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[1] We develop a pulse-based representation of temporal rainfall with multifractal
properties in the small-scale limit. The representation combines a traditional model for the
exterior process at the synoptic scale with a novel hierarchical pulse model for the event
interiors. For validation we apply the model to a temporal rainfall record from Florence,
Italy. Although the model has only six parameters (four for the exterior process and two
for the event interiors), it accurately reproduces a wide range of empirical statistics,
including the distribution of dry and wet periods, the distribution of rainfall intensity up to
extreme fractiles, the spectral density, the moment scaling function K(q), and the
distribution of the partition coefficients for rainfall disaggregation. The model also
reproduces observed deviations of physical rainfall from perfect scaling/multiscaling
behavior. INDEX TERMS: 1854 Hydrology: Precipitation (3354); 1869 Hydrology: Stochastic processes;

1833 Hydrology: Hydroclimatology; KEYWORDS: rainfall, scaling, multifractal

1. Introduction

[2] Like other atmospheric phenomena (turbulence,
clouds, etc.), rainfall has long been recognized to have a
basic pulse structure. This structure has been exploited by
so-called LeCam models [LeCam, 1961], which represent
rainfall through the superposition of pulses with clustering
in space and time. For an early review of these models, see
Waymire and Gupta [1981a, 1981b, 1981c]. More recent
developments include those of Smith and Karr [1985],
Sivapalan and Wood [1987], Rodriguez-Iturbe et al.
[1987], and Veneziano and Villani [1996]. LeCam models
have a nested structure, which reflects the physical organ-
ization of rainfall into rain bands, mesoscale precipitation
areas, convective cells, etc., but they are not scale invariant.
[3] In recent years, a new class of rainfall models has

been developed, based on an observed scale invariance
property called multifractality. This property is largely
inherited from the hierarchical structure of atmospheric
turbulence. Multifractality implies that the rainfall process
looks statistically the same at small and large scales, except
for simple transformations. The literature on multifractal
scaling of rainfall has grown rapidly in the past decade.
Important contributions include those by Schertzer and
Lovejoy [1987], Gupta and Waymire [1990, 1993], Tessier
et al. [1993], Ladoy et al. [1993], Over and Gupta [1994,
1996], Lovejoy and Schertzer [1995], Svensson et al.
[1996], Perica and Foufoula-Georgiou [1996], Marsan et
al. [1996], Menabde et al. [1997], Olsson [1995, 1998],
Harris et al. [1998], Schmitt et al. [1998], Venugopal et al.
[1999], Deidda et al. [1999], Menabde and Sivapalan
[2000], and Deidda [2000].

[4] With the exception of the models of Deidda et al.
[1999] and Deidda [2000], the proposed multifractal repre-
sentations of rainfall use discrete or continuous multiplicative
cascades or wavelet decompositions and are not pulse-based.
Wavelet models [e.g., Perica and Foufoula-Georgiou, 1996]
are not necessarily positive and therefore are not appealing
for rainfall. The models of Deidda et al. [1999] and Deidda
[2000], which use nonnegative pulses, are themselves not
very satisfactory due to the geometrical arrangement of the
pulses, which is similar to the regular pattern of cells in
discrete cascades. The boundaries between pulses are clearly
visible in realizations from these processes. Moreover, the
regular arrangement of the pulses makes the processes non-
stationary.
[5] One problem with scaling approaches to temporal

rainfall is that multifractality applies over a limited range of
scales, roughly between one hour and a few days. This is for
example evident from the results of spectral analysis [Frae-
drich and Larnder, 1993; Olsson, 1995; Olsson et al.,
1993]. If interest is over a wider range of scales, then
modifications to standard multifractal models must be made
[Menabde et al., 1997, Schmitt et al., 1998]. One aspect of
lack of exact scaling is that the structure of the rainfall
support (the wet/dry process) is nonfractal and inconsistent
with so-called beta models. This inconsistency has been
documented by Schmitt et al. [1998] through a detailed
analysis of the rainfall record from Uccle, Belgium.
[6] In summary, no existing representation of rainfall (a)

satisfactorily combines the pulse structure and the scaling
properties that are separately emphasized by the LeCam and
multifractal models, or (b) explains the observed deviations
of physical rainfall from perfect scaling. The model proposed
here attempts to fill these gaps. We distinguish between the
arrival, duration and average intensity of synoptic storms and
the variation of rainfall intensity during each synoptic event.
Following a standard notation in rainfall modeling, we refer

Copyright 2002 by the American Geophysical Union.
0043-1397/02/2001WR000522

13 - 1

WATER RESOURCES RESEARCH, VOL. 38, NO. 8, 1138, 10.1029/2001WR000522, 2002



to the former as the ‘‘exterior process’’ and to the latter as the
‘‘interior process.’’ We use the classical representation of the
exterior process as an alternating renewal process with
independent mean rainfall intensities for different rain-
storms, whereas for the interior process we use a pulse
representation of a new type with random number, location
and intensity of the pulses and multifractal properties at small
scales. We call this an Iterated Random Pulse (IRP) process,
due to the hierarchical clustering of the pulse locations; see
Veneziano et al. [2002] and section 2.2. Pulses at different
scales have amplitudes with cascade-like dependence. The
IRP process produces a random pattern of wet and dry
periods inside the synoptic events. This small-scale lacunar-
ity is nonfractal and, as we shall see, is of key importance for
a realistic representation of rainfall.
[7] A different class of multifractal pulse processes, based

on the idea of exponentiated fractal sums of pulses (EFSP),
has been introduced by Veneziano et al. [1995] and Saucier
[1996]. Both IRP and EFSP processes are stationary and
‘‘gridless’’ in that the pulses are not constrained to discrete
locations. However, there are important differences between
the two schemes. One is that IRP processes have clustered
pulses with a hierarchical organization (like in the LeCam
models), whereas the pulses of EFSP have Poisson loca-
tions. If rainfall is viewed as a discrete sequence of storm
events, then IRP processes provide a more natural repre-
sentation of the storm interiors than EFSP processes do. A
second difference is that, in the subclass of IRP models used
here, the rainfall process is made exclusively of pulses at the
highest resolution, whereas in the EFSP model pulses of all
sizes coexist. A third important difference is that, at loca-
tions with no pulse coverage, IRP processes are zero,
whereas EFSP processes have nonzero (unit) value. The
latter property of EFSP models is not appealing for rainfall.
[8] The proposed IRP-based model has only six param-

eters, four of which describe the exterior process and two
control the lacunarity and small-scale multifractality of the
interior process. In spite of its parsimonious parameter-
ization, the model reproduces a wide range of observed
rainfall statistics including the spectrum, the duration of wet
and dry periods, the near-fractal characteristics of the rain
support, the distribution of rainfall intensities for different
aggregation periods up to extreme fractiles, the moment-
scaling function K(q), and the distribution of the partition
coefficients. The partition coefficients are factors used in the
disaggregation of rainfall time series [Harris et al., 1998;
Olsson, 1998]. In addition, the model reproduces several
observed deviations of physical rainfall and its support from
exact fractal/multifractal behavior.
[9] In section 2 we review the construction and properties

of IRP processes and describe our rainfall model. In section
3 we fit the model to a high-resolution rainfall time series
from Florence, Italy, and compare statistics of the real time
series that are not used for estimation with those of
simulations from the fitted model. We also discuss data
requirements and alternative parameter estimation strat-
egies. In the concluding section we mention possible model
refinements and extensions.

2. Exterior and Interior Rainfall Models

[10] As it is typical in event-based rainfall representa-
tions, we distinguish between an exterior model and an

interior model [Eagleson, 1972]. The exterior model is a
coarse representation of rainfall, which characterizes the
arrival, duration and average intensity of rainfall events at
the synoptic scale. The interior model describes the detailed
fluctuations of rainfall intensity at subsynoptic scales. Next
we describe these two components of our model.

2.1. Exterior Model

[11] We use an exterior model of conventional renewal
type, consisting of an alternating sequence of dry and wet
periods with independent durations. We take the distribution
of the wet periods to be exponential and that of the dry
periods to be Weibull. The average rainfall intensities in
different wet periods are independent and identically dis-
tributed variables, with exponential distribution. These dis-
tributions have been previously used by Eagleson [1972]
and Molini et al. [2000], among others. We shall further
justify the choice of the Weibull distribution in section 3,
using the Florence rainfall record. This very simple alter-
nating renewal process with independent mean event inten-
sities is incapable of representing seasonal effects and other
long-term dependencies, but as we shall show in section 3,
it is sufficient if the objective is to reproduce rainfall
extremes and many properties at subsynoptic scales. Also
Schmitt et al. [1998] used an alternating renewal process for
the dry and wet periods to model temporal rainfall at Uccle,
Belgium. However, these authors used the empirical distri-
butions of the dry and wet durations and therefore assumed
that the renewal model applies at all scales, including in the
interior of the synoptic events. In our case the exterior
model is parametric and the lacunarity of rainfall within the
precipitation events is modeled separately, as explained
below. Our exterior model is characterized by four param-
eters: the mean duration of the wet periods mtwet , the mean
value mtdry and exponent k of the Weibull distribution of the
dry periods, and the mean value mI of the average rainfall
intensity during the synoptic events.

2.2. Interior Model

[12] The most innovative aspect of our work is the way
we represent rainfall during the rainy periods (interior
model). For this purpose we use an iterated random pulse
(IRP) process [Veneziano et al., 2002], which generalizes
the representation of Deidda et al. [1999]. The main feature
of the IRP model is that rainfall is represented as the
superposition of pulses with a hierarchically nested structure
of temporal occurrences and a cascade-like dependence of
the intensities. More specifically, the IRP representation of
each synoptic event results from the following recursive
procedure.
1. At level 0, rainfall intensity during the synoptic event

is given by the associated pulse in the exterior process. We
denote this pulse by h(t � t0), where t0 is a location
parameter.
2. At level 1, the level-0 pulse is replaced by a random

number N of offspring pulses, contracted by a factor r > 1
relative to the parent pulse, with random temporal offsets
relative to t0 and randomly scaled intensities. This
replacement has the form

h t� t0ð Þ )
XN
i¼1

hi h r t� tið Þð Þ ð1Þ
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where N has Poisson distribution with mean value r (the
same as the contraction factor), the locations t1, . . ., tN are
independent and identically distributed random variables
with a probability density function ft(t) = h(t�t0)/

R
h(t)dt

obtained by scaling the parent pulse at level 0, and the
intensity factors hi are independent copies of a nonnegative
random variable h with mean value 1. Due to the form of the
density function ft and the fact that E[N] = r and E[h] = 1,
the replacement in equation (1) preserves in approximation
the mean temporal evolution of rainfall intensity inside the
synoptic event. Equation (1) is applied independently to
each pulse at level 0.
3. At subsequent levels j = 2, 3, . . ., each pulse at level

j � 1 is replaced by a Poisson cluster of pulses at level j,
using a similar procedure. This means that equation (1) is
used with t0 and h(t � t0) replaced by the location and
intensity of a ( j-1)-level pulse.
[13] This process of replacing each pulse with clusters of

smaller pulses continues, ideally to infinity. At any finite
level j, the rainfall intensity inside a synoptic event is the
sum of a random number Nj of level-j pulses. The mean
value of Nj is E[Nj] = r j, the duration of the level-j pulses
equals the duration of the parent pulse at level 0 divided by
r j, and the amplitudes of the level-j pulses are obtained as
the product of the amplitude of the synoptic pulse times j
independent copies of the random variable h. It follows
from this construction that the locations and amplitudes of
the pulses are mutually dependent variables. Figure 1 shows
an example realization of the IRP process for a 1 month

period that includes three synoptic events. The plot at the
top is the exterior process (in this case a series of rectan-
gular pulses that represent the average shape and intensity
of the synoptic events). The other two plots show the
rainfall intensity generated by the interior IRP process at
resolution levels j = 2 and j = 10. As the resolution level
increases, the support of rainfall becomes more lacunar and
the average intensity during the rainy intervals increases, in
such a way that the mean rainfall volume for each synoptic
event remains constant (notice that the vertical scale in
Figure 1 varies with j).
[14] The IRP construction has clear analogies with multi-

plicative cascade models and with the pulse process of
Deidda et al. [1999]. In particular, the parameter r corre-
sponds to the multiplicity of the cascade and the random
variable h is analogous to the cascade generator. However,
there are also important differences. Contrary to previous
models, each pulse of the IRP process has a random number
of offspring pulses, which are randomly located relative to
their parent. This construction produces hierarchical cluster-
ing of the pulses inside the synoptic events, manifested in
bursts of high precipitation intensity separated by dry
intervals; see Figure 1. As previously noted, the lacunarity
within the synoptic events increases as the level j increases.
One can show that, in the limit as j ! 1, the probability
that it rains at a generic point in time vanishes and the
expected intensity when it rains diverges, in such a way that
the mean rainfall intensity remains constant nonzero [Ven-
eziano et al., 2002]. These features are absent from the

Figure 1. Illustration of the IRP model at different levels of resolution j.
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models of Deidda et al. [1999] and Schmitt et al. [1998]. In
section 3, we shall show that the lacunarity of the IRP
process matches that of the rainfall record in Florence, Italy.
Another result obtained by Veneziano et al. [2002] is that,
for j ! 1 and at small scales, IRP processes have the same
multifractal properties as discrete cascades with multiplicity
r and generator h; in particular, their moment scaling
function K(q) is given by K(q) = logrE[h

q].
[15] In section 3, we shall assume that the distribution of

h is lognormal. In this case the interior process has just
two parameters, r and the so-called codimension C1 =
0.5logr(E[h

2]).

3. Parameter Estimation and Model Validation

[16] Next we show how the exterior and interior parame-
ters are estimated through an application to the rainfall record
from the Osservatorio Ximeniano in Florence, Italy [Becchi
and Castelli, 1989]. The record has a temporal resolution of
5 min and covers a period of 24 years from 1962 to 1985. The
tipping bucket gage used for measuring precipitation has a
mechanical tip event counter that records the time of each 0.2
mm of rainfall depth. The instrument cannot resolve very low
rates or determine the exact beginning and ending times of
rainfall events. For these reasons and in consultation with the

data preparers (F. Castelli, personal communication, 2000),
we aggregated the original 5 min data into 20 min intervals.
The gage resolution of 0.2 mmmakes it impossible to resolve
rainfall intensities below 0.6 mm/h (1 bucket tip in 20 min).
Lower rainfall values are present in the data due to a manual
interpolation operation applied to the tip counts prior to
digitization; see Becchi and Castelli [1989]. We considered
these low rain rates in the wet-dry statistics but ignored them
as numerically unreliable when analyzing the marginal
distribution of rainfall intensity.
[17] An accurate representation of rainfall should of course

consider seasonal variations, but for simplicity we present
only results for the entire annual series. We have found that
the performance of the model is virtually the same when the
record is broken down into seasons and the parameters are
estimated separately for each season. Figure 2 shows a
1 month segment from the Florence record and compares it
with a similar period from an IRP simulation with parameters
estimated as explained below. The two processes are visually
similar both in the fluctuations of rainfall intensity and in the
pattern of on-off periods. To validate the model, we compare
various actual and model-simulation statistics that were not
used for parameter estimation.
[18] In discussing the parameter fitting procedure and

present model validation results, we divide the character-

Figure 2. Comparison of 1 month segment of the Florence record with a similar segment from an IRP
simulation.
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istics of temporal rainfall into two groups and separately
deal with each group in sections 3.1 and 3.2. The first group
of statistics refers to the alternation of wet and dry periods
(distribution of dry and wet durations, box-counting proper-
ties of the rainfall support, on/off component of the partition
coefficients). The second group includes statistics that
reflect also the rainfall intensity during the wet periods
(spectral density of the process, marginal distribution of the
average intensity in intervals of given duration, IDF curves,
moment-scaling function K(q) of multifractal analysis, and
intensity component of the partition coefficients). For
parameter estimation, we select a set of statistics with the
criteria that each statistic be robust and sensitive to one
parameter. In this way we effectively decouple the estima-
tion of different parameters.

3.1. On/off Process of Temporal Rainfall

[19] The model parameters that affect the on/off proper-
ties of rainfall are the mean durations of the wet and dry
periods, mtwet and mtdry , and the exponent k of the Weibull
distribution for the dry periods. A fourth parameter is the
multiplicity r of the interior IRP process.
[20] The empirical distributions of the duration of rainy

periods for the Florence record and a synthetic 10 year time
series generated from the IRP process are compared in
Figure 3. In order to aid the visual assessment of whether
the distributions are exponential or hyperbolic, the proba-
bility densities are shown in both log-log and semi-log scale
(the latter in the inset). The model parameter to which the
distribution is most sensitive is the mean duration of the

synoptic events, mtwet , which in Figure 3 has been set to 25
hours. The effect of mtwet is however indirect, as the
duration of the wet periods is strongly influenced by the
lacunarity of the IRP process at subsynoptic scales. For
comparison, Figure 3 shows as a dashed line the probability
density of the wet duration for the exterior process (the
exponential distribution with a mean value of 25 hours). It is
clear that the small-scale lacunarity of the IRP process is
essential for the correct reproduction of the distribution of
wet durations. The estimate mtwet ¼ 25 hours has been
obtained by repeating the analysis of Figure 3 for different
mtwet and then selecting the value that from visual inspection
best reproduces the empirical distribution for Florence.
[21] A similar comparison for the dry periods is made in

Figure 4. In this case the model results depend on the
distribution of the dry periods between synoptic events,
which is assumed to be Weibull, with mean value mtdry
and shape parameter k. In principle, one should find the
values of mtwet and k through repeated simulation and
comparison with the Florence statistics, as we have done
in Figure 3 for mtwet. However, a simpler approach is made
possible here by the fact that, in the upper tail and except for
a multiplicative factor, the distribution of the dry periods in
the exterior process is nearly the same as that in the complete
model. Therefore, mtdry and k can be obtained through direct
fit to the upper tail of the dry distribution for Florence (the
Weibull distribution itself was selected based on the upper
tail of the distribution for Florence shown in Figure 4). The
model simulations in Figure 4 are for mtdry ¼ 80 hours and
k = 0.62. These are maximum likelihood estimates using the

Figure 3. Comparison of the distribution of wet durations for Florence, the exterior model, and the
complete IRP process. In the exterior process the wet duration has exponential distribution with mean
value mtwet ¼ 25 hours.

VENEZIANO AND IACOBELLIS: MULTISCALING PULSE REPRESENTATION 13 - 5



Figure 4. Comparison of the distribution of dry durations for Florence, the exterior model, and the
complete IRP process. In the exterior process the dry duration has Weibull distribution with mean value
mtdry = 80 hours and exponent k = 0.62. The straight line has slope 1 + Ds, where Ds is the fractal
dimension estimated from Figure 5.

Figure 5. Box-counting analysis of the wet support for Florence, the exterior process, and the complete
IRP process. For the complete process, different values of the multiplicity parameter r are used.
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dry periods with duration above 30 hours in the Florence
record. The fact that the model reproduces very well the
whole distribution for Florence validates the present choice
of a Weibull distribution type and our parameter estimation
procedure. The log likelihood for t > tmin in terms of the
usual (a, k) parameterization is

L a; k; tminð Þ ¼
X

ti>tmin

log
e�atk

i � e�a tiþ�tð Þk

1� e�atk
min

" #
ð2Þ

where �t is the discretization interval. The function in
Equation (2) has been maximized with respect to a and k
for�t = 1/3 h tmin = 30 h and then mtdry has been calculated
from

mtdry ¼ a
1
k� 1þ 1

k

� �
ð3Þ

[22] Several authors, for example Schmitt et al. [1998],
have observed that the number of wet (i.e., not completely
dry) intervals of duration t, Nwet(t), follows in approxima-

tion a power law for small t;NwetðtÞ / t�Ds , indicating that
at small scales the support of temporal rainfall is fractal,
with a fractal dimension Ds < 1. In reality, one observes
deviations from perfect fractal behavior in the sense that the
rainfall support becomes increasingly compact at scales
below a few hours. These characteristics are evident in
Figure 5, which compares statistics from Florence and
simulations of the exterior and complete model. For the
complete model, results are shown for different values of
the multiplicity parameter r. Although the macroscopic
behavior of Nwet(t) is already captured by the exterior
model, a good fit to the Florence statistics is obtained only
after consideration of the breakup of the rain support inside
the synoptic events. The closest fit is obtained for r = 2,
which is the value we have used in all the IRP simulations.
Interestingly, the IRP model reproduces well not only the
first-order fractal behavior (with Ds around 0.5, which is
close to the value 0.55 reported by Schmitt et al. [1998] for
Uccle), but also the curvature of the Nwet(t) plot for
Florence at small t. The fractal dimension Ds is reflected

Figure 6. Comparison of the partition coefficients P01, P10, and Pxx for Florence and the complete IRP
model. All statistics refer to interval durations T between 20 min and 85.33 hours. The interval classes
correspond to those of Olsson [1998], and ‘‘above’’ and ‘‘below’’ refer to the mean precipitation intensity
being above or below the median value, respectively.
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also in the distribution of the dry periods tdry: as Schmitt
et al. [1998] have shown, for small durations the probability
density of tdry should follow a power law with exponent
�(1 + Ds); see Figure 4.
[23] The last on/off statistic we consider is the distribu-

tion of the partition coefficients, which are used to disag-
gregate rainfall volumes from long to short time intervals
[Olsson, 1998; Olsson and Berndtsson, 1998; Harris et al.,
1998]. For this purpose, it is typical to use a binary
disaggregation scheme in which the rainfall volume V > 0
in a time interval D of duration T is decomposed into a
rainfall volume V1 in the first half interval and a volume
V2 = V � V1 in the second half interval. In order to obtain
V1 and V2 from V, one must first specify the random on/off
pattern of rainfall in the two subintervals. This is done
through the probability P10 that only the first half interval is
rainy (hence V1 = Vand V2 = 0) and the probability P01 that
only the second half interval is rainy (hence V2 = V and
V1 = 0). The complement Pxx = 1 � P10 � P01 is the
probability that both subintervals are rainy. In this case one
must further give the distribution of W1 = V1/V. Olsson
[1998] has shown that both the probabilities (P10, P01, Pxx)
and the distribution of W1 depend strongly on the mean
intensity I� = V/T and on whether D is a starting, ending,
enclosed, or isolated interval. This classification is based
on the dry/wet nature of the intervals of duration T that
immediately precede and follow D.
1. If the preceding interval is dry and the following

interval is wet, then D is a starting interval.
2. If the preceding interval is wet and the following

interval is dry, then D is an ending interval.

3. If both the preceding and following intervals are wet,
then D is an enclosed interval.
4. If both the preceding and following intervals are dry,

then D is an isolated interval.
[24] Here we consider how well the IRP model reprodu-

ces the probabilities (P10, P01, Pxx) for Florence. The
distribution of W1 has to do with rainfall intensity and will
be considered later in section 3.2. The probabilities (P10,
P01, Pxx) vary continuously with the average intensity I�, but
here we follow Olsson [1998] and evaluate these probabil-
ities only for I� above or below the median value. Statistics
from the Florence record and a 10 year IRP simulation are
compared in Figure 6. The histograms refer to aggregations
over periods of duration between 20 min and 85.33 hours.
The agreement is very good for all the intensity and interval
categories.

3.2. Rainfall Intensity

[25] Next we consider statistics related to precipitation
intensity. In the model, rainfall intensity depends mainly on
the distribution of the intensity of the synoptic events and
the parameter C1 of the interior IRP process. The synoptic
events have been assumed to have exponentially distributed
amplitudes [Eagleson, 1972], with mean value mI chosen to
reproduce the average rainfall intensity over the entire
Florence record. Hence mI has been found from

mI ¼ R
mtwet þmtdry

mtwet
ð4Þ

where R is the mean annual rainfall intensity over the entire
record.

Figure 7. Comparison of the moment scaling functions K(q) for Florence and the complete IRP process
for different values of C1. The dashed line is the theoretical function K(q) of the IRP process at very small
scales.
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Figure 8. Comparison of the probability density function of the average rainfall intensity in 20-min
intervals for Florence, the exterior process, and the interior process. The values for Florence are reliable
only for intensities above 0.6 mm/h (thick circles).

Figure 9. Comparison of fractiles of the average intensity inside periods of different duration t,
conditional on the intensity exceeding 0.6 mm/h. The numbers on the right are the nonexceedance
probabilities.
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[26] The parameter C1 controls the multifractal properties
of rainfall at small scales. Hence we have estimated C1 from
the moment scaling function K(q), which is defined such
that

E Iqt
� �


t�K qð Þ ð5Þ

where It is the average intensity in an interval of duration
t. Figure 7 shows the functions K(q) for Florence and for
simulations of the IRP process, the latter using different
values of C1. In all cases K(q) was obtained through least
squares regression on the empirical moments of It for t in
the range from 20 min to about 85 hours (3.5 days). A
close fit is obtained for C1 = 0.1. This value of C1 has
been used in all the model simulations. An interesting
feature of Figure 7 is the dramatic difference between the
empirical K(q) function in the above range of scales and
the theoretical K(q) function of the IRP process at very
small scales. The latter is given by K(q) = 0.1(q2 � q) and
is shown in Figure 7 as a dashed line. The deviation of the
symbols from this theoretical function is due to the quasi-
fractal characteristics of the rainfall support in the range of
scales (20 min to 3.5 days) used to estimate K(q). This is a

confirmation of the observation in the Introduction that
rainfall has multifractal properties over only a limited
range of scales.
[27] To validate the model, Figure 8 compares the mar-

ginal distribution of the average intensity I20min for the fitted
model and for the Florence record. While the distributions
for the exterior process and the complete IRP process are
extremely different, the latter is very close to the distribution
for Florence for I > 0.6 mm/h (thick circles). The threshold
of 0.6 mm/h corresponds to the resolution of the rain gage;
hence discrepancies at lower intensity levels (thin circles)
are to be expected.
[28] A broader comparison is shown in Figure 9. In this

case we have calculated fractiles of the conditional distri-
bution of [ItjIt > 0.6 mm/h] for selected values of t between
20 min and about 2 days. The agreement between the
fractiles for Florence and the IRP process is very good up
to extreme values. This is a significant result, because the
high fractiles are related to the values of the intensity-
duration-frequency curves and to rainfall intensities com-
monly used in engineering practice. Notice that having
estimated the parameter C1 from the empirical moments
does not prevent one from using the marginal distribution of

Figure 10. Comparison of the distribution of the partition factor W1 for Florence and the complete IRP
process. The interval and intensity classification is the same as in Figure 6.
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It as a validation statistic, because C1 controls the scaling of
the moments with the aggregation interval t, not their
absolute values.
[29] Next, we complete the analysis of the partition

coefficients started in section 3.1 by comparing the empiri-
cal distributions of W1 for Florence and the IRP process.
The results are shown in Figure 10, separately for each class
of intervals (starting, ending, enclosed, or isolated) and for
average rainfall intensities above or below the median
value. As one would expect, the distributions for intervals
of the starting and ending types are approximately triangular
and specularly symmetric, with maximum probability den-
sity near 0 and 1, respectively. For the enclosed and isolated
intervals the distribution is symmetrical, typically with a
mode near 0.5. In all cases the correspondence between the
observed and model distributions is very good.
[30] As a final comparison, Figure 11 shows the spectral

density functions of the real and simulated series. While at
low frequencies the behavior of the spectrum is already
captured by the exterior process, a good match of the whole
spectrum for Florence is obtained only with the complete
IRP model. The slope of the straight line is 1 � K(2) = 0.45.
This is the theoretical slope of the spectral density of a
multifractal process with the K(q) function for Florence in
Figure 7.

3.3. Comments on Parameter Estimation and Data
Requirements

[31] Of the six parameters of the model, the mean rainfall
intensity during synoptic events, mI, and the parameters

mtdry and k of the Weibull distribution of dry duration
between such events can be accurately estimated from very
few years of rainfall data. These parameters do not neces-
sitate high sampling rates. Since mtdry and k are found from
the upper tail of the distribution of dry durations, coarse
series of daily rainfall are adequate; see Iacobellis et al.
[2001].
[32] The parameter C1 has been estimated from the

empirical moment scaling function K(q) using average
rainfall intensities in time intervals varying from 20 min
to a few days. Also this function is well constrained by a few
years of rainfall records. However, an attractive alternative
is to estimate C1 with the objective of best reproducing
rainfall extremes, as given by intensity-duration-frequency
(IDF) curves. Reasons for doing so are the following: (1) As
is well known [e.g., Lovejoy and Schertzer, 1995], in
multifractal processes, there is a direct relation between
extremes and the K(q) function. (2) The accurate reproduc-
tion of extremes is one of the critical features of a rainfall
model. (3) At many locations, extreme statistics in the form
of IDF curves are available, whereas reliable continuous
records are not. The authors have been studying this
alternative estimation strategy; preliminary results have
been reported by Iacobellis et al. [2001].
[33] The remaining two parameters, the multiplicity r of

the interior IRP process and the mean duration of the
synoptic events mtwet , are less critical and in many applica-
tions could be set to nominal values (e.g., r = 2 and mtwet =
24–48 hours). The parameter r controls the quasi-fractal
behavior of the rainfall support at small scales (see Figure 5).

Figure 11. Comparison of the spectral density functions for Florence, the exterior model and the
complete IRP process. The straight line segment has slope 1 � K(2) = 0.45, with K(2) from Figure 7 for
Florence.
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This property is rarely needed in hydrologic applications.
The mean duration of the synoptic events is also not very
important because the actual duration of rainy intervals is
dominated by the wet-dry alternation at smaller temporal
scales. The only hydrologic statistics that might be affected
by an incorrect setting of mtwet are the extreme rainfalls
during long time periods. Extremes over shorter durations
are dominated by the fluctuations of rainfall intensity inside
the synoptic events and are nearly independent of mtwet .

4. Conclusions

[34] Our purpose has been to develop a model of tempo-
ral rainfall that has a pulse structure, multifractal scale
invariance at small scales, and deviations from fractal/
multifractal behavior similar to those observed in rainfall
data. We have achieved this objective by using a conven-
tional exterior process for the arrival, duration and intensity
of the synoptic events and a process of the iterated random
pulse (IRP) type for the storm interiors. Important features
of the IRP process are that the pulse locations have
hierarchical clustering in time and the pulse amplitudes
are generated by a multiplicative cascade mechanism. These
features distinguish the present model from previous multi-
fractal characterizations of rainfall.
[35] The proposed model has four parameters for the

exterior rainfall process and two for the storm interiors.
The parameters of the exterior process control the marginal
distributions of the duration, intensity and separating dis-
tance between synoptic events, whereas the parameters of
the interior model determine the small-scale lacunarity of
rainfall and its small-scale multifractal properties. Through
an application to the rainfall record of Florence, Italy, we
have shown how the parameters can be estimated so that
key statistics are reproduced. We have also validated the
model by comparing characteristics of rainfall that were not
used for parameter estimation. In spite of its few parameters,
the model is able to reproduce a wide range of properties of
the on/off process as well as statistics that reflect the
intensity fluctuations of precipitation. These include rainfall
extremes, renormalization properties, the alternation of wet/
dry periods, and the partition coefficients for rainfall down-
scaling. While at small scales the IRP processes are multi-
fractal, at larger scales they are not. We have found that, in
the transient regime from large to small scales, the devia-
tions from perfect scaling correspond closely with those of
actual rainfall and its support.
[36] The model is susceptible to refinements and exten-

sions. One aspect that can be easily included and would
make the model more realistic is to allow the pulses to have
stochastic shape. This is done by treating the functions hi(t)
as random processes. In the work of Veneziano et al. [2002]
we have included this generalization. Another obvious and
important extension is to use the IRP modeling idea for
space-time rainfall. In our analysis we have ignored sea-
sonal fluctuations and other long-term dependencies; these
features can be included by allowing the model parameters
to vary slowly in time (and in space, for nonhomogeneous
spatial rainfall fields). In addition, the parameters r and C1

of the interior process could depend on the intensity of the
synoptic event or on other physical characteristics of the
rainstorm; such dependencies have been observed in actual
rainfall records [Perica and Foufoula-Georgiou, 1996; Over

and Gupta, 1994, 1996; Olsson and Berndtsson, 1998].
Finally, one could modify the IRP construction to better
reproduce observed rainfall statistics at very small scales,
where scaling concepts might no longer apply. For this
purpose one may generate the pulse amplitudes in the IRP
model using bounded cascades [Menabde et al., 1997,
Menabde and Sivapalan, 2000], in which the dispersion
of the cascade generator is progressively reduced as the
resolution level increases.
[37] All these extensions would invariably require more

extensive parameterization. What this study has shown is
that, in the range of scales from about 20 min to a few days,
even a very simple IRP representation of temporal rainfall
suffices to reproduce many important rainfall properties.
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