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EXTENDED ABSTRACT 

 

The research aims presented in this study form part of a development of 

decision support systems for Land Engineering, particularly within the field of 

space knowledge management in risk conditions.    

The aim of decision-making in this context is characterised by its being 

part of a complex system composed of different, equally complex sub-systems. 

Indeed, this complexity is a feature of all systems which include living elements 

and in any land planning scenario, a human or natural agent is ubiquitous.    

In order to develop the research study, a problematic sector was chosen; 

the spread of infection in hospital wards. In particular, it was decided to 

concentrate specifically on transmission by contact.     

This topic has proved to be of particular global importance, not only from 

an economic point of view but more importantly due to its direct risk to human 

health.  

The first part of the thesis deals with an investigation of the topic’s 

principal characteristics as well as the control and prevention measures which 

are available to experts in the field and which are used to contrast this 

phenomenon.  

As statistics demonstrate, current strategies are insufficient in preventing 

the occurrence of the phenomenon, much less eliminating it altogether, even if 

there are counter-measures which are relatively efficient in dealing with the 

problem once it has been officially declared, with all its ensuing ominous 

consequences.  

It is thus beneficial to present a research study which provides a more 

detailed description of the problem, proposing improved intervention strategies 

and supporting the decision-making required to prevent or control outbreaks of 

the phenomenon. 
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Although the subject has long been widely researched, above all in the 

field of epidemiology, the development of new software based on multi-agent 

paradigms can, in our opinion, play an important contributing role.     

Thus, it was decided to use a modelling and Event-Based simulation 

approach, a development of the agent-based system. It proved capable of 

realistically representing complex human activity and use of space scenarios by 

integrating the classic bottom up approach with a high-level architecture to plan 

agent behaviour.     

The structured knowledge generated during the system problem analysis 

phase have been attributed to elements of the completed logical model. 

Moreover, the characteristics that the agents were able to display were fitted 

with the pre-selected topic and extended.    

During the development of the model, our aim was to stress the potential 

of the approach as a means to yielding interesting and detailed considerations. 

The framework was extended to include other features, for example agent 

perception of the situation or the influence of environmental conditions on his 

behaviour. 

The underlying aim was to increase the descriptive capacity of the 

framework (and thus the expressive level of the simulation) to achieve a higher 

degree of complexity, so rendering the model more geared toward the reality of 

the phenomenon.  

Compared with other examples in literature, our model was built to 

overcome a number of conceptual and instrumental limits, above all regarding 

the spatial spread of contamination. Even if current available data in literature is 

not detailed enough to allow for an accurate quantification of the weight of 

interrelations between the variables under study.   

A further innovative feature is that of interpreting the phenomenon with 

regard to its relationship with built spaces, both in a physical sense as well as that 

perceived by agents. It was chosen to analyse this aspect in collaboration with 
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Prof. Yehuda E. Kalay’s research group at the Faculty of Architecture of Technion 

(Israel).    

The behaviour of system agents with regard to their conditions and 

contamination capacity was formulated by the use of a discrete equation. The 

model and equation were then implemented within a virtual simulation 

environment, Unity 3D, and the logical functions coded in c#. 

The simulation of a hypothetical case study and scenarios with initial 

varied settings helped to verify the efficacy of the modelling and formalisation 

thanks to the possibility of dynamic visualisation provided by the tool software.    

It is true that the model requires further calibration, which could also be 

through data collection to retrieve all the information necessary to feed the 

system. However, the modelled scenarios and an initial sensitivity analysis 

provide us with a certain degree of confidence about the validity of the output 

results.  

We can thus state that the developed system may be used as decision-

making support for this particular modelled phenomenon, thus justifying our 

choice of agent methodology in the modelling of complex phenomena in the field 

of urban planning.     

As research continues, so improvements will be made in the definition of 

the discrete formula adopted, continuously extending it to reflect real life. A 

further aim is the application of the system to a real-life case study, providing us 

with a database in line with the proposed model. 

 

key words 

Decision Support System, Event-Based Modelling, Agent-Based 

Simulation, Hospital Acquired Infection, Infection Prevention and Control, Hand 

Hygiene.  
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EXTENDED ABSTRACT 

 

Il percorso di ricerca presentato in questo lavoro si inserisce nell’ambito dello 

sviluppo dei sistemi di supporto alla decisione nel campo dell’Ingegneria del 

Territorio, nel caso particolare della gestione della conoscenza spaziale in 

condizioni di rischio.  

L’oggetto di decisione in questo ambito è caratterizzato per essere un sistema 

complesso, composto di svariati sotto sistemi anch’essi complessi. La complessità 

è infatti una caratteristica propria di tutti i sistemi che comprendono elementi 

viventi e nella pianificazione territoriale l’agente umano o naturale è ubiquo.  

Per poter sviluppare la ricerca si è scelto un settore problema che è quello 

della diffusione delle infezioni nei reparti ospedalieri. In particolare si è scelto di 

concentrarsi sulla trasmissione tramite contatto.  

Questo tema è stato dimostrato essere una questione di rilevanza planetaria, 

da un punto di vista economico e ancor più per il rischio diretto alla salute umana.  

Nella prima parte della tesi il tema è indagato, sia rispetto alle sue precipue 

caratteristiche, sia rispetto alle misure di controllo e prevenzione che esperti del 

settore hanno a disposizione ed attuano per contrastare il fenomeno.  

Come le statistiche dimostrano le attuali strategie non sono sufficienti a 

evitare il verificarsi del fenomeno, né tantomeno potrebbero eliminarlo, quanto 

piuttosto sono delle contromisure più o meno efficaci ed intraprese quando il 

problema è conclamato, con tutte le nefaste conseguenze.  

La ricerca di un più raffinata descrizione del problema, così da suggerire 

migliori strategie di intervento e supportare la presa di decisioni atte a prevenire 

l’insorgenza del fenomeno o a controllarlo, è auspicabile. 

Per quanto la questione sia stata ampiamente indagata nei secoli soprattutto 

nel settore della epidemiologia, lo sviluppo di nuovi strumenti software basati sul 

paradigma del sistema multi agente può a nostro parere dare un contributo 

rilevante.  
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Si è quindi scelto di utilizzare un approccio di modellazione e simulazione 

Event-Based, che è un’evoluzione del sistema ad agenti puro. Esso si è dimostrato 

capace di rappresentare realisticamente complessi scenari di attività umane e 

d’uso di spazi tramite l’integrazione del classico approccio bottom-up con una 

architettura di alto livello per la pianificazione dei comportamenti degli agenti. 

La conoscenza strutturata che si è generata nella fase di analisi del sistema 

problema è stata attribuita agli elementi del modello logico realizzato. Le 

caratteristiche che gli agenti erano in grado di esprimere sono state accordate al 

tema prescelto ed ampliate. 

Inoltre nello sviluppo del modello si è voluto stressare le potenzialità 

dell’approccio scelto al fine di poter introitare interessanti considerazione di 

dettaglio. Il framework è stato esteso per rappresentare aspetti quali ad esempio 

la percezione del contesto da parte degli agenti e l’influenza delle condizioni 

ambientali sui loro comportamenti. 

Il fine sotteso è stato quello di aumentare le capacità descrittive del 

l’approccio e di conseguenza l’espressività della simulazione verso una 

complessificazione che rendesse il modello più calzante alla realtà del fenomeno.  

Rispetto ai modelli di letteratura quello qui presentato è stato costruito per 

superarne alcune limitazioni concettuali e strumentali soprattutto riguardanti 

l’inclusione dell’aspetto di diffusione spaziale della contaminazione, ancorché i 

dati attualmente disponibili in letteratura non sono sufficientemente fini per 

poter correttamente quantificare il peso delle interrelazioni fra le variabili 

considerate. 

L’interpretazione del fenomeno rispetto alla sua relazione con gli spazi 

costruiti, sia fisici sia considerati nella comprensione di essi da parte degli agenti, 

è un aspetto innovativo che si è scelto di analizzare in collaborazione con il 

gruppo di ricerca del Prof. Yehuda E. Kalay presso la facoltà di architettura del 

Technion, (IL). 

Dunque il comportamento degli agenti del sistema rispetto alla loro 

condizione e capacità di contaminazione è stato formulato attraverso una 
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equazione discreta. Il modello e la equazione sono stati poi implementati in un 

ambiente di simulazione virtuale, Unity 3D e le funzioni logiche codificate in C#. 

La simulazione di un caso di studio ipotetico e di scenari iniziali variamente 

settati è servita a verificare la bontà della modellazione e della formalizzazione, 

grazie alla possibilità di visualizzazione dinamica che offre lo strumento software. 

Per quanto il modello necessiti di ulteriori passaggi di calibrazione, anche 

attraverso una campagna di data-collection mirata a raccogliere in maniera 

contestuale tutti i dati necessari come input per il sistema, gli scenari modellati e 

una prima analisi di sensitività ci offrono un certo grado di confidenza sulla bontà 

degli output. 

Possiamo quindi affermare che il modello sviluppato può fungere da supporto 

alle decisioni per lo specifico fenomeno modellato ed ancor più conforta la nostra 

scelta della metodologia ad agenti per la modellazione di fenomeni complessi nel 

campo della pianificazione territoriale.  

Come proseguo della ricerca ci si propone di migliorare la definizione della 

formulazione discreta adottata, estendendola al continuo così da rispecchiare la 

realtà ed è inoltre auspicabile l’applicazione del sistema ad un caso di studio reale 

che ci offra una base dati coerente con il modello proposto. 

 

key words 

Decision Support System, Event-Based Modelling, Agent-Based 

Simulation, Hospital Acquired Infection, Infection Prevention and Control, Hand 

Hygiene.   
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1 INTRODUCTION 
 

This chapter starts by giving a presentation of the research in order to 

provide an initial understanding of the scientific reference areas and of the 

essential steps taken to tackle the core topic, followed by a description of how 

the thesis is organized. 

It continues by outlining a scientific and pragmatic overview of the 

background problems encountered in carrying out the study. 

Subsequently, the case study is presented together with the principal 

reasons behind the research, a hypothesis drawn up to respond to questions 

brought up by the study and a description of requirements and constraints. 

A summary of estimated results and potential applications concludes the 

chapter. 
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1,1 PREFACE 

 

 

The healthcare environment is a complex system of several agents: physical 

(environment), biological (pathogens) and cognitive (humans).  

Every element and its relations exhibit typically structured behaviour which 

follows readable patterns, as well as emerging dynamic ones that are usually 

unpredictable, through mathematical modelling approaches (R. Axelrod, 1997). 

Consequently, it is difficult to find an optimal plan to manage hospital resources 

as regards the effects of organizational intervention and the impact of built 

space. Models and simulations are frequently employed to support decision-

making in two areas of health care management: optimization of the use of 

hospital resources and control of the spread of HAIs, hospital-acquired infections, 

i.e. infections contracted during the hospitalization (Ferrer, Salmon and Temime, 

2013). 

The spread of infections is recognized worldwide as a major hazard affecting 

hospital security. (World Health Organization, 2002). HAIs, if not always deadly, 

can be severely detrimental to patient well-being and contribute to a significant 

burden for both the patient and public health resources. In these circumstances, 

HAI prevention and control becomes absolutely vital (World Health Organisation, 

2004). Moreover, the failure to assess HAI risks properly in the earlier stage of 

hospitals construction can subsequently lead to expensive re-design and 

renovation. An unwanted consequence of this is the exposure of patients and 

healthcare workers to infectious diseases caused by dust and fungal spores that 

are released during demolition and re-construction (Department of Heallth 

Estates & Facilities, 2013).  

Nowadays, healthcare managers rely on the expertise of practitioners to assess 

and improve on this issue, e.g. reconfiguring the hospital staffing organization 

and rearranging operational units both physically and through regulations. 

Nevertheless, to guarantee an effective infection prevention and control 
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program it is essential to improve the current limited understanding of the 

dynamics of infection spread and to foresee the effects of intervention policies, 

environmental organization and spatial design against HAIs. Likely adapting this 

knowledge domain to features (type of operational unit, architecture of 

environment, workflow organization and more) of the specific context of 

interest. 

In this study, we present the modelling and simulation of Hospital Acquired 

Infection (HAI) propagation dynamics through exogenous cross-infection by a 

contact transmission route in a hospital ward. 

The contamination propagation phenomenon has multi-factor roots and 

proceeds through a dynamic transmission mechanism which often leads to 

outbreaks. It overlaps hospital processes, events and workflows at the top level 

of the system. This, in turn, affects lower levels through infection prevention and 

control procedures. Finally, at the bottom level, it influences and is influenced by 

spatial design related aspects. 

The processes of analysing, modelling and simulating such multi-level relations 

through interaction among these agents are both challenging and intriguing for 

our research study. Due to its inherent complexity, it is a crucial yet still 

unresolved issue. 

To tackle this subject, our study develops a “what-if” analysis that focuses on the 

modelling of a mechanism for contamination transmission. Our major concern is 

to assess how infectious diseases will progress under different environmental 

conditions and parameter settings. To this end, computer simulation is a valuable 

approach in investigating “what-if” scenarios, providing evidence in support of 

decision-making processes. Simulation has been recognised by international 

literature as an efficient method for evaluating the performance of designed 

systems when the relationships among decision variables are too difficult to be 

established analytically (Kalay, 2004).  

The present study develops a model and simulation framework that is meant to 

deal with a wide range of pathogen types and scenarios of their spread within a 
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hospital environment, i.e. a system adaptable to various hospital units which is 

easily modifiable and can be extended to integrate relevant emerging factors in 

the dynamic evolution of HAIs. 

Our approach relies on the Event Based Modelling and Simulation (EBMS) 

technique and is a flexible system that can be calibrated with a high degree of 

sensitivity for the behaviour and interaction of agents (Schaumann et al., 2015) 

Its application to the specific domain of HAI has never been attempted 

previously. Therefore, the EBMS was expanded with the aim of simulating both 

HAI transmission via a contact route in a spatially explicit, heterogeneously mixed 

environment and its propagation dynamics within a hospital ward, modelling the 

profile and behaviour of individuals, the characteristics of pathogens and the role 

of inanimate objects and spaces. 

References, guidelines and sessions with experienced medical practitioners led 

us to understand the features of HAIs and the established protocols and best 

practices to manage them. This step helped us to verify our hypotheses and build 

a model that aimed to accurately manage and represent the complex inter-

relations between all the major features which up to now have only been 

investigated singly. 

Thus, we developed the model and its architecture and demonstrated its 

potential applications through the simulation of a hypothetical case study built 

in a Unity 3D environment. It was then tested with different virtual scenarios, 

allowing for the real-time visualization of contamination transmission and 

understanding the effect of different control measures, architectural design and 

spatial distribution on pathogen propagation. 

It proved useful to study the dynamics of pathogen circulation (e.g. to visualize 

clusters of infected patients and patterns of occurrence), as this demonstrated 

how these may vary depending on initial causes and conditions, the 

heterogeneity of agents’ features and spatially related configurations. 

The developed framework can be used as a decision support system (DSS) for 

practitioners and policymakers when employed as forecasting tool for the 
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evaluation of policies idea. In fact, a system user can generate new input 

conditions and after system parameter tuning (e.g. actors’ profiles and behaviour 

and re-configuration of settings), by simulating scenarios she/he may figure out 

the possible state patterns in the development of a situation (Jit and Brisson, 

2011).  

A comparison of the experiment’s qualitative results is valuable in assessing the 

effectiveness of the implementation of control strategies, namely practices and 

procedures (e.g. agent hygiene behaviour and contact precautions), as well as 

shedding light on possible control protocol breaches in infection outbreak 

management (Fatah, 2012). 

Finally, this study attempts to test the potential of the EBMS framework in 

modelling human spatial behaviour, envisioning how social interaction and 

spatial influences can affect the spread of HAIs. 

Currently, we are applying this method to a hospital that has already been built 

in order to gather information and data and compare simulated functions with 

real-life circumstances, thus validating the modelling structure and its results. 
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1,2 OUTLINE OF THE DISSERTATION 

 
 
The thesis is divided into five principal chapters as follows: 

 

In the introduction, we present the scope of the thesis, highlighting the problem 

domain that forms the core of this study and the role of the model dealing with 

complex systems. The motivation, aims and objectives of the thesis are then 

presented and the research requirements included. The questions posed by the 

research are discussed through the definition of a hypothesis and aims for the 

chosen subject. Possible results and their relevance are then outlined. 

 

Subsequently, the second chapter of the thesis focuses on the problem domain. 

We define in detail the case study characteristics, discussing prevention and 

control guidelines and features related to a healthcare environment. 

 

The second part of the thesis sets out the solution domain and describes our 

proposal.  

In the third chapter, we present a literature review of theoretical approaches and 

formal approaches to model and simulate HAIs, namely the major mathematical, 

compartmental and agent-based approaches applied to HAIs. In the same 

chapter, there is a detailed description of the framework selected, the Event 

Based Modelling and Simulation approach. 

 

After this, our framework for infection propagation is defined in detail. 

In the fourth chapter, we describe the conceptualization, methodology and 

architecture and formulation created for the model. The model is then tested by 

means of a simple case study simulated in a Unity 3D environment, comparing 

different scenarios; simulation assessments with an outline of experiment 

outcome analysis close the chapter. 



20 
 

 

A final chapter concludes the thesis, with a discussion and possible areas for 

future work and applications. 
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0.3 DECISION SUPPORT SYSTEM 

 

 

This research study focuses on decision-making support for the management of 

complex systems under conditions of risk.  

Decision-making support involves the analysis of a system through methods and 

models and consideration of the context and its variables. The analysis aims to 

understand the system more clearly; moreover, its objective is to use this 

knowledge to facilitate decision-making. Conversely, the aims of decision-making 

influence the way in which its support should be defined (Fig 1).  

Research in the field of Decision Support Systems (DSS) applied to planning aims 

towards improving decision-making processes in public administrations and 

aiding professionals in the field of infrastructural and service development within 

cities. DSS approaches help managers in estimating the implications and 

consequences of possible decisions before their actual execution, allowing them 

to make better decisions (Furtado, 2015).  

Decision-making, on the other hand, involves identifying the various possibilities 

of actions and choosing one or more of these through an evaluation process; the 

choice must be sensible and rational, based on evidence. The objective of the 

decision is to plan policies and measures that oversee the development of the 

system under study (Fig. 1).  
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Fig. 1 – Model of relationships in a Decision Support System.    
 

Decisions in the field of Land Engineering have long-term implications which 

directly affect its development. They involve the creation of public spaces and 

infrastructures to develop socialising and activities through the realisation of 

urban projects in selected areas. This in turn affects people's experience of cities 

and life, since built environments support the living and safety needs of their 

inhabitants (McLoughlin, 1969). 

The design of public infrastructures is increasingly significant in a context which 

sees numerous economic interests, user needs and interrelated functions 

expressed through built space.  

This complex reality makes the proposals of designers, together with the choices 

made by contractors such as public administrations, a complex process 

(Bertuglia, Bianchi and Mela, 1998). In such a context, envisioning the various 
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consequences of implementing specific solutions is of the utmost importance for 

the process to succeed (Borri et al., 2015).  

This issue becomes considerably more difficult when the objects of interest are 

complex infrastructures such as hospitals, where performances are related to a 

large number of functional, typological and organizational requirements. It is also 

where, among other factors, human considerations such as satisfaction with the 

quality of care and patient and staff safety are major concerns.  

A badly-designed, inefficient building, failing to support the activities of the 

people that occupy it (e.g. a waste of space) will not only hinder the users’ quality 

of life, but could sometimes be potentially dangerous. It could lead to delays in 

job task accomplishment, dissatisfaction and stress and user safety hazards 

(health risks such as fall injuries or diseases) (Schaumann, Pilosof, et al., 2016). 

In this respect, when designing settings architects should meet the requirements 

and expectations expressed by their intended users. This is a task inherently 

oriented to account for human factors as they should be able to assess to what 

extent the future design will support activities and needs.  

 

Nowadays, practitioners and policymakers have at their disposal several 

computational tools which follow established mathematical models. These can 

help predict and evaluate a plethora of quantitative building performances and 

characteristics such as costs, energy consumption, material features, structural 

stability, temperature, acoustic and light impact and so on (Schaumann, Pilosof, 

et al., 2016) 

Nevertheless, in addition to such measurable issues, contemporary sustainable 

design should likewise consider social dimensions as a fundamental part of it. 

Analytical approaches in evaluating most qualitative aspects (e.g. buildings-use, 

human spatial behaviour, human satisfaction and safety issues) suffer from 

severe limitations and neither can a real-size prototype be built and tested before 

construction itself. Furthermore, this aspect has become a critical issue in the 
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challenge to translate it into effective guidelines, moving from general thematic 

goals to applicable suggestions and rules.  

Hence, human-related decisions are normally based on partial knowledge, such 

as designers’ intuition, imagination or know-how based on similar cases and their 

successes and failures. The best cases are based on a set of average users’ 

requirements and on the assumption that they will fulfil the needs of most them. 

A more truthful evaluation on whether a design fits the needs of users can be 

performed solely post-construction through Post Occupancy Evaluation (POE) 

(Zimring, 2002). Yet this is a risky method, especially for complex, expensive 

projects like healthcare facilities, as errors could cost millions. Problems may 

appear when it is too late, after building has been completed, leading to 

destructive and costly reconstruction without guarantee and whereby 

improvements frequently only relieve symptoms. 

Decision makers must rely on (and at the same time respect) regulations, design 

rules and legislative factors. Nevertheless, their capacity to fully comprehend the 

complexity of human-building interaction has shown its limits, mirroring the 

increasing complexity of building design and variety of human behaviour with all 

its consequent requirements (Simeone et al., 2013). 

 

Understanding the role which the environment plays in human performance 

early in the planning process phase poses a major difficulty, particularly given 

how different environments impact on human decisions, movement and 

socializing (Gehl, 2010) (Wei and Yehuda, 2007).  

The system of human spatial behaviour depends on an individual’s "decisions 

through actions" that are generally influenced by numerous factors linked in an 

unpredictable way. Indeed, human behaviour in space shows mixed mechanisms 

that give rise to emergent phenomena: from the natural tendency to stay at a 

distance (e.g. proxemics) to imitation effect, from competition for shared space 

and between different activities to co-operation (non-written social norms) to 

prevent stall situations (Hall, 1966) (Stokols, 1972).  
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More complications appear when considering human heterogeneity, the co-

ordinated activities of multiple agents and the varieties of social interaction 

occurring simultaneously between individuals during their behaviour 

development. These factors frequently lead to unexpected conflicts, such as 

gathering and crowding, queueing or interruption of activity. These have been 

extensively investigated in literature, see for instance (Hoogendoorn, 2001) 

(Shelby, Vaske and Heberlein, 1989) (Pan, Han and Law, 2005) (Hajibabai et al., 

2007)  

 

On the other hand, there is an intrinsic limit to what extent decision makers can 

use their imagination and experience to forecast emerging phenomena in spatial 

complex systems. This is because the form (design options) following the function 

(processes and activities) of artefacts is given by the designer, who draws shapes 

and structures in order to address a need that he has identified. Nonetheless, the 

use of these artefacts could be different from what the designer previously 

intended, since this could be entirely different from the artefact’s function and it 

changes as a response to context (cultural, environmental, psychological, and so 

on). Use dictates spatial behaviour in humans as well as reflecting emerging 

understanding and creativity. This is why it is more dynamic (varying from person 

to person and over a short time) than any functional considerations (Arecchi, 

2007). 

 

For these reasons, decision makers often fail to foresee the implications of their 

decisions. Human related aspects are too complex to be predicted accurately. 

However, while a gap exists between expected and actual agent behaviour 

(which may lead to unintended consequences), decisions cannot simply be 

ignored.  
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Therefore, decision makers constantly require innovative methods to assess the 

implications of decisions related to humans, as these are crucial in addressing 

issues appropriately and as early and thoroughly as possible.  

This topic poses a huge challenge for multidisciplinary research studies since it 

requires a consideration of human factors, qualitative variables deriving from 

social and cognitive sciences and psychology and sociology, affecting the choices 

of each user and thus impacting upon their behaviour.  
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0,4 CASE STUDY 

 

 

It is worth considering that in human related sciences such as architecture, social 

sciences and urban planning, proof is hard to come by due to an absence of 

predictive theories and mathematical representation of phenomena (Crooks, 

Patel and Wise, 2014). These sciences cannot produce general, context-

independent theories and so ultimately have nothing else to offer other than 

concrete, context-dependent knowledge (Flyvbjerg, 2006). 

Nevertheless, case study research excels at providing an understanding and 

explanation of a complex issue and can extend experience or add strength to 

what is already known through previous research. Case study research 

emphasizes detailed contextual analysis of specific evenst or conditions and their 

relationships. In such circumstances, the case study approach is especially well-

suited to produce the kind of knowledge needed to support the decision-making 

process (Soy, 1997). 

Although research observes methods and models, it can not develop a 

theoretical study methodology. Its aim is rather that of developing a model to 

support and improve the decision-making processes in a specific domain.  

 

As stated previously, the area of interest in this study is a system under conditions 

of risk, specifically that of healthcare environment management and design. 

Hospitals are particularly complex buildings, with a wide variety of users and 

functions that are carried out in the same location. At the same time, they are 

conceived as human-centred settings designed to cure patients, where a wide 

array of expertise is used and procedures are devised to maximize the number of 

patients to be treated in the most efficient ways. Even if they can be considered 

as highly specialized “machines”, a balance to meet the different needs of 

patients, visitors and staff members within hospitals is constantly being 

researched (Schaumann, Pilosof, et al., 2016). Although all sub-systems, namely 
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environment, personnel and technology share a common objective (i.e. to 

guarantee that patients regain their health and are not harmed further during 

their stay in the hospital), there may be conflicts between the sub-systems 

themselves, for instance if they are competing for the same space to conduct 

different activities at the same time. (Jiménez, Lewis and Eubank, 2013) 

Hospitals around the world deal with the perennial pressure of ensuring cost 

efficiency and so target areas include the optimization of processes and flow and 

the reduction of admission and waiting times and length of stay. However, these 

concerns do not always correspond to user satisfaction or safety.  

Operational efficiency in hospitals is heavily influenced by the design of the built 

environment and by decisions taken to manage them.  

Since every solution is created to address a problem, our chosen area related to 

a healthcare environment and the health risk of a Hospital Acquired Infection 

(HAI) with particular emphasis on the spatial spread of the risk. Safety and health 

risks often arise and must be managed through decision-making processes. They 

can be divided into “problem areas” by type and by location, such as specific 

patient care spaces, departmental areas (nursing units, diagnostic and treatment 

units) and public areas (corridors, lobbies, waiting rooms) (Yehuda, 2013). This 

feature of risk was of particular interest in the selection and interpretation of our 

case study. 

Moreover, such a core domain exploits crucial safety requirement in healthcare 

environments. It guarantees that our research is of relevance, since HAIs are a 

major threat to hospital users all over the world and are cited as the third most 

common cause of death in the USA. 

 

Furthermore, focusing on HAIs in a hospital ward setting allows us to reduce the 

overall complexity of human spatial behaviour to a fully expressive level, which 

is more manageable for our agent-based method. The Event Based modelling and 

simulation of the case study aims to demonstrate its potential in supporting 
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decision-making for uncertain and risky situations, such as the spread of 

infections in hospitals.   

This case study choice supports us in proving our hypothesis and testing our 

methodology. Moreover, it does not affect the general validity of the approach, 

since our model framework is designed in such a way that it can be easily 

modified and extended to make it applicable to other domains. 
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0,5 THE ROLE OF THE MODEL 

 

 

In the writer’s opinion, it would be useful to illustrate in a concise way how 

decision support systems (namely systems of inquiry and the elaboration of 

knowledge applied to complex systems) are formally useful in describing reality 

and its evolution, where possible. Moreover, it is interesting to see how, under 

certain conditions, they are able to determine it in a significant way, verifying the 

principle which states that “every action is knowledge and every knowledge is 

action” (Maturana and Varela, 1980). 

 

Firstly, we must remember that complexity does not exist in nature as an entity 

in itself and there is no uniform, formal definition of it. Indeed, there are 

numerous cases in various scientific areas where the theme of complexity is 

investigated. On the other hand, we know how to recognize complexity when it 

is necessary, or rather when we have to deal with a system that displays such a 

condition. This means that its properties, albeit emerging, have been identified 

and are useful in describing the different features of systems that give rise to 

complexity (Lloyd, 2001). 

 

These properties thus form a more precise definition of complexity that the 

scientific investigation then uses to explain the fundamental characteristics of 

the living systems that allow it to evolve. We can therefore state that the 

complexity of a system is not only an intrinsic property; as it always refers to its 

emerging description, it also depends on the method used for its own 

understanding, namely the model of representation and knowledge (Le Moigne, 

1994). 

 

Even if it may seem trivial, it is useful to focus on the fact that complexity is both 

a real and semantic feature of systems. Therefore, in order to understand 
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complex reality it is necessary to broaden our background knowledge of it. In 

other words, it is essential to improve the methods of knowledge formation for 

complex systems, or rather to organize complex and disorganized knowledge in 

organized forms of complex knowledge (Weaver, 1948). This condition is of 

interest, since it shows the role of meaning in giving value to a real context in 

reorganization (Jacobs, 1961), when, for example, in linguistics one focuses on 

the precise opposite; "nothing has meaning without a context". There are 

examples throughout scientific research where even though a resource may be 

available (for example, oil), it cannot be used until the establishment of a context 

that has been influenced by new knowledge; in the case of oil this can be seen as 

the industrial revolution and the invention of the combustion engine. 

 

Among the many properties of complex systems, it is useful to recall the principle 

of the adjacent possible proposed by S. Kauffman, according to whom at any 

given moment there are billions of potential configurations of future evolution of 

reality (a complex system) that are not, however, infinite since each stage must 

derive from what precedes it (Kauffman, 1995). What is achieved is therefore 

only one particular path traced along the constant succession of bifurcation 

moments and choices, where each bifurcation is an instability and potentially a 

crisis. Thanks to the concept of bifurcation, it is possible to analyse the historical 

dimension of the complex system, Fig. 2 (May, 1976). 
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Fig. 2 – Tree shaped representation of a complex system development over time. 

 

Fig. 2 represents the path towards the development of a complex system in an 

abstract way as a succession of green points. The figure can only be created by 

looking at the past from the point where it is observed. Indeed, the future is not 

a path that has already been traced and has numerous alternative scenarios. The 

evolution of the system is therefore unpredictable because at every point of 

bifurcation we cannot predict which branch will be followed by the system. 

Consequently, the intrinsically complex system has the quality of being 

dependent on a unique path that has been traced up to that instant and is 

therefore inherently unpredictable. 

We can easily understand that the more we (hypothetically) direct our gaze to 

the future, the greater the number of possible branches reality can take. The 

margins of evolutionary possibilities expand and likewise our ability to predict 

accuracy decreases; in effect, “prédire n’est pas expliquer” (Thom, Noël and 

Chenciner, 2009). 

 

A reaffirmation that every evolutionary path is unique can be seen in the principle 

of equifinality proposed by Von Bertalanffy. According to this theory, in open 

systems (complex real systems) the same results can have different origins. In 
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other words, the same final state (“final” since the study is due to end at that 

moment) can be achieved in several ways (paths), starting from different initial 

conditions. This principle was elaborated to demonstrate how deterministic 

explanations (causative mechanisms) were insufficient in the analysis of complex 

phenomena (Von Bertalanffy, 1968). 

This argument adds to the fact that there are many probable scenarios for a 

future evolution of complex systems, while there are many likely past paths that 

have led to that particular state of the system. If we modify the representation 

accordingly, the image does not develop into a tree shape but to a semilattice, 

Fig. 3 (Alexander, 1966). 

 

Fig. 3 – Semilattice-shaped representation of a complex system development over time up to 

the moment of observation. 

 

Thus, to reach a certain point in the development path of a complex system 

(green point), different paths can be followed. For this same reason, the 

evolutionary path of a complex system is also irreversible, since from a certain 

point in time it cannot be traced back along exactly the same path that was being 

followed until that moment.  
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Whereas this is the case for the past, we can fractally extend the figure to 

consider the future of the complex system Fig 4, (Mandelbrot, 1983). 

 

 

Fig. 4 – Semilattice-shaped representation of a complex system development over time towards 

the future. 

 

We may now consider that nodes with greater connections are most likely along 

the evolutionary path and act as evolutionary attractors (Bertuglia and Vaio, 

2011). 

 

As regards this subject, the system developed in the thesis allows us to visualize 

temporal-space pathways of pathogens that work similarly on a semilattice shape 

with an agent or an event in each node. The system can be used to identify critical 

nodes during pathogen spread and suggest that the decision-maker acts on these 

so as to block propagation or channel it along controlled development paths. In 

the modelling of our case study, it was essential to allow for an imaginary 

description of these particular nodes. 

 



35 
 

Conversely, the line of reasoning adopted in the methodology has implications 

for the role of the model itself. As it cannot predict the evolution of a complex 

system, it can perhaps determine the evolution of the complex system of which 

it becomes part. This is because a model is created to understand the functioning 

of the complex system, which is characterized by the fact that it also uses 

knowledge models in order to evolve (Holland, 1995). 

 

Above all, we believe that the model, operating as a synthesiser of knowledge 

and scenario-maker, generates ideas creatively. "Creativity is expressed in a 

context of strong intention: intention finalizes choices, recombines elements, 

and activates potentials in a given situation." (G. Rabino) 

Perhaps we could also say that in essence, the concept behind the model is the 

idea that it produces, with a substantial overlap of causality and purpose. 

 

At the time of its creation, the model gave rise to a concept of possibility that had 

not existed previously. This concept can act as an attractor for the future of the 

system which it refers to and which it is now part of. When such a concept blends 

into the form of ideas in the complex system, acting as a groundbreaking feature 

and establishing connections with real cases before its concrete space-time 

expression, it can influence its evolution. 

 

It seems plausible, therefore, that this part-learned and part-imagined intangible 

knowledge can in fact guide the material evolution of the complex system. Only 

in this way can mankind attempt, like Alice, to strike the hedgehog with the 

flamingo (Carrol, 1865). 
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0,6 PURPOSE, REQUIREMENTS AND CONSTRAINTS 

 

 

The developed model is a clear, formal description of a real-system problem. 

The problem domain was interpreted in terms of a system process and in order 

to study it, we made a set of assumptions on how it operates. These assumptions 

are the basis of our model and use a number of different forms, from 

mathematical and logical relationships to behavioural rules.  

Our model is the result of a conceptual abstract of reality. It is a process of 

grouping together data and information with its summary and interpretation, 

based on the knowledge that clarifies what its relevant aspects are. 

Consequently, it focuses on the principal features for the context in which the 

system was studied, excluding non-essential details.   

We attempt to explain the mechanisms behind the phenomenon under study in 

an attempt to gain some understanding of how the corresponding system 

behaves. 

If the relationships that compose models were sufficiently simple, it would have 

been possible to use mathematical methods, e.g. system equations, to obtain 

precise information for our areas of interest. This is referred to as an analytic 

solution (Kelton, Sadowski and Sturrock, 2010). 

In our case, the real-world system is too complex to allow for a realistic model to 

be evaluated analytically; thus, analytical solution is not available or is 

computationally inefficient (Borshchev and Filippov, 2004).  

Alternatively, such highly complex systems could be replicated and therefore 

studied by means of computer simulation. A simulation model is preferable to 

model complex systems as it is more appropriate for modelling dynamic and 

transient effects (Pidd, 2004). 

 
We chose Event Based modelling and simulation (EBMS) techniques to represent 

the development of the model over time and in space. Where possible or 
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available, data was collected in order to estimate the desired true characteristics 

of the model. We used a computer engine simulation to implement the model, 

investigating, more likely quantitatively or less likely qualitatively, how the inputs 

in question could affect the output measurements of performance (Law and 

Kelton, 1991) 

 

Our purpose was to apply EBMS method to the management of Hospital Acquired 

Infections. One of the key functions of management is planning, which is directly 

related to decision-making. Therefore, the underlying aim of our method was to 

support decision-making processes. 

We represent the building and its users in the situation of HAI risk in a coherent 

and dynamic system. 

Our agent-based system works through the variation of one specific agent 

feature, which is his contamination condition and capacity. This constantly 

relates to the contamination condition and capacity of other agents through the 

agents’ relation law, which we formalized.  

Thus, we create a contamination spreading model, translating the knowledge of 

the problem into the semantic enrichment of the elements which compose it, 

allowing us to perform the subsequent simulation.  

We developed the simulation by coding the script into the event-based simulator, 

a tool currently under development at the Kalay research group at Technion 

(Israel). The C# code is the link between the conceptual process of modelling the 

phenomenon and the simulation itself.  

Thus, that we integrate the system elements in a virtual simulation of the use of 

space in the building, correlated with the contamination propagation through a 

contact transmission route.  

Such a simulation allows for the visualization of contamination propagation due 

to human spatial behaviour and user activities in the built environment, with real-

time results and a data-log. 
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The working proof of a “what-if” scenario concept demonstrated the value of the 

developed framework as a decision support system (DSS) in the field of hospital 

management. 

 

Processes underlying human behaviour in space are considered up to a level of 

abstraction which becomes relevant from a decision-making point of view, 

visualizing their influence on spaces and places. To this end, in considering the 

1st step (the problem domain knowledge which acts as research input) and the 

3rd step (the research outputs), we need a brief initial explanation of the 3rd step 

used to modify the 2nd intermediate step (model breadth), i.e. showing how input 

data is elaborated by the modelled system to produce a coherent output. This 

does not mean that we need to have the answer to the stated problem in 

advance, but rather that we need to define what the significant features of it are, 

which can be useful in assembling the framework in a more effective way.  

 

Our objective is to model and simulate the transmission dynamics of HAI related 

to human spatial behaviour and considerations about the use of built space. Thus, 

the foundation for our model is based on human factor studies, cognitive science, 

environmental psychology, artificial intelligence and more, see for instance 

(Fishbein and Ajzen, 2009) (Gibson, 1986) (Minsky, Kurzweil and Mann, 1991) 

(Simon, 1992) (Montello, 1997) (Langley, Choi and Shapiro, 2004) (Schmidt and 

Passau, 2005) (Laird, 2012) (Reynaud et al., 2013) (Vernon, 2014) (Esposito, 

Mastrodonato and Camarda, 2017)  

 

The following table lists the key themes in the context of the research study, 

organized according to the level of enquiry. They form a significant role in the 

theoretical and methodological mainstream framework of the study (Table 1).  
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RESEARCH ENQUIRY 

LEVELS 

LEVELS OF 

REPRESENTATION OF 

THE SUBJECT 

RESEARCH 

APPROACHES TO 

STUDY THE SUBJECT 

   

UNDERSTANDING 

AND DESCRIPTION OF 

WHY IT HAPPENS 

HUMAN SPATIAL 

COGNITION AND 

PERCEPTION 

FUNCTIONS 

COGNITIVE SYSTEM 

ARCHITECTURES 

   

UNDERSTANDING 

AND DESCRIPTION OF 

HOW IT HAPPENS 

PROCESSES OF HUMAN 

SPATIAL MOTIVATION 

AND BEHAVIOUR 

HUMAN SPATIAL 

BAHAVIOUR AND 

DECISION-MAKING 

SYSTEMS 

   

UNDERSTANDING 

AND DESCRIPTION OF 

WHAT HAPPENS 

INTERACTION 

MECHANISMS ARISING 

AGENTS AND SPACE 

EVENT-BASED 

MODEL AND 

SIMULATION OF THE 

PHENOMENA 

   

Table 1 – Key themes in the context of the research study. 

 

This wide-reaching representation shows that we are not (or, at least, not only) 

applying an established simulation approach such as event-based model and 

simulation (EBMS) to a new subject, as we need a new understanding to develop 

the EBMS approach further. Thus, we are using the selected HAI topic to do so, 

by interpreting the case study in the light of a number of interesting insights on 

spatial cognition and perception through the application of a modified and 

adapted EBMS framework.  

Space, to our knowledge, is not only a physical entity. Due to the presence of 

cognitive agents through which it is interpreted, space can express qualities, 
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features, potential and more. Our work focuses on properties of the environment 

as activated, perceived and cognized by humans. Therefore, the model includes 

aspects of perception of scenery, as well as knowledge of user activity in a 

hospital setting. 

Human spatial behaviour both affects and is affected by the environment, in a 

feedback loop manner. This refers to agents capable of understanding their 

environment and acting accordingly, with particular regard to the individual and 

internal processes which lead to intentions and planning phases in developing 

specific behaviour (as well as to the consequences of such behaviour) in terms of 

learned experience.  

Given this comprehensive perspective, for the purposes of the present study we 

focus on observable situations produced and driven by behavioural relationships 

between actors and spaces. Specifically, it could be the environment which 

affects an agent’s internal status, but unless this implies a change in an agent’s 

spatial behaviour it will not be taken into consideration, as this relates primarily 

to the post-evaluation phase of agent condition and not the real-time mechanism 

of interaction, which is what we want to simulate. 

 

These considerations lead us to a definition of the main areas of the present 

study: 

 

1. Investigation of the multiple features of HAIs; 

2. Definition of the relationships and interaction among its key elements; 

3. Development of the model framework; 

4. Formalization of the conceptual model; 

5. Implementation of the formal model in a Unity3D engine environment; 

6. Analysis of the simulation experiment results; 

7. Simulation assessment. 
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0,7 EXPECTED RESULTS 
 

 

The development of the system, applied and tested with the outcomes of the 

simulation, is fundamental in verifying our hypothesis. This process aims to 

provide the following features:  

 

• to support decision makers with choices that could impact on the safety 

of users in a healthcare environment; 

• to test “what-if” scenarios in order to explore the effects of possible 

solutions for the HAI phenomenon and define a balanced, satisfactory 

trade-off with requirements; 

• to estimate the effectiveness of a range of policies aimed at preventing 

and controlling the HAI of interest; 

• to represent the impact of social and spatial factors on the performance 

of procedures in preventing the outbreak of infection; 

• to evaluate to what extent an EBMS (agent-based approach) can be 

applied as a general framework for modelling and simulation to support 

decisions and management in the case of HAIs. 

 

The present research was carried out in collaboration with Prof. Kalay’s research 

group at the Architecture Faculty of Technion. The model, together with the 

EBMS technique built in a tool currently under development, will complement 

design systems for buildings and should eventually lead to the design of hospitals 

that are less prone to the outbreak of infection.  

 

The joint evaluation and elaboration of the research has led to the broader 

purpose of improving understanding of the potential impact of physical and 

social settings in a built environment on human spatial behaviour. Moreover, it 

provides insights about human perception and cognition, as well as decision-
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making and actions to help policy makers and experts to interpret the 

relationship between the organization of places and human behaviour.  

 

Therefore, the broader scope of the joint research is: 

 

• to provide a visualization of how a building is used and experienced; 

• to forecast and assess the building’s capacity to support user activities 

and to satisfy users’ functional needs, e.g. safety and satisfaction; 

• to examine to what extent the virtual simulation of human behaviour can 

be suitable in estimating human-related building performances. 

• to support designers while making decisions that could impact on the lives 

of the users of future buildings; 

• to evaluate alternative building project proposals and designers’ choices 

before moving onto the construction phase 

 

Consequently, the principal value of the research is to build a model to improve 

the planning and design of a “human-centred” built environment, thus enabling 

a consideration of the use of built infrastructures by urban agents. Accordingly, 

an understanding of individual decisions in actions and behavioural processes in 

space can support professional knowledge and public administrations in their 

decision-making procedures in the field of urban infrastructures. 

 

The ability to clarify these themes could have positive consequences for a more 

concrete way to understand and evaluate the impact of infrastructural design on 

the future of today’s cities. This knowledge will provide strong support for 

government decision-making processes, allowing decision makers to envision 

more aware and effective spatial planning and design in the sustainable 

development of future cities. 
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2 CASE STUDY DESCRIPTION 
 

2,1 HOSPITAL ACQUIRED INFECTION - PROPAGATION  

 

2,1,1 INTRODUCTION  

 

The first part of the thesis, systematically describe the problem domain and its 

boundaries. 

After the brief discussion on the most urgent issues in hospital environment, the 

threat e of Hospital Acquired Infection is presented through key concepts. HAIs 

are defined in relation to the distinctive features of the phenomenon, i.e. 

pathogens, sources and transmission routes, in the light of human behaviours in 

hospital spaces and healthcare environment design. Description of well-known 

intervention policies to prevent and control HAI closes the chapter. 

 

2,1,2 HEALTHCARE ENVIRONMENT CRITICAL ISSUES 

 

Hospital environments are emergency site by definition, so often emerge critical 

situations to be addressed. 

Aiming at addressing the question: “What is the most critical issue in healthcare 

environments?”. The research Critical Issue in Health Care Environment (HCE) 

developed and provide a survey through questionnaires.  (Cohen, Allison and 

Witte, 2009) 

It was structured in three streams to distinguish between three healthcare 

environments, i.e. hospital, ambulatory, and long-term care settings. 

The objective of the project was to identify and describe critical issues and to 

associate them with the specific locations where problems occur. Therefore, the 

research focuses on issues and problems which have a bearing on and from the 

physical environment. 
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By highlighting critical problem areas and unresolved issues in need of 

intervention, the findings can also provide important research questions, setting 

the priorities of research agenda for healthcare environments. 

Over 100 most critical issues in healthcare environments were identified. Top 

ranked problems included patient care and safety issues, such as hospital 

acquired infection (HAI), medication and treatments errors and falls, which were 

shared significantly among all care settings, Fig 5.  

Patient care is provided in facilities which range from highly equipped clinics and 

technologically advanced university hospitals to front-line units with only basic 

facilities, therefore all over the world a primary charge for healthcare 

organizations and facilities is to optimize therapeutic outcomes and patient 

safety. 

 

 
Fig. 5 - Hospital Setting: Percentage of respondents that define patient care problems as serious 

– ranked either 4 or 5 on scale where 1= “not a problem” and 5= “major problem” (Cohen, Allison 

and Witte, 2009). 

 

The second part of the survey focuses to the question: “Which locations are 

associated with more significant and/or a greater number of problems?”, Fig. 6. 
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Fig. 6 - Comparison of Serious Patient Care Problems Across Settings – ranked either 4 or 5 on a 

scale where 1 = “not a problem” and 5 = “major problem” (Cohen, Allison and Witte, 2009) 

 

The question in this subsequent part of the survey is important for two reasons. 

First, focusing on specific locations in the facility is one approach that can sharpen 

the focus when conducting built-environment research. Secondly, given the 

limited resources for conducting health environment research, it is critical to 

identify the places where research is most needed and significant. Research 

should be focused first on those places within healthcare settings where 

problems concentrate, are common, and have the potential for greatest adverse 

impact if not mitigated.  

The results show that specific places associated with either more or greater 

problems in all facilities were generally spaces where the most significant patient 

care was delivered, such as patients’ rooms, treatment and exam rooms, 

diagnostic and treatment spaces, preoperative and recovery spaces, and staff 

work areas.  

Although some problems were facility-wide, many other problems converged in 

particular locations, or had more critical manifestation in those particular 
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locations. For example, patients’ rooms in hospitals were top ranked and were 

the locus for safety issues. 

 

Table 2 below summarizes the findings for the most problematic locations in all 

three settings:  

 
Table 2 - Locations identified as most problematic (Cohen, Allison and Witte, 2009). 

 

Response to the question, “Most problematic location” for the hospital setting 

revealed the top-ranking problematic locations, Table 3:  
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Table 3 – Ranking of most problematic  locations (Cohen, Allison and Witte, 2009). 

 

• Specific Spaces or Rooms: Patients’ rooms topped the list, rated as highly 

problematic by 52.7% of the respondents.  

• Departments or nursing units: Emergency rooms and departments 

topped the list, rated as highly problematic by 67.6% of the respondents, 

followed by nursing units at 59.7%.  

• Public areas: Parking topped the list of problematic spaces and was rated 

as highly problematic by 44.2% of respondents, followed closely by 

waiting rooms at 40.2%.  

 

The extreme ratings of hospital locations as very problematic has closely tied to 

issues of patient care, operational efficiency and user satisfaction. 

Results demonstrate that in Hospital settings most frequently identified critical 

issues and problems concern the patient safety and security issues, such as 

hospital acquired infection, medical and treatment errors and falls, all those 
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patient care topics might be influenced by the decisions in regarding the built 

environment. 

 

Ulrich quantified that and hospital-acquired infections is a leading cause of death 

in the United States, killing more Americans than AIDS, breast cancer, or 

automobile accidents. His research was direct on how improved design make 

hospitals less risky, improving safety. He also proves that a growing scientific 

literature (his research team identified more than 120 studies linking infection to 

the healthcare built environment) is confirming that the conventional ways that 

hospitals are designed contributes to stress and danger. Improved physical 

settings can be an important tool in making hospitals safer, more healing, and 

better places to work. 

Among other topics, research literature shows that the physical environment 

strongly impacts hospital-acquired infection rates by affecting both airborne and 

contact transmission routes. A critical issue for planners is definitely to improves 

the hospital safety by reducing risk from hospital-acquired infections.  

 (Ulrich et al., 2004) 

Nevertheless, according to Stiller, guidelines for design of healthcare facilities are 

often vague in their formulation of infrastructural characteristics due to limited 

evidence in this field of research, a detailed research to enlighten the correlation 

between hospital design and HAI is mandatory and can lead to the conclusion 

that hospital ward design could contribute to HAI control (Stiller et al., 2016) 

 

2,1,3 HOSPITAL ACQUIRED INFECTION – DEFINITION 

 

Nosocomial Infections, or Hospital Acquired Infections (HAIs) made their first 

appearance with the invention of hospitals, mostly associated with surgical 

operations carried out when germ theory and hand-hygiene were unheard of and 

post-surgical mortality could be as high as 90% (Coen, 2012). 
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Hospital Acquired Infections, can be defined as infections caused by 

microorganisms acquired within in a hospital or other health care facility by a 

patient who was admitted for a reason other than that infection (World Health 

Organization, 2002). 

Therefore, there must be no evidence that the infection was present or 

incubating at the time of hospital admission, but develop during the stay in 

hospital (Emori, 1988). 

The Hospital Infection Prevention and Control Guidelines sets in 48 hours the 

minor limit to define HAI, i.e. HAI are infections detected more than 48 hours 

after admission. Nevertheless, suggest also that it must be considered that 

different infections have different incubation periods, so that each occurrence 

must be evaluated individually to determine the relationship between its 

occurrence and hospitalization.  

HAIs includes infections acquired in the hospital and become evident only after 

discharge as well as occupational infection among staff of the facility (World 

Health Organisation, 2004) 

 

2,1,4 HOSPITAL ACQUIRED INFECTION – FREQUENCY  

 

Despite progress in public health and hospital care, infections continue to 

develop in hospitalized patients, and may also affect hospital staff. HAIs 

infections occur worldwide and affect both developed and resource-poor 

countries, laying a serious public health problem. 

A prevalence survey conducted under the auspices of World Health Organisation 

(WHO) in 55 hospitals of 14 countries representing 4 WHO Regions (Europe, 

Eastern Mediterranean, South-East Asia and Western Pacific) showed an average 

of 8.7% of hospital patients had nosocomial infections (World Health 

Organisation, 2004) 

At any time, over 1.4 million people in the world suffer from infectious 

complications acquired in hospital. In line with the statistics in the UK about 9 
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percent of patients in the hospital have a HAI, making an estimated total of 

100,000 patients a year (Meng et al., 2010). 

The most frequent nosocomial infections are infections of surgical wounds, 

urinary tract infections and lower respiratory tract infections. Studies have also 

shown that the highest prevalence of nosocomial infections occurs in intensive 

care units and in acute surgical and orthopaedic wards. Infection rates are higher 

among patients with increased susceptibility because of old age, underlying 

disease, or chemotherapy (World Health Organization, 2002) 

 

2,1,5 HOSPITAL ACQUIRED INFECTION – IMPACT  

 

HAIs are one of the most common complications of health care environments 

and are among the major causes of death and increased morbidity among 

hospitalized patients. HAIs lead to longer length of stay for patients and increased 

costs associated with hospitalization and insurance companies (National Centre 

for Disease Control, no date) 

HAIs if not fatal can severely detriment patient welfare, adding to functional 

disability and emotional stress of the patient and may, in some cases, lead to 

disabling conditions that reduce the quality of life (Meng et al., 2010). 

What’s more organisms causing HAIs can be transmitted to the community 

through discharged patients, HCWs and visitors, which may cause significant 

disease in the community.  

HAIs are a significant burden both for the patient and for public health resources, 

for instance treatments are very costly and may not be effective.  

It is estimated by the Committee to Reduce Infection Deaths 

(http://www.hospitalinfection.org) that infections acquired in U.S. hospitals lead 

to almost 2 million infection cases with over 100,000 deaths per year and an 

additional $30.5 billion in hospital costs (Barnes, 2011) 

If only 10% of adult HAI infections could be prevented, £93 million could be saved 

in England and Wales alone (Coen, 2012). Each year in the UK, around 5,000 
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deaths might be primarily attributable to HAIs and in a further 15,000 cases HAIs 

might be a substantial contributor. In UK the cost of increased length of stay and 

treatment for patient affected by HAI is thought to be about £1,000 million a 

year. Increased length of stay accounts for most of the extra financial cost, with 

the average increase for surgical site infections to be 8.2 days (Meng et al., 2010). 

 

The increased duration of hospitalization for infected patients has unintended 

consequences over costs. In fact, prolonged stay not only increases direct costs 

to patients or payers but also indirect costs due to lost workdays.  

The increased use of drugs, the need for isolation, and the use of additional 

laboratory and other diagnostic studies also contribute to costs.  

Hospital-acquired infections add to the imbalance between resource allocation 

by diverting scarce funds intended to cure newly admitted patients to the 

management of potentially preventable conditions arising in hospital (World 

Health Organization, 2002) 

 

Further progress in reducing the burden of HAIs is hindered by uncertainty 

surrounding the role of asymptomatic carriers, environmental transmission and 

the recent emergence of bacteria other than MRSA and C. difficile, such as 

Enterobacteriaceae (van Kleef et al., 2013) 

The more frequent impaired immunity (age, illness, treatments) of patients 

admitted to health care settings, the greater prevalence of chronic diseases 

among admitted patients and the increasing bacterial resistance to antibiotics 

will provide continuing pressure HAIs in the future (World Health Organization, 

2002) 

 

2,1,6 ANTIBIOTIC-RESISTANT BACTERIA 

 

HAIs are generally correlated with, but not synonymous to, antibiotic resistant 

organisms. In effect, one of the main reasons for HAI worldwide progression is 
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that pathogens have become increasingly resistant to antimicrobial treatment. 

Their recursive correlation is exposed below.  

The invention of antibiotics reduced mortality, but subsequently led to the 

emergence of infections adapted to survival in the antimicrobial-rich hospital 

environment. An arms race where the bacterium and the pharmacist are running 

to beat each other (Coen, 2012). 

Nowadays antimicrobial resistance is a serious public health threats for people in 

every country in the world. Infections from resistant bacteria are now too 

common, and some pathogens have even become resistant to multiple types or 

classes of antibiotics (antimicrobials used to treat bacterial infections) (Frieden, 

2013). 

Many patients receive antimicrobial drugs. Through the bacteria selection and 

exchange of genetic resistance elements, antibiotics promote the emergence of 

antimicrobial resistant strains of bacteria; microorganisms in the normal human 

flora sensitive to the given drug are suppressed, while resistant strains persist 

and may become endemic in the hospital and spread inside and outside medical 

settings. Consequently, antimicrobial agents become less effective because on 

such developed resistant bacteria. As an antimicrobial agent becomes widely 

used, bacteria resistant to this drug eventually emerge and may spread in the 

health care setting. Some examples are Klebsiella and Pseudomonas prevalent in 

many hospitals. The widespread use of antimicrobials for therapy or prophylaxis 

is the major factor leading to antibiotic resistance. Antibiotics are among the 

most commonly prescribed drugs used in human medicine. However, up to 50% 

of all the antibiotics prescribed for people are not needed or are not optimally 

effective as prescribed (World Health Organization, 2002). 

 

Firstly, the spread of infection in healthcare environment causes the augment of 

the number of patient which need the cure with antimicrobial drugs and 

subsequently this condition rises the probability of development of antimicrobial 

resistance bacteria. Therefore, preventing infections from spreading reduces the 
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total amount of antibiotics used, this, in turn, slows the pace of antibiotic 

resistance development.  

Furthermore, directly preventing infections propagation also prevents the spread 

of antimicrobial resistant bacteria which are cause of such kind of infection. 

At lastly, the spread of infection caused from antimicrobial resistance bacteria 

increases the probability of death. Especially for patients contracting an 

antibiotic-resistant infection in healthcare settings is dangerous because they are 

already vulnerable due to weak immune systems and underlying illness. This 

problem can affect anyone since almost all people will receive care in a medical 

setting at some point of their life. 

 

The loss of effective antibiotics will undermine our ability to fight infection spread 

and manage the infectious complications common in vulnerable patients 

undergoing chemotherapy, dialysis, and surgery, especially organ 

transplantation, for which the ability to treat secondary infections is crucial. 

In addition, when first-line and then second-line antibiotic treatment options are 

limited by resistance or are unavailable, healthcare providers are forced to use 

antibiotics that may be more toxic to the patient and frequently more expensive 

and less effective (Frieden, 2013) 

Even when alternative treatments exist, research has shown that patients with 

resistant infections are often much more likely to die, and survivors have 

significantly longer hospital stays, delayed recuperation, and long-term disability.  

By preventing infection spread from antibiotic resistance in healthcare settings, 

patients’ health can be better preserved. In addition, healthcare facilities, 

systems, insurers and patients can save dollars that otherwise would have been 

spent on more complex care and medications needed to manage antibiotic-

resistant infections. 

 

Each year in the United States, more than two million people acquire serious 

infections with bacteria that are resistant to one or more of the antibiotics 
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designed to treat those infections, At least 23,000 people die each year as a direct 

result of these antibiotic-resistant infections. The estimates are based on 

conservative assumptions. They are the best approximations that can be derived 

from currently available data. 

In addition, almost 250,000 people each year require hospital care for 

Clostridium difficile (C. difficile) infections. In most of these infections, the use of 

antibiotics was a major contributing factor leading to the illness. At least 14,000 

people die each year in the United States from C. difficile infections. Many of 

these infections could have been prevented. 

Antibiotic-resistant infections add considerable and avoidable costs to the U.S. 

healthcare system. In most cases, antibiotic-resistant infections require 

prolonged and/or costlier treatments, extend hospital stays, necessitate 

additional doctor visits and healthcare use, and result in greater disability and 

death compared with infections that are easily treatable with antibiotics. The 

total economic cost of antibiotic resistance to the U.S. economy has been difficult 

to calculate. Estimates vary but have ranged as high as $20 billion in excess direct 

healthcare costs, with additional costs to society for lost productivity as high as 

$35 billion a year (2008 dollars) (Frieden, 2013) 

 

Additional efforts to fight the spread of antibiotic resistance include  

• preventing infections from occurring and preventing resistant bacteria 

from spreading; 

• tracking resistant bacteria; 

• improving the use of antibiotics; 

• promoting the development of new antibiotics and new diagnostic tests 

for resistant bacteria. 

 

Immunization, infection control and reducing person-to-person spread are for 

the explained reasons and for our research of great interest. The first major factor 
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in the growth of antibiotic resistance is the spread of the resistant strains of 

bacteria from person to person, or to the environment. 

 

2,1,7 THE CHAIN OF INFECTION 

 

The general idea about HAI is that (susceptible) patients spend time on a ward, 

they have physical contacts with health-care workers (HCWs), visitors, other 

patients and with contaminants in the environment. Such exposure can lead to 

colonization with infectious organisms that may sooner or later cause debilitating 

clinical infection (Coen, 2012). 

Transmissible HAIs are caused by contagious pathogens, and in most cases the 

pathogens are in the form of bacteria although viruses and fungi are often 

involved. Our simulation is meant to visualize the mechanism of diffusion of HAIs. 

We must consider the chain of infection which represent the transmission path 

of an infectious pathogen, Fig. 7. In fact, despite the variety of pathogens, germs 

spread from person to person through a common series of events, which we 

meant to simulate. There are six points at which the chain of the infection can be 

broken and a germ can be stopped from infecting one more person, or from the 

other hand that are needed to close the transmission chain. The simulation helps 

to visualize the diffusion of the pathogen, suggesting where to operate to break 

the chain. 
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Fig. 7 - The chain of Infection. 

 

The six links include:  

1)The infectious agent is the pathogen (germ) that causes the disease. 

 

2)The reservoir is the place where the pathogen lives. This includes people, 

animals and insects, medical equipment, furniture, environmental surfaces soil 

and water. 

 

3)The path of exit is the way the infectious agent leaves the reservoir. This could 

be through open wounds, aerosols, and the splatter of body fluids including 

bleeding, coughing, sneezing, and saliva, through respiratory tract, mucous 

membranes, break in host barriers. Hospital acquired pathogens can be 

recovered not only from infected wounds, but also from frequently colonized 

areas of intact patient skin. The perineal or inguinal areas tend to be most heavily 
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colonize and hands are also frequently colonized. (World Health Organisation, 

2009) 

 

4)The mode of transmission is the way the infectious agent can be passed on. 

This could be through direct contact like touching, ingestion into the stomach, or 

inhalation into the nasal cavity or lungs.  

To understand the transmission, we should categorize HAIs according to how 

pathogens that cause them can be acquired. There are two main forms: 

HAIs may be caused by a microorganism acquired from another person in the 

hospital setting (exogenous cross-infection), or may be caused by the patient’s 

own flora (endogenous infection). 

 

Endogenous infection: Bacteria present in the normal flora cause infection 

because of transmission to sites outside the natural habitat (urinary tract), 

damage to tissue (wound) or inappropriate antibiotic therapy that allows 

overgrowth (C. difficile). For example, Gram-negative bacteria in the digestive 

tract frequently cause surgical site infections after abdominal surgery or urinary 

tract infection in catheterized patients. 

 

In turn, exogenous cross-infection can be classified according to the transmission 

route. In fact, microorganisms can be transmitted from their source or carrier to 

a new host in the air, by vectors, water or through contact (direct or indirect)  

 

exogenous cross-infection are airborne when pathogen is transmitted in the air 

(droplets nuclei < 5 micron or dust contaminated by a patient’s bacteria). Fine 

dust and droplet nuclei generated by coughing or speaking remain in the air for 

several hours and can be inhaled in the same way as fine dust. Although, airborne 

transmission occurs only with microorganisms that are dispersed into the air and 

that are characterized by a low minimal infective dose. Only a few bacteria and 
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viruses are present in expired air, and these are dispersed in large numbers 

because of sneezing or coughing. 

 

Vector-borne (exogenous cross-infection) transmission is typical of countries in 

which insects, arthropods, and other parasites are widespread. These become 

contaminated by contact with excreta or secretions from an infected patient and 

transmit the infective organisms mechanically to other patients (Chartier et al., 

2014)  

 

Moist environments and aqueous solutions in health-care settings have the 

potential to serve as reservoirs for waterborne microorganisms. Under 

favourable environmental circumstances (e.g., warm temperature and the 

presence of a source of nutrition), many bacterial and some protozoal 

microorganisms can either proliferate in active growth or remain for long 

periods in highly stable, environmentally resistant and infectious forms 

(Sehulster and Chinn, 2003) 

 

In our study, we are interested in modelling and simulating exogenous cross-

infection transmitted by contact route. 

 

Exogenous cross-infection by contact are direct if the contamination occurs 

through direct contact between the human source of infection and the human 

recipient.  

Some examples are:  

Pathogen transmitted between patients through direct contact (e.g. hands, saliva 

droplets > 5 micron or other body fluids). 

Pathogen transmitted via contaminated staff members through patient care (e.g. 

hands, clothes, nose and throat) who become transient or permanent carriers, 

subsequently transmitting bacteria to other patients by direct contact during 

care. 
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Pathogen transmitted via contaminated staff members hands between patient 

contact or during the sequence of patient care (World Health Organisation, 

2009). 

 

Exogenous cross-infection by contact are indirect if the contamination occurs 

through contaminated objects. This pathogen are transmitted through indirect 

contact via inanimate objects (including equipment), or environmental furniture 

recently contaminated from another human source and subsequently 

transmitting bacteria to other persons (World Health Organization, 2002) 

 

5)The path of entry is the way the infectious agent can enter a new host. In 

contrast to the means of transmission (which is the movement of the germ from 

the object another person), the portal of entry is the actual entering in the body. 

This can be through broken skin, wound, the respiratory tract (nose or lungs), 

mucous membranes (including the urine), and catheters and tubes. The variety 

of medical procedures and invasive techniques creates many potential routes of 

infection. 

 

6)Lastly, the susceptible host can be any person. The most vulnerable are those 

receiving healthcare, which are immunocompromised, or have medical devices 

including lines and airways. Infection rates are higher among patients with 

increased susceptibility because of old age, babies, underlying disease, or 

chemotherapy (World Health Organization, 2002) 

 

A germ can travel around this circle very quickly. The way to stop germs from 

spreading is by interrupting this chain at any spot.  
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2,1,8 TYPES OF PATHOGEN 

 
2,1,8,1 INTRODUCTION 
 

There are multiple types of pathogens that can infect a patient being transmitted 

by contact route within a healthcare facility.  

 

Some HAIs manifest themselves soon after colonization. This is typical of many 

viruses, such as norovirus and adenovirus, where susceptibles acquire infection 

and after an incubation period of a few days suffer symptoms of infection. Such 

aetiologies are typically associated with outbreaks characterized by ‘attack rates’ 

and outbreak durations (Coen, 2012). 

 

In contrast most HAIs are not just about acquiring the organism. Many bacterial 

infections may be carried for months in the absence of clinical symptoms, such 

as in the nares (MRSA), the skin (Coagulase-negative Staphylococci), the 

gastrointestinal tract (Clostridium difficile). This silent infection may last months 

to years, makes the patient a ‘carrier’, more or less infectious to others 

depending on the organism and other circumstances, (see paragraph 4,2,1). Only 

when natural barriers are breached, often as a result of health-care intervention 

(e.g. surgery, line and catheter insertion), bacteria will invade hosts, they multiply 

and cause life-threatening clinical illness  (Coen, 2012) 

 

Examples from the Gram-positive bacteria are MRSA (resistant to penicillins and 

cephalosporins) and C difficile (resistant to fluoroquinolones) and from Gram-

negative bacteria is Klebsiellas, for which resistance to carbapenems is emerging 

(Grundmann et al., 2010). 

 

Apart from the type of pathogen that causes the infection, HAIs can also be 

classified based on the clinical body sites of the infection. The main body sites 
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that are susceptible to HAIs include blood, urinary tract, respiratory tract, surgical 

site and gastrointestinal tract. Blood stream infections account only for about 5 

percent of HAIs but have a high mortality rate, and are mostly associated with an 

intravascular device and the admission to intensive care units (ICUs). Urinary 

tract infections are the most common type of HAIs and are also commonly 

associated with indwelling catheters. Pneumonia is the second most common 

HAI and it has a high fatality rate; and patients who are intubated or on 

ventilators are at a higher risk. Surgical site infections include wound infections 

or deep cut infections and both patient and surgical factors may affect surgical 

site infections (Meng et al., 2010). 

 

Even if they share some transmission characteristics and therefore some 

prevention and control strategies, treatments are different for each of them, 

however such kind of further considerations are out of the scope of the present 

work, but it is useful for our purposes introduce some basic notion about 

distinctive bacteria, so that to become able to recognize differences and 

similarities. 

 

Currently, the widely known and studied HAIs around the world include 

Methicillin-resistant Staphylococcus aureus and Clostridium difficile, for its 

dangerous rising Klebsiella have been also considered in the present work. 
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2,1,8,2 CLOSTRIDIUM DIFFICILE 
 

 
Fig. 8 – Clostridium Difficile Bacterium 

 

Clostridium difficile infection (CDI) is a symptomatic infection due to a gram-

positive spore-forming anaerobic bacillus, Clostridium difficile, which is the 

leading cause of HAI infectious diarrhoea in adults and it is responsible for large 

outbreaks, Fig. 8  (Butler et al., 2016). 

 

Clostridium difficile is a normal occurring bacterium in the intestinal flora, 

however certain strains of the bacteria can cause disease, overt infection may be 

triggered by broad spectrum antibiotic use, hospitalization and the presence of 

risk factors such as age, anti-diarrhoeal drugs and insertion of tubes into the 

gastrointestinal tract (Meng et al., 2010). 

 

These infections mostly occur in people who have had both recent medical care 

and antibiotics. 

About half of C. Difficile infections first show symptoms in hospitalized or recently 

hospitalized patients, and half first shows symptoms in nursing home patients or 

in people recently cared for in doctors’ offices and clinics (Frieden, 2013). 

 

https://en.wikipedia.org/wiki/Infection
https://en.wikipedia.org/wiki/Bacterial_spores
https://en.wikipedia.org/wiki/Clostridium_difficile_%28bacteria%29
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Symptoms include watery diarrhea, fever, nausea, and abdominal pain. 

Complications may include pseudomembranous colitis, toxic megacolon, 

perforation of the colon, and sepsis. The severe form of the infection can also 

lead to death (Frequently Asked Questions about Clostridium difficile for 

Healthcare Providers | HAI | CDC, no date) 

 

Clostridium difficile infection is spread by spores found within feces. Patients 

with symptomatic or asymptomatic C. difficile can both contaminate their 

immediate hospital environment and the spores may persist for several months 

on surfaces (Meng et al., 2010) 

Surfaces may become contaminated with the spores with further transmission 

occurring via the hands of healthcare workers, other patients, medical 

equipment and the environmental surfaces.  

 

C. difficile infections occur all over the world. C. difficile diarrhea is estimated to 

occur in 7,7 out of 100,000 people each year. Among those who are admitted to 

hospital, the incidence rate is between 3,4 and 8,4 people per 1,000 admissions 

(Domino, 2014)  

Due in part to the emergence of a fluoroquinolone resistant strain, C. difficile-

related deaths increased 400% between the years 2000 and 2007 in the United 

States (Lessa, Gould and McDonald, 2012). In 2011 it resulted in about half a 

million infections and 29,000 deaths in the United States (Lessa et al., 2015) 

 

C. difficile has become the most common microbial cause of HAI in U.S. hospitals 

and costs up to $4.8 billion each year in excess health care costs for acute care 

facilities alone (Hospital Acquired Infections Are a Serious Risk - Consumer 

Reports, no date)  

 

https://en.wikipedia.org/wiki/Diarrhea
https://en.wikipedia.org/wiki/Abdominal_pain
https://en.wikipedia.org/wiki/Colitis#Infectious
https://en.wikipedia.org/wiki/Toxic_megacolon
https://en.wikipedia.org/wiki/Perforation_of_the_colon
https://en.wikipedia.org/wiki/Sepsis
https://en.wikipedia.org/wiki/Feces
https://en.wikipedia.org/wiki/Fluoroquinolone
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Prevention to reduces the spread of C. difficile infections is done by limiting 

antibiotic use, by hand washing, and terminal room cleaning in hospital (Butler 

et al., 2016) 

Infection control measures, are wearing gloves and medical devices used for a 

single infected person. In addition, washing with soap and water will eliminate 

the spores from contaminated hands, but alcohol-based hand rubs are 

ineffective, because chemical action doesn't touch the spores, which in turn 

should be washed out (Landelle et al., 2014) 

 

2,1,8,2 METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS  
 

 
Fig. 9 – Staphylococcus aureus Bacteria 

 

Staphylococcus aureus is normally susceptible to methicillin and several other 

antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is a gram-positive 

spherical bacterium that is genetically different from other strains of 

Staphylococcus aureus, Fig. 9. 

 

Methicillin resistant Staphylococcus aureus to often resistant to several 

antibiotics, methicillin and related antibiotics and to cephalosporins. Strains of S. 

aureus have emerged that are resistant to oxacillin, clindamycin, teicoplanin, and 

erythromycin. S. aureus has also developed resistance to vancomycin (VRSA) 

https://en.wikipedia.org/wiki/C._difficile_infection
https://en.wikipedia.org/wiki/Hand_washing
https://en.wikipedia.org/wiki/Terminal_room_cleaning
https://en.wikipedia.org/wiki/Gram-positive_bacteria
https://en.wikipedia.org/wiki/Gram-positive_bacteria
https://en.wikipedia.org/wiki/Staphylococcus_aureus
https://en.wikipedia.org/wiki/Vancomycin
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(World Health Organization, 2002) In 1997, the first strain of MRSA resistant to 

vancomycin, the drug usually kept in reserve for treating highly resistant strains, 

was reported in Japan (Hiramatsu et al., 1997). 

 

Strains unable to resist these antibiotics are classified as methicillin-susceptible 

Staphylococcus aureus, or MSSA. 

 

MRSA has become endemic in the UK, the USA, some other European countries, 

and elsewhere. MRSA as a proportion of all Staphylococcus aureus causing blood 

stream infections has risen from about 2% in 1990 to more than 40% in 2000 

(Johnson, Pearson and Duckworth, 2005). 

 

People who are hospitalized, are often immunocompromised and susceptible to 

infections. Staphylococcus bacteria are one of the most common causes of HAIs 

and MRSA is responsible for several difficult-to-treat infections. Severe MRSA 

infections mostly occur during or soon after impatient medical care (Frieden, 

2013) The risk of MRSA acquisition is particularly high in elderly patients, in 

patients with severe underlying disease, patients with open wounds or invasive 

devices such as catheters (Hryniewicz, 1999) 

MRSA infections cause a wide range of illness form skin and wound infections, 

urinary tract infections, septicaemia, infections of sites for invasive devices, 

pressure sores, burns to pneumoniae and bloodstream infections that can cause 

sepsis and death (World Health Organization, 2002) 

 

MRSA cutaneous bacteria colonize the skin and nose of both hospital staff and 

patients and can live permanently on the skin of some people without showing 

any symptoms, making them colonized, or temporarily carriers, only people that 

show symptoms are known as infected. However, all these people could transmit 

MRSA to another person by physical contact.  

https://en.wikipedia.org/wiki/Infection
https://en.wikipedia.org/wiki/Catheter
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The nosocomial spread of MRSA is usually by transiently colonized hands of 

health care workers, contaminated medical equipment and object (Mulligan et 

al., 1993) 

 

Severe infections are most common in the intensive care and other high-risk units 

with highly-susceptible patients (e.g. burn and cardiothoracic units) (World 

Health Organization, 2002) 

 

CDC estimates 80.461 invasive MRSA infections and 11.285 related deaths 

occurred in USA in 2011. An unknown but much higher number of less severe 

infections occurred in the community (Frieden, 2013) 

In 2003, the cost for a hospitalization due to a MRSA was $92,363, A hospital stay 

for MSSA was $52,791 (USD) (Weigelt et al., 2005) 

MRSA is important also because staphylococci are virulent and they are 

associated with high fatality rate. In England and Wales, the number of deaths 

involving MRSA increased from 51 in 1993 to 800 in 2002; and the mortality data 

mirrors an increase in laboratory reports of MRSA bacteraemia, increasing from 

210 reports in 1993 to 5,309 reports in 2002 (Meng et al., 2010) 

 

To prevent the spread of MRSA the recommendations are to wash hands using 

soap and water or an alcohol-based formulation; use gloves for handling MRSA-

contaminated materials, or infected or colonized patients and consider antiseptic 

detergent daily wash or bath for carriers or infected patients (Siegel et al., 2006) 
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2,1,8,3 KLEBSIELLA PNEUMONIAE CARBAPANEMASE  
 

 
Fig. 10 – Klebsiella pneumoniae Bacteria 

 

In recent years, Klebsiella species have become important pathogens in HAIs, Fig. 

10. The most common condition caused by Klebsiella bacteria outside the 

hospital is pneumonia, a gram-negative bacteria, typically in the form of 

bronchopneumonia and also bronchitis.  

 

Antibiotic-resistant strains of K. pneumoniae are appearing, which are resistant 

to the carbapenem class of antibiotics. They are resistant because they produce 

an enzyme called carbapenemase that disables the drug molecule.  

One of many types of carbapenem-resistant Enterobacteriaceae CREs is 

carbapenem-resistant Klebsiella pneumoniae (CRKP), sometimes known as KPC 

(Klebsiella pneumoniae carbapenemase). CRKP is resistant to almost all available 

antimicrobial agents (Frieden, 2013) 

Over the past 10 years, a progressive increase in CRKP has been seen worldwide. 

Infections from carbapenem-resistant Enterobacteriaceae (CRE) are rising as an 

important challenge in health-care settings (Limbago et al., 2011). This new 

https://en.wikipedia.org/wiki/Klebsiella_pneumonia
https://en.wikipedia.org/wiki/Bronchopneumonia
https://en.wikipedia.org/wiki/Bronchitis
https://en.wikipedia.org/wiki/Antibiotic_resistance
https://en.wikipedia.org/wiki/Carbapenem
https://en.wikipedia.org/wiki/Antibiotics
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Carbapenemase
https://en.wikipedia.org/wiki/Carbapenem-resistant_Enterobacteriaceae
https://en.wikipedia.org/wiki/Carbapenem-resistant_Enterobacteriaceae
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emerging pathogen is probably best known for an outbreak in Israel that began 

around 2006 within the healthcare system there (Schwaber et al., 2011) 

Almost all CRE infections occur in people receiving significant medical care in 

hospitals, long-term acute care facilities, or nursing homes(Centers for Diasease 

Control and Prevention. CDC, 2015) 

 In 2012 about 7900 healthcare-associated CKRP infections occur in United 

States. About 4% of short-stay hospitals had at least one patients with serious 

CRE infection and about 18% of long-term acute care hospitals had one (Frieden, 

2013) 

The extent and prevalence of CRKP within the environment is currently unknown. 

The mortality rate is also unknown, but has been observed to be as high as 44% 

(Schwaber et al., 2008) The CRKP bacteria can kill up to half of patients who get 

bloodstream infections (Frieden, 2013) 

Carbapenem-resistant Enterobacteriaceae, e.g. CRKP, can also cause infections 

in the urinary tract, lower biliary tract, and surgical wound sites. Therefore, the 

range of clinical diseases includes pneumonia, thrombophlebitis, urinary tract 

infection, cholecystitis, diarrhea, upper respiratory tract infection, wound 

infection, osteomyelitis, meningitis, and bacteremia and septicemia.  

 

CRE may colonize sites when the host defences are compromised, for patients 

with an invasive device in their bodies, contamination of the device becomes a 

risk. Thus, neonatal ward devices, respiratory support equipment, and urinary 

catheters put patients at increased risk. 

 

As a general rule, CKRP infections are seen mostly in people with a weakened 

immune system. Most often, illness affects middle-aged and older men with 

debilitating diseases. For patients with impaired respiratory host defenses, 

including diabetes, alcoholism, liver disease, pulmonary diseases, renal failure, 

the mortality rate can be nearly 100%. 
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Hospitals are primary transmission sites for CRE-based infections. Up to 75% of 

hospital admissions attributed to CRE were from long-term care facilities or 

transferred from another hospital (Perez and Van Duin, 2013) 

 

Suboptimal maintenance practices are the largest cause of CRE transmission. This 

includes the failure to adequately clean and disinfect medication cabinets, other 

surfaces in patient rooms, and portable medical equipment, such as X-ray and 

ultrasound machines that are used for both infected and not infected patients 

(Chitnis et al., 2012)  

 

Researchers found environmental reservoirs of CRE bacteria in ICU sinks and 

drains. Due to the bacterial resistance to cleaning measures, staff should take 

extra precaution in maintaining sterile conditions in hospitals not yet infected 

with the CRE-resistant bacteria.  

To reduce transmission from sink to sink is to have sink brushes in each room that 

would be for cleaning that individual sink alone. Hospital staff should be trained 

to never dispose of clinical waste down the sinks in patient rooms. (Kotsanas et 

al., 2013) 

One method found effective is to screen and isolate incoming patients from other 

facilities, and renew focus on hand-washing. Studies have found that CRE 

incidence and prevalence can be reduced by applying targeted interventions 

including increased hygiene measures and equipment sterilization, even in 

populations where the prevalence of infection exceeds 50% of patients (Chitnis 

et al., 2012) 

 

When a case of hospital-associated CRE is identified, facilities should conduct a 

round of active surveillance testing of patients with epidemiologic links to the 

CRE case. Effective sterilization and decontamination procedures are also 

important to keep the infection rate as low as possible. 
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One specific example of this containment policy could be seen in Israel in 2007. 

This policy had an intervention period from April 2007, to May 2008. A 

nationwide outbreak of CRE necessitated a nationwide treatment plan (Schwaber 

et al., 2011) 

To prevent spreading CKRP infections between patients, healthcare personnel 

must follow specific infection-control precautions, which may include strict 

adherence to hand hygiene and wearing gowns and gloves when they enter 

rooms where patients with Klebsiella illnesses are housed. Healthcare facilities 

also must follow strict cleaning procedures to prevent the spread of Klebsiella 

(Centers for Diasease Control and Prevention. CDC, 2015) 

 

To prevent the spread of infections, patients also should clean their hands very 

often, including: 

• Before preparing or eating food; 

• Before touching their eyes, nose, or mouth; 

• Before and after changing wound dressings or bandages; 

• After using the restroom; 

• After blowing their nose, coughing, or sneezing; 

• After touching hospital surfaces such as bed rails, bedside tables, 

doorknobs, remote controls, or the phone. 

 
 

2,1,9 INFECTION OUTBREAK   

 

According to the Hospital Infection Prevention and Control Guidelines the 

occurrence of two or more similar infection cases relating to place and time is 

identified as a cluster and it recall further investigations. A possible outbreak is 

recognized if there is an increase in the number of cases from the same causative 

agent or a rise in prevalence of a pathogenic organism. Confirmation of the 

outbreak could come from the comparison between the present rate of 
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occurrence with the endemic rate. If so, specific surveillance and microbiological 

study must begin to define the outbreak in time, person and place, by developing 

a case definition, identifying the site, pathogen and affected population. The 

investigation may include cultures from other body sites of the infected patient, 

other patients, HCWs and environment. Consequently, should be determinate 

the magnitude of the problem and if immediate control measures are required. 

In that case: isolation or cohorting of infected cases; strict hand washing and 

asepsis; intensification of environmental cleaning and hygiene; strengthening of 

disinfection and sterilization should be immediately applied. (National Centre for 

Disease Control, no date) 

The investigation should have led to discover the source/s and route/s of 

transmission to apply all possible measures to prevent further spread. If the cases 

occur in steadily increasing numbers and are separated by an interval 

approximating the incubation period, the spread of the disease is probably due 

to person to person spread. On the other hand, if many cases occur following a 

shared exposure e.g. an operation, there it is a common source outbreak, 

implying a common source for the occurrence of the disease.  

Following that, specific control measures need to be instituted based on nature 

of agent and characteristics of the high-risk receivers and the possible sources. 

These procedures should be devoted to the identification and elimination of the 

contaminated source or to identification and treatment of carriers. Control 

measures are clinically effective if cases cease to occur or return to the endemic 

level. (World Health Organisation, 2004) 
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2,2 HOSPITAL ACQUIRED INFECTION - POLICIES  

 

2,2,1 INTRODUCION  

 

Effective infection prevention and control is central to providing high quality 

health care for patients and a safe working environment for those that work in 

healthcare settings (National Centre for Disease Control, no date). Even if no 

hospital applies the same infection control strategy as any another. Several 

interventions are invariably applied simultaneously (Coen, 2012). For instance, in 

the UK, the Department of Health has outlined in the Health Act not only general 

measures to prevent and control HAIs, but also specific policies aiming at MRSA 

and C. difficile (Department of Health, 2008).  

Therefore, to realistic depict the phenomenon of infection propagation, it is very 

important for us to know how the normative approach (by guideline of infection 

prevention and control programme), outlines main aspects and describe the 

measures to minimize the risk of infection spread in hospital. In fact, as our model 

and the simulation will show, the infection spreading is embedded inside the 

hospital and any change of these processes deeply affects it.  

 

As seen, there are several types of pathogens that can infect a patient, being 

transmitted within a healthcare facility. Two basic principles govern the main 

procedures that should be taken to prevent and control the spread of HAI 

infections in health-care facilities: 

 

• separate the infection source from the rest of the hospital; 

• cut off any route of transmission. 

 

The separation of the source should be interpreted in a broad sense. It includes 

not only the isolation of infected patients but also all aseptic techniques and the 

measures that are intended to act as a barrier between infected or potentially 
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contaminated hosts and the environment, including other patients and 

personnel. 

It is impossible to avoid all contact with infected or potentially contaminated 

people. Even when they are not touched with the bare hands, they may come in 

contact with instruments, containers, linen, etc. Therefore, all objects that come 

in contact with patients should be considered as potentially contaminated. If an 

object is disposable, it should be discarded as waste. If it is reusable, transmission 

of infective agents must be prevented by cleaning, disinfection, or sterilization 

(Chartier et al., 2014). 

 

Beside that main principles the first line of defence to prevent and control the 

transmission of infections in healthcare environment is the application of basic 

infection control precautions which can be labelled standard precautions, which 

must be applied to all patients, regardless of diagnosis or infectious status; and 

additional transmission-based precautions specific to modes of transmission 

(airborne, droplet and contact) and for selected patients should be applied 

(World Health Organisation, 2004) 

A thorough description of strategies to prevent pathogens transmission through 

contact route tailored to consider mainly procedures and space related aspects 

is presented. Such detailed knowledge guarantees for the completeness of the 

designed model which follow. 

 

2,2,2 STANDARD PRECAUTIONS   

 

In health care facilities, the respect of standard precautions is essential to provide 

a good level of HAIs protection to patients, HCWs and visitors, these include the 

following, (World Health Organisation, 2004)(World Health Organization, 2002): 

 

• hand washing and antisepsis (hand hygiene); 
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• use of personal protective equipment when handling blood, body 

substances, excretions, secretions and mucous membranes; 

• appropriate handling of patient care equipment and soiled linen; 

• correct disinfection of medical equipment and invasive medical devices; 

• prevention of needlestick and sharp injuries; 

• environmental cleaning and decontamination, ensuring that patient-care 

equipment, supplies and linen is either discarded, or disinfected or 

sterilized between each patient use; 

• appropriate handling of waste. 

 

 

2,2,3 CONCTACT PRECAUTIONS 

 

Diseases which are transmitted by contact route include colonization or infection 

with multiple antibiotic resistant organisms, enteric infections and skin 

infections. Precautions must be taken for patients with enteric infections, 

diarrhea that cannot be controlled, or skin lesions that cannot be contained. The 

following precautions need to be taken: 

• Implement standard precautions; 

• Place patient in a single-patient room when available. if single-patient 

rooms are unavailable then place him in a room with another patient 

infected by the same pathogen and provide cohorting of patients if 

possible. Always consider the epidemiology of the disease and the patient 

population when determining patient placement. If it becomes necessary 

to place a patient who requires Contact Precautions in a room with a 

patient who is not infected or colonized with the same infectious agent. 

Avoid placing patients on Contact Precautions in the same room with 

patients who have conditions that may increase the risk of adverse 

outcome from infection or that may facilitate transmission. Ensure that 

patients are physically separated (i.e. >4 mt apart) from each other. Draw 
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the privacy curtain between beds to minimize opportunities for direct 

contact. Change protective attire and perform hand hygiene between 

contacts with patients in the same room, regardless of whether one or 

both patients are on Contact Precautions;  

• Wear clean, non-sterile gloves whenever touching the patient’s intact skin 

or surfaces and articles in close proximity to the patient. Don gloves and 

wear a clean non-sterile gown upon entry into the room or cubicle 

whenever anticipating that clothing will have direct contact with the 

patient or potentially contaminated environmental surfaces or items in 

the patient’s room. Remove gown and observe hand hygiene before 

leaving the patient-care environment; 

• Limit transport and movement of patients outside of the room to 

medically-essential purposes only. When transport or movement in any 

healthcare setting is required, ensure that infected or colonized areas of 

the patient’s body are contained and covered;  

• Ensure that rooms of patients on Contact Precautions are prioritized for 

frequent cleaning and disinfection with a focus on frequently-touched 

surfaces and equipment in the immediate vicinity of the patient. 

(World Health Organisation, 2004) (National Centre for Disease Control, 

no date) 

 

2,2,4 DROPLET PRECAUTIONS  

 

Droplet transmission occurs when there is adequate contact between the 

mucous membranes of the nose and mouth or conjunctivae of a receiver and 

large particle droplets (> 5 microns) full of infectious germs. Droplets are usually 

generated from the infected person during coughing, sneezing, talking or when 

health care workers undertake procedures such as tracheal suctioning. 

Droplet precautions must be taken for patients known or suspected to be 

infected with pathogens transmitted by respiratory droplets: 
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• Implement standard precautions. Note that special air handling and 

ventilation are not required to prevent droplet transmission of infection. 

• Place patients in a single-patient room when available; if single-patient 

rooms are unavailable, then place patients infected with the same 

pathogen in the same room. If it becomes necessary to place a patient 

who requires Droplet Precautions in a room with a patient who does not 

have the same infection: Avoid placing patients on Droplet Precautions in 

the same room with patients who have conditions that may increase the 

risk of adverse outcome from infection or that may facilitate transmission. 

Ensure that patients are physically separated (i.e. >1 mt apart) from each 

other. Draw the privacy curtain between beds to minimize opportunities 

for direct contact. Change protective attire and perform hand hygiene 

between contact with patients in the same room, regardless of whether 

one or both patients are on Droplet Precautions.  

• Don a mask upon entry into the patient room or cubicle. Always wear a 

surgical mask when working within 1-2 meters of the patient. 

• Limit transport and movement of patients outside of the room to 

medically-necessary purposes. Place a surgical mask on the patient if 

leaving the room and transport is necessary. 

(World Health Organisation, 2004)(National Centre for Disease Control, 

no date) 

 

2,2,5 HAND HYGIENE PRACTICE   

 

Hands transmission is one of the most important means of spread of infectious 

agents in health care facilities. Pathogenic organisms from colonized and infected 

patients and from the environment transiently contaminate the hands of staff 

during clinical activities and can then be transferred to other patients (National 

Centre for Disease Control, no date). 
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The hands of healthcare staff are the principal cause of contact transmission from 

patient to patient and most infections are acquired in the hospital through the 

hands contact, Fig. 11 (Ulrich et al., 2004). 

 

 

 
Fig. 11 - Organism transfer from patient to health-care worker’s hands: Contact between the 

health-care worker and the patient results in cross-transmission of microorganisms (Pittet et al., 

2006) 

 

While Ulrich seems sure about the importance of assiduous hand washing by 

HCWs for reducing hospital-acquired infections and Boyce and Pittet agreed that 

increased handwashing frequency among hospital staff has been associated with 

decreased transmission of Klebsiella among patients (Ulrich et al., 2004) (Boyce 

and Pittet, 2002). 

According to others only some results have shown that compliance, if raised to 

high enough levels, could prevent transmission almost entirely where others 

have shown that hand washing is not a sufficient measure, and that additional 
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policies must be taken to reduce transmission to acceptable levels (Barnes, 2011) 

(Beggs, Shepherd and Kerr, 2008). 

Despite the disagreement about whether hand washing is the ultimate solution 

to infection control, there is substantial evidence that hand antisepsis reduces 

the transmission of pathogens and the incidence of HAIs (World Health 

Organisation, 2009). Evidences suggest that increasing hand-washing compliance 

by 1.5 – 2 folds would result in a 25-50-% decrease in the incidence of HAI 

(National Centre for Disease Control, no date).  

Then, proper hand hygiene, i.e wash hands in large basins, with ant splash 

devices, hands-free controls and with a plain soap or antimicrobial soap and 

running water, or use rub hands with antimicrobial alcohol-based sanitizer, 

remains the most effective method for preventing the transfer of microbes 

between people.  

  

Transmission of HAI pathogens from one patient to another via the hands of 

HCWs requires the following sequence of events: 

1. Organisms present on the patient’s skin, or that have been shed onto 

inanimate objects in close proximity to the patient,  

2. Organisms must be transferred to the hands of HCWs. 

3. These organisms must be capable of surviving for at least several minutes 

on HCWs hands. 

4. Handwashing or hand antisepsis by the worker must be inadequate or 

entirely omitted, or the agent used for hand hygiene inappropriate. 

5. The contaminated hands of the caregiver must come in direct contact 

with another patient, or with an inanimate object that will come into 

direct contact with the patient. 

(World Health Organisation, 2009) 
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Thus, almost all the guideline for infection prevention recommend to all the 

healthcare workers when Hand hygiene must be practiced, known as the “Five 

Moments in Hand Hygiene”, Fig. 12 (World Health Organisation, 2004): 

 

1. Before touching a patient to prevent cross contamination between 

different patients. 

2. Immediately before performing a clean or aseptic procedure, including 

handling an invasive device for patient care and between tasks and 

procedures on the same patient to prevent cross-contamination between 

different body sites, regardless of whether or not gloves are used. 

3. Promptly after contact with body fluids, secretion, excretions, mucous 

membranes, non-intact skin, or wound dressings regardless of whether 

or not gloves were used.  

4. After touching a patient and his/her immediate surroundings, even when 

leaving the patient’s side.  

5. After contact with known and unknown contaminated objects, 

equipment or surfaces (including medical equipment and furniture) in the 

vicinity of the patient.  
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Fig. 12 - Five Moments of Hands Hygiene 

 

Furthermore, they advise to perform always hand wash when hands are visibly 

dirty and immediately after removing gloves, because hand hygiene is required 

regardless of whether gloves are used or changed.  

And consider the failure to remove gloves after patient contact or between 

“dirty” and “clean” body-site care on the same patient must be regarded as 

nonadherence to hand-hygiene recommendations (World Health Organisation, 

2004)  

 

In this context, the statistic that rates of hand washing by caregivers are low, 

represents a serious safety danger. Several studies of hand washing in high-acuity 

units with vulnerable patients have found that as few as one in seven staff 

members wash their hands between patients. Compliance rates in the range of 

15 percent to 35 percent are typical, rates above 40 percent to 50 percent are 

the exception. 
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Education programs to increase hand washing adherence have yielded 

disappointing or, at best, mixed results. Some investigations have found that 

education interventions generate no increase at all in hand washing. Even 

intensive education or training programs (classes, group feedback, for example) 

produce only temporary increases in hand washing (Ulrich et al., 2004). 

There is an urgent need to identify more effective ways to foster sustained 

increases in hand hygiene. For instance, there is some evidence that providing 

numerous, easily accessible alcohol-based hand-rub (ABHR) dispensers or hand 

washing sinks can increase compliance and thereby reduce contact 

contamination (Ulrich et al., 2004). Evidence suggesting improved hospital design 

as well as better planned procedural decisions can be effective in elevating hand 

hygiene, but to prove it is of the utmost importance. 

 

2,2,6 CONTAMINATE SURFCES AND OBJECTS  

 

The hospital environment fosters the dissemination of infectious pathogens.  

Hospital surfaces and items frequently come in contact with HCWs, patients and 

visitors. Spaces occupied by colonized and/or infected people generally become 

contaminated, Fig. 13. Contaminated surfaces and features act as pathogen 

reservoirs contributing to the incidence of cross-infection. 

Most germs survive for few days on inanimate objects, some longer, therefore 

their presence on ward surfaces and equipment is common (Kramer, Schwebke 

and Kampf, 2006). Mostly patient gowns, bed linen, bedside furniture and other 

objects in the patient’s immediate environment can easily become contaminated 

with patient flora. A study found that in the rooms of patients infected with 

methicillin-resistant Staphylococcus aureus (MRSA), 27 percent of all 

environmental surfaces sampled were contaminated with MRSA (Boyce et al., 

1997). 
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Fig. 13 - Organisms present on patient skin or immediate environment: Bedridden patient 

colonised with Gram-positive cocci, at nasal, perineal, and inguinal areas (not shown), as well as 

axillae and upper extremities. Some environment surfaces close to the patient are contaminated 

with Gram-positive cocci, presumably shed by the patient (Pittet et al., 2006). 

 

Studies have documented that HCWs may contaminate their hands (or gloves) 

merely by touching inanimate objects in patient rooms. Surface and furniture 

contamination could be reduced by the correct hands hygiene, but, as already 

stated, HCWs compliance to this procedure has been reported to be less than 

50% (World Health Organisation, 2009). 

 

Harrison showed that contaminated hands could contaminate a clean paper 

towel dispenser and vice versa. The transfer rates ranged from 0.01% to 0.64% 

and 12.4% to 13.1%, respectively (Harrison et al., no date) 

A study by Barker and colleagues showed that fingers contaminated with 

norovirus could sequentially transfer virus to up to seven clean surfaces, and 

from contaminated cleaning cloths to clean hands and surfaces (Barker, Vipond 

and Bloomfield, 2004). 
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Microbial transmission between humans and the environment happens both in 

endemic and outbreak conditions. During outbreaks, environment 

contamination may be higher, nevertheless, in endemic situations, it was also 

registered that surfaces were contaminated with patients’ microorganisms. In 

the endemic observation, there was a greater risk for patients of acquiring 

infections due to bacteria presence. While in outbreaks, there were typically 

gram-negative bacteria, e.g. carbapenem resistant enterobacteriacae. 

Environment contamination by C. difficile, which is more resistant to desiccation, 

was observed either in endemic and outbreak situations (de Oliveira and 

Damasceno, 2010).  

 

The contamination of apparently clean spots raises the opportunity of pathogens 

dissemination, surfaces don’t have to look soiled or smell bad to be loaded with 

germs. Places considered clean surfaces, without any visible dirtiness, often make 

effective cleaning measures to go unattended.   

Examples of surfaces found to be contaminated frequently via contact with 

patients and staff include: overbed tables, bed privacy curtains, computer 

keyboards, infusion pump buttons, door knobs, bedside rails, blood pressure 

cuffs, chairs and other furniture, and countertops (Ulrich et al., 2004). 

 

Contamination of surfaces and equipment close to patient, e.g. hand wash 

surfaces, sinks and taps, monitors and keyboards has been widely detected, 

corroborating the supposition that surfaces that are frequently touched become 

more contaminated, Fig. 14. 
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Fig. 14 - Analyzed surfaces and the bacteria recovered from the hospital environment (de Oliveira 

and Damasceno, 2010) 

 

However, wards are extremely heterogeneous places. Bacterial counts sampled 

from sites most likely associated with direct patient contact (e.g. hand-rails, soap 

dispensers, bedding, curtains) are much lower than other sites (e.g. floor) (Coen, 

2012).  

A study conducted in 2010 across 3532 high risk environmental surfaces in 260 

intensive care unit rooms in 27 acute-care hospitals (ICUs) assessed the 

consistency at which these surfaces met base line cleaning standards. Only 49.5% 

of the high-risk object surfaces were found to meet this baseline criterion. The 

least-cleaned objects were bathroom light switches, room door knobs, and bed 

pan cleaners (Carling et al., no date) 

According to this general frame, it is imperative to explain the role of the 

environment (surfaces, equipment and furniture) concerning the contamination 

and dissemination of pathogens, which to date is still undervalued. It will be 

valuable to propose strategies to reduce pathogens propagation beyond the 
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indication of the Hands Hygiene increased adherence, toward a more 

comprehensive understanding of the phenomenon.  

 

One of the most basic measures for the maintenance of hygiene is environmental 

cleaning whose effectiveness is difficult to measure. Regular cleaning and 

disinfection of the hospital environment as appropriate is critical to control 

surface contact transmission of infections.  

 

Routine cleaning is important to ensure a clean and dust-free hospital 

environment. There are usually many micro-organisms present in “visible dirt” 

and the purpose of routine cleaning is to eliminate this dirty. Thorough cleaning 

will remove more than 90% of microorganisms (World Health Organization, 

2002). 

The microbiological effect of cleaning is mechanical: the dirt is dissolved by 

water, diluted until it is no longer visible, and rinsed off. Soaps and detergents 

act as solubility promoting agents. Bacteria and other microorganisms are 

suspended in the cleaning fluid and removed from the surface. Since neither soap 

nor detergents possess any antimicrobial activity the efficacy of the cleaning 

process depends essentially on mechanical action.  

Diluting and removing the dirt also removes the breeding-ground or culture 

medium for bacteria and fungi. Most non-sporulating bacteria and viruses are 

unlikely to survive on clean surfaces, they survive only when they are protected 

by dirt or organic matter, otherwise they dry out and die (Chartier et al., 2014). 

Porous surfaces are more difficult to clean, so that environmental surfaces and 

materials of architectural elements, must be solid and smooth enough to be able 

to prevent the suspension of droplets and to facilitate adequate cleaning (Khai, 

2016). 

There have been reports on the persistence of bacteria in the environment 

probable due to the incomplete removal of the pathogen in the cleaning 

procedure. To guarantee respectively the effectiveness of the necessary level of 
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asepsis, cleanliness, disinfection and sterilization for each hospital area, should 

be carried out in a standardized manner, e.g. there must be policies specifying 

the frequency of cleaning and cleaning agents used. To this end classifying areas 

into hospital zones is needed (World Health Organization, 2002) (World Health 

Organisation, 2004): 

 

Administrative and office areas with no patient contact require normal domestic 

cleaning; 

• Most patient care areas who are not infected and not highly susceptible, 

must be cleaned by a procedure that does not raise dust. Dry sweeping or 

vacuum cleaners are not recommended. The use of a detergent solution 

improves the quality of cleaning as well as hot water (80°C). 

• Disinfection of any areas with visible contamination with blood or body 

fluids prior to cleaning must be respected. 

• Isolation rooms and other areas that have patients with known 

transmissible infectious diseases should be cleaned with a 

detergent/disinfectant solution at least daily. 

• Highly-susceptible patients or protected areas such as operating suites, 

delivery rooms, intensive care units, premature baby units, casualty 

departments and haemodialysis units, must be cleaned using a 

detergent/disinfectant solution and separate cleaning equipment. 

• All horizontal surfaces in the last three cited zones and all toilet areas 

should be cleaned daily. 

• Terminal cleaning method, done when the patient is discharged, should 

be performed in healthcare environments and isolation rooms to control 

the spread of infections. 
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2,2,7 PERSONAL PROTECTIVE EQUIPMENT 

 

Using personal protective equipment (PPE) provides a physical barrier between 

micro-organisms and the wearer. It offers protection by helping to prevent micro-

organisms from: 

• contaminating hands, eyes, clothing, hair and shoes; 

• being transmitted further to other patients, staff and visitors. 

 

Personal protective equipment includes: 

• gloves; 

• protective eye wear (goggles); 

• mask; 

• apron; 

• gown; 

• boots/shoe covers;  

• cap/hair cover. 

 

Personal protective equipment reduces but does not eliminate the risk of 

acquiring an infection. It is important that it is used effectively, correctly. HCWs 

must also be aware that use of PPE does not replace the need to follow basic 

infection control measures such as hand hygiene. 

Continuous availability of personal protective equipment and adequate training 

for its proper use are essential. PPE should be always sited in proximity of 

isolation rooms, ideally in anterooms or at prompt disposal, since their use is 

mandatory in case of interaction with infected patients (World Health 

Organisation, 2004)  (World Health Organization, 2002). 

Personal protective equipment should be used by: 

Healthcare workers who provide direct care to patients and who work in 

situations where they may have contact with blood, body fluids, excretions or 

secretions; 
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Support staff including medical aides, cleaners, and laundry staff in situations 

where they may have contact with blood, body fluids, secretions and excretions; 

Laboratory staff, who handle patient specimens; 

Family members who provide care to patients and are in a situation where they 

may have contact with blood, body fluids, secretions and excretions. 

 

The following principles guide the use of personal protective equipment: 

• personal protective equipment should be chosen according to the risk of 

exposure. The health care workers should assess whether they are at risk 

of exposure to blood, body fluids, excretions or secretions and choose 

their items of personal protective equipment according to this risk; 

• it must be avoided any contact between contaminated (used) personal 

protective equipment and surfaces, clothing or people outside the patient 

care area; 

• used personal protective equipment must be discarded in appropriate 

disposal bags, and dispose of as per the policy of the hospital; 

• personal protective equipment mustn’t be shared; 

• personal protective equipment must be changed completely and 

thoroughly wash hands must be performed each time an HCW leave a 

patient to attend to another patient or another duty. 

 

2,2,8 FUNCTIONAL ZONING, TRAFFIC FLOW AND USE OF SPACE 

 

Even if previous aspects are inevitably related with hospital layout, spatial 

distribution and use of space as well as the following features are somehow more 

directly connected.  

Hospital design is highly involved for what concerns hospital functional zoning, 

e.g. separation for critical areas like Intensive Care Unit (ICU) from general areas 

(S K M Rao, 2004).  
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The architectural segregation should be done stratifying patient care areas by risk 

of the patient population for acquisition of infection, which in turn partially 

mirrors the area subdivision previously presented for cleaning practice. For 

instance, this approach should help to maintain separated infected from 

immunocompromised patients through the separation of contaminated areas 

and non-contaminated areas (Rao, 2004). 

 

Four degrees of risk may be considered: 

• Low-risk areas: e.g. administrative sections; 

• Moderate-risk areas: e.g. regular patient units; 

• High-risk-areas: e.g. isolation unit, intensive care units; 

• Very-high-risk areas: e.g. operating rooms. 

 

Besides, clear functional zoning and composition of space assure that the traffic 

flow can be regulated to minimize exposure of high-risk patients, facilitating their 

transport and eventually easily modifying it in accordance to the emergent needs 

for infection control and contamination management (Khai, 2016) 

From the other hand only limiting the movement and transport of infected 

patients from the isolation room/area for essential purposes reduces the 

opportunities for dissemination of micro-organisms in other areas of the hospital 

(World Health Organisation, 2004). 

This twofold facet is significant because the traffic of people, HCWs and visitors, 

in the ward and their subsequent contact with different patients, objects and 

surfaces rises the possibilities of pathogen propagation, which fosters the risk of 

cross infection, especially if the necessary precautions are not observed, sees 

hands hygiene and ward cleaning. For the same reason of preventing cross-

infection separated toilets for staff, patients and visitor must be guarantee and 

as well overcrowding in nurseries and ward units should be avoided. 

Therefore, decision on HAI management requires the consideration of all physical 

movements and communications and space use interferences. Design or 
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organize flows to reduce the intensity of travelling and to avoid promiscuous use 

of space and overlap of all kind of different patients and HCWs minimizes the 

possibilities of infectious contact transmission, e.g. it answers the need for the 

easy movement of staff through clean areas without crossing dirty areas.  

 

2,2,9 SINKS AND ALCOHOL BASED HAND RUBS DISPENSERS  

 

An overall low hands hygiene rates by HCWs has been registered. In addition, 

HCWs education and training and an extensive communication about personal 

hygiene in the hospital setting, space related aspects as for instance the 

architectural design of wards, or the spatial organization of patients’ rooms could 

play a major role. 

 

HCWs report several reasons for poor handwashing compliance, inconvenient 

location and inadequate number wash-hand basins, are two of the main reasons 

that staff do not comply with hand hygiene protocols. Others reported are lack 

of time, lack of soap or paper towels and forgetfulness. Generally, they have the 

perception that unavailability or inadequate hand washing facilities and sinks 

contribute towards poor compliance (Joseph, 2006). Those results suggest that 

the position and provision of clinical sinks should ensure that they are all readily 

available and convenient for use, so their number and disposition should be 

thoughtfully planned to encourage HCWs and patients to practise hand hygiene. 

 

Having a clinical wash-hand basin easily available at all times is more important 

than compliance to a precise bed-to-basin ratio. For example, in a multi-bed 

room, if two clinical wash-hand basins are placed side-by-side, both on the same 

side of the entrance, only the one closest to the entrance will get significant use, 

the other will form a dead-leg in the water distribution system. While it may be 

marginally more complex in terms of plumbing, there should be one clinical 
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wash-hand basin on each side of the entrance or at opposite sides of the room 

(Department of Heallth Estates & Facilities, 2013).  

Furthermore, healthcare providers should have policies in place ensuring that 

clinical wash-hand basins are not used for other purposes such as emptying of 

patient bathing water. Using sinks for both hand-washing and the cleaning of 

equipment should be discouraged as this will significantly increase the risk of 

hands and environmental contamination (Department of Heallth Estates & 

Facilities, 2013).  

Ulrich reported numerous studies that examined whether hand hygiene is 

improved by increasing the ratio of the number of handwashing facilities to beds 

and/or by placing sinks or Alcohol Based Hand Rubs (ABHR) dispensers in more 

accessible locations. These studies, on balance, offer support, though limited, for 

the notion that providing numerous, conveniently located dispensers or sinks can 

increase compliance (Ulrich et al., 2004).  

 

However, it is not clear how much of the effectiveness in terms of increased hand 

hygiene or reduced infection rates can be attributed to the installation of more 

numerous and/or accessible sinks and ABHR dispensers. There is a need for 

studies that define accessible locations for hand cleaning stations, on the basis of 

analysis of staff movement paths, visual fields, social interactions and work flows 

(Ulrich et al., 2004). 

 

2,2,10 SINGLE BED ROOMS, ISOLATION AND COHORTING 

 

Literature suggests significant benefit of single-patient bedrooms in reducing the 

hospital infection colonization rate (Stiller et al., 2016). Single rooms help prevent 

the risk of transmission of infection from the source patient to others by reducing 

direct, indirect contact and droplet transmission (World Health Organisation, 

2004).  
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The key to effective isolation on general wards is the provision of sufficient 

ensuite single-bed rooms to prevent patients known to be a risk for spreading 

infections or because susceptible being cared for in open ward areas 

(Department of Heallth Estates & Facilities, 2013).  

  

While the German Commission for Hospital Hygiene and Infection Control 

(KRINKO) recommends 10–20% single-patient rooms in a normal care unit, the 

Facility Guidelines Institute (https://www.fgiguidelines.org/) recommends 

performing all patient care in single-patient rooms in its Guidelines for Design 

and Construction of Hospitals and Outpatient Facilities (Stiller et al., 2016).  

 

Ulrich identified many relevant studies answering to the question of whether 

nosocomial infection rates differ between single-bed and multi-bed rooms. 

Different mechanisms or factors have been identified as contributing to lower 

infection incidence in single rooms. One clear set of advantages relates to 

reducing airborne diseases. In addition to that, several studies show that single-

bed rooms also lessen risk of infections acquired by contact, reducing the risk of 

cross-infection. The findings collectively provide a strong pattern of evidence 

indicating that infection rates are usually lower in single-bed rooms (Ulrich et al., 

2004).  

 

Support for this point is provided by research on contamination of HCWs in units 

having patients infected by MRSA. Boyce founds that 42 percent of nurses who 

had no direct contact with an MRSA patient but had touched contaminated 

surfaces contaminated their gloves with MRSA (Boyce et al., 1997). 

In a study of MRSA infections Jernigan reports that risk was lowered by isolation 

in single-bed rooms, where high risk was associated with spatial proximity to an 

infected patient and shared exposure to caregivers (Jernigan et al., 1996).  

Ben-Abraham asserts that nosocomial infection frequency was much lower in a 

single-bed paediatric intensive care unit than a unit with multi-bed rooms. The 
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investigators concluded that single-bed rooms helped to limit person-to-person 

spread of pathogens between paediatric patients (Ben-Abraham et al., 2002).  

 

As verified many surfaces and furniture close to the patients become 

contaminated.  

Single-bed rooms are far easier to decontaminate carefully after a patient is 

discharged compared to multioccupancy rooms, such in turn worsen the problem 

of surfaces acting as pathogen reservoirs. HCWs can touch contaminated spots, 

the risk of a HCW becoming contaminated is greater in multi-bed rooms, where 

single rooms with a conveniently located sink or ABHR dispenser may contribute 

to hand hygiene compliance. 

 

The first essential measure in preventing the spread of nosocomial infections is 

isolation of infected. Patient isolation confines a detected colonized or infected 

patient to a single room. An adequate number and type of isolation rooms must 

be in each unit. Single rooms used for isolation purposes should include an 

anteroom to encourage the use of personal protective equipment, which should 

be located in such space (World Health Organization, 2002).  

 

However, the term isolation covers a broad domain of procedures. Isolation of 

any degree is expensive, labour-intensive, and usually inconvenient or 

uncomfortable for both patients and health-care personnel, its implementation 

should therefore be adapted to the severity of the disease and to the causative 

agent (Chartier et al., 2014).  

 

For infection control purposes, if single rooms are not available, or if there is a 

shortage of single rooms, patients infected or colonized by the same organism 

can be cohorted (sharing of room/s). 

When cohorting is used during outbreaks these room/s should be in a well-

defined area (a designated room or designated ward), which can be clearly 
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segregated from other patient care areas in the health care facility used for non-

infected/colonized patients. Furthermore, cohorting accounts for the solution 

that each HCW is dedicated to the cure of a fraction, infected/non-infected, of 

patients. In the case of transmission via HCW hands, the increasing of HCW-to-

patient ratios decreases the range of transmission, as infected patients can only 

transmit the bacteria to others who share their HCW (Barnes, 2011).  

 

2,2,11 BEDS SPACING AND ROOMS SIZE 

 

Along with the number of patients occupying one room, the amount of space 

assigned for each patient within this room to assure adequate spatial separation 

of patients, is an important factor to foster or hinder pathogens propagation. 

In open plan wards there should be adequate spacing between each bed to 

reduce the risk of cross contamination occurring from direct and indirect contact 

or droplet transmission (World Health Organisation, 2004). 

The space around beds in a multi bed ward is crucial in controlling infection 

spread to the environment. Moreover, the fixed space around the single bed is 

insufficient, the equipment could become contaminated and, could lead to a risk 

of cross infection. 

 

Theoretically speaking, the less space that is provided for patients and healthcare 

workers within a room, the higher the risk for the transmission of pathogens and 

for breaches in infection prevention measures, possibly leading to an increase in 

infections (Stiller et al., 2016). 

Research data correlating the relationship between the patient room size or the 

patients’ proximity in adjacent beds and their colonization or rates of infection is 

scarce. 

 

Kubbler, J Hosp Inf 1998 investigate the Impact of introducing a fifth bed into a 

conventional four bed bay, decreasing distance between beds from 2.5 to 1.9m 
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he found an increased transfer of MRSA 3.15 times (Infection Prevention in 

Hospitals: Designing Away the Risks - Dr. Brenda Ang Department of Infectious 

Diseases). 

Jones et al. studied the space per cot in a neonatal intensive care unit. They 

concluded that a significant association exists between a higher square footage 

per cot and lower late-onset sepsis rates (Resende et al., 2015). 

Jou et al. determined an increased risk of nosocomial C. difficile infection in 

patient rooms with larger square footage Due to the characteristics of the 

evaluated pathogen C. difficile, it is likely that spores contaminated the surface. 

This is attributable to the fact that a larger room allows more surface to be 

contaminated and in the case of larger multi-bed rooms cleaning and terminal 

decontamination could be performed rather inadequately, which leads to an 

increased transmission (Jou et al., 2015).  

 

Nowadays, more detailed suggestions could be found, which relate the topic of 

bed spacing to the sufficient space required around beds for equipment and 

treatments. Therefore, the volume of care and the degree of intervention, 

diagnostic equipment and movement of staff around the patient dictates the bed 

space needed. Similarly, bed spaces for critical care areas need to be greater for 

reasons of circulation space and the equipment used in these areas.  

 

The UK Department of Health (NHS Estates, 1997) provided guidance on the bed 

space allowance in multibed bays of between 2.3m and 2.5m to allow sufficient 

space for nursing and patient activities. Where the latest release (Department of 

Heallth Estates & Facilities, 2013) suggest to design to provide sufficient space 

for activities to take place and to avoid cross-contamination between adjacent 

bed spaces. 

 

Similarly, there is not agreement on the square footage for patient rooms, 

directives vary in their recommendation. 

https://www.gov.uk/government/organisations/department-of-health
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UK NHS Estates suggests that all beds should have a minimum floor area of 26 

m2. 18.58 m2 per bed on critical care units (ICU) in the United States, 25 m2 for 

single-patient rooms or 40 m2 for multiple-patient rooms on German ICU’s where 

indicated. The FGI recommends 13.94 m2 per patient bed in single patient rooms 

and 11.15 m2 per patient bed in multiple patient rooms on critical care units. 

Germany has not established guidelines for medical/surgical units, whereas the 

FGI proposes 11.15 m2 per patient bed in single patient rooms and 9.29 m2 in 

multiple-patient rooms (Stiller et al., 2016).  

Lawson and Phiri recommend that single patient rooms should be a minimum of 

20m2 in area with recommended dimensions of 5m by 4m excluding ensuite 

facilities (Lawson, B., Phiri, M. and Wells-Thorpe, 2003). 
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3 MODELLING APPROACHES 

  

3,1 STATE OF THE ART  
 

3,1,1 INTRODUCTION  

 

There is a wide literature concerning epidemiology modelling. Community 

acquired diseases have been the main areas of early studies with static and 

dynamic models. Nevertheless, established theories, modelling methods, 

findings and prevention and control policies may not be tout court translated to 

HAIs. 

Compartmental models arise, to account for fluctuations and stochastic 

variations in smaller population. 

Such kind of models aggregate patient and health-care worker populations into 

compartments, as for instance colonized or uncolonized patients and 

contaminated or uncontaminated HCWs.  

Usually such models examine the effect of control interventions, such timing of 

antibiotic prescribing policies, rapid detection and isolation strategies, patient 

isolation, and patient-to-HCW ratios, various hygiene measures, as well as the 

importance of patient re-admission. 

 

Nevertheless, compartmental suffer some limitations as for instance behaviour 

homogeneity inside compartments and homogeneous mixing between 

individuals. Therefore, Individual Based model and later ABM where applied in 

this domain. 

The interest on simulating healthcare environment is not new, early models were 

designed to improve hospital performance, workload scheduling, economic 

indicators, patients flow and so on. 

Agent-based applications have seen an incredible growth in many research fields 

over the past 15 years, with more recent inclusion of HAI topic. This method is 
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applied to examine more in a fine-grained level the transmission of HAIs within a 

hospital.  

Recently a new modelling approach has emerged based on event, which add to 

the bottom up structure of ABM a system architecture to manage the 

coordinated behaviour of many agents in a top down manner. Its capacity to 

simulate complex and realistic scenarios with a powerful software tool, namely 

unity 3D engine, drive us to apply it in the context of HAI. 

 

3,1,2 COMMUNITY-BASED INFECTIOUS DESEASE 

 

The application of mathematical models to the study community-acquired 

infectious disease with large size population was initiated in 1760 when Daniel 

Bernoulli used a technique to evaluate effectiveness of the practices of 

variolation (process of inoculation) against smallpox (Anderson and May, 1991) 

 

From such static model, i.e. where the transmission risk is treated as a parameter 

exogenous to the model, not changing with the number of infectious individuals 

in the population; in the nineteenth century, dynamic transmission models were 

applied to epidemiology. These models track the number of individuals (or 

proportion of a population) carrying or infected with a pathogen over time, 

where the risk of transmission to susceptible at a given time point is dependent 

on the number of infected (or colonized) individuals in the community (Jit and 

Brisson, 2011)  

 

In 1840 William Farr fitted a normal curve to smoothed quarterly data on deaths 

from smallpox in England and Wales over the period 1837-1839 (Wilson and 

Wilson, 2003)  

 

in 1855 John Snow published the classical study of cholera On the Mode of 

Communication of Cholera and a detailed treatise incorporating the results of his 
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investigation of the role of the water supply in the Soho epidemic of 1854. He 

identified the source of the outbreak as the public water pump on Broad Street 

(now Broadwick Street) He used a dot map to illustrate the cluster of cholera 

cases around the pump. He also used statistics to illustrate the connection 

between the quality of the water source and cholera case. 

 

In the early twentieth century, the application of mathematical models has 

witnessed noteworthy theoretical and practical advances since several 

quantitative, but mainly statistical, studies in epidemiology followed Snow. 

Brownlee in 1906 published a paper entitled “statistical studies in immunity: the 

theory of an epidemic, in which he fitted Pearsonian frequency distribution 

curves to a large series of epidemics (Anderson and May, 1991).   

 

In the same year Hammer hypothesized that the course of an epidemic depends 

on the rate of contact between susceptible and infectious individuals.  

This notion has later been slightly modified to become one of the most important 

notions in epidemiology; it is called the mass-action principle in which the net 

rate of spread of infection is assumed to be proportional to the product of the 

number of susceptible and infectious populations divided by the number of 

individuals in the total population (Wilson and Wilson, 2003) 

 

Ross in 1911 presented a new set of equations as part of a general framework 

which model the transmission dynamics applied to understand malaria. Where 

his quantitative method considers the relationships between numbers of 

mosquitoes and the incidence of malaria epidemics. In 1915, he solved the 

general equations, and discussed his work in relation to Brownlee's approach 

(Smith et al., 2012).  

In 1927, Kermack and McKendrick published the first of their seminal papers 

providing a firm theoretical framework for the investigation of observed patterns 

of the course of epidemic diseases, establishing the threshold theory in which the 

https://en.wikipedia.org/wiki/Soho
https://en.wikipedia.org/wiki/Broadwick_Street
https://en.wikipedia.org/wiki/Dot_distribution_map
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introduction of a few infectious people into a community of susceptible will not 

incur an epidemic outbreak unless the density or the number of the latter is 

above a critical limit. Kermack and McKendrick's framework has evolved to 

become the classic SIR (susceptible-infected-removed) model for studying of 

population biology (Kermack and McKendrick, 1991) 

 

3,1,3 COMPARTMENTAL MODELS 

 

Compartmental models are more suitable to represent HAIs compared to 

community-based infections. 

In a discrete-time compartmental model, the population is divided into groups 

(compartments), and the number of persons of each compartment are tracked 

in the model. Each compartment represents a stage of the infection history. The 

most common compartments are Susceptible (S), Exposed (E), Infectious (I) and 

Recovered or removed (R). Different combinations of these compartments lead 

to different model structures, depending on the aims and the level of details. 

Elaboration of the classic S-I-R model are: S-I, S-I-S, S-I-R, S-I-R-S, S-E-I-S, S-E-I-R 

and so on. Inside a compartment it is supposed homogeneous mixing of the 

agents. After the compartments are decided, one can define the governing 

equations of the model therefore the compartment models are given by closed 

mathematical equations (Pethes, Ferenci and Kovács, 2017) .  

 

Mathematical compartmental modelling of HAI has been widely used to examine 

the transmission dynamics of infection spreading and for estimating the impact 

of multiple factors that may influence pathogen dissemination in hospital 

facilities, such as various infection control measures. These factors include hand 

hygiene compliance, nurse staffing levels, frequency of introduction of colonized 

or infected patients onto a ward, whether cohorting is implemented and so on 

(World Health Organisation, 2009). Among mathematical models, stochastic 

compartmental model, in which random variation influences the chance of 
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events, e.g. colonization and infection rates, seemed to be the more appropriate 

choice for estimating the impact of various infection control measures (Otto and 

Day, 2011) 

 

It is believed that the first compartmental modelling study on HAIs was carried 

out by Massad et al. (1993) (Meng et al., 2010). The model investigated the 

evolution of antibiotic resistance in the hospital setting based on the classical SIR 

method. The model only considered the patient population which was divided 

into three compartments: susceptible, infected by antibiotic sensitive strain and 

infected by antibiotic resistant strain. A system of three ordinary differential 

equations describe the dynamics of the number of patients in each 

compartment. Equilibrium analysis was performed to study which strain of the 

pathogen would dominate, and observed data from other studies were used to 

configure the model (van Kleef et al., 2013).  

 

In a mathematical compartmental model of MRSA infection in an ICU, Sebille and 

colleagues (1997) state that the number of patients who became colonized by 

strains transmitted from HCWs was the most important determinants of 

transmission rates. Patients and HCWs were explicitly represented in the model 

and were divided into three compartments: uncolonised, colonised with sensitive 

strain and colonised with resistant strain. Two transmission routes were 

modelled: patient-to-patient direct transmission and cross transmission between 

patients through HCWs. Of interest, they found that increasing hand hygiene 

compliance among HCWs rates had only a modest effect on the prevalence of 

MRSA colonization. Their model estimated that it takes >60% hand hygiene 

compliance to reduce prevalence of MRSA colonization from 30% to below 20% 

(Sébille, Chevret and Valleron, 1997). 

 

Austin et al. (1999) proposed a mathematical compartmental model to study the 

transmission dynamics of vancomycin resistant enterococci (VRE) in an ICU 
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setting. The hospital-level model consisted of both patients and HCWs who were 

classified as either colonised or uncolonised. Transmission dynamics were also 

described by a system of four ordinary differential equations, each representing 

the change in the number of paitents/HCWs in one compartment. The model was 

configured mainly with observed data daily surveillance cultures of patients, 

molecular typing of isolates, and monitoring of compliance with infection control 

practices. The Monte Carlo technique was applied to simulate the stochastic 

process and multiple replications were performed to estimate the mean and 

confidence interval of model results. The study found that hand hygiene and staff 

cohorting were predicted to be the most effective control procedures. The model 

estimated that the basic reproduction number (i.e., the number of secondary 

transmissions cause by a typical primary case in a large population of susceptible 

patients) for VRE in the hospital was approximately 3-4 without intervention and 

0.7 when infection control measures were implemented (Austin et al., 1999) 

 

Cooper et al. (1999) proposed used a stochastic model of transmission dynamics 

to study hand-borne HAIs.  

The model explicitly considered patients and HCWs and classified them as either 

colonised or uncolonised.  

Stochastic simulation with multiple replications was carried out to measure the 

effectiveness of various intervention policies under different scenarios. The 

intervention policies and influencing factors considered in the model include the 

transmissibility of the pathogen, the probability of colonisation on admission, 

patients’ lengths of stay, hand-washing frequency and infection detection rate.  

Direct observed data were not applied to configure or validate the model. The 

study predicted that improving hand hygiene compliance from very low levels to 

20% or 40% significantly reduced transmission, but that improving compliance to 

levels above 40% would have relatively little impact on the prevalence 

(‘Preliminary analysis of the transmission dynamics of nosocomial infections: 

stochastic and management effects’, 1999) 
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Bonten et al. (2001) review several of the models that have been published and 

speculate on the usefulness of mathematical modelling for improving the 

prevention of HAI. The review concluded several potential benefits of the 

modelling study: (1) models can provide a theoretical basic for evaluating 

interventions to control the infection transmission and the development of 

antibiotic resistance, (2) models can suggest explanations of observations that 

have not been explained yet, (3) models can help illustrate the range of stochastic 

variation and chance effects, and (4) models can suggest standards for the 

evaluation of alternative intervention policies (Bonten et al., 2001) 

 

After early studies, the attention of the HAI modelling was focused to the 

calibration of the model parameters by choosing their values to approximate a 

set of observed data as well as possible.  Examples of model fitting methods are 

least squares approximation, maximum likehood estimation and Markov Chain 

Monte Carlo Methods (Meng et al., 2010) 

 

Grundmann et al. (2002) fitted a stochastic mathematical compartmental model 

to the MRSA observed data in a hospital ICU.  The model was then applied to 

evaluate the effectiveness of control policies of hand-washing, HCW-patient ratio 

and staff cohorting. He predicted that a 12% increase in adherence to hand 

hygiene policies or in cohorting levels might compensate for the ill effects of staff 

shortage and prevented transmission during periods of overcrowding and high 

workloads (Grundmann et al., 2002) 

 

Pelupessy et al. (2002) also fitted a stochastic Markov model, which was based 

on previous mathematical compartmental models, to the observed data of two 

hospital pathogens, VRE and Pseudomonas aeruginosa, in a hospital ICU. The 

purpose of the model fitting was to evaluate the relative importance of two 

possible colonisation routes: exogenous cross-transmission by HCWs and 
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endogenous acquisition due to the use of antibiotics. Only patients, who were 

classified as either colonised or uncolonized, were explicitly represented in the 

model (Meng et al., 2010) 

 

A mathematical compartmental model was proposed by Cooper et al. (2004) 

which not only considered the hospital, but also the corresponding community. 

Only patients were explicitly represented in the model. Apart from colonised, 

uncolonized and isolated patients in the hospital, people in the community were 

also grouped into four compartments depending on their colonisation status and 

re-admission rate to the hospital. The model was evaluated mainly through 

stochastic Monte Carlo simulation technique. MRSA was the hospital pathogen 

under study and, for the first time, the effectiveness of isolation as an 

intervention policy was investigated. Due to the inclusion of the hospital 

community, the study revealed that although local interventions may control the 

spread of the pathogens successfully within the hospital in the short-term, the 

fact that potentially colonised patients can accumulate in the community 

reservoir and re-admit to the hospital multiple times may lead to long-term 

control failure (Cooper et al., 2004)  

 

Raboud et al. (2005) applied the model proposed by Austin (1999) to study the 

transmission of MRSA on a general medical ward using very detailed observed 

data.  The model was evaluated using the Monte Carlo method, and the 

effectiveness of various intervention policies was evaluated. Most noticeably, 

improving hand hygiene compliance was likely to be the most effective measure 

for reducing transmission (Raboud et al., 2005) 

 

Bootsma et al. (2006) proposed what seems to be the most complicated 

mathematical compartmental model so far. The model comprised three hospitals 

and each hospital had 36 general wards and 5 ICUs. Both patients and HCWs were 

represented. Patients were classified as colonised, uncolonised or isolated, and a 
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small proportion of colonised patients were further classified as “super-

spreaders”. There were two types of HCWs: one type only interacts with patients 

in the same hospital unit, while another type interacts with patients in the whole 

hospital. Regardless of the type, HCWs were classified as colonised or 

uncolonised. The community of each hospital was also represented in the model. 

The three-hospital model was evaluated by the Monte Carlo simulation while a 

single hospital model was evaluated deterministically by analytical methods. The 

model was applied to quantify the effectiveness of MRSA intervention policies, 

in particular a rapid screening test. Other interventions evaluated by the model 

include isolation upon detection, pre-emptive isolation, screening for suspected 

HCWs, ward closure and decolonisation treatment. Many of these intervention 

policies such as pre-emptive isolation, screening for HCWs and ward closure were 

considered for the first time. Noticeably, patient movements within the hospital 

were captured in the model. Observed data were applied to configure the model 

when possible (Bootsma, Diekmann and Bonten, 2006).  

 

To estimate the transmission rate of MRSA (2007) in an intensive care unit (ICU) 

in an 800 bed Australian hospital and evaluate the impact the impact of infection 

control interventions McBryde et al. (2007) a mathematical model. It consisted 

of four compartments: colonised and uncolonised patients and contaminated 

and uncontaminated health-care workers (HCWs). 

The model assumes that there is no environmental transmission and that all 

patients who were colonized were detected on admission. Patient movements, 

MRSA acquisition and daily prevalence data were collected from an ICU over 939 

days. Increasing levels of hand hygiene compliance above 40% to 60% was 

predicted to be the most effective intervention on reducing MRSA transmission. 

Where decolonisation was predicted to be relatively ineffective. Increasing. HCW 

numbers was increase MRSA transmission, in the absence of patient cohorting. 

The predictions of the stochastic model differed from those of the deterministic 
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model, with lower levels of colonisation predicted by the stochastic model 

(McBryde, Pettitt and McElwain, 2007) 

 

3,1,4 INDIVIDUAL-BASED MODELS 

 

Computational models which group individuals in classes, i.e. have a 

compartmental structure (track groups in the population) have predominated 

the field of HAI modelling until the emergence of individual-based models. 

Among the early studies to model HAIs, there is only few study that adopted 

individual-based modelling technique rather than the prevailing mathematical 

compartmental models.  

 

Before 2013, most (73%) HAI models have taken an aggregate approach, 

although the proportion of individual-based models has increased over time (van 

Kleef et al., 2013).  

 

Further use of mathematical models of transmission of HAI is warranted. 

Potential benefits of such kind of studies include evaluating the benefits of 

various infection control interventions and understanding the impact of random 

variations in the incidence and prevalence of various pathogens (World Health 

Organisation, 2009).  

 

Nevertheless, compartmental models have strong limitations. 

One primary drawback of compartmental models is the frequent assumption 

that each compartment consists of a set of homogeneous individuals with the 

same condition, e.g. susceptibility for infections, and with the same contact 

assumption (mass action principle) (Caudill, 2013). 

 



107 
 

Because they are driven by the macroscopic behavior of the system and even 

when properly calibrated, mathematical models lack realism because they fail to 

depict the low-level interactions that drive the system (Barnes et al., 2010). 

Moreover, most mathematical models assumed that when HCWs did clean 

hands, 100% of the pathogen of interest was eliminated from the hands, which 

is unlikely to be true in many instances. Importantly, all the mathematical models 

described above predicted that improvements in hand hygiene compliance could 

reduce pathogen transmission. However, the models did not agree on the level 

of hand hygiene compliance that is necessary to stop transmission of health care-

associated pathogens. In reality, the level may not be the same for all pathogens 

and in all clinical situations (World Health Organisation, 2009).  

 

In contrast, HAI modelled with individual-based method view Ward population 

as identifiable and self-contained discrete agents who have some states and 

which are tracked individually rather than subgroups. Individual based models 

incorporate heterogeneity, e.g. of patients’ populations and HCW behaviors. 

Hence, each individual can be assigned different characteristics, such as patient 

demographics and disease history, or the probability of acquiring infection or 

causing transmission (Jit and Brisson, 2011). 

 

The level of definition which can be reached is the same that is it possible to 

represent with a computer program. It is possible to define interactions allowing 

for more realistic modelling of healthcare worker-patient contact patterns (e.g. 

super spreading events) or incorporate heterogeneity in risk profiles of patients. 

Therefore, Individual based models assure a greater flexibility in the modelling 

compared to the compartment-based models. 

 

However, these approaches are computationally far more intensive, are difficult 

to fit to data and the inclusion of additional factors makes more demand on the 

data available (van Kleef et al., 2013).  
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A representative study was conduct by Sebille and Valleron (1997). It applies 

individual-based model to study the transmission of nosocomial pathogens in a 

hospital.  

Most notably, compared to mathematical compartmental models, the model 

allowed for the representation of every individual patient and HCW. The authors 

argued that the model offered a new approach to model the spread of 

nosocomial pathogens in a hospital unit. The Monte Carlo technique was used to 

evaluate the model stochastically and the model, which consists of seven 

modules, was written in the C language. The patients’ locations and movements 

were not represented in the model. Both patients and HCWs had limited 

behaviour rules and only a few attributes which were considered by previous 

mathematical models. Furthermore, no direct observed data were applied to 

configure or validate the model. Nevertheless, this study is valuable in the sense 

that it is the first attempt to apply individual-based models to study HAIs (Sébille 

and Valleron, 1997) (Meng et al., 2010) 

 

3,1,5 AGENT-BASED MODELS 

 

In Individual-based models, agents are limited to persons, assuming that 

transmission of pathogens occurred only via direct contact of HCWs and that 

contaminated environmental surfaces played no role in transmission. The latter 

circumstances may not be true for some pathogens that can remain viable in the 

inanimate environment for prolonged periods (World Health Organisation, 

2009). Moreover, individual-based models do not have the ability to represent 

the explicit location and movements of different type of agents. Each patient and 

HCW had very limited attributes and no behaviour rules were defined for 

patients. 
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The notion of an agent in agent-based model expands the classification of agent 

beyond an individual person, to include inanimate objects. Non-person agents 

play a significant role as infection transmission vectors of contaminant 

microorganisms, as seen the germ can spread when a person touches a surface 

or object contaminated with infectious droplets and then touches his or her 

mouth, nose, or eye(s) (Meng et al., 2010) 

 

Moreover, individual based models do not incorporate agent-based approach 

potentiality, e.g. explicitly model the complexity arising from agents’ interactions 

by means of complex behaviours. In Individual-based models, patients and HCWs 

are passive and only able to change their states according to pre-defined rules. 

In contrast to previous techniques, ABMs allow researcher to construct a 

comprehensive representation of the real world, with a certain level of detail of 

agents (people and objects) and their individual characteristics, behaviours and 

interactions. 

 

Several application of ABMs to hospital environments addresses system 

performances examining: patient flows and admission waiting time, staff 

workload, economic indicator, patients flow and other hospital functioning 

matters/ operational issues (Kanagarajah et al., 2008), (Spry and Lawley, 2005), 

(Cabrera et al., 2011) (Hutzschenreuter et al., 2008) (Jones and Evans, 2008) 

(Mielczarek and Uziałko-Mydlikowska, 2012) 

 

The modelling of HAI is perhaps the best suited area for ABMs within healthcare 

environment. This is largely a consequence of being able to address all the model 

components relative to spatial description and agents’ ability of social and 

physical interaction (Laskowski et al., 2011): 

 

• Patient 

• HCW 
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• Other staff  

• Equipment 

• Facilities  

• Layout 

• Other agents 

 

While there is a rich history of mathematical modeling of HAI and despite HAIs 

features which fit with the ABM approach, relatively little work exists, which 

applies agent-based models to this domain (Friesen and McLeod, 2014).  

 

Regrettably, the development of verification and validation techniques of the 

agent based models is much more difficult than traditional approach. Such 

difficulty is known in research community as literature confirms (Laskowski et al., 

2011) (Pethes, Ferenci and Kovács, 2017).  

 

According to Demianyk the role of ABMs as useful simulation technique within 

healthcare facilities is still in its infancy, but offers tremendous potential for the 

better understanding and optimization of these complex systems. The 

emergence of ABMs will likely evolve towards a more integrated 

simulation and analysis suite, combining with other established techniques 

(Demianyk, 2015).  

 

In an ABM Bagni et al. (2002) investigates the diffusion of Bovine Leukemia, a 

pathogen which infects cattle in dairy farms. The case study was used to illustrate 

the differences between the System Dynamics" and "Agent Based" approaches. 

The model was built in both the Swarm environment and Java. Interestingly the 

model was event-driven and has the capability of event-scheduling. In the 

simulation, it is possible to record the change of each animal states, i.e. healthy 

or infected and spatial displacements of the animals may also be represented 

(Bagni, 2002) 
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In 2006 an agent-based epidemiological simulation system was proposed by 

Dunham.  

The system was built in the MASON toolkit, a set of noncommercially available 

Java-based agent-simulation libraries. The framework is suitable for community-

acquired epidemics with large numbers of agents. Standard epidemic models, SIS 

(susceptible-infected-susceptible) and SIR (susceptible-infected-removed), were 

implemented and demonstrated on three diverse examples. However, such tool 

lack of a proper parameterization to be used for realistic simulations (Dunham, 

2006) 

 

A large-scale distributed agent based epidemic model was developed by Parker 

(2007), a model capable of simulating hundreds of millions of agents and which 

can be distributed to several compute nodes. Parker’s study is addressed at 

enabling the distributed simulation: allocation of agents to available compute 

nodes, periodic synchronization of compute nodes, and efficient communication 

between compute nodes (Parker, 2007) 

 

In two consecutive studies Hotchkiss use ABM to assess the dynamics of 

nosocomial infectious pathogens spread. The former within an intensive care unit 

(ICU), advocating for a conceptually simple discrete agent-based model can 

explicitly address ‘geographic’ considerations and probabilistic transmission 

dynamics germane to the spatially intricate environments and small population 

sizes characteristic of ICUs. 

The latter in a dialysis unit using a Monte Carlo model. The dialysis unit is a very 

good example of where ABMs may be particularly useful as, the frequency of 

patient visits and intimate, prolonged physical contact with the inanimate 

environment during dialysis treatments make these facilities potentially efficient 

venues for nosocomial pathogen transmission. He tries also to evaluate the 

effectiveness of different infection control protocols or policies, intervention 
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costs, as well as shedding light on potential confinement failures which would 

accompany widespread infection dynamics (Hotchkiss et al., 2005) (Hotchkiss, 

Holley and Crooke, 2007) 

 

Meng in 2010 designed an agent-based simulation to assess and manage the 

transmission risk of MRSA in a hospital ward and to test the effect of admission 

and repeat screening tests, shorter test turnaround time, isolation rooms, and 

decolonisation treatment.  

Each patient is identified on admission as being colonised or not, MRSA 

transmission takes place by interaction between pairs of individuals: colonized 

and non-colonized patients, patient and healthcare staff (nurse and doctor) 

transiently or permanently colonized, patient-to-patient contacts and 

transmission from a contaminated environment is also considered. However, the 

model assumes that a receiver may acquire MRSA due to the presence of carriers 

in the proximity, regardless of the mode of transmission or the type of activity 

(Meng et al., 2010) 

 

In Barnes 2010 the authors presented an agent-based simulation model 

developed to investigate the dynamics of MRSA transmission within a hospital. It 

is used to examine the effectiveness of various infection control procedures 

experiments are performed to examine the effects of hand-hygiene compliance 

and efficacy, patient screening, decolonization, patient isolation, and health-care 

worker-to-patient ratios on the incidence of MRSA transmission. The 

transmission of MRSA between agents is determined stochastically, based on the 

risk level of the patient and the behavior of the HCWs who visit the patient. The 

Model shows the interaction between patients-healthcare staff, and patients-

visitors, but not consider HCWs – visitors contacts.  

Outside of extremely high hand hygiene compliance and single HCW-to-patient 

ratios, patient isolation appears to be the most effective single measure, reducing 

transmission.(Barnes et al., 2010) 
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Temime et al. (2010) present an agent-based model of pathogen transmission in 

a hospital ward, made with “NosoSim tool”. They illustrate its potential 

applications through an example to assess the factors which promote so-called 

“super-spreading events” in hospital setting and to assess the effectiveness of a 

control systematic hand hygiene. They claim that it could be also used simulating 

the outcome of various interventions for the benefit of decision makers. Their 

system lack interactions (and possible pathogen transmission) between HCWs; 

interactions of patients and HCWs with the outside world, pathogen transmission 

through the environment (Temime et al., 2010) 

 

Milazzo et al. (2011) use an individual-based and stochastic approach to 

investigate MRSA outbreaks in a hospital ward. A computer simulation tested the 

effect of spatial and personnel cohorting with the aim of minimizing the possible 

interactions between individuals within a ward. This study suggests that a strict 

spatial cohorting might be ineffective, if it is not combined with HCWs cohorting 

(Milazzo et al., 2011) 

 

In a 2011 study by Laskowski the spread of influenza like illness in emergency 

ward, was simulated using ABM. The model examines the dynamics of infection 

spread within a hospital, contains the immunity of the patients and the spatiality 

of the ward and tested the effect of infection control policies (Laskowski et al., 

2011) 

 

Hornbeck et al. 2012 used a remote-based sensor network to record interactions 

among healthcare workers and patients in intensive care unit. Then they built an 

agent-based simulation on the resulting data collection from this network to 

model the spread of nosocomial pathogens to identify the most- and least-

connected healthcare workers. They point out the impact of hand hygiene 

noncompliance among peripatetic healthcare workers, i.e. individual with 
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measurably high connectivity responsible for infecting many people. They prove 

that heterogeneity in healthcare worker contact patterns dramatically affects 

disease diffusion (Hornbeck et al., 2012) 

 

In 2013 Rubin designed an agent-based computer simulation of nosocomial C. 

difficile transmission and infection, which included components such as: patients 

and health care workers, and their interactions; room contamination via C. 

difficile shedding; C. difficile hand carriage and removal via hand hygiene; patient 

acquisition of C. difficile via contact with contaminated rooms or health care 

workers; and patient antimicrobial use. It was also possible to test six 

interventions, alone and mixed together: aggressive C. difficile testing; empiric 

isolation and treatment of symptomatic patients; improved adherence to hand 

hygiene and contact precautions; improved use of soap and water for hand 

hygiene; and improved environmental cleaning. All interventions were tested 

using values representing base-case, typical intervention, and optimal 

intervention scenarios. Findings suggest that most of the impact came from 

improved hand hygiene, empiric isolation and treatment of suspected C. difficile 

cases (Rubin et al., 2013) 

 

Ferrer in 2013 presented Nosolink, an ABM of an intensive care unit that 

combines the operational and the epidemiological perspectives used to evaluate 

the relation between staff organization and nosocomial contagion. Such model 

they have taken into account the work schedule, sick leaves, workload, fatigue 

and occupation state of HCWs (Ferrer, Salmon and Temime, 2013) 

 

In the same year Jiménez an initial stage of the study with the aim to develop a 

highly-detailed, agent-based simulation to compare medical treatments against 

Clostridium difficile infection. The model was built using patient information and 

healthcare worker data from electronic medical records, and implemented in 

EpiSimdemics simulation software that looks at simulation in large social 
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networks. Interactions between people and probability to get the infection are 

calculated using a stochastic model, such model do not consider the impact of 

the environment as vector for infections, and simplifies the contact between 

agents considering them in contact if in the same location at the same time. 

(Jiménez, Lewis and Eubank, 2013) 

 

In 2015 Codella develops an agent-based simulation model (ABM) to study C. 

difficile transmission and control in a midsized hospital. He derives input 

parameters from aggregate patient data from the 2007–2010 Wisconsin Hospital 

Association. Agents are patients, healthcare workers, and visitors. Natural 

progression of C. Difficile infection in a patient was also modelled using a Markov 

chain. The model was used to test the effects of different control measures 

(Codella et al., 2015) 

 

Recently Pethes presents the preliminary conception of a simulation framework 

designed in Object-Oriented fashion and using the system in R, which describes 

the spread of Hospital-Associated Infections (HAIs). The elements of the 

simulation include among others: admission and discharge patients, pathogen 

transmission via healthcare workers, colonization and infection, modelling 

hospital events, scheduling treatments, the interventions against HAI spreading. 

The development of the model is tracked in discrete time, and the simulation is 

driven by stochastic events sampled from predefined distributions. The pathogen 

transmission probability does not depend on the contact length, but it uses fixed 

transmission probability (Pethes, Ferenci and Kovács, 2017) 

 

3,1,6 CONCLUSIONS 

 

While the reviewed studies have provided new insights into the relative 

contribution of various infection control measures they investigated only one or 

few aspects at the time, losing the organised complexity of the phenomenon and 
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all have been based on assumptions that may not be valid in all situations 

(Weaver, 1948). 

They foremost focus on community-acquired epidemics with large numbers, 

even hundreds of millions, of agents and large-scale distributed. If regarding a 

single hospital ward, mostly ICU, many of them, if not all suffer the following 

limitations: 

 

1. include only two members of healthcare staff: doctors and nurses, where 

other HCWs and visitors are ignored; 

2. account only for contact transmission through interaction between the 

patients – physician or patient - nurse, when contact between patients, 

HCWs and visitors cannot be included; 

3. the contact transmission dynamic does not consider the specific features 

of the (type) activity in progress or the effective contact between agents, 

at best considering the agents proximity regardless of the modality of 

transmission; 

4. not consider pathogens removal via a proper hand hygiene or ward 

cleaning through decontamination procedures, neither the level of 

accuracy of such procedures; 

5. focus on transmission between individuals neglecting the role of the 

environment and inanimate objects as potential transmission vectors; 

6. divide patients into colonized or infected and the healthcare staff into 

colonized and non-colonized or transiently colonized, therefore 

representing them with distinct alternative states rather than continuous; 

7. do not consider the severity level as well as different levels of 

susceptibility of patients and ignore patients’ and HCWs heterogeneity, 

behaviours and personal traits. 
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Finally, none of them investigate the impact of different architectural design and 

spatial distribution on the propagation of infections and only a few consider the 

effective spatial displacements of agents. 

Our work applies the Event-Based approach and tries to address many of these 

under investigated aspects with the aim of building a comprehensive system to 

handle different pathogens type, spreading conditions and spatial organization. 
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3,2 EVENT-BASED MODELLING AND SIMULATION  
 

3,2,1 INTRODUCTION  

 

The present work has been developed having the Event Based Modelling and 

Simulation (EBMS) method as reference framework, which have been developed 

by Professor Kalay’s research group at Architecture Faculty, Technion (IL).  

This model combines aspects of Agent-based and Process-based models in a 

coherent simulation. 

Simulation model appears to be the better choice for investigating Human 

Behaviour Representation (HBR), also known as refers to computer-based 

models which imitate either the behaviour of a single person or the collective 

actions of a team of people (MAJID, 2011)  (Richard W. Pew, 1998).  

 

Event-Based method considers the users and the processes of use of the space in 

a hospital environment by modelling events, which take place when different 

user behaviours occur in that space. Schaumann and Kalay (Schaumann et al., 

2015) elaborates the notion of Event, as computational entity that combines 

information concerning people (who?), the activity they perform (what?) and the 

spaces they inhabit (where?). Such approach represents users–space interaction, 

i.e. activities as specific modelling entities on their own, clearly distinct from 

spaces, but connected with them. The method comprises several modules which 

are described in the following paragraphs. 

 

3,2,2 SPACE 

 

Event based approach requires us to interpret and formalize the space to provide 

the conceptual connection between the building use process based on the 

organization’s operational dynamics, and the building design solution provided 

by the architect. Because to build a space use simulation, two kinds of data must 
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be clearly distinguished: the required data for rendering 3D scene, coming from 

the design provided by the architect, and data for supporting the human 

simulation and enabling complex autonomous behaviours, which are drawn 

starting from the semantic assigned by architects and also from the semantic 

subsequent to the observation of the current use of the space. 

Therefore, in our simulation-driven understanding space represents the spatial 

place of activities and interactions. It physically corresponds to the structural 

decomposition of the environment layout. It is hierarchically subdivided into a 

set of zones and sub-zones, which define the function and afforded activities of 

the space (Gibson, 1983). For instance, a nurse-station zone affords patient-

record keeping activities, administration, consultation, and communication 

activities. A section of a corridor affords multiple different activities, such as 

passage and social encounters, as well as medical activities such as patient 

treatment, if needed (Hadas Sopher, Davide Schaumann, 2016) 

Space entity answer “where?” question and assemble static geometry + real time 

semantic info + real time environmental info in single model integrating all 

information required to manage realistic behaviours of actors, Table 4. 

 

 
Table 4 - Space attributes (Schaumann, Morad, et al., 2016) 

 

Static geometry: 

Space is a semi-closed area bounded by static objects (usually walls). Each place 

may have connections called portals, with its neighbour places, used to ease the 

interaction between two adjacent spaces. 

It comprises static semantic, defined a priori by the designer of the simulation 

and mirroring the semantic assigned by the architect which remains fixed during 

the simulation, e.g. permeability of doors and solidity of walls. 
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Space in such extent provides structural information about the environment to 

actors. Allowing actors to accomplish simple behaviours consist in avoiding static 

and dynamic obstacles, which requires only geometrical information on the 

various objects in the virtual world.  

Space in such interpretation provides also topological information about the 

environment to actors. Required to exhibit complex behaviour in a virtual world, 

which depend on the nature and position of the objects, associated to each zone, 

and the global distribution of spaces, for instance to compute and perform the 

displacement between two spaces, carrying a chart. 

 

Real time semantic information: 

Space is defined by its meaning depending on the possible use patterns. There is 

a list of plausible semantic for each space zone, which correspond to space 

affordances, e.g. the usability of furniture, the state of occupancy of the space 

and so on. The space detects autonomously the people present and the activity 

carried on and change in real time its current semantic accordingly. Competing 

space affordances determine how a space is currently used, and what are other 

possible uses.  

Space in such interpretation provides dynamic semantics allowing actors for 

more complex behaviours, which depend on the understanding of the objects 

affordances. 

 

Real time environmental information: 

In addition to determining affordable activities, Space can communicate certain 

parameters ensuing from the performance of an activity within its place, such as 

presence of actors and the noise it produces. By doing so, the space construct 

can be used to replace actor based perceptual capacities (as done by ABM), and 

save computational resources.  

Artificial Intelligence resources distributed in the space components have the 

task of controlling the simulation of local interaction with the actors by taking 
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momentary control of their behaviour, as will be explained in the next sections. 

For instance, a door can include knowledge about the users already inside the 

room and decide if the approaching user is allowed to enter or not. In this way, 

the AI resources are balanced among a large amount of entities rather than just 

concentrated in the ‘brains’ of the actors, and this makes the simulation process 

computationally manageable and its outputs more reliable and realistic (Yehuda, 

2013) 

Environment is a shared structure for agents, where each of them somehow 

perceive and acts.  

 

3,2,3 ACTORS  

 

Actors are computational entities with physical description that can move and 

perform activities used to formally represent building users.  

Beyond the computational representation, actors have profile and status, which 

include psychological, social, cultural, and other traits and abilities.  

Actors which are anthropomorphic agents answer “who?” question and 

assemble imported geometry + fixed semantic role + physiological and 

psychological attributes (fixed and variables), Table 5. 

 

 
Table 5 - Actors attributes (Schaumann, Morad, et al., 2016). 

 

The event based approach comprises actors’ abilities as rules that describe the 

response of actors to their physical and social surroundings, based on the actors’ 

individual features. 
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Actors do not incorporate autonomous high level decision-making ability, 

because these are provided by the Event, a process model, which controls them 

at in real time, as will be described in the next section.  

The Actor is the recipient of an Activity that needs to be performed, 

communicated to it by the Event. The event query for specific physiological and 

psychological states. 

The performance of the activity is modulated by the Actors current surrounding 

(physical and social), which is communicated by the Space semantic, and affected 

by the Actors’ internal state (e.g., tiredness). For instance, if an actor is an old 

lady, she might walk slowly, i.e. the activity move can use the actor default speed, 

causing her to walk slowly. 

Together, they produce an individual reaction to the Event’s directive, which is 

communicated back to the Event. (Shaumann) 

Therefore, actors are provided with the abilities to autonomously adapt their 

behaviour within a predefined range, depending on the status of the 

environment and on the reference process model. In turn, the simulated actors’ 

serendipitous actions outputs are feedback into the process model, and can 

influence it, providing information to support the event high level decision-

making. 

However, actors are integrated with some typical agent-based components, 

intended to control some autonomous low-level aspects of actors’ behaviour. For 

instance, the abilities of a user to compute a path and perform the movement 

actions is and controlled directly in the actor entity as well as path decision, 

walking actions, obstacles avoidance, local interactions with other entities, such 

as doors or other actors. 

Finally, the computation of the agent perceptions is not the subject of a specific 

process in the event based approach. Actors’ perception of a certain 

environmental condition is in fact a process of comparison information stored in 

the “space entity”, under the form of parametrized value, with a certain 

threshold for that parameter embed in the actor. The system engine coordinates 
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coherently the response of the actors to the environment. The result is that the 

actors seems react to the environment like if he perceives and understand the 

environment condition (for each parameter) acting in accordance to his embed 

threshold of tolerance. Thanks to that it is possible avoid the overall complex 

computation of all actors’ perceptions. 

 

3,2,4 ACTIVITIES 

 

The event based approach required the simulation environment to provide data 

about the system of activities and their specific performing.  

This is needed because the objective of the model is to simulate not only some 

specific aspects of users’ behaviour (e.g. the displacement), but the main tasks 

that actors may perform in an hospital ward, leading to visualize the simulation 

animations. 

Every elemental activity, i.e. social activities, movement and physical activities, 

which can be performed by a single or a group of actors are modelled in the 

system. 

Activity which is a use process related semantic assembling a set of actions and 

answering “what?” question. It takes arguments the actors involved, the 

semantics of the space and the duration.  

A series of activities form a task, which is a function, called by the event unit, as 

described in the next section, which the actor needs to complete to resolve the 

task. 

A Patient-check event, for example, comprises of activities such arrival of the 

relevant actors to a specified destination, carrying out the medical procedure 

(which involves communication) and recording the results in some form.  

Therefore, these lists of activities, which can be sequential or parallel, are 

communicated by the Event construct to the Actors in a form of a task.  
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3,2,5 EVENT  

 

An event unit is a process model that that meaningfully combine actors, space 

and activities Fig 15. Events construct combines three different information 

(Where, who and what). These types of information representing heterogeneous 

and independent domains of data must therefore be interpreted (Simeone et al., 

2012). 

 
Fig. 15 - Event representation (Simeone et al., 2012). 

 

Events are computational entities that manage the performance of a specific 

behavior pattern querying the involved actors, spaces, and activities. 

An example is the "Patient-check" event, where a doctor and a nurse perform an 

activity common in hospitals of checking patients: all three actors (doctor, nurse, 

and patient) must be present at the same place, at the same time, for the purpose 

of performing a medical activity. 

Events are not a direct prediction of how the people will behave in a future 

building, but rather a knowledge-base necessary for such prediction, to be 

modified and adapted by local, specific circumstances. 

In the simulation the event entity behaves like a sort of movie director, managing 

and coordinating single actor behaviour during a scene, but leaving to them a low 

level of adaptation to such direction. 
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Novelty of this approach lies in making the actions process execution more 

flexible and partially adaptable to serendipitous “emergent” circumstances in 

real time during the simulation. 

Events embed the knowledge to perform a task in virtual settings. They 

meaningful interpret information applying space and activity semantics to actors, 

envisioning the specific use process of that space for a certain time span. When 

triggered the event reduce the autonomy of the agents and tactically coordinates 

them through a series of actions, related to the contextual building function. The 

Event unit for a certain space check the list of possible space semantics and the 

actual one, to see if can instruct an activity to be performed or not. 

The Event works through preconditions, performance procedures and 

postconditions. The triggering happens if the preconditions are satisfied. 

According to Weiss’s definition of agent goal oriented behaviour: “goal oriented 

behaviour is in a simplest way is definable like a procedure that run if are 

recognized certain pre-condition ad such procedure will produce some effects, 

the post-condition, that have to be the agent goals” (Weiss, 2000). 

Preconditions as have been explained fit the definition the multi agent system 

paradigm “Actions have preconditions associated with them, which define the 

possible situations in which they can be applied”  (Weiss, 2000). 

Preconditions (“if something”) relate to a state of the world, i.e. they are a set of 

facts about the virtual world which can be true or false. They account for the 

decision-making ability of the system, which express the required actors and 

space for an event to be triggered.  

Performance procedures guide the event execution. Procedures are provided by 

the activity component and it comprehend the duration of the activity itself, 

unless it concerns a displacement activity, which depends on the space 

conformation. Activities are operations on the state of the world. 

Post conditions (“then something”) the simulation engine at the end of each 

activity collects information and coherently updates the state and statistics of 
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space and actor entity. Activities being functions cannot be affected or modified, 

for that reason in Event-Based method actors do not have learning abilities. 

Events scripting can be derived from data gathered during contextual survey 

activities in different ways, such as direct observation of similar, already built 

cases, previous knowledge formalization, hypotheses reviewed by experts 

usually involved in such circumstances. 

 

3,2,6 SYSTEM ARCHITECTURE 

 

The previous elements are needed to assemble a building use scenario.  

It is an example which describes a real-world process of how an organization (in 

terms of the people involved) interacts within itself, with the built environment, 

and with the context in which it operates (Simeone et al., 2013) 

The simulated representation of a building use scenario is represented as a game 

narrative, a story path where events can be considered as milestones: entities 

that are linearly connected to each other to represent, step by step, what 

happens in the building, Fig. 16 (Simeone et al., 2012). 

 

 
Fig. 16 - The example of a building use scenario (Simeone et al., 2012) 
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To represent different building in use scenarios events are combined into time-

based structured sequences called human behaviour narrative. Which comprises 

discrete activities, involving a number of users, and performed in specific spaces 

and time.  

Human Behaviour Narrative is made by coexisting building use scenarios, where 

several activities can be performed simultaneously and affect each other. It is 

generally intricated as it is reflected by the complexity of its representation, Fig. 

17, showing multiple paths of activities to be performed in a temporal sequence, 

generate an articulated graph, which connects and combines them in an oriented 

network where the orientation of each branch shows the logical sequence of 

their performing. In such configuration events can be shared by different use 

building paths and are connected through connectors to define an operational 

sequence flow. 

 
Fig. 17 - Human Behavior Narrative (Yehuda, 2013) 

 

Human Behaviour Narrative before the simulation starts is built thanks to real-

life observations, interviews and discussion with experts and it is made up 

hierarchically aggregating events, nesting events in sub-events and assembly 

events in: sequence, parallel or selection connections. Which can be exploit using 
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the rules of structural programming, following the Bohm-Jacopini theorem 

(Böhm and Jacopini, 1966). 

Nevertheless, to provide a reliable prediction of the users’ behaviour a good 

narrative of humans’ situations should approach the complexities and 

contradictions of real life. In fact, such daily life narratives are difficult or 

impossible to summarize into neat scientific formulae, general propositions, and 

theories (Flyvbjerg)  

Therefore, the scenario has to be able to adapt to the different conditions 

emerging from the performing of determined activities in a specific building 

layout.  

To do so the simulation script is integrated with some typical agent-based 

components, intended to control some autonomous low-level aspects of actors’ 

behaviour. In that way, it is possible to simulate serendipitous events generated 

by the interactions of the actors with the contextual built environment that are 

not predictable in the Human Behaviour Narrative development. If for instance 

the paths taken by two agents brings them close, they may choose to stop and 

talk, or ignore each other and continue their pre-scheduled task. 

Moreover, the choice to provide actors with some degrees of autonomy allows 

to represent some aspects of users’ behaviour that would be difficult and time-

consuming to represent and compute at the Human Behaviour Narrative process 

level, mostly if iterated for each agent. 

The system allows the emergence of events because preconditions triggering at 

the same time situations scheduled in some branches of the Human Behaviour 

Narrative, as well as unscheduled situation. 

Therefore, at the end of the simulation the Human Behaviour Narrative may be 

composed by a different sequence of events form which it was pre-designed, due 

to the arising of un-planned events, which take place inside the pre-planned 

sequence, emerging from the contextual conditions, Fig. 18. 
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Fig. 18 - Human Behavior Narrative in the case of unplanned event. Image courtesy of Prof. Y. E. 

Kalay (Yehuda, 2013)  

 

Where planned events are top-down and time based scheduled events inside the 

Human Behaviour Narrative. Un planned events are never scheduled in a time-

based fashion, they emerge unexpected during the simulation run, e.g. code-blue 

event and random meetings and originate from agents situated interactions with 

their physical and social environment. However, their configuration in terms of 

event basic components: actors, space, which can be whatever, but activity 

function as a clear set of actions, is scripted in advance.  

Un planned events depend upon agent individual traits, group serendipitous 

situations, social and environmental stimuli and so on. They consist in a list of 

possible events that may occur if some specific preconditions arise. 

The existence of planned and unplanned events can produce conflicts, which can 

lead to the system failure or stuck. To manage this prospect, the upper level 

narrative management system has been conceived. The main function of the 

narrative management system in the simulation is to resolve conflicts about 

resources and priorities between Events.  

 



130 
 

Narrative Management System manage, coordinating the performing of the 

different activities, solving interferences and conflicts among them and, most 

generally, guiding the flow of activities 

It practically enables control and simulation of serendipitous events, e.g. the ones 

triggered by the physical (actually, geometrical) proximity and location of the 

actors within the simulated built environment. It also supervises the re-

arrangement of events as in the case of the need of rescheduling due to a delay. 

Narrative Management System consists in a rule data-based system, which is 

rebuilt for each case study, but it can be generalized. To resolve conflicts, it relies 

on all the available system information e.g. priorities, actors’ traits, urgency, and 

so on. His selection of event abilities into the real-time development of human 

behaviour narrative implies the elicitation of a priority function, accounting for a 

system level decision-making. 

Narrative Management System literally develops as a structured Event Based 

narrative tree composition which operates at strategic level, directing the 

development of the Human Behaviour Narrative by combining top down planned 

events with bottom up un planned events into a sequence that develops in real 

time through the simulation, Fig 19. 
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Fig. 19 - Event-Based system architecture. Image courtesy of Prof. Y. E. Kalay (Schaumann, Morad, 

et al., 2016)  

 

Even though in the following case study we consider only one type of 

unscheduled event, i.e. the interruptions by visitors on the HCWs work schedule, 

it is possible to model multiple unscheduled events thanks to the Narrative 

Management System.  

Differently from previous activity-based models where the use process is entirely 

computed before and then merely visualized, in the proposed model the use 

scenario is computed in real time during the simulation, providing a better 

adaptation of the sequence of activities to the built environment and its 

occupants and, consequently, a more coherent and reliable simulation output 

 

The subsequent step is to animate activating the model within the simulation, 

running different scenarios with different layouts (space-actors-activities). 
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3,3 EVENT BASED SIMULATION COMPARISON WITH DES AND ABS  
 

Several methods are used to model and simulate human behaviour. The most 

well-known are Discrete Event Simulation (DES) and Agent Based Simulation 

(ABS). 

The main differences between them are well documented; see, for instance 

(Borshchev and Filippov, 2004) (Nehme and Crandall, 2008) (Korhonen et al., 

2010) (Mustafee, Katsaliaki and Taylor, 2010) 

 

While DES has been used widely in the field of operational research, ABS is 

relatively new and applied as part of artificial intelligence and complex adaptive 

systems. 

The use of a bottom-up rather than top-down approach is a key feature of ABS 

when compared to DES in which the system is centralised and the entity is only 

one of the many essential elements of the model, Fig. 20. 

 
Fig. 20 - Bottom-Up vs Top-Down Outline 

 

Discrete-event simulation models are named after their discrete, dynamic, and 

stochastic characteristics. 
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DES involves the modelling of a dynamic evolving system which is stochastic, as 

it consists of random input components, and discrete because a series of 

chronological sequences of events change the system’s state instantaneously at 

separate points of time. (Carson, 2004) 

DES maintains a future event list and is capable of event scheduling. It is normally 

applied to describe a system through activity sequences where waiting in a queue 

between each activity is necessary since the required resources (e.g. people, 

equipment and spaces) are scarce.  

Conventionally, these models are used in engineering to optimize the resource 

flow. Typical queuing systems include production lines, airports, banks, 

restaurants, call centres, accident and emergency departments of hospitals. DES 

has been also applied to study community-based infections, see for instance 

(Allore et al., 1998) (Cohen, Artois and Pontier, 2000) (McKenzie, Wong and 

Bossert, 1998) (Rauner, Brailsford and Flessa, 2005). 

 

Despite its wide use and applications, DES cannot account for the human factor 

of physiological and psychological traits as set out in this study (e.g., HCW’s 

individual knowledge and personality, patients’ health condition and more). Nor 

can it do so for agents’ perceptual and cognitive abilities in relation to their 

dynamic surrounding environment.  

To this end, ABS is more suitable as it can represent an agent’s health condition 

and hygiene level along with the interaction between them. One core advantages 

of ABS compared to DES is its capacity to represent agents’ spatial locations and 

movements, which is critical to the actual contamination transmission in the 

hospital ward. Indeed, in DES agents are not situated in a spatial context, since 

spatial features are abstracted in terms of the time required to move within a 

space (Schaumann, Pilosof, et al., 2016).  

 

As demonstrated previously, spatial features have a significant effect on 

pathogen dissemination, both directly as well as through agent activities and 
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interaction. Moreover, human spatial behaviour and decision-making are 

strongly affected by contextual environment. Several studies have attempted to 

understand such a close relationship. Major concerns include wayfinding, 

queuing and crowding, spatial compatibility and conflict among activities, the 

psychological consequences of spatial experience, territoriality, spacescape 

visualization and more. See for instance (Ostermann, 2009) (Oldenburg, 1999) 

(Stokols, 1972) (Gehl, 2011) (Hall, 1966) (Linder, 1990) (Whyte, 1982) (Gibson, 

1986) (Lynch, 1960) (Marcouiller, 2008) (Weiss, 2000) (Wei and Yehuda, 2007) 

(Esposito, Mastrodonato and Camarda, 2017) 

 

These aspects of human (spatial) behaviour in simulation can be managed by an 

Agent Based paradigm.  

ABS models a system as a collection of entities called agents. 

 

Several definitions of the term “agent” exist, ranging from the earlier “something 

that perceives and acts” (Norvig and Russel, 2010) to Maes’ more complete 

description; “autonomous agents are computational systems that inhabit some 

complex, dynamic environment, sense and act autonomously in this environment 

and by doing so realize a set of goals or tasks for which they are designed.” (Maes, 

1995). 

Wooldridge and Jennings provided a definition of what an agent is and does by 

through the following properties (Wooldridge and Jennings, 1995): 

 

• autonomy; 

• social ability;  

• reactiveness; 

• pro-activeness. 
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Autonomy: an agent must be able to operate, follow instructions and take 

decisions without the direct intervention of humans or others and to have some 

kind of control over his actions and internal state. 

Social Ability: an agent is part of a system of agents. Therefore, he must be able 

to interact with others in order to complete his tasks and support others in their 

activities.  

Reactiveness (reactivity and situatedness): an agent must be able to perceive his 

environment and react to it. Generally, if the environment changes, so must the 

agent in some way. 

Pro-activeness: agents do not simply act in response to their environment, they 

are able to exhibit goal-directed behaviour by taking the initiative when 

appropriate. They fulfil a series of objectives in a complex, dynamic environment, 

learning from their experience, their environment and their interaction with 

others. 

 

In their subsequent study, Wooldridge and Jennings clearly formalised the 

definition of agent, a key aspect in modelling decision-making support, by stating 

that: “an agent is a computer system, set in a particular environment, who is 

capable of autonomous and flexible action to reach his planning objectives.” 

(Wooldridge, Sycara and Jennings, 1998). For further reading, see (Reynolds, 

1987) (Ferber, 1998) (R. M. Axelrod, 1997) (Gilbert, 2008) (Kennedy, 2011) (Macal 

and North, 2010) (Batty, 2009) (Helbing and Balietti, 2011) 

 

Bonabeau presents a list of decisive factors in the choice of modelling approach 

from architecture to agents; among these elements, it is interesting to highlight 

the following as they are appropriate to our situation (Bonabeau, 2002) : 

 

• when individual behaviour is complex. In principle, everything can be 

done with equations but the complexity of differential equations 

increases exponentially as the complexity of behaviour increases. 
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Describing complex individual behaviour with equations becomes 

intractable; 

• when space is crucial and the agents’ positions are not fixed, as in our 

case; 

• when the population is heterogeneous, when each individual is 

(potentially) different. Our agents have multiple concurrent state and 

feature changes which at the same time regard infection development, 

hygiene status, location and more; 

• when validation and calibration of the model through expert judgment is 

crucial. ABM is often the most appropriate way of describing what is 

actually happening in the real world and the experts can easily “connect” 

to the model and have a feeling of “ownership”. 

 

Given these preconditions, it is not difficult to outline what an Agent-Based 

model is and what it does; it is a system based on autonomous decision-making 

agents (in social systems, most often people) which are able to perceive, plan and 

act. In the most general contexts, agents are both adaptive and autonomous. 

Multiple goal-oriented agents operate and interact simultaneously in a shared 

environment and each one does so under different initial conditions and 

constraints. Therefore, the dynamic evolution of the system emerges from local 

interaction among agents, leading to an unpredictable development of the 

system which is thus referred to as complex.  

 

The case of a set of agents who interacts in a common environment and can 

modify themselves and the environment, which in turns impacts and transforms 

agents’ activities and behaviours, typically pertain a Multi-Agent System (MAS). 

MAS agents show the ability to solve problems at individual level and can interact 

in order to reach global objectives. This interaction may come about both 

between agents as well as between agents and their environment. 
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In ABS and MAS, the modeller defines the behaviour of the single agent at 

individual level and the system behaviour emerges from multiple interactions 

between individual entities. Therefore, such approaches are well-suited to 

simulate human behaviour and interactions. It has been extensively applied to 

represent particular kinds of human behaviour in space, mainly reactive to social 

and physical environments. This includes, for instance, fire-exit, pedestrian flows, 

traffic, evacuation and crowding, all situations in which large number of agents 

express a clear and standard behaviour pattern without the need for complex 

reasoning or cognitive abilities, so allowing for an easier and more likely 

approximation to real life. However, in such cases compound behaviour results 

are not intuitive, since a small number of rules applied to many agents are 

capable of generating complex macro-phenomena and emerging circumstances 

may appear (a factor the modeller investigates). Therefore, simulation outputs 

may help to predict surprising developments as well as risky situations. See for 

instance (Pan, Han and Law, 2005) (Camillen et al., 2009) (Hajibabai et al., 2007) 

(Ronald, Sterling and Kirley, 2007) (Batty, Desyllas and Duxbury, 2003) (Galland 

et al., 2014) (Chen, 2012) (Ronald, Arentze and Timmermans, 2009)  

 

Nevertheless, the current approaches of ABS and MAS are still limited to 

representing more complex activity patterns of interaction (e.g. agents-agents-

space) because of the high processing requirement of a real-time emulation of 

the process of human cognition and decision-making, which is still under study 

(Crooks, Patel and Wise, 2014).  

Another limiting factor is that an ABS is still incapable of representing dynamic 

collaborative behaviour in a reliable way, i.e. multiple autonomous, responsive 

and interactive agents who co-operate, co-ordinate and negotiate among one 

another to achieve their objectives. (Schaumann et al., 2015) 

Thus, regardless of the apparent advantages of using ABS rather than DES, to be 

able to describe an agent’s state and location and the impact of the social and 
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physical environment on individual agents, the use of ABS alone would not be 

appropriate in our case.  

To address this issue, Simeone et al. and Kalay, Schaumann et al. have proposed 

the Event-Based Modelling approach, which is a feasible trade-off between top-

down and bottom-up methods. 

EBM bypasses ABS limitations by using the Human Behaviour Narrative, whereby 

high level decision-making is set to co-ordinate the actors’ sequences of activities 

and cooperation. Conversely, agents retain the low-level decision-making which 

expresses bounded rationality. This allows them an autonomous response to 

local conditions, such as path-finding, avoiding obstacles and triggering events, 

which ultimately is what a current ABS can manage.  

Such a choice is reasonable for our purposes, because it avoids situations in which 

the simulation is blocked due to insufficient agent reasoning capabilities when 

performing complex sequences of behavioural patterns. These are displayed by 

the EBM, effectively mirroring the structured organisation of hospital ward 

workflow. 

 

3,4 CONCLUSIONS 
 

The more we study human behaviour from a cognitive point of view (i.e. the 

mechanisms that control behaviour), by selecting a specific form of behaviour 

(e.g. studying the cognitive process which attains an understanding of 

dimensions in space) the more we can advance its description while attempting 

to discover how it develops and why it leads to situations occurring. This fact 

implies that we can then generalize about a specific case study for all types of 

different settings. This is true, as here we are not referring to the chosen case 

study, namely spatial events, but rather focusing on the underlying cognitive 

mechanisms behind human understanding of the world, which naturally 

contributes to the effect on human spatial behaviour by influencing him to 

perform (or not perform) a certain activity in a certain manner. Broadly speaking 
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we can, using a certain degree of approximation, fit our findings to different 

contexts if these rely on the investigated human cognitive process. 

On the other hand, since it is insufficient on its own, a thorough depiction of a 

specific cognitive process underlying specific behaviour prevents us from 

describing the environment complexity composed of interrelated behaviour, 

situations and spaces. It means that if we want to represent the dynamic 

evolution of a case study in terms of space and time, we must reach a trade-off. 

We must find a level of description which is capable of representing how 

something happens both coherently and realistically. Moreover, it should allow 

us to tackle a high degree of real-life situations evolving over time in a 

complicated setting, such as hospital departments. 

 

RESEARCH ENQUIRY 

LEVELS 

LEVELS OF 

REPRESENTATION OF 

THE SUBJECT 

RESEARCH APPROACHES 

TO STUDY THE SUBJECT 

   

UNDERSTANDING 

AND DESCRIPTION OF 

WHY IT HAPPENS 

HUMAN SPATIAL 

COGNITION AND 

PERCEPTION 

FUNCTIONS 

COGNITIVE SYSTEM 

ARCHITECTURES 

   

UNDERSTANDING 

AND DESCRIPTION OF 

HOW IT HAPPENS 

PROCESSES OF HUMAN 

SPATIAL MOTIVATION 

AND BEHAVIOUR 

HUMAN SPATIAL 

BAHAVIOUR AND 

DECISION-MAKING 

SYSTEMS 

   

UNDERSTANDING 

AND DESCRIPTION OF 

WHAT HAPPENS 

INTERACTION 

MECHANISMS ARISING 

AGENTS AND SPACE 

EVENT-BASED MODEL 

AND SIMULATION OF THE 

PHENOMENA 

   

Table 6 – Levels of understanding and representation of human behaviour. 
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We should consider that the levels of understanding and representation for the 

human behaviour systems, definite in the Table 6, are not directly scalable, even 

if they are strictly related until those cases when it is not easy to define a border 

between them. It means that good cognitive architecture (intelligence structure 

and functions) cannot represent the development of human behaviour (which 

occurs in space) and a good simulation of a human behaviour has nothing to do 

with the underlying human cognitive architecture. It is up to the modeller to 

define to what degree particular aspects of the different description levels should 

be taken into consideration in order to shape the best model for the specific case 

study and its purposes.  

To facilitate this process, Benenson reports a detailed description of agent 

properties mirroring the level of detail which may be needed to effectively 

represent the phenomenon under study, Table 7. 

 

 
Table 7 - Properties of agents in Multi-Agents Systems (Benenson and Torrens, 2004) 

 

Nevertheless, as the table hypothetically shows, broadening the description of 

the agent cognitive abilities means decreasing the possibility of simulating a 

complex scenario, namely multiple and heterogeneous agents and activities 

dynamically evolving over time, Fig. 21.  
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Fig. 21 - Supposed basic relationship between agent complexity and narrative complexity in 

simulations. 

 

Conversely, the aim of simulating complex scenarios implies the consideration of 

only certain agent properties (capabilities) and not the handling of complex 

cognitive abilities, which in real life drive processes up to some extent or are at 

the very least fundamental. 

We find ourselves at the middle point, in which the system simulates complicated 

series of events while taking into consideration agent simplified decision-making 

processes by means of the Human Behaviour Narrative and the Narrative 

Management System. 

The EBMS framework that we use shows a narrative made up of a sequence of 

events (e.g. patient check, medicine distribution, visits) which are pre-ordered in 

a logical fashion. The simulation platform then visually represents this narrative, 

allowing the agents some degree of freedom. 

Agents within the simulation can only do certain things which have been 

previously explained to them through a sequence of rules of conduct; therefore, 

they act accordingly.  

0

1

2

3

4
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Simplified correlation between actor inner 
complexity and scenario complexity in 

simulations 
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It may be the case that the narrative changes unpredictably because unplanned 

events arise from the contextual situation, modifying the sequence of events. 

Therefore, the actors must act in response to the new script, meaning that the 

order of the list of actions has changed, even if the rules of conduct have not. It 

implies that how the actors could behave is pre-coded and that it is the Narrative 

Management System which manages the top-down decision-making process of 

actors. This is not encoded in the actor himself, but is merely a property of the 

system.  

The actor is ordered by the system to perform his next scheduled activity if a pre-

condition arises, displaying a certain degree of freedom in decision-making 

depending on the coded rules of conduct. How he must accomplish the action is 

out of his decision capability and possibility, since there is no AI engine in the 

system. 

In an agent-based system, with learning agents, if the agent decides to perform 

the “drink water behaviour”, he takes a glass and a bottle of water, fills the 

former and drinks. To be believable, the agent must show a good trade-off 

between the task which he must achieve and the autonomy to adapt himself to 

the environment and modify his planned behaviour if needed. If the glass is not 

there, he must find different solutions, such as drinking from the bottle, so that 

he is capable of autonomously finding a solution to overcome an unpredictable 

problem. If he is an agent without cognitive abilities forced into a rule-based 

routine system, he is stuck because he will continuously repeat the same pre-

planned sequence of actions without reaching the goal.  

Weiss and Woolridge explain intelligence in agent-based systems (Weiss, 2000) 

(Wooldridge and Jennings, 2009) : 

“Agents must operate robustly in rapidly changing, unpredictable, or open 

environments where there is a significant possibility that actions can fail. An 

agent will not have complete control over its environment, it will have at best 

partial control, in that it can influence it. This means that the same action 
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preformed twice in apparently identical circumstances might appear to have 

entirely different effects and it may fail to have the desired effect. 

In certain conditions this explanation is simplified to run well; in particular, it will 

crash in an environment that changes faster than the procedure velocity, in the 

case when the reason for executing that procedure, the goal, does not remain 

valid until the procedure terminates. 

Hence in domains that are too complex for an agent to observe completely, or 

where there is uncertainty in the environment, blindly executing a procedure is a 

poor strategy. 

In such a dynamic environment, an agent must be reactive, it must be responsive 

to events that occur in its environment, where these events affect the agent’s 

goals or the assumptions which underpin the procedures that the agent is 

executing. 

So, the key problem of comprehending what could be defined as intelligence for 

an agent becomes the objective to achieve an effective balance and integration 

between goal-oriented and reactive behaviour”. 

 

 “We want agents that will attempt to achieve their goals systematically, perhaps 

by making use of complex procedure-like patterns of action. But we don’t want 

our agents to continue blindly executing these procedures in an attempt to 

achieve a goal either when it is clear that the procedure will not work or when the 

goal is for some reason no longer valid. In such circumstances, we want our agent 

to be able to react to the new situation, in time for the reaction to be of some use. 

However, we don’t want our agent to be continually reacting and hence never 

focusing on a goal long enough to actually achieve it.” 

 

From a simulation observer’s point of view, if the actor uses some reasoning 

ability and updated experience (through memory) to overcome the problem or if 

the system architecture has embedded the solution to the specific problem (no 

glass left), there is no difference in letting the actor’s behaviour follow a different 
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track to the script. Neither does this change from a decision-maker’s point of 

view, whose foremost concern is the use of this framework to exploit the main 

environmental variables which could affect human behaviour in realistic 

scenarios. However, this is as long as the narrative is sufficiently detailed to 

depict all the most important situations which may occur in such a type of layout. 

This latter condition, the case for this study, involves extensive work in building 

a narrative with as many branches of evolution as possible; the better the 

narrative, the more convincing the simulation. Writing the narrative relies on a 

researcher’s in-depth knowledge of the context and of the numerous potential 

situations which may arise when changing the script.  

This knowledge is tested when the system architecture, which manages the 

script, can rearrange the script in a number of different ways (mirroring the wide 

range of possibilities that can arise from unplanned situations using system 

control parameters) without an expert recognising its difference from real life 

conditions. 

If, for example, the problem is a lack of water in the fridge, the agent must display 

good decision-making to choose among the many different possibilities (such as 

give up the action, drink directly from the sink, go to the beverage machine to 

buy a new bottle, or other). This is correlated to the actor’s psychological and 

physiological status, motivations and desires which drive certain choices, 

including his capacity to detect and adapt autonomously to the possibilities 

offered by the contextual environment.  

More than that, the major property of a liveable actor is his capacity of projecting 

himself into the future, planning in advance situations which may come about 

(such as that described previously) thanks to his cognitive ability (Vernon, 2014). 

This ability acts as a constant function which relates variables exploiting the 

relational quality of life development (Bateson, 1977). 

The Event-Based method tries to capture and effectively characterize the 

relational structure between the three circles, comprising the essence of real-life, 

focusing on the overlap between different aspects of reality, mimicking human 
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cognitive ability and simplifying them by the use of space-semantic, pre- and 

post-conditions to instruct activities to occur.  

It assumes that the agent’s decisions are based on what people think is true about 

the contextual situation and on what they want to achieve. Therefore, the 

knowledge of the situation could be translated into a tree-shaped if-then rules 

system up to the desired level of accuracy inside the Narrative Management 

System.  

Using these parameters does not mean knowing the end of the story before fully 

simulating it in a virtual environment. They merely provide certain conditions for 

its development if certain conditions arise, enlarging the spectrum of options 

available for an agent’s behaviour accomplishment and making the simulation 

more realistic. This trade-off brings the simulation to a level of depth which 

ensures plausible agent behaviour, since the performance of such an agent varies 

automatically. Moreover, such an approach does not avoid considering how the 

human cognitive system works in relation to the extent to which it is needed to 

simulate realistic behaviour, without conflicting or violating real-life physical 

laws. 

Nevertheless, detailed studies should support this type of system architecture by 

providing data to exploit the correlations between environmental parameters 

and agent choices and learning (which represent the ways in which agents 

develop behaviour over time and receive feedback from the experience). These 

concerns do not compromise the structure of the system. 

In this respect, our hidden agenda is to move straight on from the central point 

of the table shown above, maintaining the narrative level of complexity and 

forcing the system architecture to represent more likely human perception 

processes (dashed arrow in Fig. 21). This has been achieved by detailing agents’ 

features and through an expert system architecture which works as a medium to 

relate an agent to his surroundings in a more realistic way.  
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4 DEVELOPED MODEL 

 
4,1 MODELLING HAI PROPAGATION THROUGH THE CONTACT ROUTE 

TRANSMISSION  
 

4,1,1 INTRODUCTION  

 

The role of the model can be seen as a crucial step along a path that moves from 

the analysis of human traits and cognitive functions through the observation of 

human spatial behaviour and capabilities towards the realization of plausible 

computer simulations of them. 

As noted above, decision makers relying solely on the analysis phase are unable 

to ensure acceptable outcomes. On the other hand, the computer simulation of 

phenomena pathogens contamination cannot ignore the modelling phase, 

which, located upstream in the work flow, sets the ground and the boundaries in 

which the simulation can operate, allowing for an understanding of alternative 

developments of system patterns and for the elaboration of what-if scenarios. 

 

Coen concurs: “When designing the structure of a model it is necessary to strike 

a balance between realism and generality. A model needs to be complex enough 

to capture all those essential features of the process under study, ensuring 

realism and providing sufficient information so that all questions can be 

addressed using the model framework” (Coen, 2012). 

 

The quality of a model is largely a function of its fitness for the purpose, rather 

than of its capacity to describe the real system (Box and Draper, 1987). Therefore, 

the model must reach a manageable trade-off between realism and usefulness. 

Key factors must be carefully chosen to guarantee completeness. Situations 

where factors provide only a negligible contribution to the model should be 

avoided. However, such a passage is not straightforward. 
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During the model building process, the abstraction phase is critical. When 

creating a new and above all living model (as opposed to a mechanical project 

which adheres to rational laws of the physical world), it is not possible to know 

beforehand what the essential variables will be.    

 

It is often the case that if the completed model is incapable of reproducing the 

total behaviour under examination, it is because the scale of detail chosen is 

insufficient for the inclusion of determining variables. 

 

Coen continues, arguing: “Yet models must not be too complex lest conclusions 

are only generalizable to a small number of situations of little interest for much 

of the health care public. As complexity increases, providing information for a 

model may become prohibitive, less tools for analysis may be available for 

checking errors in formulation, and exact solutions may not exist so that 

approximations are needed (Coen, 2012). 

 

Indeed, the more variables are used as input and allowed to vary, the greater the 

variance in the model prediction can be expected. This could lead to a situation 

in which having incorporated all uncertainties, the model prediction varies so 

wildly as to be of no practical use (Saltelli, Ratto and Andres, 2009). 

 

A last consideration is that all complex realistic models have a philosophical 

problem. They may never mirror the precise circumstances of reality and 

estimated parameters may not be truly representative of the target situation; 

even when abundant and accurate data is available for a specific setting, it is by 

no means certain that it is representative of a common, “true” underlying model. 

A more pragmatic approach, such as that presented here, is to illustrate a point 

by using a set of parameter values vaguely consistent with the observed fact 

(Coen, 2012). 
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The present study proposes a model which is designed to be as flexible and open 

as possible to adapt to various situations, such as different hospital units, 

pathogens, agents involved and activities. It also needs to be easily modifiable to 

take into account new areas of interest, with the aim of setting out wider and 

more effective boundaries to understand the circumstances of HAIs from 

exogenous cross-infection by a contact transmission route. 

 

To date there are no general rules to define HAI spreading in a hospital ward 

setting and it is not possible to propose universal responses. Therefore, the 

model developed in our work is based on international scientific literature on 

HAIs. 

 

A number of well-known scientific factors have been considered, accounting for 

a full current understanding of the phenomenon, while others whose role is still 

uncertain or unknown have not. This means that the model is based on 

assumptions deriving from the problem domain and thus tries to achieve the 

same level of accuracy and coherent vision with the references from which it is 

drawn. 

 

When designing a model based on agents, e.g., the model arises from the 

consideration and definition of the agent's environment, the agent's 

characteristics and the agent's interaction (physical and social). The worth of the 

model depends on how local conditions have been interpreted (e.g., patients’ 

activities, aetiological agent, prevention and intervention strategies, and so on). 

These choices become design decisions unique to the context and objectives of 

the model (Friesen and McLeod, 2014). Such considerations must fit with the 

expression of the technique chosen to model the agents, which in turn represents 

the scale of the phenomenon representation that is able to deal with the 

simulation.  
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Our work develops using Event Based Modelling and Simulation (EBMS) 

techniques to investigate HAI transmission by contact and its propagation 

dynamics within a hospital ward. Indeed, the topic of HAI serves as a foundation 

for the conceptual modelling, in fact we investigate the contamination risk 

through the behaviours of agents. To such extent HAI is a lens to interpret agents’ 

spatial behaviour. HAI is also worthy to expand on the potentialities which the 

EBMS technique offers us. 

 

The purpose of building a simulation in a Unity 3D environment with different 

virtual scenarios was to visualise contamination transmission and be able to 

assess the potential outcome on the infection spread caused by the 

implementation of control strategies. Of further interest was to understand the 

effects of different architectural design and space distribution on the 

propagation of the pathogen. These were the key factors which dictated the 

development of the model. 

 

Considering the agent (either actor or space), pathogens and activities, the 

following Fig. 22 represents the elements involved in the model of transmission 

dynamics. The features of each element will be described below. 
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Fig. 22 - Components framework for the contamination propagation. 

 

In order to help understand the framework, key factors concerning the elements 

of our model are put forward in the following Table 8: 

 

 C Ct It Cl Du Ty Tr Dt 

Actor 
    

    

Space 
 

  
 

    

Activity     
  

  

Pathogen       
  

 

• C = Contamination level; 

• Ct = Carrier threshold; 

• It = Infection threshold; 

• Cl = Cleanness factor; 

• Du = Duration feature; 

• Ty = Type factor; 

• Tr = Transmissibility factor; 

• Dt = Decaying timer. 
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Finally, it must be stated that the system model was built in a modular way, 

allowing it to develop by elaborating descriptions of the phenomenon and 

plugging and unplugging components as and when required by the case study 

application.  

 

4,1,2 ACTORS 

 

The model developer’s initial task is the selection of actors. In our EBMS we 

model four types of actors: 

• Patients;  

• Nurses; 

• Physicians;  

• Visitors. 

 

In most hospital ABMs, the logical selection of agents includes patients and 

hospital staff members. Basic ABMs for hospitals may only include patients, 

nurses, and physicians, while more detailed ABMs include allied healthcare 

providers who also operate within a hospital, potentially reaching as far as 

including visitors and facility personnel not directly involved in healthcare 

delivery (e.g. maintenance staff) (Friesen and McLeod, 2014) Fig. 23. 

 

 
Fig. 23 - Hospital actors with their Contamination Status Bar 

 



152 
 

In health-care facilities, actors can be the sources of infection and of preceding 

contamination. Infected actors, e.g. patients, or simple carriers of pathogenic 

microorganisms admitted to hospital are potential sources of infection for other 

patients, staff and visitors. 

For instance, if a person tests positive but has no symptoms, this is known as C. 

difficile colonization rather than an infection (Frequently Asked Questions about 

Clostridium difficile for Healthcare Providers | HAI | CDC, no date). Patients who 

later become infected (sick) become a further source of infection in the hospital 

(World Health Organization, 2002).  

To visualise this condition each actor is equipped with a Contamination Status 

Bar, which discretely changes colour depending on the amount of bacteria 

present on the actor, i.e. his level of contamination, to ease status display Fig. 24. 

This modelling choice, which differs from the common dual-purpose 

representation of condition, allows us to simulate the changes in each actor’s 

internal pathogen population over time. This can lead, among other things, to the 

possibility of bacterial exchange during actor-interaction events.  

 

 
Fig.24 – Contamination status bar. 

 

Inside the bar, two thresholds are present and modifiable to represent each actor 

as non-colonized, colonized or infected Fig. 25. 

 

 
Fig. 25 -  Contamination status bar with thresholds. 

 

How do these two thresholds work and how can they be set? 

 

https://en.wikipedia.org/wiki/Colonisation_%28biology%29
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The Black Threshold “Ct” accounts for the presence of a minimum level of 

pathogen, indicating the limit when an actor is labelled non-carrier or carrier. 

However, our formalization is capable of accounting for a minimum, yet present, 

contamination exchange even for the lowest level of contamination.  

Therefore, only formally it can be seen that: 

 

• Non-colonized = non-carrier  

• Colonized or infected = carrier 

 

The Red Threshold “It” accounts for the infection limit. 

Health care settings are an environment where both infected people and people 

at increased risk of infection congregate. Patients are constantly exposed to a 

variety of microorganisms during hospitalization. Contact between the patient 

and a microorganism does not by itself necessarily result in the development of 

clinical disease for two main reasons:  

 

1) Minimal Infective Dose:  

The most important determinants of infection are the nature and number 

of the contaminating organisms. Microorganisms range from the 

completely innocuous to the extremely pathogenic: the former will never 

cause an infection, even in immunocompromised individuals, while the 

latter will cause an infection in any case of contamination. When only a 

few organisms are present on or in a tissue, an infection will not 

necessarily develop. However, when a critical number is exceeded, it is 

very likely that the host will become infected. For every type of 

microorganism, the minimal infective dose can be determined; this is the 

lowest number of bacteria, viruses, or fungi that cause the first clinical 

signs of infection in a healthy individual. For most causative agents of 

nosocomial infections, the minimal infective dose is relatively high. For 

Klebsiella and Serratia spp. and other Enterobacteriaceae, for example, it 
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is more than 100 000, but for the hepatitis B virus it is less than 10 

(Chartier et al., 2014). 

 

2) Susceptibility:  

Whether or not a tissue will develop an infection after contamination 

depends upon the interaction between the contaminating organisms and 

the host. Healthy individuals have a normal general resistance to 

infection. Health-care workers are thus less likely to become infected 

than patients. 

Patients with underlying disease, newborn babies, and the elderly have a 

decreased resistance and will probably develop an infection after 

contamination.  

Important patient factors promoting acquisition of infection include 

decreased immunity status, underlying disease and diagnostic and 

therapeutic interventions; malnutrition is also a risk. 

Many inpatients have co-morbidities that put them at special risk of 

infection such as patients with chronic diseases such as malignant 

tumours, leukaemia, diabetes mellitus, renal failure or HIV cases, 

diabetics, bone-marrow transplant patients, those on chemotherapy and 

those undergoing surgery. In fact, they have an increased susceptibility to 

infections with opportunistic pathogens. The latter are infections with 

organisms that are normally innocuous, e.g. part of the normal bacterial 

flora in the human, but may become pathogenic when the body’s 

immunological defences are compromised.  

Immunosuppressive drugs or irradiation may lower resistance to 

infection. Injuries to skin or mucous membranes bypass natural defence 

mechanisms. In effect, local resistance of the tissue to infection also plays 

an important role: the skin and the mucous membranes act as barriers in 

contact with the environment. Infection may follow when these barriers 

are breached. Local resistance may also be overcome by the long-term 
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presence of an irritant, such as a cannula or catheter; the likelihood of 

infection increases daily in a patient with an indwelling catheter.  

Many modern diagnostic and therapeutic procedures, such as biopsies, 

endoscopic examinations, catheterization, intubation/ventilation and 

suction and surgical procedures increase the risk of infection. 

Contaminated objects or substances may be introduced directly into 

tissues or normally sterile sites such as the urinary tract and the lower 

respiratory tract (World Health Organization, 2002) 

 

In order to describe a condition arising from the combination of the Minimal 

Infective Dose for that kind of pathogen and of the Susceptibility Factor of each 

actor, the infection threshold limit can be set differently and can be modified for 

each actor, marking the passage between not infected and infected status Fig.26. 

 

 
Fig. 26 – Infection Limit. 

 

As a result, we can also show the lower or higher risk of HAIs for certain actors, 

e.g. accounting for the presence of susceptible patients. It is possible to run a 

scenario in which a percentage of total patients have a predisposition to the 

acquisition and development of infection caused by a specific pathogen, as in the 

case of the presence of immunocompromised individuals or virulent pathogens, 

Fig. 26. 

 

 

Minimum risk: 

 

Medium risk: 
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High risk: 

 
Fig. 26 – Infection threshold sets for different risk conditions. 

 

This reflects the Table 9 on the differential HAI risk by patient and interventions: 

 

  
Table 9 - Differential HAI risk by patient and interventions (World Health Organization, 2002) 

 

It is important to note that in our model we suppose that patients are permanent 

carriers after colonization and do not yet consider the process of patient 

decolonization. In the case of MRSA, this process involves a regimen aimed at 

reducing or eradicating the presence of bacteria on the skin of a patient, which 

can be done effectively through the use of antibiotics and chlorhexidine (Pethes, 

Ferenci and Kovács, 2017).  

Therefore, in our model patients carrying germs on their skin, nose or injured skin 

act as a constant source and this assumption affects the pathogen transmission 

dynamic, which seems reasonable comparing to the short length of the 

simulation. Neither do we consider antibiotic usage protocols, which obviously 

have a key impact on blocking the emergence and spread of HAIs.  
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Nevertheless, the model is open and it is worth noting that in future it will be 

extended to encompass these further features.  

 

 

Asymptomatic carrier: 

The source of an outbreak of HAI may be any colonized actor (carrier) who at the 

same time is an asymptomatic carrier (not-infected). Indeed, asymptomatic 

carrier actors are contaminated or colonized by potentially pathogenic 

organisms, e.g. pathogen strains are in different parts of the host’s body, but do 

not develop any infection.  

Many HAIs, such as MRSA and C. difficile, may stay in a healthy people for a long 

time without causing any clinically recognisable symptoms, but still have the 

ability to transmit to others, such as susceptible patients (Meng et al., 2010). 

Later on, if symptoms of clear infection are revealed, it will make the potential of 

transmission apparent to that person and/or to managerial staff and the 

recognized infected host will be dismissed from patient care duties.  

How does this happen? One possibility is that the infection threshold may change 

for the same actor under different conditions. Healthy people are naturally 

contaminated. Faeces contain about 1013 bacteria per gram, and the number of 

microorganisms on skin varies between 100 and 10000 per cm2. Many species of 

microorganisms live on mucous membranes where they form a normal flora. 

None of these tissues, however, is infected. Microorganisms that penetrate the 

skin or the mucous membrane barrier reach subcutaneous tissue, muscles, 

bones, and body cavities (e.g. peritoneal cavity, pleural cavity, bladder), which 

are normally sterile (i.e. contain no detectable organisms). If a general or local 

reaction to this contamination develops with clinical symptoms, there is an 

infection (Hygiene and infection control). In epidemiology, asymptomatic carriers 

are normally known as colonised persons while clinical symptomatic carriers are 

known as infected persons.  
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Our model visualizes these states, as the system engine can update the value of 

contamination of an actor in real-time in line with his interaction with others and 

with the environment and compare it with his infection threshold limit, exploiting 

the actor’s contamination condition. As an example, let us consider the case in 

which two actors with the exact same amount of pathogens expresses a different 

condition according to the relative level of their infection threshold Fig. 27. 

 

Asymptomatic Carrier = Colonized actor 

 

 

Symptomatic Carrier = Infected host 

 
Fig. 27 Infection threshold and contamination level for asymptomatic and symptomatic carrier. 

 

Asymptomatic carriers are very difficult to identify and consequently prevent 

these actors from transmitting the pathogen to other susceptible actors (mainly 

patients). The existence of asymptomatic carriers and the lack of a pre-emptive 

screening strategy in most hospitals implies that detailed transmission dynamics 

of HAIs are normally a hidden process and are difficult to observe (Meng et al., 

2010).  

For this reason, active surveillance policy is carried out in some cases, i.e. patient 

screening in the hospital, at admission and with some frequency during their stay. 

This strategy allows for the detection of asymptomatic carriers so that 

procedures can be taken to prevent further transmission. 

 

Our model uses colours to visualise the changes to the contamination status of 

each actor, thus allowing us to understand this phenomenon. Colonised actors 

are essential for infection propagation since they can transmit pathogens to 
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other actors (e.g. susceptible patients) leading to the development of infections. 

Therefore, our model fully takes into account the range of the contamination 

status of an actor as the transmission mechanism works independently of the 

semantic classification of the actor’s condition.   

 

4,1,3 OBJECTS AND SPACES 

 

As a source of infection, the hospital environment is an extremely complex, 

heterogeneous entity and difficult to model explicitly. Hospital surfaces can 

harbour live HAI agents (e.g. Staphylococci, Enterobacteriaceae, C. difficile spores 

and so on). The problem is that even where it is possible to establish associations 

between bacterial flora on patients and their immediate environment, the 

direction of the causal arrow is not known (Coen, 2012). 

Generally, ABMs developed to model infection spread include the role of 

equipment and hospital textures as agent-vectors for infection, e.g. medical 

instruments, room furniture and so on (Friesen and McLeod, 2014).  

 

Actors behave in space according to the accomplishment of various activities 

specific to their own function, such as medicine distribution, visiting relatives and 

patient check and environment furniture and medical equipment are used during 

the activities. Even if objects such as medical equipment do not have their own 

initiative, they can be contaminated with pathogens and became vectors. Thus, 

we model a status bar for them which accounts for their contamination level Fig 

28. Obviously, being inanimate objects, they cannot develop any infection.   
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Fig. 28 - Common hospital objects, equipment and medical equipment and their Contamination 

Status Bar 

 

The same consideration is valid for space as the environment and its related 

furniture can be a carrier of pathogens Fig. 29. It is important to note that 

different levels of asepsis are needed for each space. Therefore, each one could 

have its own limit as to what could be considered «dirty» or «clean», but from 

the point of view of pathogen transmission, this label is irrelevant.  

 

       
Fig. 29 - Common hospital spaces and furniture and their Contamination Status Bar. 

 

Because it is not possible to consider all the objects and equipment present in a 

hospital ward, we consider that objects belong to the space or to the actor 

depending on whether they are explicitly utilized by actors in an activity which 

has been already modelled and simulated by the system or not. Some examples 
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could be door knob, tap and more. A contaminated object as part of the room, 

its contamination level is considered as part of the space. 

 

A contaminated object such as a cart, is part of the simulated activity (medicine 

distribution) which implies that its contamination level is considered as part of 

the actor. In fact, patients could be colonized even if pathogen strains are on 

different parts of the host’s equipment or carried objects. Thanks to this 

assumption, we can deal with the hypothetical representation of bacteria 

transported by common objects like smartphones. 

During the development of the simulation, actors interact with each other and 

with the environment. This interaction is the mechanism by which HAIs 

transmission occurs in the virtual hospital ward Fig. 30.  

 

 
Fig. 30 - Example of patient-check activity performed with medical instruments and without 

gloves. 

 

4,1,4 PATHOGEN DECAYING FEATURE 

 

The lifetime of a specific pathogen affects how contamination propagates. In our 

model, actors, objects and spaces may be equipped (if needed) with a decaying 

timer “Dt”, which counts the decreasing level of contamination from the moment 
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of their contamination and whose pace is set depending on the type of pathogen. 

Moreover, the presence of the decaying timer changes the vector label from 

“permanent” to “transient” and the actor from “reservoir” to “carrier”.  

In the specific case of infected actors, the pathogen may reproduce and therefore 

the level of contamination, without external intervention, will grow accordingly 

(this occurrence is not yet considered or simulated).  

In our case study in colonized actors, the level of contamination is steady unless 

specific procedures are followed, i.e. hand hygiene and decolonization. In 

addition, under certain conditions an inanimate environment could be a reservoir 

of pathogens (e.g. Clostridium Difficile). 

As verified HCWs, hands could become colonized during patient care.  

Moreover, Pittet demonstrates that in optimal conditions (temperature, 

humidity, absence of hand cleansing, or friction), microorganisms not only 

survive on hands, but continue to multiply. In the absence of hand hygiene action 

bacterial contamination increases linearly over time (Pittet et al., 1999), Fig. 31. 

 

 
Fig. 31 - Organisms survival on HCW hand: (A) Microorganisms, in this case Gram-positive cocci, 

survive on hands. (B) When growing conditions are optimal (temperature, humidity, absence of 

hand cleansing, or friction), microorganisms can continue to grow. (C) Bacterial contamination 

increases linearly over time during patient contact (Pittet et al., 2006). 

 

Due to the apparent disagreement between different research studies, we chose 

to model this aspect of the phenomenon according to the scope of our model.  
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On the one hand, where its purpose is only to represent a few hours of daily work 

flow, we have inserted the decaying counter only for spaces. In addition, it will 

only run for those empty spaces such as corridors where no actors stay 

permanently, and no specific treatment is carried out. 

On the other hand, to permit the results of the simulation to account for “security 

conditions”, we should consider the worst-case scenario. For instance, let us 

consider the fact that virulent pathogens such as MRSA bacteria can live more 

than 90 days on different surfaces and that this period is much longer compared 

with the average patient stay in a hospital setting (Kramer, Schwebke and Kampf, 

2006). Using a simulated time span in our model, we can assume that the lifetime 

of the pathogen is endless on inanimate surfaces (objects, furniture and medical 

equipment) until microorganisms are eliminated through cleaning or disinfection 

procedures. However, in future case studies our model is open to applying the 

decaying timer to certain types of actors, e.g. HCWs and spaces full of actors. 

 

4,1,5 TRANSMISSION FRAMEWORK 

 

To simulate the infection propagation, we identify the sufficient and necessary 

conditions for transmission to occur. Bacteria, viruses and fungi could be 

introduced to a hospital ward through colonized or infected people or objects.  

Patients and health-care workers (HCWs) frequently interact, creating the 

opportunity for the transmission 

of infectious diseases. If someone becomes colonized with a pathogen, germs 

could spread by way of HCWs to many others within the hospital population 

(Barnes et al., 2010). It is also important to consider patient-to-patient routes 

when there is a non-negligible or high probability that two patients come into 

direct contact such as in a paediatric ward or in the case of room sharing. 

The primary source of most hospital epidemics is infected patients, i.e. patients 

contaminated with pathogenic microorganisms. These germs are often released 

into the environment in very high numbers, exceeding the minimal infective 
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dose, and contaminate other patients who subsequently develop (hospital-

acquired) infections (Chartier et al., 2014). 

For instance, strains of MRSA can survive and remain viable on dust particles or 

skin scales for many weeks and months. It has also been verified that low 

densities of MRSA can initiate infections (Pethes, Ferenci and Kovács, 2017).  

Pathogen transmission or colonization does not mean infection in itself, but 

rather that the pathogen moves from one agent to another. However, as pointed 

out in the section above (Actors), a likely result is that many patients fall victim 

to hospital-acquired infections. 

 

As noted in paragraph 2,1,7, there are two ways to acquire HAI: 

-Endogenous infection (self-infection or auto-infection): the causative agent of 

the infection is present in the patient at the time of admission to hospital but 

there are no signs of infection. The infection develops during the stay in hospital 

because of the patient’s altered resistance. 

-Exogenous cross-contamination followed by cross-infection: during the stay in 

hospital the patient comes into contact with new infective agents, becomes 

contaminated, and subsequently develops an infection. 

 

While there is no clinically significant difference between endogenous self-

infection and exogenous cross-infection, the distinction is important from the 

viewpoint of our modelling and simulation purposes. In our study, we are 

interested in exogenous cross-infection.  

 

As regards the routes of transmission, our area if focus is the contact route (direct 

and indirect). 

 

Direct contact : 

Direct contact between patients does not usually occur in health-care facilities, 

with the exception of particularly crowded locations such as waiting rooms. It is 
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more probable that an infected health-care worker can touch a patient and 

directly transmit numerous microorganisms to the new host. 

During general care and/or medical treatment, the hands of health-care workers 

often come into close contact with patients. Thus, the hands of the clinical 

personnel are the most frequent vehicles for HAIs.  

Transmission by this kind of direct route is much more common than vector-

borne or airborne transmission or other forms of direct or indirect contact 

(Chartier et al., 2014). However, many other common social interactions such as 

shaking hands, touching for empathy and so on, which do not trigger an intrinsic 

need to wash hands although if performed in a health-care environment, they 

may lead to hand contamination with the risk of cross-transmission (World 

Health Organisation, 2009).   

 

Indirect contact  : 

Indirect contact occurs when infected actors touch and contaminate an object, 

an instrument, or a surface. Subsequent contact between that item and another 

actor is likely to contaminate the second individual who may then develop an 

infection. 

 

Droplet transmission : 

Droplet transmission refers to droplets > 5 micron in diameter that fall rapidly 

under gravity to the ground or onto objects and are transmitted only over a 

limited distance, i.e. < 1 m, which may transmit germs directly or indirectly 

(Atkinson et al., 2009) 
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Fig. 32 - Routes of contact transmission, direct, indirect and droplet and their possible 

combination. 

 

From a modelling point of view, it is useful for us to classify the contact-mediated 

pathogen transmission mechanism into the parameters of: 

 

Touch-based (actors and objects). When someone touches a person carrying the 

bacteria or when someone touches an object that a contaminated person has 

touched, transmission occurs, Fig. 33.  
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Fig. 33 - Sequence of events with touch-based transmission, with susceptible and without 

susceptible patients. 

 

Environment-based (space and furniture). Transmission occurs through the 

environment when a contaminated person interacts with a space (e.g. enters or 

passes through) and later, or at the same time, someone else interacts with the 

same space, Fig. 34. 

 
Fig. 34 - Sequence of events with environment-based transmission, without susceptible 

patients. 
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Therefore, we can state that touch-based transmission is represented by direct 

transmission (person-to-person) among patients, healthcare workers and 

visitors, and through indirect transmission (person-to-object-to-person) by the 

means of objects or medical equipment which belong to one of the involved 

actors. 

Environment-based transmission is represented by indirect transmission 

(person-to-surface-to-person) between actors through the means of objects and 

furniture belonging to the environment. Environment-based transmission usually 

happens for promiscuous use of space. When an actor interacts with certain 

furniture in the hospital room and the bacteria is transmitted to that surface and 

if another actor has later contact with the same surface, he/she acquires the 

bacteria.  
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4,2 TRANSMISSION FLOW FORMALIZATION  

 

4,2,1 INTRODUCTION 

 

Whenever an interaction happens by touch or by environment (between actors 

or actors and spaces), a pathogen transmission occurs. There is a wide range of 

factors which affect the strength of the transmission flow influencing the 

contamination status of the receiving actor, changing him from non-colonized to 

colonized and infected and thus from non-carrier to carrier. Alternatively, if the 

bacteria are removed by cleaning procedures, the contamination status of the 

actor consequently decreases at the same time as the amount of pathogens 

transmitted by contact.  

The section on the transmission framework explains how pathogens are 

transmitted by contact routes, but to assess the strength of transmission we still 

need to determine the quantity of the contamination flow, translating the 

following question into a formula. 

 

How much contamination is transferred by contact (interaction) with 

contaminated actors (or actor-space and vice versa) during the development of 

an activity or during permanence in a given space? 

 

So that the following reasoning is valid for actor-actor transmission and for actor-

space (and space-actor) transmission, the form of the flow equation is practically 

the same. In the system, there are two different functions which calculate the 

equation in the two cases. Therefore, different values of the variable factors can 

be set for each case.  

 

Firstly, we made some reasonable assumptions:  

• If actors, objects and spaces involved in an event have the same level of 

contamination, there is no gradient between them and therefore no flow 
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of contamination, thus they will maintain their initial level of 

contamination. 

• If the actors with different levels of contamination enter into contact each 

other (or with a space or object) there will be a flow of contamination 

from that with the major level to those with the minor level, increasing 

the contamination level of the less contaminated (agent, object or space). 

 

How does this flow work? 

We should consider the main aspects which clarify the major effects of the 

phenomenon. Therefore, we can focus on the following aspects of HAI 

transmission; the characteristics of an activity, the type of pathogen and the 

compliance and effectiveness of prevention policies (hand washing or ward 

cleaning). 

 

The first aspect depends on the activity. We introduce “Ty” Type of activity 

coefficient.  

Thanks to this variable we can represent each risk level of acquiring infections 

which varies with the type of activity (see table on the differential HAI risk by 

patient and interventions) and depending on the need and the type of physical 

contact between agents.  

Therefore, we could assume that there is no contact and therefore no 

opportunity to transmit the pathogen during zero-risk activities. In contrast, 

examples of high risk activities could be wound care, changing nappies, taking a 

pulse, taking blood pressure, performing physical examinations, lifting the 

patient in bed, oral temperature or cleaning blood spills. 

It has been proved that HCWs can contaminate their Klebsiella strains during 

“clean” activities e.g., lifting a patient, taking a patient’s pulse, blood pressure, or 

oral temperature or touching a patient’s hand. Similarly, in another study, hands 

of HWs who touched the groins of patients heavily colonized with P. mirabilis 

were cultured and 10–600 CFUs/mL of this organism were recovered from glove 
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juice samples from the nurses’ hands. Data are limited regarding the types of 

patient-care activities that result in the transmission of patient flora to the hands 

of staff and equipment. In the past, efforts have been made to stratify activities 

into those most likely to cause contamination, but such stratification schemes 

were never validated by quantifying the level of bacterial contamination that 

occurred (Ehrenkranz and Alfonso, 1991) (Pittet et al., 1999) (Casewell and 

Phillips, 1977) 

 

The second aspect depends on the characteristics of the pathogen. 

We introduce “Tr” Transmissibility coefficient.  

The nature and frequency of nosocomial infections depend partly on the 

characteristics of the microorganisms, including their resistance to antimicrobial 

agents, intrinsic virulence, and amount (inoculum) of infective material (World 

Health Organization, 2002).  

The transmissibility coefficient stands for the propagation capacity by contact of 

a particular type of pathogen, i.e. its strength in moving from to surfaces and 

from one host to another. It is worthy to note that “Tr” does not consider 

microorganism time of persistence outside organic hosts as this has already been 

accounted by the Dt factor. Neither does it represent the virulence of a specific 

pathogen, which has already been accounted for by the red infection threshold. 

In our system, two different values of “Tr” can be set, depending on whether the 

transmission is directly between actors or is to (or from) space. This accounts for 

different transmission capabilities in the two conditions of certain pathogens. 

 

The final feature depends on a compliance with prevention policies, i.e. hand 

hygiene procedures or ward cleaning.  We introduce “Cl” Cleanness coefficient. 

Cl is a variable indicating the level of cleanliness of the involved actor (objects 

and spaces) with the higher level of contamination (i.e. the spreader). It is a proxy 

to signify the occurrence or frequency of hand hygiene and ward cleaning as well 

as the level of accuracy in performing such procedures. Washing hands 
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improperly may not be effective in removing a sufficient amount of bacteria and 

the same is true for environmental cleaning.  

 

We can now write an equation to represent the flow of contamination during 

contact (between two actors or actor and space) which will then be calculated by 

the system with a certain time rate explained in the next section.  

From a modelling point of view such equation represents the behaviour of each 

agent in his contamination activity. Agents’ contamination characteristic if two 

agents interact varies as the equation shown: 

 

Set C = Contamination level from 0 to 100. 

-Actor 1 (or Object or Space) = C1 old; 

-Actor 2 (or Object or Space) = C2 old; 

 

If C1 old is > than C2 old: 

∆𝐶 = 𝐶1𝑜𝑙𝑑 −  𝐶2𝑜𝑙𝑑 

 

The new level of contamination of the Actor2 is: 

 

𝐶2𝑛𝑒𝑤 = 𝐶2𝑜𝑙𝑑 + ∆𝐶 (Ty Tr Cl)   (1) 

 

Which could be written as:  

(Ty Tr Cl) = 𝐾 

and 

𝐶2𝑛𝑒𝑤 = 𝐶2𝑜𝑙𝑑 + 𝐾∆𝐶     (2) 

 

with K parameter accounting for the power of the flow. 

 

It is interesting to note that a parallel representation could be applied to 

represent the flow of pathogens from an actor while he his performing a hands 
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hygiene procedure, subtracting ∆𝐶 and associating a different meaning to K. For 

instance, this could establish the sink (e.g. a certain dedicated location in the 

simulated layout) as an absorbing spot for the contamination flow. Then Ty varies 

from the use of a traditional sink or ABHR, with Tr as a factor evaluating pathogen 

endurance on hands and the Cl will not be present. The flow equation will also 

show right or wrong practices, depending on the duration of the activity (namely 

a hand washing action) if the length required to perform properly the procedure 

would have been set in advance. Such early reasoning is to be developed in the 

near future when a proper hand hygiene event will be added to the simulation. 

 

4,2,2 DURATION, INTERRUPTION, PERMANENT STAY AND MULTIPLE PRESENCE 

EFFECT 

 

The duration of actor-actor and actor-space contact is a central factor in the 

transmission process, as the probability of transmission rises with contact 

duration. We know that the duration of patient-care activity is strongly 

associated with the intensity of bacterial contamination of HCW hands (Boyce 

and Pittet, 2002), i.e. the longer the duration of care, the higher the degree of 

HCW contamination (World Health Organisation, 2009). However, apart from this 

initial consideration, there is a lack of statistical data about the correlation 

between treatment duration and HAIs (Pethes, Ferenci and Kovács, 2017). 

 

In the next future an aid to parameterising such a detailed feature could be 

provided by an observation of the proximity patterns of agents in the hospital 

and the frequency of social interactions through an electronic medical record 

system and spatial tracking systems collecting detailed level data. This kind of 

information is priceless if we want to fully understand the spreading 

phenomenon. For example, the SocioPatterns project (www.sociopatterns.org) 

has developed a platform that allows for physical proximity measurements using 

wearable sensors (RFID) (A. Barrat, C. Cattuto, A.E. Tozzi, P. Vanhems, no date). 

http://www.sociopatterns.org/
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If we obtain statistics concerning contact duration correlated with pathogen 

transmission, we will be able to build and apply a more accurate time-dependent 

transmission rule. However, until then our model focuses on expressing how 

contamination varies depending on contact length, mirroring the increasing risk 

of being colonized and becoming infected with the duration of contact (or 

duration of the stay inside a contaminated space). This feature in our model 

signifies that the overall quantity of contamination transmitted by the flow 

increases over time and is expressed by the integer of the transmission flow 

equation.  

The duration “Du” of contact is not necessarily the same as the duration of the 

activity itself (as they are two different entities) but it must be less or equal to 

the latter. 

The total length of one contact (between two actors or actor and space) can be 

measured in seconds, thus Du = a certain number of seconds.   

 

 
𝑑𝐶𝑓𝑖𝑛𝑎𝑙 

𝑑𝑡
= ∫ 𝐶2𝑛𝑒𝑤

𝐷𝑢

0

𝑑𝑡 

 

In the simulation, Du consists of numerous subsequent touch steps (ts). In our 

case, this is set as equal to 1 sec, we chose such a small time-step to approximate 

real time dynamics: 

 

Du = N * ts + fraction of the last ts. 

 

However, if necessary the length of the time-step could be modified inside the 

function coded in the system. 

 

Hence, the flow equation is calculated for every ts of contact and correspondingly 

the ∆𝐶 in the formula is updated following this rate.  
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The total amount of the transmitted flow during a single contact whose length is 

equal to Du could be calculated as the sum of the flow for each touch step: 

 

𝐶𝑓𝑖𝑛𝑎𝑙 = ∑ 𝐶2𝑛𝑒𝑤𝑖

𝑛

𝑖=1

 

Where: 

 

𝐶2𝑛𝑒𝑤𝑖 = 𝐶2𝑜𝑙𝑑𝑖 + ∆𝐶𝑖 (Ty Tr Cl) 

 

 

Interruption: 

The previous assumption is useful as we want to account for cases of 

interruption, i.e. if an unplanned event interrupts an activity and therefore the 

contact in progress. 

In the following examples, two actors are supposed to interact for a length Du = 

10 ts. The first actor is infected = 100 (level of contamination) and the second is 

not colonized = 0 (level of contamination). All the other variables are pre-set 

accounting for an assumed K = 0,5. The contact and therefore the total flow is 

interrupted after two ts from the start. As shown in the plot, only the quantity 

flowing in the first 2/10 of the total duration has been transmitted and 

consequently the second actor’s new level (Cnew) of contamination reached a 

value of 75. 
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Permanent stay: 

How does the contamination transfer by contact (interaction) from actor to space 

or vice versa (depending on the gradient direction ∆𝐶) if the actor stays in that 

space permanently? 

In the case of a patient remaining permanently in his room, we will not simulate 

every single activity (contact) he performs inside that space. The total amount of 

the transmitted flow during the total permanence is the sum of the flow 

calculated for each ts of his permanence. Therefore, the previous equation works 

also in this case. 

 

The results show that the level of contamination of the patient and that of the 

space will asymptotically reach the greater of the two. 

The following plot shows the pace of the contamination flow between two 

elements, with one of the two contaminated at the maximum level 100 (e.g. 

infected if actor) and the second not colonized (e.g. decontaminated space), with 

K assumed as equal to 0.5. 
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It can be interesting to compare the trends for different values of K parameter. 

The following plot visualizes how fast the contamination flows depending on K 

while assuming two elements (actor-actor or space-actor), the first one with a 

100 level of contamination and the second with 0 level of contamination, 

interacting for a Du = 10 ts. 
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Multiple presence effect: 

We must also deal with the crowding aspect, which here is intended as the case 

of multiple actors staying in the same room without interacting among 

themselves but with the space. This occurrence affects the way the space is 

contaminated and the how contamination spreads among occupants. 

Firstly, the next plot compares two different flows of contamination. The first 

takes place between an Actor1 100 (level of contamination) with a space 0 (level 

of contamination) and the second between an Actor2 70 (level of contamination) 

with a different (separated) space 0 (level of contamination). 

 

 
 

What if there is more than one actor in the same space, i.e. room?  

 

The Cnew of the space is calculated for each actor present in the space at each 

ts, therefore the space will receive the sum of the two contributions. The 

following plot shows the trend of each element, considering actor-actor contact 
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and actor-space contact, assuming each touch steps (ts) equal to 1 sec and K 

equal to 0,3. 

The orange curve represents the value of contamination acquired by the space 

due to the presence of actor 1 and actor 2 in each ts. At the same time, each actor 

can be affected by the flow from the space, according to the direction of the 

gradient ∆𝐶. Therefore, in our example from the ts in which the C value of the 

space becomes higher than the C of one of actors. This is what happens between 

the space and Actor2 from the second ts onwards, where the level of 

contamination starts to rise after the level of contamination of the space exceeds 

its level, as shown by the blue curve.  

 

 

 

 

The trends show both the space contamination level and the actors’ 

contamination level reaching the level of the greater among them asymptotically 

over time. 

The system will calculate the flow since the C levels become equal and if one 

actor leaves the space, it will continue for the remaining one.  
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4,2,3 AGENTS’ RELATION LAW 

 

The last case in the previous paragraph forces us to generalize the transmission 

flow expression in cases of multiple agents, as well as extend it from a discrete to 

a continuous equation as set out below. 

We suppose n agents (actors, spaces and objects) in our hypothetical ward.  

Each has its own level of contamination 𝐶𝑖  , whose value may change depending 

on the occurrence of contact among them:  

 

𝐶 ∈ 𝑅𝑛 

 

𝐶 = [
𝐶1

⋮
𝐶𝑛

] 

 

The value of contamination of the nth agent will be identical to its previous value 

plus the difference between its previous value and that of the agent with which 

it came into contact, multiplied by parameter K. This is independent of time and 

the ∆𝐶 between the two agents, but dependent on three other factors, namely; 

type of activity Ty, type of pathogen Tr and level of cleanliness of the more 

contaminated agent of the two Cl. Considering the discrete process for each case 

of contact, we have a temporal unit, between 𝑛 − 1 and 𝑛: 

 

𝐶𝑛
𝑖 =  𝐶𝑛−1

𝑖 +  ∑ (𝐶𝑛−1
𝑖 − 𝐶𝑛−1

𝑗
)𝐾𝑖𝑗

𝑚
𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗               (3) 

 

with 1 ≤ 𝑖 ∈ 𝑁 

 

(𝐶𝑛−1
𝑖 − 𝐶𝑛−1

𝑗
) > 0 
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The contact indicator 𝛽𝑖𝑗 assumes a value of 0 in the case of no contact and a 

value of 1 where contact occurs; the matrix 𝑁𝑥𝑁 shows which contacts occur 

over temporal unit 𝑛 − 1 and 𝑛. 

 

The parameter 𝐾𝑖𝑗, describes the strength of contagion in j over i and the zero 

diagonal matrix 𝑁𝑥𝑁, since the agent cannot interact with himself.   

 

Considering the entire duration of contact ∆𝑡 : 

 

𝐶𝑛
𝑖 =  𝐶𝑛−1

𝑖 +  ∑(𝐶𝑛−1
𝑖 − 𝐶𝑛−1

𝑗
)

+
 ∆𝑡 𝐾𝑖𝑗

𝑚

𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗 

 

𝐶𝑛
𝑖 −  𝐶𝑛−1

𝑖 =  ∑(𝐶𝑛−1
𝑖 − 𝐶𝑛−1

𝑗
)

+
∆𝑡 𝐾𝑖𝑗

𝑚

𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗 

 

𝐶𝑛
𝑖 −  𝐶𝑛−1

𝑖

∆𝑡
=  ∑(𝐶𝑛−1

𝑖 − 𝐶𝑛−1
𝑗

)
+

𝐾𝑖𝑗

𝑚

𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗 

 

𝑑

𝑑𝑡
𝐶(𝑡)  =  ∑(𝐶𝑛−1

𝑖 − 𝐶𝑛−1
𝑗

)
+

 𝐾𝑖𝑗

𝑚

𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗 

 

 

A differential formula was obtained for (1), which is the extended formulation 

over continuous time, in which the increase is a derivative.  

 



182 
 

In each contact case, this expression gives the 𝐶𝑖  of element i. Thus, at the time 

t of contact there will be a certain 𝐶𝑖(𝑡). As this is a linear function of 𝐶𝑖, the 

solution (derived over time) is an exponential function. 

 

 

In cases of a new interaction with contact, the process must be repeated. Thus, 

the new 𝐶𝑖  at the starting time of t will be precisely the value of 𝐶𝑖  obtained at 

the end of the previous interaction. 

  

Extended over the total time of the simulation, we have  
𝑑

𝑑𝑡
𝐶(𝑡) which depends 

on the history S, the specific sequence of contact events between agents; due to 

interaction, the contamination of each agent depends on the contamination of 

the others. Therefore, we obtain a differential integral function, with the 

following general expression: 

 

𝑡 𝜖 [0, 𝑇] 

 

{
𝑑

𝑑𝑡
𝐶(𝑡) =  𝐶̇(𝑡) =  ∫ 𝑓(𝑆, 𝐶(𝑆))

𝑡

0
 𝑑𝑆 

𝐶(0) =  𝐶0

         (4) 

 

with S = system history (of the simulation). 

This assumes the form of a Volterra integral equation.   

 

The choice, as always when modelling real-life phenomena, is in that of assigning 

a form to the function f which at moment S of system history will show how the 

𝐶𝑖  have interacted until that time. Function f is not constant and in its most 

simple form is linear with a quadratic integral. 
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For complex systems, only the history of the system itself allows us to understand 

what will happen at a certain time t from now; there are no solutions within 

closed systems (e.g. linear equations) which are able to predict evolution 

accurately. Thus, the general behaviour of a complex system is unpredictable. 

The system analysed in the study also evolved in this way, which indicates that 

any state of a complex system depends on the specific history which that system 

has covered. If it were possible to delete the history of a system and restart it (as 

occurs in simulations), the results of a determined time t could be different for 

each repetition. This concept expresses “path dependency”, an irreversibility 

typical in complex systems (Bar-Yam, 1997).  

 

This was previously written as the f linear function, whereby at the i-th agent, a 

linear sum of contamination contribution is revealed, the sum of ∆𝐶 between 

single agents multiplied by K. 

 

If 𝐾 = 𝐾𝑛×𝑛 = 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝐾2×2 

 

Since the contamination is that of n agents, the new variable is no longer the 𝐶 

of a single agent but a vector, an nth number of all the agents together. 

   

If 𝐶 = 𝐶𝑛×1 = 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝐶2×1 

 

Thus, at time t of the simulation, the entire system is contaminated based on the 

history S of events occurring up to that moment. 

At the time of S, f shows that the level of contamination is given by a matrix for 

C(S) 

𝑓(𝑆, 𝐶(𝑆)) = 𝐾(𝑆) 𝐶(𝑆) 

 

𝐾 𝐶 = [
𝐾11 𝐾12

𝐾21 𝐾22
] [𝐶1

𝐶2] =  [
𝐾11𝐶1 + 𝐾12𝐶2

𝐾21𝐶1 + 𝐾22𝐶2]     (5) 
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where 𝐾𝑖,𝑗 gives the weight of interaction for 𝐶𝑖  with agent 𝐶𝑗. 

The interaction is always between two different agents.  

 

𝐾𝑖,𝑗 = [
0 𝐾12

𝐾21 0
] = [

𝐾11 𝐾12

𝐾21 𝐾22
] − 𝑑𝑖𝑎𝑔 ( 𝐾11, 𝐾22) 

 

For the nth agent, expression (3) gives the history of the various different 

contributions.  

Thus, to study the contamination variation over the whole simulation, history S 

is integrated.   

The linearity of f shows that the variation of the nth agent depends on the 

contamination level of all the other agents with whom he has interacted.   

 

𝐶1̇(𝑡) =  ∫ (𝐾11𝐶1(𝑆) + 𝐾12𝐶2(𝑆) )
𝑡

0
 𝑑𝑆    (6) 

 

From here, the explicit solution can be written.  

 

If 𝐶(𝑡) is the solution of (2), then 𝐶(𝑡) can be calculated for the entire duration 

of the simulation T. 

 

∫ 𝐶𝑖(𝑡)𝑑𝑡 

𝑇

0

 

 

Where events of decontamination are inserted, for example hand washing, K 

provides negative values and so:  

 

∫|𝐶𝑖(𝑡)| 𝑑𝑡 

𝑇

0
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Our area of interest is to identify the inferior threshold values (e.g. the minimum 

time of environmental saturation) or the maximum time after which intervention 

is required through decontamination protection.   

 

In this contamination expression, we have not considered the agent’s spatial “X” 

position variable since the simulation provides us with this information in its clear 

visualisation of an agent’s position in space.  

 

It is to be hoped that these mathematical expressions will be developed further 

to the point where they consider all the factors contributing to the phenomenon 

in a detailed way, thus allowing for the use of a purely mathematical approach to 

describe and understand the phenomenon.  

Instead, the approach presented in this study is of a hybrid type. The 

mathematical equations support the modelling process since within the 

simulation, factors are considered (e.g. agent position in space) that do not form 

part of the mathematical expression. Besides this, in order to formalise the 

phenomenon in more detail, a collection of data is required which focuses on the 

construction of a refined mathematical model. For the purposes of this study, 

further complication of this expression would be unreasonable, even if it should 

not be excluded as an interesting future development of the research topic.     

 

4,2,4 PRELIMINARY CONSIDERATIONS ON THE VARIABLES 

 

Moving back to the discrete formulation (2) we can make some considerations, 

based on our starting assumptions. To happen a contamination variation in the 

actor2, (i.e. for the flow to occur) it must be: 

C2old < C1old. 

Hence it must be: 

0 ≤ 𝐾 ≤ 1 
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which means that: 

0 ≤ (Ty Tr Cl) ≤  1 

 

In this formulation, the K parameter could be seen from another perspective a 

way to interpret the probability of the contamination occurrence. Whereas in 

previously reviewed models the probability assumes a pure stochastic value and 

is calibrated with data coming from observation to fit the model results to the 

real trends. In the present study we attempt to exploit its composition and 

determine a ratio for its variation. Therefore, we must understand if K varies 

depending on the weight of each coefficient and select a plausible criterion to 

express their variation. 

 

- Tr: Transmissibility coefficient. 

 

The transmission of infections from one individual to another cannot be 

accurately represented without considering the characteristics of the causative 

organism. Therefore, in our formulation the transmission rate per second of 

contact depends on the characteristics of the pathogen involved.  

We know that there are multiple pathogen types at the same time in a hospital, 

and that a single actor can be a carrier for each of the pathogen types. However, 

at the time of writing such an aspect has not yet been included in our simulation 

since only one type of pathogen at a time will be considered in each simulation 

run. 

 Because transmission models concerning HAIs have strongly focused on 

Meticillin-resistant Staphylococcus aureus MRSA (van Kleef et al., 2013), 

Clostridium difficile enhances a strong propensity toward environment surface 

contamination (Jou et al., 2015) and the emergence of Carbapenem Resistant 

Enterobacteriaceae, like Klebsiella, pose a major threat regarding antibiotic-

resistant bacteria (Frieden, 2013). We theoretically take in considerations such 

three strains. 
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We also suppose that there can be two different values for each pathogen taken 

into consideration, depending on whether transmission occurs between actors 

or to and from space, thus accounting for the different transmission strengths of 

certain pathogens in the two cases. Nevertheless, because there is no official 

scale to weight this factor or compare among different pathogens, our main 

interest is to compare three different simulation scenarios changing the value of 

this variable in accordance with hypotheses albeit far from reality about 

transmissibility capacities of the chosen pathogen types. (Kramer, Schwebke and 

Kampf, 2006) 

 

 Clostridium D. MRSA Klebsiella 

Tr -> actor    

Tr -> space    

 

 

- Ty: Type of activity coefficient.  

This variable is set to vary in a discrete way, mirroring the diverse activity and 

treatments which can be practised in a hospital ward. 

 

 Meet Visitors Medicine 

Distribution 

Patient Check 

Ty    

 

It is important to note that at the time of writing, explicit activities involving 

explicit interaction between space and actor and vice versa have not yet been 

coded in the simulation. Therefore, the relative impact value in the function 

changes in consideration of a patient staying permanently in his room and 

performing more or less contact with his surroundings. 
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- Cl: Level of cleanness of each actor or space coefficient. 

 

Hand hygiene, the cleaning of actors’ hands, has two dimensions (Beggs, 

Shepherd and Kerr, 2008): compliance (the proportion of staff that actually clean 

their hands) and effectiveness (the probability of effective removal of 

contaminants during hand-cleaning). The problem with traditional hand hygiene 

models is their assumption of a linear relationship between hand-washing 

compliance and the reduction of the transmission coefficient, for which there is 

no evidence. According to Coen, if effectiveness is inversely proportional to 

compliance then non-linear effects are expected (Coen, 2012). The same 

reasoning could be applied to ward cleaning, whose effectiveness, as already 

stated, is difficult to measure. 

For these reasons, we do not know how Cl may vary. Perhaps there could be a 

function describing the variation in time, which for instance could be asymptotic 

or exponential or have no relationship; this will be identified over time. 

It is not our aim to demonstrate how a possible correlation develops, as this will 

doubtless form the basis for other future experimental research, which will allow 

us to gather the data needed to feed the equation. Until then, we can 

approximate by equal tracts and discretizing the values we need, taking their 

average value.  

For instance, hospital managers subdivide the dirtiness of a space according to 

the dust shade they remove from it into three rising classes: white, grey and 

black. Thus, it seems reasonable for our purposes also to use the same triadic 

scheme for actors. 

 

 Clean / White Normal / Grey Dirty / Black 

Cl    
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In our system, the value of the Cl variable changes for each actor and space. Since 

the flow equation describes a transmission from the more to the less 

contaminated, inside that equation the value of the more contaminated actor (or 

space) between the interacting two elements must be considered. 

 

Nevertheless, because in the near future we need to code a Hand Washing Event, 

a thorough description of a plausible approach to assign the right value to the Cl 

factor for each actor and space is explained in the next section through the 

building of an expert system which will eliminate the need for artificial 

discretization. Finally, we can suppose what the outcome of different simulations 

should be due to the changes of the value of these variables and maintaining the 

same layout Fig. 35. 
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Fig. 35 - Actors (doctor and susceptible patient) contamination outcome from a sequence of 

events. 

 

These variables affect the intensity of the contamination flow, so they directly 

influence the velocity of pathogen propagation (i.e. the dynamics), which can also 

be accounted for through the simulation duration.  

Moreover, varying the intensity of the contamination flow, the spatial diffusion 

of the pathogens changes. Because it impacts on the level of contamination of 

each actor, the actor contamination level consequently changes (e.g. lowering it 

from infected to colonized, or not colonized), varying how much pathogen could 

be transmitted and because it triggers with the number and the location of 

interactions, how many colonized, not colonized, or infected actors and spaces 

there will be totally changes.  

 

4,2,5 EXPERT INTERVIEWS AND QUESTIONAIRES 

 

To verify that the selected variables are the optimal representation of the 

phenomenon and understand if there could be others to consider and correlate 

inside the equation as well to weight them according to expert knowhow, we 

interviewed experts in the field through the use of questionnaires. 
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The first was created to rank, by importance, the behaviour and situations (from 

literature and synthesized through equation variables) which determine or 

influence the phenomenon of contamination diffusion in hospital wards. We 

asked experts to assign weight to each of them and if needed to add other 

aspects to the list which, based on experience, they considered critical. 

Subsequently, to rank factors affecting behaviour and situations by importance 

(e.g. the conditions identified in the first answer), we asked experts to assign 

weight to each of them, Fig. 36.  

 

 
Fig. 36 - Questionnaires to rank by importance and weight coefficients. 

 

The results of the survey confirmed our choices of the parameters affecting 

transmission flow. The weight assigned to each of the considered coefficients, i.e. 

Ty, Tr, Cl, was practically the same, meaning that each of them impact in the same 

way on the contamination flow. In the near future, a wider survey will be carried 

out, until then we can consider each factor composing K, ranging from 0 to 1. In 

the simulation the assignment of attempted values verifies the coherency of the 

simulation output. For instance, Cl varies from 1 to 0. If it reaches the maximum 

value (= 0), the contamination flow (pathogen transmission) is prevented, as the 



192 
 

equation (1) shows. It is important to note that this Cl factor does not affect the 

actor’s personal level of contamination, but his capacity of transmit the 

contamination, being a variable in the flow equation. 

 

Besides, a lack of perception associated with the diffusion of contamination 

through objects and space was verified. This was mostly because the risk of 

contagion was understood to be only a consequence of a direct possibility of 

infection development through humans, ignoring the possibility of indirect paths 

through objects or space; this aspect must be investigated further.  
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4,3 CONCEPTION OF AN EXPERT SYSTEM APPROACH  

 

4,3,1 INTRODUCTION  

 

As stated previously, a detailed description of the method proposed to evaluate 

the Cl factor is introduced in this section. 

It is important to note that this further step of the model formalization widens 

the breadth of the research towards a second range human-related element 

affecting the main one, i.e. Cl factor, and attempts to further enhance the 

causative aspects (often hidden) of HAI diffusion. In fact, one great weakness of 

the infection control research domain is the neglect of knowledge of human 

factors (Ulrich et al., 2004).  

 

The Cl variable inside the equation represents the compliance (occurrence) of 

hand hygiene or ward cleaning and the efficiency of this activity.  

 

The quality of hand cleansing should be taken into consideration in accordance 

with observations and experimental studies on the correct practice of hand 

washing (Lankford et al., 2003). 

For instance, in one study, nurses were asked to touch the groins of patients 

heavily colonized with gram-negative bacilli for 15 seconds — as though they 

were taking a femoral pulse. Nurses then cleaned their hands by washing with 

plain soap and water or by using an alcohol hand rinse. After cleaning their hands, 

they touched a piece of urinary catheter material with their fingers, and the 

catheter segment was cultured. The study revealed that touching intact areas of 

moist skin of the patient transferred enough organisms to the nurses’ hands to 

result in subsequent transmission to catheter material, despite handwashing 

with plain soap and water (Ehrenkranz and Alfonso, 1991). 
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It is worth noting that the Cl factor considered here does not affect the actor’s 

(or space’s) own level of contamination, but rather modifies the pace of the flow 

equation. In effect, it accounts for the circumstances whereby an actor, even an 

infected one, has just performed the correct hand washing procedure and during 

the next contact is less likely to transmit pathogenic microorganisms. Therefore, 

unless the actor (or space) is decontaminated by a specific and simulated activity, 

e.g. hand washing (or ward cleaning), which are not yet coded, his level of 

contamination cannot decrease autonomously. 

In truth, neither can his level of contamination grow if interactions with actors or 

space do not occur, or an infection develops. The former option is not realistic 

and not admitted to our model, because each actor is always situated in space 

and cannot avoid this condition, the latter neither for our aims as previously 

explained. 

At this point, a threat arises which it seems convenient to reflect on now, before 

the upcoming development of the Hand Hygiene Event; actors moving in space 

to reach the spot where they perform hand hygiene with a consequent reduction 

of their own level of contamination. Is it correct to reduce the level of 

contamination of an actor who performs a hand hygiene procedure even if his 

level of contamination exceeds the infection threshold? Or does this occurrence 

imply pathogenic flora growing autonomously on the actor’s skin, therefore 

requiring a growing timer which is independent from the contamination 

reduction effect of the hand washing occurrence?  

To solve this issue, it is useful to remember that the aim of the present work is to 

visualize the propagation of pathogens on surface and skin, not to consider their 

effect on the health of actors, e.g. actor’s death, clinical treatments or 

decolonization procedures to eradicate the infection, which moreover have a 

longer average duration than the timespan simulated in our scenarios. 

From this perspective, it seems reasonable to consider hand hygiene activity (and 

the cleaning of spaces) an adequate procedure to reduce the level of 

contamination in all cases, i.e. even if the pathogen is growing on an infected 
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actor’s skin because of infection (or on surfaces due to favourable environmental 

conditions).  

 

The following reasoning is developed for the Cl variable representing hand 

hygiene procedures. A parallel argument could be proposed for the Cl variable 

for space, i.e. ward cleaning procedures.  

There are two main factors when dealing with hand hygiene: 

 

1. the actor’s awareness and perception of the risk of being contaminated; 

2. the availability of time to perform the hand-hygiene action. 

 

The former (1) depends on two conditions: 

 

1.A) Complete knowledge of the level of contamination of other actors (objects 

or spaces), or at least if the approaching actor is infected or not.  

However, self-protection is not always a response purely to a microbiological 

basis but also to emotive sensations including feelings of unpleasantness, 

discomfort, and disgust. These sensations are not normally associated with the 

majority of patient contacts within a health-care setting. It may frequently occur 

when a nurse touches a patient who is regarded as “unhygienic” either through 

appearance, age or demeanour, or after touching an “emotionally dirty” area 

such as the axillae, groin or genitals (Whitby, McLaws and Ross, 2006). 

Consequently, if a patient is touched who is regarded as unhygienic or infected, 

HCWs are more likely to wash their hands because they perceive the risk of 

infection (Boyce and Pittet, 2002). From this point of view Hand Hygiene plays 

the role of ritualized behaviour carried out to ensure, on the whole, self-

protection from infection. 

Therefore, the previously defined Cl factor is a reasonable proxy to define 

whether the actor approaching (or leaving) the interaction will perceive the risk 

of contamination or not.  
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1.B) Type of activity combined with the duration of the activity (i.e. in our case of 

the contact) stands for the perception of high or low risk. Factors that may 

influence (fostering or lowering) hand hygiene include those reported by HCWs 

as reasons for lack of adherence to hand-hygiene recommendations such as the 

type and intensity of patient care. 

In Dedrick (Dedrick et al., 2007) adherence to hand hygiene practices was 

correlated with the duration of the encounter, with overall adherences of 30.0% 

after encounters of ⩽1 minute, 43.4% after encounters of >1 to ⩽2 minutes, 

51.1% after encounters of >3 to ⩽5 minutes, and 64.9% after encounters of >5 

minutes 

In this study, adherence to hand hygiene practices was lowest after brief patient 

encounters (i.e, <2 minutes). Brief encounters accounted for a substantial 

proportion of all observed encounters and opportunities for hand contamination 

occurred during all brief encounters. 

Therefore, the previously defined Ty factor is a reasonable proxy to define 

whether the actor approaching (or leaving) will perceive the risk of 

contamination or not. 

 

The latter (2) depends on three conditions, which relate to perceived barriers to 

compliance with hand hygiene practices, depending on the environmental 

context: 

 

2.A) One of the barriers impeding Hand Hygiene is a lack of sufficient number and 

accurate arrangement of facilities i.e. sinks or gel dispensers.  

If hand washing facilities are inadequate, i.e. wash-hand basins and supplies 

(soap, medicated detergent, alcohol-based hand-rub solution or disposable 

towels) are inaccessible, inconveniently located or in scarce supply, the 

adherence to hand hygiene prescription drops. Increasing the availability of hand 

hygiene facilities at convenient locations, e.g. providing antimicrobial hand-rub 
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dispensers in patient rooms at the point of care, can be a contributing factor to 

hand hygiene compliance (Stiller et al., 2016). 

Furthermore, this occurrence significantly increases the length of time for HCWs 

to perform care tasks (Taylor, 2015) 

The fact that a long time is required for nurses to leave a patient’s bedside, go to 

a basin and wash and dry their hands before attending to the next patient is a 

deterrent to regular handwashing. Instead, visible and easily accessible sink and 

gel dispenser locations could permit the total time spent in performing the action 

to be no more than 60 sec (Voss and Widmer, 1997) 

Architectural design choices are not always fully compatible with care tasks (e.g. 

hand hygiene facilities located at the back of the room or far from where hand 

hygiene is needed), preventing correct hand hygiene procedures from being 

incorporated within the workflow and maximizing HCWs time in direct patient 

care. Consequently, environmental design influencing behaviour patterns may 

lead to compensating for some of the other deficiencies which cause HAI 

propagation. 

 

2.B) High workloads and the multi-tasking demands of overcrowding and 

understaffing lead to low hand hygiene compliance (Taylor, 2015). 

Outbreak investigations have shown an association between infections and 

understaffing and overcrowding and this association was consistently linked with 

poor adherence to hand hygiene. Numerous cases have been reported in 

literature (Borg, 2003) 

During an outbreak investigation of risk factors for central venous catheter-

associated bloodstream infections, the patient-to-nurse ratio remained an 

independent risk factor for bloodstream infection, indicating that nursing staff 

reduction below a critical threshold may have contributed to this outbreak by 

endangering adequate catheter care. The understaffing of nurses can facilitate 

the spread of pathogens in through relaxed attention to basic control procedures 

(e.g. hands hygiene) (Fridkin et al., 1996). 
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In an outbreak of Enterobacter cloacae in a neonatal intensive-care unit, the daily 

number of hospitalized children was above the maximum capacity of the unit, 

resulting in an available space per child below current recommendations. At the 

same time, the number of staff members on duty was substantially less than the 

number required for the workload, which also resulted in relaxed attention to 

basic infection-control measures.  Adherence to hand-hygiene practices before 

device contact was only 25% during the workload peak, but increased to 70% 

after the end of the understaffing and overcrowding period (Harbarth et al., 

1999). 

High patient bed occupancy rates and understaffing were documented in the 

largest nosocomial outbreak attributable to Salmonella spp. ever reported; in this 

outbreak in Brazil, there was a clear relationship between understaffing and the 

quality of health care, including hand hygiene (Pessoa-Silva et al., 2002). 

Observations have documented that being hospitalized during this period was 

associated with an increased risk of acquiring HAI. This studies not only 

demonstrates the association between workload and infections, but it also 

recognises the intermediate cause of contamination spreading: poor adherence 

to hand-hygiene practice.  

 

2.C) Alcohol-based hand-rubs (ABHR) are a time-saver. Therefore, by introducing 

ABHRs experts expect to reduce the infection spread by 50%.  

ABHRs have been welcomed by HCWs as they are more likely to use an alcohol-

based hand rub than to wash their hands. Because the time required for 

traditional hand washing may render full adherence to previous guidelines 

unrealistic, more rapid access to hand hygiene facilities and less time required to 

use them helps improve compliance (Taylor, 2015). 

One study conducted in an intensive-care unit demonstrated that it took nurses 

an average of 60 seconds to leave a patient’s bedside, walk to a sink, wash their 

hands and return to patient care. In contrast, an estimated one quarter as much 

time is required when using an alcohol-based hand rub placed in a more 
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convenient location thanks to its small size, for example at patient’s bedside 

(Basurrah and Madani, 2006) 

Providing easy access to hand-hygiene materials is mandatory for appropriate 

hand-hygiene behaviour and is achievable in the majority of health-care facilities 

due to the use of ABHRs. 

Furthermore, using alcohol-based hand rubs may also be a better option than 

traditional hand washing because they act faster, even if not valid for all the 

pathogens (Landelle et al., 2014). 

Several studies have shown a significant increase in hand hygiene compliance 

after the introduction of alcohol-based hand-rub solutions.  In most of these 

studies, baseline hand hygiene compliance was below 50%, and the introduction 

of hand-rubs was associated with a significant improvement in hand hygiene 

compliance. In contrast, in the two studies with baseline compliance equal to or 

higher than 60%, no significant increase was observed. These findings may 

suggest that high profile settings may require more comprehensive strategies to 

achieve further improvement. 

 

However, hand hygiene behaviour will continue to require handwashing with 

water and soap, especially when there is visible soiling on hands especially if 

ABHR solution is ineffective. Hence, the accessibility of sinks (2.A) must be 

carefully considered. 

 

To help with the understanding of the updated framework, in the following Table 

10 new key factors concerning the elements of our model have been added to 

the list and marked in red cross: 
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• C = Contamination level  

• Ct = Carrier threshold  

• It = Infection threshold  

• Cl = Cleanness factor 

• Du = Duration feature 

• Ty = Type factor 

• Tr = Transmissibility factor 

• Dt = Decaying timer  

• ABHR = Presence of ABHR in the setting  

• Oc = Overcrowding condition of the context  

• Us = Understaffing condition of the context 

• Sd = Sink Disposition estimation  

• Ro = Role of the actor, e.g. doctor, nurse, patient 

 

 

4,3,2 EXPERT SYSTEM 

 

Knowledge at the level of beginner consists specifically of the reduced formulas 

which characterize theories, while true expertise is based on intimate experience 

with thousands of individual cases and on the ability to discriminate between 

situations, with all their nuances of difference, without distilling them into 

formulas or standard cases (Flyvbjerg, 2006). In our case study, we discovered 
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this insight in specific situations and therefore crafted an in-silico system to 

approach the level of brilliant human expert. 

 

The Cl variable shows how the contamination flow can strengthen depending on 

the cleanliness of the actor and space involved. The actor’s (and space’s) 

cleanliness in turn depends on the occurrence and the effectiveness of 

prevention policies, i.e. hand hygiene procedures or ward cleaning.  

In the following formalization, the Cl is evaluated through certainty factor (CF) as 

described in detail below. 

 

Certainty factors are combined to be built into Knowledge-Based Systems (rule-

based systems, or expert systems) which are able to solve problems in a limited 

domain, structuring a solution incrementally with a performance similar to that 

of a human expert of the domain.  

 

The inference engine of the rule-based system does not create new solutions, but 

responds with a degree of plausibility for each pre-built competing hypothesis by 

combining all available evidence. Each CF, defined through a value of confidence, 

represents a contribution of the rule, which is the sum of all considerations of the 

situation in order to validate the hypothesis.  

 

In our case study, we wanted to know if the hand-washing procedure would be 

performed or not. Thus, CFs provided a measurable strength of confidence 

(plausibility, more or less possibility) that hand hygiene or a generic cleaning 

procedure would be performed when certain conditions are verified.  

 

In our case, we do not use multiple hypotheses but only one and its negation: 

• ℎ1: the actor does not perform a hand hygiene procedure; 

• ¬ℎ1: the actor performs a hand hygiene procedure. 
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CFs are a way to approximate the Bayesian conditional probability in case of 

uncertainty or unreliable data. Up to a certain extent (clarified below), each CF 

could be seen as the evidence of conditional probability of a pure Bayesian 

System, which assumes the probability that H verifies if E occurs: 

 

𝑃𝑟 (H│𝐸) 

 

Therefore, we must assume that the only relevant evidence for H is E. 

Alternatively, if there is more than one example, we must ensure that all 

evidence is statistically independent, otherwise we must consider the joint 

probabilities (Adams, 1984). 

 

This case represents a conditional probability deriving from an alignment of 

evidence. Given n different hypotheses to take into consideration, the number of 

combined probability sets needed to calculate the Bayesian function rises to 2 to 

the nth power. Thus, the Bayes theory becomes unmanageable, while systems 

experts use compromise mechanisms to avoid this limit (Rich and Knight, 1991). 

 

Certainty factors are used to prove and compare hypotheses, which are 

traditionally exploited thanks to the judgments provided by experts or textbooks. 

In our case, these were references agreed on through expert knowledge 

(healthcare managers and practitioners), partly based on experience and partly 

on regulatory principles and which were acquired through questionnaires. 

 

However, in the case of knowledge acquired from experts, conditional 

probabilities and their complex inter-relationships can not be acquired in an 

exhaustive manner. Indeed, it is termed uncertain and the extent to which it can 

be quantified and manipulated as probabilities is not clear (Shortliffe and 

Buchanan, 1975). To overcome this problem, CFs were developed to describe 
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possibilities suggested by evidence and were applied for the first time in the 

MYCIN expert system by Shortliffe and Buchanan. 

 

4,3,3 BAYESIAN PROBABILITY 

 

In line with procedures carried out in the development of MYCIN, we can start by 

considering our problem using Bayesian theory;  

 

Data: 

Cl is the variable which varies from 0 to 1  

• With Cl = 1 in the case of certainty of do not perform hand hygiene 

procedure: ℎ1 is thus our hypothesis 1  

• With Cl = 0 in the case of certainty of do perform hand hygiene procedure: 

¬ℎ1 is thus our hypothesis 2 

 

We must assign the probability of hypothesis 1 occurrence only after considering 

the evidence e. 

 

Thus, the conditional probability that the actor will not perform a hand hygiene 

procedure in the light of evidence e =  

 

𝑃 (ℎ1│𝑒) 

 

The Bayesian theory allows us to calculate the conditional probability of the 

component (‘Sheldon M Ross - Probability and Statistics For Engineering and 

Science.pdf’, no date). 

Therefore, we can apply the Bayesian theory, whereby: 

 

𝑃 (ℎᵢ│𝑒) =
𝑃(ℎᵢ) 𝑃(𝑒│ℎᵢ) 

∑ 𝑃(ℎᵢ) 𝑃(𝑒│ℎᵢ)
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we find:  

 

𝑃 (ℎ1│𝑒) =
𝑃(ℎ1) 𝑃 (𝑒│ℎ1) 

𝑃 (𝑒)
 

 

 

𝑃 (¬ℎ1|𝑒) = 1 −  𝑃 (ℎ1│𝑒) =
(1 − 𝑃(ℎ1)) 𝑃 (𝑒│¬ℎ1) 

𝑃 (𝑒)
 

 

where: 

ℎ1 is our hypothesis and e the evidence; 

𝑃(ℎ1) is the a priori probability that ℎ1 is true (i.e. the actor does not perform a 

hand hygiene procedure) in the absence of evidence; 

𝑃 (𝑒│ℎ1) is the probability that since ℎ1 is true (i.e. that the actor does not 

perform a hand hygiene procedure) evidence 𝑒 is referred to (i.e. it was not 

carried out due to evidence 𝑒).  

 

Evidence is acquired incrementally piece by piece; e is a set of observations or 

data; it is also composite of all our conditions 𝑐𝑘.  

A conditional probability statement is, in effect, a statement of a decision 

criterion or rule. For example, the expression  

 

𝑃 (ℎ1|𝑐𝑘) = x 

 

can be read as a statement that there is a 100% chance that an actor under 

certain observed conditions 𝑐𝑘 will not perform a hand hygiene procedure. 

Stated in rule form, it would be: 

 

IF: the 𝑐𝑘 condition occurs 
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THEN: the actor will not perform a hand hygiene procedure with probability x 

The value of x for such rules may not be obvious ("y strongly suggests that z is 

true" is difficult to quantify), but an expert may be able to offer an estimate of 

this number based on experience and domain knowledge. 

A large set of such rules, with a single one for each condition (as in our case) or 

one for a certain composition of different conditions obtained from references 

and experts, would clearly contain a vast amount of knowledge. It is conceivable 

that a computer program could be designed to consider all such general rules and 

to generate a final probability of each hypothesis based on data regarding a 

specific case.  

 

Unfortunately, Bayes’ Theorem would not be appropriate for such a program if 

values for 𝑃 (𝑐1│ℎ1) and 𝑃 (𝑐1│ℎ1 & 𝑐2 & … ) can not be obtained. 

 

As has been noted, these requirements become unworkable when the subjective 

probabilities of experts are used together with uncertain data or in cases where 

a large number of hypotheses must be considered.  The first requires acquiring 

the inverse of every rule (our case) and the second requires obtaining explicit 

statements regarding the interrelationships of all rules in the system. Conditional 

probability provides useful results if sufficient data are available to permit its 

appropriate use, for instance huge amounts of observations and questionnaires 

to exploit the exact values of inverse probabilities 𝑃 (𝑐1│ℎ1) and 

𝑃 (𝑐1│ℎ1 & 𝑐2 & … ) and so on for all conditions 𝑐𝑘. 

 

Hence, the usefulness of Bayes’ Theorem is limited by practical difficulties, 

principally the lack of data with resulting imperfect knowledge; consequently, a 

rigorous probabilistic analysis is not possible.   
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Therefore, we chose the Shortliffe and Buchanan approach to devise an 

approximate method that will allow us to compute a value for  𝑃 (ℎ1│𝑒) solely 

in terms of 𝑃 (ℎ1│𝑐𝑘) where e is the composite of all the verified 𝑐𝑘. 

 

It is true that this technique will not be exact, but since the conditional 

probabilities reflect judgmental knowledge, a rigorous application of Bayes’ 

Theorem would not necessarily produce accurate cumulative probabilities either. 

Instead, we look for ways to handle decision rules as discrete packets of 

knowledge and for a quantification scheme that permits accumulation of 

evidence in a manner that adequately reflects the reasoning process of an expert 

using the same or similar rules (Shortliffe and Buchanan, 1975). 

 

 

4,3,4 MYCIN: A MODEL OF INEXACT REASONING APPLIED TO A SUBDOMAIN OF 

MEDICINE 

 

While researchers have sought to develop techniques for modelling clinical 

decision-making, the design of such programs has required an analytical 

approach for medical purposes and several programs have successfully modelled 

the diagnostic process. 

 

Introduced for the first time in the MYCIN Expert System (Shortliffe and 

Buchanan, 1975), MYCIN was developed at Stanford University and was designed 

to aid physicians in the diagnosis and treatment of meningitis and bacteraemia 

infections.  

Its scope was to: 

1. decide whether the patient has an infection that needs to be cured; 

2. if so, determine what the infectious organism most probably is;  

3. choose the most appropriate therapeutic regimen for treating the 

infection. 
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MYCIN uses a simple type of classification is to identify certain unknown objects 

or phenomena as belonging to a known class of objects, events or processes. 

Typically, these classes are hierarchically organized types and the identification 

process corresponds to the matching of observations of unknown entities with 

known class characteristics. MYCIN’s backward-chaining methods collect data by 

regressing from possible conclusions to related previous conditions and from this 

to their required data, recursively if necessary (Hayes-Roth, Waterman and 

Lenat, 1983).  

 

Although conceived with medical decision-making in mind, as demonstrated in 

our case study (Cl), it is potentially applicable to any problem area in which real-

world knowledge must be combined with expertise judgments before an 

informed evaluation can be obtained to explain the consequences of 

observations (conditions) or to suggest a future course of action. 

 

To illustrate MYCIN purposes, we shall use the following rule-based approach: 

 

IF:  

1) The strain of the organism is gram positive and 

2) The morphology of the organism is coccus and 

3) The growth conformation of the organism is chains 

THEN: 

There is suggestive evidence 0.7 that the identity of the organism is 

streptococcus. 

 

This rule reflects an expert’s belief that gram-positive cocci growing in chains are 

apt to be streptococci. When asked to weight his belief in this conclusion he 

indicated a 70% belief that the conclusion was valid. The prompt used for 
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acquiring the certainty measure from the expert is as follows: "On a scale of 1 to 

10, how much certainty do you affix to this conclusion?” 

 

Translated to the notation of conditional probability, this rule appears to say:  

𝑃 (ℎ1│𝑐1 & 𝑐2 & 𝑐3) = 0.7 

 

Where: 

• ℎ1 is the hypothesis that the organism is a Streptococcus; 

• 𝑐1 is the observation that the organism is gram-positive; 

• 𝑐2 that it is a coccus; 

• and 𝑐3 that it grows in chains.  

 

Questioning of the expert gradually reveals, however, that despite the apparent 

similarity to a statement regarding a conditional probability, the number 0.7 

differs significantly from a probability.  

 

In fact, the expert may well agree that: 

𝑃 (ℎ1│𝑐1 & 𝑐2 & 𝑐3) = 0,7 

but he becomes uneasy when he attempts to follow the logical conclusion that 

therefore: 

𝑃 (¬ℎ1│𝑐1 & 𝑐2 & 𝑐3) = 0,3 

He claims that the three observations are evidence (to a degree of 0.7) in favour 

of the conclusion that the organism is a Streptococcus and should not be 

construed as evidence (to a degree of 0.3) against Streptococcus.  

 

It is tempting to conclude that the expert is irrational if he is unwilling to follow 

the implications of his probabilistic statements to their logical conclusions. 

Another interpretation, however, is that the numbers he has given should not be 

construed as probabilities at all, but that they are judgmental measures that 
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reflect a level of "belief” and therefore an interpretation of the 0.7 in the rule 

above should be given (Shortliffe and Buchanan, 1975). 

 

4,3,5 BELIEF MEASUREMENT  

 

We can no longer consider the value of 0.7 as a real conditioned probability but 

rather as a measure of belief (i.e., how much more the expert believes in the 

hypothesis is realised by the set of conditions 𝑐𝑘, which form the evidence 𝑒).  

We have chosen belief and disbelief as our units of measurement. The need for 

two measures was introduced above in our discussion of a disconfirmation 

measure as an adjunct to a measure for degree of confirmation.  

 

The notation is as follows: 

• MB[h,e] = x, (0<x<1) means "the measure of increased belief in the 

hypothesis h, based on the evidence e, is x" 

• MD[h,e] = y, (0<x<1) means "the measure of increased disbelief in the 

hypothesis h, based on the evidence e, is y" 

 

Thus, MB and MD measure how much the evidence validates the hypothesis or 

its negation and are so increments or decrements of the Probability P(h). 

 

The evidence 𝑒 need not be an observed event, but may be a hypothesis (itself 

subject to confirmation). Thus, one may write MB[h1,h2] to indicate the measure 

of increased belief in the hypothesis h1, given that the hypothesis h2 is true. 

Similarly MD[h1,h2] is the measure of increased disbelief in hypothesis h1 if 

hypothesis h2 is true. 

 

To illustrate this in the context of the sample rule from MYCIN, consider 𝑒 = "the 

organism is a gram-positive coccus growing in chains" and h = "the organism is a 
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Streptococcus." Then MB[h,e] = 0.7 according to the sample rule given to us by 

the expert. 

The number 0.7 reflects the extent to which the expert’s belief that h is true is 

increased by the knowledge that 𝑒 is true. On the other hand, MD[h,e] = 0 for this 

example; i.e., the expert has no reason to increase his or her disbelief in h on the 

basis of 𝑒. 

 

In accordance with subjective probability theory, it may be argued that the 

expert’s personal probability 𝑃 (ℎ) reflects his or her belief in h at any given time. 

Thus 1 −  𝑃 (ℎ) can be viewed as an estimate of the expert’s “disbelief" 

regarding the truth of h.  

 

If 𝑃 (ℎ|𝑒) is greater than 𝑃 (ℎ), the observation of 𝑒 increases the expert’s belief 

in h while decreasing his or her disbelief regarding the truth of h. In fact, the 

proportionate decrease in disbelief is given by the following ratio: 

 

𝑃 (ℎ|𝑒) −  𝑃 (ℎ) 

1 −  𝑃 (ℎ)
 

 

This ratio is called the measure of increased belief in h resulting from the 

observation of 𝑒, i.e., MB[h,e]: 

 

𝑀𝐵 (ℎ|𝑒) =  
𝑃 (ℎ|𝑒)  −  𝑃 (ℎ) 

1 −  𝑃 (ℎ)
 

 

Therefore, we can calculate the conditional probability increased by the belief in 

the hypothesis:  

 

𝑃 (ℎ|𝑒) = 𝑀𝐵 (ℎ|𝑒) ∗ (1 −  𝑃 (ℎ))  +  𝑃 (ℎ) 
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If the starting 𝑃 (ℎ) = 0 then: 

 

𝑃 (ℎ|𝑒) =  𝑀𝐵 (ℎ|𝑒) 

 

Suppose, on the other hand, that 𝑃 (ℎ|𝑒) were less than 𝑃 (ℎ). Thus, the 

observation of 𝑒 would decrease the expert’s belief in h while increasing his or 

her disbelief regarding the truth of h. The proportionate decrease in belief in this 

case is given by the following ratio: 

 

𝑃 (ℎ) −  𝑃 (ℎ|𝑒) 

𝑃 (ℎ)
 

 

We call this ratio the measure of increased disbelief in h resulting from the 

observation of 𝑒, i.e., MD[h,e]: 

 

𝑀𝐷 (ℎ|𝑒) =
𝑃 (ℎ) −  𝑃 (ℎ|𝑒) 

𝑃 (ℎ)
 

 

Therefore, we can calculate the conditional probability decreased by the disbelief 

in the hypothesis: 

 

 

𝑃 (ℎ|𝑒) = 𝑃 (ℎ) − (𝑀𝐷 (ℎ|𝑒) ∗  𝑃 (ℎ)) 

 

 

If the starting 𝑃 (ℎ) = 0 then: 

 

𝑃 (ℎ|𝑒) = 0 
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We consider the measure of increased belief, MB[h,e], to be the proportionate 

decrease in disbelief regarding the hypothesis h that results from the observation 

𝑒. Similarly, the measure of increased disbelief, MD[h,e], is the proportionate 

decrease in belief regarding the hypothesis h that results from the observation 𝑒, 

where belief is estimated by 𝑃 (ℎ) at any given time and disbelief is estimated by 

1 −  𝑃 (ℎ). 

 

Note that since one piece of evidence cannot both favour and disfavour a single 

hypothesis, when MB[h,e] > 0, MD[h,e] = 0, and when MD[h,e] > 0, MB[h,e] = 0.  

 

 

Numerical example: 

 

We chose as standard probability P(h) the even chance 0.5, which reflects no 

effects of any condition on the chance of hand washing.  

 

 

𝑃 (ℎ) = 0,5 

𝑀𝐵 (ℎ|𝑒) = 0,7 

𝑀𝐷 (ℎ|𝑒) = 0 

 

𝑃 (ℎ|𝑒) = 𝑀𝐵 (ℎ|𝑒) ∗ (1 −  𝑃 (ℎ))  +   𝑃 (ℎ) 

 

𝑃 (ℎ|𝑒) = 0,7 ∗ (1 −  0,5) +   0,5 = 0,85 

 

 

𝑃 (ℎ) = 0,5 

𝑀𝐵 (ℎ|𝑒1) = 0 

𝑀𝐷 (ℎ|𝑒1) = 0,4 

 



213 
 

𝑃 (ℎ|𝑒) = 𝑃 (ℎ) − (𝑀𝐷 (ℎ|𝑒) ∗  𝑃 (ℎ)) 

 

𝑃 (ℎ|𝑒) = 0,5 −  (0,4 ∗ 0,5) = 0,3 

 

 

Furthermore, when 𝑃 (ℎ|𝑒) = 𝑃 (ℎ) the evidence is independent of the 

hypothesis (neither confirms nor disconfirms) and MB[h,e] = MD[h,e] = 0. 

 

4,3,6 WEIGHT CONDITIONS ACCORDING TO EXPERTS 

 

We plan to use this approach to evaluate Cl use and data derived from literature 

and estimates provided by expert physicians, which reflect the tendency of a 

piece of evidence (condition) to prove or disprove the given hypothesis ℎ1 . 

We would like to use experts’ knowledge to judge the influence of each condition 

identified from literature to verify the hypothesis of full compliance with hand 

hygiene procedures. Thus, thanks to the information from references weighted 

from experts through questionnaires, the value quantifying the confidence on 

hand hygiene procedures could increase or decrease.  

 

We asked experts: 

 

On a scale of 0 to 1, given the fact that the condition occurs, how much does your 

belief in the hypothesis increase?  

 

At the moment of writing, some reasonable supposed values or those from 

information taken from references have been assigned. 

Note that in the following formalization, each condition 𝑐𝑘 was chosen from 

reported observed risk conditions for poor adherence to recommended hand 

hygiene practices (World Health Organisation, 2009) and from (Dedrick et al., 

2007), (Roehr, 2007). They were considered as a single, independent piece of 
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evidence. Otherwise, as seen, this approach would require dependent pieces of 

evidence being grouped into single rules, but we do not know how such variables 

correlate. 

 

Actor types: 

• Physician: MD 0.5 

• Nurse: MD 0.5 

• Nurse assistant: MD 0.3 

• Visitor: MB 0.3 

• Patient: MB 0 

 

Self-protective requirement = pleasing perception = other actor status of cleaning 

= other actor Cl value: 

If Cl < 0.5 then MD = 0.5  

If Cl > 0.5 then MD = 0.5 

 

Activity type and duration = Activity danger, i.e. depends on Ty: 

If Ty < 0.2 then MD = 0; e.g. Meet Visitors 

if Ty < 0.5 then MD = 0.2; e.g. Medicine Distribution 

if Ty > 0.5 then MD = 0.7; e.g. Patient Check 

 

Environmental conditions, i.e. condition related to the ward setting and context: 

Device location = time needed to use it:  

• If t < 60 sec.: MD 0.7 

• If 60 < t < 120 sec.: MD 0.2  

• If 120 sec. < t: MB 0.3 

 

Overcrowding: 

• Yes: MB 0.5 

• No: MD 0.5 
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Understaffing:  

• Yes: MB 0.5 

• No: MD 0.5 

 

Presence of ABHR: 

• Yes: MD 0.5 

• No: MB 0.5 

 

N.B. For the particular case of Clostridium Difficile, the presence of ABHR has 

different values: 

• Yes: MB 0.5 

• No: MB 0 

 

4,3,7 CERTAINTY FACTOR 

 

Shortliffe and Buchanan define a third measure, termed a certainty factor (CF), 

that combines the MB and MD in accordance with the following definition: 

 

CF[h, el ˄ ea] = MB[h, el] - MD[h, ea] 

 

The certainty factor is an artefact for combining degrees of belief and disbelief, 

derived from different pieces of evidence, into a single number.  

Such a number is needed in order to facilitate comparisons of the evidential 

strength of competing hypotheses, which, with just one hypothesis, is not our 

case. 

Furthermore, the certainty factor is used as a weighting factor for the credibility 

of the hypothesis ℎ1, which is supported by evidence el into MB and reduced by 

evidence ea into MD, as in our case. 
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The following observations help to clarify the characteristics of the three 

measures that they have defined (MB, MD, CF): 

 

Characteristics of the Belief Measures 

 

1. Range of degrees: 

a. 0 ≤ MB[h,e] ≤ 1 

b. 0 ≤ MD[h,e] ≤ 1 

c. -1 ≤ CF[h,e] ≤ +1 

 

2. Evidential strength and mutually exclusive hypotheses: 

If h is shown to be certain 𝑃 (ℎ|𝑒) = 1: 

a. MB[h,e] = 
1 − 𝑃 (ℎ) 

1− 𝑃 (ℎ)
= 1 

b. MD[h,e] = 0 

c. CF[h,e] = 1 

 

If the negation of h is shown to be certain P (¬h1|e) = 1: 

a. MB[h,e] = 0 

b. MD[h,e] = 
0 − 𝑃 (ℎ) 

0 − 𝑃 (ℎ)
= 1 

c. CF[h,e] = -1 

 

Note that this gives MB[~h,e] = 1 if and only if MD[h,e] = 1 in accordance with the 

definitions of MB and MD above. Furthermore, the number 1 represents absolute 

belief (or disbelief) for MB (or MD). 

Thus MB[hl,e] = 1 and hI and h,~ are mutually exclusive, MD[h2,e] 7= 1. 

 

Lack of evidence: 

a. MB[h,e] = 0 if h is not confirmed by e (i.e., e and h are independent or e 

disconfirms h) 
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b. MD[h,e] = 0 if h is not disconfirmed by e (i.e., e and h are independent or e 

confirms h) 

c. CF[h,e] = 0 if e neither confirms nor disconfirms h (i.e., e and h are 

independent)  

 

Numerical example: 

 

𝑃 (ℎ) = 0,5 

𝑀𝐵 (ℎ|𝑒) = 0,7 

𝑀𝐷 (ℎ|𝑒) = 0 

 

 

𝑃 (ℎ) = 0,5 

𝑀𝐵 (ℎ|𝑒1) = 0 

𝑀𝐷 (ℎ|𝑒1) = 0,4 

 

CF (h│eᵢ) = 0,7 - 0,4 = 0,3 

 

𝐶𝐹 =
𝑃 (ℎ|𝑒) −  𝑃 (ℎ) 

1 −  𝑃 (ℎ)
−  

𝑃 (ℎ) − 𝑃 (ℎ|𝑒) 

𝑃 (ℎ)
 

 

0,3 =
𝑃 (ℎ|𝑒) − 0,5 

1 −  0,5
− 

0,5 − 𝑃 (ℎ|𝑒) 

0,5
 

 

𝑃 (ℎ|𝑒) = 0,575 
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4,3,8 FORMALIZATION OF “CL” THROUGH CERTAINTY FACTOR  

 

In our scenarios, the final evidence which supports our hypothesis ℎ1 is 

composed of two parts of evidence e+ & e-, each of them in turn composed of 

certain occurring conditions 𝑐𝑘 (piece of evidence). 

 

e = e+ & e- 

 

where e+ represents all confirming conditions acquired to date and e- represents 

all disconfirming conditions acquired to date.  

Therefore:  

CF[h, e] = CF[h, e+ ˄ e-] = MB[h, e+] - MD[h, e-] 

 

Shortliffe and Buchanan present a function to combine different conditions to 

obtain MB[h, e+] and MD[h, e-] which represent how each item of evidence (e+ 

and e-) is incrementally acquired. 

 

 

𝑀𝐵 [ℎ, 𝑐1 ˄ 𝑐2  ]

=  {
0                                                                                𝑖𝑓 𝑀𝐷 [ℎ, 𝑐1 ˄ 𝑐2 ] = 1 

𝑀𝐵 [ℎ, 𝑐1 ] +  𝑀𝐵 [ℎ, 𝑐2] (1 −  𝑀𝐵 [ℎ, 𝑐1])                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

 

𝑀𝐷 [ℎ, 𝑐1 ˄ 𝑐2  ]

=  {
0                                                                                𝑖𝑓 𝑀𝐵 [ℎ, 𝑐1 ˄ 𝑐2 ] = 1 

𝑀𝐷 [ℎ, 𝑐1 ] +  𝑀𝐷 [ℎ, 𝑐2] (1 −  𝑀𝐷 [ℎ, 𝑐1])                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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This function satisfies the commutative property: the order in which pieces of 

evidence (conditions) are discovered should not affect the level of belief or 

disbelief in a hypothesis.  

Combining function simply states that, since an MB (or MD) represents a 

proportionate decrease in disbelief (or belief), the MB (or of a newly acquired 

piece of evidence) should be applied proportionately to the disbelief (or belief) 

still remaining. 

Numerical example for our case: 

 

Yes Overcrowding 

𝑀𝐵 (ℎ|𝑐) = 0,5 

𝑀𝐷 (ℎ|𝑐) = 0 

 

Doctor 

𝑀𝐵 (ℎ|𝑐1) = 0 

𝑀𝐷 (ℎ|𝑐1) = 0,5 

 

Patient Check 

𝑀𝐵 (ℎ|𝑐2) = 0 

𝑀𝐷 (ℎ|𝑐2) = 0,7 

 

𝑀𝐵 (ℎ│𝑐1 & 𝑐2) = 0,5 + 0,7 (1-0,5) = 0,85 

𝐶𝐹 (ℎ│𝑒+& 𝑒¯) = 0,85 – 0,5 = 0,35 

 

4,3,9 EXPERT SYSTEM INCREMENTAL GROWTH OF CONFIDENCE 

 

Expert systems are developed and maintained incrementally with the active 

involvement of one or more experts.  
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Unlike traditional computer programs which are very difficult to modify, expert 

systems are easy to change. Each of their rules is a separate module, since the 

rules are not explicitly related to one another. 

Any particular rule can be removed or modified or a new rule can be added and 

the system will still run. The ability to add rules and modify reasoning is a key 

characteristic of expert systems. 

The only mandatory constraint for the modeller in the use of Expert Systems is 

that he must assure that the rules are statistically independent.    

When a new rule is found to be true, either MD or MD could be updated using 

the combining function. When all the rules have been executed, the final CF may 

be re-calculated as equal to MB – MD. 

In such a way, the evidence can be built incrementally piece by piece, and such 

pieces of evidence are combined to obtain the CF of the hypothesis, as the 

example below explains.  

 

Suppose, for example, that the hypothesis ℎ1  that the actor will not perform the 

Hand Washing procedure has been confirmed by a single piece of evidence 

𝑐1with 𝑀𝐵 [ℎ1│ 𝑐1] = 0,3, therefore 𝑀𝐷 [ℎ1│ 𝑐1] = 0 and  𝐶𝐹 [ℎ1│ 𝑒⁺] = 0,3 

 

If a new piece of evidence 𝑐1 is now encountered, confirming ℎ1 with 

𝑀𝐵 [ℎ1│ 𝑐2] = 0,2 that has 𝐶𝐹 [ℎ1│ 𝑒⁺] = 0,2 in support of ℎ1, the 𝑒 should be 

updated to include the latter piece of evidence, we use the combining function 

to obtain  𝑀𝐵 [ℎ1│ 𝑐1 ˄ 𝑐2] = 0,3 + 0,2 ∗ 0,7 = 0,44, 𝑀𝐷 [ℎ1│ 𝑐1 ˄ 𝑐2] = 0. 

 

Suppose a final piece of evidence 𝑐3 emerges for which 𝑀𝐷 [ℎ1│ 𝑐3] = 0,1. Thus, 

𝑒 is once again updated to include all current pieces of evidence and again we 

use the combining function to obtain  𝑀𝐵 [ℎ1│ 𝑒⁺] = 0,44 and 𝑀𝐷 [ℎ1│ 𝑒¯] =

0,1. 
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If no further knowledge allows new insights on the possibility that the actor will 

not perform the Hand Washing procedure, we calculate a final result, 𝐶𝐹 [ℎ| 𝑒] =

 0.44 −  0.1 =  0.34. 

 

This number is a confidence value that the hand washing (cleaning procedure) 

will not be performed when selected scenario conditions 𝑐𝑘 occur. It is also a 

measure of the probability of Hand Hygiene when an explicit Hand Hygiene Event 

is coded in the future. Until then it will account for the value of Cl in the flow 

equation, namely the strength of the contamination flow depending on the 

cleanliness level of the involved actor (and space). 

 

4,3,10 HAND HYGIENE EVENT 

 

In the near future, when a Hand Hygiene Event is coded, the Cl factor should be 

removed from the flow equation, otherwise the drop of contamination level will 

be considered twice in the equation (as a variable factor as well as inside the ∆C 

modified by the specific activity). 

However, the approach to formalize the Cl factor explained previously will work 

in future when an explicit Hand Hygiene Event is fully simulated, accounting for 

the probability of this event occurring based on identified key conditions. 

Subsequently, the actor’s level of contamination will decrease, thanks to the 

given efficacy of the procedure. In this case, the Cl will be considered as 

representing the only hypothesis of compliance of the cleaning procedure 

without accounting for the effectiveness of it. 

From another point of view, since the Cl (as for the other variables, Ty and Tr) is 

now fixed at the start of the simulation for each actor/space and it cannot 

dynamically increase or decrease, when a Hand Hygiene Event is coded it will vary 

during the development of the simulation due to the incidence of the events. 
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At this point, it seems appropriate to present a straightforward consideration on 

the Hand Hygiene Event. In line with HAI prevention guidelines Fig. 12, we should 

implement the following rule for the Hand Hygiene Event: 

 

1. Perform hand-hygiene procedures before any “meet” (during an event) 

with patients, or any “do” (during an event) with objects surrounding the 

patient.  

2. Perform hand-hygiene procedures after any “meet” (during an event) 

with patients, or any “do” (during an event) with objects surrounding the 

patient.  

3. Do not perform the hand-hygiene procedure twice in sequence. 
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5 DEVELOPED SIMULATION 
 

5,1 SIMULATING HAI PROPAGATION THROUGH THE CONTACT ROUTE 
TRANSMISSION   

 

5,1,1 INTRODUCTION  

 

In a hospital context it is not feasible to manipulate the real world of people due 

to logistics, expense and the ethical implications of full scale trials. Such strong 

limitations support our choice to manipulate a simulated version of it in an 

inexpensive way that does not place patients at risk and, at the same time, allows 

us to draw a number of conclusions while remaining aware of all the premises 

and assumptions made in its design. 

 

A simulation is a simplified replica of a real-world system in order to predict the 

system behaviour by asking “what-if” questions. It offers us the potential to 

identify improvements and new understanding of how a healthcare environment 

operates. 

Simulation has the potential to model spatial influences and social dynamics in 

order to observe pathogen dissemination effects and is a way to gain insights into 

the relative impacts of infection control measures. It may also reduce the costs 

of planned interventions and the risk of errors in implementing changes (Friesen 

and McLeod, 2014). 

 

The progression of contamination spread and the effectiveness of infection 

control procedures are strictly related to other hospital processes. Thus, we need 

to simulate the hospital events flow at the same level of detail. In reality the HAI 

phenomenon happens contemporary and within its real-life context, boundaries 

between phenomenon and context are not evident, therefore we must simulate 

real-life and take out what is interesting for us.  
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This means that our case study reveals a narrative nature. Narrative inquiries 

cannot start from explicit theoretical assumptions or mathematical formulations. 

Instead, they begin with an interest in a particular phenomenon that is best 

understood narratively. Our narrative inquiry, which fits well with the EBMS 

approach, develops descriptions and interpretations of the phenomenon 

through the built model (Flyvbjerg, 2006).  

 

Our simulation is drawn from the Event Based framework, established by 

Shaumann et al. for modelling human use of buildings and where spaces, actors 

and activities are modelled in a computational environment. Such a system 

provide us a variety of behaviour and interactions during the simulation of 

hospital workflow and use (Schaumann, Morad, et al., 2016)  

 

Once the model has been established, the next stage is to select the simulation 

software and program the simulation model. We chose to encrypt the spatially 

explicit model coded in C# for a simulation built in a Unity3D platform of a 

hospital ward case study.  

 

For us, the advantage of the simulation environment is that it can ‘close in’ on 

real life situations and test views directly in relation to phenomena as they unfold 

in practice. This differs from numerical simulations which require a very large 

number of iterations to generate meaningful findings. Simulation environments 

allow for a real-time dynamic 2D or 3D visualization of the phenomenon and data 

can be stored while being accumulated.  

 

Simulation scenarios are built once the scope and level of EBMS models have 

been determined. Up to a certain degree we are applying an established 

approach to a new case study, but we are also developing the Event Based 

approach further by means of the HAI problem-domain. We widened the 

capabilities of the Shaumann et al. approach to fit it within the specific case study 
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of HAI. Basically, the HAI dynamic model has been added to the modified script 

to integrate the simulation with the effect of the contamination propagation on 

spaces and actors. This increases the overall expressive nature of the framework 

as a means to an end, still guarantying enough flexibility to be tuned to high 

degrees of sensitivity in agent behaviour and interactions.  

 

In the simulation, some hospital procedures and daily activities are translated in 

terms of work events as system inputs and the infection map, updated every 

second, as output. In the simulation, the agents’ relation law for the 

contamination developed in the model overlaps with algorithms that guide 

agents’ behaviours and those that coordinate unexpected events. 

We develop the simulation to envision correlations between human traits, 

behaviour, activities and the propagation of pathogens, as well as to give us hints 

on how the spatial design of buildings affects the risk of HAIs.  

 

First and foremost, the research group at the Technion Architecture faculty is 

interested in showing how space influences people (and consequently the 

phenomena), while our goal is to discover this through emergent observable 

patterns. To date, what people think or what they believe is too abstract to deal 

with as part of a visual-spatial simulation, even if, as already stated, the way we 

adapted the Cl factor makes it geared to embrace human factors such as 

awareness, perceived barriers and highly variable local conditions. 

 

The simulation illustrates the potential applications of the framework through a 

simple case study. On the other hand, this case study also demonstrates the 

potential of the simulation approach.  

To verify the simulation capability to depict HAI diffusion many different 

preliminary conditions were generated within different scenarios and their 

simulation outputs have been analysed. 
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Each initial condition and parameter can be pre-determined at the beginning of 

the simulation in the dashboard interface (when they are not generated 

randomly), making this a model driven by deterministic rules and suitable for 

visualizing the exact development of the system following certain inputs. 

However, the role of chance in the system exists, both through the occasional 

opportunities for interactions among actors and the random entrance of visitors. 

Therefore, for any run, the way the system elements combine to increase the 

phenomenon is both apparent and unpredictable before the simulation ends, 

mirroring how the real system works. 

 

In the remainder in order to make scenarios more accessible, the model is 

developed in a deterministic way. So that to display propagation patterns 

consistent with the agents’ relation law and with the initial conditions and agents’ 

characteristics that have been set upped. 

Nevertheless, to the simulation a random parameter can be added, e.g. through 

a variable accounting for the chance variations of the pathogen survival, the 

infection development, exposure and more. So that estimating the probability 

distributions of potential outcomes by allowing for random variation inputs over 

time. As has been seen, in literature random parameters are used so that the 

model can adhere better to the data used for phenomenon estimation. 

However, at the moment of writing, this hypothesis is a further configuration of 

the present study. In fact, to handle stochasticity a large number of multiple 

simulation replications must be carried out for each scenario, followed by a 

statistical analysis of the results to extract relevant information. However, such 

an advantageous upgrade to the system architecture would demand added 

complexities to the case study with the inclusion of further events, above all Hand 

Hygiene and Ward Cleaning, as descripted previously.  

 

This future application of the model has not been developed in the current study 

as our aim is not so much to draw final and detailed conclusions (for example, 
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procedures or treatment to deal with an epidemic of a given pathogen) as to 

develop and demonstrate the validity of the simulation and the model itself.  

This can be achieved by demonstrating that the proposed approach is able to 

deal consistently with the mass of different factors which give rise to 

contamination propagation phenomena and that it is sufficiently robust to adapt 

to a variety of contingent and physical contexts.  

 

In effect, rather than a prognostic model focused on predicting the future 

accurately, our approach is diagnostic, i.e. model used to understand and 

exploring a law which has been exploited to describe the system through what-if 

scenarios (Saltelli, Ratto and Andres, 2009). To this extent, the simulation model, 

built as a knowledge support tool, is useful in assisting decision-makers to 

forecast possible outcomes based on informed speculation and when thoroughly 

validated and integrated taking real world data, it would most likely be used to 

make predictions (Crooks, Patel and Wise, 2014). 

 

 

5,1,2 THE SETTING OF THE CASE STUDY  

 

This research was carried out in association with Professor Yehuda E. Kalay and 

his research group at the faculty of Architecture and Town Planning, Technion, 

Haifa (IL). To implement our approach, we chose as the setting the Sammy Ofer 

Heart Building, Sourasky Tel-Aviv Medical Center, by Sharon Architects & Ranni 

Ziss Architects 2005-2011, where we received the important collaboration of the 

internal healthcare staff and management, Fig. 37. 
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Fig. 37 - Sourasky Medical Center and Sammy Ofer Heart Building 

 

This choice is useful because the Cardiology Unit does not share the extremely 

regimented situations and procedures of ICU or surgery wards. Moreover, it 

involves multiple categories of users and shows emergent phenomena and actor 

behaviour which are influenced by the architecture of space and the presence of 

other people.  

The layout on which agents operate is the initial decision in any simulation 

development. Environments can be a real-world setting or synthesized from real-

world. Real-world environments represent the hospital floor plans as they are, 

while synthesized environments can be generated by the modeler with 

simplifications or assumptions compared to real floor plans (Demianyk, 2015).  

In our case, the layout reflects a synthesized, slightly modified prototypical Ichilov 

ward layout. 

The clear benefit of this choice is to allow for real-world environments to enhance 

the validity and credibility of the model, to ease the interpretation of simulation 

results and to assist in knowledge transfer (Friesen and McLeod, 2014) Fig. 38, 

39, 40. 
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Fig. 38 - The Real-world Ward Plan. 

 

 
Fig. 39 - The synthesized hospital Ward Layout (Brodeschi, Pilosof and Kalay, 2015) 
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Fig. 40 - The simulated ward plan. 

 

 

5,1,3 FROM SURVEY DATA TO SYSTEM KNOWLEDGE 

 

A hospital department is a complex system since its environment is 

heterogeneous and constantly changing as technology improves medical practice 

changes. 

Operations are not linear and depend on several factors such as the acuity level 

of the patient, the configuration of the healthcare staff and the physical facilities 

of the unit, among other factors.  

Moreover, hospital inpatients are difficult subjects for study. They are only 

‘available’ for a short time window, measured in days. Furthermore, they are too 

debilitated to all cooperate to the same degree, they are an extremely 

heterogeneous population and major ethical issues are met when it comes to 

experimentation. While, data is often technically available, political barriers may 

exist to access the data, e.g. privacy regulations (Cooper et al., 2003).  
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Nevertheless, the observation and analysis of human behaviour in built 

environments is usually considered the best way to understand and evaluate how 

a building fits the needs and activities of its intended users. On this basis, the Post 

Occupancy Evaluation (POE) paradigm has proposed several approaches and 

techniques to assess if the project brief has been met (Zimring, 2002). POE 

approaches have, of course, one major limitation: they can be applied only after 

the building has been completed and occupied, and at that point it is usually too 

late or too costly to intervene in order to solve errors, critical failures, and in-

consistencies with the needs of users, e.g. safety requirements (Hadas Sopher, 

Davide Schaumann, 2016). 

 

Under all these circumstances, HAI simulation models have a distinct advantage 

over uncontrolled observational studies, and many solutions proposed to 

address the HAI issue could be tested in the simulation environment.  

When applying a tool which simulates human behaviour in space, one needs to 

make sure that the underlying theory of the process is firmly grounded in 

people’s real-world experience. The role of real data in the assignment of agents’ 

behavioural rules is just as significant as the assignment of agent characteristics 

or profiles. 

 

To construct the behaviour for each agent and environment so as to model the 

case study, two descriptions were required; on the one hand, the content of the 

hospital domain and on the other hand the actor’s knowledge of this domain and 

real-life situations. Simulating the activities performed in the unit required 

extensive observations and long meetings with medical staff. Despite this, we 

were still only able to reproduce them computationally within a residual degree 

of abstraction.  
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Professor Kalay’s research group at Technion used a variety of research 

techniques to collect data. 

The data collection phase involved direct-experience observations, i.e. 

monitoring what happens, tracking people and interviewing medical and 

administrative staff, patients and visitors. 

The observation lasted 54 hours over 6 days during a period of 3 weeks in which 

36 staff were followed by 8 students, Fig, 41, 42. A quantitative method was used 

to gather data which was then elaborated; for example, the numbers and flow of 

patients, recording HCWs arrival and exit times, physicians’ service activities and 

so on. Several treatment events were also observed. 

 

    
Fig. 41 - Shadowing of hospital workers. Image courtesy of Prof. Y. E. Kalay. 
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Fig. 42 - Data collection sheets. Image courtesy of Prof. Y. E. Kalay. 

 

While quantitative data are used as input data in our simulation models, 

qualitative data are used for conceptual EBMS development. 

Qualitative methods such as interviewing are involved in the data gathering 

process. Interviews with hospital architects were conducted and further 

interviews were carried out with the HCWs (doctors, nurses, medical staff), 

visitors and hospital directors at the Sammy Ofer Heart Building to gain 

knowledge about current workflows and daily life in the department.  

A series of meetings were held with the inpatients unit director, who explained 

to the observer the list of procedures performed during treatments (e.g. 

medicine distribution procedure), and the ways in which interruptions occur 

because of social interactions among staff members or with visitors (Schaumann, 

Pilosof, et al., 2016). 

Aside from this input, the developer must be aware of limitations and gaps within 

the data and how those limitations impact on the veracity of the dataset for the 

simulation objective. Data processing is generally required for a single dataset as 

well as the consolidation of varied datasets (Friesen and McLeod, 2014). 

Our analysis involves the process of extracting useful information from data, i.e. 

moving from data gathering to a qualitative hypothesis of how the behavioural 

system works to the formalization of a “computational model”. 
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A following elaboration encompasses the phase of making data available, i.e. 

translate the hypothesis in the appropriate language for their implementation in 

the Unity platform. This phase consists of converting information into 

knowledge, namely extracting quantitative manageable metrics from qualitative 

understandings (e.g. rules) to include in the “event” database. These express how 

actors’ behaviour is affected by relevant environmental parameters.  

Discovering behaviour led us to establish schematic occupancy schedules (i.e. 

highly detailed lists of activities) from which users can count by type and other 

essential understanding of the actual use of space can be derived. As a 

consequence, space use patterns for every 30 minutes or less were drawn up, 

Fig. 43. 

 

 
Fig. 43 - Examples of schematic space use patterns. Image courtesy of Prof. Y. E. Kalay. 
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Our model parameters are based on existing studies and taken directly from 

observation. Our case study was built based on the synthesized ward using data 

coming from this process of survey, analysis and elaboration, unfortunately no 

observed data on infections prevalence were available to support the evidence 

found in the simulation results. 

 

The area of real data is likely to be an area where EBMS within healthcare 

facilities will more fully evolve as they install in-house systems to capture the data 

themselves; this, in turn, will support the ability to fine-tune ABMs. Such systems 

may include electronic records and dashboards as well as technologies such as 

RFID. In the case of RFID, both inanimate and animate agents can be tracked 

(Lowery-North et al., 2013) 

 

5,1,4 UNITY 3D SIMULATION ENGINE  

 

To implement our HAI transmission model and develop the simulation in a virtual 

environment we chose Unity 3D software. 

Unity 3D is a cross-platform game engine developed by Unity Technologies, 

which is primarily used to develop video games or other interactive content such 

as architectural visualizations, real-time 3D animations and simulations. 

Unity 3D is used to develop applications for a number of platforms. It can export 

to include HTML, PC, Mac OS, Iphone, Droid, Xbox 360, PS3 and Wii. 3D assets 

can be created within the Editor or imported if they were created with any 

industry standard 3D modelling program (Maya, Blender, Lightwave, Google 

Sketchup, 3D Studio Max). 

Unity 3D is used by the gaming industry and educational community and it can 

be used for simulations in a virtual world platform to develop standard 

applications and to provide interactive 3D visualizations. Architects, industrial 

designers and anyone involved in product development can use it as a way to 

visualize creations. Researchers and teachers use simulations and applications to 

https://en.wikipedia.org/wiki/Unity_Technologies
https://en.wikipedia.org/wiki/Video_game
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demonstrate lessons. Computer scientists use Unity3D for its object-oriented 

programming capabilities using Java, C# or Boo. 

Developing the EBMS within an object-oriented framework from the ground up 

gives the developer an additional degree of understanding of the modelling 

technique. In contrast to the Unity 3D platform, others such as netlogo SWARM, 

Repast, and Anylogic are commonly used.  

 

The simulation in a 3D environment is not always required; in most cases, simpler 

environmental structures may be used. However, many applications require a 

maximum level of accuracy and the use of a true 3D environment, mainly to 

enable agent 3D perception. Allowing agents to perceive their world in 3D 

enables the simulation of complex real situations like smoky environments, 

testing the visibility of security features like emergency exits or environmental 

detailed characteristics affecting actors’ behavioural choices. 

 

The Unity 3D game engine consists of two main parts: a 3D graphics simulator, 

and a manager level for entities and behaviour. The first part defines the place 

where the entities (people, physical objects, biological agents) are graphically 

represented in space and where the objects dynamics (people’s behaviour, 

object use, space transformations, etc.) are visualized while the simulation is 

running. The second part is where entities and behaviour data and scripts needed 

to run the simulation are allocated and computed (e.g. the HAI transmission flow 

script). In this component of the game engine, each entity is associated with a 

system of property slots and related values that will be changed and updated in 

real time during the simulation (Schaumann, Morad, et al., 2016). 

 

We selected the Unity 3D simulation environment for its dynamic visualization 

capabilities, so that the HAI spreading process could be effectively computed, 

simulated and visualized at the same time.  
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Spatial semantics, Actors’ profiles, Activities and Events were also scripted in 

Unity by means of C# scripting language. The building use process, previously 

formalized in an abstract way together with the HAI transmission model, are 

connected to the virtual model of the built environment where activities are 

explicitly performed.  

The user-friendly graphic interface allows users to define almost all simulation 

parameters without intervening on the script. This includes ward layout 

(including - but not limited to - the number of rooms), starting contamination 

level, contamination and infection threshold for each actor and the 

characteristics of circulating pathogens. 

 

Visualising specific instances of the process allows us to verify the model setup, 

simulation in progress, and simulation results. Traditional statistical simulation 

requires a very large number of iterations to generate meaningful findings 

whereby the visualization methods are halted while data is accumulated (Friesen 

and McLeod, 2014).  

 

We implemented the contamination function, coded in c#, in programming 

simulation framework, which works in object oriented fashion. In the annex is the 

Pseudocode Description. 
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5,2 CASE STUDY DESCRIPTION  

 

5,2,1 INTRODUCTION  

 

A case study is defined as “the detailed examination of a single example of a class 

of phenomena, a case study cannot provide reliable information about the 

broader class, but it may be useful in the preliminary stages of an investigation 

since it provides hypotheses, which may be tested systematically with a larger 

number of cases” (Abercrombie, Hill and Turner, 1984). 

Critics of the case study method believe that the study of a small number of cases 

can offer no grounds for establishing reliability or generality of findings. Others 

feel that the intense exposure to study of the case renders the findings biased. 

Some dismiss case study research as useful only as an exploratory tool (Soy, 

1997). 

Indeed, the view that one cannot generalize based on a single case is usually 

considered to be devastating in using the case study as a scientific method. 

According to Flyvbjerg, it is correct that the case study is a “detailed examination 

of a single example”, but it is not true that a case study “cannot provide reliable 

information about the broader class”. Concluding that one cannot generalize 

from a single case is not true in any case.  

The case study may be central to scientific development via generalization as a 

supplement or alternative to other methods. Moreover, formal generalization is 

overvalued as a source of scientific development, whereas ‘the force of example’ 

is underestimated (Flyvbjerg, 2006). 

It is true that a case study can be used ‘in the preliminary stages of an 

investigation’ to generate hypotheses, but it is misleading to see the case study 

as a pilot method to be used only in preparing the real study’s larger surveys, 

systematic hypotheses testing and theory building. 

Therefore, the case study is useful for both generating and testing hypotheses 

but is not limited to these research activities alone.  
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Researchers continue to use the case study research method with success in 

carefully planned and crafted studies of real-life situations, issues and problems. 

The testing of their hypotheses relates directly to the question of 

'generalizability', and this in turn to the question of case selection. The strategic 

choice of case in relation to the research objectives may greatly add to the 

generalizability of a case study.  

In this regard, to investigate the capabilities of the proposed approach a case 

study was built and a scenario analysis was set.  

 

Our proof-of-concept case study primarily serves to present the usage of the 

framework, i.e. to grasp insights into the simulation system and evidence about 

the model potential. 

To this end, we identified the most significant parameters exploiting correlations 

that are able to characterise the development of the whole narrative. Therefore, 

the designed case study interprets the overall course of human spatial behaviour, 

starting from human states and contextual conditions and ending with activities 

set in space. The series of events composing the scenario shows the infection 

spreading by means of the contamination mechanism that we have coded.  

The simulation is based on Simeone’s previous studies which explicitly 

represented patients, HCWs and visitors through a simulation engine which 

activates Actors, Spaces, Activities, and Events to generate a dynamic time-based 

representation of the building use (Simeone et al., 2013).  

The case study contemplates several component Actors, Activities, Pathogens 

and Spaces whose characteristics are presented below. Their interaction during 

the simulation drive the contamination transmission and pathogen propagation.  

 

For the current stage of development, this simplified case study displays a 

building use situation where HCWs start from their staff station before moving 

to the central medicine room to prepare medicines and medicaments. 

Afterwards, they move through the patients’ rooms to look after them one by 
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one, e.g. distributing medicines. In this case study, patients do not leave their 

rooms. In agreement with the cohorting principle, each HCW is assigned a cohort 

of patients and operates in a different zone, which only comprises some patients’ 

rooms in the ward. After visiting some patients in certain randomly initialized 

cases, the HCWs return to the medicine room to prepare additional medication 

or to take new equipment before returning to their workflow. 

During the simulation, a random number of visitors enter the hospital to meet 

their relatives under treatment, each one visiting a single patient in the ward. 

They walk through the hallway to reach the patient’s room, where a social 

interaction takes place (e.g. talk) for a certain amount of time. Afterwards, 

visitors leave the ward from the same entrance. 

Besides those two types of events, termed “scheduled” because of the sequence 

of activities, the involvement of actors and the location of the actions are known 

in advance; emergent events could be activated/triggered when specific spatial 

and social conditions arise. 

There is also the occurrence of a HCW coming to check the patients in a room, 

forcing the visitor to leave and wait in the corridor until the nurse has finished 

and so moves to the next patient’s room. Occasionally it may also occur that 

when a visitor encounters an HCW, the close proximity between the two drives 

the visitor to interrupt the HCW scheduled duties to start a social interaction in 

that very place (e.g. visitor asking information about his family member 

condition), before the HCW returns to his planned events, as does the visitor.  

 

Case study reference parameters:  

• 2 single rooms 

• 14 double rooms 

• 1 five-patient room  

• 4 HCWS (single HCW type)  

• 35 patients 

• 9 visitors  
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Each HCW is assigned a cohort of patients and operates only in some patients’ 

rooms of the ward, as specified below: 

 

• HCW1: 5 rooms 10 patients  

• HCW2: 1 room 5 patients 

• HCW3: 6 rooms 10 patients  

• HCW4: 5 rooms 10 patients 

 

Transmission options: 

In our case study, pathogen transmission occurs in four ways, temporally 

combined through the dynamic development of the simulation: 

1. from a colonized (or infected) patient to a HCW and vice versa; 

2. from a colonized (or infected) patient to a visitor and vice versa; 

3. from a colonized (or infected) HCW to a visitor and vice versa; 

4. from a colonized (or infected) actor to a space and vice versa. 

In the present case study, touch-based interactions between same-type actors 

do not occur, because at the moment of writing activities involving two or more 

same-type actors have not been coded. 

 

To exemplify the simulation-flow, a wider and illustrative discrete time-step 

scenario is set in the real-world floor plan involving two different types of HCWs 

(i.e. nurses and doctors), and four types of activities (i.e. meeting, patient check, 

medicine distribution, using the toilet), as follows, Fig. 44: 
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Fig. 44 – Illustrative complete time-step scenario 
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5,2,2 ACTORS  

 

In our case study, three types of actor generated at the beginning of the 

simulation populate the virtual setting: HCWs, patients and visitors.  

 

The preliminary step is the assignment of individual characteristics to each actor. 

Within this virtual representation, each actor is defined by his traits and 

behaviour. Relevant factors for users’ profiles are determined by the objective of 

the model. For actor profiling we drew from previous works by the Kalay research 

group, which includes sex, age, and other demographics such as abilities, 

preferences, knowledge and both fixed and variable states (Hadas Sopher, 

Davide Schaumann, 2016). As shown, the attributes are user accessible, Fig. 45. 

 

 
Fig. 45 - Actor profiling dashboard (Hadas Sopher, Davide Schaumann, 2016) 

 

Actors display properties that define their role in the hospital organization (e.g. 

whether they are nurses, patients or visitors), their current status (e.g. the 

activity they are currently engaged in) and their relation with other actors (e.g. 
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nurses are associated with patients to medicate and visitors are associated with 

a patient to visit) (Schaumann et al., 2015). Every Actor has some basic 

capabilities of navigation through the space and a dynamic physical location (e.g. 

an origin and destination within the layout) and perception abilities that allow 

them to detect the presence of other actors if they are in the same zone and 

within a certain distance. 

 

The starting level of the contamination status can be adapted at the start of the 

simulation for each actor or it can be randomly generated with the setrand 

button. As shown in literature, any person arriving in a hospital ward has a 

probability of being colonized by pathogenic microorganisms. Therefore, the 

number of non-colonized, colonized and infected actors can be adjusted to 

reflect the proportion of colonized patients that may be admitted to the hospital 

or transferred from other hospitals. Both colonized and infected actors can 

contaminate other actors (or spaces) with a lower level of contamination, so 

augmenting their contamination level according to the flow transmission 

equation rate. Each actor is unaware of the actual contamination level of others 

(or of spaces). The level of contamination of each actor (or space) cannot fall until 

the end of simulation. It is likely that in the near future, a hand hygiene event 

(and ward cleaning event) will be coded, overcoming this limitation, Fig. 46. 

 

 
Fig. 46 - Actor contamination console. 

 

As presented, our model associates risk factors to each actor for the infection 

spread. Indeed, actors may carry pathogens on their skin, dress and equipment. 

Their status of contamination, from 0 to 100, is visualized by a range of colours 
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(slightly different from that presented in the model description) which changes 

when the level of contamination exceeds pre-settable thresholds, Fig. 47.  

 

• White = un-colonized status;  

• Green and yellow (two sequential levels) = colonized status; 

• Red = infected. 

 

 
Fig. 47 – Actors range of colours  

 

The threshold values (Ct and It) can be adjusted at the beginning of the simulation 

for each actor, accounting for the possibility that some of the patients could be 

more susceptible than others, such as patients with open wounds or catheters, 

among other reasons. Another important risk factor could be the age of the 

patient (e.g. people over 65 years old), who are more likely to be infected with 

HAIs than younger people, Fig. 46. 

The red threshold represents the infection threshold of contamination for a 

particular type of pathogen and is needed to set the limit between colonized or 

infected actor. In this case study, the risk of becoming infected is the same for all 

the patients involved and it is pre-set at “minimum risk”, but as stated previously, 

it is easy to account for particularly susceptible patients, or to simulate the 

presence of asymptomatic carriers, like HCWs or incoming visitors. The red 

threshold is set at a lower risk for all HCWs and visitors involved, reflecting their 

healthier status compared to patients. 
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However, as this is a simulation which condenses hours of activity into a few 

minutes, the contamination map develops at the same rate. Because of this, 

when an actor reaches the infection level it does not imply that he will suddenly 

manifest sickness but rather that he is sufficient contaminated to likely develop 

the disease in the following days. For instance, approximately one-third of the 

patients who acquire C. difficile colonization develop infection, whereas the 

remaining two-thirds become asymptomatic carriers (Donskey, 2010). 

 

A Cl value can be set in the profile of each actor and for our case study this was 

done according to a particular ratio which is explained in the scenario building 

section, Fig. 46. 

 

Unfortunately, as this was a representative case study, each scenario considered 

a fixed value of the Cl variable and as such the Cl for each actor was fixed during 

the whole simulation. However, in the near future when a hand hygiene event is 

coded and simulated, the Cl factor will be removed from the transmission flow 

equation, as has already been explained. 

 

Finally, because interaction does not always imply contact, at the start of the 

simulation it is possible to select which actors do not touch others while 

performing activities, Fig. 46. This option aims to represent the case of actors 

devoted to tasks where physical contact is negligible, e.g. admission workers. 

Nonetheless, in our case study, every simulated activity involves contact. 

 

5,2,3 SPACE  

 

A geometrical layout in which actors can move and perform a set of activities was 

developed. Inanimate agents are modelled without explicit agency or decision-

making capability, apart from their role as vectors for infection. 
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Space consists of a synthesized version of a hospital ward including patients’ 

rooms, a medicine room and a HCW station. The different rooms are connected 

by a corridor in which the HCW station is located. The HCW station is adjacent to 

a central medicine room where medicines and medicaments can be prepared 

before their distribution to patients. 

 

Our virtual setting comprises 2 single, 14 doubles and one five-patient room, 

housing in total 35 patients. Patients are accommodated in patient rooms during 

diagnosis and treatment procedures. To investigate the impact of shared and 

single rooms, in a scenario dominated by double rooms, two single rooms and a 

big multi-bed room are introduced. The first two play the role of potential 

isolation rooms and the latter are designed as an acute treatment room which 

can be found in every internal medicine department. In these rooms, 5 patients 

with artificial respiration can be accommodated.  

 

The Space representation includes furniture and equipment needed for patient 

care as we consider them an integral part of each space. Even if not shown 

through defined activities, we assume that actors operate in rooms, e.g. patients 

living in it or interacting with objects and furniture, so that the contamination 

level of the room (space and objects) is affected by their presence and vice versa. 

 

Each space has its value accounting for the contamination level. Indeed, spaces 

may become vectors containing contaminated surfaces, furniture and objects. 

Their contamination level, from 0 to 100, is visualized through a range of colours 

(slightly different from that presented in the model description) Fig. 48:  

 

• Transparent;  

• Green;  

• Blue; 

• Yellow; 
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• Red. 

 

         
Fig. 48 - The colour changes when the level of contamination exceeds the pre-set thresholds.  

 

In our case study, we assume that neither objects nor spaces are the primary 

source of contamination but only carriers. Therefore, their initial state is “all 

clean” and “not-colonized”. Yet, the starting level of the contamination can be 

randomly generated with the setrand button, Fig. 49. 

However, if an investigation into how infection propagates from the flora of a 

health care environment is required (as in the case of epidemic exogenous 

environmental infections), it is straightforward at the beginning of the simulation 

to set a scenario whereby the initial cause of infection spread resides in a 

contaminated space, adjusting the starting contamination level for the selected 

spaces. 

 

Finally, a Cl value can be set in the description of each space. For our case study, 

this was done according to a ratio which is explained in the scenario building 

section, Fig. 49. 

 

 
Fig. 49 - Space contamination console 
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Unfortunately, as this was a representative case study, each scenario considered 

a fixed value of the Cl variable and as such the Cl for each type of space was fixed 

during the whole simulation. However, in the near future when a ward cleaning 

event is coded and simulated, the Cl factor will be removed from the transmission 

flow equation, as has already been explained. 

 

5,2,4 ACTIVITIES 

 

A further initial task of the developer is to define the pattern instructions that 

drive the interaction progression between agents and with space in order to 

reflect the processes within the hospital. 

Here, the inclusion of field expert supervision (e.g. doctors and nurses) is evident. 

Observable behavioural patterns were established from the lexicon of 

practitioners and referring to real-world hospital situations (e.g. treatment 

processing, nurses and physicians’ commitments) in order to shape a valid and 

reliable simulation.   

Actors are associated with a set of activities to perform in relation to their role in 

the setting. In turn, activities provide a set of actions that drive actors toward the 

accomplishment of their goals and which are the main hospital processes in 

promoting infection spread towards actors and spaces. 

 

In our case study, three different activity types were simulated:  

• Invasive Treatment = Patient Check 

• Medicine Distribution = Non-Invasive Treatment 

• Meeting visitors 

 

Each type of activity is associated with a certain risk factor Ty. The value of Ty for 

each activity type was supposed and set at the beginning of each simulated 
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scenario according to a ratio which is explained in the scenario building section 

Fig, 50. 

 

 
Fig. 50 - Activity contamination console 

  

For each type of activity, a plausible length and contact duration were considered 

Fig. 50. As this was a simulation, the duration of the activities was proportionally 

reduced to condense several hours of activity into a few minutes Table 11. 

 

Patient check contact Du 

approximately 200 sec. 

 

Patient check contact simulated Du 

10 sec. 

 

Medicine distribution contact Du 

approximately 100 sec. 

 

Medicine distribution contact 

simulated Du 5 sec. 

 

Meet visitors contact Du 

approximately 500 sec. 

 

Meet visitors contact simulated Du 

25 sec. 

 

Table 11 – Activities duration conversion. 

 

Thanks to the openness of the system, the type of each activity and the duration 

of each contact can be easily modified in the user interface at the beginning of 

the simulation. Unfortunately, as this was a representative case study, each type 

of actor performs a single type of activity and therefore for each actor the value 

of Ty and Du are fixed during the whole simulation. However, it is likely that in 

the near future a more elaborate pattern of activities for each actor will be coded, 

leading to a dynamic variation of Ty and Du values.   
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5,2,5 PATHOGENS 

 

The simulation scenario reveals the propagation dynamic for the chosen type of 

pathogens, i.e. those we chose for the case study. 

For each simulation run, users may define new features for the pathogens which 

are essential for the investigation. Therefore, at the beginning of the simulation 

the value of the transmissibility coefficient is set according to the chose type of 

pathogen. Since the simulation is intended to be representative of the framework 

potential, the coefficient values were arbitrarily supposed mainly to enhance the 

difference between the types of microorganisms through the comparison of 

different pathogen aptitudes which drive scenarios, rather than exhaustively fit 

the characteristic of each specific kind of pathogen Table 12.  

However, in future additional accuracy can easily be implemented thanks to the 

openness of the system to fine-tuning parameters for specific diseases. 

 

Moreover, in our case study two different values of “Tr” were set, depending on 

whether transmission occurs between actors or to and from space. Therefore, 

the rate of contamination can be different if directed to or from surfaces and 

furniture rather than actors, mirroring the pathogen’s aptitude in spreading. For 

example, Clostridium difficile was chosen for this study due to its pervasiveness 

in the hospital environment under certain circumstances. 

 

 Clostridium D. MRSA Klebsiella 

Tr - actor 0,2 0,5 0,8 

Tr - space 0,8 0,5 0,2 

Table 12 – Hyothtical value of transmissibility for each pathogen. 

 

The contamination propagation changes depending on the lifetime of the specific 

pathogen. In our simulation, the level of contamination starts to decrease with a 

particular speed only when a space (e.g. the corridor) is empty, according to the 
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decaying timer “Dt” whose pace is set in advance. As this was a simplified case 

study with a very short duration, no decaying timer for pathogens was set to 

account for the survival duration on actors. As already explained, our simulation 

does not account for the option of a reproducing pathogen and therefore no 

contamination growing timer was set for space or actors. Consequently, the level 

of contamination increases depending only on the transmission mechanism.  

 

Unfortunately, as this is a representative case study each scenario considers only 

a single type of pathogen. In the real world a composite of several microbial flora, 

viruses and fungi coexist in the hospital environment and competitive dynamics 

arise to populate surfaces and hosts. Furthermore, they may interact with each 

other e.g., the presence of MRSA may increase the risk of acquiring C. difficile 

and Klebsiella and vice versa. However, is likely that in the near future, a suitably 

detailed level of description to address this will be included in the simulation.  
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5,3 SCENARIO ANALYSIS  

 

5,3,1 INTRODUCTION  

 

Scenario analysis is a process of analysing the future events of a system while 

considering its alternative possible outcomes. It helps planners to conceptualize 

what type of situations they will need to manage in the future and then plan 

accordingly. 

The scenario analysis is not based on deductions from the past or the extension 

of past trends. It does not rely on historical data and does not expect past 

observations to remain valid in the future. 

Scenario analysis does not examine one exact picture representing the future. 

Instead, several alternative scenario developments are shaped and possible 

future outcomes and the paths leading to those outcomes are revealed. 

Indeed, a scenario analysis is based on hypothesized “what-if” scenarios, each 

one made up of different combinations of system factors.  

In our case research, the scenario analysis method implied making assumptions 

about a number of independent (or inter-related, in the case of expert systems) 

variables of the system (e.g. environmental features) and to consider their 

combined impact on the outcomes of the simulation.  

We pre-determine certain scenarios (e.g. system critical cases) adjusting the full 

set of variables within the model to align it with the set-up of interest.  A credible 

picture of the phenomenon is necessary in advance because all aspects of 

scenarios must be plausible and it is the underlying model structure that plays 

this role. The starting conditions of scenarios were determined in collaboration 

with the experience and intuition of a domain specialist. 

In the scenario analysis, the developer, knowing the potential of his method, 

attempts to suppose the range of outcomes and pre-figure an initial 

understanding of what the outcomes would signify. However, more interesting 

still are those outputs which are counterintuitive and emergent. Therefore, the 

https://en.wikipedia.org/wiki/Extrapolation
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main purpose of the scenario analysis is to validate the user starting points and 

support (or reject) his previous ideas and subsequent decisions; from his 

standpoint, the created model is a system to support decisions (DSS) (Jit and 

Brisson, 2011). 

It is important to note that in the real world, precise predictions are impossible 

due to the complex state of things. Therefore, a scenario analysis must deal with 

a number of uncertainties and with the possible ways in which they could play 

out. In this respect, to minimize errors the developer could, for instance, take a 

decision based on which of the outcomes he has identified as most likely to 

happen. 

The developer usually selects three different but consistent combinations of 

variables. One set gives rise to the optimistic/best outcome, one to the most 

likely outcome and the third to the pessimistic/worst outcome. This is commonly 

called the three-point estimate and mirrors the three states of nature; prosperity, 

steady and decline. 

Even if nobody knows exactly what the future holds, planners are able to 

formulate effectively for different future possibilities by using such a “what-if” 

analysis approach. 

 

5,3,2 APPLICATIONS 

 

In our work, the case study is projected in three different prototype scenarios 

starting with calibrated set-ups. 

Two critical types of situation were simulated: in the first scenario, some patients 

are colonized or infected, whereas in the second scenario, HCWs act as pathogen 

carriers. Furthermore, for both experiment scenarios, input parameters in the 

user interface were variated, namely the effect of different kinds of comparable 

pathogens. The impact of prevention procedures such as hand hygiene 

compliance and ward cleaning were tested as well as the risks connected with 

performing different type of activities. A last scenario was then set to assess the 
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impact of the architectural configuration of the hospital setting on the pathogen 

propagation dynamic. Only the most meaningful cases previously identified were 

tested within the different spatial layout. An additional purpose of such multiple 

set-ups is to gain a better understanding on the potential of the simulation 

system in modelling human behaviour in relation to HAI. 

 

Colonized patients scenario. 

As mentioned in the problem domain section, it is possible for some antibiotic-

resistant pathogens to emerge caused by the selective pressure of antibiotics. 

However, it is more common for newly admitted patients to be colonized or 

infected by one or more pathogens carrying strains into the ward. 

Newcomer patients, newly admitted or moved from other units, are usually put 

in the first available double room, or in a single room only if an infection state 

has been pre-determined. 

However, screening tests to identify MRSA colonised patients take seven days to 

obtain results. This may have limited value for patients staying in the hospital for 

less than a week, which may include most of the patients in the hospital itself 

(Meng et al., 2010). 

Therefore, patients may either begin the simulation already colonized or acquire 

colonization while they are in the ward, whereas HCWs generated at the 

beginning of the simulation are initialized at a non-colonized state. Moreover, 

HCWs may become transiently colonized with the pathogen. 

 

HCWs carriers scenario. 

Because HCWs work on the ward for much longer than the average patient length 

of stay, they have a huge potential to spread infection. Hence, they cannot play 

as large a role in transmission as inpatients lest we expect every inpatient to 

become infected (Beggs, Shepherd and Kerr, 2008). 

However, thanks to the cohorting guidelines, HCWs may transmit the pathogen 

to the patients assigned to them but are unable to directly transmit pathogens to 
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any other patients in the ward, unless there are interruptions, e.g. visitors asking 

for information, which change this behaviour pattern. 

 

Architectural design comparison scenario. 

Finally, a third scenario is to be developed in the near future which compares two 

slightly different spatial configurations of the physical environment, while 

maintaining all the other variables and starting conditions fixed. This further 

simulated scenario experimentation is designed to exploit analysis into whether 

the architectural layout alone affects, by fostering or hindering, HAI propagation. 

The results analysis enables the evaluation of how an intended design meets 

infection control and prevention requirements. This application aims to support 

the design team and hospital managers in the evaluation of functional design 

qualities connected with safety requirements and potential improvements. 

 

5,3,2 SCENARIO-BUILDING 

 

If only best, baseline and worst values for each variable composing K parameters 

are considered, then in total 729 possible combinations could be variated in the 

simulation for each case scenario as input parameters in the transmission flow 

formulation. The following Table 12 summarises the list of variables:  

 

Clostridium D. 

MRSA 

Klebsiella 

 

HCW High Hands Hygiene 

HCW Baseline Hands Hygiene 

HCW Low Hands Hygiene 
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PAT High Hands Hygiene 

PAT Baseline Hands Hygiene 

PAT Low Hands Hygiene 

 

VIS High Hands Hygiene 

VIS Baseline Hands Hygiene 

VIS Low Hands Hygiene 

 

High Ward Cleaning 

Baseline Ward Cleaning 

Low Ward Cleaning 

 

Non-invasive Treatment 

Baseline Treatment 

Invasive Treatment 

Table 12 – List of variables admitted values. 

 

In our study, three different types of condition have been considered for HAI 

dynamics for each selected scenario:  

 

1. In the first experiment, we study the effect of changing the pathogen 

type, modifying the transmissibility Tr parameter;  

2. In the second experiment, we examined the effects of hand-hygiene 

compliance and ward cleaning on the propagation of pathogens, varying 

the Cl variable to test the impact of prevention strategies; 

3. In the third experiment, two treatments with different danger levels were 

compared, e.g. medicine distribution and wound medicament or inserting 

catheter procedure. Thus, the Ty variable was set accordingly. 
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When the objective is to obtain the greatest possible amount of information for 

a given problem or phenomenon, a representative case or a random sample may 

not be the most appropriate strategy.  

Even if random sample selection is useful in avoiding systematic biases and 

achieving a representative example of the phenomenon which allows for the 

generalization of average situations, random samples emphasizing 

representativeness will seldom be able to produce interesting insights. Atypical 

cases often reveal more information because they activate actors and more 

mechanisms differently in the situation under study. In addition, from both an 

understanding-oriented and an action-oriented perspective, it is more important 

for us to clarify the deeper causes behind a given problem and its consequences 

than to describe the symptoms of the problem and how frequently they occur 

(Flyvbjerg, 2006). 

 

A big hospital usually has at most a few thousand inpatients at the same time. 

For many studies which focus on a single hospital unit, the patient population 

size ranges from 10 for an ICU to about 40 for a medical ward. Within a small 

population, it is common to observe large fluctuations in infection prevalence 

and stochastic chance effects may govern the transmission dynamics (Meng et 

al., 2010). 

Due to the randomness effect, prevalence may be high and outbreak may occur 

even when effective interventions are implemented. On the other hand, even 

with ineffective interventions or no interventions at all, there may be a chance 

that an outbreak does not happen and the prevalence remains low for a certain 

time span. Therefore, conclusions drawn from a single or few observations within 

a shorter time span may not represent the reality of the transmission dynamics 

for the HAI of interest.  

 

Another typical feature of HAI is the rapid turnover of patients’ population. Even 

if the actual length of stay may vary for patients with different diseases and risk 
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factors, patients normally only stay in a hospital for a few days or weeks. 

According to this facet has many implications for the transmission dynamics. On 

the one hand, the positive effect is that, even without explicit intervention 

strategies, contaminated patients who can transmit the pathogen may be 

discharged in a few days and no longer pose a threat to other people. (Meng et 

al., 2010). On the other hand, even with every possible intervention strategy, due 

to the short timespan new cases of infection may still be introduced to the 

hospital by admitting patients who carry the pathogen. (Cooper et al., 2004). 

 

In light of these considerations, for our aims it is more appropriate to choose a 

few cases among those simulated for their distinctiveness and validity.  

Flyvbjerg identifies four types of cases associated with information-oriented 

sampling. To maximize the utility of information from small samples and single 

cases, cases are selected based on expectations about their information content. 

The Table 13 below summarises various forms of sampling:  

 

Sampling Purpose 

Extreme/deviant cases To obtain information on unusual cases, which 

can be especially problematic or especially 

good in a more closely defined sense 

Maximum variation cases To obtain information about the significance of 

various circumstances for case process and 

outcome; e.g., three to four cases which are 

very different for one dimension: size, form of 

organisation, location, budget, etc. 

 

Critical cases To obtain information which permits logical 

deductions of the type, ‘if this is (not) valid for 

this case, then it applies to all (no) cases.’ 

 

Paradigmatic cases To develop a metaphor or establish a school for 

the domain which the case concerns 

Table 13 -  Forms of sampling (Flyvbjerg, 2006). 
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No universal methodological principles exist by which one can identify a critical 

case with certainty. However, it can be defined as having strategic importance in 

relation to the general problem. In breaking down the problem, it also helps to 

facilitate identification of those elements and aspects of the problem that are 

likely to foster a risk of the situation. From such understanding, our two case-

study scenarios can be classified as critical case studies, and for each of them 

maximum variation and baseline conditions were investigated and compared. 

 

Such key cases in relation to their impact on pathogen propagation are discussed 

later. Results are shown for fixed simulation length and fixed number of 

interactions, while for the remainder these background variables have not been 

changed. 

As stated, the process which leads to case selection firstly involves the 

investigation of the three-state condition for each scenario and for each kind of 

pathogen. After this, variable values are combined to shape the intended 

scenarios. 

The simulation of such scenarios proved to be useful in understanding the 

effectiveness of various infection control procedures (e.g. hand-hygiene 

compliance and efficacy) and the effect of patient distribution and health-care 

worker-to-patient ratios on the incidence of pathogen transmission. Moreover, 

it helped explore more specific questions relevant to hospital managers and 

policy makers.  

 

  



262 
 

5,4 SIMULATION ASSESSMENT  

 

5,4,1 EXPERIMENTAL RESULTS  

 

This section presents a discussion of the significant scenario experiment results.   

Our contamination model is designed in unity 3D with a hospital unit as virtual 

environment. It provides both dynamic simulation and visualization of the system 

performance. 

The system allows us to profile individuals and their behaviour, characterise the 

pathogens and the role of inanimate objects and furniture as agent-vectors and 

code the development of the interactions occurring among such elements.  

This in turn allows the system user to run controlled experiments which reveal 

the dynamics of pathogen circulation, visualize clusters of infected patients and 

demonstrate how dynamics may vary depending on initial conditions (e.g. human 

factor) or because of spatially related features (e.g. space distribution).  

The simulation of contact-mediated pathogen transmission permits qualitative 

estimation of single factor impacts: patient numbers and distribution, staffing 

conditions, ward spatial organization, pathogen colonization capacity, frequency 

of interactions and so on, either while the simulation is running (the simulation 

can be paused to analyse conditions of all the involved agents) or through a set 

of information extracted after it has ended from the data log. Correlations 

between factors can also be established. Moreover, the scenario simulation 

allows us to understand the relative merits of different HAI management 

strategies and their implementation in contamination propagation control (e.g. 

prevention measures), although the scope of the present study is more to 

visualize the propagation of pathogens on surfaces and skin without considering 

their effect on the health (e.g. development of diseases, death or antibiotics 

prescribed to cure infections).  
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Some intuitive and straightforward simulation results, namely those confirming 

former ABM research, are useful in verifying tool functionality. Some other 

counter-intuitive results, giving rise to more interesting and unexpected insights, 

are well suited to the falsification of unprompted assumptions and verifying 

underestimated correlations, as well the system sensitivity of influencing factors.  

 

Infection policy initiatives, such has Hand Hygiene and Ward Cleaning were 

simulated to gain qualitative insights into the relative effects of such 

interventions for the case study. 

In the real world, the wide-ranging decisions of intervention policies complicate 

the management of HAI hazards and the impact of diverse choices may well result 

in them becoming entangled. Evaluating the weight of every countermeasure as 

well as its potential interference with others is problematic and impractical in the 

real world. Our system exploits the effectiveness of each single intervention 

policy to prevent and control contamination diffusion, as well providing 

visualization of their co-presence with others at the same time. The scenario 

experimentation provides results that are consistent with literature by 

demonstrating varying degrees of improvement within the range of prevention 

strategies. 

 

As presented above, the outcomes of scenario analysis were analysed for low, 

moderate, and high hand hygiene compliance and low, moderate, and high ward 

cleaning compliance. In order to evaluate the effectiveness of each control policy, 

they were applied separately and in a co-ordinated way. This form of simulation 

path helped us understand the extent to which a hospital can be subject to 

outbreaks even if strictly observing prevention regulations.   

 

There is frequently uncertainty concerning the primary source of transmission. In 

certain circumstances, HCWs are the cause for transferring bacteria to patients, 
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whereas in others, patients or visitors could be the primary source of 

transmission.  

Our system allows for the design of simulation scenarios including asymptomatic 

carriers, i.e. actors with hidden contamination status. These scenarios challenge 

the user to detect the initial cause/s of the outbreak. In the same way, 

environmental epidemics sometimes occur. In this case, the infecting role of 

space and its evolving consequences can be revealed. Such a scenario takes place 

in MRSA baseline conditions and is used to understand the effect of a visitor 

approaching carrying hidden strains of MRSA, Fig. 51. 
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Fig. 51 - Asymptomatic carrier scenario 

 

Thanks to the simulation’s level of detail and real-time visualisation, it is possible 

to track the colonized actors directly attributable to each HCW. It demonstrates 

the detrimental effect of a rogue HCW who adheres to Hand Hygiene less than 

the rest of the medical staff, as well as the remarkable incidence of a virtuoso 

HCW who is more compliant with prevention protocols. This could be in the case 

of a worst MRSA scenario condition setting, which means low patient hygiene, 

invasive treatments and low ward cleaning. Three out of four nurses start as 

carriers and spread the contamination. Only one of them strictly adheres to hand 

hygiene protocol. In the scenario, some highly susceptible patients are inserted, 

Fig. 52.  
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Fig. 52 – Rogue and virtuoso HCWs comparison scenario. 

 

Nurses start their respective treatment rounds in three different cohorts.  

Nurses 1 and 2 contaminate each patient with whom they interact one by one. 

Subsequently, the space becomes contaminated due to the presence of 

contaminated patients. Nurse 3 makes contact with a highly susceptible patient, 
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further raising his contamination level. The presence of numerous actors in the 

same multiple room increases the contamination level of the space faster 

compared than that for spaces crossed by Nurse 1. Meanwhile, even if we set the 

worst-case scenario, Nurse 3 affects patients only marginally and without a 

considerable effect on susceptible patients. Nor does this affect the space 

contamination level. If Nurse 2 interacts with a highly susceptible patient, 

infecting him, the major effect of a contaminated big multiple space impacts on 

other patients present. 

 

The previous scenario experimentation proves the valuable role played when 

cohorting is adopted if acceptable HCW-to-patient ratios are maintained and 

where HCWs respect prevention guidelines. In fact, in such cases, transmission 

take place across the cohort, especially when the patient population is well 

mixed, allowing asymptomatic carriers to remain hidden. This condition is more 

likely to occur if too many patients share the same HCW or if the ward is 

understaffed. In dangerous situations, minimizing the size of patient cohorts 

could be suitable.    

 

The following scenario, built on the MRSA baseline, shows a visitor leaving his 

relative’s room when an actor enters the room to attend to the other patient. 

This situation forces him to wait in the corridor and then unexpectedly interrupt 

the HCW workflow while he is performing a round of visits. The visitor who has 

been in direct contact with his infected relative (who has contaminated him, 

making him a carrier), in turn contaminates the HCW. In such a situation, if the 

HCW fails to observe Hand Hygiene, it is likely that he will spread contamination 

to subsequent patients. In the meanwhile, the space populated by these 

contaminated actors also becomes contaminated and contributes to the spread, 

Fig. 53. 
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Fig. 53 – HCW workflow interruption scenario.  
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Simulated scenarios can also be useful in addressing questions relevant to 

hospital management. Interestingly, the economic return of increasing cohort 

size compatibly with the workload of HCWs is related to the essential need of 

reduction in transmission rates, which may likewise be reached thanks to higher 

Hand Hygiene adherence; this should be assessed. 

 

In this regard, our model could support broader considerations about the 

correlation between environmental or human factors and contamination 

prevalence. Awareness of contamination danger and perceived contextual 

barriers (e.g. local and contextual conditions and the effect of architectural 

design) are designed to enhance their indirect/high level of influence on Hand 

Hygiene practice adherence. 

As an indirect effect, in our scenarios the following proved to be contributory 

factors in the spread of germs: 

• Crowded conditions within the ward, e.g. many visitors interrupting the 

HCW’s planned work schedule; 

• Condition of patient full ward and presence of highly susceptible patients; 

• Perception of negligible infection risk due to faster or non-invasive 

treatments, as well as wellbeing feeling of others; 

• Insufficient or unavailable facilities for cleansing. 

 

One further scenario shows the validity of the measure of isolating patients 

suspected or recognized as infected (if HCW hand hygiene procedures are 

followed), so that colonized patients are prevented from transferring the bacteria 

to others through HCWs. 

In this case two hidden infected patients occupy two rooms, a double and a 

single. The nurse caring the first cohort (the double) is compliant to Hand Hygiene 

measures, where the nurse combined with the second cohort is not. Infected 

patients start contaminating their surrounding at the same rate and they receive 

the same treatment. The infected patient sharing the room contaminate his 
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roommate through the environment, in the case of the patient in the single room 

it doesn’t happens. Even if both nurses become equally contaminated after 

touching the infected patient, the one compliant with hygiene procedures 

prevents to transmit further, namely in other rooms, the contamination, where 

in the other case the contamination propagates in subsequent rooms. The 

spreading proceeds through a single and many double rooms, due to the double 

presence the latter case obtain a higher contamination than the single, in which 

the patient has more chances of stay safe, Fig. 54.  
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Fig. 54 - infected Patients scenario. 

 

Self-protective perception promotes compliance with hand hygiene procedures 

and the use of self-protective equipment, e.g. gloves and gowns. Nevertheless, 
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sometimes the latter behavior may lead to an underestimation of its combined 

need with the former, fostering the spread of pathogens even if the HCW has 

ensured his own personal safety (Fuller et al., 2011).  

 

As the following scenario demonstrates, the Event Based approach is directly 

correlated with the pathogen dissemination dynamic. Its development follows 

the rate of events taking place in the environment, those explicitly coded such as 

treatment interactions, as well of those implicitly simulated such as patient-

surrounding contacts.  

Therefore, in each scenario the contamination development visualizes its strong 

correlation with the number of contact interactions. Such a fundamental 

parameter is of the utmost importance in the evaluation of the capability of a 

pathogen to pose a threat for a rapid outbreak or alternatively the chances of 

contamination control. Certainly, interaction cannot be totally avoided, but 

minimizing the number of daily contacts could help. At the very least, preventing 

overcrowding makes it more likely that HCWs will observe Hand Hygiene 

requirements. For the same reason, a threshold value can be studied which 

focuses on the risk-shifting from a pathogen displaying a strong aptitude to 

colonize an environment to one which prefers skin. 

Here we compare different scenarios (i.e. best cases and worst cases) for 

Clostridium and Klebsiella. The results show that while in best cases there is no 

significant output difference, in worst cases the high rate of interaction taking 

place in the Klebsiella scenario strongly affects the contamination level of spaces, 

even if the pathogen’s aptitude to spread through the environment its far less 

than that of Clostridium, Fig. 55.  
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Fig. 55 – Pathogens types comparison scenario. 

 

Case study results demonstrate the capacity of the simulation system to detect 

changes that are not obvious. Our simulation scenarios proved to be highly re-

liable both in situations when a clear sequence of observable, planned factors 

can be recognized and when emerging unplanned behaviour complicates 

situations. 

The proposed approach subdividing the complex phenomenon in component 

pieces help to identify precise spatial and procedural problematic nodes. It is able 

to deal with the variety of factors that are responsible for contamination 

propagation in a robust, consistent and flexible way, adapting to the most diverse 

physical and contingent situations.  

 

Hence, we can assert with confidence that, once calibrated with data from an ad 

hoc survey, the system output will be coherent and consistent with real world 

occurrences, making it useful in predicting the development of infections in real 

world hospital wards. 
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A visualization illustrating the simulation is included in this thesis as an on-line 

video. 

 

While the validity of weighting hypotheses, and branching potential outcomes 

from them has been proved, reliance on scenario analysis without reporting 

some parameters of measurement accuracy is a poor second to traditional 

prediction. In a scenario analysis there are no ex ante expected values, only 

hypotheses, and one is left wondering about the roles of modelling and data 

decision.  

Nevertheless, in a complex real system, factors and assumptions do not correlate 

in lockstep fashion and therefore causative relations are not always knowable, as 

they are in other strong science research fields (Anderson, 1972) (Alexander, 

1966). 

In fact, this bias is the main issue of all the models based on agents, i.e. what is 

the reliability of the model output for a given what-if scenario which nobody 

knows for certain or which has never previously occurred and therefore no exact 

correspondence with real circumstances could be proved?  

However, comparisons of "scenarios" with outcomes are prejudiced by not 

deferring to numbers and once a specific sensitivity is undefined, it may call the 

entire study into question.  

Thus, verification and validation steps were carried out in an attempt to 

overcome such verification limitation. 

 

5,4,2 VERIFICATION 

 

Case study research studies are often seen as less rigorous than quantitative 

methods. The supposed deficiency of these approaches relies on the belief that 

they ostensibly allow more room for the researcher’s subjective judgment and 

preconceived notions. However, even if a bias toward their verification exists, 

according to other experts the case study shows a relevant proximity to reality 
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and generates a learning process in which the researcher constitutes a solid 

prerequisite for advanced understanding (Flyvbjerg, 2006)  

In line with this, our simulation system allows for an iterative process of fitting 

the case study to reality with the aim of perfectly matching virtual environment 

to reality. Moreover, such a method supports the process of learning through the 

demolition of old-knowledge categories where truth is proven by scenarios and 

the building of new ones.  

This process is quite a central element in any learning activity, especially in 

achieving new insights on natural phenomena. More simple forms of 

understanding must yield to more complex ones as the simulation moves deeper 

into the case study, leading to new discoveries through the combination of 

numerous simple understandings. 

Through the perspective of the learning process, we can understand why the 

researcher who conducts a case study often ends up casting off preconceived 

notions and theories. The case study is well suited for generalisation by using the 

type of test that Karl Popper called “falsification”, one of the most rigorous tests 

that a scientific proposition can be subjected to: if just one observation does not 

fit with the 

hypothesis, it is considered generally not valid and must therefore be revised 

(Flyvbjerg, 2006) 

Through this iterative research path, simulated case studies have wide-ranging 

significance and stimulate further investigations and theory-building.   

 

The strong benefit of our approach is the visualization of virtual environments 

which can increase the credibility of the model by facilitating the interpretation 

of simulation results. 

The verification phase was undertaken to prove the reliability of simulation 

progression and results through two iterative processes that were conducted 

during the model building phase for the case study scenarios. Such a practise was 
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designed to reduce the gap between model capabilities, simulation 

expressiveness and real contamination spreading situations.  

Two verification procedures were conducted: checking the code with a 

simulation software expert and visually checking the simulation with HAI experts. 

 

From a software development perspective, a specialist in the Unity3D engine was 

chosen as an advisor. He inspected the simulation code to verify the validity of 

the complex decision logic behind the formalized use process. Moreover, he 

determined whether the simulation computer program performed as intended, 

i.e. debugging the computer program (Law and Kelton, 1991). Consequently, any 

simulation errors were noted and adjustments on the code carried out.  

 

The system provides a visual animated description of the model, allowing the 

user to view the simulation while it is running. System parameters were 

calibrated and the model informally validated by a medical consultant who 

assisted the developer. In undertaking this visual verification, scenarios were run 

separately while the modeller and his consultant monitored agent behaviour. 

 

Both verification by the expert and the modeller’s visual checks were conducted 

iteratively until the correct expected performances of the simulation for the 

reference case study scenario were carried out. 

Even if visual simulation renders potentially complex system dynamics more 

intelligible to consultants and decision makers, verification remains different 

from validation.  

 

5,4,3 VALIDATION  

 

Model validation generally shows how well the current model fits the data at 

hand. Ideally, a model should be validated by means of comparing simulation 
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outputs/results against external data observations from a dataset different from 

the one used for model fitting. 

Such an arrangement is only possible if data from the real system are available, 

although this is rare in HAI modelling. Van Kleef reports only four studies with 

some kind of model validation based on at least two different data sets, where 

traditional mathematical models sometimes incorporate some form of 

quantitative methods to model calibration to empirical data (van Kleef et al., 

2013) 

In the field of HAI modelling, work is ongoing in terms of validation. Recently, to 

construct biologically plausible transmission risk models that can guide cross-

infection control, researchers have developed an RFID tracking system with 

which to extract agent high-fidelity contact data on the understanding of the 

critical role that contact patterns play in cross-infection diffusion (Hornbeck et 

al., 2012). 

 

At the time of writing, we cannot perform this type of validation in the absence 

of a level of real data comparison and the impossibility of collecting all the 

dataset needed in a single survey to feed the model at the same time. Moreover, 

access to sensitive data is highly restricted. 

Therefore, a qualitative validation was carried out.  

We decided to examine the sensitivity of the simulation results, namely how 

sensitive the change in outputs is when varying the simulation input by means of 

sensitivity analysis. The input here is defined as what can vary in order to study 

its effect on the output. This can also exploit the relative importance of different 

input factors on the model outputs (LIU, 2011) (Saltelli, Ratto and Andres, 2009).   

 

The European Commission recommends sensitivity analysis in its impact 

assessment guidelines 2009: “When assumptions underlying the baseline 

scenario might vary result of external factors, you need to do a sensitivity analysis 
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to assess whether the impacts of the policy options differ significantly for 

different values of the key variables” (European Commission, 2009). 

 

It could be useful to clarify to what extent a sensitivity analysis validation is 

different from a scenario analysis. Instead of looking at how all different factors 

that are adjusted in a scenario could impact on the simulation by giving a certain 

situation development (as carried out in our scenario analysis), in a sensitivity 

analysis we examine how every possible value of each variable influences the 

outcomes. A sensitivity analysis is a logical, methodical process created to 

understand the impact that a range of variables has on a given outcome, i.e. 

isolate each variable or group of them and record the range of possible outcomes 

(Rappaport, 1967). 

 

Hence, the sensitivity analysis validation is based on the variable impact value, 

which our model can describe using the discussed variables (e.g. transmissibility, 

type of pathogen, and so on), as well as other simulation parameters such as the 

number of visitors or the time length of treatment. The latter, even though not a 

part of the formulation of the contamination transmission, is directly connected 

with the simulation output through the Event-Based structure of the system and 

thanks to the Unity interface may be variated in the same way as the other 

parameters.  

 

Such a method may exploit what the key drivers of the simulation results are, i.e. 

a sensitivity analysis will instruct the modellers as to the relative importance of 

the inputs in determining the output (Saltelli, Ratto and Andres, 2009). This 

subsequently allows him to discover interesting correlation patterns between 

what the model treats as input and output variables. 
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Determining the impact of a variable under sensitivity analysis through the 

process of recalculating simulation outcomes under alternative assumptions can 

be useful for other purposes, including: 

• Searching for errors in the model, e.g. by encountering unexpected 

relationships between inputs and outputs. 

• Testing or increasing the robustness of the results of a model in the 

presence of uncertainty, namely understanding how the uncertainty in 

the output of system can be apportioned to different model inputs. 

• Model simplification – fixing model inputs that have no effect on the 

output, or identifying and removing redundant parts of the model 

structure. 

 

If observation data is available (regrettably not, in our case), a further application 

of sensitivity analysis is model calibration and improvement. Sensitivity analysis 

can be used to identify important connections between observations, model 

inputs and outcomes. Results are likely to help locate errors in the data collection 

method, in the dataset or in the model development and addressing these issues 

will lead to a fixed model. (Wikipedia) 

 

Sensitivity Analysis can be univariate or multivariate depending on whether one 

or more parameters are altered at a time in the same run. If multiple runs of the 

simulation are performed with a random selection of input parameters, this is 

known as a probabilistic sensitivity analysis (van Kleef et al., 2013). 

 

To conduct a univariate sensitivity analysis, the value of a certain variable 

involved in the model is modified to see how that change affects the overall HAI 

dynamic. The user changes a single variable while keeping the others fixed (e.g. 

at their base-case value), to investigate what kind of effect this has on the overall 

output. 
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By adjusting this variable to either a lower or higher value, the developer can 

partially determine several eventualities. This helps him to make informed 

decisions about prevention and control strategies in the light of understanding 

what could happen to the infection spreading dynamic if variables vary.  

 

To perform our sensitivity analysis validation process, we estimated how 

sensitive the chosen dependent variable (i.e. number of infected patients) is to a 

change in an independent variable, i.e. time spent in performing treatment. This 

investigation was continued for the baseline MRSA case scenario with a random 

starting contamination level for patients, i.e. a random spatial distribution of 

colonized and infected patients. 

The contact duration was variated linearly and for each case the average number 

of infections recorded over 100 simulation repetitions at the end of 3 minutes of 

simulation. The main purpose of the sensitivity analysis validation is to study and 

compare the sensitivity of the simulation outcome in each run. It is therefore 

clear that the percentage of increase for treatment length is not crucial. 
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Following hundreds of repetitions, it is likely that we will be able to estimate that 

an X% increase in time will result in a Y% increase in infected cases. While this 

may be an ideal result for a sensitivity analysis, but it does not have to be 

quantitative. In this sensitivity analysis validation test, we simply wanted to 

understand how the factor within our control impacts on the outcome. The 

measurement was expected to increase along with the increase of treatment 

length and as expected, our hypothesis was verified. However, once the 

simulation is completed with new events, allowing for more than three minutes 

of continuous simulation, it is likely to be possible to verify whether the increase 

in the number of infected cases will rapidly increase at some point and mimic the 

infection dynamic of outbreaks, so letting us identify a safety threshold. The same 

method will be used considering the number of interactions as input parameter 

in the sensitivity analysis.  

Interpreting the validation is a process which determines whether the conceptual 

simulation model is an accurate representation of the system under study (Law 

and Kelton, 1991). We can assert that the sensitivity analysis validation test 

provides some level of confidence that the simulation model of this study is 

already sufficiently valid to represent the performance of the real system.  

Our future aim is to carry out a thorough survey which aims to gather the exact 

type of data required to calibrate the model. This can be achieved through an 

extensive sensitivity analysis process aimed at searching for errors and so 

properly validate the model. This may include, verifying the correlation between 

C and K in the chief equation, and a complete definition of the coefficients 

composing K, because the quality of this method as a Decision Support System 

strongly depends on that knowledge. Such a step is needed if we want to 

understand in detail how the outcomes of the model could help to evaluate how 

the conditions for the variation in pathogen transmission resulting from 

management decisions can lead to significant increases or decreases in the 

incidence of HAIs. 
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6 CONCLUSIONS 
 

6,1 DISCUSSION  
 

The study presents a model and simulation of HAI transmission by a contact route 

through exogenous cross-infection and its propagation dynamics in a hospital 

ward. 

We applied the Event-Based method, an extended agent-based approach, to 

investigate the contamination risk.  

The nature of the HAI problem domain requires us to develop the potential of 

the chosen technique further, as it had never previously been applied to this field. 

The model considers the profile and states of agents and pathogen features and 

includes objects and spaces. 

The simulations display agents’ displacements and behaviour in a spatially 

explicit, heterogeneously mixed virtual environment. 

The developed framework handles a wide range of pathogen types, allowing us 

to graphically represent any hospital-unit layout and account for many diffusion 

scenarios with different agents, activities and spatial distributions. 

  

More specifically, in the simulation, considering “agent” as both space and 

actors: 

• every type of actor, healthcare worker, patient and visitor can be set; 

• the heterogeneity of actors is encompassed and their traits, 

characteristics, abilities and knowledge can vary; 

• the contamination status can be set for each actor as well as his 

susceptible and asymptomatic conditions; 

• interactions with or without contact between all the actor types its 

possible; 

• the role of space as an agent source and vector of pathogens with its own 

level of contamination is included; 
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• medical instruments, equipment and furniture are included either for 

actors or in space; 

• the transmission law varies depending on the type of activity, the type of 

pathogen and the cleansing of involved agents, which represents the level 

of efficacy in hand hygiene or ward cleaning; 

• each actor level of cleansing varies depending on the following: the type 

of planned activity, the level of cleansing of others, the role of the actor 

in the organization, the contextual situation (i.e. overcrowding or 

understaffing), the number and location of hygienic facilities and the 

existence of Alcohol Based Hand Rubs.  

 

The model was built with information gathered from real-life observations and 

on real work procedures and activities carried out within hospital wards. It was 

developed taking into consideration scientific literature on HAIs, which reveal 

established scientific features in understanding HAI propagation. 

Prevention and control guidelines and sessions with hospital managers 

broadened our knowledge on measures and policies to manage HAIs. 

 

The condition of contamination, which is simultaneously the contamination 

capacity of each agent (actor and space), is the element on which pathogen 

dissemination depends. The contamination relational law between agents, 

formalized and presented here, drives the transmission. 

The mathematical formalization between agents is complemented by an expert 

system to include intangible human factors such as the awareness, sensations, 

perceived barriers and local conditions for each agent which influence his 

tendency to comply with prevention and control procedures (i.e. hand hygiene). 

 

Our system is founded on the Event-Based approach established by Shaumann 

et al. which is a modelling and simulation technique of human building use where 

spaces, actors and activities are modelled in a computational environment. 
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Events are designed to co-ordinate temporal, goal-oriented routine activities 

performed by agents. Rather than describing collaborative behaviour from the 

point of view of each actor, events allow for the description of behaviour from 

the point of view of the procedures that need to be performed to achieve a task 

(Schaumann et al., 2017) 

It was from this framework that our model derived its event system architecture, 

the structure of activity simulation and the basic characteristics and behaviour of 

agents, including those of interaction.   

 

The Event-Based Modelling and Simulation was expanded to consider the HAI 

phenomenon, i.e. contamination propagation on spaces and actors. Agent 

attributes were added and scripts modified, while the C# code was integrated 

with our model of transmission dynamic and the expert system and translated 

into system functions. 

 

The system was tested in a virtual simulation of the use of space in a building 

correlated with the contamination propagation through a contact transmission 

route in a hospital ward. It was built with a tool under development on the 

Unity3D platform by Professor Yehuda Kalay and his research group at the faculty 

of Architecture, Technion (Israel).  

 

To illustrate the potential of the developed system, we simulated a trial case 

study in a Unity 3D environment.  

The visual-spatial simulation represents the building and its users in a dynamic 

situation of HAI risk in a coherent system, where behaviours and outcomes can 

be measured over space and time. 

In the case study, some hospital procedures and daily activities are coded in 

terms of events such as system inputs while the contamination map is the 

dynamic output. 
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The main advantage of the simulation environment is that it allows for a real-

time dynamic visualization of the phenomenon and data can be accessed during 

the simulation run or after being stored in a data log. 

To demonstrate potential applications of the simulation, several virtual scenarios 

are hypothesized. Accordingly, initial conditions and parameters are set up on 

the dashboard interface or generated randomly, if needed. Simulation outputs 

are then analysed.  

In addition to the capacity of the system to reveal all kinds of situations occurring 

in space (i.e. agent-agent and agent-environment interaction, as well as 

interference and unplanned events), the simulation allows for the real-time 

visualization of contamination transmission. Although tangible in reality, this is a 

phenomenon that is hidden from cognitive agents within the hospital up until its 

appearance with symptoms.    

The simulation exposes correlations between human states, traits, knowledge, 

behaviour and activities with the propagation of pathogens. 

Moreover, it visualizes the chain of infection which represents the circulation 

path of an infectious pathogen, while suggesting where it may be more feasible 

and convenient to operate in order to break the chain. 

It reveals clusters of infected patients and patterns of spatial occurrence, 

demonstrating how transmission dynamics change depending on initial causes 

and conditions and because of spatially related features. 

It gives us hints on how the spatial design of buildings and placement distribution 

can affect the risk of HAI. 

Of further interest is the potential to assess the outcome on the infection spread 

caused by the implementation of different organizational procedures, e.g. agent 

hygiene behaviour and contact precautions.  

Finally, the simulation shows that the proposed framework is able to consistently 

consider the wide combination of factors that leads to contamination 

propagation and that it is sufficiently robust to adapt to numerous environmental 

and social contexts. 
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Once the model will be extended with more events, primarily Hand Hygiene and 

Ward Cleaning, more facets of the contamination phenomenon will be handled 

by the system and it would be possible:  

 

• to evaluate in detail the role and impact of hand hygiene measure in 

different risk context as well the improvement correlated with the use of 

ABHR dispensers; 

• to evaluate policies controlling the frequency of ward cleaning in relation 

with the number of interaction with the environment (rate of space use), 

to discover more efficient conduct rules and frequency to perform such 

activity; 

• to test specific paths to divide people flows, e.g. HCWs and visitors, in 

relation to their effectiveness in lowering the pathogens dissemination 

and the consequent the risk of cross infection; 

• a narrow evaluation of the amount of space needed for each patient 

within his shared room, to assure adequate spatial separation of patients, 

once integrated in the system; 

• to suggest explanations for observations that have not been previously 

explained; 

• to simulate paradoxical situations so that their resolution leads to the 

progress of knowledge of the problem. 

 

At the end of the process, the re-elaborated knowledge presented through the 

simulation acts as the basis on which decision makers rely to synthesize their 

desired solutions, encompassing regulations, guidelines and field expertise. 

 

To decide is to choose in a reasonable way an appropriate alternative in a 

situation of choice where several solutions are possible (Simon and Alexander, 

1977). Our framework functions as a decision support system (DSS), assisting the 
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decision-making process which is the fundamental meaning of hospital 

management by imitating real-world phenomena of interest by representing the 

system’s evolution over a set period of time. Where the hospital system is 

something which evolves under our nose, as a contemporary process rather than 

an historical.  

Our approach fits the established technique for the simulation of future global 

scenarios since our system is suitable for investigating “what-if?” scenarios, 

providing evidence in support of underlying decision-making processes. In fact, 

the scenario-building mechanism is designed to improve decision-making by 

providing a consideration of scenario outcomes and their implications. In our 

case-based scenario, analysis was used to illuminate critical cases which, while 

unlikely, have repercussions which are so dangerous that the event is much more 

important than its low probability alone would suggest.  

 

It is suggested that this framework allowing the user to understand the 

phenomena through experimentation, which is a traditional goal of science, can 

be used as a decision support system (DSS) for practitioners and policymakers 

alike when employed as a forecasting tool for the evaluation of interventions. In 

fact, a system user (even the modeler himself) can generate new input conditions 

and after system parameter tuning (e.g. actor profiles and behaviour and setting 

re-configuration), by simulating scenarios she/he may figure out possible states 

in the development of a situation. The subsequent comparison of the 

experiment’s qualitative results is valuable in assessing the effectiveness of the 

implementation of control strategies, namely measures and procedures, as well 

as shedding light on potential control protocol breaches in infection outbreak 

management. In this respect, a key potential advantage is to prove that if the 

organization does not work, a different design could help and consequently 

address the design of future hospital environments and the restructuring of 

existing ones. Finally, the system could be useful in facilitating managers to issue 

instructions and recommendations to healthcare staff members, as well as using 
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realistic simulation scenarios to act as a knowledge support tool for HCWs 

training. In this regard it can helps to reduce noncompliance to policies while 

optimizing hospital resources, where typical control procedures are expensive 

e.g. materials, additional capacity, dedicated personnel, labour-intensive and 

generally uncomfortable for both patients and health-care personnel. Finally, and 

most of all, even if only a small number of infections could be prevented it will 

repaid our work hundred times. 

 

In conclusion, we explored the potential of using a multi-agent simulation of 

human behaviour in buildings through modelling to generate several scenarios of 

system futures. Such approach, applicable in multiple domains, provides 

measurable insights of different qualitative factors, allowing us to bridge the gap 

between theoretical knowledge and applied decisions. In this respect, it may 

support the design of urban infrastructures from the point of view of user 

behaviour. Through understanding and representing user needs, context 

constraints and hidden risks, human factor and behaviour could be integrated 

into the decision-making process and the impact of a built environment and 

environmental threats on them could be assessed. We recommend that this 

approach might be considered for future studies on the predictive model 

construction and risk factor analysis. 
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8 ANNEX - PSEUDOCODE DESCRIPTION 
 
 
Object Pathogen added  
{ 
 Attributes: 
  

Transmission_factor  //variing from 0,0 to 1,0 
 Degeneracy //variing from 0,0 to 1,0 
} 
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Object Hospital added  
{ 
 Attributes: 
 
  Overcrovding = true; 
  crovding_MB = 0.5f; //if flg true 
  crovding_MD = 0.5f; //if flg false 
 
  UnderStaffing = false; 
  Staffing_MB = 0.5f; //if flg true 
  Staffing_MD = 0.5f; //if flg false 
 
  ExistABHR = true; 
  ABHR_MB = 0.5f; //if flg false 
  ABHR_MD = 0.5f; //if flg true 
 
  DeviceLocationLT100sec = true; 
  Dev_MB = 0.5f; //if flg false 
  Dev_MD = 0.5f; //if flg true 
 
 
 MB; 
 MD; 
 
 Functions added: 
 
   void compute_hospital_MB_MD() //environmental lack_of_cleaning 
components 
    { 
        //return 0.5f; 
        //float lack_of_act_cleaning; 
 
        MB = 0f; 
        MD = 0f; 
 
        if (Hospital.Overcrovding == true) MB = MB + Hospital.crovding_MB * (1 - 
MB); 
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        else MD = MD + Hospital.crovding_MD * (1 - MD); 
 
        if (Hospital.UnderStaffing == true) MB = MB + Hospital.Staffing_MB * (1 - 
MB); 
        else MD = MD + Hospital.Staffing_MD * (1 - MD); 
 
        if (Hospital.ExistABHR == false) MB = MB + Hospital.ABHR_MB * (1 - MB); 
        else MD = MD + Hospital.ABHR_MD * (1 - MD); 
 
        if (Hospital.DeviceLocationLT100sec == false) MB = MB + Hospital.Dev_MB 
* (1 - MB); 
        else MD = MD + Hospital.Dev_MD * (1 - MD); 
 
 
    } 
 
    // Use this for initialization 
    void Start() 
    { 
        compute_hospital_MB_MD(); 
 
    } 
 
} 
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Object Actor modified: 

{ 

 Attributes added: 

    setrand  //to abilitate randomic function to initial values 
    toucher  //to abilitate the actor to touch other actors or obiects 
    contamination   // variing from 0.0 and 10.0 
    lack_of_cleaning //varriing from 0,0 to 1,0 can mute if hygiene procedure is 
performed  
    infection_limit //from which depends red colour on the map 
    colours; limit //to abilitate colours on actor 
 
 
 
 function modified: 
 
 Start{ 
  
 added: 
  Start Colour handling to actor; 
 

 If set rand flag is enabled: 
  apply contamination start value to various type of 
  actors in random mode  

 
 
    } 
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 function added: 
 

MysetColor(contamination ) 
    { 
         
        if (contamination <= 0F) 
        { 
            Colour =white; 
        } 
         
        if (contamination < 4.0F) 
        { 
            Color = green; 
        } 
       else if (contamination < infection limit) 
        { 
            Colour = yellow; 
        } 
 
        else //if (contamination >= infection limit) 
        { 
            Color = red; 
        } 
    } 
 
} 
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Object space modified : 

{ 

 Attributes added: 

    contamination // starting value variing from 0.0 and 10.0 
    lack_of_env_cleaning = 0.5f; //variing from 0,0 to 1,0 
 
 
 
Function modified : // Every second the UpdateContaminationMap function is 

performed 

   Start { 
 
        InvokeRepeating modified every sec 
 } 
 
 
    UpdateMapValues 
    { 
        
        Function UpdateContaminationMap call added 
    } 
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Function added : 

 UpdateContaminationMap 
    { 
 
        For each actor in zone { 
            if (actor is toucher) { 
                if (actor contamination > contamination of env) //from actors to 
environment 
 
                    contamination = contamination + 
                       (actor contamination – env contamination) * 
                            Pathogen transmission factor * 
                            Actor lack of cleaning *  
  } 
                 
                if (env contamination > actorcontamination) // fom environment to 
actors 
                    actorsGODetected contamination = actorsGODetected 
contamination  + 
                      (env contamination – actor contamination) * 
                            Pathogen transmission_factor * 
                            Lack of env cleaning * 
                actor color = update color (contamination) 
            } 
        } // end of loop 
        if (no actor in zone) 
  env contamination = 
               env contamination – Pathogen degeneracy 
    }  
 

} 
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 Object DrawMaps modified : 

{ 

 Infection zones mode visualization added : 

 Function DrawMap modified addin colour depending on infection values 

} 
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Class Activities modified ; 

{ 

Attributes added: 

    Activity danger //variing from 0 to 1 depending on type of intervention on 
patient 
    Touch duration 
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Function added: // When an actor performs an activity the Touch function is 

called 

Touch (actor, otherActor, duration, lack of cleaning)  
    { 
 
 Update lack of cleaning adding to environmental factors  
 actors and activities components 
        MBact = MBother = MB; 
        MDact = MDother = MD; 
 
        //compute actors MB_MD_COMPONENTS  
 
        MBact = MBact + actor.GetComponent<Actor>().MB * (1 - MBact); 
        MDact = MDact + actor.GetComponent<Actor>().MD * (1 - MDact); 
        MBother = MBother + otherActor.GetComponent<Actor>().MB * (1 - 
MBother); 
        MDother = MDother + otherActor.GetComponent<Actor>().MD * (1 - 
MDother); 
 
        MDact = MDact + ((activity_danger >= 0.5f) ? 0.7f : 0.2f) * (1 - MDact); 
        MDother = MDother + ((activity_danger >= 0.5f) ? 0.7f : 0.2f) * (1 - 
MDother); 
 
        MDact = MDact + 
((otherActor.GetComponent<Actor>().lack_of_act_cleaning >= 0.5f) ? 0.7f : 0.2f) 
* (1 - MDact); 
        MDother = MDother + 
((actor.GetComponent<Actor>().lack_of_act_cleaning >= 0.5f) ? 0.7f : 0.2f) * (1 - 
MDother); 
 
        //end of compute actors MB_MD_COMPONENTS  
 
Compute actors lack of cleaning 
        new_lack_of_act_cleaning_ACT = MBact - MDact; 
        new_lack_of_act_cleaning_OTHER = MBother - MDother; 
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        //end of compute actors lack of cleaning 
 
        SetTime( duration); 
 
         extract fractional part of duration; 
            
        for (i=0;i< duration ;i++) { // SUM from 1 to N…. 
            if (actor is toucher ) 
                if (otherActor contamination > actor contamination) 
                { 
                    Actor contamination = actor contamination +  
                        (otherActor contamination – actor contamination) *  
                           Pathogen transmission  factor *  
                           This activity danger * 
                           new_lack_of_act_cleaning_OTHER 
                    update actor colour 
                } 
                else //if (actor contamination > otherActor contamination) 
                { 
                    otherActor contamination = otherActor contamination + 
                     (actor contamination – otherActor contamination) * 
                        Pathogen transmission factor * 
                        Activity danger * 
                       new_lack_of_act_cleaning_ACT; 
                    update otheActor colour 
                } 
        } //end of multiple of unit tyme elaboration 
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 //begin fractional part of time elaboration 
        if (actor toucher ) 
            if (otherActor contamination > actor contamination) 
        { 
            Actor contamination = actor contamination + 
                 (otherActor contamination – actor contamination) * 
                     fracpart *  
                      activity danger * 
                      Pathogen transmissionfactor * 
                      new_lack_of_act_cleaning_OTHER; 
                    update actor colour 
        } 
        else //if (actor contamination > otherActor contamination) 
        { 
            otherActor contamination = otherActor contamination +  
             (actor contamination – otherActor contamination) * 

 Pathogen transmission factor * 
                    fracpart *  
                      activity danger * 
                    new_lack_of_act_cleaning_ACT; 
                    update otheActor colour 
        } 
} 
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CURRICULUM 
 
Con l'obiettivo di affinare la conoscenza del territorio inteso come organismo 

complesso e supportare i processi decisionali relativi ad esso, la mia attività di 

ricerca è rivolta all’indagine delle relazioni spaziali fra agenti cognitivi, ambientali 

e fisici. A tal fine ho sviluppato e applicato metodi di analisi, modellazione e 

simulazione mirati allo studio della dinamica evoluzione dei sistemi interconnessi 

afferenti al territorio.  

I principali temi da me approfonditi sono: 

Metodi di interpretazione attraverso mappe cognitive di percorsi partecipativi 

atti alla definizione di condivise visioni di sviluppo delle comunità e territori e 

studio delle implicazioni in termini decisionali; 

Approfondimento su cognizione e comportamento spaziale umano, al fine di 

modellare lo sviluppo spazio-temporale delle interazioni fra agenti e ambiente 

(spazio pubblico e infrastrutture), comprenderne le regole di relazione e 

anticiparne le emergenze; 

Simulazione computazionale basata su sistemi ad agenti di situazioni e 

comportamenti ad alto rischio per la salute umana, per la verifica e 

miglioramento delle funzionalità e design di infrastrutture e servizi per la 

cittadinanza. 
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