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Abstract

Exotic hadrons made of five quarks (pentaquarks) are searchedfor in hadronic Z decays collected by the ALEPH detecto
LEP. No significant signal is observed. At 95% C.L., upper limits are set on the production ratesN of such particles and the
charge-conjugate state per Z decay:

N�(1535)+ · BR
(
�(1535)+ → pK0

S
)
< 6.2× 10−4,

N�(1862)−− · BR
(
�(1862)−− → �−π−)

< 4.5× 10−4,

N�(1862)0 · BR
(
�(1862)0 → �−π+)

< 8.9× 10−4,

N�c(3100)0 · BR
(
�c(3100)0 → D∗−p

)
< 6.3× 10−4,

N�c(3100)0 · BR
(
�c(3100)0 → D−p

)
< 31× 10−4.

 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Although quantum chromodynamics (QCD) does not a priori exclude other stable configurations of quarks a
gluons, observations had until recently revealed only very few hadronic states with quantum numbers that coul
not be explained as bound states of two or three (anti-)quarks. During 2003, however, a large body of expe
evidence was presented for the existence of hadronic states that cannot be explained in this picture.

The first observation was that of a narrow resonance at 1540±10 MeV/c2, named�+, produced in the reactio
γ n → K−�+ followed by �+ → K+n [1]. This observation was confirmed by many experiments at diffe
laboratories[2–9]. The observed masses range from 1521 to 1555 MeV/c2 with an average of about 1535 MeV/c2.
Furthermore, all experiments find a resonance width consistent with the experimental mass resolution. From K+n
scattering data, an upper limit of about 2 MeV has been set on the�+ natural width[10]. The resonance is
baryon with positive strangeness, which is inexplicablein the three-quark model, but possible in a pentaqu
interpretation (uudd̄s).

Shortly after, another exotic baryon, doubly-charged and doubly-strange (�(1862)−−), was reported by the
CERN experiment NA49[11]. Recently, the DESY experiment H1 has reported a signal for a charmed e
baryon,�c(3100), in the pD∗− channel[12]. These two observations have, however, not been confirmed by
experiments.

The observed states agree with a prediction from the chiral soliton model[13]. Alternative explanations hav
also been proposed, invoking “molecules” of various tightly-coupled quark configurations[14–16]. The production
mechanism could be quite unusual. For example, in the CLAS experiment, a strong contribution seems
from the decay of a heavy excited neutron state with a mass around 2400 MeV/c2 [5]. In order to shed more ligh
on these possibilities, it is of interest to search for pentaquark states in e+e− reactions.

In this Letter, exotic baryons are searched for in the fragmentation of quarks from four million hadronic Z decays
recorded by the ALEPH experiment during the LEP 1 operation in the years 1991 to 1995. After a short des
of the ALEPH detector in Section2 and of the overall event selection in Section3, the results of searches for narro
resonance decays in the pK,�π and pD final states are given in Sections4, 5 and 6. The negative results from
these searches are compared with positive signals for non-exotic states, such as the�(1520), the�(1530)0 and
the D∗(2010). Throughout this Letter, any reference to a hadronic system, such as pK+, implicitly includes its
charge-conjugate state,p̄K− in this case.

2. The ALEPH detector

The ALEPH detector is described in detail in Ref.[17] and its performance in Ref.[18]. Here, the performanc
of the tracking detector is of interest.

The tracking system consists of two layers of double-sided silicon vertex detector (VDET), an inner tracki
chamber (ITC) and a time projection chamber (TPC), immersed in an axial magnetic field of 1.5 T provid
superconducting solenoidal coil. The VDET single hitresolution is 12 µm at normal incidence for both therφ and
rz projections (r, φ andz are the cylindrical coordinates around the symmetry axis directed along the e− beam).
The polar angle coverage of the inner and outer layers is|cosθ | < 0.84 and|cosθ | < 0.69, respectively. The ITC
provides up to eightrφ hits at radii between 16 and 26 cm with an average resolution of 150 µm and has an a
coverage down to|cosθ | < 0.97. The TPC measures up to 21 three-dimensional points per charged particle
between 40 and 171 cm, with anrφ resolution of 170 µm, anrz resolution of 740 µm and with an angular covera
down to|cosθ | < 0.97.

Tracks are reconstructed using the TPC, ITC and VDET, with a transverse momentum resolution ofσ(1/pT ) =
6 × 10−4 ⊕ 5 × 10−3/pT (GeV/c)−1. In the following, good tracks are defined as charged-particle tracks re
structed with at least four hits in the TPC, originating from within a cylinder of length 20 cm and radius
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coaxial with the beam and centred at the nominal interaction point, and with a polar angle with respect to th
such that|cosθ | < 0.95.

Good tracks are identified as electrons, pions, protons or kaons by the ionization energy loss, dE/dx, estimated
using pulse height information from both the anode wires and the cathode pads at the TPC end-walls[19]. For the
momenta of interest in this study, this estimator yields, above 2 GeV/c, a 2σ separation between pions and kao
and a 3σ separation between pions and protons. For momenta below 1 GeV/c, most particles can be unambigous
identified.

3. Event selection and particle identification

A pure sample of hadronic Z decays is obtained by selecting events with at least six good tracks, carrying
least 10% of the centre-of-mass energy. The thrust axis is required to have an angle to the beam axis exceeding◦.
A total of 3.5 million hadronic Z decays are retained, corresponding to 87% of the totalhadronic cross section.

A particle of typei (i = π , K, p or e) can be identified by the pullRi defined by

Ri = dE/dx (measured) − dE/dx (expected for hypothesisi)

σ (expected for hypothesisi)
.

To be selected as pions, kaons or protons, the particles must fulfil the momentum-dependent criteria d
in Table 1. Among particles that originate within 2 mm of the reconstructed primary vertex, these criteria
for example, 1.3 million proton candidates (5.4 million kaon candidates) with a purity of 52% (58%) in the
momentum range and 96% (83%) in the low momentum range.

Pairs of oppositely-charged pion tracks are testedfor the hypothesis that they are decay products of a K0
S created

at the primary vertex[20]. The reconstructed proper decay time is required to exceed 10% of the K0
S lifetime. If the

χ2 of a mass-constrained fit is less than 20, the pair is selected. These criteria select 1.24 million K0
S candidates

with a purity of 93%.
Candidates for� → pπ− decays are found by associating oppositely-charged pion and proton tracks. Each�

is paired with a pion track that misses the beam axis by at least 2 mm. These pairs are tested for the hypot
they arise from the decay of a particle created at the primary vertex. The secondary vertex fit is required to yie
a χ2 smaller than 40. If this particle carries more than 2% of the beam momentum and has a reconstructe
decay time in excess of 1% of the�− lifetime, it is retained as a� candidate.

Finally, combinations of a kaon candidate with momentum exceeding 2.5 GeV/c together with one (or two
pions are tested for a common vertex. If such a vertex is found with aχ2 less than 3 (or 10) and is separated
more than 2σ from the primary vertex, the combination is tagged as a D meson candidate[21].

Table 1
Selection criteria for charged pion, kaon and proton identification

Particle Momentum (GeV/c) Rπ |RK | |Rp| |Re|
π no cut < 2.5 no cut no cut no cu

K < 0.8 > 2.0 < 2.0 no cut > 2.0
> 1.5 < −1.5 < 2.0 no cut no cut

p < 1.2 > 2.5 no cut < 2.0 > 2.0
> 2.0 < −3.0 no cut < 2.0 no cut
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4. Search for narrow resonances in the pK system

The�(1535)+ was searched for as a narrow peak in the invariant mass of combinations of a reconstru0S
and a proton track, selected as described in Section3. The selection retains 480 000 combinations (0.14 per Z decay
with a pK0

S purity of 50%. The mass distribution of the pK0
S combinations is displayed inFig. 1 and is compared

with the simulation from JETSET[22], with parameters hereof as determined in Ref.[23]. The simulation include
all octet and decuplet baryon ground states, but no other baryon resonances.

In the absence of a simulation of the�(1535)+ in Z decay, the mass resolution was deduced from w
measurements of various known resonances with total kinetic energies of the decay products in the resonance
frame (Q values) ranging from 30 to 300 MeV. For example, from the fitted Breit–Wigner width of 50.9±0.7 MeV
for the decay K∗(892) → πK0

S (Q = 255 MeV), the mass resolution was deduced to be less than 5 Me/c2

(Fig. 2a). Similarly, the resolution for�− → �π− (Q = 66 MeV) was found to be 2.8 MeV/c2 and the resolution
for φ → K+K− (Q = 32 MeV) was found to average 1.6 MeV/c2 (Fig. 2b). Since the mass resolution is a risi
function of theQ value, the average resolution for�+ → pK0

S (Q = 100 MeV) is expected to be 3–4 MeV/c2 and
is conservatively assumed to be smaller than 5 MeV/c2 in the following.

The �(1535)+ resonance was searched for in the following way. First, the data inFig. 1 were fitted by the
function

(1)f (M) = a1(M − Mthr)
a2 exp(a3M),

whereMthr is the threshold mass (here,Mthr = Mp+MK0
S
) andai are the fitted parameters. The signal was searc

for as an excess with respect to the fit result, rather than to the simulation, because of the contribution fro
known but unsimulated
∗ resonances in this mass range. An excess with respect to the fit was searched for in
20 MeV/c2-wide window sliding from 1500 to 1600 MeV/c2. (This sliding window is excluded from the fit to th

Fig. 1. Mass distribution of pK0S combinations, for the data (dots with error bars) and thesimulation (histogram). The simulated distribution
normalized to the total number of combinations in the data.
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Fig. 2. Mass distributions of (a)πK0
S and (b) K+K− combinations. The curve is a fit to the background parametrization of Eq.(1) with a

Breit–Wigner function superimposed. These measurements were used to estimate the mass resolution for the�(1535)+.

data.) The largest excess was found in the window between 1540 and 1560 MeV/c2, and amounts to 49 above
fitted background of 3240 combinations.

To evaluate the upper limit on the production of�(1535)+ in hadronic Z decays, a large number of toy exp
iments were generated according to the fitted mass distribution. A resonance with mass resolution 5 MeV/c2 and
varying amplitude was thrown in, and the excess was determined as described above. The 95% C.L. uppe
this amplitude is the value for which 5% of the toy experiments yield an excess smaller than 49, as observ
data. This upper limit is found to be an average production of 151 combinations in the mass window.

In the mass range from 1500 to 1600 MeV/c2, the efficiency to select pK0S combinations was found to b
6.3± 0.2%, the uncertainty being dominated by systematic uncertainties in the proton and K0

S selection. Once this
efficiency is folded in, the 95% C.L. upper limit on the production rate times branching ratio of the�(1535)+ and
its antiparticle per hadronic Z decay is found to be

N�(1535)+ · BR
(
�(1535)+ → pK0

S

)
< 6.2× 10−4.

The�+ → pK0
S branching ratio is expected to be 25% from Ref.[7] and isospin arguments, which yields the up

limit on the production rate of

N�(1535)+ < 0.0025.

A cross check was performed with a search for doubly-charged (pK+) and neutral (pK−) combinations. No
resonance structure is observed in the mass distribution of the doubly-charged pK combinations, shown inFig. 3a.
A smooth deviation of a few percent is seen with respect tothe simulated spectrum. This deviation is a gen
feature of the simulation which is also present in combinations of oppositely-charged tracks. The observ
to-simulation ratio inFig. 3a was therefore used to correct the simulation of neutral pK combinations, as shown
Fig. 3b.
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Fig. 3. Mass distributions of (a) pK+ and (b) pK− combinations, for the data (dots with error bars) and the simulation (histogram). In (a) th
simulation is normalized to the total number of combinations in the data. In(b) the simulation is corrected by the data-to-simulation ratio of
and normalized to the number of combinations in data with masses above 1.8 GeV/c2.

Fig. 4. Mass distribution of pK− combinations after subtraction of the simulated spectrum with a fit superimposed as explained in the tex

In the neutral pK combinations a clear resonance activity is visible in the mass range 1460 to 1800 M/c2,
with a narrow peak due to the�(1520) and a broad enhancement from many
∗ resonances. A simultaneous
to the amplitude of eight NK resonances (�(1520), 
(1480), 
(1560), 
(1580), 
(1620), 
(1660), 
(1670)
and
(1750) [24]) over the corrected simulation is shown inFig. 4. For the narrow states,�(1520) and
(1580),
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Gaussian contributions of 9 MeV/c2 width are assumed. For the rest of the resonances, Breit–Wigner s
contributions are assumed with widths of 45, 47, 50, 100, 60 and 90 MeV/c2, respectively.

The fit results in a�(1520) contribution of 2874± 320 combinations. The systematic uncertainty on this re
is estimated to be 270 combinations from varying the fit function and the normalization of the simulation.

With an average pK− selection efficiency of 9.7±0.9% (obtained from simulated kaons and protons in the m
range from 1500 to 1600 MeV/c2) and a�(1520) → pK− branching fraction of 22.5%[24], the production rate
per hadronic Z decay of�(1520) is found to be

N�(1520) = 0.033± 0.004± 0.003,

in agreement with earlier measurements from OPAL[25] and DELPHI[26]. The resulting 95% C.L. upper lim
on the ratio of the�+ to the�(1520) production in Z decays is

N�(1535)+ · BR(�(1535)+ → pK0
S)

N�(1520)
< 0.027,

if the �(1520) production is fixed to the average value of the three measurements at LEP, i.e., 0.024± 0.002 per
hadronic Z decay.

Subsets of the selected pK0
S sample were also considered. These subsets include combinations with high

proton candidates at momenta below 1 GeV/c, combinations with decay angles exceeding 37◦ with respect to the
line of flight, combinations which, combined further with a K−, could form an excited neutron state with a ma
around 2400 MeV/c2 and inclusive combinations in light quark decays of the Z. In none of these subsets
significant�(1535)+ signal observed.

5. Search for narrow resonances in the �π system

A sample of�− candidates was reconstructed as explained in Section3. A subsample of 3450 candidates w
selected within±7 MeV/c2 of the�− mass, as indicated by the vertical arrows in the�π mass distribution show
in Fig. 5. This sample has a purity of 76%. Each� candidate was combined with a charged pion to produce
mass spectra of the doubly-charged and neutral combinations ofFig. 6.

The mass spectrum of the doubly-charged combinations can be fitted to a function linearly decreasing w
in the range from 1620 to 2100 MeV/c2. The mass resolution is estimated to be 6 MeV/c2 from a simulation of
the �(1530)0. The narrow resonance observed by NA49[11] at 1862 MeV/c2 is searched for in a 25 MeV/c2-
wide mass window around this mass value as explained in Section4. The number of�−π− combinations in this
window amounts to 8± 15 in excess of the linear background fit. The 95% C.L. upper limit on a signal fr
narrow resonance is evaluated to be 24 combinations in the window.

In the neutral channel (�−π+), the data are described by Eq.(1) with a Breit–Wigner superimposed, centr
at 1530 MeV/c2. An excess of 32± 16 is found in the same window, leading to an upper limit of 47 exc
combinations. With a selection efficiency of 1.4 ± 0.1% (1.5± 0.1%) for �−π− (�−π+) pairs simulated in the
same mass range, 95% C.L. upper limits on the�(1862) production rate in hadronic Z decays can be set at

N�(1862)−− · BR
(
�(1862)−− → �−π−)

< 4.5× 10−4,

N�(1862)0 · BR
(
�(1862)0 → �−π+)

< 8.9× 10−4.

In Fig. 6b, a clear�(1530)0 peak is observed. A signal of 322± 33 combinations is counted in excess of the fit
background. With a selection efficiency of 1.56± 0.14% and an expected branching fraction into�−π+ of 67%,
the production rate per hadronic Z decay of�(1530)0 is found to be

N�(1530)0 = (77± 8± 6) × 10−4,
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ent

. The
Fig. 5. Mass distribution of�π− (dots) and�π+ (shaded histogram) combinations in the data. The curve is a fit of the�π− mass distribution
to Eq.(1) with a Gaussian function superimposed. The broad enhancement at low mass in the�π− channel is due to a non-Gaussian compon
in the mass resolution.

Fig. 6. Mass distribution of (a)�−π− and (b)�−π+ combinations, for the data (dots with error bars) and the simulation (histogram)
curves are fits to the data as explained in the text.



ALEPH Collaboration / Physics Letters B 599 (2004) 1–16 13

ent

n

d
ch

ual

on
in good agreement with published ALEPH[23] and OPAL results[25], whereas an earlier DELPHI measurem
[27] finds a significantly lower production rate. The world average value of the�(1530)0 production rate,(55±
5) × 10−4 allows 95% C.L. upper limits to be derived on the ratios:

N
(
�(1862)−− → �−π−)

/N
(
�(1530)0) < 0.082,

N
(
�(1862)0 → �−π+)

/N
(
�(1530)0) < 0.16.

6. Search for narrow resonances in the pD system

High-purity samples of D0 and D∗+ and a 50% pure sample of D+ were selected as described in Sectio3
and in greater detail in Ref.[21]. The corresponding mass distributions are shown inFig. 7 with vertical arrows
indicating the selected mass windows. On top of these selection criteria, D0 and D+ candidates were require
to have momenta in excess of 7 and 14 GeV/c, respectively. Each D(∗) candidate was paired in turn with ea
proton candidate in the event. The mass distributions of the pD∗ and pD combinations are shown inFigs. 8 and 9,
respectively, in the mass range from 2.9 to 3.3 GeV/c2. As suggested in a previous ALEPH publication[28], the
pD invariant mass was determined as

mpD = mmeas
pD − mmeas

D + mPDG
D ,

because the mass difference between the pD and the D systems is more accurately measured than the two individ
masses. The resulting pD mass resolution was found to be about 3 MeV/c2. The�c(3100)0 signal observed by
H1 [12] was located to within± 3 MeV/c2. Its Gaussianσ was determined to be 12± 3 MeV/c2 (consistent

Fig. 7. Selection of (a) D0, (b) D∗ and (c) D+ candidates. The dots are data and the histogram issimulation. The arrows indicate the selecti
cuts.
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Fig. 8. Invariant mass distribution of D∗p combinations, for the data (dots with error bars) and the simulation (histogram).

with the H1 mass resolution). A window of width 40 MeV/c2 should therefore be adequate to cover any rela
enhancement.

The H1 experiment observed a signal in the pD∗− channel. In this channel, only three combinations are obse
with an invariant mass between 3080 and 3120 MeV/c2, with 5.5±0.5 combinations expected from a fit of Eq.(1)
to the simulated background. In the pD− channel, which was not covered by H1, the mass window is slid f
threshold to 3120 MeV/c2. The most significant excess occurs in the mass window from 3080 to 3120 Me/c2

where 21 combinations are observed, with 17.5± 1.0 expected from the fit to the simulated background.
Channels with a charge different from that of the H1 signal are also shown. InFig. 9c, an enhancement in the da

is observed at 3140 MeV/c2 in a 20 MeV/c2-wide mass interval. In this interval, 24 combinations are obse
with 10.2 ± 0.5 expected from a fit of the simulated background.The probability for accidentally observing a
enhancement of such significance inFig. 9 is 5%.

The uncertainties in both the observed and expected number of combinations are dominated by limited s
The upper limit on the number of combinations coming from a new, narrow resonance in the mass window
interest is found by the methods described in Section4.

With a reconstruction efficiency of 0.046± 0.004 (0.011± 0.001) and a visible branching ratio of 0.0259±
0.0006 (0.091± 0.006) for the pD∗− (pD−) channel, upper limits on the�c(3100) production rate are set at

N�c(3100)0 · BR
(
�c(3100)0 → D∗−p

)
< 6.3× 10−4,

N�c(3100)0 · BR
(
�c(3100)0 → D−p

)
< 31× 10−4.

The 95% C.L. upper limit on the ratio of�c(3100)0 to the D∗ and D production in hadronic Z decays is

N�c(3100)0

ND∗−
· BR

(
�c(3100)0 → D∗−p

)
< 0.0031,

N�c(3100)0

ND−
· BR

(
�c(3100)0 → D−p

)
< 0.018,

if the D∗ and D meson production is fixed to the world averages[24].
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Fig. 9. Invariant mass distributions of Dp combinations, forthe data (dots with error bars) and the simulation (histogram).

7. Conclusions

No evidence for exotic narrow baryon resonances has been found in the e+e− → Z → qq̄ reactions collected b
ALEPH during the LEP 1 running period. Upper limits at the 95% confidence level have been set on the pro
rates per hadronic Z decay of the resonances reported by other experiments:

N�(1535)+ · BR
(
�(1535)+ → pK0

S

)
< 6.2× 10−4,

N�(1862)−− · BR
(
�−−

1862→ �−π−)
< 4.5× 10−4,

N�(1862)0 · BR
(
�0

1862→ �−π+)
< 8.9× 10−4,

N�c(3100)0 · BR
(
�c(3100)0 → D∗−p

)
< 6.3× 10−4,

N�c(3100)0 · BR
(
�c(3100)0 → D−p

)
< 31× 10−4.

The ratios to the production rates of the related non-exotic states are also bounded from above at
confidence level by

N�(1535)+ · BR(�(1535)+ → pK0
S)

N�(1520)
< 0.027,
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e
g

N�(1862)−−

N�(1530)0
· BR

(
�−−

1862→ �−π−)
< 0.082,

N�(1862)0

N�(1530)0
· BR

(
�0

1862→ �−π+)
< 0.16,

N�c(3100)0

ND∗−
· BR

(
�c(3100)0 → D∗−p

)
< 0.0031,

N�c(3100)0

ND−
· BR

(
�c(3100)0 → D−p

)
< 0.018.

The charge-conjugate states are included in these limits.
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