilometerprijs program will replace fixed vehicle (ownership) taxes to charge Dutch 

citizens by their annual distances driven, differentiated by time, place, and environmen-

tal characteristics. The policy, which will begin with distance-based charging for freight 

transport in 2012, followed by passenger vehicles by 2016, will use advanced satellite 

technology coupled with an on-board vehicle telematics system to charge travelers 

based on mileage driven. Germany is already charging for freight transport on this basis. 

In the United States, the National Surface Transportation Infrastructure Financing Com-

mission recommended in February 2009 moving to a VMT-type “user charge” fee sys-

tem within a decade, and several states, including Oregon, Washington, and Hawaii, are 

considering doing so as well. 

 

1.1.4 Advanced Public Transportation Systems 

 

Advanced Public Transportation Systems (APTS) include applications such as auto-

matic vehicle location (AVL), which enable transit vehicles, whether bus or rail, to report 

their current location, making it possible for traffic operations managers to construct a 

real-time view of the status of all assets in the public transportation system. APTS help 

to make public transport a more attractive choice for commuters by giving them en-

hanced visibility into the arrival and departure status (and overall timeliness) of buses 

and trains. This category also includes electronic fare payment systems for public 

transportation systems, such as Suica in Japan or T-Money in South Korea, which 
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enable transit users to pay fares contactless from their smart cards or mobile phones 

using near field communications technology (Ezell 2009). Advanced public transporta-

tion systems, particularly providing “next bus” or “next train information, are increas-

ingly common worldwide, from Washington, DC, to Paris, Tokyo, Seoul, and elsewhere. 

 

1.1.5 Vehicle-to-infrastructure Integration (VII) and Vehicle-to-vehicle (V2V) In-
tegration 

 

Vehicle-to-infrastructure integration is the archetype for a comprehensively integrated 

intelligent transportation system. In the United States, the aim of the VII Initiative as of 

January 2009 rebranded as IntelliDriveSM has been to deploy and enable a communi-

cations infrastructure that supports vehicle-to-infrastructure, as well as vehicle-to-ve-

hicle, communications for a variety of vehicle safety applications and transportation 

operations. IntelliDrive envisions that DSRC-enabled tags or sensors, if widely deployed 

in vehicles, highways, and in roadside or intersection equipment, would enable the core 

elements of the transportation system to communicate intelligently with one another, 

delivering a wide range of benefits. For example, IntelliDrive could enable cooperative 

intersection collision avoidance systems (CICAS).In these systems, two (or more) 

DSRC-equipped vehicles at an intersection would be in continuous communication ei-

ther with each other or with roadside devices. The system could recognize when a 

collision between the vehicles appeared imminent (based on the vehicles’ speeds and 
trajectories) and would warn the drivers of an impending collision or even communicate 

directly with the vehicles to brake them (Atkinson and Castro 2008). 

IntelliDrive, by combining both vehicle-to-vehicle and vehicle-to-infrastructure integra-

tion into a consolidated platform, would enable a number of additional ITS applications, 

including adaptive signal timing, dynamic re-routing of traffic through variable message 

signs, lane departure warnings, curve speed warnings, and automatic detection of 

roadway hazards, such as potholes, or weather-related conditions, such as icing. 
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Another application enabled by vehicle-to-infrastructure integration is intelligent speed 

adaptation (ISA), which aims to assist drivers in keeping within the speed limit by cor-

relating information about the vehicle’s position (for example, through GPS) with a dig-

ital speed limit map, thus enabling the vehicle to recognize if it is exceeding the posted 

speed limit. The system could either warn the driver to slow down or be designed to 

automatically slow the vehicle through automatic intervention. France is now testing 

deployment of an ISA system that would automatically slow fast-moving vehicles in 

extreme weather conditions, such as blizzards or icing. The province of Victoria, Aus-

tralia, is testing a system in which trains could remotely and autonomously brake vehi-

cles  to cross their path at railway intersections (Warin 2008). 

 

1.2 Traffic Sensor Types 

 

 Many sensors have been developed in the past 50 years designed to collect diverse 

types of traffic data. In general, traffic data includes flows (number of vehicles per time 

unit), density (number of vehicles per distance unit), occupancy (percentage of time a 

vehicle is over of specific location, which is directly related to density), velocity (dis-

tance per unit time), and travel time (time to travel between two locations). One more 

data type possible are vehicle trajectories, which are always represented by a sequence 

of discrete time/location pairs for each vehicle. From vehicle’s trajectory data with a 

location-reporting frequency of several seconds or less, travel times and short distance 

velocities can be directly computed. When the location-reporting frequency is more 

than 10 seconds, directly measuring travel times and velocities become non-trivial.  

 

1.2.1 Loop Detectors 
 

 Inductive loop detectors are built into the roadway so that they can detect each vehicle 

that passes over them. They work by detecting the metal of a vehicle as it passes over 

the detector. Properly calibrated, a loop detector can provide high-accuracy flow and 

occupancy data (Chen et al, 2001), the latter of which can be used to infer density (Ji 
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et al.,2001). When two loop detectors are placed close together, velocity can be meas-

ured by looking at consecutive crossing times. While the quality of the measurements 

from loop detectors is often good, filtering is still needed from producing quality input 

data to highway estimation models (Claudel et al., 2009). Loop detectors are not ca-

pable of directly measuring travel times. Loop detectors are found on most major high-

ways throughout the United States and Europe. Many of these locations have loop de-

tectors connected to an internet connection that can be used to send the data to a 

central server in real-time (that can subsequently be used in traffic information sys-

tems). Many locations throughout the United States and Europe also have loop detec-

tors placed on arterial roads. However, for arterial roads, it is very rare for the loop 

detector to be connected to the internet for easy transmission of the data to a central 

server. For this reason, arterial traffic information systems cannot rely on loop detector 

data as there is not enough of it to estimate conditions overall arterial network.  

 

1.2.2 Radar  
 

Radar detectors can be placed on poles along the side of the road enabling them to 

collect flow, occupancy, and velocity data. In general, radar detectors give lower accu-

racy data than loop detectors (Mimbela et al., 2007). As of this writing, dedicated radar 

detectors that are connected to the internet and giving data in real-time are still rare in 

the United States and Europe. Where these are available, they are placed exclusively on 

highways. Radars are not well suited to mass data collection on arterials since accu-

racy decreases in arterial environments. For this reason and the fact that almost no 

radar data exists on arterials, they are not considered practical inputs into an arterial 

traffic information system.  

 

1.2.3 Video  
 

Video recording can be used to collect traffic data in two ways. The first way is to use 

high-resolution cameras placed high above the roadway to track all vehicles within the 
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view of the camera. The second way is to use the video cameras to record license plate 

numbers at specified locations, which is equivalent to using video as a license plate 

reader. Using high-resolution cameras to track vehicle trajectories does not give data 

in real-time due to a large amount of post-processing work that needs to be done on 

the images to turn them into actual vehicle trajectory data. When properly processed, 

video can provide very high-resolution vehicle trajectories (vehicle positions every tenth 

of a second). However, this technology is expensive to deploy and can only cover a 

small portion of the roadway (generally less than a mile). The NGSIM project is an 

example of the use of this kind of technology, which to date has mostly been used to 

provide researchers with high-accuracy vehicle trajectories over a small spatiotemporal 

domain (less than a mile for less than an hour). This kind of data is valuable to arterial 

traffic estimation research, but given that the data does not come in real-time, it cannot 

be used in real-time traffic information systems. 

 

1.2.4 Sparsely-sampled GPS 
 

 Sparsely-sampled probe GPS data refers to the case where probe vehicles send their 

current GPS location at a fixed frequency, which is not frequent enough to directly 

measure velocities or link travel times (i.e. sampling frequency is more than about 10 

seconds). There are several challenges associated with this type of data. First, GPS 

measurements must be mapped to the road network representation used by the traffic 

information system, which means that the correct position on the road as well as the 

path in between successive measurements must be decided. This process is known 

as map matching and path inference. Second, probe vehicles can often travel multiple 

links between measurements when the sampling frequency is low, which means that 

one must infer what the travel times on each link of the path here. Sparsely-sampled 

probe GPS data is now the most ubiquitous data source on the arterial network. An 

example of this type of data comes from the Cabspotting project, which gives the po-

sitions of 500 taxis in the Bay Area approximately once per minute. Figure 1.2 shows 

one full day of raw data, which proves that even just a single data source such as taxis 
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can provide broad coverage of a city. This data has some privacy issues as it is possi-

ble to track the general path of the vehicle. However, most of this data today comes 

from fleets of various sorts (such as UPS, FedEx, taxis, etc.). Most of this data is pri-

vately held among several companies, but between all sources, there are millions of 

records per day in many major urban markets. One publicly available source of this 

kind of data is the Cabspotting project. This project provides one-minute samples of 

the positions of over 500 taxis in San Francisco, CA. This results in upwards of 500,000 

measurements per day. Due to the ubiquity of this data source, it is paramount that it 

be used in an arterial traffic information system. Indeed, it is the only source that is 

likely to be available across the arterial network in the next decade. 

 

1.2.5 High-frequency GPS 
 

 High-frequency probe GPS data refers to the case where probe vehicles send their 

current GPS location every few seconds (no more than about every 10 seconds). This 

kind of data is generally the most accurate kind of vehicle trajectory data possible, 

especially when sampling every second with a high-quality GPS chip. From this data, 

one can directly infer velocities and short distance travel times. The issue of map 

matching is still present as there can be ambiguity around intersections, but the path is 

usually easy to decide when examining the entire trace. Figure 1.3 depicts a sample of 

high-frequency data collected as part of the Mobile Millennium project. This figure il-

lustrates the level of detail that can be extracted from high-frequency data but also 

shows the relatively low percentage of vehicles that were being tracked as there are 

occasional gaps of five minutes or more between trajectories. Sampling a vehicle’s 
position every few seconds is clearly very privacy invasive and it also comes with large 

communication costs to send the high volume of data. For these reasons, it is not 

common to receive this data with any kind of regularity. This data is often collected for 

specific experimental studies but is not generally available for real-time traffic infor-

mation systems.  
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Figure 1.2  One day of sparsely-sampled GPS data from San Francisco taxi drivers as provided by the 
Cabspotting project 

 

Figure 1 3 Vehicle trajectories from the Mobile Millennium evaluation experiment on San Pablo Avenue 
in Berkeley, Albany and El Cerrito, California. The high-frequency GPS data in this figure is represented 
as the distance (meters) from an arbitrary start point upstream of the experiment location. The horizontal 
lines represent the locations of the traffic signals along the route. 
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1.2.6 Probe Technology 
 

Probe vehicle technology is a typical application of Intelligent Transportation 

Systems (ITS), and it provides an innovative way to collect traffic data. It commonly 

involved a real-time traffic monitoring system including probe vehicles equipped with 

on-board units such as GPS and wireless communication devices. Some examples of 

using probe vehicle systems, including Automatic Vehicle Identification (AVI), Auto-

matic Vehicle Location (AVL). 

AVI system involves communication between probe vehicle with electronic tags 

and roadside transceivers. The vehicle is equipped with an electronic transponder and 

a unique ID, and the antenna transceiver stations are set up in every two to five kilome-

ters. When a vehicle enters the roadside antenna’s detection range, the radio signal will 

contain the information about timestamp and IDs for transponder and antenna, and this 

information will be sent to the management center by roadside units. 

The AVL system has mostly been used by transit agencies for public transit 

planning. The position and status of the transit fleet vehicles are checked using tech-

nologies such as ground-based radio navigation, and signpost-based technologies. For 

ground-based radio navigation, traffic data is collected by communication between 

probe vehicles and radio towers. For signpost-based technologies, the communication 

is between the probes vehicles with transmitters mounted on existing signpost struc-

ture. 

These probe vehicle systems usually use high-cost, onboard equipment on 

certain vehicles for traffic data capturing and the penetration rate is usually low. With 

emerging wireless communication applied with probe system technologies, there is an 

observing tend to incorporate mobile sensors to obtain real-time traffic information 

through estimating the device location. Different technologies such as short-range 

tracking (infrared, radio frequency, Wi-Fi, etc.), GPS, and cell phone network position-

ing system can be used. The accuracies of detect device locations using these tech-

nologies vary, but in general, these new mobile sensors can acquire massive traffic 

data that covers the wide spatial area and are economically feasible. Short-range traffic 
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detection involves propagation of a physical wave at fixed time interval. The sensors 

detect the moving device, pick up the wave emitted from the transmitter, and relay it to 

the detection software. The device location can be found by inferring antenna coordi-

nates, measuring signal strengths of access points. 

 

1.2.7 Cellular Probe Technology 
 

Cellular networks have become an extensive wireless communication infrastructure 

with global coverage. Cellular service areas are divided into hexagonally shaped dis-

tricts/cells, and each of the cells has a cellular tower associated with it. With cell phone 

signals, a cell phone can be found using triangulation of the cell phone towers near the 

cell phone location. As a mobile client moves through the network, the mobile device 

is distributed to the cellular tower with which it is receiving the greatest field strength. 

Handoff based location solution is often used in the Global System for Mobiles 

(GSM) network. The handover data can be regarded as records of mobile probes’ tra-

jectories on the road network. When a mobile phone travels from one cell into another, 

a change of cell-ID indicating handoff is been performed. Theoretically, a handoff is 

considered to be located on the border of two adjacent cells in the GSM network. When 

the GSM network is overlapped with the road network, handoff location can be approx-

imated to a point on the matched road link. 

Studies have shown that cellular probe technology could be applied to a coordinate-

based approach and a handover-based approach to traffic monitoring. The coordinate-

based approach requires the coordinates of the cell phone, which is similar to GPS 

probe technology. Location accuracy is the key issue for this approach. Some 

researchers tried to exploit network-based solutions using handover approach, and 

their evaluation results revealed that they could produce promising traffic information 

(Arulampalam et al.,2002). 

The cellular probe technology-based traffic data collection method has several 

distinct advantages, including large sample size, large spatial coverage, and high pen-

etration rates, over other conventional methods. As of 2007, the global cellular phone 

penetration rate was over 50%, ranging from 30-40% in developing countries (with an 
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annual growth rate greater than 30%) to 90-100% in developed countries (Ban et al., 

2007). However, the main drawback of cellular probe technology is that its location 

accuracy is comparatively lower than other technologies, such as GPS. Its location 

accuracy depends greatly on the density of the cellular towers. A study by Mohr et al. 

used three different cellular operators in the U.K. and found that the horizontal error 

varies greatly across urban-rural gradients. The median error was about 246m in a 

dense urban area, and 626m in a rural area (Ban et al., 2009). 

The application of the cellular positioning technique has been investigated in several 

studies. Lots effort used cell tower signal triangulation to estimate travel time and speed 

information. Sanwal and Walrand studied the use of probe vehicles to collect traffic 

data for estimation and prediction of traffic behavior, and key issues involved in the 

design of such system was discussed (Ban et al., 2009). Bar-Gera examined the per-

formance of a system based on using information from cellular phone service providers 

to measure traffic speeds and travel times. He compared the cellular measurements 

with that of dual magnetic loop detectors and found that there is a good match between 

the two measurement methods and that the cellular phone-based system can be useful 

for various practical applications (Ban et al., 200). Yim and Cayford conducted an eval-

uation of the feasibility of using cell phones as traffic probes for the Bay Area Network. 

The study showed that accurate travel time estimates can be obtained, and assuming 

a 5% penetration rate, freeway link travel time estimates can achieve 95% accuracy 

(Bartin et al.,2007). 

 

1.2.8 GPS-Probe Technology 
 

GPS is a satellite-based radio navigation system developed by the United States De-

partment of Defense (Bellman et al., 1962). GPS was initially used as a military system 

and the operational best accuracies were intentionally degraded by a selective availa-

bility (SA) method, which dithered the satellite clocks and caused a range error with a 

standard deviation of 24 meters (m) (Bickel et al.,2007). Since the SA method was 

removed in May 2000, the single point accuracy of GPS has dramatically improved 
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allowing GPS use in more applications. All users with GPS receivers can reach accu-

racy levels of approximately 18m horizontal, 28 m vertical and 100 nanoseconds 

(Brand, 1997). GPS consists of three segments: the space segment, the control 

segment, and the user segment. The Figure 1.4 shows a typical configuration of GPS 

based probe system. 

 

 

Figure 1.4 Configuration of GPS based probe system 

 

The space segment includes 24 satellites that broadcast navigation signals to receivers 

through carrier waves. The control segment checks the location and status of the sat-

ellites that are in the space segment. The end users of the GPS receivers are the user 

segment. The receivers calculate the time the radio signals travel from satellites to the 

receiver and estimate their locations on earth by calculating travel times of signals be-

tween the satellites and GPS receivers. 

GPS position accuracy varies and changes in different circumstances and is 

greatly affected by errors, including tropospheric delays, ionospheric delays, satellite 

clock and ephemeris data, orbital and atmospheric errors, and multipath. 

The ionosphere is the layer of the atmosphere ranging in altitude from 50 to 500 km. It 

consists largely of ionized particles that can exert a perturbing effect on GPS signals. 

The troposphere is the lower part of the earth’s atmosphere that encompasses our 
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weather. Mathematical models of the atmosphere have been researching to consider 

the charged particles in the ionosphere and the varying gaseous content of the tropo-

sphere. 

As GPS became widely used to collect vehicle probe data, the accuracy of the 

data has been reviewed in different applications. Meaker and Horner proposed an Au-

tomatic Position Reporting System (APRS) that uses GPS probe vehicles to collect 

speed, heading, and position data. The authors compared the speed data retrieved from 

the probe system and traffic loop sensors and showed that the speeds of the probes 

and the loop sensors were largely in concordance; however, the detailed statistical 

analysis was not provided (Charniak,1993). Schussed and Axhausen described a post-

processing procedure to process basic raw GPS data. The authors used the proposed 

procedure for trip and activity detection, and mode detection. The results were com-

pared with the Swiss Micro-census on Travel Behavior 2005, which confirmed that the 

trip and activity detection works properly, the distance distributions of the individual 

modes derived from the GPS data were like the census data, and GPS has the ad-

vantage with respect to temporal and spatial accuracy. 

 

1.2.9 GPS-Enabled Smartphone Probe 
 

In the era of multimedia convergence, a new data collection approach is based on GPS-

enabled smartphones. From 2000, cell phone providers in the United State of America 

and Canada have started embedding assisted GPS (AGPS) chips in their mobile devices 

to enhance the location-based services. The AGPS enables the service providers to 

decide the phone locations within 15 meters (Chen et al.,2003). As there is an increas-

ing number of smartphone users, and more advanced GPS chip feature is deployed, 

vehicle location estimation based on wirelessly transmitted sparse data via 

smartphones is a recent area of interest. More correct mobile probe data have been 

integrated with point detection data to estimate freeway travel times (Chu et al.,2004; 

Claudel et al., 2010). Aguilar et.al conducted a study on the position accuracy of mul-

timodal data from GPS-enabled cellphones to fill the gap of little quantitative information 
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about the reliability of GPS data obtained from GPS-enabled cellphones in most real-

world application settings. The study result proved the result of location fix attempts 

over different transportation modes in an urban environment and concluded that 

location-based transportation applications are feasible using current GPS-enabled cell 

phone technology. The quantitative data presented in the paper focuses on the percent-

age of GPS fixes obtained by each mode and the analysis results indicated little signif-

icant differences in the number of valid GPS fixes obtained from users (Claudel et 

al.,2009). A field experiment was conducted by Yim and Cayford in 2001(Coifman et 

al.,2002) to compare the performance of cellphones and GPS devices for traffic moni-

toring. The study concluded that the GPS positioning technique is more accurate than 

cellular tower positioning. If GPS-equipped cellphones are widely used, then they will 

become an attractive and realistic alternative for traffic monitoring. 

 

1.2.10 Effect of Equipped Vehicle Penetration Rate 
  

As methods for collecting connected vehicle data are defined and implemented, re-

searchers have proposed mobility applications that use wireless communications to 

improve traffic flow and reduce congestion. Several new algorithms have been devel-

oped that, rather than estimate vehicle trajectories from loop detectors or historical 

data, use the locations and speeds of individual vehicles. A ramp-metering scheme that 

is based on detecting platoons of vehicles in the mainline rather than aggregated density 

measurements is an example of an application that requires the locations of individual 

vehicles. Many of these applications function most effectively when all, or most vehi-

cles are equipped with sensing technology. Simply put, these applications are not de-

signed for the detector or historical data only, but instead need knowledge of individual 

vehicle locations. Some proposed applications include adaptive traffic signal control, 

ramp metering, and dynamic gap-out, with others in development. The deployment of 

mobile sensors among roadway users will not be instantaneous. Band-width shortages 

and battery life restrict the use of smart phones, and the John A. Volpe National Trans-



 

 

25 

 

portation Systems Center estimated that only 50% of vehicles will have connected ve-

hicle communications capabilities nine years after the program's initiation. In any sce-

nario, there will likely be a transition period where only a portion of vehicles is equipped. 

The developers of mobile applications have been careful to study the e act of low con-

nected vehicle penetration rates on the application's performance, testing their applica-

tions across a wide range of penetration rates. Throughout this dissertation, vehicles 

that can communicate wirelessly are referred to as equipped vehicles, and those that 

cannot communicate are referred to as unequipped vehicles.  

One can assume that with a reasonable approximation of the locations of unequipped 

vehicles, the performance of mobility applications that need individual vehicle locations 

will be signing recently improved. Fortunately, the behavior of equipped vehicles is often 

in reaction to other nearby unequipped vehicles. With high-resolution data of equipped 

vehicle positions, speeds, and accelerations, an estimate of unequipped vehicle loca-

tions can be made. An attempt to estimate individual unequipped vehicle locations 

based solely on equipped vehicle behavior has never been tried on freeways, and only 

on arterials when making several restrictive assumptions. 
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CHAPTER 2 
 

FUNDAMENTAL PARAMETERS OF TRAFFIC FLOW AND TRAFFIC LIGHT 
OPTIMIZATION 

 

 

 

Traffic engineering pertains to the analysis of the behavior of traffic; its goal is designing 

the facilities for a smooth, safe, and economical operation of traffic. Traffic flow, like 

the flow of water, has several parameters associated with it. The traffic stream param-

eters offer information regarding the nature of traffic flow, which helps the analyst in 

detecting any variation in flow characteristics. Understanding traffic behavior requires 

a thorough knowledge of traffic stream parameters and their mutual relationships.  

 

2.1 Traffic stream parameters 

 

The traffic stream includes a combination of driver and vehicle behavior. The driver or 

human behavior being non-uniform, traffic stream is also non-uniform in nature. It is 

influenced not only by the individual characteristics of both vehicle and human but also 

by the way, a group of such units interacts with each other. Thus, a flow of traffic 

through a street of defined characteristics will vary by both location and time corre-

sponding to the changes in the human behavior. 

Thus, the traffic stream itself has some parameters on which the characteristics can 

be predicted. The parameters can be mainly classified as measurements of quantity, 

which includes density and flow of traffic, and measurements of quality, which includes 

speed. The traffic stream parameters can be macroscopic, which characterizes the 
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traffic as a whole, or microscopic, which studies the behavior of the individual vehicle 

in the stream with respect to each other. 

As far as the macroscopic characteristics are concerned, the parameters can be 

grouped as a measurement of quantity or quality as described above, i.e. flow, density, 

and speed. While the microscopic characteristics include the measures of separation, 

i.e. the headway or separation between vehicles, which can be either time or space 

headway. Thus, the fundamental stream characteristics are speed, flow, and density. 

 

List of symbols 

q   [veh/s]        flow rate, intensity, volume 

k   [veh/m]       traffic density 

u   [m/s]          instantaneous speed 

qc  [veh/s]        critical flow / capacity 

kc  [veh/m]       critical density 

kj   [veh/m]       jam density 

uc  [m/s]          speed at critical density 

 

In traffic flow theory, the relations between the macroscopic characteristics of a flow 

are called ‘fundamental diagram(s)’. Three are in use, namely: 

 

• intensity - density   q = q(k) 

• speed - density       u = u(k) 

• speed - intensity     u = u(q) 

 

It is important to understand that these three relations represent the same information: 

from one relation one can deduce the other two; See Fig. 2.1. 

 

2.1.1 Special points of the fundamental diagram 
 

Special points of the diagram are: 
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• Free speed u0: this is the mean speed if q = 0 and k = 0; it equals the slope of the 

function q(k) in the origin; 

• Capacity qc: this is the maximal intensity, sometimes called critical intensity; 

• Capacity density or critical density kc: i.e. the density if q = qc; 

• Capacity speed uc: i.e. the mean speed if q = qc; 

• Jam density kj: i.e. the density if u = 0 and q = 0. 

The part of q(k) with a constant speed is called the ‘stable region’ of the diagram. As 

soon as speed decreases with increasing density, one enters the ‘unstable region’. 

The region in which densities are greater than the capacity density is called ‘congestion 

region’ or ‘congestion branch’. The entire region with k < kc is sometimes called ‘free 

operation’ and the congestion region ‘forced operation’. 

 

 

Figure. 2.1 Fundamental diagram 
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2.2 Greenshield’s macroscopic stream models 

 

Macroscopic stream models represent how the behavior of one parameter of traffic 

flow changes with respect to another. Most important among them is the relation be-

tween speed and density. The first and most simple relation between them is proposed 

by Greenshield. Greenshield assumed a linear speed-density relationship as illustrated 

in figure 2.2 to derive the model. The equation for this relationship is shown below. 

 = 𝑓 − 𝑣𝑓 ∗                                                       (2.5) 

where v is the mean speed at density k, vf is the free speed and kj is the jam density. 

This equation (2.5) is often referred to as the Greenshields' model. It indicates that when 

density becomes zero, speed approaches free flow speed illustrated in figure 2.4 (ie.       → 𝑓 when  → ).  

 

Figure. 2.2 Relationship between speed-density 
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Figure. 2.3 Relationship between speed-flow 

 

Figure.2.4 Relationship between flow-density 

Once the relation between speed and flow is established, the relation with the flow can 

be derived. This relation between flow and density is parabolic in shape and is shown 

in figure 2.4. Also, we know that  

q = k*v                                                        (2.6) 

Now substituting equation 2.4 in equation 2.5, we get  = 𝑓 ∗ − (𝑣𝑓) ∗                                         (2.7) 

Similarly, we can find the relation between speed and flow. For this, put k = q/v in 

equation 2.5 and solving, we get 

 

                                              = ∗ − (𝑣𝑓) ∗                                        (2.8) 

This relationship is again parabolic and is shown in figure 2.3.  
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2.3 Traffic light Optimization 

 

 The problem of traffic optimization involves methods aiming to improve the flow of 

vehicle traffic within a road network. These methods typically include influencing driver 

behavior (e.g., traffic lights and signage) and making network modifications (lane ad-

ditions, turning lanes). Network modifications can result in drastic improvements in 

traffic flow, but require space that in many cases could be limited or even inexistent. 

For this reason, more effort has been placed on controlling more efficiently the vehicle 

flows within the network, using available traffic control devices.  

Traffic lights optimization is one of the most effective, and thus most researched, meth-

ods of improving vehicles’ flow within a traffic network. For obvious safety reasons, 

conflicting flows present at intersections within a traffic network require regulation and 

control. The effectiveness of the control method applied to the intersections largely 

determines the overall performance of the network. The three most important parame-

ters, which determine the behavior of a traffic signal plan, are the phase lengths, signal 

cycles and offset values. These parameters, as well as the effects of their optimization, 

are explained below and a graphical representation is included in Figure 2.5.  

 
Figure 2.5: Example of cycle and phase relationship with traffic flows, which can (white) and cannot 

(black) proceed 
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2.3.1 Phase Lengths  
 

A phase is a time in which certain vehicles may move through the controlled intersec-

tion, while others may not. In each phase, a specific set of lights is green and another 

set of lights is red. These sets, in turn, define which vehicles can go ahead through the 

intersection and which vehicles must wait. Each phase within a signal plan has a spec-

ified length, which decides how long that phase will last during each light cycle. Choos-

ing effective phase lengths allows improving the flow of vehicles through the intersec-

tion, since more congested lanes can proceed for a longer time than less congested 

ones. Optimizing phase lengths for a single intersection, however, can have drastic 

consequences at other locations within the network, as it can change the vehicle vol-

umes at downstream intersections. 

 

 2.3.2 Cycles  
 

A cycle is composed of a number of phases. Generally, a cycle has a fixed time length, 

which equals the sum of all of its phase lengths. Each traffic light typically implements 

a single cycle at any given time. This cycle will run through completely, before repeat-

ing. There are several different methods of optimizing a signal plan's cycle. First, the 

length of the cycle can be increased or decreased, allowing phases to repeat more/less 

often. It is generally thought that shorter cycle lengths can be much more effective with 

low traffic volumes, as the phases change more quickly to allow sporadically arriving 

vehicles to proceed (Findler and Stapp, 1992). Higher traffic volumes though can ben-

efit from increased cycle lengths, as more vehicles can proceed through the intersec-

tion during a single phase. In addition, a longer cycle length decreases the percentage 

of time that all traffic flows are stopped, due to safety requirements while switching 

phases. The order in which phases occur during a cycle can also affect the utility of a 

signal plan. While the order matters much less at simple intersections, it can become 

important in more complex control scenarios, where there may be many distinct phases 

allowing traffic to travel in various directions (e.g., turning lanes with advanced green 
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lights). Finally, for complex intersections, it may be beneficial to add/remove certain 

phases depending on the traffic state (observed or predicted) at the current time. As an 

example, it may be beneficial to have an advanced green light for a turning lane at one 

point during the day, while it would hinder traffic flow at another point in the day. 

 

2.3.3 Offsets  
 

 An offset value specifies at which point in the cycle the first phase will begin, allowing 

different intersections to begin their cycles at differing times. Improving offset values 

results in coordination between intersections, which can allow vehicles to proceed 

through multiple intersections without having to stop. This phenomenon is known in 

traffic research as a 'green wave' and can be an important factor in improving overall 

network performance (Robertson and Bretherton, 1991). 

  

2.3.4 Safety Requirements  
 

Since conflicting traffic flows can occur at intersections, a traffic light plan should im-

plement several safety requirements. First, each traffic light plan must ensure that con-

flicting traffic flows cannot proceed at the same time. In addition, all traffic flows must 

stop in a specified extent of time before the traffic lights switch from one aspect to 

another. This extent of time allows vehicles to clear the intersection. As well as safety 

constraints for vehicles, many local administrations implement procedures to ensure 

the safety of pedestrians as well. However, in this thesis we will consider only the ve-

hicular traffic. 

  

2.4 Traffic Light Optimization Architecture 

 

Papageorgiou et al. (2003) outlined two different techniques for the traffic light optimi-

zation: fixed-time strategies and traffic responsive strategies. Each of these strategies 

can be further subdivided into strategies for isolated or coordinated intersection. These 

two approaches will be explained in details in the following two sub-sections. 
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2.4.1 Fixed-time strategies 
 

Fixed time strategies rely on off-line optimization algorithms, which try to select param-

eters such that an overall goal is reached (e.g., minimizing travel time, maximizing net-

work capacity). These optimizations are performed using historically observed traffic 

data, as opposed to real-time observations of traffic state. This, of course, can result 

in poor overall performance within the traffic network for three reasons. First, there is 

no guarantee that traffic volumes on a given day will match those that were used to 

optimize the intersections' signal plans. The larger the difference between current traffic 

state and historical traffic state, the less effective the signal plans will be. Also, as the 

historical data ages, it becomes more likely that the underlying traffic volumes will 

change. This can become especially crucial in an urban environment, where new resi-

dential, commercial, or industrial developments can result in an overall traffic volume 

change for a given area. Once again, these fixed plans do not recognize these changes 

until new measurements are taken and new plans developed. Finally, traffic volumes 

can change at any time due to disturbances caused by traffic accidents, work in pro-

gress, or other incidents. Fixed controllers do not realize and adapt to these disturb-

ances, resulting in inefficient signal control. The fact that isolated fixed-time strategies 

do not consider other intersections can result in further problems. For example, one 

intersection may be optimized in such a way that it allows vehicles to constantly flow 

in one direction. An intersection downstream from this area, however, will not be ex-

pecting the increase in traffic volume because it considers only historical observations 

when deciding on its own signal plan. The downstream intersection then, will not be 

prepared for this new situation and will run inefficiently. If the efficiency of the down-

stream intersection's plan becomes poor enough, major problems can occur as traffic 

jams form and propagate throughout the network. Coordinated fixed-time strategies 

address this problem, by analyzing the overall performance of the signal plans at all 

intersections within the network. While the computational requirements for this analysis 
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can be extremely high, the off-line optimization allows for the time necessary to find a 

solution. 

 

2.4.2 Traffic Responsive strategies 
 

Traffic responsive strategies aim to optimize signal plans using real-time traffic state 

observations. This real-time measurement of traffic is generally achieved through the 

use of sensors placed within the road network, which is capable of detecting vehicles 

as they pass. The problem of signal inefficiencies due to measurement aging is elimi-

nated when using real-time observations to decide signal plans. Another issue arises 

though, as traffic responsive strategies must generate signal plans in real-time and 

therefore cannot perform as much analysis as the off-line optimization methods used 

with fixed-time strategies. For this reason, many classic optimization algorithms cannot 

be used for large traffic networks. Traffic responsive strategies typically implement an 

architecture such as that shown in Figure 2.6. First, an observation period occurs, in 

which sensors within the network generate information about the current traffic state. 

This information is then passed to the optimization algorithm, which performs the steps 

necessary to generate new signal plans for the network being considered. The traffic 

lights then implement these new plans until another observation period is completed 

and the plans change once again. Essentially, traffic responsive signal controllers cre-

ate a model of traffic flows in real-time and optimize the allocation of resources (green 

time) based on the predicted traffic volumes. Using this strategy, the signal plans adapt 

throughout the day to meet the current traffic state, as opposed to a historically ob-

served traffic state. As with isolated fixed-time control strategies, isolated traffic re-

sponsive control at an intersection can cause problems at other intersections within the 

network. This can happen when one intersection implements a plan which results in a 

traffic volume far from what another intersection has expected. This problem, however, 

is not costly when using a traffic responsive strategy, because the failing intersection 

will modify its plan much sooner than a fixed-time control strategy. Still, the level of 

coordination between intersections, as well as the speed at which intersections can 
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adapt to unexpected traffic volumes, can greatly affect the overall performance of the 

network. 

 

Figure 2.6: A simple responsive traffic system architecture 
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CHAPTER 3 
 
 

LITERATURE REVIEW 
 

 

The analysis of issues related to the urban movement of cars has assumed an in-

creasingly key role in recent years. The urban traffic conditions greatly slowed down 

and have become congested; in fact, not only create inconveniences to car drivers for 

the increase in the average travel time but also make a less secure circulation on the 

road and increase air and noise pollution.  

The development of Intelligent Transport Systems and info-mobility represent an op-

portunity to reduce costs and road congestion, with sustainable timing. In the era of 

multimedia convergence, communication, and sensing platforms, GPS-enabled 

smartphones are becoming an essential contributor to location-based services. These 

devices combine the advantages of mobile sensors mentioned earlier: low investment 

costs, high penetration, and high accuracy achieved by GPS receivers. In addition, 

GPS-enabled smartphones can provide accurately not only position but also speed and 

direction of the travel. Note that phones not only can send but also receive information. 

Therefore, traffic information can be delivered through this channel. Given the market 

penetration of mobile phones, this new sensing technology can potentially provide an 

exhaustive spatial and temporal coverage of the transportation network. In the mobile 

computing era, smartphones have become instrumental tools to develop innovative 

mobile context-aware systems because of their numerous sensors such as GPS, ac-

celerometers, gyroscopes. This makes them suitable enablers to capture a wide range 

of contextual features, like weather and traffic conditions (Miranda-Moreno, 2015). 

Real-time traffic reports are usually based on statistical methods. These methods 

have been also a common practice in studies that use cell phones as traffic sensors, 
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in which the main goal has been to find the link speed or travel time estimation (Bar-

Gera, 2007). Note that the aforementioned study uses cell phone antennas to obtain a 

cell phone position (i.e. vehicle), which is less accurate than GPS positioning. Krause 

et al. (2008) have investigated the use of machine learning techniques to reconstruct 

travel times on a graph based on sparse measurements collected from GPS devices 

embedded in cell phones and automobiles. 

An overview of the GPS techniques is given in Skog (2009). Sophisticated algorithms 

have been developed to map the vehicle position in the road, see for example Zhao 

(2015) or Fouque et al. (2012). The usual problem in GPS positioning is that the accu-

racy is not within a lane-width range. Therefore, solutions have to be found to get the 

accuracy to a lane level.  

Liu et al. (2017) present a recognition system for dangerous vehicle steering based 

on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerom-

eter. To identify vehicle steering manoeuvres, they focus on the vehicle’s angular ve-

locity, which is characterized by gyroscope data from a smartphone mounted in the 

vehicle.   

Zheng (2016) develops in his work an innovative approach that uses data from con-

nected vehicles(CVs) to estimate traffic volumes at signalized intersections, particularly 

under low penetration rate environment. It is well known that traffic volumes are the key 

inputs to designing and optimizing traffic signal operation. In conventional signal sys-

tems, vehicle arrival information can be obtained only by detectors at fixed locations. 

Different from the detector data, CV data provide detailed trajectories, albeit from a 

small percentage of vehicles. The challenge here is to estimate overall arrival infor-

mation using limited CV trajectories. In the proposed algorithm, vehicle arrivals at inter-

sections are modeled as a time-dependent Poisson process with a time-dependent 

factor characterizing arrival types. For volume estimation, an expectation maximization 

(EM) procedure is derived that can incorporate different types of CV trajectories. To 

estimate traffic volume, the basic idea is to take advantage of vehicle arrival information 

in vehicle trajectories. The arrival information can be reflected from the status whether 

a vehicle stopped or not. An example is shown in Fig. 3.1. In the figure, CV1 passed 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20X%5BAuthor%5D&cauthor=true&cauthor_uid=28335540
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the intersection with a stop and CV2 without a stop. Then, based on CV1’s stopping 

position or departure time, you can calculate a number of vehicles queuing in front of 

it. Based on the trajectory of CV2 without a stop, it is possible to know that, if a vehicle 

queue exists, the queue would not be long enough to impact CV2. In other words, the 

upper bound of possible vehicle arrivals between CV1 and CV2 can be calculated based 

on the trajectory of CV2 (figure 3.2). By combining this arrival information from vehicle 

trajectories, the volume of overall vehicle arrivals can be estimated.  

 

Fig 3.1 Illustration of vehicle arrival information in trajectories 

 

 

Figure.3.2 Illustration of CV trajectories 
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Biagioni (2011) reduces the cost and complexity of offering these services by cre-

ating EasyTracker, an automatic system for transit tracking, mapping, and arrival time 

prediction. The system consists of four main components:  

a) an off-the-shelf smartphone, installed in each bus or carried by each driver, 

functioning as an automatic vehicle location system or tracking device; 

b) batch processing on a back-end server which turns stored vehicle trajectories 

into route maps, schedules, and prediction parameters; 

c) online processing on a back-end server which uses the real-time location of a 

vehicle to produce arrival time predictions, and  

d) a user interface that allows a user to access current vehicle locations and pre-

dicted arrival times.  

Using EasyTracker, a transit agency can implement a sophisticated bus-tracking and 

arrival time prediction system by simply purchasing a number of smartphones and 

downloading the bus-tracking app to each phone. 

Hao et al. (2014) proposed Bayesian Network-based methods to estimate the cycle-

by-cycle queue distribution of a signalized intersection. The methods are based on the 

vehicle index estimation approach, like in Hao et al. (2013). Similar to vehicle index 

estimation, the proposed methods consider the relationships among the arrival, depar-

ture, and vehicle index. They, however, localize the problem around the end of the 

queue. It first classifies the traffic and sampling conditions to seven cases based on 

the sample travel times of vehicles from mobile sensors. For the normal case, the 

method focus on the hidden vehicles between the last queued sample vehicle and the 

first free-flow sample vehicle. Using Bayes’ theorem, they relate the queue length of a 

cycle to the hidden variables that can be considered as the attributes of the un-sampled 

vehicles. Then we show the construction and quantification of the BN to infer the hidden 

variables given sample vehicle travel times and estimated vehicle indices. 

Sun and Bun (2013) propose two methods, namely delay-based optimization and 

estimation models, to estimate the impact of current boundaries, based on which to 

reconstruct the short trajectory of vehicles. First, they proposed a model based on op-

timization and demonstrated that this model is difficult to solve because it needs not 
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only potentially large binary variables, but also a complicated process of evaluation of 

the objective functions. Then, a simplified optimization model is proposed, which aims 

to evaluate the combination of boundary points (where the vehicle stops and joins the 

queue) for several sample vehicles, so that the overall difference between actual and 

estimated trajectories of the vehicle on the ground was minimized. The simplified 

method, therefore, explores only a subset of sample vehicle trajectories. To maintain 

the feasibility, the candidate trajectory points of all sample vehicles can be arranged in 

a direct and acyclic graph, from which border points can be estimated in a consistent 

and efficient manner. The delay-based model further simplifies the estimate of the lim-

its. It uses the sample travel times at intersection to deduce the boundary point of a 

sample vehicle. This model requires less information as it does not require detailed 

information on the vehicle's trajectory. 

Sekimoto et al. (2012) proposed a simple method for using the separation distance 

(offset) between a smartphone GPS and the centreline on a digital roadmap to deter-

mine the lane position of a car.  

Victor et al. (2017) present a method to map the lanes on a motorway using data col-

lected. The method exploits the high accuracy and the fact that the most driving is 

within a lane. It tests a new technique that improves the accuracy of the position based 

on signals from the Global Positioning System (GPS). The technique does not need 

expensive equipment and does not rely on vision or radar, hence works in all weather 

and light conditions. Since most digital maps do not show separate lanes yet, the main 

contribution is a technique to find automatically the lanes, based on trajectories col-

lected using the GPS technique. In this way, measurement points obtained by the GPS 

Precise Point Positioning (PPP) can lead to a map where other trajectories can be 

mapped upon.  

Figure 3.3 shows the steps needed to obtain the digital map with identified lanes.  
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Figure 3.3 Results of the lane finding methodology. (a) Fitting for one base point. (b) Lanes on the map 

with base point fitting. The red and blue lines are all trajectories measured. 

 = ∑ 𝜙 − , 𝜎𝐿
=                                                   .  

In equation 3.1, y is the lateral position, l the lane number, L the number of lanes, ϕl 
the fraction of the flow in lane l, N(X,μ) the normal probability fuction with mean X and 

standard deviation μ; z is the offset of the first lane compared to the base path, ω is 

the width of a lane and 𝜎 the width of the distribution of vehicles within a path. 

This function calculates the probability that a vehicle is in a certain lateral position as a 

probability that the vehicle is in a lane multiplied by the normal distribution hypothesized 

for the distribution of vehicles within the lane, summed up on all lanes. The distance of 

mid points of distributions per lane is equal to the lane width   

 

3.1 Macroscopic Fundamental Diagram (MFD) 
 
The main idea of the Macroscopic Fundamental Diagram (MFD) is that it can describe 

the traffic at an aggregated level. In a similar way that the Fundamental Diagram (FD) 

relates the flow and the density in a link or a road section, the MFD extends this rela-

tionship to an urban area or a network. 



 

 

45 

 

In this section, we tried to answer to the question set in the technical literature about 

the range of the possible applications of the MFD. Actually, the MFD has various appli-

cations, aiming to improve mobility in urban networks: it can help traffic managers in 

monitoring their systems and assessing whether operations are at the desired level,  or 

can provide information for an efficient traffic control. Keyvan-Ekbatani et al. (2012) 

stated that, although the MFD is still under research, we can use it as a very good and 

reliable tool for control strategies.  

Geroliminis and Daganzo (2008), proposed to use the outflow rate provided by the MFD 

as an evaluation of the  accessibility of a city and a suggestion on how improve it. If a 

new control strategy is implemented or an infrastructure change occurs, the MFD 

should change, showing whether the measure was successful or not. Of course, the 

effect of the measure could be overestimated if the evaluation of MFD is carried out in 

a narrow area. For example, the implementation of a new traffic control at an intersec-

tion could improve the flow at that intersection, but possibly because drivers choose a 

different path. Examining the results in the complete network should avoid these ques-

tionable assessments. 

Daganzo (2007) proposed a solution to decrease congestion by developing an adaptive 

perimeter control mechanism that uses the MFD to monitor and control the total vehi-

cles amount that enters a neighborhood. The idea was tested by Geroliminis and Da-

ganzo (2007) at two simulated sites in Lincoln Avenue in Los Angeles and in Downtown 

San Fransisco. They tried to maximize the outflow by maintaining at the optimal level 

the total number of vehicles in the network and limiting the entry of more vehicles.  

Also Keyvan-Ekbatani et al. (2012) analyzed the application of a perimeter control strat-

egy. More specifically, they proposed the use of the MFD to apply a "feedback-based 

gating". A test application of the gating strategy with simulation offered encouraging 

results with fewer delays and higher speeds in the simulated network. Geroliminis et al. 

(2013) proposed a perimeter control as well, but by applying a model predictive control 

solution. To test their method, they used various examples of two-region urban net-

works with different levels of congestion and different amounts of noise and errors in 

the data. The results are very interesting, showing that the model predictive algorithm 
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performs much better than the "greedy" feedback control. These encouraging results of 

the perimeter control can be further used for the development of efficient traffic control 

strategies in any urban network. 

Another example of the application of the MFD is a congestion pricing strategy that was 

proposed by Geroliminis and Levinson (2009). Their research uses the MFD to sketch 

a network-based congestion-pricing scheme. 

Simoni et al. (2015) proposed a methodology to derive time-dependent toll prices using 

the Network Fundamental Diagram. They tested their methodology in a simulated case 

study of the city of Zurich. They suggested that this approach is more realistic than the 

analytic methods that are usually applied to decide tolling schemes.  

Furthermore, the proposed approach needs only a few information and offers a very 

good representation of the traffic dynamics. Thus, it could be implemented effectively 

in real cases. 

As well as applications proposed by the gating and pricing strategies, the MFD could 

also be used to implement a routing strategy to spread the vehicles over the network, 

as proposed by Knoop et al. (2012). Yildirimoglu et al. (2015) proposed a "route guid-

ance advisory control system" showing that their method can produce a system opti-

mum for the network. 

Overall, various studies have already investigated the advantages of applying the MFD 

to support new traffic control strategies or to assess existing strategies. These findings 

strengthen the affirmation that, although the MFD is simple and parsimonious, it can be 

very useful and powerful. We could actually say that its simplicity is one of its strongest 

points and this motivates us to research more about it. 

 

3.1.2. Using real traffic data 

 

Geroliminis and Daganzo (2008) first derived a smooth network fundamental diagram 

from real data. For the purposes of their study, they used loop detector data from down-

town Yokohama in Japan. They realized that the flow-occupancy relationship produced 

by the data from individual detectors contained a lot of scattering, as seen in Figure 
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3.4. However, when aggregating the detector data, a smooth relationship resulted as it 

can be seen in Figure 3.5. 

Since the detectors did not cover the entire network, they tried to produce the same 

relationship using GPS taxi-data that had a full network coverage. From these data, they 

created the relationship between space-average speed and density. Indeed, a smooth 

graph was again produced, indicating that an MFD can exist for the entire urban network 

and that it is a characteristic of the network. The formulas that they used for traffic flow 

q, occupancy o and density k derived from the generalized definitions of Edie (1963).  

 

 
Figure 3.4: Graph of flow vs. occupancy for two individual detectors of Yokohama 
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Figure 3.5: The Macroscopic Fundamental Diagram after aggregating the detector data of Yokohama 

 

Buisson and Ladier (2009) used the unweighted mean formulas with loop detector data 

from both the highway and the surface road network in order to create an MFD in Tou-

louse, France (Figure 3.6). They observed the evolution of flow and occupancy through-

out the chosen days of the analysis with the goal to see what happens if heterogeneity 

applies in the network. More specifically, they examined the homogeneity issue for dif-

ferent road types, distances of the loop detectors from the stop line, and congestion 

levels throughout the network and investigated how each one of these parameters 

influences the scatter on the MFD.  
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Figure 3.6: The Macroscopic Fundamental Diagram from Buisson and Ladier (2009) 

 

Also Cassidy et al. (2011) used real data to estimate the MFD. They used detailed ve-

hicle trajectories data from freeway stretches. Their results showed that the MFD could 

be produced only if the network is either in congested or in uncongested state, not in a 

mixed state. They also discovered that the MFDs for the freeways could be produced 

also by loop detector data as long as there is at least one detector per link and the data 

are filtered to meet a single regime condition. 

 

3.1.2 Using simulation traffic data 

 

Geroliminis and Daganzo (2007) performed various microsimulations in downtown San 

Francisco and first produced a diagram relating the production to the accumulation of 

vehicles, with the aim of applying macroscopic feedback control strategies. They used 

Edie’s definitions (Edie, 1963) to estimate mean flow and mean density. 
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Figure 3.7: The Macroscopic Fundamental Diagram with simulation data of Amsterdam from Ji et al. 

(2010) 

 

Ji et al. (2010) also used microsimulation data for the city of Amsterdam because the 

collected traffic data were not adequate to describe the traffic flow. Figure 3.7 shows 

their resulting MFD . 

The goal of their research was to examine the factors influencing the shape of the MFD. 

To calculate the flow, they used the formula of the weighted average flow qw as in 

Geroliminis and Daganzo (2008), while for accumulation ni they used the following for-

mula: = ∑  

The goal of the research carried out by Courbon and Leclercq (2011) was comparing 

the results of three different ways to produce the MFD, using a microsimulation model.  
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For this reason, they tried to avoid the bias resulting from empirical data, having a com-

plete control over both the urban environment and the traffic phenomena occurring in 

it. They followed three different approaches: 

1. Using loop detector data and weighted averages as in Geroliminis and Daganzo 

(2008). 

2. The analytical method with cuts proposed by Daganzo and Geroliminis (2008). 

3. Using data from vehicle trajectories. 

The network they considered was very simple, with road sections of similar length and 

same traffic light cycle. 

Since their results showed that the trajectory method can produce very accurate values 

of MFD in any network shape, they propose this method as a benchmark. 

Keyvan-Ekbatani et al. (2012) used simulation data of the city of Chania, Greece to 

produce the MFD and test their proposed gating measures to improve mobility. They 

state that an MFD can be either "ideal" or "operational". In the first case, it includes 

precise traffic data of all network links, so it can be derived only from simulation envi-

ronments; in the second case, it includes the available traffic data from a subset of the 

network links. An "operational" MFD is "complete" if the available traffic data cover the 

entire set of network links. For their test, they produced a "complete operational" MFD, 

which describes the traffic situation in combination with a moderate amount of real-

time measurements, and determine the appropriate gating strategy. For their case, they 

used all measurements of the links to detect the point on the MFD that their network 

was operating. However, they suggest that this information, required for gating, can be 

obtained using less real-time measurements. 

Ortigosa et al. (2014) used a microsimulation model of the inner city of Zurich. They 

used only loop detector data, since they supposed that floating car data were not 

broadly available yet; vice versa, their method could be implemented in any urban ar-

eas. The purpose of their study was to find the minimum number of links necessary to 

obtain the MFD. Thus, they created the complete MFD from all the links and incomplete 

MFDs with only some links. Then, they compared the incomplete to the complete MFDs 

on the basis of density ratios and accuracy. To estimate the average flow and density, 
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the weighted averages proposed by Geroliminis and Daganzo (2008) were used again 

in this study. Their results showed that a network coverage of minimum 25% provides 

sufficient accuracy with a small error at the density ratios. 
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CHAPTER 4 
 
 

THE PROPOSED METHOD 
 

 

4.1 A new Intelligent Transportation System for Traffic Light Regulation 
 
This section presents a new intelligent transportation system for traffic light regulation. 

The proposed system is made of the following modules (Fig. 4.1): 

(1) Connected vehicles equipped with GPS smartphone and/or satellite receiver 

position system (GPS), used together or as an alternative for vehicles location; 

(2) Internet 

(3) Central server for data collecting and processing; 

(4) Traffic lights. 

 
Figure 4.1: General system 
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The data recorded by the device (smartphone or GPS), when connected to the vehicle, 

are sent to the main server. On its turn, the server calculates by these data vehicle 

position, speed, and travel time, and establishes the signal phases, which are 

communicated to the control unit that activates the phases. 

Figure 4.2 shows the server structure:  a first part containing the data collection and 

another part devoted to the data processing. This part is the heart of the model, made 

of two additional models. The first model, explained in detail in the section 4.1.1, allows 

identifying the running lane of the connected vehicle. A second model, explained in 

detail in the section 4.1.2, estimates traffic flows for each lane. 

 

 

 
 

Figure 4.2: The server structure 
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After having estimated flows, through any optimization method, we can determine the 

new traffic light cycle time. To simulate and verify the improvements obtained from the 

system, we used the Webster method described in Section 4.1.3 

The system can combine information about vehicular traffic obtained both from FCD 

and from traditional traffic count systems (magnetic loop detector, microwave radar 

sensors, etc.). Moreover, it would allow priority vehicles to move faster on the network. 

 

4.2 The lane identification model  
 

In this section, we explain the method used to find the position of a vehicle on a lane in 

the proximity of any signalized road intersection. We use the GPS data recorded by 

smartphone devices. First, we need to define the observation area, where the main road 

references and the definition of the virtual sections take place. A set of base points at 

the roadside identify the virtual sections. To determine the roadside starting from two 

sampling points A and B we used the following relation: 

= − −− +                                          (4.1) 

while the equations of the relative virtual sections are:                                     

𝑉𝑆 = − − ) +                                     (4.2) 

                                        

where = −− , VSj is the virtual section j, and xj, yj are the coordinates of the j-th 

base point. Figure 4.3 shows the steps to obtain the input data from the acquired GPS 

track data.  
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Fig. 4.3. Steps to obtain the input data 

 

 

 

Detect road margin through points A and B 

 

Create virtual sections as orthogonal lines to the road margin  

Determine the distances between each GPS tracks point and virtual sections 

Project each track point to the nearest virtual section and normalize its distance with re-
spect to the lane width 

(a) 



 

 

57 

 

 

Fig. 4.4. (a) Creation of virtual sections, and (b) statistical trend of the recorded GPS data. 

 

Figure 4.4a shows the roadside and five sections. The base points A and B have coor-

dinates ,  and , , used in Eq. 4.1 to find the roadside. Starting from these 

base points, we created five virtual sections, VS1 to VS5; the GPS data projections on 

these virtual sections (square dots in Fig. 4.4a) have been obtained considering for 

each GPS point i (black dots in Fig. 4.4a) the minimum distance ,  from every virtual 

section VSj, as follows: ∈  | ∋ ′   , = ( , ),      , = , … , ;         (4.3) 

where  is number of virtual section. 

The distances from the roadside of the GPS data projections, i.e. the lateral positions 

of the GPS points, have been normalized with respect to the lane width.  

The values of the normalized lateral positions pi,j of points i on a virtual section j have 

been calculated using the following expression: 

                                               , = √ − 2+ − 2
                                      (4.4) 

where Dj is the lane width of the virtual section j. 

(b) 
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To test our method, we considered a set of measurements carried out by a smartphone 

device, in a three-lanes road. In Fig. 4.4b there is the histogram of the normalized lateral 

positions of surveyed points. A three normal probability distribution fits the histogram, 

where three high-frequency points can be observed. Each one of these points can be 

associated with the midpoint of a lane in the considered road.  

Thus, in general, we can define the probability distribution for each virtual section j 

through the following expression: 

                                                  ɸ = 𝜎√ 𝜋 − 𝑝 −𝜇 22𝜎2                                       (4.5) 

where the characteristic parameters are the mean μ and the standard deviation σ; pi is 

the lateral position of the point i on the section j, as defined by Eq. 4.4. 

Due to the uncertainty embedded in the GPS data, we considered fuzzy distributions to 

represent a point into a road lane. We used Gaussian-shaped Fuzzy Sets to represent a 

membership function  𝛱  of a lane l and defined as follows:  

                                                      𝛱 , = − 𝑝 −𝜇𝑙, 22𝜎𝑙,2
                                         (4.6)   

where the parameter μl for a lane l is the central value of the distribution, defined as:  

                                                         , = 𝑁𝑙 ∑ ,𝑁𝑙=                                           (4.7) 

in which is the number of normalized projections belonging to a lane l. The standard 

deviation σl,j for each virtual section j is defined as follows: 

                                                     𝜎 ,  = √𝑁𝑙− ∑ | , − , |𝑁𝑙=                           (4.8) 

The correct parametrization of the membership functions for each lane a key problem, 

to maximize the accuracy of the position identification.  

The membership degree of a projection  (lateral position) to a 𝛱  function is evaluated 

and the associated lane C is determined as follows: 
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                 =    𝛱 =  {𝛱 }  , 1 ≤ j ≤                             (4.9)  

where  is the number of lanes. 

The set W of correctly identified lane positions is such that: 

                                                        ̂ ∈  ⇔ ̂ =                                      (4.10) 

where Ci is the lane associated with GPS data and ̂  the value estimated by the method. 

In this way, the identification error 𝜀 is defined as: 

                                                           𝜀 = − 𝑁𝑐𝑁𝑡                                             (4.11) 

in which 𝑐 is the number of correct estimations and  is the total number of the GPS 

points considered. 

The objective is to determine the optimal parameters, the mean μ and the standard 

deviation σ, of the membership functions. We can consider the proposed method as a 

supervised clustering technique for uncertain GPS data. In the following, we propose a 

genetic algorithm for an optimal parametrization. 

 

 

4.2.1 Calibration with Genetic Algorithms 
 

In this section, we present an approach based on genetic algorithms (GA) to calibrate 

the parameters (𝜎 , ) as described above. We chose GA due to their high flexibility, 

robustness and global search capabilities. For each virtual section, the aim is to find 

the optimal parameters of the Gaussian membership function 𝛱  as defined in eq. 4.6. 

The objective function associated to the optimization problem is defined through the 

following expression: = 𝑐 ∗ + ∑  ∑|𝛱 𝑎 − 𝛱 |𝑙
=

𝑁
= ∈ 𝑁𝑐

          .  
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where is 𝑐 is the number of correct identifications, 𝑐𝑁   is the accurancy rate, i.e. the 

percentage of correct identifications globally made N, 𝑐  is the set of corrected esti-

mated points, pi,j is the normalized projection value on a given virtual section, 𝛱max( )= max {𝛱  ( )}, c=1,…, . 

In the proposed genetic algorithm, a chromosome has been encoded considering the 

parameters μ and σ. Each pair of genes represents a couple of parameters (μ, σ) related 

to the membership function of a lane l in a given section. The resulting encoding is 

reported in Figure 4.5. 

 𝜎  … … 𝑙 𝜎 𝑙  

Fig. 4.5 Chromosome structure of the genetic algorithm. 

 

The optimization problem is subject to lower and upper bounds of decision variables μ 

and σ, respectively 0≤μ≤1 and 0.01 ≤ σ ≤ 0.5. 

4.3 Traffic Flow Estimation model  

Our method can estimate traffic flow in proximity of any signalized road intersection 

with the use of GPS data recorded by smartphone devices.  

First, we need to define the observation area and identify coordinates of the stop lines.  

Figure 4.6 shows the steps we followed to estimate the traffic flow. 

                  
 

 
 

 
 

         
Fig. 4.6. Steps to obtain the input data for our method 

Calculate the first point C where the speed is zero 

 

Calculate the distance of C from the stop line (length of queue) 

                              Calculate the density for each tracks data 

Calculate the flow for each tracks data  
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Fig. 4.7 An illustrative example of a speed-time diagram 

 

Figure 4.7 shows an example of a speed-time diagram. To estimate the length of queue, 

we analyzed all the speed-time diagrams of each run and filtered the data according to 

the speed value. It is possible to determine the length of queue, taking into account the 

first speed value equal to zero( red circle in figure 4.7),  

We can determine the distance of this point related to stop line virtual section, according 

to the eq. 4.1.  

 

 
 

Fig. 4.8. Queue length evaluation according to connected vehicle position 
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The density k (or concentration) is defined by the ‘number of vehicles per distance 

unit’. 

 =   ℎ                                        .  

where LRS is the length of reference section, equal to 500 m, as shown in figure 4.8.  

The number m of vehicles that occupy the road at a time instant is given by.  

 =  ℎ𝐴  ℎ  ℎ                                .  

where the average vehicle length is 5.5 m.  

In this way, we can calculate the flow through the fundamental relationship =   ∗                                                       .  

where  is the speed the vehicles have when crossing the reference section.  

 

4.3.1 The Greenshields’ Model  

 

Macroscopic models represent how the behavior of one parameter of traffic flow 

changes with respect to another. Most important among them is the relation between 

speed and density. The first and most simple relation between them is proposed by 

Greenshield. Greenshield assumed a linear speed-density relationship as illustrated in 

figure 4.9, 4.10 and 4.11 to derive the model. The equation for this relationship is 

shown below. = 𝑓 − 𝑓 ∗                                                  .  

where  is the mean speed at density k, 𝑓 is the free speed and  is the jam density. 

In equation 4.17 is often referred to as the Greenshields' model. It indicates that when 

density becomes zero, speed approaches free flow speed (ie.       → 𝑓 when  → ).  
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 = ∗ − 𝑎 ∗                                        .  

 

 
Fig. 4.9. Relation between speed and density 

 

 

 

 
 

Fig. 4.10. Relation between speed and flow 
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Fig. 4.11. Relation between flow and density 

 

 

4.4 Optimization of traffic lights with Webster method 

 

In the Webster delay model, the average delay time consists of three components: the 

delay time due to the uniform traffic flow (d1), the delay time due to the random traffic 

flow (d2), and compensation term due to the different traffic environment (d3). Three 

parameters, α, and were introduced. α is the correction coefficient of the first compo-

nent of delay time; β is the correction coefficient of the second component of delay 

time; γ is the correction coefficient of the third component of delay time. The corrected 

Webster delay model is given as   

 = + +                                         .  

= −−   
= −  

= − . ( ) +5𝜆 
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Where d represents the average vehicle delay time; c represents the uniform delay time; 

d2 represents the random delay time; d3 represents the delay compensation value, C 

represents the cycle length, q represents the maximum traffic volume of the intersection 

in 15 minutes, pcu/15 min,where PCU is Passenger Car Unit. 

The traffic data of the selected signalized intersection, including the traffic volume, delay 

time, cycle length, green split, and saturation, were investigated, among which the di-

rect traffic data were traffic volume and cycle length and the indirect traffic data delayed 

time, green split, and saturation. The calculation methods of the indirect traffic data 

were shown as follows. 

Delay Time. The individual sample survey method was used to determine the delay 

time, which is given as 

 = ∗  

                                                                                                                        (4.20) ̅ =  

Where D represents the total delay time and N represents the total number of suspended 

vehicles; t represents the interval time; ̅ the average delay time of each vehicle at the 

approach; and V represents the total volume at the approach. 

 

Green Split: The green split is given as  = ′                                                              .  

Where  represents the green split;  represents the effective green time; and C repre-

sents the cycle length.  
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Saturation: The saturation is given as  =                                                             .  

= { },   = , , , … . ,                                   .  

Where  represents the saturation for phase i;  represents the traffic volume; rep-

resents the green split; represents the saturation traffic volume and X represents the 

saturation degree of the intersection.  

As can be seen, the model is a multivariate linear regression equation. Thus, the un-

known coefficients can be calibrated using the least square method. The result is as 

follows: 

= . −− + . − − . +5𝜆      .  

The green time split  is given as: = = − = ( − )                             .  

Where L represents the total lost time;  represents the green time for phase i; rep-

resents the maximum traffic volume ratio for phase i, which can be calculated by 

yi=qi/si and Y represents the sum of traffic volume ratio of all phases.  

Thus, the saturation in (eq. 4.22) can be calculated as  = = − = − = −            .  

 

Therefore, (eq.4.24) can be rewritten as  
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= . −− + . / − /  ( − / − / )
− . −

+5𝜆                                                       .  

The assumption for the optimization cycle length model is that the total delay of all the 

phases should be minimized, which is given as   𝑎 = ∑                                     .  

Where dtotal represents the total delay time of all phases, qi represents the traffic volume, 

and di represents the delay time of phase i. 

As can be seen from (eq. 4.27), the total delay time dtotal is a function of only one 

parameter C. Therefore, the optimum of (eq 4.28) can be found at dtotal/ C=0 

Thus, the parameter C is a gives as  = , +−                                                .  

where L represents the total lost time and Y represents the sum of traffic volume ratio 

of all phases.  

According to (eq.4.24), when the saturation xi is close to 1, the delay will tend to be 

infinity. It is implausible and not realistic. Thence, (eq. 4.29) does not apply to all the 

traffic conditions. The cycle length model should be rewritten as follows: 

= , +−          𝑎               .  

The Cmin and Cmax  are discussed as follows.  

When the traffic volume is low, the important consideration is the pedestrian rather than 

the vehicle. Therefore, the crossing time for the pedestrian should be focussed on. The 

minimum green time for the pedestrian crossing on the street is given as 
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= + 𝑃𝑃                                                         .  

 

where LP
 represents the length of the crossing street for the pedestrians; vp represents 

the average speed of the pedestrian. Therefore, the cycle length can be calculated as = ∑ + 𝑃 +                                    .  

L represents the total lost time.  

When the traffic flow is crowded, saturation is large and it is no longer able to solve the 

problem of traffic congestion by an optimal cycle length. Thus, the main factor for de-

termining the cycle length should focus on avoiding the anxiety of drivers for waiting a 

long time. Therefore, the suggested optimization cycle length is 180 seconds, that is 

Cmax=180. 

In summary, the optimization traffic signal cycle length model is given as  = , +−          𝑎                .  

With  = ∑ + 𝑃 +                                      .  

𝑎 =  

Note that the development process of optimization traffic single cycle length model is 

not dependent on any particular phase-control scheme. Therefore, it is for 2-phase, 3-

phase and 4-phase-control signalized intersection. 

The green time for the above three case is determined as follows 

The total green time is gtotat= C- L; thus the green time for phase I is given as:    = , = + ,,    =                         .  = −   = , = ,   ,                  
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CHAPTER 5 
 

 

CASE OF STUDY: CITY OF BARI 
 

 

The application environment for the traffic estimation needs to be as realistic as 

possible since the same process applied to theoretical data could be applied also to 

real data. Thus, the main requirements that the simulation model needs to fulfill are: 

assigning trips based on an accurate demand model; being dynamic, so that the impact 

of spillback is taken into consideration; finally, including characteristics of real driver’s 

behavior, such as gap acceptance, preferred speed, lane-changing and car-following 

choices. Furthermore, traffic lights should be included, in order to have both controlled 

and priority intersections, such as in real networks. 

We have considered a five-way signalized intersection in the city of Bari (Italy). The first 

way consists of three lanes eastbound and two lanes westbound (via Omedeo); both 

the second and third way are made of two lanes northbound and two lanes southbound 

(via Amendola), fourth way consists of two lanes eastbound and two lanes westbound 

(Ponte Padre Pio), while the fifth one is made of one lane eastbound and one lane 

westbound (Str. Privata Stoppelli) as shown in Figure 5.1 and Figure 5.2. Note that the 

fourth way is the ramp of a bridge, and the fifth passes under that bridge for a U-turn. 
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Fig. 5.1 Signalized intersection in the city of Bari (Italy). 

 

 
 

Fig. 5.2 Signalized intersection in the city of Bari (Italy). 
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The intersection is controlled by a traffic light with a total cycle time of 102 seconds. 

Figure 5.3 shows the green times of the respective traffic lights and Figure 5.4 shows 

the respective phases 

 

Fig. 5.3 Cycle length 

 

PHASE A                                     PHASE B 

 
PHASE C                                     PHASE D 

             

Fig. 5.4 Phases of traffic lights 
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5.1 Lane Identification Through a Gps Smartphone  
 

For this model, we have considered the GPS track data relative to two main roads con-

verging to a signalized intersection in the city of Bari (Italy). The first road consists of 

three lanes eastbound, while the second one consists of two lanes in the westbound. 

GPS track data have been acquired using a connected vehicle equipped with an Android 

smartphone. The acquired database consists of 86 runs (54 on the two-lane road, 32 

on the three-lane road) with 1 Hz of data acquisition frequency.  

 

 

 

Fig. 5.5 Construction of virtual sections for the two-lane road. 

 

Figure 5.5 shows the five virtual sections (VSs) considered for each road, where the 

first section is the farthest one from the intersection stop line. Figure 5.6 and 5.7 report 

the acquired GPS tracks relative to each run for each considered road. Blue points refer 

to the GPS points projected on each associated virtual section according to Eq. 3. 
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Fig. 5.6. The considered roads with three lanes and recorded GPS tracks. 

 

 

Fig. 5.7. The considered roads with two lanes and recorded GPS tracks. 

 

To calibrate the fuzzy parameters related to lanes’ membership functions, we have used 

a dataset made of 50% of the overall acquired data (calibration set). The remaining 50% 
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(validation set) has been used to validate the identification performances of the pro-

posed method. 

 In Table 5.1 and 5.2, the results of the calibrated parameters μ and σ of the member-

ship function are reported for each lane in correspondence of each considered virtual 

section.  

 

      Table 5.1. Resulting calibrated parameters μ and σ of the membership function for the road with 2 

lanes 

 

Lane 1 Lane 2 

σ μ σ μ 

VS1 0.19 0.69 0.13 0.27 

VS2 0.18 0.68 0.12 0.27 

VS3 0.19 0.72 0.08 0.34 

VS4 0.25 0.75 0.08 0.34 

VS5 0.27 0.79 0.08 0.34 

 

 

Table 5.2. Resulting calibrated parameters μ and σ of the membership function for the road with 3 lanes 

 

Lane 1 Lane 2 Lane 3 

σ μ σ μ σ μ 

VS1 0.18 0.25 0.14 0.61 0.08 0.85 

VS2 0.17 0.24 0.13 0.61 0.08 0.87 

VS3 0.16 0.25 0.11 0.58 0.11 0.89 

VS4 0.11 0.22 0.13 0.55 0.16 0.91 

VS5 0.11 0.28 0.08 0.55 0.16 0.77 

 

 

In Figures 5.8 and 5.9, the two-lane and three-lane routes are reported, the membership 

functions obtained by the calibration process described above. 
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We compared the proposed method with two well-known clustering methods: Fuzzy C-

means (FCM) and K-means. Table 5.3 shows the lane identification error 𝜀 obtained by 

the proposed method and by the FCM and K-means methods. We can observe that the 

proposed method outperforms the other clustering techniques for both calibration and 

validation set. 
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Fig. 5.8. Membership functions related to a virtual section for the two-lane road 
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Fig. 5.9. Membership functions related to a virtual section for the three-lane road 

 

Table 5.3. Comparison of the proposed method with C-means and K-means clustering methods  

ROAD VS 

Calibration set Validation set 

Proposed 

method 

FCM K-means Proposed 

method 

FCM K-means 

 

 

3 

LANES 

1 9.10% 18.20% 19.30% 8.82% 75.90% 72.99% 

2 2.30% 27.60% 28.70% 1.08% 66.25% 60.63% 

3 0.00% 29.80% 30.60% 0.00% 70.25% 62.13% 

4 0.00% 43.10% 44.00% 3.05% 56.66% 60,48% 

5 0.00% 13.30% 14.50% 9.49% 89.11% 90.57% 

 

 

2 

LANES 

1 2.22% 12.80% 13.33% 10.07% 23.17% 26.63% 

2 4.82% 5.97% 6.02% 7.77% 12.86% 14.06% 

3 0.00% 0.00% 0.00% 3.38% 11.85% 11.12% 

4 0.00% 0.00% 0.00% 1.08% 10.68% 10.66% 

5 0.00% 5.18% 5.26% 1.97% 9.37% 10.05% 
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5.2 Macroscopic Model for Traffic Flow Estimation  

 

We have considered the same four-way signalized intersection in the city of Bari 

(Italy) in Figure 5.10.   

GPS track data have been acquired using a vehicle equipped with an Android 

smartphone. The acquired database consists of 250 runs with 1 Hz of data acquisition 

frequency and has a 2,5% of penetration rate. The penetration rate is defined as the 

number of equipped vehicles divided by the total number of equipped and unequipped 

vehicles. 

 

 

 

Fig. 5.10. Resulting membership functions related to a virtual section for (a) two-lane and (b) three-lane 

road. 

 

5.2.1 Data processing 

 

The Gps information was processed as follows. First, we selected for the survey a 

direction in the considered intersection, its associated signal phase, and a specific time 

interval, for example, 8-9, 12-13, and 17-18. Then, based on the CV trajectories, we 

selected the GPS data associated with those direction and time period and prepared the 
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corresponding data about the signal statuses. On the other hand, based on road geom-

etry, we calculated from GPS positions the CVs’ longitudinal position along the road, 

and generate time-space trajectories as shown in table 5.4. To calculate the waiting 

time and the length of the queue, we need to locate the first point at zero speed and the 

last point provided by GPS. The difference provides the value of the waiting time and 

the value of the queue length as shown in Figure 5.11.  

 

Table 5.4. Gps data tracks. 

 

 
Fig. 5.11. Time space trajectories diagram 

Latitude Longitude Altitude Speed  ( Km/h) Timestamp Date & Time

41.105.232 16.886.427 212.9 10.33 9 2017-07-14 08:11:07:532

41.105.255 16.886.412 209.68 10.33 1009 2017-07-14 08:11:08:532

411.053 16.886.404 206.45 13.28 2009 2017-07-14 08:11:09:532

4.110.535 1.688.638 209.68 19.08 3009 2017-07-14 08:11:10:532

41.105.404 16.886.356 209.68 23.29 4009 2017-07-14 08:11:11:532

4.110.547 16.886.324 206.45 28.26 5009 2017-07-14 08:11:12:532

41.105.553 16.886.284 206.45 30.6 6009 2017-07-14 08:11:13:532

4.110.563 16.886.248 206.45 30.6 7009 2017-07-14 08:11:14:532

41.105.698 16.886.204 203.23 31.36 8009 2017-07-14 08:11:15:532

41.105.793 16.886.164 200.0 36.0 9009 2017-07-14 08:11:16:532
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5.2.2 Traffic flow estimation model  

 

As described in the previous chapter, once known the length of the queue for each 

run, we determined the vehicular density for a stretch of 500 m (Fig 5.12) 

 

 
Fig. 5.12. Queue length evaluation according to connected vehicle position 

 

 

Figures 5.12 and 5.13 show the traffic flow pattern according to the tracks recorded in 

the time interval  8-9 AM in the lane 1(Fig. 5.13) and lane 2(Fig 5.14) of via Amendola. 

 
Fig. 5.13. Diagrams of Traffic flow estimation with connected vehicle in the time interval 8-9 AM in via 

Amendola, lane 1 
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Fig. 5.14. Diagrams of Traffic flow estimation with connected vehicle in the time interval 8-9 AM in via 

Amendola, lane 2 

 

5.2.3 Calibration With Greenshields Model 

 

In section 4.2.1, the eqs. 4.17 and 4.18 correlate density, flow, and speed according 

to the Greenshields model. The relations are recalled below: = 𝑓 − 𝑓 ∗  

where v is the average speed at density k, vf is the free-flow speed and kj is the jam 

density.  

 = ∗ − 𝑎 ∗  

 = ∗ − 𝑓 ∗  

 

where kmax is the maximum density, calculated as the maximum number of vehicles of 

5.5 meters long in the 500 meters, equal to 90. 

The free flow speed of 50 km/h, the average speed is equal to the average of the ob-

served speeds. 

Figures 5.15, 5.16, 5.17 show how the estimated data fit the Greenshields model.  

Another results are shows In the Annex 1 
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Fig. 5.15. MFD Density- flow at 8-9 AM in Via Amendola northbound 

 

 
Fig. 5.16. MFD Density- Speed at 8-9 AM in Via Amendola northbound 
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Fig. 5.17. MFD Flow - Speed at 8-9AM in Via Amendola northbound 

 

The relationship between flow and density is the best fitted (Fig. 5.15). For the other 

ones (Fig. 5.16 and Fig. 5.17), it should be noted that there is a remarkable split of data, 

but their trends follow the Greenshields curves. Graphs for other lanes and other time 

intervals (12-13 and 17-18) are given in Annex 1.  

 

5.3 Optimization with Webster method and simulation with Aimsun software 
 

In this section, first, we have built the Origin-Destination (O-D) matrix, whose table 5.5 

shows an example, where the flows used to build the matrix correspond to the esti-

mated flows, obtained from the traffic estimation model previously described. 

From the results obtained, we have highlighted the different traffic flows for different 

times of passing of the connected vehicle.  

We carried out a day-by-day estimation of flows at each passing of a connected vehicle 

and determined the respective O-D matrix. Due to the big amount of data, we chose to 
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analyze in this work only one day, namely July 14th, 2017. All matrices obtained are 

shown in Annex 2.  

 

 

Fig. 5.18. Intersection analyzed and possible turning maneuvers 

 

 

The figure 5.18 shows the intersection analyzed, the lanes numbered as traffic 

centroids and the possible turning maneuvers for each lane. Therefore, after estimating 

the flows of each lane, we calculated the percentages of turns through the available 

video data. Considering lane 2, we determined that 10% of the total flow turned toward 

lane 3, 30% turning toward lane 4 and the remaining 60% moved straight ahead towards 

lane 7.  Similarly, for lane 6, 30% turned toward lane 7, while the remaining 70% moved 

straight ahead towards lane 10. For lane 12, we determined 30% turning toward lane 3 

and the remaining 70% moving straight ahead towards lane 7. The incoming flow in 

lane 3 is redistributed by 30% to lane 7 and the remaining 70% to lane 10.  
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Table 5.5. O/D matrix 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0 0 0 0 0 777 0 0 0 0 0 0 0 

2 0 0 62 185 0 0 370 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 18 0 0 74 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 

6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 589 

9 0 0 0 0 0 0 0 0 0 166 0 0 0 388 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 

12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

The figure 5.18 shows the centroids considered for the construction of the O/D matrix 

and figure 5.19 reports a snapshot of the simulation carried out with the software 

Aimsun  
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Fig. 5.19. Snapshot of the simulation carried out with the software Aimsun 

 

We have optimized the traffic lights cycle length through Webster's method. The method 

imposes that the total delay of all phases is minimized, as given by eq. 4.28:   𝑎 = ∑  

We recall that dtotal is the total delay time of all phases; qi is the traffic volume, and di is 

the delay time of phase i. 

The parameter C is given by eq 4.29 : 

= , +−  

where L is the total lost time and Y is the sum of traffic volume ratio of all phases.  
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CURRENT CYCLE LENGTH 102 SECONDS 

 
 

NEW CYCLE LENGTH 71 SECONDS 

 

Fig. 5.20. Cycle and phases of traffic lights 

 

The total time of new cycle we obtained through Webster’s optimization model is 71 s 

while the time of the current cycle is 102 s. The Figure 5.20 shows the new traffic lights 

cycle and the new phases. It can be noticed that the after-optimization time for light B 

is 33 s compared to 37 s of the current situation. The time for light A, after optimization 

is equal to 38 s; instead, in the current situation is 65 s.  

Finally, we run again the simulation, to evaluate the improvements obtained.  
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We have analyzed the following indicators: 

• Delay time: average delay time per vehicle per kilometer. This is the difference 

between the expected travel time (the time it would take to traverse the system 

under ideal conditions) and the travel time. It is calculated as the average of all 

vehicles and then converted into time per kilometer. It does not include the time 

spent in virtual queue; 

• Density: average number of vehicles per kilometer for the whole network; 

• average queue: average queue in the network during the simulation period. It is 

measured in number of vehicles; 

• Speed: average speed for all vehicles that have left the system. This is calcu-

lated using the mean journey speed for each vehicle; 

• Stop time: average time at standstill per vehicle per kilometer; 

• Total number of Stops: total number of stops in the network during the simula-

tion period; 

• Total travel time: total travel time experienced by all the vehicles that have 

crossed the network. It does not include the time spent in virtual queue; 

• Travel Time: average time a vehicle needs to travel one kilometer inside the 

network. This is the mean of all the single travel times (exit time - entrance time) 

for every vehicle that has crossed the network, converted into time per 

kilometer. 
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   Table 5.6. Results of 1st connected vehicle 

Time Series 

Current cycle 

length 

New cycle 

length Improvement 

Delay Time – Car [sec/km] 147.95 65.97 55% 

Density – Car [veh/km] 8.67 6.17 29% 

Mean Queue – Car  [veh] 43.26 21.21 51% 

Speed – Car [km/h] 27.69 32.31 17% 

Stop Time – Car [sec/km] 124.19 49.33 60% 

Total Number of Stops - Car 11292.28 9110.95 19% 

Total Travel Time – Car [h] 83.36 59.45 29% 

Travel Time – Car [sec/km] 214.22 132.02 38% 

 

 

Fig. 5.21. Improvement 

Table 5.6 and figure 5.21 shows the improvements for each indicator, related to the 

passage of the first vehicle connected, between the current scenario and the new sce-

nario. It shows how with the new cycle we get improvements of 55% for delay time 

and 51% for the mean queue.  
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Table 5.7. Results of 2nd connected vehicle 

Time Series 

Current cycle 

length 

New cycle 

length Improvement 

Delay Time – Car [sec/km] 121.87 56.95 53% 

Density – Car [veh /km] 8.05 5.65 30% 

Mean Queue – Car  [veh] 38.13 18.2 52% 

Speed – Car [km/h] 27.24 33.61 23% 

Stop Time – Car [sec/km] 100.93 42.71 58% 

Total Number of Stops - Car 10297.82 7879.08 23% 

Total Travel Time – Car [h] 77.59 54.63 30% 

Travel Time – Car [sec/km] 187.99 123.05 35% 

 

 

Fig. 5.22. Improvement 

Table 5.7 and figure 5.22 show the improvements for each indicator, related to the 

passage of the second vehicle connected, between the current scenario and the new 

scenario. It shows how with the new cycle we get improvements of 53% for delay time 

and 52% for the mean queue.  
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Table 5.8. Results of 3rd connected vehicle 

Time Series 

Current cycle 

length 

New cycle 

length Improvement 

Delay Time – Car [sec/km] 88.17 56.75 36% 

Density – Car [veh/km] 6.56 5.7 13% 

Mean Queue – Car  [veh] 26.72 18.7 30% 

Speed – Car [km/h] 30.36 33.71 11% 

Stop Time – Car [sec/km] 71.4 43.25 39% 

Total Number of Stops - Car 7923.67 7451.23 6% 

Total Travel Time – Car [h] 63.33 55.09 13% 

Travel Time – Car [sec/km] 154.32 122.86 20% 

 

 

Fig. 5.23. Improvement 

 

Table 5.8 and figure 5.23 shows the improvements for each indicator, related to the 

passage of the third vehicle connected, between the current scenario and the new sce-

nario. It shows how with the new cycle we get improvements of 36% for delay time 

and 30% for the mean queue.  
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Table 5.9. Results of 4th connected vehicle 

Time Series 

Current cycle 

length 

New cycle 

length Improvement 

Delay Time – Car [sec/km] 205.06 89.57 56% 

Density – Car [veh/km] 11.3 7.25 36% 

Mean Queue – Car  [veh] 64.24 28.03 56% 

Speed – Car [km/h] 23.56 29.64 26% 

Stop Time – Car [sec/km] 172.5 67.71 61% 

Total Number of Stops - Car 14387.08 11916.19 17% 

Total Travel Time – Car [h] 108.22 69.42 36% 

Travel Time – Car [sec/km] 271.05 155.66 43% 

 

 
Fig. 5.24. Improvement 

 

Table 5.9 and figure 5.24 shows the improvements for each indicator, related to the 

passage of the fourth vehicle connected, between the current scenario and the new 

scenario. It shows how with the new cycle we get improvements of 56% for delay time 

and 56% for the mean queue.  
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Table 5.10. Results of  5th connected vehicle 

Time Series 

Current cycle 

length 

New cycle 

length Improvement 

Delay Time – Car [sec/km] 165.07 77.58 53% 

Density – Car [veh/km] 9.6 7.06 26% 

Mean Queue – Car  [veh] 50.52 26.97 47% 

Speed – Car [km/h] 25.03 30.52 22% 

Stop Time – Car [sec/km] 138.53 58.84 58% 

Total Number of Stops - Car 12913.24 10476 19% 

Total Travel Time – Car [h] 92.11 68.07 26% 

Travel Time – Car [sec/km] 231.16 143.67 38% 

 

 

Fig. 5.25. Improvement 

 

The results obtained show that, with the new cycle, results in substantial improvement. 

For example, Table 5.10 and Figure 5.25, shows the improvements for each indicator, 

related to the passage of the fifth vehicle connected, between the current scenario and 
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the new scenario. It shows how with the new cycle we get improvements of 53% for 

delay time and 47% for the mean queue.  

The results for other time periods analyzed (12-13 and 17-18) are shown in Annex 3. 

Significant improvements are in all time periods. With the new 71-second cycle time, 

increasing the frequency, we have experienced an average improvement of 50% for 

delay times and  27% reduction in total travel time. We found also 47% reduction in the 

average length of queues and 55% reduction in stop time, as well as an average speed 

improvement of 18% 

 

  

Fig. 5.26. Cycle length 

 

Figure 5.26 shows the values of the traffic light cycles obtained from the optimization. 

The cycle length is around 70 s; there is a small difference between the length of 68 s, 

related to the passage of the third connected vehicle, and the length of 72 s, related to 

the fourth vehicle. As mentioned above, a significant reduction in the cycle time is 

achieved after optimization, from 102 s to 68 s. 
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Fig. 5.27. Delay time 

 

 
 

Fig. 5.28. Density 
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Fig. 5.29. Mean queue 

 

 
 

Fig. 5.30. Speed 
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Fig. 5.31. Total number of Stops 

 

 
 

 

Fig. 5.32. Total travel time 
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Fig. 5.33. Travel time 

 

The values of indicators related to the new cycle are always better than those of the 

current state, as one can see in the above figures. In fact, almost in all figures, the 

values of optimized cycles are lower than the current state, except in the Fig. 5.30, in 

which the current speed results lower than the optimized speed. 

All results obtained in time 12 a.m – 1 p.m and 5 p.m -6 pm are shows in Annex 3.  
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CONCLUSION 
 
In this work, we propose a novel framework for real-time adaptive signal control using 

connected vehicles. This framework is composed of two new methods for lane identi-

fication and flow estimation for optimal real-time traffic signal settings. To evaluate the 

outcomes of the proposed method, we have studied a signalized intersection in the city 

of Bari (Italy), considering three main time periods: 8 a.m. – 9 a.m., 12 a.m. - 1 p.m. 

and 5 p.m-6 p.m. We acquired data related to location, speed, travel times and trajec-

tories of the vehicle using a smartphone application. Smartphone devices combine the 

advantages of mobile sensors: low investment costs, high penetration, and high accu-

racy achieved by GPS receivers. In addition, GPS-enabled smartphones can provide 

accurately not only position but also speed and travel direction. 

The first method represents a supervised clustering technique based on fuzzy sets and 

Genetic Algorithms. Results reveal a good accuracy in identification of the vehicle po-

sition within a lane. Thus, the proposed method allows overcoming the problems re-

lated to the “noise” that affects the measurements, and the errors related to obstruction 

or reflection of GPS data.  

The second method estimates the traffic flow based on the queue length and has shown 

good results. Finally, the optimization performed applying the Webster algorithm to the 

estimated data obtained remarkable improvements, in some cases about 50%, in terms 

of delay times and reduction of average length of queues. Future developments aim at 

the synchronization of traffic lights and integration that model, in real ITS.  
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Fig. A.1. MFD Density- flow at 8-9 AM in Via Amendola southbound 

 

 

Fig. A.2. MFD Density- Speed at 8-9 AM in Via Amendola southbound 
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Fig. A.3.  MFD Flow - Speed at 8-9 AM in Via Amendola southbound 

 

 

Fig. A.4. MFD Density- flow at 12 AM - 1 PM in Via Amendola northbound 
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Fig. A.5. MFD Density- Speed at 12 AM - 1 PM in Via Amendola northbound 

 

 

Fig. A.6. MFD Flow - Speed at 12 AM - 1 PM in Via Amendola northbound 
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Fig. A.7. MFD Density- flow at 12 AM – 1 PM  in Via Amendola southbound 

 

 

Fig. A.8. MFD Density- Speed at 12 AM – 1 PM  in Via Amendola southbound 

 

R² = 0,9412

-200

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

F
lo

w

Density

estimated data Greenshield

R² = 0,3965

0

10

20

30

40

50

60

0 20 40 60 80 100 120

S
p

e
e

d

Density

Estimated data Greenshield



 

 

118 

 

Fig. A.9.  MFD Flow - Speed at 12 AM – 1 PM  in Via Amendola southbound 

 

Fig. A.10. MFD Density- flow at 5 PM - 6 PM in Via Amendola northbound 
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Fig. A.5. MFD Density- Speed at 5 PM – 6 PM in Via Amendola northbound 

 

 

Fig. A.6. MFD Flow - Speed at 5 PM - 6 PM in Via Amendola northbound 
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Fig. A.7. MFD Density- flow at 5 PM - 6 PM in Via Amendola southbound 

 

 

Fig. A.8. MFD Density- Speed at 5 PM - 6 PM in Via Amendola southbound 
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Fig. A.9.  MFD Flow - Speed at 5 PM - 6 PM in Via Amendola southbound 
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Table A.1. O/D Matrix 2nd  connected vehicle at 8-9 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 672 0 0 0 0 0 0 0 
2 0 0 58 173 0 0 346 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 26 0 0 62 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 587 
9 0 0 0 0 0 0 0 0 0 162 0 0 0 379 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

Table A.2. O/D Matrix 3rd connected vehicle at 8-9 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 423 0 0 0 0 0 0 0 
2 0 0 63 188 0 0 376 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 28 0 0 65 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 554 
9 0 0 0 0 0 0 0 0 0 153 0 0 0 356 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.3. O/D Matrix 4th connected vehicle at 8-9 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 861 0 0 0 0 0 0 0 
2 0 0 76 228 0 0 456 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 32 0 0 74 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 537 
9 0 0 0 0 0 0 0 0 0 189 0 0 0 440 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table A.4. O/D Matrix 5th connected vehicle at 8-9 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 820 0 0 0 0 0 0 0 
2 0 0 68 203 0 0 407 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 29 0 0 69 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 562 
9 0 0 0 0 0 0 0 0 0 187 0 0 0 435 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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O/D MATRIX 12-13 
 

Table A.5. O/D Matrix 1st connected vehicle at 12-13 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 378 0 0 0 0 0 0 0 
2 0 0 70 211 0 0 422 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 28 0 0 65 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 516 
9 0 0 0 0 0 0 0 0 0 177 0 0 0 414 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 23 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table A.6. O/D Matrix 2nd connected vehicle at 12-13 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 448 0 0 0 0 0 0 0 
2 0 0 63 188 0 0 375 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 35 0 0 82 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 522 
9 0 0 0 0 0 0 0 0 0 172 0 0 0 401 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 55 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.7  O/D Matrix 3rd connected vehicle at 12-13 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 535 0 0 0 0 0 0 0 
2 0 0 66 197 0 0 395 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 27 0 0 62 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 612 
9 0 0 0 0 0 0 0 0 0 158 0 0 0 368 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 23 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table A.8. O/D Matrix 4th connected vehicle at 12-13 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 441 0 0 0 0 0 0 0 
2 0 0 65 194 0 0 389 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 28 0 0 66 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 622 
9 0 0 0 0 0 0 0 0 0 126 0 0 0 295 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.9. O/D Matrix 5th connected vehicle at 12-13 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 460 0 0 0 0 0 0 0 
2 0 0 61 182 0 0 364 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 27 0 0 63 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 640 
9 0 0 0 0 0 0 0 0 0 140 0 0 0 326 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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O/D MATRIX 17-18 
 

Table A.10. O/D Matrix 1st connected vehicle at 17-18 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 196 0 0 0 0 0 0 0 
2 0 0 26 77 0 0 179 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 17 0 0 39 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 655 
9 0 0 0 0 0 0 0 0 0 162 0 0 0 377 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table A.11. O/D Matrix 2nd connected vehicle at 17-18 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 275 0 0 0 0 0 0 0 
2 0 0 27 82 0 0 192 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 17 0 0 40 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 778 
9 0 0 0 0 0 0 0 0 0 150 0 0 0 351 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.12. O/D Matrix 3rd connected vehicle at 17-18 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 504 0 0 0 0 0 0 0 
2 0 0 70 211 0 0 492 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 30 0 0 70 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 595 
9 0 0 0 0 0 0 0 0 0 158 0 0 0 368 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table A.13  O/D Matrix 4th connected vehicle at 17-18 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 337 0 0 0 0 0 0 0 
2 0 0 50 151 0 0 351 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 24 0 0 56 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 892 
9 0 0 0 0 0 0 0 0 0 218 0 0 0 510 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.14. O/D Matrix 5th connected vehicle at 17-18 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0 0 0 0 0 0 96 0 0 0 0 0 0 0 
2 0 0 30 90 0 0 210 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 18 0 0 42 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 238 0 0 0 0 
6 0 0 0 0 0 0 35 0 0 318 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 300 
9 0 0 0 0 0 0 0 0 0 90 0 0 0 210 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 270 0 0 0 0 0 0 0 0 0 0 
12 0 0 30 200 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 333 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.1. Result 1st connected vehicle 12-13 
 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 143.8 56.7 61% 

Density – Car [veh/km] 8.8 5.7 36% 
Mean Queue – Car  [veh] 45.0 18.7 59% 

Speed – Car [km/h] 26.6 33.6 21% 
Stop Time – Car [sec/km] 119.7 43.4 64% 

Total Number of Stops - Car 10074.7 7264.3 28% 
Total Travel Time – Car [h] 84.2 54.4 35% 
Travel Time – Car [sec/km] 209.8 122.8 41% 

 
 

 
Fig. A.1. Improvement  1st connected vehicle 12-13 
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Table A.2. Result 2nd connected vehicle 12-13 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 89.08 54.85 38% 

Density – Car [veh/km] 6.63 5.48 17% 
Mean Queue – Car  [veh] 27.27 17.26 37% 

Speed – Car [km/h] 30.16 34.04 11% 
Stop Time – Car [sec/km] 72.48 41.21 43% 

Total Number of Stops - Car 8044.57 7124.55 11% 
Total Travel Time – Car [h] 63.99 52.94 17% 
Travel Time – Car [sec/km] 155.22 120.95 22% 

 
 

 
 

Fig. A.2. Improvement  2nd connected vehicle 12-13 
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Table A.3. Result 3rd connected vehicle 12-13 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 105.6 55.09 48% 
Density – Car [veh/km] 7.48 5.69 24% 
Mean Queue – Car  [veh] 33.15 18.42 44% 
Speed – Car [km/h] 28.55 33.96 16% 
Stop Time – Car [sec/km] 85.62 41.54 51% 
Total Number of Stops - Car 9421.44 7289.11 23% 
Total Travel Time – Car [h] 72.19 54.92 24% 
Travel Time – Car [sec/km] 171.72 121.17 29% 

 

 

 
Fig. A.3. Improvement 3rd connected vehicle 12-13 
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Table A.4. Result 4th connected vehicle 12-13 
 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 103.9 53.8 48% 
Density – Car [veh/km] 7.0 5.5 22% 
Mean Queue – Car  [veh] 31.2 16.8 46% 
Speed – Car [km/h] 29.6 34.5 17% 
Stop Time – Car [sec/km] 85.8 40.6 53% 
Total Number of Stops - Car 8398.1 7208.8 14% 
Total Travel Time – Car [h] 67.4 52.8 22% 
Travel Time – Car [sec/km] 170.0 119.9 29% 

 
 

 
Fig. A.4. Improvement 4th connected vehicle 12-13 
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Table A.5. Result 5th connected vehicle 12-13 
 

Time Series 
Current cycle 
length New cycle length improvement 

Delay Time – Car [sec/km] 84.0 53.4 36.4% 

Density – Car [veh/km] 6.4 5.4 16.6% 

Mean Queue – Car  [veh] 25.8 16.8 34.8% 

Speed – Car [km/h] 30.2 34.5 12.3% 

Stop Time – Car [sec/km] 68.0 40.4 40.6% 

Total Number of Stops - Car 7986.8 6971.8 12.7% 

Total Travel Time – Car [h] 62.1 51.9 16.3% 

Travel Time – Car [sec/km] 150.3 119.5 20.5% 

 
 

 
 

Fig. A.5. Improvement 5th connected vehicle 12-13 
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Fig. A.6. Cycle time  
 

 
Fig. A.7. Delay  time  
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Fig. A.8. Density   

 

 
Fig. A.9. Mean queue 
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Fig. A.10. Speed 

 
 

 
Fig. A.11. Stop time 
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Fig. A.12. Total number of stops 

 
 

 
Fig. A.13. Total travel time 
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Fig. A.14 Travel time 
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Table A.6. Result 1st connected vehicle 17-18 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 96.0 51.7 46% 
Density – Car [veh/km] 6.0 4.7 22% 
Mean Queue – Car  [veh] 26.1 14.2 46% 
Speed – Car [km/h] 31.0 35.3 12% 
Stop Time – Car [sec/km] 80.7 39.7 51% 
Total Number of Stops - Car 6440.8 5679.7 12% 
Total Travel Time – Car [h] 57.9 45.0 22% 
Travel Time – Car [sec/km] 162.2 117.8 27% 

 
 

 

Fig. A.15. Improvement  1st connected vehicle 17-18 
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Table A.7. Result 2nd connected vehicle 17-18 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 104.1 79.9 23% 
Density – Car [veh/km] 6.2 5.9 5% 
Mean Queue – Car  [veh] 28.3 23.1 18% 
Speed – Car [km/h] 30.7 31.6 3% 
Stop Time – Car [sec/km] 88.3 64.1 27% 
Total Number of Stops - Car 6405.9 5679.7 11% 
Total Travel Time – Car [h] 59.4 56.3 5% 
Travel Time – Car [sec/km] 170.2 146.0 14% 

 
 

 
Fig. A.16. Improvement  2nd connected vehicle 17-18 
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Table A.8. Result 3rd connected vehicle 17-18 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 120.3 60.4 50% 
Density – Car [veh/km] 7.6 6.3 17% 
Mean Queue – Car  [veh] 35.5 21.7 39% 
Speed – Car [km/h] 27.7 32.7 15% 
Stop Time – Car [sec/km] 98.0 45.7 53% 
Total Number of Stops - Car 10056.1 8387.7 17% 
Total Travel Time – Car [h] 72.8 61.1 16% 
Travel Time – Car [sec/km] 186.3 126.5 32% 

 
 

 

Fig. A.17. Improvement  3rd connected vehicle 17-18 

 
 
 
 
 
 
 

0,0

50,0

100,0

150,0

200,0

Delay Time – Car 

[sec/km]

Mean Queue – Car  

[veh]

Stop Time – Car 

[sec/km]

Total Travel Time – Car 

[h]

Travel Time – Car 

[sec/km]

Current cycle length New cycle length



 

 

147 

 

 
Table A.9. Result 4th connected vehicle 17-18 

 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 142.3 88.5 38% 
Density – Car [veh/km] 8.5 7.3 14% 
Mean Queue – Car  [veh] 44.3 30.9 30% 
Speed – Car [km/h] 27.2 29.6 8% 
Stop Time – Car [sec/km] 120.8 70.2 42% 
Total Number of Stops - Car 9185 8387.7 9% 
Total Travel Time – Car [h] 81.5 70.3 14% 
Travel Time – Car [sec/km] 208.4 154.6 26% 

 

 

 
Fig. A.18. Improvement  4th connected vehicle 17-18 
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Table A.10. Result 5th connected vehicle 17-18 
 

Time Series 
Current cycle 

length New cycle length improvement 
Delay Time – Car [sec/km] 47.2 39.8 16% 
Density – Car [veh/km] 3.7 3.6 4% 
Mean Queue – Car  [veh] 11.2 9 19% 
Speed – Car [km/h] 37.8 38.6 2% 
Stop Time – Car [sec/km] 38.3 31.0 19% 
Total Number of Stops - Car 3439.7 3175.4 8% 
Total Travel Time – Car [h] 36 34.5 4% 
Travel Time – Car [sec/km] 113.2 105.9 6% 

 
 

 

 
Fig. A.19. Improvement  5th connected vehicle 17-18 
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Fig. A.20. Cycle length time 

 
 

 
Fig. A.21. Delay time 
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Fig. A.22. Density 

 
 

 
Fig. A.23. Mean queue 
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Fig. A.24. Speed 

 
 

 
Fig. A.25. Stop time 
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Fig. A.26. Total travel time 

 
 

 
Fig. A.27. Total number of stops 
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Fig. A.28. Travel time 
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