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Abstract 

Natural ventilation is one of the most efficient solutions to improve thermal comfort in buildings, particularly for passive and 
hybrid cooling. This paper analyses the potential of building automation systems for ventilative cooling in residential buildings. 
In relation to internal and external temperature, an optimized control strategy of window opening is developed to ensure adequate 
levels of indoor thermal comfort, reducing energy consumption for cooling. In particular, the control of ventilation is calibrated 
by an optimized variable set-point and a Particle Swarm Optimization (PSO) method is adopted with objective function that 
minimizes the thermal discomfort hours. The PSO algorithm is implemented in MATLAB and integrated with TRNSYS energy 
simulation software. A case study focusing on an existing Italian typical building of the '60s, situated in the Mediterranean 
climatic context is presented. Thermal comfort analysis, according to the adaptive thermal comfort theory (EN 15251-2007), 
shows that the optimized control logics for natural ventilation determines a significant reduction of overheating discomfort in 
reference to the case with ventilation only for indoor air quality at fixed hours. Combining the passive cooling system with an 
active cooling, there are also reductions in energy consumptions for cooling. The results show how the proposed optimized 
control logics increase the potentialities of natural ventilation strategies to the improvement of energy and thermal performance 
of buildings, integrating or replacing the conventional efficiency strategies. 
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Nomenclature 

BA  Building Automation 
BAS                   Building Automation Systems 
PSO               Particle Swarm Optimization  
Toptimal   Optimal temperature 
Tindoor  Indoor temperature 
Toutdoor             Outdoor temperature 
Nheat                  Total discomfort hours for overheating 
Ncool                  Total discomfort hours for undercooling 
s.f.                        Shading factor 
IAQ                      Indoor Air Quality 
HVAC                  Heating Ventilation and Air Conditioning 
NZEB                   Nearly Zero-Energy Buildings 
PMV                     Predicted Mean Vote 
U-value                Coefficient of heat transmission (W/m2K) 

1. Introduction 

In the building sector, the energy used for cooling is taking on an increasing share in the energy balance 
especially in Mediterranean climate, as a result of the increasing use of mechanical conditioning device [1].  

The adoption of passive solutions allows a significant reduction of greenhouse gases emissions and addresses the 
emerging trend of Nearly Zero-Energy Buildings (NZEB), according to the 31/2010 European directive [2]. Passive 
techniques, such as natural ventilation and solar shading, could satisfy the indoor comfort while minimizing the use 
of active systems in buildings. Natural ventilation is a low-cost passive solution able to guarantee both Indoor Air 
Quality (IAQ) and thermal comfort in buildings, by reducing the demand for mechanical ventilation and air 
conditioning [3]. Specific studies show that application of natural ventilation techniques may decrease the cooling 
load of buildings and improve indoor comfort and air quality. In particular, Boukhris et al. [4] study the natural 
ventilation as the main passive strategy to reduce overheating in the Tunisian summer climate. Moreover, in [5] four 
different ventilation strategies with the combination of various building envelope characteristics are simulated for 
hot-humid climate in Singapore.  

On the other hand, in recent years, Building Automation Systems (BASs) associated with control and 
optimization techniques are widely used to reduce building energy consumption and improve indoor comfort [6], [7].  
Many researches deal with the control of active systems, others both on active and passive systems, and only few 
researches focus on BASs for passive components. For instance, in [8] an intelligent controller is designed to 
determine the optimal ventilation rate in active systems, by maintaining the indoor CO2 concentration in the comfort 
zone and by reducing energy consumption. Moreover, due to the non-linearity of the proposed model, Particle 
Swarm Optimization (PSO) is adopted to obtain the optimal ventilation rate: the relationship between the ventilation 
rate and the corresponding power consumption is described by fuzzy logic. Castilla et al. [9] propose a multivariable 
nonlinear model predictive control system to maintain thermal comfort and IAQ by means of Heating Ventilation 
and Air Conditioning (HVAC) systems and natural ventilation. The main control objective is to maintain users’ 
thermal comfort and IAQ inside a comfort zone defined by the Predicted Mean Vote (PMV) and the IAQ indices, 
respectively, minimizing, at the same time, the energy consumption necessary to achieve this comfort. In addition, 
Sun et al. [10] propose an integrated control of active and passive heating, cooling, lighting, shading and ventilating 
system with the aim of minimizing total energy costs. To solve the optimization problem with the coupling HVAC 
capacity constraints, Lagrangian relaxation is used to obtain a near-optimal solution. In [11] the authors use for the 
control of the natural ventilation an energy management algorithm implemented in the Energy Plus simulation. In 
particular, the algorithm consists of the following three components: rules on indoor air quality based on CO2 
sensors, rules on thermal comfort to prevent the overcooling, rules to reduce the risk of air draft. 
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Concerning the related literature, it is apparent that the contributions focusing on passive systems base the choices 
on heuristic approaches, while optimization strategies are mainly used for active system operations. Hence, 
evaluating the effects of passive strategies to reduce energy waste and thermal discomfort by means of optimized 
BASs is an open problem. 

This paper proposes a Building Automation (BA) and optimization strategy for natural ventilation control of 
passive cooling in residential buildings. Starting from a preliminary work [3] based on a simulation study and what-
if analysis, in [12] the thresholds for window opening and closing are optimized. In this paper, we add solar shading 
to natural ventilation and in this new configuration the control logic is optimized to minimize the thermal 
discomfort. Moreover, an active cooling system is introduced to assess the effects of the proposed control logics on 
the energy consumption. The natural ventilation and solar shading effects are analyzed by a co-simulation strategy: 
TRNSYS and TRNFLOW software simulates thermal building behavior and ventilation dynamics and a PSO 
algorithm implemented in MATLAB optimizes the thresholds for window opening, by employing the simulation 
outputs. In particular, the control of ventilation is calibrated on dynamic set-points based on optimal temperatures 
according to the adaptive thermal comfort theory (EN 15251-2007) [13]. Furthermore, the proposed co-simulation 
architecture allows assessing the benefits of the proposed optimization strategy. The analyzed case study considering 
a residential building located in the southern Italy evaluates the improved performances obtained by the optimized 
control logics in the Mediterranean climate. 

The paper is organized as follows. Section 2 describes the natural ventilation control strategy and Section 3 
proposes the simulation environment. Finally, Section 4 presents the case study and Section 5 draws the conclusions.  

2. Natural ventilation control strategy 

The designed energy efficiency solution consists in an on-off control strategy managing the natural ventilation, 
by opening and closing windows at suitable time intervals.  

Now, let denote by  a natural number equal to a considered year time period that is divided in actuating 
time intervals . The control of ventilation is calibrated on the basis of the optimal temperature 

 for , calculated according to the standard EN 15251 [13], by assuming the category n. II 
(relative to new construction and existing buildings subject to refurbishment). In particular, the optimal comfort 
range is . Moreover, denoting respectively by  and  for 

 the indoor and external temperature, the ventilation control logic is applied by defining the following 
on-off control condition: 

windows opened                 if     for t=0, 1,…,                                                (1) 

                                          and  

                                           if   Tindoor t +∆2<Toutdoor t <Tindoor t   for t=0, 1,…,                                         (2) 

windows closed           otherwise  
with 

 and                                                                                                                            (3) 

 and                                                                                                   (4) 

Equations (1) and (2) allow the windows opening when the outdoor temperature is favorable to the reduction of 
overheating thermal discomfort. In addition, in equation (2) ∆2 is introduced to close the windows if the outdoor 
temperature is too low in comparison with the indoor temperature in order to limit the undercooling discomfort 
conditions. 
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The values of ∆1 and ∆2 are determined through the PSO optimization strategy with the aim of minimizing the 
thermal discomfort, i.e., the total discomfort hours  for overheating  and undercooling : 

                                                      (5) 

subject to (3) and (4). 
The numbers of discomfort hours for overheating and undercooling are determined according to the adaptive 

thermal comfort theory EN 15251 as follows:  

  is the number of hours in which  

 is the number of hours in which . 

In order to evaluate the impact of the solar shading in the proposed BA strategy, rolling window shutters are 
introduced and ruled on the basis of the shading factor (s.f.) that represents the percentage of opaque area due to the 
shading respect to the glazing surface of the window. Moreover, two operative conditions that consider the presence 
or absence of users are studied: 

 s.f. = 0.25 (presence of users) 
 s.f. = 0.75 (absence of users). 

This assumption simulates users, careful about the problems of thermal and visual comfort, who close rolling 
window shutters by obtaining a shading percentage of the windows equal to 75 % (s.f.= 0.75) in unoccupied rooms, 
and a shading percentage equal to 25 % (s.f.= 0.25) to avoid dark rooms when users are present. Then, the airflow 
opening areas are modified according to the specified percentages.   

3. Simulation environment 

In this section the co-simulation architecture is presented to integrate the optimization algorithm with the building 
behavior simulation and the air flow network model. More details about this architecture can be found in [12]. 

3.1. Energy simulations 

The building thermal behavior is modeled by TRNSYS v.17 software [14], a complete and extensible simulation 
environment for the transient simulation of systems, including multi-zone buildings. One of the key factors in 
TRNSYS is its modular and flexible architecture based on Dynamic-Link Library (DLL) concept, which facilitates 
the addition to the program of new component models, not included in the standard TRNSYS library.  

Moreover, in this study the thermal building module (Type 56) is integrated by TRNFLOW software that models 
the air flows between outdoor and indoor air nodes. In particular, this multizone airflow model schematizes the 
building as a network of nodes and airflow links. The nodes represent the rooms and the building surrounding and 
the links depict openings, doors, cracks, window joints and shafts, as well as ventilation components like air inlets, 
outlets, ducts and fans. The boundary conditions are the wind pressures on the façade and the indoor and outdoor air 
temperatures.  

3.2. Particle Swarm Optimization 

This subsection specifies the application of the PSO algorithm [15], a stochastic metaheuristic optimization 
algorithm. The rationality of choosing the PSO algorithm with respect to other evolutionary methods is that the PSO 
is robust, efficient, suitable to handle non-linear problems and requires fewer number of function evaluations than 
genetic algorithms, while leading to better or the same quality of results [15]. 
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In the PSO a number of simple entities, called particles, is used for optimization purposes: the particles represent 
candidate solutions with respect to the problem being optimized. In particular, each particle of the swarm is 
composed of three D-dimensional vectors, where D is the dimension of the search space: the current position , the 
previous its best position , and the velocity . The particles are placed in the search space of some problem or 
function, and each of them evaluates the objective function at its current location. In detail, the current position  
can be considered as a set of coordinates describing a point in the space and is evaluated as a possible problem 
solution. If such position results to be better than the previous ones, then its coordinates are stored in the vector . 
The value of the resulted best function is stored in a variable called previous best , for comparison on the later 
iterations. The objective of each particle is to find better positions and update pi and  vectors. For this reason, 
the algorithm iteratively updates the velocity vector  of each particle and calculates new positions , also 
considering the best location of all particles (gbest), in accordance with the following two-update equations: 

 +                       (6) 

                                                                                                 (7) 

where w is the inertia weight, k is the iteration number, c1 and c2 are respectively the cognitive and social weight, r1 
and r2 are vectors of random numbers sampled from a uniform distribution in the range [0,1]. 

Since the aim is minimizing the objective function , the current position  is 
the vector of the values that ∆1 and ∆2 assume at iteration  In addition, the parameters w, c1, c2 and the particle 
numbers have to be appropriately chosen, depending on the problem to be solved: in the case study we fix 

,  and set the size of the population equal to 10 particles [16]. 
Finally, the optimization process is completed if the best location  does not change for a fixed number M of 

consecutive iterations. The corresponding value  is the optimal value of the objective function 
determined by the PSO. 

3.3. Co-simulation architecture 

The co-simulation architecture including TRNSYS and MATLAB is obtained using MATLAB as the main 
software that calls TRNSYS for the iterations. The proposed architecture is shown in Fig.1 that points out the inputs 
and data exchanged among the simulation software and the optimization algorithm. 

 

 

Fig. 1. Co-simulation architecture integrating TRNSYS and PSO algorithm. 



846   Alessandro Rinaldi et al.  /  Procedia Engineering   180  ( 2017 )  841 – 850 

More precisely, the MATLAB program implementing the PSO algorithm receives the data about the indoor 
temperature ( (t)) from TRNSYS and determines the value of the objective function (5) considering the 
temperatures  and the outdoor temperature . Then, the MATLAB program computes new 
values of ∆1 and ∆2 on the basis of the determined objective function. The ∆1 and ∆2 values are transmitted to 
TRNSYS that implements the control strategy (1) and (2) to command the window opening. Iteratively, the PSO 
algorithm updates the values of the two decision variables ∆1 and ∆2 in order to minimize , storing the 
best couple of decision variables ∆1 and ∆2. When the iteration process is terminated, the PSO algorithm returns the 
optimal values ∆1 and ∆2 that minimize (5).  

4. Case Study 

4.1. Building description  

The case study considers a residential building typical of the ‘60s years, located in the urban context of Bari 
(Italy, 41° 07'31 "N 16 ° 52'00" E, 5 m.a.s.l.). The dwelling is situated at an intermediate floor and has a net floor 
area of about 100 m2, with windowed sides faced to northwest and southeast. The plant of the dwelling is shown in 
Fig. 2. 

 

Fig. 2. Dwelling plant. 

The building envelope parameters are typical for the Italian residential buildings of ‘60s and are reported in Table 
1.  

Table 1. Thermal characteristics of building envelope. 

Items U- value (W/m2K) 

External wall 1.10 

Staircase-dwelling  wall 1.54 

Floor  0.83 

Windows  5.6 

 
In reference to this specific case study, the energy hourly variations for occupancy, lighting and domestic 

appliances are implemented using typical fixed schedules. As regarding the solar shielding systems, rolling window 
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shutters are adopted with a scheduled operation in function of users presence as described in Section 2. The Table 2 
shows the scheduled daily occupancy of each room. 

Table 2. Scheduled daily occupancy for each room. 

Room Occupancy daily time slots  

Bedroom2  From 6 p.m. to 8 a.m. 

Kitchen  From 7 a.m. to 9 a.m.; from 12 p.m. to 2 p.m.; from 8 p.m. to 10 p.m. 

Bedroom1 From 10 p.m. to 8 a.m. 

Office From 9 a.m. to 12 p.m.; from 3 p.m. to 7 p.m. 

Living room From 8 a.m. to 9 a.m.; from 4 p.m. to 12 a.m. 

 
The type of windows is tilt-turn window, with automated bottom-hinged opening (corresponding to the 50% of 

the opening for windows with two shutters). The detailed description of air permeability characteristic of building 
envelope is reported in [3].  

4.2. Simulated cases and results 

The adaptive thermal comfort simulations and results refer to Bedroom2 that is resulted the most uncomfortable 
room according to the adaptive thermal comfort without active cooling system. Then, the indoor temperature  
of Bedroom2 is considered to control the openings of all the dwelling windows. The considered period for the 
simulations is July-August hence the simulation runs are of  =1488 hours with hourly time step t. The simulation 
results take into account only the hours with users presence in Bedroom2 (see Table 2) for a total of o= 868 hours.  

The simulations are executed considering three cases: 

 Case 0: natural ventilation only for IAQ at fixed hours;  
 Case 1: ventilative cooling under control rules (1) and (2) with ∆1= 0°C, ∆2= -3°C; 
 Case 2: ventilative cooling under control rules (1) and (2) with optimal values of ∆1 and ∆2.  

More precisely, in Case 0 the windows are opened only at certain hours (8 a.m. - 10 a.m.; 1 p.m.- 2 p.m.; 8 p.m. - 
9 p.m.) during the activities of preparing and cooking foods and of household cleaning. 

Moreover, in Case 1, in addition to the natural ventilation for IAQ of the Case 0, during the other daily hours 
ventilative cooling is granted under control rules (1) and (2), where the values of ∆1 and ∆2, as previously specified, 
are fixed a priori on the basis of the what-if analysis results obtained in [3].  

Furthermore, Case 2 uses the optimal values obtained by the proposed co-simulation and optimization strategy: 
the optimal objective function values are obtained with ∆1= -1.07 °C and ∆2= -7.51°C corresponding to the 16th 
PSO iteration (as it is highlighted in Figs. 3 and 4). In particular, Fig.3 shows the optimization running: the iterative 
optimization procedure starts assigning random values to ∆1 and ∆2 subject to (3) and (4). According to the values 
of ∆1 and ∆2, the set-point temperature for the window opening activation in (1) and (2) varies. In Fig. 4 it is 
possible to notice how the discomfort conditions vary from a maximum of about 700 hours to a minimum of about 
80 hours. Furthermore, Figs. 3 and 4 highlight how function  is more sensitive to the variations of ∆2 with 
respect to the variations of ∆1. This result is due to the effects of ∆2 in (2): increasing the absolute value of ∆2 
allows ventilation also in the case of lower outdoor temperatures and consequently it enhances passive cooling. 

The results of the simulations are compared by computing the following performance indices: 

 , number of discomfort hours for overheating in o 

 , number of discomfort hours for undercooling in o 

 , total number of discomfort hours in o 

 / o 100, percentage of discomfort hours for overheating 

 o 100, percentage of discomfort hours for undercooling 
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 / o 100, percentage of discomfort hours. 

 

 

Fig. 3. The optimization running. 

 

Fig. 4. The total number of discomfort hours in function of ∆1 and ∆2. 

The computed performance indices are reported in Table 3. Comparing Case 1 and Case 2 with respect to Case 0, 
Fig. 5 and Table 3 show that the natural ventilation control logics allow significant reductions of the total thermal 
discomfort hours. The total thermal discomfort percentage moves from 32.9 % (Case 0) to 13.3 % (Case 1) and to 
8.7 % (Case 2). In particular the reduction of total discomfort hours depends from the overheating discomfort 
conditions that decreases about 65 % in Case 1 and about 81 % in Case 2 with respect to Case 0. On the other hand, 
the natural ventilation control logics do not determine variations of thermal discomfort for undercooling.  
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Table 3. Results about thermal comfort and energy needs for cooling. 

Case 

Thermal discomfort (no active system) Energy needs for cooling 
(with active system) 

Overheating Undercooling Total 

 %  %  % E (kWh) ∆% 

Case 0 262 30.2 24 2.7 286 32.9 178 - 

Case 1 91 10.4 25 2.8 116 13.3 134 -24.5 

Case 2 49 5.6 27 3.1 76 8.7 121 -32.1 

 

 

Fig. 5. Adaptive thermal comfort and energy results. 

In order to value the effectiveness of window opening control logic on the energy consumptions, the three cases 
previously examined are performed by adding an active cooling system. The cooling system is switched-on in each 
room when >26° according to the scheduled occupancy shown in Table 2. Hence, the energy E needed for 
cooling referred to Bedroom2 is reported in Table 3 and Fig. 5 for the three cases. The results show how the 
proposed passive strategy for window opening allows reducing of the energy needs, that in Case 1 are reduced of 
24.5% and in Case 2 of 32.1 % respect to Case 0. 

5. Conclusions 

This paper proposes a Building Automation (BA) strategy for the ventilation control of passive cooling in 
residential buildings situated in the Mediterranean climatic context. In particular, the objective of the paper is to 
determine a natural ventilation control strategy on the basis of the following issues: i) the thermal comfort analysis 
according to the adaptive thermal comfort theory (EN 15251-2007); ii) the optimal values of the thresholds for the 
on-off control rule to reduce the overheating discomfort also in presence of solar shading. To this aim, the paper 
proposes a co-simulation approach that uses TRNSYS and TRNFLOW for simulating the thermal building 
behaviour and a PSO algorithm implemented in MATLAB to determine the optimal temperature set point for 
window opening.  

A case study simulation, considering a residential building located in the southern Italy, shows the benefits of the 
natural ventilation strategy applied by the optimized control logic. In particular, the thermal comfort and energy 
analysis show the improvement of dwelling thermal performances with significant reduction of overheating 
discomfort hours and reductions of energy needs for cooling.  
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Future developments will concern the study of window openings control optimized for the whole dwelling, and 
combined with solar shading activation logics. Moreover, further research will focus on the ventilation control logic 
applied to hybrid systems also to minimize the energy consumption.  
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