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Abstract
We study the sliding contact of viscoelastic layers on rigid rough profiles, with two different

contact configurations: constrained on the upper boundary, and uniformly loaded on the top.

Results show that layer thickness and boundary conditions affect both the average contact quan-

tities and the viscoelastic friction. Interestingly, the latter is strongly influenced by the specific

controlled parameter. Under displacement controlled conditions, large differences are observed in

the frictional behavior of the two contact configuration. Conversely, in load control, the friction

coefficient is almost independent of the specific boundary condition.

Finally, a comparison with a 1D version of the Persson’s theory is proposed, finding a good

agreement in terms of dependence of contact area and friction coefficient on the sliding velocity.
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I. INTRODUCTION

Polymeric rubber-like materials are nowadays spreading well beyond the classical appli-
cations (e.g., tyres, seals, dampers) even towards micro scales devices, protective films, thin
gloves and suits, bio-inspired layers mimicking skin.

Several tribological phenomena, like friction and adhesion [1–3], as well as wear [4–7],
percolation [8, 9], thermal [10, 11] and electrical [12] conductance between surfaces, etc...,
can be understood and explained only considering the multiscale nature of the rough surfaces.
Several studies address the problem of predicting the contact behavior of semi-infinite solids.
Specifically, the theoretical approaches available in the literature can be grouped in two
categories: (i) the multiasperity contact models based on the original idea of the pioneering
works of Archard [13] and Greenwood&Williamson (GW) [14] (the ultimate version given in
Bush, Gibson and Thomas (BGT) [15] and the recent development proposed in Ref. [16] are
part of this category), and (ii) the theoretical approach by Persson [17] (included some recent
works improving the theory [18–20]). Furthermore, there are also many numerical studies
[21–32], specific molecular dynamics (MD) simulations [33], and experimental investigations
[34–39] devoted to this problem. However, less attention has been paid to the case of contact
involving bodies of finite thickness, despite an accurate representation of contact stresses
and deflections between sliding coated bodies is of fundamental importance in tribological
applications. Coatings are widely used in friction components to reduce friction and to
increase wear resistance, life and durability.

One of the first attempt to investigate the contact behavior of viscoelastic layered systems
has been made in [40], where deformation, friction dissipation and contact stresses are
calculated under the action of a moving load. An analytical solution is instead proposed
in Ref. [41] for a single layered viscoelastic material bonded to a rigid substrate and in
frictionless contact with a rigid smooth indenter. Furthermore, in Ref. [42], it has been
shown that contact pressure and internal stress distributions are significantly affected by
viscoelastic properties and sliding velocity. In particular, the presence of a viscoelastic
layer on a rigid or elastic foundation causes the pressure to become non-symmetrical. More
recently, Persson has extended his contact mechanics model to layered materials [43], and
has investigated the contact behavior of a rigidly constrained viscoelastic layer [44].

The finite size of contacting bodies can affect significantly the contact behavior when
the contact spots reach a size comparable with the body thickness (see, for example, Ref.
[45]). Moreover, the contact solution is strongly affected by the boundary conditions as
shown in Ref. [2, 46, 47], where the periodic elastic and viscoelastic sliding contact between
finite-sized bodies is investigated. Indeed, depending on whether a uniform pressure or
a rigid constraint is applied on the upper boundary of the layer, the contact stiffness is
found increasing or decreasing with the thickness. Moreover, thickness plays a key role in
determining the amount of energy dissipated in the bulk of material, whereas boundary
conditions mainly affect the fundamental exciting frequency at which the largest dissipation
occurs.

These works focus on smooth or one scale rough contacts; however, since all engineering
surfaces are rough to some degree, accounting for the effects of surface topography is critical
to model the contact. The importance of such a topic is also demonstrated by the recently
published contact-mechanics challenge where several scientists from across the world set up
a comparison between the most advanced theories to precisely address the rough contact
mechanics problem (see Ref.[48] and the bibliography therein included). A first consequence
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of the multiscale nature of roughness is the presence of a broader spectrum of frequencies
exciting the material. This is taken into account in Ref. [37], where the theory of contact
mechanics and rubber friction developed by Persson is extended to the case of surfaces
with anisotropic roughness, and in Ref. [49], where a boundary element methodology is
developed to calculate frictional losses in layered systems. In the first work, it is shown that
the friction coefficient may depend significantly on the sliding direction, differently from
the contact area which depends weakly on it. In the latter, it is instead point out that
significantly changes in viscoelastic dissipation can occur owing to the finite thickness of
the surface layer. Interesting results have been found also with respect to transient sliding
condition in Ref. [50] (with peculiar attention to the case of start from rest), and in Refs
[51, 52] where, in the framework of the Persson’s contact mechanics theory [18], the effect of
roughness on viscoelastic contact area and friction is investigated. Adhesive rough contact
mechanics has been investigated in Ref. [53], where the effect of the roughness scale on the
effective energy of adhesion and pull-off tractions is explored.

In the present paper, we extend the analysis given in Ref. [46] to the case of contact be-
tween randomly rough profiles. Specifically, calculations are performed on self-affine profiles
and viscoelastic material with one relaxation time. The bulk friction, due to the hysteretic
behavior of the viscoelastic material, is also calculated under both load and displacement
controlled conditions, and a full comparison with a 1D version of the Persson’s theory [18]
is proposed.

II. THE PROBLEM FORMULATION

Fig. 1 shows the problem under investigation: a linear viscoelastic layer of finite thickness
sliding at constant velocity V on a rigid periodic rough profile with fundamental wavelength
λ. Two contact configurations are considered: (a) a layer rigidly confined on the upper
boundary (Fig. 1a), and (b) a free layer uniformly loaded on the top (Fig. 1b). The contact
penetration is defined as ∆ = utot − um (see Fig. 1c), where um and utot are the mean
displacement of the viscoelastic body and the displacement of the rigid indenter, respectively.
Moreover, we neglect interfacial tangential interactions (e.g. Coulomb’s friction) and assume
small deformations.

According to Ref. [27, 46, 54], the local displacement field (measured from the deformed
mean plane) of the viscoelastic body can be written as

u (x) = −
∫

Ω

GV (x− s) p (s) ds (1)

where Ω is the contact domain, and GV (x) is the viscoelastic Green’s function for steady
sliding contacts, which parametrically depends on the sliding speed V ,

GV (x) = J
(
0+
)

Γ (x) +

∫ +∞

0+
Γ (x+ V t) J̇ (t) dt (2)

being Γ (x) the elastic-like Green’s function for the contact problem at hand, and J (t) the
viscoelastic creep function. For a linear viscoelastic material with one relaxation time τ ,
J (t) takes the form

J (t) = H (t)

[
1

E0

− 1

E1

exp (−t/τ)

]
(3)
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FIG. 1: The two contact configurations under investigation: a viscoelastic layer of
thickness h rigidly contrained (a), and uniformly loaded (b) on the upper boundary. A

magnification of the base periodic cell si shown in (c).

where H (t) is the Heavyside step function, and 1/E1 = 1/E0 − 1/E∞, being E0 and E∞
respectively the zero-frequency and high frequency elastic moduli of the material.

Finally, the expression of Γ (x) for the contact configurations shown in Fig. 1 can be
recovered from Ref. [45, 55]

Γ (x) =
2 (1− ν2)

π

(
log
[
2
∣∣∣sin(q0x

2

)∣∣∣]+
∞∑
m=1

Am (q0h)
cos (mq0x)

m

)
(4)

where q0 = 2π/λ, and

Am (q0h) =
2mq0h− (3− 4ν) sinh (2mq0h)

5 + 2 (mq0h)2 − 4ν (3− 2ν) + (3− 4ν) cosh (2mq0h)
+ 1 (5)

for the confined layer (Fig. 1a), and

Am (q0h) =
2mq0h+ sinh (2hmq0)

1 + 2 (mq0h)2 − cosh (2mq0h)
+ 1 (6)
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for the free layer (Fig. 1b).

For the displacement um of the mean plane we have

um =
1 + ν

1− ν
1− 2ν

E0

pmh (7)

being pm = λ−1
∫

Ω
p (x) dx the mean contact pressure.

Within the contact domain Ω, the elastic displacement is u (x) = ∆ + r (x) − Λ, where
r (x) is the local profile height and Λ is the local peak (see Fig. 1c). Therefore, substituting
in Eq. (1), we can write

∆ + r (x)− Λ = −
∫

Ω

GV (x− s) p (s) ds x ∈ Ω (8)

which is a Fredholm integral equation on the first kind for the unknown contact pressure
distribution p (x) .

The above equation is solved by following the solution scheme firstly addressed in Ref.
[45]. Hence, once known GV (x) for any given value of ∆ and V , eq. (8) allows to numerically
calculate p (x) as a function of the unknown coordinates αi and βi of the i-th contact area,
with αi < βi (see Fig. 1c). In fact, if Nc is the number of contact spots [αi, βi], the contact
domain is Ω = ∪Nc

i=1 [αi, βi].
Therefore, to completely define the contact problem, additional conditions are needed to

determine the coordinates αi and βi. Such conditions, according to Ref. [46], are obtained
by considering that, in the adhesiveless case, the mode I stress intensity factors at the edges
of each contact area must vanish (Ref. [56])

KI,αi
= − lim

x→α+
i

√
2π (x− αi)p (x) = 0 (9)

KI,βi = − lim
x→β−

i

√
2π (βi − x)p (x) = 0 (10)

III. RESULTS FOR SELF-AFFINE RANDOMLY ROUGH PROFILES

Calculations are performed on a linear viscoelastic material with E∞ = 3E0 and Pois-
son’s ratio ν = 0.5 (i.e. incompressible material). Moreover, self-affine profiles are nu-
merically generated as reported in appendix A with a Power Spectral Density (PSD)
C (q) = (2π)−1 ∫ 〈r (0) r (x)〉 e−iqxgiven by

C (q) = C0

(
|q|
q0

)−(2H+1)

; q ∈ [q0, q1]

C (q) = 0; q > q1 (11)

where q1 = Nq0 (being N the number of roughness scales) and H is the Hurst exponent,
which is related to the fractal dimension Df = 2 − H. Profiles are generated assuming

λ = 6.28 mm, a root mean square roughness of the profile rrms = 〈r2〉1/2 = 1 µm, H = 0.7,
and N = 100.

Results are averaged on several realizations for each value of h and V , and are shown
in terms of the following dimensionless quantities: h̃ = q0h, ã = q0a, ∆̃ = ∆/Λ, Λ̃ = q0Λ,
ζ = q0V τ , and p̃ = 2 (1− ν2) p/ (Eq0Λ).
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A. Average contact quantities
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FIG. 2: The dimensionless contact area as a function of contact pressure (a), and contact

penetration (b). Results are given for layers with h̃ = 1 and for the half-plane case
(h→∞).

Figures 2 show the dimensionless contact area as a function of the dimensionless mean
contact pressure (Fig. 2a) and contact penetration (Fig. 2b), at fixed dimensionless velocity
ζ = 0.2. Results are given for both the boundary configurations shown in Fig. 1 and for the
half-plane case (i.e. thickness h→∞). Comparing results of Fig. 2, we notice the contact
behavior is differently affected by the specific boundary conditions depending on whether
load or displacement is controlled.

Indeed, in Fig. 2a, regardless of the boundary constraints, no significant difference is
observed between layers and half-plane at sufficiently low contact pressures. To this regard,
let us observe that in proximity of a contact spot of length a, the size d of the material region
affected by deformation can be roughly estimated as d ≈ a. Since, at low contact pressures,
the contact domain is constituted by multiple contact spots with local size very smaller than
the layer thickness, boundary conditions and finite thickness of the system negligibly affect
its contact behavior.

On the other hand, increasing the contact pressure, the contact spots get bigger, and
d ≈ a can become also larger than h. Under these conditions, the contact configuration and
the layer thickness play a more important role in the final contact behavior. In particular,
for the confined layer, we observe a smaller contact area compared with the half-plane as a
result of the rigid constraint applied on the upper boundary, which makes the whole system
stiffer. On the contrary, for the free layer, higher contact areas are observed when the
average pressure is increased because it is overall more compliant.

However, the presence of roll-off in the roughness PSD would lead to a higher number
of contact spots of the same size d ≈ a � h, but closer one to each other. In this case,
even at very low contact pressure, elastic interaction between contact spots will lead to
a macroscopic deformed region of size d � a. In this case, it is not enough that the film
thickness is much larger than a single contact region, so different results can occur depending
on the specific boundary configuration
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Of course, for all configurations the dimensionless contact size ã tends to π at the complete

contact, as more clearly shown in Fig. 2b, where the contact area is plotted in terms of the
penetration. In this case, working at fixed penetration, a reverse scenario is observed and
the larger contact areas are obtained for the confined layer. This can be easily explained,
consistently with Refs. [2, 46], by observing that, due to the material incompressibility
and rigid constraint, at given penetration ∆, the volume of the material displaced by the
rough profile peaks must be balanced by an equivalent one which partially fills the valleys,
thus increasing the contact area (see Fig.3a). Such a mechanism does not take place in
the case of free layer (see Fig.3a), whose contact behavior at small ∆ is instead mainly
governed by bending (as observed in Refs. [2, 46]), resulting in negligible influence of ∆ on
the contact area. However, at large values of ∆, a small increment in penetration causes a
strong increase in contact area as, close to complete contact, most of the peaks are already in
contact and further bending deformation is inhibited. Under this condition, local interfacial
deformation occurs that is governed by the local contact stiffness, proportional to the ratio
a/h, as demonstrated in Ref. [2].

D
�
= 0.7

Half-plane

Confined h
�
=0.8

Free layer h
�
=0.8

1 2 3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

x
�

u�
L

(a)

p�m = 0.73

Half-plane

Confined h
�
=0.8

Free layer h
�
=0.8

1 2 3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

x
�

u�
L

(b)

FIG. 3: The deformed profiles of the viscoelastic bodies at given contact penetration (a),

and mean contact pressure (b). Results are given for layers with h̃ = 0.8 and for the
half-plane case (h→∞).

Similar conclusions can be drawn by Fig. 3, where the deformed profile of the viscoelas-
tic bodies is shown under displacement (Fig.3a) and load (Fig. 3b) controlled conditions.

Results are given for the half-plane case, and for the confined and free layer with h̃ = 0.8.
At given contact penetration (see Fig. 3a), the confined layer shows a much larger number
of contact spots and overall contact area compared to the free layer. Vice versa, under
load controlled conditions (see Fig. 3b), the behavior reverses with the free layer showing a
slightly larger contact area and a larger number of contact spots, due to its lower contact
stiffness (see Ref. [2]).

Fig. 4 shows the dependence of the dimensionless contact mean pressure on the dimen-
sionless sliding speed ζ, at fixed penetration ∆̃ = 0.35. For all the contact configurations
we observe a monotonic increase of p̃m with ζ because of the viscoelastic material response.
In fact, increasing ζ, the frequency of excitation ω increases and a progressive transition
from the soft rubbery region to the hard glassy one occurs. Notice also the mean pressure
values calculated at high and low speeds are almost in the same ratio as the elastic moduli
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FIG. 4: The dimensionless mean contact pressure as a function of the dimensionless sliding
velocity for fixed ∆̃ = 0.35. Results are given for layers with h̃ = 1 and for the half-plane

case (h→∞).

E∞/E0 = 3. Finally, according to previous results given in Ref. [46], we notice that both
the free and confined layer approach the half-plane solution as h is increased.

B. The viscoelastic friction

Viscoelastic materials present bulk viscous dissipation proportional to the first time
derivative of the applied strains. This dissipation gives rise to macroscopic reactions, which
oppose the strain change. In the specific case of sliding contacts, a macroscopic reaction
force is developed contrasting the relative motion between the bodies, which is usually re-
ferred to as viscoelastic friction. Of course, an asymmetrical contact pressure distribution
within each contact spot must occur for this force to develop (see, for example, [46, 54]).
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�
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Free layer

Half-plane
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0.0005

0.0010

0.0015

Ζ

Μ

(b)

FIG. 5: The viscoelastic friction coefficient µ as a function of the dimensionless sliding
velocity ζ for ∆̃ = 0.1 (a), and ∆̃ = 0.94 (b). Results are given for layers with h̃ = 1 and

for the half-plane case (h→∞).

Fig. 5 shows the viscoelastic friction coefficient as a function of ζ for fixed low (Fig. 5a)
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and high (Fig. 5b) contact penetration. In all cases the curves are characterized by a bell-
shaped trend. This can be explained by arguing that the dissipated energy per unit time
is related to the imaginary part = [E (ω)] of the viscoelastic modulus, which typically has a
bell-shaped dependence on the frequency ω ∝ V of excitation. Therefore, at low and high
frequencies (the ”rubbery” and ”glassy” regions, respectively), the imaginary part = [E (ω)]
vanishes, thus leading to vanishing values of the energy dissipation. For this reason, in the
limit of small and large velocities the response of the material is practically elastic (with
elastic modulus respectively equal to E0 and E∞), and the friction coefficient vanishes. At
intermediate ranges of velocity (the so called ”leathery” or ”viscoelastic” region), viscoelastic
friction occurs as a result of the viscous dissipation (with a maximum that will be located
approximately at a frequency of excitation ω ≈ 1/τ , being τ the relaxation time of the
material).

Notice at small contact penetrations (Fig. 5a) higher values of the friction coefficient are
observed for the rigidly confined layer. On the contrary, when the penetration is increased
(Fig. 5b), the contact involves much more material and the behavior reverses, with the free
layer showing almost the same µ of the half-plane, but significantly higher than the confined
one.

The above result occurs because, at high ∆, bending involves the whole layer when its
upper edge is free. Vice versa, when the layer is constrained on the top, bending is inhibited
and smaller regions are involved by the viscoelastic deformation.

At low ∆, the friction coefficients for the two investigated contact configurations are
almost in the same ratio as the contact areas (see Ref. [46]). Then a smaller friction
coefficient is obtained for the free layer that shows smaller contact areas at fixed penetration
(see Fig. 2b).

IV. COMPARISON WITH PERSSON’S THEORY

In this section, according to the procedure defined in Appendix B, we propose a com-
parison with a 1D version of the Persson’s theory [18], where, as suggested by the author
in Refs. [18, 19], we assume that the only fitting parameter of the theory takes the value
β = 0.48.

In Fig. 6a we compare the numerically calculated contact area with the theoretical
predictions of Persson’s theory. In particular, the contact area is shown as a function of the
sliding velocity, for a given remote load p̃m = 1.3. Regardless of the specific configuration
(half-space, confined layer or free layer), the contact area decreases with the velocity because
increasing the sliding velocity causes the viscoelastic stiffening of the material. The figure
shows some differences between our calculations and Persson’s theory, however in our opinion
the agreement can be considered more than satisfactory, also considering that Persson’s
theory is a renormalization group approach, which is more accurate in the 2D case.

Interestingly, Fig. 6b shows the PSDs of the numerically calculated deformed profiles
compared to those predicted by the Persson’s theory. We observe a significant agreement
for the half-space (already observed for the elastic substrate in Ref. [57]) and free layer
configurations. A certain degree of disagreement is observed for the confined layer case
in the range of low wavevectors. This partial disagreement, has to be ascribed to the
fact that real or numerically generated rough surfaces are finite and, as such, the tail of
the asperity heights distribution is truncated to finite values. This allows the finite rough
surface to be totally confined beneath the rigid plate that constrains the displacement on

9
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FIG. 6: A comparison between numerical results (in black) and Persson’s theory
predictions (in red) for: (a) the dimensionless contact area as a function of the dimensioless

sliding velocity; (b) the deformed profile PSD. Dashed lines refer to the half-plane case

(h→∞), thick and thin lines to the confined and free layer cases with h̃ = 1, respectively.

the upper part of the layer [Fig 1(a)]. In Persson’s theory - which is a statistical theory
- things are a little different. In fact asperities of any heights, also those whose height
exceed the thickness h of the layer, are included in the calculations. Thus, despite the
right boundary conditions are still fulfilled thanks to the use of the correct Green’s function
[see Eq. (5)] interpenetration of the elastic body with the rigid plate can actually occur
in the theory, leading to a deviation from the numerical calculation just for wavevectors
q < 2π/h. Of course, this interpenetration does not take place for the half-space and free
layers configurations, where indeed the agreement with Persson’s theory is very good.

We also note that, due to the intrinsic (geometric) non-linearity of the contact problem,
deformation occurring at different wavelengths (i.e. at different q−vectors) are not really
independent, thus leading, as predicted by our numerical calculations, to non-vanishing PSD
for wavevectors q > q1, i.e. at spatial frequency at which the spectrum of the rigid rough
profile PSD vanishes.

Fig. 7 shows the friction coefficient as a function of the dimensionless sliding velocity
ζ, at fixed mean contact pressure p̃m = 1.3. At small velocities ζ, the Persson’s theory
predicts a slightly smaller friction coefficient compared to numerical results. Such a trend is
reversed as ζ is increased. The observed difference is related to the frictional contribution
ascribed to very short length scales (i.e. q > q1) which cannot be taken into account in
the Persson’s theory (see Fig. 6b). In fact, at low sliding velocities, the cyclic deformations
associated with very short length scales will also contribute to the hysteretic dissipation into
the material as they will excite the viscoelastic material in a range of frequencies close to the
transition region of its viscoelastic spectrum. As a result, the peak value of the coefficient of
friction predicted by numerical calculations has to be shifted, when compared with Persson’s
predictions, towards lower values of the sliding velocity, as indeed is observed in Fig. 7. On
the contrary, for sufficiently large ζ, the excitation induced by very short length scales will
fall into the glassy region of the viscoelastic spectrum of the material, and will not contribute
to the hysteretic dissipation, i.e. to friction coefficient, leading to a better agreement with
Persson’s theory.
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FIG. 7: The dependence of the friction coefficient on the dimensionless sliding velocity at
fixed p̃m = 1.3. Comparison between Persson’s theory predictions (in red) and numerical
simulations (in black). Dashed lines refer to the half-plane case (h→∞), whereas thick

and thin lines refer to the confined and free layer cases with h̃ = 1, respectively.

It is worth noticing that, at fixed load, the geometry of the system does not significantly
affect the friction coefficient µ. This is in contrast with results given in Fig. 5 where
the friction coefficient is calculated at fixed penetration. A possible explanation of such a
behavior relies on the observation that the amount of dissipated energy strongly depends
on the amount of material involved in the cyclic deformation caused by each single asperity.
This volume of material can be roughly assumed proportional to the square of each asperity
contact size. So now, if we look at the contact area, when the controlled quantity is the
remote load p̃m, curves in Fig. 2(a) show that differences between the free layer, the confined
layer and the half-space are much less significant if compared to those observed when the
controlled parameter is the penetration ∆̃ [see Fig. 2(a)]. This also explains why, in Fig. 5,
we observe a more significant dependence of µ on the geometry of the system and boundary
conditions.

Persson
Ζ = 1

h
�
 = ¥

Numerical model

0 1 2 3 4
0.0000
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0.0008

0.0010

p�m

FIG. 8: A comparison between the Persson’s theory predictions (in red) and the numerical
results (in black) for the friction coefficient as a function of the dimensionless mean contact

pressure. Results refers to the half-plane case.

In fig. 8, the friction coefficient is plotted in terms of the mean contact pressure p̃m, at
fixed ζ = 1. For p̃m > 1 numerical results and Persson’s theory predictions run sufficiently
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close and almost parallel to each other. At low mean pressure, numerical data show an
increasing larger deviation from the Persson’s predictions as p̃m vanishes because of the
finiteness of our numerically generated surfaces.

V. CONCLUSIONS

The sliding contact of a linear viscoelastic layer on a randomly rough rigid profile is
investigated. Specifically, three different configurations are taken into account: (a) a layer
rigidly constrained on the upper boundary, (b) a free layer uniformly loaded on the top, (c)
the half-space case.

Results show that the specific boundary conditions, as well as the layer thickness, strongly
affect the contact and frictional behavior of the system, in terms of mean contact area and
friction coefficient. In particular, the layer rigidly constrained turns out stiffer than the
free layer uniformly loaded. The half-space behavior lies halfway between the two limiting
cases Interestingly, we found that depending on the controlled parameter (i.e. load or
displacement) different results can be achieved in terms of contact behavior. Indeed, under
load controlled conditions the free layer shows larger contact area compared to the confined
one, whereas the opposite scenario is observed when displacement is controlled. Further, the
choice of the controlled parameter also affects the dependence of the system behavior on the
boundary conditions. For instance, the friction coefficient at fixed load does not significantly
depend on the system configuration, whereas differences are much more remarkable when
displacement is controlled.

Finally, we performed a detailed comparison with the predictions of the most advanced
version of Persson’s theory. Comparison was made in terms of contact and frictional be-
havior. Specifically, numerical calculations and theoretical predictions show the same ‘bell
shaped’ dependency of the friction coefficient on the sliding velocity, with the peak located
in the frequency region where = [E (ω)] is close to the maximum. In this respect, a very
good quantitative agreement is found for the free layer and half-space cases. However, a
certain degree of disagreement due to finite size effects is found for the confined layer case,
in the low range of q-vectors.

APPENDIX A: ROUGH PROFILE GENERATION

Here we summarize the procedure already presented in Ref. [58] to numerically generate
a rough profile

r (x) =
N∑
k=1

rk cos (kq0x+ φk) (A1)

where N is the number of roughness scales of the profile.
Firstly, we observe that for any self-affine profile r (x) the statistical properties are in-

variant under the transformation

x→ tx; r → tHh (A2)

in such a case it can be shown that the power spectral density (PSD) is

C (q) =
1

2π

∫
〈r (x′) r (x′ + x)〉 e−iqx = C0

(
|q|
q0

)−(2H+1)

(A3)
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where the symbol 〈〉 stands for the ensemble average linear operator. We observe that,
because of translational invariance, the autocorrelation function 〈r (x′) r (x′ + x)〉 satisfies
the relation 〈r (x′) r (x′ + x)〉 = 〈r (0) r (x)〉. Eq. (A3) shows that only three parameters are
needed to fully characterize the PSD of the profile. The amplitudes rk and the phases φk of
the harmonic terms [see Eq. (A1)] need to be determined in such a way that the resulting
profile is Gaussian with the PSD given in Eq. (A3).

First observe that in order to satisfy the translational invariance of the profile statistical
properties, it is enough to assume that the random phases φk are uniformly distributed on
the interval [−π, π[. In such a case the autocorrelation function takes the form

〈r (x′) r (x′ + x)〉 =
N∑
k=1

〈r2
k〉
2

cos (kq0x) (A4)

Now we need to calculate the quantities 〈r2
k〉. To this purpose let us calculate the PSD of

the periodic profile given in Eq. (A1). By using the definition we get

C (q) =
1

2π

N∑
k=1

∫
dx
〈r2
k〉
2

cos (kq0x) e−iqx =
N∑
k=1

1

4

[〈
r2
k

〉
δ (q − kq0) +

〈
r2
k

〉
δ (q + kq0)

]
(A5)

from which it follows that

C (−kq0) = C (kq0) = Ck =
〈r2
k〉
4
δ (0) (A6)

where δ (q) is the Dirac delta function. Using Eq. (A3) and observing that C0 = 〈r2
1〉 δ (0) /4,

one obtains 〈
r2
k

〉
=
〈
r2

1

〉
k−(2H+1) (A7)

Hence, the quantities 〈r2
k〉 can be determined once known 〈r2

1〉 and the Hurst exponent of

the surface. Now observe that from Eq. (A4)
〈
r (x)2〉 =

∑N
k=1 〈r2

k〉 /2, and using Eq. (A7)
yields

m0 =

∫
C(q)dq =

〈
r (x)2〉 =

〈r2
1〉
2

N∑
k=1

k−(2H+1) (A8)

Therefore, if one knows the zero-th order moment m0 of the power spectral density, i.e. the
mean square value of the profile heights m0 = r2

rms =
〈
r (x)2〉, one can calculate 〈r2

1〉 and
therefore all other quantities 〈r2

k〉. However to completely characterize the rough profile we
still need the probability distribution of the amplitudes rk. There are several choices, however
the simplest assumption, as suggested by Persson et al. in Ref. [59], is that the probability

density function of rk is just a Dirac delta function centered at [4Ck/δ (0)]1/2 ≈ 2 (q0Ck)
1/2

p (rk) = δ
(
rk − 2

√
q0Ck

)
(A9)

i.e. we assume that rk = 2
√
q0Ck. In the above relations we have used that δ (q = 0) ≈

q−1
0 = λ/ (2π). It can be shown [59] that Eq. (A9) also guarantees that the random profile
r (x) is Gaussian.
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The three parameter employed to characterize the statistical properties of the surface are

the Hurst exponent H, the zero-th order moment of the roughness PSD

m0 =
〈
r2 (x)

〉
= 2q0C0

N∑
k=1

k−1−2H (A10)

and the second moment of the PSD

m2 =
〈
r′2 (x)

〉
=
〈
(∇r)2

1D

〉
=

∫
q2C(q)dq = 2q3

0C0

N∑
k=1

k1−2H (A11)

Interestingly, we observe that since 0 < H < 1 the sum
∑N

k=1 k
1−2H does not converge

as N is increased, i.e. as more and more spectral components are included in the rough
profile. However, we also observe that, when H > 0.5, the slope qkrk = 2

√
q3

0C0k
(1−2H)/2 of

each single Fourier component of the rough profile decreases as k is increased, with a faster
decrease for higher values of H. Since real surfaces most of times present Hurst exponent
larger than 0.7, we may say that for real surfaces the shortest wavelengths components of
the roughness are smoother than long wavelength components.

APPENDIX B: THE 1D VERSION OF THE PERSSON’S THEORY

In this appendix we present an extension of the Persson’s theory [18] to the case of 1D
line contacts. In Ref. [37], moving from the original Persson’s theory [17], the expression
of the coefficient of friction for steady sliding (along the x-axis) at velocity V against a 2D
surface with anisotropic statistical properties has already been developed (see Eqs. (20-
22) in Ref. [37]). Here, coherently with the further corrections to the Persson’s theory
presented in [18, 19] for the case of elastic contacts, we introduce the correcting factor
T (q) = β + (1 − β)P 2 (q) also in the case of viscoelastic contacts. Therefore, moving from
Eqs. (20-22) in Ref. [37], we have

µ =
1

2

∫ ∞
−∞

d2q qqxC2D (q)T (q)P (q) Im

[
E (qxV )

(1− ν2)S (qh) pm

]
(B1)

where q = |q|, and q = (qx, qy). Notably, S (qh) = S (mq0h) = −Am (q0h) + 1, where Am
depends on the specific boundary condition, as given by Eqs. (5-7).

P (q) =
A (q)

A0

= erf

(
1

2
√
G (q)

)
(B2)

is the apparent area of contact at the magnification q/q0. Further, we have that

G (q) =
1

8

∫ ∞
−∞

d2q q2C2D (q)T (q)

∣∣∣∣ E (qxV )

(1− ν2)S (qh) pm

∣∣∣∣2 (B3)

Now, we recall that, a 1D rough profile can be generalized to an equivalent 2D surface
by requiring that the roughness does not change along one of the axis. Therefore, assuming
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to have roughness only along the x-axis, following [37], we have that C2D (q) = C (qx) δ (qy),
where C (qx) is the PSD of the 1D rough profile. Substituting in Eq. (B1) we find

µ =

∫ ∞
0

dqx |qx| qxC (qx)T (qx)P (|qx|) Im

[
E (qxV )

(1− ν2)S (qh) pm

]
(B4)

Similarly, from Eq. (B3), we have that

G (q) =
1

4

∫ ∞
0

dqx q
2
xC (qx)T (qx)

∣∣∣∣ E (qxV )

(1− ν2)S (qh) pm

∣∣∣∣2 (B5)
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• Boundary conditions effects on viscoelastic layer in sliding contact is investigated 

• Under load controlled conditions friction is not affected by boundary conditions 

• Persson’s theory predictions are in good agreement with the numerical calculations 


