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Abstract: A new experimental campaign on a 2D movable-bed physical model, reproducing a typical
nourishment sandy beach profile, is being carried out in the wave flume of the Laboratory of Coastal
Engineering at Politecnico di Bari (Bari, Italy). The main aim is to assess the short-term evolution
of a sandy beach nourishment, relying on a mixed solution built on the deployment of a Beach
Drainage System (BDS) and a rubble-mound detached submerged breakwater. This paper aims
at illustrating the experimental findings. Tests presented herein deal with both unprotected and
protected configurations, focusing on the hydrodynamic and morphodynamic processes under
erosive conditions. Results show that, with respect to the unprotected conditions, BDS reduces the
shoreline retreat and the beach steepen within swash and surf zone as well. Moreover, a reduction of
net sediment transport rate is observed. When BDS is coupled with the submerged sill, a reversal of
the prevalent direction of the net sediment transport seaward occurs offshore the sheltered region.
Less considerable positive effects on shoreline retreat are induced by the submerged structure,
whereas the mean beach slope remains quite stable. Secondary effects of drain on the submerged
sill performance are also highlighted. BDS reduces wave-induced setup on beach, by mitigating the
mean water level raising, typically experienced by such structures.

Keywords: beach nourishment; beach drainage system; groundwater; submerged breakwater;
cross-shore sediment transport; climate change

1. Introduction

Coasts are naturally affected by erosion processes enhanced by climate changes, raising
urbanisation and exploitation of coastal zones. Beach size is decreasing with unfavourable
consequences for the environment, society and economy. Coastal defence and mitigation interventions
appear to be essential and the timing for decisions dealing with coastal protection against climate
change should be taken at the early stage [1–3]. In such a context, it was observed that upgrading
coastal defences and nourishing beaches would reduce the impacts related to climate change roughly
by three orders of magnitude [4].

Several methods, ranging from standard rubble mound breakwaters (e.g., [5,6]) up to
low-environmental impact solutions (e.g., beach nourishments, artificial reefs and by-pass systems
(e.g., [7–10])), are typically deployed to recover and protect beaches from erosion. However, effects of
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defence work are not always sustainable under both environmental and economical points of view.
Hard structures often cause a shift of erosion process along neighbouring areas, whereas soft solutions
demonstrate to be long-term unsustainable. Among the latter, beach nourishments constitute the
most used method. They can be considered as examples of environment-friendly solution for beach
restoration and coastal preservation, basically consisting of filling the near-shore region with new
sediment to restore or maintain an adequate beach width and ensure an appropriate dune protection,
without compromising coastal environment and tourism.

To limit sediment losses during intervention lifetime, nourishment works are frequently combined
with hard coastal defence structures, since they reduce sediment spreading and lengthen the time
span between periodic re-nourishments for coastal restoration. On the other hand, defence structures
influence wave propagation and reduce the environmental sustainability of the intervention. To reduce
such impacts on environment, submerged breakwaters are widely used as shore protection system
aimed at preventing shoreline retreat. They dissipate the incident wave energy, hence reducing the
wave hydrodynamic action on coasts [11,12] and extending the residence time of sediments in the
sheltered region [13,14], depending on configuration parameters (i.e., freeboard, distance from the
shoreline, and transmission coefficient), wave climate and nearshore seabed [15–18]. Moreover, they
have a lower impact on both hydrodynamic processes and nearshore zone morphodynamics with
respect to the emerged detached breakwaters and groins, since they are able to enhance the water
circulation, its renovations rates [19,20] and biological biodiversity [21].

Past studies show that sandy beach stability could also be increased by the deployment of a
Beach Drainage System (BDS), which is counted among soft-engineering systems aimed at contrasting
erosion. Previous works [22–24] demonstrate the importance of the close link between the swash
zone sediment transport and groundwater. In particular, they demonstrate that a lower position of
groundwater with respect to mean sea level can affect morphodynamics, by inducing a sediment
stabilisation when infiltration inside the beach occurs. The BDS is able to increase the apparent sand
permeability, by inducing within the beach an artificial lowering of the saturation line and an increase
in the thickness of the unsaturated area. In this way, up-rush flux is more easily absorbed by the beach,
whereas sea-ward flow is significantly reduced.

Currently, drainage efficacy in restoring eroded beaches is not well defined. BDS can be considered
as an auxiliary system in coasts management, such as combined with a beach nourishment to increase
sediment stability and, hence, the nourishment lifetime [25]. Field installations deployed around the
world (e.g., Denmark, USA, UK, Japan, Spain, Sweden, Holland, France, Italy, and Malaysia) were
not supported by an adequate long-term monitoring to highlight a full scientific evidence of beach
stabilisation, mainly due to both the erroneous management and the non-existent maintenance of the
systems. However, in some cases, an overall reasonable performance in short-medium term (1–5 years),
was reported [26]. Moreover, even though the BDS concept was initiated about fifty years ago and
many BDSs have been installed worldwide since 1981 [27], the first experimental studies on BDS
morphodynamic and hydrodynamic performances were carried recently [28,29]. In 2010, full-scale
laboratory experiments were carried out to overcome the limitations of previous studies [30–33].
The already tested BDS configurations were shown to stabilise the beach for medium and low energy
conditions, while for high energy wave attacks the drainage system seemed to be inadequate in giving
any stabilisation effect [34,35].

Another important issue related to beach nourishment design is related to the retrieval of
nourished sediments with specific characteristics, fully compatible with the existing grain size
and composition (i.e., mineralogy). Both the choice of sediments and the sampling area influence
not only the further evolution of coastline and the beach response [36], but also the impact on
environment. In general, the material necessary for nourishments comes from dredging operations
(of navigation channels, harbour entrances or basins) or from mining sites (land or submarine).
In all cases, the compatibility between added and native sediments is fundamental to assess the
suitability of mining sites and the sediment volumes required to ensure nourishment stability, manage
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subsequent periodic recharging operations and prevent the intervention area, which could suffer
dramatic consequences due to high turbidity during the works [37–39].

Due to both the high costs of sediment recovery and dredging operations and the significant time
required for large nourishment projects, beach scraping may represent an attractive option [40–42],
being widely undertaken and often privately supported by beach managers. Such a kind of
small periodical interventions could constitute a valid alternative with respect to traditional large
nourishment projects for recovering beaches [43], since small sediment volumes are required,
with consequent reduced costs, working time and minimal impacts on coastal natural cycles.
The sediment could be easily mined from the active littoral zone, ensuring the compatibility of
the sediment source [44].

Beach nourishments, as well as beach scraping, can indeed be recognised as able to counteract
beach erosion and, hence, limit the effects of climate changes on coastal flood risk due to beach
erosion [45]. Of course, the approach should be environmentally sustainable.

Our research aims at investigating a mixed approach, relying on both standard and innovative
beach defence systems, by gaining insight on the cross-shore, short term morphodynamic response
of a beach nourishment protected by a rubble-mound detached submerged breakwater and a BDS
deployed together. Unique and definitive design guidelines on BDS are still missing, since previous
field installation did not provide an adequate long-term monitoring and laboratory experiments were
mainly focused on the study of the hydrodynamics, by neglecting the role of longshore gradients in
the morphodynamics evolution. The novelty of our research lies in assessing the reliability of the
mixed approach in beach stabilisation. The basic idea is to switch high energy sea states propagating
from offshore to medium/low energy waves in the surf zone, by means of the submerged breakwater,
to enhance the efficiency of BDS and improve sandy nourishment performance by increasing the
intervention lifetime, without affecting its low-environmental impact.

A modelling campaign on a 2D physical small scale model of a typical nourished sandy beach
profile is being carried out. The tests presented herein dealt with the investigation of the profile
evolution forced by erosive waves, by focusing on its morphological development up to equilibrium
and its hydrodynamics. The configurations comprised the unprotected beach, BDS protected and
the coupled BDS-breakwater beach cases. Protection systems efficiency is here reported in terms
of cross-shore profile evolution, shoreline displacement, submerged bar migration and sediment
transport rate. Furthermore, wave parameters and groundwater behaviour inside the beach in the
different tested configurations are reported and discussed.

2. Materials and Methods

2.1. Experimental Setup

The experimental tests were performed in the wave flume at the Laboratory of Coastal Engineering
of the Department of Civil, Environmental, Building Engineering and Chemistry of the Politecnico di
Bari (Bari, Italy). The 2D wave flume used for the experiments is about 50 m long, 2.5 m wide and 1.2 m
deep. It is equipped with a piston-type wave maker provided by Wallingford (UK) able to generate
regular and irregular wave trains and extreme wave heights of 0.3 m with a maximum water level of
0.8 m. The nourishment profile was reproduced inside the flume as a 2D physical bed movable model.
It may be viewed as a Froude scaled typical intervention with a prototype-to-model ratio equal to 1:10.
However, as the results are intended to be general, model dimensions are illustrated and discussed as
well hereinafter.

In Figure 1, a sketch of the model geometry adopted for the experiments is shown. The initial
sandy profile began about 20 m from the wave paddle with a mean slope of 1/30 for 9 m, followed by
a 1/8 sloped foreshore for 5.2 m and a horizontal emerged berm 2.5 m long, +0.15 m above the mean
water level. The total sand volume was of about 18 m3.
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Figure 1. (a) Cross-section of the physical model built in LIC 2D flume with overlapped the plan
view of the instruments and drains locations on the shoreface (Detail A.1); (b) detail of drain pipes,
piezometers (PZ), pore pressure transducers (PT) placed inside the sand (Detail A.2); (c) detail of the
submerged sill (Detail B); (d) perspective picture of drain pipes and instruments, during installation,
with magnification of PZ and PT; and (e) lateral view of submerged sill, ADVs and wave gauges.

The adoption of a unique coordinate system was appropriate to analyse measurements derived
from different instruments. The x-axis was aligned with the cross-shore direction, pointing to the wave
paddle with the origin (x = 0) set at the onshore limit of the sandy beach profile at the flume centreline.



Water 2018, 10, 1171 5 of 23

The z direction was aligned with the vertical direction, pointing upward with z = 0 at the mean water
level. The y-axis was aligned with the long-shore direction.

Sand grain size curve was obtained at LIC, according to A.S.T.M. standard [46], whereas both
permeability and water content were measured on reconstituted sand samples at the Geotechnical
Engineering Laboratory of Politecnico di Bari. According to Wentworth grain size classes [47], the sand
used was an almost uniform medium-fine sand with a D50 equal to 0.227 mm and D10 and D90 equal to
0.177 mm and 0.322 mm, respectively. The sand was characterised by a permeability of 4.1 × 10−5 m/s
and a mean water content of about 27%.

The drainage system was constituted of a drain pipe placed inside the beach, at 0.165 m below the
static groundwater level, parallel to the shoreline, covering the total model width (about 2.5 m).
Two drain pipes (D1 and D2 in Figure 1) were installed to preliminarily evaluate the drainage
performances at different distances from the initial shoreline (1 m and 1.5 m, respectively). Drains
were 0.07 m diameter PVC pipes, with rectangular holes uniformly distributed along the side surface,
allowing the water drainage. Moreover, to avoid the obstruction of the aforesaid holes by the sand,
the pipes were covered by a geotextile membrane. The drains were connected through a blind pipe to
a manifold well from which the water was removed by means of a pumping system and then fed back
into the water circulation system. The on/off drains switch was made possible by means of two valves
installed at the end of each pipe, outside the flume, before the connection with the blind pipes.

The dimensions of the rubble-mound submerged breakwater were chosen to switch high energy
sea states propagating from offshore to medium/low within the surf zone, for which drainage seems
to show a better efficiency [35]. This was achieved by testing a submerged breakwater characterised by
a freeboard higher than conventional submerged defence structures. The breakwater was constructed
of one layer of natural stones with a median diameter equal to 5 cm in model scale. The landward
side of the structure was 2.4 m from the shoreline with a 0.6 m wide crest and a freeboard equal to
−0.18 m below the mean water level. Both landward and seaward slopes were 1:2. Other significant
dimensions (i.e., sea/landward water depths) are reported in Figure 1.

A constant JONSWAP wave spectrum with peak enhancement factor 3.3 and characterised
by nominal significant wave height Hs and peak period Tp of 0.2 m and 1.5 s, respectively, was
reproduced in the flume. The cross-shore nourishment evolution was investigated in both unprotected
and protected conditions to compare the effects of the mixed configuration on both hydrodynamics
and morphodynamics, forced by the same wave attack, reproducing erosive conditions. The empirical
criteria proposed by [48–51] were used for the scope.

After testing beach profile evolution in unprotected conditions, each drain was tested without
the submerged breakwater. Then, the mixed solution constituted by the coupled system of the drain
D1 and the rubble-mound detached submerged breakwater was tested. Each test was subdivided in
steps, in accordance with the bottom measurements time-intervals, chosen to follow the quick bed
variations occurring in the early stage. Accordingly, surveys were performed every 15 min in the first
hour (Steps 1–4) and every 30 min for the second hour (Steps 5 and 6). Then, the profile was surveyed
every hour until the fourth hour of test (Steps 7 and 8), every 2 h until the tenth and every 3 h up
to equilibrium. In Table 1, tests are reported as performed in chronological order, with the relative
reference name (Test ID). Moreover, the wave bulk parameters (significant wave height Hs, zero-order
moment wave height Hmo, peak period Tp and zero-order moment m0) estimated from the offshore
wave gauge (WG1) for each test are reported as mean values of those calculated for each step. Tests
were run until beach equilibrium condition was reached, approximately when variations in profile
measurements were almost negligible.



Water 2018, 10, 1171 6 of 23

Table 1. Test ID and main bulk parameters of wave attacks.

Test Test ID Hs (m) Hm0 (m) Tp (s) m0

Unprotected UNP 0.187 0.206 1.47 0.0027
Drain 1 BDS1 0.183 0.206 1.47 0.0027
Drain 2 BDS2 0.18 0.203 1.47 0.0026
Drain 1 + Submerged Breakwater BDS1-BW 0.19 0.212 1.47 0.0028

2.2. Measurements

Wave transformations along the flume were investigated by means of seven resistive wave gauges
placed in the flume central section (WG1–WG7 in Figure 1) by measuring water surface elevations with
an acquisition frequency of 20 Hz. Wave parameters were calculated for each test step at wave gauge
locations by means of standard zero-crossing and spectral analyses. The offshore wave gauge placed
near the wave paddle (WG1) and gauges WG2–WG3 in the unprotected conditions (Figure 1) were used
to check the pseudo-random wave trains generated in the flume, since no active absorption system
was deployed. In the protected tests BDS1, BDS2, BDS1-BW (Table 1), wave gauges WG2–WG4
were moved and located at the foreshore toe in order to estimate the beach reflection coefficients by
separating reflected from incident components by means of the method proposed by [52].

Water surface elevations measured from the gauges WG4–WG7 and WG5–WG7 in unprotected
and protected conditions, respectively, were used to evaluate waves propagation along the nearshore.
In particular, during tests performed with the submerged sill and the drainage system deployed
together (BDS1-BW), three gauges were placed just seaward (WG5), landward (WG7) and over (WG6)
the submerged structure to investigate the influence of the structure on waves energy exchange and
propagation. Offshore wave spectra generated for all tests were compared, demonstrating that wave
boundary conditions were almost the same in all configurations, since no differences in wave generation
were observed. Moreover, wave reflection analysis was performed from the free surface elevation
measured by WG1, WG2 and WG3, placed near the paddle in the unprotected configuration. A mean
reflection coefficient overall the UNP test was estimated about 0.08, confirming that despite no active
absorption system was deployed, the wave generation was only slightly affected by re-reflected waves.

Instantaneous local velocities were measured by means of two Acoustic Doppler Velocimeters
(ADVs) located in the surf zone with an acquisition frequency of 20 Hz. The locations of ADVs, fixed
for all tests, are reported in Figure 1, where VecS refers to the Vectrino side-looking, whereas Pro f
indicates the location of the Vectrino Profiler. The former measured the velocity components in x, y
and z directions in a point. Velocity profiles were then obtained by moving the instruments along the
vertical direction at 1 cm-spaced intervals for a total water column investigated of 3 cm, at about 6 cm
above the bottom level, since during the first unprotected test, sediment accretion was observed in the
area where both ADVs were placed. A lower distance from the bottom would foreclose the velocity
measurements during submerged bar formation. Every measurement was performed for 1 min at each
vertical location (three points) and the time-averaged values were considered for deriving velocity
profiles, for a total duration of measurement equal to 4÷ 5 min. This allowed obtaining comparable
results at each vertical location along the measurement section and neglect any bottom variation during
each measurement, which could lead to erroneous analyses. VecS measurements were performed at
the beginning, at the end and at t/2 of each test step (where t indicates the duration of the test step), for
steps not exceeding 1 h and every 30 min for test steps longer than 1 h. The Pro f , located as depicted
in Figure 1, continuously measured the x, y and z velocity components within a 3.4 cm high water
column, with a vertical spatial resolution of 1 mm, from around 3.5 cm above the (varying) bed level at
the beginning of each step.

To investigate the infiltration processes inside the porous medium and the effects of drainage
on beach saturation degree (groundwater level) as well as on the swash zone hydrodynamics, an
array of piezo-resistive pore pressure transducers (PT) and piezometers (PZ) were placed inside the
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beach (Figure 1). Six pore pressure transducers (PT1–PT6) were placed below the drain pipe along the
flume centreline, up to the initial shoreline position. A transducer was also placed inside each drain
(PT8–PT10) to investigate the hydraulic behaviour inside the drain pipes. Two more PTs were placed
near each drains on the same side (positive y), as in Figure 1, to verify groundwater regime around the
pipe, by comparing the water head inside and outside drains. Moreover, the PT11 was located in the
pumping well in order to measure the average drained flow during drained tests, according to the
procedure described in [30]. The transducers acquired at a frequency of 20 Hz. The static oscillations of
water table were measured by means of nine piezometers (P1–P9 in Figure 1). Each of the piezometers
was made of a brass filter covered by a geotextile layer placed inside the sand at the same elevation
of the pore pressure transducers at the flume centreline, connected through high pressure PVC pipe
(nominal diameter equal to 11 mm) to a cylindrical glass pipe placed outside the flume. The water
level oscillations inside the glass pipes were measured by using water level gauges and manually
recorded every 5 min for the entire duration of each test. Measurements from both instruments PTs
and PZs were used to investigate the saturation line lowering in drained conditions and its raising in
undrained configuration.

Considering both the different response times of PT and PZ instruments and the objective of
analysing the slow oscillations of the water tables under the influence of wave groups, an averaging
procedure of the PT values was conducted. The time window used for the procedure was 5 min
around the acquisition datetime of PZ. Figure 2 highlights an example (without limitations) of the
hydraulic pressure heads oscillations (∆h) induced by the external wave motion during swash cycles
for configuration BDS1 with both initial (red circles) and final (gray circles) points used for averaging
the time series, for the first 15 min long time step. A very fast decrease of signal at the D1 opening,
in the range of 1–2 s, was noticeable. Specifically, PT2, PT3, PT7, and PT8 then exhibited slight
fluctuations following wave groups motions. Meanwhile, PT4–PT6, PT9 and PT10 showed a lower
decrease, followed by higher oscillations, with remarkable distinction of single wave influence, due to
their closer position to the swash zone.

In Figure 3, an example of the spatial variability of saturation lines (∆h) with respect to the initial
groundwater level (equal to the mean water level in the flume) is reported for all configurations,
referring to the first temporal step (15 min). Circles refer to static (mean) groundwater level measured
by the PZ, whereas inverted triangles correspond to the mean values derived from the dynamic pore
pressure variations, measured by PT. For the UNP tests PZs derived measurements are not reported
since no measurements were available due to problems which occurred with PZs.

Wave-induced run up on the beach (R) was derived by means of a high-resolution visible camera
Sony Lens G (3D EYE camera, 18.2 MPX, lens-style DSC-Qx30). Timestack images for wave run up
measurements [53] were generated in correspondence of each time step and configuration, from video
with a duration of 30 min and a frame-rate frequency of 30 Hz.

The routines applied for projecting, as well as pre- and post-processing the recorded images and
videos, were derived from [54,55] and suitably adapted for the experiments. Firstly, a geometrical
correction for the lens distortion was applied by using the parameters derived from the intrinsic
calibration procedure, carried out at the beginning of the extensive laboratory set-up. A perspective
transformation matrix, 3× 4 using homogeneous coordinates, for geo-referencing the camera [56,57]
was calculated employing a set of Ground Control Point (GCPs), distributed in the FoV of the camera.
The support of the GCPs, recorded by both the laser beam of the Total Station used for beach surveys
and the camera, was built by means of a plastic spherical target placed on top of a steel pole. The
perspective matrix was used to retrieve the image coordinates to be sampled from the frame, given the
beach real-world coordinates of the transect. Then, pixel intensities were extracted along a selected
central cross-shore transect from each frame during video progressions by means of Python scripting
and OpenCV libraries.
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Figure 2. Time variation of PT during first time step (15 min) for configuration BDS1. Circle markers
defines the initial (red-filled) and final (grey-filled) points used for signals averaging. Different ordinates
limits are used to catch the time evolution of the signals.
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Figure 3. Spatial variation of water tables at the first step (15 min).

The timestack processing was basically performed by a procedure coded in Matlab and Fiji
(Java). The step-by-step procedure was the following: (i) contrast enhancement with histogram
equalisation; (ii) filter made of a Bi-Exponential Edge-Preserving Smoother (BEEPS, [58]); (iii) filter to
reduce the effect on a non-uniform illumination by fast recursive Gaussian filters; Gabor filters on the
gray-channel using five scales and eight orientations to enhance and localise major edges (output based
on maximum intensity over the 40 images); (iv) despeckle and outliers filters; (v) an edge detector
based on structured random decision forest [59]; and (vi) a final smoothing median filter on the edges
detected, useful since the backwash is typically less distinguishable than the up-rush.
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The evolution of beach profile was investigated by measuring the bottom elevations at the flume
centreline, by means of a Leica FlexLine TS06plus Total Station with a uniform spatial resolution of
0.05 m for both emerged and submerged beach for a total number of measurement points equal to
295. According to time discretisation of tests previously described, at the end of each test step, bottom
survey was performed, from which sediment transport rates, shoreline location, mean foreshore slope
and bar position were derived.

3. Results and Discussion

3.1. Hydrodynamics

Free surface elevations time series collected by wave gauges were analysed in order to
investigate wave transformations along the flume and compare the significant wave heights cross-shore
distribution. Figure 4 reports the spatial variation of the mean significant wave height Hs in both
protected and unprotected conditions calculated by means of the standard zero crossing method.
At each wave gauge location the temporal variabilities of Hs are also reported for each configuration
as error bars.
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Figure 4. Significant wave height Hs spatial distribution.

In the unprotected configuration, Hs slightly decreased landward due to the interaction with the
seabed up to the sand bar location and a raise of the significant wave height is recorded by the last
gauge (WG7) in all steps, closer to the breakpoint. In fact, as observed in [60], an estimation of the
breakpoint location can be determined at the maximum relative wave height, γ = Hs/d, where d is the
local water depth, expected in the inner surf-zone and confirmed by the increasing γ spatial trend with
the maximum at the WG7 (time-averaged overall test steps γmax =0.653). Moreover, an increasing of
the maximum relative wave height at the last wave gauge is observed over time in the range 0.50–0.87,
demonstrating the coherent offshore movement of the breakpoint as the sand bar migrates offshore.
Indeed, at the beginning of the tests (i.e., γ ' 0.5) the fraction of breaking waves could be argued to be
very small (hence, the breakpoint is far from the location of WG7), whereas at the end of the tests (i.e.,
γ ' 0.8) the fraction of breaking waves highly increased, hence the breakpoint moved offshore to the
location of WG7. The same behaviour was observed in drained conditions (BDS1 and BDS2), whereas
differences could be highlighted in the presence of the submerged sill. The sill induced the breaking of
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the highest waves, leading to a substantial reduction of the significant wave height, with maximum
values of γ evaluated at WG6 location, over the submerged sill.

In Figure 5, power amplitude spectra evolution along the profile is reported for all configurations
at significant wave gauge locations (as reported in Figure 1), after 10 h of wave action, at sandbar
equilibrium condition.
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Figure 5. Power amplitude spectra variation for UNP, BDS1, BDS2 and BDS1-BW configurations.

Consistent with the Hs spatial variation observed in unprotected condition (UNP) (Figure 4),
wave spectra showed an energy decay around the peak frequency ( fp), without any substantial
modification of the spectral bandwidth until the location of the bar toe, except for higher harmonics
components arising at about 2 fp due to the sandbar-induced breaking. Wave energy dissipation in
drained conditions is slightly more pronounced, whereas no variation in peak frequency or other
energy components is observed.

The submerged structure induces further noticeable effects on wave spectra spatial evolution,
since well-known wave damping occurs when waves propagate over the sill. In particular, the
Probability Density Functions derived from the short-term statistics of wave heights identified by
zero-crossing analysis at both seaward and landward wave gauges location near the submerged sill,
showed for all steps a decreasing of the wave heights (Hi) higher than 1.4 Hm (where Hm indicates the
mean wave height at the toe of the structure). Being the mean ratio between the significant wave height
at WG5 and WG1 calculated equal to 0.85 and the mean ratio between the significant and the mean
wave height at the toe of the structure (WG5) of 0.65 (0.64–0.68), the breaking conditions occurred for
wave heights Hi > 0.76Hso, with Hso the offshore significant wave height.

To analyse the swash zone behaviour, herein the wave setup (η) and run up (R) variations over
time in all configurations are shown in Figure 6, derived from time-stacks processing. As highlighted
in [31], the drainage system influenced the groundwater, leading to a reduction in η elevation on
beach. A decreasing trend in time was clearly evident, and highlighted by the linear trend shown.
The differences between the configurations were small. The influence of the BDS1 on the reduction of η

could be observed, BDS1 exhibited smaller values at the first time steps, the linear trend then remained
the lowest among the configurations, as well. The performance of BDS2 was poor, with results very
similar to those observed in UNP, whereas the BDS1-BW highlighted, despite the submerged sill effect
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on wave momentum losses occurring during wave breaking and, hence, on onshore mass transport
[61], a good efficiency in reduction of the η with respect to the unprotected conditions.

The vertical oscillations of R are analysed in terms of bulk parameters R2% and Rmax. It should
be noted the maximum run up (either R2% or Rmax) was limited by the elevation of the horizontal
emerged berm (i.e., +0.15 m). All the sill-unprotected cases (drained and undrained) showed time
steps characterised by low values of both quantities, due also to a scarp formation at the shoreface.
This condition was also due to the very steep profile (typical of artificial nourishment post-damping)
and high-energy waves, which led to small beach scarp formation [62]. In these cases, the formation
of the scarp did not allow the waves to reach the horizontal emerged berm. Swash waves steepened
the beachface, subsequently they focused on the foot inducing its undercutting or removal. On the
contrary, the BDS1-BW1 behaviour was characterised by high and almost constant values over the test
duration. This was due to the morphodynamic differences highlighted, and the absence of the scarp
formation at the shoreface, which highly influences the swash dynamics.

200 400 600 800 1000

R
u
n
u
p
 2

%
 (

m
)

0.05

0.1

0.15

0.2

Time (min)
0 200 400 600 800 1000 1200

R
u
n
u
p
 m

a
x
 (

m
)

0.05

0.1

0.15

0.2

BDS2

BDS1

UNP

BDS1+BW

(a)
Time (min)

0 200 400 600 800 1000 1200

η
 (

m
)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)

Figure 6. Bulk statistics of swash oscillations over time. (a) Wave runup R2% (top), Rmax (bottom) ; (b)
Wave setup (η).

In view of investigating the potential contribution of the wave-induced setup in the cross-shore
return currents, the temporal evolution of cross-shore component (v) velocity profiles are here reported
as measured by the Vectrino Profiler, Pro f (Figure 1) close to the breaker zone and compared in different
configurations. During waves breaking at the ADVs sections, air bubbles penetrated into the water
column, generating the large part of spike noises in recorded signals, by causing sometimes unreliable
estimates of velocities. Few signal drop-outs were also found in correspondence to measuring points
above the water level. The quality of Pro f velocity data, estimated in terms of Signal-to-Noise Ratio
(SNR), were first used to discard values less than 15 dB. Then, the quasi 3D phase-space threshold
method was used for the filtered data, according to the procedure described in [63,64]. Specifically,
if any component of velocity u, v, or w was identified as a spike noise, all three components were
eliminated from the dataset. The percentage of removed data was typically less than 14% out of the
whole dataset. Beam velocities were recorded into the ADV′s orthogonal coordinate system, divided in
long-shore u (y-axis), cross-shore v (x-axis) and vertical w velocities (z-axis), according to the reference
system introduced in Section 2.1.

The location of the ADVs was suitable for assessing the magnitude of the undertow currents,
flowing in the lower section of the water column under breaking waves. The influence of the
investigated defence systems on velocities field in the surf zone is here investigated, focusing the
analyses on comparing time evolution of v components of velocity vectors, acquired by the Pro f ,
whose results are in line with those of VecS, not reported here.

In Figure 7, light to dark profiles refer to the time evolution of the undertow currents, positive
seaward, averaged in temporal intervals of 15 or 30 min, for all the configurations studied. The vertical
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axes zb of each plot refers to distances from the bottom, positive upward, which varied over time due
to morphological changes of the bed elevation. Few profiles were recorded at higher distances from
the bottom, due to some inaccuracies in manual positioning of the instrument.
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Figure 7. Time evolution of v-component of the velocity vectors for UNP ( ); BDS1 ( ); BDS2
( ); and BDS1-BW ( ) tests. zb refers to distances from the bottom, positive upward.

The undertow currents generally tended to decrease significantly, and after around 6 h their
range of variability over the depth was less then 0.02 m/s. More specifically, drained configurations
BDS1 were characterised by a very slight tendency in reduction with respect to UNP and BDS2.
The phenomenon could be considered consistent with the observations in [31], where, for high-energy
conditions, velocity profiles did not show any substantial variations. On the contrary, the configuration
BDS1-BW exhibited a different behaviour. An increase of seaward currents was observed over time
within the investigated depth, with a variability range at the later time steps of up to 0.04 m/s,
followed by a lowering trend after 8 h, without reaching values less than 0.05 m/s. The authors
related these results to differences of morphological response in presence of the sill, at its shoreward
side, to be attributed to the feedback between breaking induced undertow and the location of the bar,
its formation and migration (see Section 3.2).

The drains efficacy in increasing sea-water infiltration inside the beach during swash cycles was
investigated by means of pore-pressure heads measured by both PZ and PT. As partly expected,
all drained configurations showed a maximum water table lowering close to the drain. The effects on
saturation degree decreases as the distance from the drain increases, so that the water table tended to
the undisturbed groundwater level landward and to the mean water level seaward.

Figure 8 reports the groundwater behaviour at selected test steps in both unprotected and
protected configurations. Moreover, beach profiles are reported as measured at the end of the
same selected tests-steps. The groundwater dynamics, influenced by beach morphodynamics, for all
configurations tested varied particularly in the first 120 min of the processes. The decrease was less
than about 2 cm overall in this window. The process then proceeded slowly. Results highlighted that
the drain with higher efficiency in water table lowering was the D1 due to its relative distance with
respect to the shoreline, within the active infiltration zone [30,65]. The drain D2, closest to the shoreline,
is able to intercept both the vertical infiltration flux through the porous sand and partly the water
waves directly from the sea. Such effect is more evident as the beach profile evolves, since shoreline
moves back and the drain D2 position is closer to the shoreline, so ineffective in reducing beach
saturation degree. In such a condition, no reduction in backwash flow occurs.
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Figure 8. Spatial and temporal variation of groundwater table with the relative profiles measured at
the end of the selected test step: (a) UNP; (b) BDS1; (c) BDS2; and (d) BDS1-BW.

3.2. Morphodynamics

High spatial as well as temporal resolution profile data were derived from the measurement of
bed elevations in all tested configurations. In Figure 9, an example of the cross-shore time variation
of the nourished beach, measured at the beginning of the test and at the end of each test step up to
equilibrium condition is reported for test UNP. As expected, the morphological evolution of beach
profile was faster in the first hours, whereas it tended to become slower up to the equilibrium condition,
in correspondence of which any substantial variation in sediment transport was observed.

In Figure 10, the final profiles (Figure 10a) and the bottom changes with respect to the initial bed
elevations (Figure 10b) are reported. Since the initial profiles were slightly different at the beginning of
each test, the origin of the horizontal axes coincides with the initial shoreline location at the beginning
of each test, in order to make final profiles comparable. In unprotected conditions temporal profile
evolution showed a shoreline retreat since seaward sediment transport occurred along both swash and
surf zones (Figure 10). Sediments moved offshore within the active zone with the formation of two
submerged bars which evolved during tests until both equilibrium position and shape were reached.
Such a behaviour was observed in unprotected and only drained conditions. The presence of the sill
together with the drain D1 induced the submerged bar formation in the first stage of profile evolution,
until the bar migrates near the structure landward toe and sediments accumulation occurred with a
final S-shaped beach profile.

The high resolution bed elevation data in both spatial and temporal domains allowed the sediment
transport rate (m3/s·m) to be analysed by applying Exner’s equation (e.g., [12,66]). The sediment
transport rate spatial variation (qs(xi)) is then expressed as a function of temporal bed elevation
evolution (∂z/∂t) and the material porosity (p). Assuming the porosity constant along the profile since
the sediment grain size was almost uniform without any variation of the mean diameter (D50), Exner’s
equation can be written at each location xi as follows (Equation (1)):

qs(xi) = qs(xi−1)−
∆z
∆t

∆x (1)
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Figure 9. (a) Time-evolution of beach profile measured at the centreline (z, blue gradient lines). (b)
Spatial and temporal evolution of bottom elevation changes (∆z) with respect to the initial profile.

Mass balance equation was solved on xi locations of a regular grid with a spatial ∆x equal to
0.01 m, interpolated from the bed elevation measurements acquired every 0.05 m, and a temporal
∆t equal to the duration of each test step. During bed elevation measurements, some small errors in
volumes calculation were found, with consequent unreliable values of qs at boundaries. As discussed
in [67], indeed, boundary conditions at both sides of the flume imposes that sediment flux has to be
equal to zero at the beach toe and close to the run-up limit as well. Due to errors in bed elevation
measurements (i.e., over the ripples), the intrinsic accuracy of the instruments (2÷ 3 mm), a not-perfect
uniformity of profiles in long-shore direction and small sand losses in the flume, a correction on
volumes calculation was needed. Accordingly, since it is not possible to determine where the mismatch
occurs [67], a uniform redistribution of the closure errors calculated at the beach toe was applied across
the profile where sediment transport rates were not zero.

In Figure 11, the corrected net sediment transport rates for unit length qs(xi) (m3/s·m) are
reported for all configurations at selected time steps to highlight the cross-shore variation of qs(x) over
time and the differences induced by the defence system deployed. According to Equation (1) and
local coordinate system with the x-axis positive seaward, negative values refer to onshore sediment
transport, whereas positive values stand for offshore prevalent transport. Information about the net
sediment transport fluxes at each location can be retrieved by considering the derivative of qs(x)
with respect to x, which measures the change in the transport rate per unit increase in x along the
curves. Therefore, an increasing of qs(x) in both positive or negative quadrants of the graphs indicates
bottom erosion, mainly concentrated in the swash and surf zones, whereas negative derivatives can be
observed at the sandbar location, where sediments settle.
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Figure 10. Comparison between final profiles (a) and bottom changes (b) for unprotected (UNP) and
protected (BDS1, BDS2, and BDS1-BW) cases. The origin of the horizontal axis coincides with the
location of the initial shoreline.

Figure 11. Sediment transport rates over time for the different configurations.

Figure 11 shows that in unprotected conditions the sediment transport was mainly seaward.
In BDS1 and BDS1-BW configurations, both systems affect this trend, by reversing the direction of the
net sediment transport onshore, in the area close to the sand bar and the sill, respectively. Such effect is
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more pronounced when the submerged sill is coupled with the drain. Sediment transport tended to an
equilibrium condition in the first hour for all configurations.

The presence of the BDS1 mainly affected the morphodynamics in the first stage of these changes,
whereas any substantial differences are highlighted with BDS2. During the first 15 min, a reduction of
eroded sediments along the emerged beach in presence of BDS1 was observed, whereas any substantial
difference occurred within the surf zone. The sediments moved offshore with the formation of the
submerged bar at about the same position reached in the unprotected case. Moreover, positive effects
were highlighted since sediment transport rate became negative in the seaward zone close to the sand
bar. In presence of the BDS2, the erosion of the foreshore was comparable with that in unprotected
conditions, since as beach eroded and shoreline moved back, the drain was completely submerged
and, indeed, not suitable for reducing the beach saturation degree. After 60 min of wave exposure,
transport rate was low in all configurations and sediments tended to be quite stable. Profile global
shape remained quite constant and modifications were mainly due to the gradual redistribution of
sediments from the emerged beach to shallow waters (swash and surf zones) and in correspondence of
the offshore submerged bar.

As an example, in Figure 12, the comparison between qs and the measured relative spatial
variation of zb within the active zone, at 15 min (Figure 12a), 90 min (Figure 12b), and 16 h (Figure 12c)
are reported as representative of beach profile evolution for UNP test. Once the quasi-equilibrium
condition after 1 h of test (Figure 12b) was reached, small qs variations were observed along the
emerged beach, within the swash zone and at bar location, dominated by slow seaward sediment
transport. The redistribution of sand along the profile, indeed, induced a decrease of the mean
foreshore slope with a consequent shoreline retreat, whereas the submerged bar migrated seaward,
until it reached its local equilibrium under waves action (Figure 12c).

Figure 13 show the temporal variation of shoreline (∆x at 0 m depth isoline, solid line) and mean
foreshore slope (β), respectively, for each configuration. In the Figure 13a the temporal variation of
depth-lines −0.03 m and +0.03 m, with respect to the mean water level (z = 0 m) are reported (dotted
lines). Results are presented with reference to the initial shoreline position up to the end, according to
the time discretisation of profile measurements, evaluated as the intersection of each measured beach
profile with the static water level in the flume. Meanwhile, the mean foreshore slope was calculated as
the mean beach slope from the beach berm to the section where submerged bar formed.

As stated for profiles evolution, shoreline retreat and beach steepening were both faster at the
beginning, for all configurations, since after 180 min the shoreline retreated about 50% of its final
location. UNP and BDS2 configurations showed the maximum ∆x at z = 0 m, demonstrating
that the location of D2 was not useful and that beach behaviour was comparable with natural one.
Corresponding to the sediment transport rate decrease, both shoreline onshore displacement and
beach foreshore slope velocities decreased, even if both processes persisted. Even though a lower
sediment transport rate was observed (Figure 11), shoreline did not stabilise, since slow sediments
redistribution along the swash zone led to a decrease of beach slope (Figure 13a). When the drain D1
was activated, the shoreline recession was lower with and without the submerged sill, slightly lower
in BDS1 configuration.

The temporal variation of the depth-lines around the shoreline reported in Figure 13a shows
that the redistribution of sediment occurring after the early stage, induced a higher change of beach
slope within the swash zone in unprotected conditions, with respect to the other configurations, as
confirmed by the higher differences in depth-lines−0.03 m and 0.03 m retreats. In BDS1 and BDS1-BW
configurations, temporal evolution of +0.03 m depth-lines shows that positive effects of both defence
system could be also observed along the emerged beach, close to the shoreline, where higher sediment
volumes with respect to unprotected conditions accumulated.
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Figure 12. Sediment transport rates (qs) and measured profiles (zb) at 15 min (a), 90 min (b) and at the
submerged bar equilibrium (c) in unprotected conditions.
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Figure 13. Temporal variation of depth-lines −0.03 m, 0 m, +0.03 m locations (a) and mean foreshore
slope (b) for each configuration from the beginning of each test.

In Figure 14, the defence systems effects on profile evolution are analysed in terms of submerged
bar behaviour. The bar is here sketched by means of its representative parameters reported in
Figure 14a, where xbar indicates the cross-shore distance of the bar crest elevation from the initial
shoreline position, hbar is the water column height over the crest bar and zbar represents the maximum
bar height with respect to the initial profile at xbar. In Figure 14b, the bar migration (xbar) over



Water 2018, 10, 1171 18 of 23

time is reported for UNP, BDS1, BDS2 and BDS1-BW configurations. To analyse bar evolution, a
dimensionless bar crest height is introduced, ranging from 0 to 1, defined as follows (Equation (2)):

ζbar = −
zbar

zbar + hbar
(2)
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Figure 14. (a) Sketch of the main parameters useful for bar description. (b) Temporal variation of crest
bar location, xb (left panel) and dimensionless bar crest height, ζb (right panel).

Figure 14b provides evidence of quite similar behaviours of the breaker bars evolution over time
under the wave condition tested for all cases, although some differences should be discussed. Results
demonstrate that offshore bar migration velocity was higher in the first 3 h for all configurations.
With respect to UNP, BDS1 and BDS2 conditions where sediments began to settle quite at the same
water depth, the submerged sill induced the initial bar formation in the section closest to the shoreline.
During such a phase the sand offshore movement from the swash zone also induced a timely increase
of the bar height, more pronounced in unprotected conditions, as the temporal variation of ζbar shows.
After the third hour, the bar migration showed a slow-down phase for around 40%, comparable for
both natural and drained conditions. This was observed for the hbar behaviour as well.

In presence of the submerged breakwater, bar formation only occurred in the early stage of the
profile evolution. After about 3 h of test, as the bar moved offshore, the sediment began accumulating
near the submerged sill and the bar parameters are not suitable for the analysis since the bar cannot be
properly defined. For this reason, in Figure 14, temporal evolution of bar parameters for BDS1-BW is
reported until 180 min of waves exposure. As the bar moved offshore, the bar height continuously
increased until near a quasi-equilibrium condition. After 10 h, the bar position was almost stable.

The slight increase in xbar was mainly due to the bar crest height arise together with a redistribution
of sediments. The final location of the bar was almost the same for UNP, BDS1 and BDS2 tests.
In UNP, with respect to the other cases, the sandbar height is slightly higher and the sharpening of its
shape was observed. Notably, in unprotected conditions, an evident increase of ζbar was observed at
the end of UNP test, against a lower increase of xbar. This demonstrates that the increase of hbar is not
due to the offshore migration at greater depths, but to properly raise the bar crest height (zbar).
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4. Concluding Remarks

This paper presents a new experimental campaign aimed at assessing the cross-shore short-term
evolution of a sandy beach nourishment in presence of an alternative mixed defence system, constituted
by a Beach Drainage System and a submerged detached rubble-mound breakwater deployed together.
The submerged sill is characterised by high freeboard and its purpose is twofold. It aims at improving
BDS efficacy, by switching high energy sea states to medium low energy waves, since past studies [30]
demonstrated BDS efficacy in stabilising sediments on beach for medium and low energy conditions,
whereas any positive effects were observed under erosive wave conditions. Moreover, the submerged
structure intercepts offshore sediment transport, resulting in a sediment accretion in the shallow waters
and favouring the possibility of periodic interventions of beach scraping, with a consequent reduction
of sand volumes, costs and working time, with a minimal impact on littoral natural cycles.

The experiments were performed at the Laboratory of Coastal Engineering of the Politecnico
di Bari (Bari, Italy) on a 2D movable-bed physical model. A constant JONSWAP wave spectrum
representative of erosive condition was used as forcing boundary wave conditions. To assess the
performance of the proposed protection system, hydrodynamics and beach profile evolution up
to equilibrium were firstly analysed in unprotected and only drained (without the submerged sill)
conditions. Two different distances of drain pipe with respect to the initial shoreline position were
tested. Wave transformation along the beach profile and over the submerged structure, surf zone
velocities, beach groundwater as well as beach profile evolution, spatial and temporal sediment
transport rates, shoreline, bar and mean foreshore slope evolution are presented and discussed.

Results show that, under tested conditions, both BDS and submerged sill affected hydrodynamics
and morphodynamics along the surf and swash zones, with respect to the unprotected configuration.
The general efficiency of the drain system mainly depends on its hydraulic regime, pipes characteristics,
porous medium behaviour which influences flow resistance, and groundwater head. Beyond the
full-scale experiments of [30], the comparison between the PTs placed inside both drains (PT8 and
PT10) and those very close to their contour inside the sand (PT7 and PT9) allowed to state that a
seamless hydraulic regime develops in the system sand-drain. No gaps between local pressure head
inside both the pipe and the low transmissivity porous medium were observed, thus leading to a
steep cone of depression. In such conditions, drains mainly worked under pressure. Such an outcome
suggests the possibility of improving BDS efficacy in collecting sea-water by enhancing both design
characteristics and porous medium infiltration capability and inserting, for example, a gravel layer
around the pipe acting as a filter which can guarantee a stepwise increasing of permeability from sand
to pipe.

The higher capability of the beach in absorbing run up flows in presence of the drain D1 induced
lower shoreline retreat, a decrease of beach slope within the swash as well as surf zone and a reduction
of net sediment transport rates. Moreover, the different form of sandbar visible in both BDS1 and
BDS2 with respect to UNP tests justifies differences in wave energy dissipation over the sand bar.

Besides BDS effects on both hydrodynamics and morphodynamics observed when the system
was tested alone, interesting outcomes were found in the jointly configuration with the submerged
sill. The structure induced an evident wave energy reduction within the surf zone due to the wave
breaking and a reversal of the prevalent direction of the net sediment transport seaward, offshore the
sheltered region. However, the role of the structure in inducing further improvements in drainage
efficacy is still doubtful, whereas the secondary effects of drain on the submerged sill performance
were more clear. Results point out that BDS influenced swash zone hydrodynamics also in presence
of the submerged breakwater, as the reduction of wave-induced setup with respect to unprotected
tests demonstrated. It is widely accepted, indeed, that such submerged structures experiences mean
water level raising on the shoreward side, which increases as structure freeboard (Rc) reduces [61,68].
Experiments showed that the drainage is able to mitigate such raising of the mean water level, even if
further analyses are needed, since any influence on seaward undertow currents in the sheltered region
was observed.
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Different submerged sill and drains configurations (i.e., distance from the shoreline, berm width,
freeboard, and presence of a gravel layer around the drain pipe) are planned for new experiments
to clarify the mutual influence and dependency. Accordingly, these tests also represent a highly
detailed database in space and time for further goals of developing numerical solutions useful
for parameterisation of the main drainage parameters for a beach protection scheme which could
potentially include a nourished beach profile protected by a breakwater.
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