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VARIATIONAL PROBLEMS FOR FÖPPL–VON KÁRMÁN PLATES∗

FRANCESCO MADDALENA† , DANILO PERCIVALE‡ , AND FRANCO TOMARELLI§

Abstract. Some variational problems for a Föppl–von Kármán plate subject to general equi-
librated loads are studied. The existence of global minimizers is proved under the assumption that
the out-of-plane displacement fulfils homogeneous Dirichlet condition on the whole boundary while
the in-plane displacement fulfils nonhomogeneous Neumann condition. If the Dirichlet condition is
prescribed only on a subset of the boundary, then the energy may be unbounded from below over
the set of admissible configurations, as shown by several explicit conterexamples: in these cases the
analysis of critical points is addressed through an asymptotic development of the energy functional
in a neighborhood of the flat configuration. By a Γ-convergence approach we show that critical
points of the Föppl–von Kármán energy can be strongly approximated by uniform Palais–Smale se-
quences of suitable functionals: this property leads to identifying relevant features for critical points
of approximating functionals, e.g., buckled configurations of the plate. The analysis for rescaled
thickness is performed by assuming that the plate-like structure is initially prestressed, so that the
energy functional depends only on the out-of-plane displacement and exhibits asymptotic oscillating
minimizers as a mechanism to relax compressive states.
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Monge–Ampère equation, critical points, Γ-convergence, asymptotic analysis, singular perturbations,
mechanical instabilities
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1. Introduction. The Föppl–von Kármán model is widely used as a relevant
theoretical tool in the study of the mechanical behavior of thin elastic plates, for its
ability to capture the interplay between membrane and bending effects (see [1], [3]
[18], [19], [20]). This interplay constitutes the source of a rich phenomenology affecting
not only the macroscopic behavior but also the occurrence of local microinstabilities
which are crucial also in the behavior of soft solids, biological tissues, and gels [30]. A
relevant problem consists in detecting a precise geometric description of such creased
equilibrium configurations in dependance of the geometric and constitutive properties
of the plate.

Despite its long and controversial history, a rigorous analysis of the well posed-
ness for variational problems associated to the Föppl–von Kármán functional under
general boundary conditions is still far from complete. In particular, the minimization
problem under general load conditions is quite subtle. The rigorous derivation of the
Föppl–von Kármán plate model from three-dimensional (3D) nonlinear elasticity was
proved by Friesecke, James, and Müller in the seminal paper [23] under the assump-
tion of normal forces, while in [29] the authors carefully analyze the validity of such
a theory under in-plane compressive forces and study in detail the instability issue
under suitable coercivity hypotheses [29, Theorem 4].
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252 F. MADDALENA, D. PERCIVALE, AND F. TOMARELLI

In this paper we study the existence of minimizers for the Föppl–von Kármán
energy, under general load conditions. In particular, we deal with Dirichlet and Neu-
mann conditions for the out-of-plane displacement on the whole boundary while the
in-plane displacement fulfils nonhomogeneous Neumann condition, corresponding to
general assumptions on the forces acting on the plate. The existence of minimizers is
achieved in several cases by improving the techniques introduced in [4], [15] to circum-
vent the lack of coerciveness appearing in related nonconvex minimization problems
and by taking advantage of some properties of the Monge–Ampère equation (see [25],
[46]): in addition to the abstract setting of [4], [15], which leads to the existence of
at least one compact sequence after suitable manipulations, in the present context we
show that every minimizing sequence has a compact subsequence; moreover here the
framework is not limited to a fixed functional but also to sequences of functionals and
we skip the technical task of computing explicitly the recession functional.

We exhibit also examples where the energy of admissible configurations is not
bounded from below, so that existence of minimizers fails and we turn our attention
to the critical points by performing singular perturbation analysis of the functional in a
neighborhood of a flat configuration. This analysis leads to detecting critical points of
the Föppl–von Kármán energy by suitable approximations of Palais–Smale sequences
associated to approximating functionals. Our procedure allows us to single out global
buckling configurations, in cases when the plate has a rectangular shape. As is well
known, wrinkling type phenomena and other microinstabilities (see [17], [21], [22],
[24], [26], [45]) manifest themselves in sheets with very small thickness; therefore we
focus our analysis on the behavior as thickness tends to 0 and highlight the energetic
competition of oscillating configurations versus flat equilibrium configurations.

The detailed outline of the paper is as follows.
In section 2 we prove existence of minimizers for the Föppl–von Kármán energy

(2.11) corresponding to a plate of prescribed thickness h > 0 under the action of
balanced loads in three relevant cases:

(i) the plate is free at the boundary of a generic Lipschitz open set, while in plane
uniform normal traction or mild uniform normal compression is prescribed on the
whole boundary (Theorems 2.1, 2.3);

(ii) the plate is simply supported on the whole boundary of a convex set (Theo-
rem 2.8);

(iii) the plate is clamped on the whole boundary of a generic Lipschitz open set
(Theorem 2.11).

Moreover we focus the analysis on the cases when these conditions at the boundary
are loosened, by showing explicit counterexamples where the energy is not bounded
from below and minimizers do not exist, even for balanced loads and fixed thickness
h > 0.

Section 3 is devoted to study asymptotic behavior of the energy near a flat con-
figuration; this is achieved by scaling the out-of-plane displacements: in Theorem 3.3
we show that every critical point of a simpler limit functional (in the sense of Γ-
convergence) can be approximated by a uniform Palais–Smale sequence (see Defini-
tion 3.2) whose construction is detailed in the statement of the same theorem. Despite
the results proved in the present paper, the existence of nonminimizing critical points
for the Föppl–von Kármán functional remains an open problem in the general case,
at least at our knowledge; nevertheless uniform Palais–Smale sequences can be con-
sidered a surrogate of critical points in a small neighborhood of the flat configuration
and Theorem 3.3 allows us to recover them starting from critical points of the limit
functional. Moreover the analysis of the related Euler–Lagrange equations highlights
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buckled configurations, whose shape can be detailed in some explicit examples (see
Examples 3.8, 3.9).

In section 4, given a plate with thickness s =: hs0 (h > 0 is an adimensional
parameter), we study the limit as h → 0 of scaled Föppl–von Kármán energy Fh
when in-plane forces scale as fh = hαf in functional (2.11).

If α ≥ 2 and (u∗h, w
∗
h) are minimizers, then (h−αu∗h, h

−α/2w∗h) are weakly compact
in H1 ×H2 and the corresponding energies, rescaled by h−1−2α, converge to a limit
energy (see Theorem 4.1 and formula (4.2) therein). It is not surprising that for
α = 2 the limit energy is again the Föppl–von Kármán energy of a plate of thickness
s0, since h−5 is exactly the scaling factor in the hierarchy of [23] in order to obtain
the Föppl–von Kármán plate model.

If α ∈ [0, 2), then the rescaled energies may be unbounded from below as h→ 0+
for all cases: free, simply supported, and clamped plate (see Counterexample 4.4 and
Remark 4.5).

The results obtained in sections 2–4 lead us to examine also the case α ∈ [0, 2),
by studying the equilibrium configurations of the plate as h → 0 through relaxation
arguments applied to an energetic functional which takes into account a prestressed
state of the plate. Precisely, in section 5 we perform the analysis of corresponding
asymptotic sequence of minimizers; we show a competition between oscillating and
flat equilibria and highlight how this competition is ruled by the mechanical and geo-
metrical parameters: oscillating equilibria act as a mechanism to release compression
states in the limit.

Eventually we exhibit a list of creased and noncreased equilibrium configurations
of an annular plate (Examples 5.5–5.8), together with a general strategy (Remark 5.9)
to build these examples: if both eigenvalues in the stress tensor of the prestressed
state are strictly positive almost everywhere, then we can expect only the flat min-
imizer, whereas possible occurrence of oscillating configurations requires the pres-
ence of a compressive state on a region of positive measure (Proposition 5.3, Remark
5.4).

The issues involved in the present article are closely related with a large class of
instabilities, according to recent studies [5], [6], [7], [8], [9], [11], [12], [13], [16], [17],
[28], [31], [32], [33], [35], [36], [37], [38], [39], [40], [42], [43], [44], [45].

Notation. Sym2,2(R) denotes 2 × 2 real symmetric matrices; a ⊗ b denotes the
matrix with entries aibj , a�b = 1

2 (a⊗b+a⊗b) and |a|2 =
∑
i a

2
i for every a,b ∈ Rn;

moreover |A|2 =
∑
i,j A

2
ij and A : B =

∑
i,jAijBij , for every A,B ∈ Sym2,2(R) with

entries, respectively, Aij , Bij .
Hk(Ω) denotes the Sobolev space of functions in the open set Ω ⊂ R2 whose

distributional derivatives up to the order k belong to L2(Ω); Hk
0 (Ω) denotes the

completion of compactly supported functions in the Sobolev Hk norm; and H1(Ω,R2)
denotes the vector fields with components in H1(Ω). While notation H1 refers to the
Hilbertian case, W 1,p(Ω) denotes the Sobolev space of functions with first derivatives
in Lp(Ω) with p > 1.
−
∫
A
v dx = |A|−1

∫
A
v dx for all measurable set A and every integrable function v

defined on A. 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x 6∈ A, χU (v) = 0 if v ∈ U , and
χU (v) = +∞ if v 6∈ U .

2. Minimization of Föppl–von Kármán functional. Let Ω ⊂ R2 be a
bounded open connected set with Lipschitz boundary ∂Ω; x = (x1, x2) denotes the
coordinates of points in Ω referring to the canonical reference frame in R2, and s > 0
is the thickness of a thin plate-like region whose reference configuration is Ω×(− s2 ,

s
2 ).
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254 F. MADDALENA, D. PERCIVALE, AND F. TOMARELLI

Moreover set s := hs0, where h is an nondimensional scale factor which remains fixed
throughout this section.

Let u : Ω → R2 and w : Ω → R be, respectively, the in-plane and out-of-plane
displacements. In the geometrical linear setting the stretching tensor D is given by

(2.1) D(u, w) = E(u) +
1
2
Dw ⊗Dw,

where

(2.2) E(u) =
1
2
(
Du +DuT

)
denotes the linearized strain tensor.

The kernel of E, which is the set of infinitesimal rigid displacements in Ω, is
denoted by

(2.3) R := {u : E(u) = 0}

and R(u) denotes the projection of u ∈ H1(Ω,R2) on R. The elastic energy of a plate
of thickness hs0 > 0 is the sum of a membrane energy

(2.4) Fmh (u, w) = hs0

∫
Ω
J(D(u, w)) dx

and a bending energy

(2.5) F bh(w) =
h3s3

0

12

∫
Ω
J(D2w) dx .

We assume that for every A ∈ Sym2,2(R) the energy density J is given by
(2.6)

J(A) =
E

2(1− ν2)
(
|Tr(A)|2 − 2(1− ν)det A

)
=

E

2(1 + ν)
|A|2 +

E ν

2(1− ν2)
|TrA|2,

where E > 0 is the Young modulus and ν is the Poisson ratio, −1 < ν < 1/2.
A straightforward consequence of (2.6) which will be exploited in subsequent

computations is

(2.7) cν
E

2
|A|2 ≤ J(A) ≤ Cν

E

2
|A|2,

where 0 < cν := min{(1−ν)−1, (1+ν)−1} ≤ Cν := max{(1−ν)−1, (1+ν)−1} < +∞ .
By denoting the unit outer normal to ∂Ω by n, we define

(2.8)
A0 :=

{
w ∈ H2(Ω)|w =

∂w

∂n
= 0 on Γ

}
,

A1 :=
{
w ∈ H2(Ω)|w = 0 on Γ

}
,

A2 := H2(Ω),

where spaces A0 = A0(Γ), A1 = A1(Γ) do depend on the set Γ. We assume in general
that

(2.9) Γ ⊂ ∂Ω is a Borel set s.t. H1(Γ) > 0 .

Let

(2.10) fh ∈ L2(∂Ω,R2) , gh ∈ L2(Ω)

be, respectively, the densities of a given in-plane load distribution and of a given
out-of-plane load distribution.
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By taking into account the work of external loads and different types of boundary
conditions, we define the Föppl–von Kármán functional (FvK) in what follows,

(2.11)
Fh(u, w) = hs0

∫
Ω
J(D(u, w)) dx

+
h3s3

0

12

∫
Ω
J(D2w) dx− hs0

∫
Ω
gh w dx− hs0

∫
∂Ω

fh · u dH1.

Throughout the paper we choose units of measurement such that s0 = 1.
About the various parameters issue we notice that FvK energies are derived ex-

plicitly in [23] only when the measure units are chosen such that s := hs0 = 1;
nevertheless, by a careful inspection of the proof, we claim that an analogous scaling
argument leads to the same result for a generic s, say, to functional (2.11): indeed
it is enough starting from a 3D cylinder of thickness (−ths0/2, ths0/2) (where s0 is
a fixed thickness, h, t > 0 are adimensional parameters) and letting t → 0+ in the
3D energies scaled by t−5. Concerning this issue we refer also to the analysis about
energy bounds available in [10], [9].

Equilibrium configurations of the plate under prescribed loads fh and gh are
obtained by minimizing the functional (2.11) over H1(Ω,R2) × Ai, i = 0, 1, 2, cor-
responding, respectively, to clamped, simply supported, and free plate. The present
section focuses on issues related to existence and nonexistence of these minimizers:
we study in detail the existence of such minimizers according to the various choices
i = 0, 1, 2 of boundary conditions and loads and we exhibit some counterexamples in
which the functional is unbounded from below, and hence global minimizers do not
exist.

The main obstruction in applying the direct methods of the calculus of variations
to this problem relies in the possible lack of coerciveness of the functional (2.11):
indeed the kernel of the membrane energy density, which in general is a subset of the
set of solutions of the Monge–Ampère equation in Ω (see Lemma 2.5 below), may
be too large to allow balancing of the internal membrane energy versus the effect of
external forces, in order to achieve an equilibrium configuration. Notwithstanding
this difficulty, an existence theorem can be proved either assuming a sign condition
on boundary forces, or an homogeneous Dirichlet condition on the transverse dis-
placement. In the first case the work of the external forces is bounded away from
zero on the kernel of the membrane energy density, thus allowing the global energy
to be bounded from below; in the second one a uniqueness result in the theory of
Monge–Ampère equation implies that the kernel of bending energy reduces to the
null transverse displacement (see also [31], [32], [33]). These settings together with a
tuning of some techniques introduced in [4] and [15] yield compactness of minimizing
sequences, and hence the existence of minimizers via the direct method.

Assuming fh = fhn, we prove the existence of minimizers for Fh in H1(Ω,R2)×
H2(Ω), first under the assumption that fh is a nonnegative constant (Theorem 2.1),
and second under the assumption that fh is a small negative constant (Theorem 2.3).

Theorem 2.1 (uniform boundary tension of a free plate). Assume that Ω ⊂ R2

is a bounded connected Lipschitz open set and∫
Ω
gh dx =

∫
Ω
x1gh dx =

∫
Ω
x2gh dx = 0 ,(2.12)

fh = fhn on ∂Ω , fh ≥ 0 is a constant.(2.13)

Then, for every fixed h > 0, Fh achieves a minimum over H1(Ω,R2)×H2(Ω).
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Proof. In order to achieve the proof it will be enough to show a minimizing
sequence equibounded inH1(Ω,R2)×H2(Ω), since Fh is sequentially l.s.c. with respect
to the weak convergence in such space. Due to infH1×H2 Fh ≤ Fh(0, 0) ≤ 0, if
Fh(un, wn) → infH1×H2 Fh, we may suppose Fh(un, wn) ≤ 1 so, by the divergence
theorem, (2.13), and (2.7) we also get

(2.14) cν
h3E

24

∫
Ω
|D2wn|2 +cν

hE

2

∫
Ω
|D(un, wn)|2 ≤ hfh

∫
Ω

div un+h
∫

Ω
ghwn+1.

Set λn := ‖E(un)‖L2 and suppose by contradiction that supλn = +∞, and hence (up
to subsequences without relabeling) λn → +∞. Let ζn := λ

−1/2
n wn, vn := λ−1

n un
and xΩ is the center of mass of Ω. Possibly different constants denoted by C actually
depend only on Ω. Then by substituting in (2.14) and dividing times λn, we get via
(2.12) and Poincaré inequality

(2.15)

cν
h3E

24

∫
Ω
|D2ζn|2 + λncν

hE

2

∫
Ω
|D(vn, ζn)|2

≤ hfh
∫

Ω
div vn + λ−1/2

n h

∫
Ω
ghζn + λ−1

n

= hfh

∫
Ω

div vn + λ−1/2
n h

∫
Ω
gh

(
ζn − −

∫
Ω
ζn − (x− xΩ)−

∫
Ω
Dζn

)
+ λ−1

n

≤ hfh
∫

Ω
div vn + λ−1/2

n h ‖gh‖2L2 + λ−1/2
n C

∫
Ω
|D2ζn|2 + λ−1

n .

The above inequality together with ‖E(vn)‖L2 = 1 entails

(2.16) cν
h3E

24

∫
Ω
|D2ζn|2 + λncν

hE

2

∫
Ω
|D(vn, ζn)|2 ≤ C

for large n. Exploiting ‖E(vn)‖L2 = 1, once more, we get that Dζn are then equi-
bounded in H1(Ω,R2), and, up to subsequences, ζn − −

∫
Ω ζn → ζ weakly in H2(Ω),

Dζn → Dζ in L4(Ω,R2) due to the Rellich theorem and vn → v weakly in H1(Ω,R2).
By taking into account (2.12) we get

(2.17)

hfh

∫
Ω

div vn+λ−1/2
n h

∫
Ω
ghζn = hfh

∫
Ω

div vn+λ−1/2
n h

∫
Ω
gh

(
ζn−−

∫
Ω
ζn

)
→ hfh

∫
Ω
div v .

By sequential lower semicontinuity together with (2.17), (2.15) we get
(2.18)

cν
h3E

24

∫
Ω
|D2ζ|2 ≤ lim inf cν

h3E

24

∫
Ω
|D2ζn|2

≤ lim inf
{
hfh

∫
Ω

div vn + λ−1/2
n h

∫
Ω
gh

(
ζn−−

∫
Ω
ζn

)
+ λ−1

n

}
= hfh

∫
Ω

div v.

Moreover, by taking into account that λn → +∞,
(2.19)

λncν
hE

2

∫
Ω
|D(vn, ζn)|2 ≤ hfh

∫
Ω

div vn + λ−1
n + λ−1/2

n h

∫
Ω
gh

(
ζn−−

∫
Ω
ζn

)
≤ C
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and by Dζn → Dζ in L4(Ω,R2), we have also

(2.20) cν
hE

2

∫
Ω
|D(v, ζ)|2 ≤ lim inf cν

hE

2

∫
Ω
|D(vn, ζn)|2 ≤ C lim inf λ−1

n = 0.

Hence D(vn, ζn) → D(v, ζ) = O, E(vn) → E(v) both in L2(Ω,Sym2,2(R)) and
2 div v = −|Dζ|2.

Therefore by (2.18)

(2.21) cν
h3E

24

∫
Ω
|D2ζ|2 +

1
2
hfh

∫
Ω
|Dζ|2 ≤ 0

and by taking into account that −
∫

Ω ζ = 0 we get ζ = 0 and E(v) = 0, a contradiction
since ‖E(vn)‖L2 = 1 and E(vn) → E(v) in L2(Ω,Sym2,2(R)). So λn ≤ C for some
C > 0 and un −R(un) are equibounded in H1(Ω,R2) by the Korn inequality, while
equiboundedness of wn− −

∫
Ω wn in H2(Ω) follows from (2.14). Existence of minimizers

is then straightforward via direct method.

If f < 0, then the analogue of Theorem 2.1 for in-plane compression along the
whole boundary cannot be true, as shown by the next particularly telling Counterex-
ample 2.2. Anyway we can deal also with load corresponding to small negative f , as
shown by Theorem 2.3 below.

Counterexample 2.2 (uniform boundary compression). Assume

Ω = (−2, 2)× (−1, 1) , Γ = {−2} × [−1, 1], gh ≡ 0,(2.22)

fh = fhn on ∂Ω, where fh is a given constant s.t. fh < −CνE64 h2.(2.23)

Then inf Fh = −∞ over both H1(Ω,R2)×A1 and H1(Ω,R2)×A2. Indeed, let

u = − (2 + x1)3

6
e1, ϕ =

(2 + x1)2

2
,

and un := nu, ϕn :=
√
nϕ; then 2E(un) = −Dϕn ⊗Dϕn and by (2.7)

Fh(un, ϕn) ≤ h3Cν nE

24

∫
Ω
|D2ϕ|2 dx− nh fh

∫
∂Ω

n · u dH1

=
h3CνnE

24

∫
Ω
|D2ϕ|2 dx− nh fh

∫
Ω

div u dx

=
h3CνnE

24

∫
Ω
|D2ϕ|2 dx +

nhfh
2

∫
Ω
|Dϕ|2 dx

=
nhCν

3
(
h2E + 64 fhCν−1)→ −∞ .

Referring to the bounded connected Lipschitz open set Ω ⊂ R2, denote by K(Ω)
the best constant such that

(2.24)
∫

Ω

∣∣∣∣v −−∫
Ω

v
∣∣∣∣2 dx ≤ K(Ω)

∫
Ω
|Dv|2 dx ∀v ∈ H1 (Ω,R2) .

Theorem 2.3 (mild uniform boundary compression of a simply supported plate).
Assume that Ω ⊂ R2 is a bounded connected Lipschitz open set, gh ∈ L2(Ω), and

(2.25) fh = fhn on ∂Ω,
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where fh is a given constant such that

(2.26) fh > −
h2cνE

12K(Ω)
.

Then, for every fixed h > 0, Fh achieves a minimum over H1(Ω,R2)×H2(Ω)∩H1
0 (Ω) .

Proof. Here, by setting Γ = ∂Ω, we have A1 = H2(Ω)∩H1
0 (Ω). Let Fh(un, wn)→

infH1×A1 Fh and assume by contradiction that ‖E(un)‖ → +∞. By arguing as
in the proof of Theorem 2.1 we can build a sequence (vn, ζn) → (v, ζ) weakly in
H1(Ω,R2) ×H2(Ω), ‖E(vn)‖ = 1, D(vn, ζn) → D(v, ζ) = O, E(vn) → E(v) both in
L2(Ω,Sym2,2(R)), 2 div v = −|Dζ|2 and

(2.27) cν
h3E

24

∫
Ω
|D2ζ|2 +

1
2
hfh

∫
Ω
|Dζ|2 ≤ 0 ;

we emphasize that ζn = 0 at ∂Ω entails −
∫

ΩDζn = 0, and therefore |
∫

Ω ghζn| ≤
C ‖gh‖L2‖D2ζn‖L2 for a suitable constant C = C(Ω), and hence (2.27) can be achieved
even without assuming (2.12).

Therefore by taking into account that
∫

ΩDζ = 0 (due to ζ ∈ H1
0 ), Poincaré

inequality (2.24) and assumption (2.26) altogether entail
(2.28)

cν
h3E

24K(Ω)

∫
Ω
|Dζ|2 +

1
2
hfh

∫
Ω
|Dζ|2 ≤ cν

h3E

24

∫
Ω
|D2ζ|2 +

1
2
hfh

∫
Ω
|Dζ|2 ≤ 0 ,

so Dζ = 0 and, by D(v, ζ) = O, E(v) = O, that is a contradiction since ‖E(vn)‖L2 = 1
and E(vn)→ E(v) in L2(Ω,Sym2,2(R)). The claim follows by repeating the last part
of the Theorem 2.1 proof: here transverse load balancing (2.12) is not needed, due to
boundary condition A1.

Remark 2.4. By inspection of the proof of Theorem 2.3 we deduce also exis-
tence theorems for a plate clamped on a possibly proper subset Γ of the boundary.
Precisely, assuming Ω bounded, connected, Lipschitz, (2.9), and (2.25) with fh >

−(h2cνE)/(12 K̃(Ω,Γ)), where K̃(Ω,Γ) is the best constant s.t.
∫

Ω |v|
2 dx ≤ K(Ω,Γ))

{
∫

Ω |Dv|2 dx+
∫

Γ |v|
2 dH1}, then Fh achieves a minimum over H1(Ω,R2)×A0(Γ).

Similar claims inH1(Ω,R2) × A1(Γ) (for plates supported on Γ) fail, even by
adding assumption

∫
Ω x1ghdx =

∫
Ω x2ghdx = 0. Indeed, if Ω = (0, 1)2, Γ = {0} ×

[0, 1], gh ≡ 0, fh = −λ2h2n, then inf Fh = −∞, as shown by um = −(1/6)(x1 +
m)3 e1 , wm = ((x1 +m)2 −m2)/2, m ∈ N.

Concerning the existence of minimizers for Fh in H1(Ω,R2) × Ai for i = 0, 1,
when Γ = ∂Ω, that is, for clamped and simply supported plates, respectively, at the
whole boundary, in the presence of boundary forces which fulfill neither condition
(2.13) nor conditions (2.25)–(2.26) we need to state first the following lemma (see
also [23, Proposition 9]), which clarifies the link between ker D and the solutions of
the Monge–Ampère equation in Ω.

Lemma 2.5. Let Ω ⊂ R2 be an open set and assume that u ∈ H1(Ω,R2), ϕ ∈
H2(Ω) satisfy

2E(u) +Dϕ⊗Dϕ = 0 in Ω .

Then detD2ϕ ≡ 0 in Ω, where detD2ϕ is the pointwise hessian of ϕ.

Proof. Since E(u) satisfies the compatibility equation

E11,22 + E22,11 = 2E12,12
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in the sense of D′(Ω), we get∫
Ω
ψ,2(E11,2 − E12,1) + ψ,1(E22,1 − E12,2) dx = 0 ∀ψ ∈ C∞0 (Ω) .

Therefore since Dϕ⊗Dϕ = −2E(u) we get

E22,1 = −ϕ,2 ϕ,12 ,

E12,2 = −1
2
ϕ,2 ϕ,12 −

1
2
ϕ,1 ϕ,22 ,

E11,2 = −ϕ,1 ϕ,12 ,

E12,1 = −1
2
ϕ,2 ϕ,11 −

1
2
ϕ,1 ϕ,12 .

Summarizing

1
2

∫
Ω
ψ,2(ϕ,11ϕ,2 − ϕ,1ϕ,21) + ψ,1(ϕ,1ϕ,22 − ϕ,2ϕ,21) dx = 0 ∀ψ ∈ C∞0 (Ω) ,

that is DetD2ϕ = 0, where DetD2ϕ is the distributional hessian of ϕ.
Since ϕ ∈ H2(Ω) we have detD2ϕ = DetD2ϕ = 0 in Ω.

In what follows we state and prove an existence theorem for simply supported
plates whose proof relies on a result by Pakzad [41] for the degenerate Monge–Ampère
equations (see also [25]), which is recalled in the subsequent proposition.

Proposition 2.6 (see [41, Proposition 1.1]). Assume Ω ⊂ R2 is a bounded open
convex set, h ∈ H1(Ω,R2) is a map with symmetric gradient, and the determinant of
Dh is vanishing a.e.

Then for every point x ∈ Ω there exists either a neighborhood U of x or a segment
with endpoints on ∂Ω and passing through x where h is constant.

The above result entails the next crucial consequence.

Lemma 2.7. Let Ω ⊂ R2 be a bounded open convex set and ζ ∈ H2(Ω) ∩H1
0 (Ω)

be such that detD2ζ ≡ 0 in Ω. Then ζ ≡ 0 in Ω.

Proof. We prove first that Dζ is continuous in Ω. Indeed, set hε := Dζ +
ε(−x2, x1); then hε ∈ H1(Ω,R2) and detDhε = ε2 > 0. Hence the continuity
of hε in the whole Ω follows by a result of [47] (see also [34, Theorem 4.4]).

Continuity of Dζ follows by uniform convergence of hε to Dζ.
For any pair of points x1, x2 ∈ ∂Ω and t ∈ (0, 1) we set xt := tx1 + (1− t)x2 and

we define

T := {x ∈ Ω : ∃U open : x ∈ U, Dζ constant in U}
S := {x ∈ Ω : ∃x1, x2 ∈ ∂Ω, t̄ ∈ (0, 1) s.t. x = xt̄, Dζ(xt) is constant if t ∈ (0, 1)}

By Proposition 2.6 we get Ω = T ∪ S, ζ ≡ 0 on S ∪ ∂Ω and if either T or S is empty,
the thesis follows easily.

Otherwise, Dζ is continuous and locally constant in the open set T , and hence
Dζ is constant on each connected component C of T . Since ∂C ⊂ S ∪ ∂Ω we get
ζ ≡ 0 on C and the thesis follows.

Theorem 2.8 (simply supported plate). If Ω ⊂ R2 is a bounded, convex open
set and fh is an equilibrated in-plane load distribution, say,

(2.29)
∫
∂Ω

fh · z dH1 = 0 ∀z ∈ R ,
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then, for every fixed h > 0, the FvK functional Fh in (2.11) achieves a minimum
over H1(Ω,R2)×H2(Ω)∩H1

0 (Ω).

Proof. Here Γ ≡ ∂Ω so, referring to (2.8), we look for minimizers of Fh over
H1(Ω,R2) × A1 = H1(Ω,R2) × H2(Ω) ∩ H1

0 (Ω). The proof will be achieved by
showing the existence of a minimizing sequence equibounded in H1(Ω,R2)×H2(Ω),
since Fh is sequentially l.s.c. with respect to the weak convergence in this space.
Due to infH1×A1 Fh ≤ Fh(0, 0) ≤ 0, if Fh(un, wn) → infH1×A1 Fh we may suppose
Fh(un, wn) ≤ 1. So by taking into account (2.29) and (2.7) we get via Korn and
Poincaré inequality
(2.30)

cν
h3E

24

∫
Ω
|D2wn|2 + cν

hE

2

∫
Ω
|D(un, wn)|2

≤ h
∫

Ω
fh · un + h

∫
Ω
ghwn + 1

= h

∫
Ω
fh ·

(
un−R(un)

)
+h

∫
Ω
ghwn + 1≤‖E(un)‖L2‖fh‖L2 +h ‖gh‖L2‖Dwn‖L2 +1.

Set λn := ‖E(un)‖L2 , assume by contradiction λn → +∞, and set vn := λ−1
n un ζn :=

λ
−1/2
n wn . By substituting in (2.30) and dividing by λn, via Poincaré inequality in
H2 ∩H1

0 , we get

(2.31)

cν
h3E

24

∫
Ω
|D2ζn|2 + λncν

hE

2

∫
Ω
|D(vn, ζn)|2

≤ ‖fh‖L2 + λ−1/2
n h‖gh‖L2‖Dζn‖L2 + λ−1

n

≤ C + λ−1/2
n h

∫
Ω
|Dζn|2 ≤ C + λ−1/2

n h

∫
Ω
|D2ζn|2,

thus obtaining as in the proof of Theorem 2.1

(2.32) cν
h3E

24

∫
Ω
|D2ζn|2 + λncν

hE

2

∫
Ω
|D(vn, ζn)|2 ≤ C ′

for a suitable C ′ > 0. Since ‖E(vn)‖L2 = 1, Dζn are then equibounded in H1(Ω,R2)
so, up to subsequences, ζn → ζ weakly in H2(Ω), Dζn → Dζ strongly in L4(Ω,R2),
vn → v weakly in H1(Ω,R2), and D(vn, ζn)→ 0 strongly in L2(Ω). Hence

(2.33) 2E(vn)+Dζn⊗Dζn → 2E(v)+Dζ⊗Dζ = O strongly in L2(Ω,Sym2,2(R))

and E(vn) → E(v) strongly in L2(Ω,Sym2,2(R)). Then by Lemma 2.5 we have
detD2ζ = 0 and by taking into account that Ω is convex and ζ = 0 on the whole
∂Ω, by the uniqueness property of Lemma 2.7 we get ζ ≡ 0 in Ω. This implies
E(v) = − 1

2Dζ ⊗ Dζ = O, which is a contradiction since ‖E(vn)‖L2 = 1. Hence
λn ≤ C for suitable C > 0, so un −R(un) are equibounded in H1(Ω,R2) and equi-
boundedness of wn in H2(Ω) follows from (2.32). Existence of minimizers is obtained
via direct method.

Remark 2.9. Concerning Theorem 2.8, at first we stated and proved an existence
theorem for simply supported strictly convex plates, relying on a result by Rauch and
Taylor (see [46, Theorem 5.1]) about the Dirichlet problem for the Monge–Ampère
equation; subsequently an anonymous referee drew our attention to the result by
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Fig. 1. Counterexample 2.10 : Γ represented by the thicker part of boundary.

Pakzad [41], which allows us to soften the strict convexity assumption into the plain
convexity assumption of present Theorem 2.8. Here we take the opportunity to thank
the referee for highlighting such issue.

Existence of minimizers may fail when Γ 6≡ ∂Ω: this happens even if the in-
plane load fh is equilibrated and the plate is strictly convex, as shown by the next
counterexample.

Counterexample 2.10 (buckling under in-plane shear). Referring to Figure 1,
set γ > 0, ε > 0, h2 < γ/(6ECν),

Ωε =
{

(x1, x2) : |x1| < 2 + ε
(
1− x2

2
)
, |x2| < 1 + ε

(
4− x2

1
)}

,

Γε = ∂Ωε ∩ {(x1, x2) : |x1 − x2| ≥ 1} ,(2.34)
fh := γτ (1Σ2,± − 1Σ1,±) ,(2.35)

where τ denotes the counterclockwise oriented unit vector tangent to ∂Ωε = Σ1,±
ε ∪

Σ2,±
ε and

Σ1,±
ε =

{
(x1, x2) : |x1| ≤ 2, x2 = ±

(
1 + ε

(
4− x2

1
))}

,

Σ2,±
ε =

{
(x1, x2) : |x2| ≤ 1, x1 = ±

(
2 + ε

(
1− x2

2
))}

.

We claim that there exists ε̃ such that inf Fh = −∞ over H1(Ωε̃,R2)×A1 under the
assumptions listed above, notwithstanding the strict convexity of Ωε̃ and the fact that
condition (2.29) holds true.

Indeed, let ψ ∈ C1,1(R) be an even function, with sptψ ⊂ [−1, 1], ψ′ = −1 in
[1/4, 3/4] and |ψ′′| ≤ 4 in R. We set ϕ(x1, x2) = ψ(x1 − x2) and define wn :=

√
nϕ

and un := nu , where

u2(x1, x2) = −u1(x1, x2) =
1
2

∫ x1−x2

−1
|ψ′(τ)|2 dτ .

By setting Ω0 := (−2, 2)× (−1, 1) ⊂ Ωε, there is C > 0 such that for every 0 < ε ≤ 1∣∣∣∣ ∫
∂Ωε

fh · u dH1 −
∫
∂Ω0

fh · u dH1
∣∣∣∣ ≤ C ε ,

and hence by (2.35) there exists ε̃ ∈ (0, 1) such that

(2.36)
∫
∂Ωε̃

fh · u dH1 ≥
∫
∂Ω0

fh · u dH1 − γ

2
= γ

∫
Ω0

2 E12(u) dx− γ

2
.
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So

u1,1(x1, x2) = −1
2
|ψ′(x1 − x2)|2 = −1

2
ϕ2
,1,

u2,2(x1, x2) = −1
2
|ψ′(x1 − x2)|2 = −1

2
ϕ2
,2,

u1,2 + u2,1

2
=

1
2

[
1
2
|ψ′(x1 − x2)|2 +

1
2
|ψ′(x1 − x2)|2

]
=

1
2
|ψ′(x1 − x2)|2 = −1

2
ϕ,1ϕ,2,

that is, E(un) = − 1
2Dwn ⊗Dwn and moreover, by (2.7), (2.36), and ϕ,2 = −ϕ,1 we

deduce
(2.37)
Fh(un, wn)

≤ Cν
h3 nE

24

∫
Ω0

|D2ϕ|2 dx+ Cν
h3 nE

24

∫
Ωε̃\Ω0

|D2ϕ|2dx + hnγ

∫
Ω0

ϕ,1ϕ,2dx + hn
γ

2

≤ Cν
8h3 nE

3

(∣∣{(x1, x2) ∈ Ω0 : 4|x1 − x2| ≤ 1 or 3 ≤ 4|x1 − x2| ≤ 4}
∣∣+ |Ωε̃ \ Ω0|

)
− hnγ|{(x1, x2) ∈ Ω0 :1 ≤ 4|x1 − x2| ≤ 3}|+ hn

γ

2
≤ 3CνEh3n− hnγ

2
→ −∞

as n→ +∞ whenever 6ECν h2 < γ, thus proving the claim.

Clearly Theorems 2.1, 2.3, 2.8 hold for the clamped plate too: minimization in
H1(Ω,R2)×A0. Even better, in the case of clamped plate we can drop both convexity
assumption on Ω and equilibrated out-of-plane load (2.12) as is shown by the next
result.

Theorem 2.11 (clamped plate). If Ω is a bounded connected Lipschitz open set
and (2.29) holds, then for every fixed h > 0 the functional Fh in (2.11) achieves its
minimum over H1(Ω,R2)×H2

0 (Ω).

Proof. Again we need only to exhibit an equibounded minimizing sequence. In-
deed, as in the proof of Theorem 2.8 if Fh(un, wn) → infH1×H2

0
Fh, we may sup-

pose Fh(un, wn) ≤ 1. Then, since Γ = ∂Ω entails H2
0 (Ω) = A0 ⊂ A1, by setting

λn := ‖E(un)‖L2 , vn := λ−1
n un , ζn := λ

−1/2
n wn and assuming λn → +∞, arguing

as in the previous proofs we achieve the estimates (2.30), (2.31), (2.32). Then the
sequence Dζn is equibounded in H1(Ω,R2) so, up to subsequences, ζn → ζ weakly in
H2(Ω), Dζn → Dζ in L4(Ω,R2), vn → v weakly in H1(Ω,R2), and D(vn, ζn)→ O in
L2(Ω,Sym2,2(R)). Hence
(2.38)

2E(vn) +Dζn ⊗Dζn → 2E(v) +Dζ ⊗Dζ = O strongly in L2(Ω,Sym2,2(R)),

E(vn)→ E(v) strongly in L2(Ω,Sym2,2(R)), and by Lemma 2.5 we have detD2ζ = 0
in the whole Ω. Since ζ ≡ ∂ζ

∂n ≡ 0 on ∂Ω, there exists a disk Ω̃ (bounded and convex!)
such that Ω ⊂ Ω̃ and the trivial extension ζ̃ of ζ in Ω̃ belongs to H2

0 (Ω̃). Therefore
detD2ζ̃ = 0 on Ω̃ and still by [46, Theorem 5.1] we get ζ̃ ≡ 0 in Ω̃, and hence ζ ≡ 0
in Ω. Then by (2.38) E(v) = O, a contradiction since ‖E(vn)‖L2 = 1.
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3. Critical points nearby a flat configuration. When existence of global
minimizers fails because the energy is unbounded from below, it is natural to inves-
tigate the structure of local minimizers or, more in general of critical points. Since
the nonlinearity in the FvK functional relies in the interaction between membrane
and bending contributions, we will focus in this section on the asymptotic analysis
of critical points in the neighborhood of a flat configuration, i.e., we will study the
behavior for small out-of-plane displacements. Throughout this section we assume
that h>0 is fixed and

(3.1) gh ≡ 0,

that is, we restrict our analysis to the case of in-plane load acting on a plate of
prescribed thickness. Assume fh ∈ L2(∂Ω,R2) and (2.29) holds true. For every
(u, w) ∈ H1(Ω,R2)×H2(Ω), referring to (2.1)–(2.11), we enclose boundary conditions
in the functional, by setting

F ih(u, w) =

{
Fh(u, w) if u ∈ H1(Ω,R2), w ∈ Ai ,

+∞ otherwise ,
(3.2)

F ih,ε(u, w) = F ih(u, εw) ∀ ε > 0 .(3.3)

By noticing that Fh,0 := F ih,0 actually is independent of i, we also set

(3.4)

E ih,ε(u, w) = ε−2
(
F ih,ε(u, w)− min

H1(Ω,R2)
Fh,0

)
,

(3.5)

E ih(u, w) =

F bh(w)+
h

2

∫
Ω
J ′(E(u)) : Dw ⊗Dwdx if (u, w)∈ {argminFh,0}×Ai

+∞ else in H1(Ω,R2)×H2(Ω) ,

where

(3.6) J ′(A) =
E

1 + ν
A +

Eν

1− ν2 (Tr A)I

denotes the derivative of J .
Functionals E ih,ε and F ih,ε are linked via the following result

Proposition 3.1. E ih = Γ limε→0+ E ih,ε . Precisely, the following relations hold
true:

(i) for every (uε, wε) ⇀ (u, w) in w −H1 ×H2 we have

(3.7) lim inf
ε→0

E ih,ε(uε, wε) ≥ E ih(u, w);

(ii) for every (u, w) ∈ H1 × H2 there exists (ũε, w̃ε) ⇀ (u, w) in w − H1 × H2

such that

(3.8) lim
ε→0
E ih,ε(ũε, w̃ε) = E ih(u, w).D
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Proof. Let (uε, wε) ⇀ (u, w) in w −H1 ×H2: by convexity of J we have

(3.9)

F ih,ε(uε, wε) ≥ ε2F bh(w) + h

∫
Ω
J(E(uε)) dx

+
hε2

2

∫
Ω
J ′(E(uε)) : Dwε ⊗Dwε dx− h

∫
∂Ω

fh · uε dH1

≥ ε2F bh(w) +
hε2

2

∫
Ω
J ′(E(uε)) : Dwε ⊗Dwε dx+ minFh,0

and by taking into account that Dwε⊗Dwε → Dw⊗Dw strongly in L2(Ω,Sym2,2(R))
and J ′(E(uε)) ⇀ J ′(E(u)) weakly in L2(Ω,Sym2,2(R)), we get

lim inf
ε→0

E ih,ε(uε, wε) ≥ E ih(u, w)

and (i) is proven. The proof of (ii) is achieved by taking (ũε, w̃ε) ≡ (u, w).

We recall that if I : X → R is any C1 functional defined on a Banach space X,
then x ∈ X is a critical point for I if I ′(x) = 0, where I ′ : X → X∗ denotes the
Gateaux differential of I.

Due to formula (3.10) below, F ih,ε is a C1 functional in the Hilbert space
H1(Ω,R2) × Ai: precisely, for every (u, w) ∈ H1(Ω,R2) × Ai the Gateaux differ-
ential of F ih,ε at (u, w) is given by

(F ih,ε)′(u, w)[(z, ω)] =
(
τ1(u, w)[z] , τ2(u, w)[ω]

)
∀z ∈ H1(Ω,R2) ,∀ω ∈ Ai ,

where
(3.10)

τ1(u, w)[z] := h

∫
Ω
J ′
(

E(u) +
ε2

2
Dw ⊗Dw

)
: E(z)− h

∫
∂Ω

fh · z ,

τ2(u, w)[ω] := ε2 h
3

12

∫
Ω
J ′(D2w) : D2ω + ε2 h

∫
Ω
J ′
(

E(u) +
ε2

2
Dw ⊗Dw

)
: Dw �Dω .

(τ1(u, w)[z], τ2(u, w)[ω]) is replaced by the shorter notation ( τ1[z] , τ2[ω] ), whenever
the dependance on fixed choice for (u, w) is understood. Actually (3.10) provides the
explicit information that (F ih,ε)′(u, w) depends continuously on (u, w).

Hence the Föppl–von Kármán plate equations in weak form together with bound-
ary conditions can be written as follows:

(3.11)

 u, w ∈ H1(Ω,R2)×Ai ,
τ1(u, w)[z] = 0 ∀z ∈ H1(Ω,R2) ,
τ2(u, w)[ω] = 0 ∀ω ∈ Ai .

Clearly (E ih,ε)′(u, w) = ε−2(F ih,ε)′(u, w), hence F ih,ε and E ih,ε have the same critical
points. Moreover if u∗ ∈ argminFh,0, then τ2(u∗, 0) ≡ 0 and (u∗, 0) is a critical point
for F ih,ε.

The next definition tunes the standard notion of the Palais–Smale sequence to
the present context.

Definition 3.2. Let X be a Banach space and Iε : X → R be a sequence of C1

functionals. A sequence {xε} ⊂ X is a uniform Palais–Smale sequence if there
exists C > 0 such that Iε(xε) ≤ C and ‖ I ′ε(xε) ‖X∗→ 0, as ε→ 0+.
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Notice that the above definition reduces to the usual notion of Palais–Smale
sequences when Iε ≡ I for every ε > 0. Letting u∗ ∈ argminFh,0, we denote by
Kih(u∗) the set of critical points in Ai of E ih(u∗, ·), that is,

(3.12) Kih(u∗) = {w ∈ Ai : τ2(u∗, w)[ω] = 0 ∀ω ∈ Ai} .

The next result shows that any critical point of Eh(u∗, ·) in Ai can be approximated
by a uniform Palais–Smale sequence of E ih,ε whose energy converges to the energy of
the critical point itself.

Theorem 3.3. Let u∗ ∈ argminFh,0, w ∈ Kih(u∗) and zw ∈ argminQw(z), where

(3.13) Qw(z) :=
∫

Ω
J

(
E(z) +

1
2
Dw ⊗Dw

)
dx .

Then {(u∗ + ε2zw, w)}ε>0 is a uniform Palais–Smale sequence for E ih,ε and

lim
ε→0+

E ih,ε
(
u∗ + ε2zw, w

)
= E ih(u∗, w) .

Proof. We have to prove the following conditions:
(a) E ih,ε(u∗ + ε2zw, w) ≤ C < +∞ ∀ε ∈ (0, 1].

(b) (E ih,ε)′(u∗ + ε2zw, w)→ 0 strongly in (H1(Ω,R2)×Ai)∗.

(c) lim
ε→0+

E ih,ε(u∗ + ε2zw, w) = E ih(u∗, w).

We first prove (c), which implies (a) too. Indeed

E ih,ε(u∗ + ε2zw, w)

= ε−2 [F1
h(u∗ + ε2zw, εw)−F0,h(u∗)

]
= ε−2

[
h3

12

∫
Ω
J(εD2w) dx+ h

∫
Ω
J

(
E(u∗) + ε2E(zw) +

ε2

2
Dw ⊗Dw

)
dx
]

− ε−2
[
h

∫
Ω
J(E(u∗)) + ε2h

∫
∂Ω

fh · zw
]

= ε−2
[
h3

12
ε2
∫

Ω
J(D2w) dx + h

∫
Ω
J(E(u∗) + ε4h

∫
Ω
J

(
E(zw) +

1
2
Dw ⊗Dw

)
dx
]

+ ε−2
[
ε2h

∫
Ω
J ′(E(u∗)) :

(
E(zw) +

1
2
Dw ⊗Dw

)
dx− h

∫
Ω
J(E(u∗))− ε2

∫
∂Ω

fh · zw
]

=
h3

12

∫
Ω
J(D2w) dx + ε2h

∫
Ω
J

(
E(zw) +

1
2
Dw ⊗Dw

)
dx

+ h

∫
Ω
J ′(E(u∗)) :

(
E(zw) +

1
2
Dw ⊗Dw

)
dx− h

∫
∂Ω

fh · zw

=
h3

12

∫
Ω
J(D2w) dx + ε2h

∫
Ω
J

(
E(zw) +

1
2
Dw ⊗Dw

)
dx

+
h

2

∫
Ω
J ′(E(u∗)) : Dw ⊗Dwdx

since, due to minimality of u∗,∫
Ω
J ′(E(u∗)) : E(zw) dx−

∫
∂Ω

fh · zw = 0.

Hence limε→0 E ih,ε(u∗ + ε2zw, w) = E ih(u∗, w) as claimed.
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Eventually we prove (b). By recalling (3.4) and (3.10), we get for every z ∈
H1(Ω,R2) and ω ∈ Ai

(E ih,ε)′
(
u∗ + ε2zw, w

)
[(z, ω)] = ε−2 (τ1 (u∗ + ε2zw, w

)
[z] , τ2

(
u∗ + ε2zw, w

)
[ω]
)
.

Since zw ∈ argminQ(z) , u∗ ∈ argminFh,0, and w ∈ Kiw(u∗) we get

τ1(u∗, 0)[z] = 0 ∀z ∈ H1(Ω,R2) , τ2(u∗, w)[ω] = 0 ∀ω ∈ Ai ,

ε−2 τ2(u∗ + ε2zw, w)[ω] = ε2
∫

Ω
J ′
(

E(zw) +
1
2
Dw ⊗Dw

)
: Dw ⊗Dω .

The above relationships imply

sup
‖(z,ω)‖≤1

∣∣ (E ih,ε)′(u∗ + ε2zw, w)[(z, ω)]
∣∣→ 0 as ε→ 0,

where ‖(z, ω)‖=‖z‖H1 + ‖ω‖H2 , thus proving (b) .

Remark 3.4. Despite the results of this section, the problem of the existence of
nonminimizing critical points remains open in the general case, to the best of our
knowledge. Nevertheless as far as uniform Palais–Smale sequences are surrogates of
critical points for (1.11) in a ε-neighborhood of the flat configuration at the scale
ε2, Theorem 3.3 allows us to recover them starting from critical points of the limit
functional E ih (see Examples 3.8 and 3.9).

In addition we emphasize that that existence of nonminimizing critical points can-
not be deduced here by applying the asymptotic mini-max of [27, Theorem 4.4], since
its compactness condition can be violated, as we show in Counterexample 3.7 below.

Remark 3.5. Let u∗ ∈ argminFh,0, w ∈ Kih(u∗) and then

(3.14) 0 = E ih(u∗, w)′[(0, w)] =
h3

12

∫
Ω
J ′(D2w) ·D2w dx+h

∫
Ω
J ′ (E(u∗)) : Dw⊗Dw,

that is, E ih(u∗, w) = 0 and E ih,ε(u∗ + ε2zw, w) = ε2hminQw.

Remark 3.6. In Theorem 3.3 we have shown that every critical point for E ih of
the kind (u∗, w) with u∗ ∈ argminFh,0 and w ∈ Kih(u∗) can be approximated (in
the strong convergence of H1(Ω,R2)×H2(Ω)) by uniform Palais–Smale sequences of
E ih,ε . Actually the displacement pair sequence can be chosen explicitly of the kind
(u∗ + ε2zw, w), say, with fixed out-of-plane component and in-plane displacement
approximated by an infinitesimal correction tuned by the out-of-plane component.
Nevertheless we cannot expect that every uniform Palais–Smale sequence of E ih,ε is
equibounded in H1(Ω,R2)×Ai, as we are going to show in the next counterexample.

Counterexample 3.7 (a uniform Palais–Smale sequence lacking compactness).
Referring to Figure 2 if Ω = (0, a)× (0, 1), Γ ≡ ∂Ω, and fh = γ e2(1(0,a)×{0}) −
1(0,a)×{1}), where γ is a suitable constant to be chosen later, then the unboundedness
may develop.

So by Theorem 2.11 (clamped plate), for all h > 0, for all ε > 0 there exists
(uε, wε) ∈ argmin E0

h,ε. Hence (uε, wε) is a uniform Palais–Smale sequence for E0
h,ε,

and moreover we show below that such a sequence must lack weak compactness in
H1(Ω,R2) × H2(Ω) for big γ. Indeed, if compactness were true, we would obtain
(up to subsequences) that (uε, wε) ⇀ (u, w) ∈ argmin E0

h, due to Proposition 3.1.
Eventually we show that inf E0

h = −∞, thus obtaining a contradiction.

D
ow

nl
oa

de
d 

01
/1

2/
18

 to
 1

31
.1

75
.1

61
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Fig. 2. Plates of Counterexample 3.7 (left) and Example 3.8 (right) : Γ is represented by the
thicker part of the boundary.

Actually, due to Euler equations

(3.15)
∫

Ω
J ′
(
E(u)

)
: E(v) =

∫
∂Ω

fh · v = − γ
∫

Ω
v2,2 ∀v ∈ H1(Ω,R2) ,

so, for every u ∈ argminFh,0, J ′(E(u)) = −γe2⊗e2 , u = 2γνE
1+ν
1+3ν (x1e1 +x2e2)+r,

r ∈ R, and by (2.2)
(3.16)

E0
h(u, w) =


h3

12

∫
Ω
J(D2w)− hγ

2

∫
Ω
|w,2|2dx if u ∈ argminFh,0(·, 0), w ∈ A0 ,

+∞ otherwise in H1(Ω)×H2(Ω) .

Hence, if u ∈ argminFh,0, w ∈ A0, we get

E0
h(u, w) ≤ Cν E h

3

24

∫
Ω
|D2w|2dx− h

2
γ

∫
Ω
|w,2|2 dx.

Set w(x1, x2) = α(x1)β(x2) with α ∈ H2
0 (0, a) and β ∈ H2

0 (0, 1). Then w ∈ H2
0 (Ω)

and

(3.17) E2
h(u, w) ≤ (A0C0 +A1C1 +A2)Cν

Eh3

24

∫ 1

0
|β′′|2 dx2 −

A2hγ

2

∫ 1

0
|β′|2dx2,

where

A0 =
∫ 1

0
|α′′|2dx1, A1 = 2

∫ 1

0
|α′|2dx1, A2 =

∫ 1

0
α2dx1,

and C0, C1 are the best constants such that∫ 1

0
β2dx2 ≤ C0

∫ 1

0
|β′′|2dx2,

∫ 1

0
|β′|2dx2 ≤ C1

∫ 1

0
|β′′|2dx2 ∀β ∈ H2

0 (0, 1).

If ξ ∈ H2
0 (0, 1) is the eigenfunction fulfilling the equality

∫ 1
0 |ξ
′|2dx2 = C1

∫ 1
0 |ξ
′′|2dx2

and

γ >
1
6

(A0C0 +A1C1 +A2) Cν E h2/(A2C1) ,

setting βn := nξ ∈ H2
0 (0, 1) and w = αβn, the right-hand side of (3.17) goes to −∞

as n→∞.
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In the previous counterexample we have shown that some uniform Palais–Smale
sequence may be not converging to any critical point, while in the next examples
we show how Theorem 2.3 can be used to detect buckled configurations of the plate
(associated to critical points for FvK) by means of uniform Palais–Smale sequences
for the approximating functionals.

Example 3.8 (buckling of a rectangular plate under compressive load). Referring
to Figure 2, set Ω = (0, a)×(0, 1), fh = γ e2(1(0,a)×{0})−1(0,a)×{1}), and Γ = Σ+∪Σ−
with Σ+ = [0, 1]× {1}, Σ− = [0, 1]× {0}.

Now Γ 6= ∂Ω : by arguing as the in previous counterexample we find noncompact
uniform Palais–Smale sequences together with energy of admissible configurations
unbounded from below.

In the present case we push forward the analysis: as before we find that if u ∈
argminFh,0 and w ∈ Ai, i=0,1,2, then J ′(E(u)) = −γe2 ⊗ e2, so that

E ih(u, w) =
h3

12

∫
Ω
J(D2w)dx− hγ

2

∫
Ω
|w,2|2dx if u ∈ argminF ih,0(·, 0), w ∈ Ai .

We look for critical points in the form w = w(x2) under the following conditions:

w(0) = w(1) = w′(0) = w′(1) = 0 if i = 0 ;
w(0) = w(1) = 0 if i = 1 ;
w(0)′′ = w′′(1) = w′′′(0) = w′′′(1) = 0 if i = 2 .

Since J(e2 ⊗ e2) = E
2(1−ν2) , we have

E ih(u, w) =
Eh3

24(1− ν2)

∫ 1

0
|w′′(x2)|2 dx2 −

hγ a

2

∫ 1

0
|w′(x2)|2 dx2,

whose nontrivial critical points can be easily computed, via the ODE

w′′′′ +
12γa(1− ν2)

Eh2 w′′ = 0.

Theorem 3.3 allows us to recover Palais–Smale sequences for E ih,ε , i = 0, 1, 2.
In the clamped case (i = 0) the nontrivial buckled solutions occur for discrete

choices of h (e.g., see Figure 3):

hn =
1

2nπ

√
12 γ a (1− ν2)

E
,

wn(x2) = 1 + sin

(√
12 γ a (1− ν2)

E

1
h

(x2 − π/2)

)
, n ∈ N;

else, for any other choice of h, w ≡ 0.
The associated Palais–Smale sequence is

( 2
γν

E

1 + ν

1 + 3ν
(x1e1 + x2e2) + ε2zwn(x1, x2) , wn(x2)) ,

where zwn(x1, x2) = ( 0 , 1/2
∫ x2

0 |w
′
n(t)|2dt ) and wn is given above.
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Fig. 3. One solution (w3) of ODE with i = 0 in Example 3.8.

Fig. 4. Example 3.9 : Γ is represented by the thicker part of the boundary.

Example 3.9 (buckling of a rectangular plate under shear load). Referring to
Figure 4, set Ω = (−2, 2)× (−1, 1), i = 0 , and Γ = Σ1,± ∪ Σ2,±, where

Σ1,+ = [−2, 0]×{1},Σ1,− = [0, 2]×{−1},Σ2,+ = {2}× [−1, 1],Σ2,− = {−2}× [−1, 1].

Assume fh = γτ (1S2,±−1S1,±), where S2,± = Σ2,±, S1,± = [−2, 2]×{±1}, γ > 0, τ is
the counterclockwise oriented tangent unit vector to ∂Ω = S1,± ∪S2,±. See Figure 4.

Since u ∈ argminFh,0, by exploiting Euler–Lagrange equations as before, we
obtain J ′(E(u)) = γ(e1 ⊗ e2 + e2 ⊗ e1) and by (2.2)

E0
h(u, w) =

h3

12

∫
Ω
J(D2w)dx+ hγ

∫
Ω
w,1 w,2 dx.

We look for critical points in the form

(3.18) w =

 ψ(x1 − x2) if (x1, x2) ∈ Ω, |x1 − x2| ≤ 1,

0 else in Ω,

and satisfying ψ(±1) = ψ′(±1) = 0.
By J(e1 ⊗ e1 + e2 ⊗ e2 − e1 ⊗ e2 − e2 ⊗ e1) = 2E

1−ν2 we obtain

E0
h(u, w) =

h3E

3(1− ν2)

∫ 1

−1
|ψ′′(t)|2 dt− 2hγ

∫ 1

−1
|ψ′(t)|2 dt,

whose nontrivial critical points can be easily computed, via the ODE

ψ′′′′ +
6γ(1− ν2)

Eh2 ψ′′ = 0 , ψ(±1) = ψ′(±1) = 0 .
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Fig. 5. Example 3.9 w5(x1, x2) = ψ5(x1 − x2) .

Therefore even now the nontrivial buckled solutions occur for (different) discrete
choices of h (e.g., see Figure 5):

w = wn(x1, x2) = ψn(x1 − x2) := 1 + sin

(√
12 γ a (1− ν2)

E

1
hn

(x1 − x2 + 1/2)

)

if hn =
1
nπ

√
12 γ a (1− ν2)

E
with n ∈ N;

else, we have the flat solution w ≡ 0 for any other choice of h .
The associated Palais–Smale sequence is ( u(x1, x2)+ε2zwn(x1, x2) , wn(x1, x2) ),

where

u(x1, x2) = γ
1 + ν

E
(x2, x1) ,

zwn(x1, x2) =
(
−(1/2)

∫ x1−x2

−1
|w′n(t)|2 dt , (1/2)

∫ x1−x2

−1
|w′n(t)|2 dt

)
.

Remark 3.10. In Examples 3.8, 3.9, when nontrivial solutions exist the period of
the oscillations has order h. By scaling loads, that is, by taking fh = hαf , we get
J ′(E(u)) = −hαγ(e2⊗ e2) and J ′(E(u)) = hαγ(e1⊗ e2 + e2⊗ e1), respectively, while
related limit functionals become, respectively,

E ih(u, w) =
Eh3

24(1− ν2)

∫ 1

0
|w′′(x2)|2 dx2 −

hα+1γ a

2

∫ 1

0
|w′(x2)| dx2 , i = 0, 1, 2,

E0
h(u, w) =

h3E

3(1− ν2)

∫ 1

−1
|w′′(t)|2 dt− 2hα+1γ

∫ 1

−1
|w′(t)|2 dt,

whose nontrivial critical points obviously exhibit oscillation period of order h1−α/2.

Computations in Remark 3.10 prove useful in the next section when studying
asymptotics of the problem as the thickness tends to 0+ .

4. Scaling Föppl–von Kármán energy. We recall that the thickness of the
plate is s := hs0, where h is an adimensional parameter, s0 is a physical dimension,
and we have chosen measure units such that s0 = 1.

Here we focus on the asymptotic analysis of the mechanical problems for FvK
plate as h→ 0+. To highlight properties of the limit solution we examine the behavior
of suitably scaled energy: all along this section we assume that there is no transverse
load, say, gh ≡ 0, while we refer to a parameter α characterizing different asymptotic
regimes of in-plane load fh, say,

(4.1) fh = hαf , where α ≥ 0 and f ∈ L2(∂Ω,R2) .
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The next result and subsequent counterexample show how parameter α may influence
the asymptotic behavior of functionals Fh when h→ 0+ ; precisely there is a threshold
concerning α: if α > 2, then there is a scaling of displacements weakly convergent in
H1(Ω,R2)×H2(Ω) such that related energies (after suitable scaling) are convergent
too (see Theorem 4.1 and formula (4.2) therein); if α ∈ [0, 2), then the rescaled energies
may be unbounded from below as h → 0+ for all cases: free, simply supported, and
clamped plate (see Counterexample 4.4 and Remark 4.5).

Theorem 4.1. Let Ω ⊂ R2 be a bounded connected Lipschitz open set, α ≥ 2,
and i = 0, 1, 2.

If i = 0 (clamped plate), assume (2.29) and Γ = ∂Ω (as in Theorem 2.11) .
If i = 1 (simply supported plate), assume (2.29), Ω convex, Γ = ∂Ω (as in Theo-

rem 2.8).
If i = 2 (free plate), assume (2.12) and (2.13) (as in Theorem 2.1).
Set

(4.2) F i,α(v, ζ) =

 F
i
1(v, ζ) if α = 2,

F i1(v, ζ) + χ{D2ζ≡0}(ζ) if α > 2 ,

where χ{D2ζ≡0}(ζ) = 0 if D2ζ ≡ 0, = +∞ else.
Fix i ∈ {0, 1, 2} and a sequence (uh, wh) in argminF ih.
Then there exists (v, ζ) ∈ argminF i,α such that, up to subsequences,

(4.3) (h−αuh, h−α/2wh)→ (v, ζ) weakly in H1(Ω,R2)×H2(Ω) , as h→ 0+ .

Moreover

(4.4) h−2α−1F ih(uh, wh)→ F i,α(v, ζ) , as h→ 0+ .

Proof. The case α = 2 is trivial since (uh, wh) ∈ argminF ih if and only if
(h−2uh, h−1wh) ∈ argminF i1 for every h.

If α > 2, i = 0, 1 and (uh, wh) ∈ argminF ih, set vh := h−αuh, ζh := h−α/2wh, λh =
‖E(vh‖L2 and assume by contradiction λh → +∞. Then by taking into account the
minimality of (uh, wh), (2.7), (2.29) and setting ϕh = λ

−1/2
h ζh, zh = λ−1

h vh we get

(4.5) cν
h2−αE

24

∫
Ω
|D2ϕh|2 + λh cν

E

2

∫
Ω
|D(zh, ϕh)|2 ≤

∫
∂Ω

f · zh ≤ C.

Hence |D2ϕh| → 0 in L2(Ω,Sym2,2(R)) and by taking into account that ϕh = 0 on
∂Ω we get ϕh → 0 in H2(Ω); therefore E(zh) → O in L2(Ω,R2), a contradiction
since ‖E(zh)‖L2 = 1. Then λh is bounded from above and by taking into account the
minimality of (uh, wh) , (2.7), (2.29) we get

(4.6) cν
h2−αE

24

∫
Ω
|D2ζh|2 + cν

E

2

∫
Ω
|D(vh, ζh)|2 ≤

∫
∂Ω

f · vh ≤ ‖f‖λh ≤ C,

which entails D2ζh → 0 in L2(Ω) and equiboundedness of Dζh in L4(Ω,R2).
When i = 2 we take again λh = ‖E(vh)‖L2 and assume by contradiction λh →

+∞. Then estimate (4.5) continues to hold and as before |D2ϕh| → 0 in L2(Ω), which
entails ϕh − −

∫
Ω ϕh → 0 in L2(Ω), Dϕh → c in L4, and 2E(zh)→ −c⊗ c strongly in

L2(Ω,Sym2,2(R)) for a suitable c ∈ R2. Therefore (2.13), (4.5) yield

(4.7) 0 ≤ lim
h→0+

∫
∂Ω

f · zh = lim
h→0+

f

∫
∂Ω

n · zh = lim
h→0+

f

∫
Ω

div zh = −f
2
|Ω||c|2,
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that is, c = 0 so E(zh) → O in L2(Ω,Sym2,2(R)) as in the previous cases, again a
contradiction. Thus equiboundedness holds in this case too. Since, for 0 < h ≤ 1,
the w.l.s.c. functionals F i,α fulfill F i,α ≤ h−2α−1F ih, the proof can be completed by
a standard argument in Γ convergence.

Remark 4.2. It is worth noticing that, if α = 2, then the limit energy is still the
FvK energy of a plate of thickness s0; indeed h−5 is exactly the scaling factor of the
hierarchy in [23] for the derivation of FvK plate model.

Remark 4.3. We emphasize that, if D2w ≡ O, then

F1(v, w) = F1(v, 0) if i = 0, 1 ,(4.8)

F1(v, w) = F1(v, ξ · x) =
∫

Ω
J

(
E(v) +

1
2
ξ ⊗ ξ

)
−
∫
∂Ω

fh · v for w = ξ · x if i = 2.

(4.9)

Theorem 4.1 is optimal in the sense that if α < 2, we cannot expect neither that
h−2α−1 minAi Fh are bounded from below nor that minimizers are equibounded in
H1(Ω,R2)×W 1,4(Ω) when we let h→ 0+. This phenomenon may take place even if
Ω is a rectangle as shown by the next counterexample, where we consider a plate with
the same geometry and load of Counterexample 3.7 (see Figure 2, at left); nevertheless
here we push further the analysis of this case.

Counterexample 4.4. Let a > ECν , α ∈ [0, 2), fh = hαf with

(4.10) Ω = (0, a)× (0, 1) , Γ = ∂Ω , gh ≡ 0 , f =
(
1{y=0} − 1{y=1}) e2 .

Then for any sequence (uh, wh) ∈ arg minF0
h (such sequences do exist due to Theo-

rem 2.11), the scaled sequence (h−αuh, h−α/2wh) is not equibounded in H1(Ω,R2) ×
W 1,4(Ω) . Moreover, inf h−2α−1F0

h → −∞ as h→ 0+.
Indeed we can set vh := h−αuh , ζh := h−α/2wh , and

Wh(vh, ζh) := h−1−2αFh(uh, wh) =
h2−α

12

∫
Ω
J(D2ζh) +

∫
Ω
J(D(vh, ζh))−

∫
∂Ω

f · vh ,

(4.11)

I+(v, ζ) := inf

{
lim sup
h→ 0+

Wh(vh, ζh) : vh
w−H1

⇀ v , ζh
w−W 1,4

⇀ ζ

}
,

(4.12)

I−(v, ζ) := inf
{

lim inf
h→ 0+

Wh(vh, ζh) : vh
w−H1

⇀ v , ζh
w−W 1,4

⇀ ζ

}
,

(4.13)

J (B,η) =
E

8(1 + ν)

∣∣B + BT + η ⊗ η
∣∣2 +

Eν

8(1− ν2)

∣∣Tr
(
B + BT + η ⊗ η

)∣∣2 .

(4.14)

Then by arguing as in [14, Lemma 4.1] we get

(4.15) I+(v, ζ) ≤ Λ(v, ζ) :=
∫

Ω
J (D(v, ζ)) dx−

∫
∂Ω

f · v dH1.

Then by denoting with QJ the quasiconvex envelope of J , since I+ is sequentially
l.s.c. in w −H1 × w −W 1,4, we obtain

(4.16) I+(v, ζ) ≤
∫

Ω
QJ (Dv, Dζ) dx−

∫
∂Ω

f · v dx.
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On the other hand for every vh ⇀w−H1
v , ζh ⇀w−W 1,4

ζ we get

lim inf
h→ 0+

h−1−2α Fh(hαvh, hα/2ζh) ≥
∫

Ω
QJ (Dv, Dζ)−

∫
∂Ω

f · v,

that is,

I−(v, ζ) ≥
∫

Ω
QJ (Dv, Dζ)−

∫
∂Ω

f · v.

By

(4.17) I(v, ζ) :=
∫

Ω
QJ (Dv, Dζ)−

∫
∂Ω

f · v ≥ I+(v, ζ) ≥ I−(u, w) ≥ I(v, ζ)

we get

(4.18) Γ lim
h→0+

Wh = I .

Therefore, if (h−αu∗h, h
−α/2w∗h) were equibounded in H1(Ω,R2)×W 1,4(Ω), then

h−1−2αFh(u∗h, w
∗
h)→ min I = inf Λ

since Λ is the relaxed functional of I, and we will show that this leads to a contradic-
tion. Indeed, we choose

(4.19) ζn(x, y) =
1√
n
ϕ(ny)ψn(x), vn(x, y) =

(
0,
−n
2
y

)
with

ϕ : R→ R , 1 -periodic , ϕ(y) =
1
2

(1− |1− 2y|) ∀y ∈ (0, 1),(4.20)

ψn(x) = nx1{[0,1/n]} + 1{[1/n,a−1/n]} − n(x− a)1{[a−1/n,a]} .(4.21)

We get

E(vn) =

[
0 0
0 −n

2

]
,

D(vn, ζn) =

 1
2n
(
ψ′n(x)

)2(
ϕ(ny)

)2 1
2
ψn(x)ψ′n(x)ϕ(ny)ϕ′(ny)

1
2
ψn(x)ψ′n(x)ϕ(ny)ϕ′(ny)

n

2
(
ψ2
n(x)|ϕ′(ny)|2 − 1

)


and by taking into account (2.6), (2.7) and that 2|ϕ| ≤ 1, |ϕ′| = 1, |ψ| ≤ 1, |ψ′n| ≤
n, sptψ′n ⊂ [0, 1/n] ∪ [a− 1/n, a], |ψn| = 1 on [1/n, a− 1/n], a > ECν ,

Λ(vn, ζn)

=
∫ a

0

∫ 1

0
J( D(vn, ζn) ) dx dy −

∫
∂Ω

f · vn dx dy

≤
∫ a

0

∫ 1

0

ECν
8

(
n−2|ψ′n(x)|4|ϕ(ny)|4 + 2|ψn(x)|2|ψ′n(x)|2|ϕ(ny)|2|ϕ′(ny)|2

+ n2 (ψ2
n(x)|ϕ′(ny)|2 − 1

)2 )− na

2

≤
∫ a

0

∫ 1

0

ECν
8

(
n21[0,1/n]∪[a−1/n,a] + n2 (ψ2

n(x)− 1
)2)− na

2
≤ nECν

2
− na

2
→ −∞

leads to a contradiction.

D
ow

nl
oa

de
d 

01
/1

2/
18

 to
 1

31
.1

75
.1

61
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

274 F. MADDALENA, D. PERCIVALE, AND F. TOMARELLI

So (h−αu∗h, h
−α/2w∗h) are not equibounded in H1(Ω,R2) ×W 1,4(Ω) and the first

claim follows.
Eventually we prove the second claim. By (4.15) there exists (vn,h, ζn,h) →

(vn, ζn) weakly in H1(Ω,R2)×H2(Ω) such that lim supWh(vn,h, ζn,h) ≤ I(vn, ζn) ≤
−Kn for suitable K > 0, and hence by using a diagonal argument we achieve the
claim.

Remark 4.5. If a > ECν , α ∈ [0, 2), fh = hαf with

(4.22) Ω = (0, a)× (0, 1) , gh ≡ 0, f =
(
1{y=0} − 1{y=1}) e2, Γ = ∂Ω .

Then h−1−2α inf F ih → −∞ as h→ 0+ holds true also for i = 1, 2.
Indeed, though existence of minimizers of F ih, (i = 1, 2) may fail, nevertheless

inf F ih ≤ inf F0
h for i = 1, 2; hence the claim follows by previous counterexample.

5. Prestressed plates: Oscillating versus flat equilibria. Counterexam-
ple 4.4 and Remark 3.4 show that the Föppl–von Kármán functional might not be
suitable for studying equilibria of plates when thickness h→ 0+, at least in the pres-
ence of in-plane loads scaling as hα, when α ∈ [0, 2)) and h is the scale factor for the
plate thickness.

To circumvent this difficulty, as in the case of many practical engineering appli-
cations, we assume that our plate-like structure is initially prestressed and undergoes
a transverse displacement about the prestressed state.

In this section the minimization with respect to the out-of-plane displacement
alone is performed via relaxation techniques (Theorem 5.1, Lemma 5.2, Proposi-
tion 5.3, and Remark 5.4): this approach allows us to clarify the structure of the
asymptotic sequence of minimizers as h vanishes. By subsequent Examples 5.5–5.11
we show a way to recover the geometry of the asymptotic minimizers by studying the
Lamé problem in presence of compressive and tension forces: in particular, whenever
there is a region of positive measure where prestress has at least one negative eigen-
value, the asymptotic sequence of minimizers exhibit oscillations with a period which
can be easily estimated.

Precisely, in this section we fix gh ≡ 0, f ∈ L2(∂Ω,R2), α ∈ [0, 2) and we assume
that the prestressed state is caused by the (scaled) force field fh = hαf and is given
by every u∗ ∈ H1(Ω,R2), u∗ = hαv∗, where v∗ is a minimizer of the functional

(5.1) F(v) :=
∫

Ω
J(E(v))−

∫
∂Ω

f · v .

The transverse displacement w is chosen such that the pair (u∗, w) minimizes the
functional Gh over H1(Ω,R2)×Ai, defined by

Gh(u, w) =
{
Fh(u, w) if u = u∗ and w ∈ Ai,
+∞ else .

Moreover we have Gh(u, w) = G̃h(v, ζ) when setting v := h−αu, ζ := h−α/2w, and

G̃h(v, ζ) =


hαF bh(ζ) + h2α+1

∫
Ω
J(D(v, ζ))− h2α+1

∫
∂Ω

f · v if v ∈ argminF , ζ ∈ Ai ,

+∞ else in H1(Ω)×Ai .

We aim to capture the nature of the transverse minimizer through a detailed study of
the asymptotic behavior of minimizers of G̃h as h→ 0+. A first hint in this perspective
is the next result.
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Theorem 5.1. For every v ∈ arg minF , let I∗∗v (x, ·) be the convex envelope of
Iv(x, .), where Iv(x, ξ) := J(E(v)(x) + 1

2ξ ⊗ ξ), and

(5.2) G∗∗(v, ζ) :=
∫

Ω
I∗∗v (x, Dζ) dx−

∫
∂Ω

f · v dH1 ∀ ζ ∈W 1,4(Ω) .

Then, for every α ∈ [0, 2),
(5.3)

h−2α−1 min
Ai
G̃h →

 min
{
G∗∗(v, ζ) : ζ ∈W 1,4(Ω), ζ = 0 on Γ

}
if i = 0, 1,

min{G∗∗(v, ζ) : ζ ∈W 1,4(Ω)} if i = 2 .

Moreover if (v, ζh) ∈ arg minAi G̃h, then ζh → ζ weakly in W 1,4(Ω), up to subse-
quences, with (v, ζ) ∈ arg minG∗∗.

Proof. The claim is a straightforward consequence of techniques developed in [14,
Lemma 4.1] and standard relaxation of integral functionals.

In order to characterize equilibrium configurations of G̃h, additional information
about minimizers of functional G∗∗ is needed: actually a careful use of Theorem 5.1
allows us to show explicit examples capturing the qualitative behavior of minimizers
and their dependence on the thickness h.

To this aim, if A∈Sym2,2(R), we denote its ordered eigenvalues by λ1(A) ≤ λ2(A)
and by v1(A),v2(A) their corresponding normalized eigenvectors, which afterward will
be denoted shortly with λ1, λ2,v1,v2 whenever there is no risk of confusion.

For every ν 6= 1, ξ ∈ R2 and A∈Sym2,2(R) we set

(5.4) gA(ξ) = |A + ξ ⊗ ξ|2 +
ν

(1− ν)
(
Tr A + |ξ|2

)2
.

We notice that there are two possibilities, either tension or compression. Nevertheless
compression is given by condition νλ2 + λ1 < 0 and of course if λ1 ≤ λ2 < 0, then
νλ2 + λ1 ≤ νλ2 + λ2 < 0, due to ν > −1: we make explicit the implications of this
algebraic relationship in the next lemma.

Lemma 5.2. If ν ∈ (−1, 1/2) , then

(5.5) min
ξ∈R2

gA(ξ) =

 gA(0) if νλ2 + λ1 ≥ 0 ,

(1 + ν)(λ2(A))2 if νλ2 + λ1 < 0 .

Proof. We write shortly λ1, λ2 instead of λ1(A(v)), λ2(A(v)). It is worth noticing
that the minimum in (5.5) is achieved since gA ∈ C(R2) and gA(ξ) → +∞ as |ξ| →
+∞. Let M ∈ O(2) be such that MTAM = diag(λ1, λ2). Then it is readily seen that
by setting x := ξ · v1, y := ξ · v2 we have

g̃A(x, y) := gA(ξ) = (x2 + λ1)2 + (y2 + λ2)2 + 2x2y2 +
ν

1− ν
(
λ1 + λ2 + x2 + y2)2

and an easy computation shows that if νλ2 + λ1 ≥ 0, then the minimum is attained
at (x, y) = (0, 0). Else, if νλ2 + λ1 < 0, then either νλ1 + λ2 ≥ 0 or νλ2 + λ1 ≤
νλ1 + λ2 < 0.

In the first caseDg̃A(x, y) = (0, 0) if and only if (x, y) ∈ {(±
√
−νλ2 − λ1, 0), (0, 0)}

and g̃A(x, y) = (1 + ν)λ2
2 or gA(x, y) = gA(0, 0) > (1 + ν)λ2

2; in the latter one
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Dg̃A(x, y) = (0, 0) also at (x∗,±y∗) = (0,±
√
−νλ2 − λ1) with g̃A(x∗,±y∗) = (1+ν)λ2

1.
Hence

min
ξ∈R2

gA(ξ) = (1 + ν)λ2
2

if νλ2 + λ1 < 0 ≤ νλ1 + λ2 and

min
ξ∈R2

gA(ξ) = (1 + ν) min{λ2
2, λ

2
1}

if νλ2 + λ1 ≤ νλ1 + λ2 < 0. In the latter case if ν ∈ (−1, 0), then λ1 ≤ λ2 ≤ −νλ1,
and hence λ1 ≤ λ2 ≤ 0 and |λ1| ≥ |λ2|. If ν ∈ [0, 1/2), then λ1 < 0 and either
λ2 > |λ1| > 0 or λ1 ≤ λ2 ≤ 0. In the first case we get necessarily ν > 0 and
|λ1| > ν−1(1− ν)λ2 > λ2, a contradiction. Therefore |λ2| ≤ |λ1| and

min
ξ∈R2

gA(ξ) = (1 + ν)λ2
2

whenever νλ2 + λ1 < 0, thus proving the thesis.

Lemma 5.2 proves quite useful in the perspective of the next proposition and
the subsequent examples, since the two alternatives in the right-hand side of (5.5)
correspond, respectively, to locally flat or oscillating equilibrium configurations.

Proposition 5.3. If v∗ ∈ argminF and the ordered eigenvalues λ1 ≤ λ2 of E(v∗)
fulfill νλ2 + λ1 ≥ 0 in the whole set Ω, then

(5.6) G̃h(v∗, ζ) ≥ G̃h(v∗, 0).

If in addition νλ2 + λ1>0 in a set of positive measure, then the inequality in (5.6) is
strict for every ζ 6≡ 0.

Proof. Due to (5.5) in Lemma 5.2, νλ2 + λ1 ≥ 0 entails g2E(u∗)(ξ) ≥ g2E(u∗)(0),
and moreover νλ2 + λ1 > 0 entails g2E(u∗)(ξ) > g2E(u∗)(0). Hence

J
(
D(v∗, ζ)

)
=

E

8(1 + ν)
g2E(v∗)(Dw) ≥ J

(
E(v∗)

)
and, for ζ ∈ Ai,

G̃h(v∗, ζ) = hαF bh(ζ) + h2α+1
∫

Ω
J
(
D(v∗, ζ)

)
− h2α+1

∫
∂Ω

f · v∗

≥ hαF bh(ζ) + h2α+1
∫

Ω
J
(
E(v∗)

)
− h2α+1

∫
∂Ω

f · v∗

≥ G̃h(v∗, 0) .

Moreover the first inequality in the last computation is strict whenever νλ2 + λ1 > 0
in a set of positive measure.

Remark 5.4. Notice that s1 := E
1−ν2 (νλ2 + λ1) is the smallest eigenvalue of the

stress tensor T(v) = J ′
(
E(v)

)
, where we write shortly λ1 := λ1(E(v)), λ2 := λ2(E(v).

(This notation is used in all subsequent examples too.) Therefore Proposition 5.3
shows that, if the eigenvalues of the stress tensor are both strictly positive almost
everywhere, then we can expect only one flat minimizer (ζ ≡ 0). On the other
hand, the possible occurrence of oscillating configurations requires the presence of a
compressive state on a region of positive measure: that is to say, the stress tensor
must have at least one negative eigenvalue on a set of positive measure.
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We show some examples clarifying how the asymptotic behavior of functionals
G̃h provides useful information about minimizers when Ω is an annular set. (The
corresponding minimization is also known as the Lamé problem in physics literature
[7], [22].)

Set 0 < R1 < R2, p1, p2 ∈ R, Ω := BR2 \ BR1 , and consider uniform in-plane
normal traction/compression at each component of the boundary.

f = −p1
x
R1

1{|x|=R1} + p2
x
R2

1{|x|=R2}.

Therefore v ∈ arg minF1,0 entails

(5.7) v(x) = (a+ b|x|−2)x,

and exploiting polar coordinates x = (r cos θ, r sin θ) we obtain

E(v) =


a− b

r2 cos 2θ − b

r2 sin 2θ

− b

r2 sin 2θ a+
b

r2 cos 2θ

 .

By using Neumann boundary condition J ′(E(v))n = f on ∂Ω, we get

(5.8) pi = E(1 + ν)−1(a(1 + ν)(1− ν)−1 − bR−2
i ), i = 1, 2,

that is,

(5.9) a =
(1− ν)(p2R

2
2 − p1R

2
1)

E(R2
2 −R2

1)
; b =

(1 + ν)(p2 − p1)R2
1R

2
2

E(R2
2 −R2

1)
.

It is worth noticing that a−br−2, a+br−2 are the eigenvalues of E(v) and (cos θ, sin θ),
(− sin θ, cos θ) the corresponding normalized eigenvectors for all r ∈ [R1, R2]; order
may change according to sign(b).

We examine several different cases which may occur. In the first one we show
occurrence of asymptotic radially oscillating equilibria under compressive forces.

Example 5.5 (radially oscillating minimizers). Set Γ = ∂Ω, ν ∈ (−1, 1/2), i = 0,
and either p1 ≤ p2 < 0 or p2 ≤ p1 < 0. In the first case we get b ≥ 0 and in the
second one b ≤ 0. However in both cases νλ2 + λ1 < 0 in the whole annular set.

Set also v(x) = (a+ b|x|−2)x ∈ arg minF0,1 , so that (5.9) holds true.
Choose σh → 0+, βh → +∞, ψh : R→ R (R2 −R1)-periodic such that

(5.10) ψh(t) = max {0,min{t−R1 − σh, R2 − σh − t}}

and set ψ∗h := ψh ∗ ρh being ρh mollifiers such that spt ρh ⊂ [−σh, σh]. Then by
denoting the floor of a real number (maximum integer not exceeding the number)
with b·c, setting r = |x| and

ζh(r) =

 bβhc
−1
√

2(1− ν)br−2 − 2a(ν + 1)ψ∗h(R1 + (r −R1)bβhc) if p1 ≤ p2 < 0 ,

bβhc−1
√

2(ν − 1)br−2 − 2a(ν + 1)ψ∗h(R1 + (r −R1)bβhc) if p2 ≤ p1 < 0 ,

ζ ′h := ∂ζ/∂r , Dζh = (ζh,1, ζh,2) = (x1/r, x2/r) ζ ′h and

M(θ) =

cos θ − sin θ

sin θ cos θ.

 S(θ) =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 = (ζ ′h)−2Dζh ⊗Dζh .
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So MTS M = e1 ⊗ e1 and there exists Ωh ⊂ Ω with |Ωh| ∼ σh such that |(ψ∗h)′| = 1
on Ω \ Ωh. Then referring to (5.4) and (5.7), for every x ∈ Ω \ Ωh we have

g2E(v)(Dζh)

= |2E(v) +Dζh ⊗Dζh|2 +
ν

1− ν
∣∣2 div v + |Dζh|2

∣∣2
=
∣∣2MTE(v)M + MTDζh ⊗DζhM

∣∣2 +
ν

1− ν
∣∣4a+ |Dζh|2

∣∣2
=
∣∣2(a− br−2)e1 ⊗ e1 + 2(a+ br−2)e2 ⊗ e2 + |ζ ′h|2MTS M

∣∣2 +
ν

1− ν
∣∣4a+ |ζ ′h|2

∣∣2
= (2a− 2br−2 + |ζ ′h|2)2 + 4(a+ br−2)2 +

ν

1− ν
∣∣4a+ |ζ ′h|2

∣∣2 .
If p1 ≤ p2 < 0, we have b ≥ 0 , |ζ ′h|2 = 2(1−ν)br−1−2a(ν+1)+O(bβhc−2) on Ω\Ωh,
and hence

g2E(v)(Dζh) = 4(1 + ν)(a+ br−2)2 +O(bβhc−1) ,∫
Ω
Iv(x, Dζh) dx =

∫
Ω\Ωh

Iv(x, Dζh) dx +
∫

Ωh
Iv(x, Dζh) dx

=
E

2(1− ν)

∫
Ω\Ωh

{
(a+ b|x|−2)2 +O(β−1

h )
}
dx +O(σh)

→ E

2(1− ν)

∫
Ω

(a+ b|x|−2)2 dx .

Analogously, if p2 ≤ p1 < 0, then b ≤ 0 and |ζ ′h|2 = 2(ν−1)br−2−2a(ν+1)+O(bβhc−1)
on Ω \ Ωh, and hence

g2E(v)(Dζh) = 4(1 + ν)(a− br−2)2 +O(bβhc−1) ,∫
Ω
Iv(x, Dζh) dx→ E

2(1− ν)

∫
Ω

(a− b|x|−2)2 dx .

By Lemma 5.2 we know that

min
ξ∈R2

Iv(x, ξ) =


E

2(1− ν)
(a+ b|x|−2)2 if p2 ≤ p1 < 0 ,

E

2(1− ν)
(a− b|x|−2)2 if p1 ≤ p2 < 0 ,

and therefore in both cases we have proved that∫
Ω
Iv(x, Dζh) dx→ min{G∗∗(v, ζ) : ζ ∈W 1,4(Ω), ζ = 0 in ∂Ω} .

Moreover

h−2α−1G̃(v, ζh) = h−α−1F bh(ζh) +
∫

Ω
Iv(x,Dζh) dx−

∫
∂Ω

f · v dH1 ,

h−α−1F bh(ζh) ∼ h2−αβhσ
−1
h .

Therefore by Theorem 5.1 for every choice of βh, σh satisfying the conditions de-
tailed before, (v, ζh) can be viewed as an asymptotically minimizing sequence of G̃h
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FÖPPL–VON KÁRMÁN PLATES 279

Fig. 6. Radially oscillating minimizers in Example 5.5.

whose out-of-plane component exhibits periodic oscillations (period:β−1
h ; asymptotic

amplitude:
√

2(1− ν)br−2 − 2a(ν + 1) if p1 ≤ p2 < 0 and
√

2(ν − 1)br−2 − 2a(ν + 1)
if p2 ≤ p1<0) in the radial direction in the whole annular set. The optimal choice of
βh can be determined heuristically as follows: previous estimates show that

h−2α−1G̃(v, ζh)−minG∗∗ = Rh ,

where Rh ∼ h2−αβhσ
−1
h + β−1

h + σh. So, approximatively, we have to minimize the
last term. A direct calculation shows that the best choice corresponds to βh

−1 ∼
h2/3−α/3, σh ∼ h5/3(2−α). See Figure 6.

Next example shows that, if prestress has both strictly positive eigenvalues, then
the flat configuration is the only admissible asymptotic sequence of minimizers.

Example 5.6 (flat minimizer). Assume Γ = ∂Ω, ν ∈ [0, 1/2), i = 0 or i =
1 , p1 ≥ 0, and (5.9) , so that R2

1a ≥ (1− 2ν)b and by Lemma 5.2 we get

min{G∗∗(v, ζ) : ζ ∈W 1,4(Ω), ζ = 0 in ∂Ω} =
∫

Ω
Iv(x, 0) dx.

Obviously the minimum is attained at ζ ≡ 0, that is, we have a flat minimizer.

Remark 5.7. Assume Γ = ∂Ω, ν ∈ (−1, 1/2) , i=0 , p1 < 0 ≤ p2, and (5.9).
Hence a > 0, b > 0, νλ2 + λ1 = a − br−2 + ν(a + br−2) ≥ 0 in the annular

set A1 = {R :=
√

(1− ν)(1 + ν)−1ba−1 ≤ r ≤ R2} and < 0 in the annular set
A2 = {R1 ≤ r < R}. Then by the same computations performed in previous examples
we can build minimizers which are flat in A1 and oscillating in A2.

The next example shows the occurrence of asymptotic tangentially oscillating
equilibria under tension forces.

Example 5.8 (tangentially oscillating minimizers). Let Γ = ∂BR1 , ν ∈ (−1, 1/2),
i = 1 and choose p1 > 0, p2 > 0 such that p2R

2
2 = p1R

2
1. If v ∈ arg minF1,0, we find

again v(x) = (a+ b|x|−2)x , now with

(5.11) a = 0, b = −(1 + ν)E−1p1R
2
1 < 0.

Hence λ1 = br−2 < 0 < −br−2 = λ2 are the eigenvalues of E(v) and v1 = (− sin θ, cos θ),
v2 = (cos θ, sin θ) the corresponding normalized eigenvectors.

Choose σh → 0+, βh → +∞, φh : R→ R, 2π-periodic defined by

(5.12) φh(t) = max {0,min{t− σh, 2π − σh − t}}
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Fig. 7. Tangentially oscillating minimizers in Example 5.8.

and set φ∗h := φh ∗ ρh being ρh mollifiers such that spt ρh ⊂ [−σh, σh]. Let

ζh(r, θ) =
√
−2b(1− ν) bβhc−1

φ∗h(bβhcθ)
(
δ−1
h (r−R1)1[R1,R1+δh](r)+1[R1+δh,R2](r)

)
with δh → 0+, β

−1
h δ−1

h → 0. Then there exists Ωh ⊂ Ω with |Ωh| ∼ σh such that for
every x ∈ Ω \Ωh we have |(φ∗h)′| = 1 on Ω \Ωh. Therefore referring to (5.4) and (5.7)
and by setting

R∗(θ) =

 − sin θ cos θ

cos θ sin θ


we get ∫

Ω\Ωh

(
|2E(v) +Dζh ⊗Dζh|2 +

ν

1− ν
|Dζh|4

)
dx

=
∫

Ω\Ωh

(∣∣2RT∗ E(v)R∗ +RT∗Dζh ⊗DζhR∗
∣∣2 +

ν

1− ν
|Dζh|4

)
dx

=
∫

Ω\Ωh
4(1 + ν)b2|x|−4 dx +O(bβhc−1δ−1

h ) +O(σh) +O(δh).

By using now Lemma 5.2 and by arguing as in Example 5.5 we get∫
Ω
Iv(x, Dζh) dx−

∫
∂Ω

f · v dH1 → min{G∗∗(v, ζ) : ζ ∈W 1,4(Ω), ζ = 0 in ∂Ω} ,

h−2α−1G̃(v, ζh)→ minG∗∗ =
Eb2

2(1 + ν)

∫
Ω
|x|−4 dx−

∫
∂Ω

f · v dH1 .

Moreover, since h−α−1F bh(ζh) ∼ h2−αβhσ
−1
h , we get

h−2α−1G̃(v, ζh) = h−α−1F bh(ζh) +
∫

Ω
Iv(x,Dζh) dx−

∫
∂Ω

f · v dH1

= h2−αβhσ
−1
h +O(bβhc−1δ−1

h ) +O(σh) +O(δh) .

Hence, here the optimal choice is βh−1 ∼ h1−α/2, δh ∼ β−1/2
h , σh ∼ h1−α/2β

1/2
h . See

Figure 7.

Remark 5.9. Thanks to Lemma 5.2 and Proposition 5.3, Examples 5.5, 5.6, 5.8
constitute a paradigm for the construction of oscillating versus flat approximated
minimizers.
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Moreover we sketch another technique to devise new ones, by this procedure:
first take a boundary force field, construct the corresponding prestressed state (in two
dimensions there are a lot of significant classical examples; see, for instance, those of
Examples 3.8, 3.9) and look at the eigenvalues of the strain matrix: it is not difficult
to obtain examples according to either νλ2 + λ1 ≥ 0 or νλ2 + λ1 < 0 in the whole
plate.

In the first case through Lemma 5.2 and Proposition 5.3 we argue that there is
only a flat minimizer, and in the second one a careful use of Lemma 5.2 on the pattern
of Examples 5.5, 5.8 allows an easy construction of oscillating minimizers.
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