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Abstract: A general model is proposed for a Vertical Cavity Surface
Emitting Laser (VCSEL) with medium aspect ratio whose field profile
can be described by a limited set of Gauss-Laguerre modes. The model
is adapted to self-mixing schemes by supposing that the output beam is
reinjected into the laser cavity by an external target mirror. We show that the
self-mixing interferometric signal exhibits features peculiar of the spatial
distribution of the emitted field and the target-reflected field and we suggest
an applicative scheme that could be exploited for experimental displacement
measurements. In particular, regimes of transverse mode-locking are found,
where we propose an operational scheme for a sensor that can be used to
simultaneously measure independent components of the target displacement
like target translations along the optical axis (longitudinal axis) and target
rotations in a plane orthogonal to the optical axis (transverse plane).
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1. Introduction

The self-mixing interferometry in semiconductor lasers has been largely exploited in the field
of high precision metrology to realize compact, contactless, sensors for real time measurements
of absolute distance, vibrations, rotations, flow rate [1, 2].
When the laser source is a conventional diode laser emitting on the Gaussian mode, the
quantity that is directly related to the measure of target displacements is the laser intensity.
The latter, in presence of optical feedback provided by the target, is periodically modulated at
half the wavelength; so that the number of the interference fringes in the signal visualized by
a digital oscilloscope connected to the laser integrated photodiode provides a measure of the
target displacements. Moreover, there exist certain feedback regimes where the interferometric
signal has an asymmetric sawtooth behavior revealing the direction of the target motion. The
availability of this additional information is one of the main advantages of the laser self-mixing
with respect to the classical interferometric techniques (e.g. Michelson or Mach-Zehnder
interferometers).
In order to simultaneously measure target displacements with more than one degree of
freedom (e.g. target displacements along the optical axis (longitudinal displacements), target
displacements in the plane orthogonal to the optical axis (transverse plane), target rotations
around the optical axis, etc..) one can either combine in suitable geometry two or more
conventional diode lasers [3] or implement an array of mutually independent single transverse
mode VCSEL [4–6]. In all these cases the sensing system is based on customized multi-sources
assemblies.
A typical challenge to optical interferometry is the measurement of the purely transverse
degrees of freedom of motion of the target, usually identified as straightness, flatness and roll.
Several optical schemes have been proposed for measuring small roll rotations, possibly in
combination with other degrees of freedom. They can be roughly divided into two categories,
those relying on the polarization state of the laser radiation and those relying on tilting the
wave vector with respect to the surface normal. Detection of roll angle by measurement of the
phase shift between two orthogonal laser modes was demonstrated by Liu et al. [7] and the
principle was further developed by Wu and Chuang [8]. However, additional phase sensitive
optical elements must be inserted in the cavity and the heterodyne detection scheme requires
two acousto-optic modulators for frequency shifting the laser mode. To the latter category
belong all those detection schemes based on multiple laser sources aimed at pyramidal or
prismatic reflective target [9–11]. These schemes also allow for multiple degrees of freedom
measurements, however they suffer of limited resolution and/or limited angular range because
of the geometrical boundaries.
Hence, the realization of a similar multi-tasking would be very interesting in terms of cost,
compactness and riconfigurability, if attained with a single semiconductor laser emitting a more
structured field, so that the multiplicity of measurements can be ascribed to the field/feedback
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properties, rather than on the number of emitters. The simultaneous measurement of multiple
target longitudinal displacements by self-mixing interferometry in a single laser diode has been
recently reported by us [12]. However in [12] the laser was single mode (both longitudinal and
transverse) and the target included independently moving parts.
Here, we introduce a model for laser whose emitted field is characterized by a number of
transverse modes and we numerically investigate how the mode dynamics can respond in a
viable fashion to the target feedback, so to allow for concurrent measurements of independent
displacements.
More specifically, the idea is to link the spatial distribution of the transverse modes in the field
profile of a mid-area semiconductor laser to the target degrees of freedom in such a way that
the target motion would modify the spatial features of the feedback field distribution. The
spectral properties of the transverse modes, in addition, cause a dynamical behavior that can
in principle encode information on the target motion. In the applicative sections of this paper,
we try to focus on the simplest regimes of a medium-aperture device where few families of
transverse modes nonlinearly compete to rule the system dynamics. For such a scope, best
candidates are the VCSEL with typical diameter of 10− 20µm. On the one side they benefit
of low laser threshold, large-scale integrability, low cost and commercial proliferation. On
the others side, their emission profile is known to be interpretable in terms of a few families
of frequency degenerate transverse modes [13, 14]. Moreover, present techniques allow for a
sophisticated engineering of their phase and/or intensity profiles by means of metal or dielectric
grating, contact disc or ring, photonic crystal, etc... (see for example [15–17]). Although such
structurations are not considered in this work, they can certainly represent a highly promising
means to achieve an improved control of the device flexibility in acting as a sensor.

Whereas the complex transverse-mode behavior of VCSEL was mainly considered a draw-
back from the viewpoint of most applications oriented at optimizing the power emitted, the
spectral stability or the operational bandwidth, they recently attracted a broad interest, espe-
cially since the control on VCSEL growth became accurate enough to put the modal structure
under control (see for example [15–17])

On the one hand, there is a vast literature on the theoretical analysis of free running
low- and mid- Fresnel number VCSEL dynamics in absence of external feedback (see for
example [18, 19]). In all these cases the complex electric field profile is suitably described
as the superposition of few linearly polarized Gauss-Laguerre or Bessel modes which may
nonlinearly compete to give a regular spatio-temporal behavior (stationary patterns, mode-
locking, self-pulsing, etc..). These phenomena of spatio-temporal self-organization can have in
principle novel applications in the field of optical information processing. In fact, in the earliest
stages of the field of ”Transverse Nonlinear Optics” (see [20] and papers cited therein), a
number of in-principle applications ranging from optical transistoring to associative memories
were proposed, although in those days the technology was unripe for transfer to the VCSEL
devices (see for example [21]). Other studies on transverse dynamics were proposed in the case
of VCSEL modeling, including peculiarities such as field polarizations, residual anisotropies
or spin flipping [22–24]. On the other hand, theoretical works based on the Lang-Kobayashi
model [25] studied the semiconductor laser dynamics subjected to optical feedback in the plane
wave approximation (i.e. assuming a transversely uniform field profile) in different feedback
regimes. The effect of feedback on the laser characteristics depends on both the amount of
the re-injected power and the round trip time of the field in the external cavity. The optical
feedback may lead to stable single frequency emission or complex behaviors like chaotic
intensity fluctuations or Low Frequency Fluctuations (see for example [1] and papers cited
therein). The most interesting results for sensing applications have been obtained for weak or
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moderate feedback regimes [1] where the laser emits on a single frequency at steady state. In
this case, the interference fringes in the field intensity generated by the target motion along the
optical axis are separated by λ/2.

There are relatively few works on the issue of optical feedback effects in a multi-transverse-
mode VCSEL, as theoretically addressed for example in [26–28]. The authors consider an
index guided device and expand the beam profile in the transverse plane in linearly polarized
Bessel modes of the first and second kind in the core and the cladding respectively. In all
these cases diffraction is neglected in the external cavity, and transverse mode degeneracy
is either imposed or a frequency mode mismatch is introduced ad hoc. Moreover azimuthal
modal dependence is often neglected to simplify the system dynamics and to relive the
computations, thus reducing the problem to one transverse dimension. Where only few (two
or three) rotationally symmetric modes are supposed to be excited, the modal competition is
analyzed in detail and the works report the existence of single transverse mode operation, as
well as mode-locking, like anti-phase or in phase dynamics of the modal intensities (see for
example [27]). To the best of our knowledge, there have been no proposals for applicative
schemes of such regimes.

In this paper, we cast a model suitable to provide a general description of the two dimen-
sional spatio-temporal field dynamics in a transversally extended laser with moderate aperture
with cylindrical symmetry, such as a graded index-guided VCSEL, subject to optical feedback.
The cross size of the device is assumed to be such that the emission, at least not very far
from threshold, can be described in terms of a few Gauss-Laguerre (GL) modes grouped
in frequency degenerate families [18, 29]. The basic model is developed as to encompass
multiple reflections from the external cavity and to account for laser-target settings exceeding a
self-imaging configuration. We also allow for a spatially distributed feedback that can describe
either a multi-sections external mirror or a mask in the external cavity. While the number of
modes is in principle not limited by the approach, in the following analysis of the steady state
regimes and laser dynamics, we prefer to restrict ourselves to a small number (1−3) of linearly
polarized modes, single reflection in the external cavity and self-imaging configurations,
in order to maintain an intuitive picture of the modeling and identify new metrologically
interesting properties of the reinjected device.

Focusing on the first frequency degenerate family of GL modes, we find parametric
regimes where transverse mode-locking is found and we can in principle simultaneously and
independently measure target longitudinal displacements and rotations in the transverse plane.

2. Model

The semiconductor laser dynamics, in presence of a spatially uniform feedback, has been
widely described by the Lang-Kobayashi model, consisting of two coupled delayed rate
equations for the amplitude of the electric field and the carriers density [25]. It holds in the
single longitudinal mode and plane wave approximations and in the hypothesis of negligible
multiple reflections in the external cavity between the laser exit facet and the target mirror.
Its predictions for weak and moderate feedback are in very good agreement with a number of
experimental evidences in the field of sensing and metrology [1].
Here we extend this model, to describe semiconductor laser multi-transverse-mode dynamics
by making use of previously approaches developed in absence of optical feedback [18, 30–33],
and to account for the presence of optical elements in the external cavity, as well as for multiple
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reflections therein [26]. We also assume that the target mirror re-injecting to the laser may
exhibit a deterministically designed spatial modulation of the reflectivity.
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Fig. 1. Sketch of a semiconductor laser subject to optical feedback provided by an external
target in a self-imaged configuration.

We consider a mid-area surface emitting semiconductor laser subjected to optical re-injection
from an external reflecting target as sketched in Fig. 1. The resonator is supposed to exhibit
cylindrical symmetry with respect to the propagation axis z with length l and radius rc in the
transverse (x,y) plane. The target mirror has complex reflectivity Rext and is placed at a distance
L− l from the laser end facet whose mirror has in turn reflectivity R and transmissivity T = 1−
R. The two mirrors constitute a cavity, external with respect to the laser one, and we assume that
two lenses in the external optical path make up a self-imaging configuration, so that diffraction
in this path can be neglected. This requires of course a suitable choice of the lens focal lengths
f1,2, of their separation d and of the lens-laser dd and lens-target dt distances. A self-imaging
configuration is realized for example when f1 = f2 = f , dl = dt = f , d = 2 f . EF , EB represent
the forward and backward field envelopes respectively while Ȳ1 and Ȳ2 are the envelopes of the
transmitted and injected fields that we suppose linearly polarized along a fixed direction in the
transverse plane.
In presence of weakly index guiding in the transverse plane we assume a background refractive
index that varies according to the law [18]:

n(r) = n(0)
√

1− r2/h2

where n(0) = c
√

µ0ε0, r =
√

x2 + y2 represents the radial coordinate and h >> rc.

Expressed in terms of the forward and backward propagating fields introduced above, the
field inside the laser cavity and the external cavity realized by the laser facet and the target
mirror, are:

E(x,y, t) = EF(x,y,z, t)exp(i(k0z+ω0t))+EB(x,y,z, t)exp(i(−k0z+ω0t))+ c.c.

Y (x,yz, t) = Ȳ1(x,y,z, t)exp(i(k′0z+ω0t))+ Ȳ2(x,y,z, t)exp(i(−k′0z+ω0t))+ c.c.

where ω0 = −k′0c = −k0c/n(0) = −k0v is a reference frequency chosen arbitrarily, and v the
light phase velocity in the medium.
In the slowly varying envelope approximations EF and EB satisfy the following paraxial
Maxwell equations in the semiconductor medium [18]:

1
2ik0

(
∇

2
⊥−

k0r2

h2

)
EF,B±

∂EF,B

∂ z
+

1
v

∂EF,B

∂ t
=

1
2

gn(1+ iα)(N−N0)EF,B (1)
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The parameter gn is the phenomenological gain coefficient, α is the Henry factor (' 1÷ 5),
N(z, t) is the carrier density and N0 its transparency value (typical value: 1.4×1024m−3).
We observe at this point that the ”cold” eigenmodes of the empty laser cavity, which satisfy
the equations obtained from Eq. (1) by setting equal to zero the coefficient gn and the time
derivatives, are given by [18]:

Ap,m(ρ,φ ,z) = Ap,m(ρ,φ)exp(∓i(2p+ |m|+1)z/h)

where φ = tan−1(y/x), ρ = r/W0 = r
√

k0/
√

2h is a normalized radial coordinate and we intro-
duced the Gauss-Laguerre modes of index p = 0,1,2,3...,m = 0,±1,±2,±3, ..:

Ap,m(ρ,φ) =

√
2
π
(2ρ

2)|m|/2
[

p!
(p+ |m|)!

]1/2

L|m|p (2ρ
2)e−ρ2

eimφ (2)

In the previous expression L|m|p are the generalized Laguerre polynomials (The functions Ap,m
are also the eigenmodes of a resonator with spherical mirrors in the limit l << z0, where z0 is
the Rayleigh length [15, 30]).
The laser cavity eigenfrequencies are then:

ωs,q = ωs +ωq =
v
l

sπ +
v
h
(2p+ |m|+1) (3)

where p and m are the transverse mode indices and s = 0,1,2, ... is the longitudinal mode index.
It is important to observe that the frequency of the GL modes depends on the transverse index
p and m only via the combination q = 2p+ |m|, thus introducing degeneracy. The degenerate
family of order q consists of q+ 1 modes. In the following the transverse modes of the cavity
will be denoted by the couple of indices (p,m). In literature the mode (0,0) is usually denoted
as T EM00 while the modes (0,±m) are indicated by T EM0m and called doughnut modes be-
cause of their annular intensity distribution. From the limit h >> l, it directly follows that the
frequency spacing between transverse modes ∆ωT = v/h is much smaller than the longitudi-
nal mode separation ∆ωL = vπ/l. As it will be clear, this implies that even in the mean field
limit that will be introduced soon, where a single longitudinal mode rules the system dynamics,
several transverse modes can still compete to determine the dynamics of the transverse field
profile.

Since the functions Ap,m(ρ,φ) form an orthonormal basis of the (ρ,φ) plane, the fields EF,B
can be expanded as:

EF,B(ρ,φ ,z, t) = ∑
p,m

εF,B;p,m(z, t)Ap,m(ρ,φ ,z), εF,B;p,m ∈ C (4)

Inserting expressions (4) in Eqs. (1) and using the orthonormality of the Gauss-Laguerre func-
tions we get:

±
∂εF,B;p,m

∂ z
+

1
v

∂εF,B;p,m

∂ t
=

1
2

gn(1+ iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA ∗

p,m(±z)(N−N0)EF,B (5)

The boundary conditions at the two laser facets are:

EF(x,y,z = 0, t) =
√

REB(x,y,z = 0, t)

EB(x,y,z = l, t) =
√

Rexp(2ik0l)EF(x,y,z = l, t)+
√

TY2(x,y,z = l, t)

we set Y2 = (Ȳ2/
√

n(0))exp(i(k0− k′0)l). In terms of the modal amplitudes:

εF ;p,m(0, t) =
√

RεB;p,m(0, t)

εB;p,m(l, t) =
√

Rexp(iδ0)εF ;p,m(l, t)+
√

TY2,p,m(l, t)
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where we introduced the detuning δ0 =
2l
v (ωq−ω0) and:

Y2(ρ,φ ,z, t) = ∑
p,m

Y2,p,m(z, t)Ap,m(ρ,φ ,−z), Y2,p,m ∈ C

We now introduce the mean field limit as in [18] by assuming vanishing values for T , gnl and
δ0 and finite values for the ratios gnl√

T
and θ = δ0√

T
.

In this approximation, which is very well verified in the case of VCSEL, the forward and
backward field amplitudes are equal to their common average Ep,m along z. We refer the reader
to the Appendix for a complete treatment of the model in absence of limiting approximations;
we report here the final integro-differential equations equation for the latter quantity:

dEp,m

dt
=

(
iq∆ωT −

1
2τp

(1+ iα)

)
Ep,m +

1
2

Gn(1+ iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,m(N−N0)E

+
1
τc

∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,mk(ρ,φ)E(ρ,φ , t− τ)exp(−iω0τ) (6)

where τ = 2L/c is the external cavity round trip and the feedback coefficient k(ρ,φ) is given
by:

k(ρ,φ) = ε
(1−R)

√
Rext(ρ,φ)√
R

with the coefficient ε representing coupling losses per external cavity round trip or the effect of
a neutral attenuator in the external cavity, as it is often the case in experiments. The dependence
of the complex target reflectivity Rext from the spatial variables will be particularly useful for
modeling the experimental configurations exploiting spatially structured optical elements (e.g.
spatial filters, phase masks, transversely modulated mirrors etc...). We have also introduced in
Eq. (6) the cavity roundtrip time τc =

2l
v (typical value: 8ps), the photon life time τp =

l
vT +αm

(typical value: 1.6ps), Gn = 2gnl
τc

(typical value: 8× 1013m3s−1). The coefficient αm accounts
for distributed linear losses in the laser cavity. The reference frequency is set as that of the free
running, single longitudinal mode laser frequency (ω0 = ωs̄,0 +α/2τp), where s̄ identifies a
particular longitudinal resonance. We observe that although our model is suitable to describe
the most general case of multiple reflections as well as non self-imaging configuration, in writ-
ing Eq. (6) we restrict here to the simpler case of single external reflection and self-imaging
configuration. While the second hypothesis allows us to neglect diffraction in the external cav-
ity and corresponds to a specific choice of the optical system, the first one leads us to consider
only weak or moderate feedback regimes, which are the most interesting for self-mixing inter-
ferometry.
The model is self-consistent when we add the rate equation for the carrier density:

dN(ρ,φ , t)
dt

=
I

eV
− N(ρ,φ , t)

τe
− n(0)2ε0

2h̄ω0
Gn(N(ρ,φ , t)−N0)|E(ρ,φ , t)|2 (7)

with I = pump current, e = electron charge and V = volume of the active region. τe is the
carrier decay time (typical value: ∼ 1ns). Note that Eqs. (6)-(7) reduce to the well known
Lang-Kobayashi model [25] in the plane wave approximation and spatially uniform feedback.

To obtain adimensional relations we adopt the following scaling:√
Gnτen(0)2ε0

2h̄ω0
E→ E, (N−N0)Gnτp→ N, t/τp→ t

χ(ρ) = Ipe−2ρ2/Ψ2
, Ψ ∈R with Ip = GnτpN0

(
Iτe

eV N0
−1
)
, γ =

τp

τe
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where we assume that the spatial dependent pump χ(ρ) has a gaussian shape. The modal am-
plitude rate equations now read:

dEp,m(t)
dt

=

(
iq∆ωT τp−

1
2
(1+ iα)

)
Ep,m(t)+

1
2
(1+ iα)

∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,mN(ρφ , t)E(ρφ , t)

+
τp

τc

∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,mk(ρ,φ)E(ρ,φ , t− τ)exp(−iω0τ) (8)

dN(ρφ , t)
dt

= γ
(
χ(ρ)−N(ρφ , t)(1+ |E(ρφ , t)|2)

)
(9)

The general form of the pump is suitable to describe both optically and electrically pumped
VCSEL, inasmuch in [34] the authors showed that current crowding has little effect on the
pattern structures as long as the cylindrical symmetry is preserved.
It is computationally preferable to work with sets of real equations, so that we introduce the
linear combination of Gaussian-Laguerre functions (Eq. (2)) defined as:

Bp,m,0(ρ,φ) = Ap,0(ρ,φ)

Bp,m,1(ρ,φ) =
1√
2
[Ap,m(ρ,φ)+Ap,−m(ρ,φ)]

Bp,m,2(ρ,φ) =
1√
2i

[Ap,m(ρ,φ)−Ap,−m(ρ,φ)]

Accordingly the angular index m takes only non-negative values. Obviously the eigenfrequen-
cies are still given by Eq. (3) and the frequency degeneracy of each q family is still q+1. Since
Bp,m,o are real functions, this substitution allows for a straightforward separation of equations
(8)-(9) in real and imaginary parts. Furthermore in terms of the new basis:

E(ρ,φ , t) = ∑
p,m,o

gp,m,o(t)Bp,m,o(ρ,φ), gp,m,o ∈ C

The intensity distribution of the Bp,m,o modes is reported for example in Fig. 3 of [33]. In order
to simplify the notation we replaced in the following the modal indices {p,m,o} with the single
progressive index i.

3. Numerical simulations

In this section we report the results of extended numerical simulations of the field dynamics.
As it can be easily understood, the competition among several frequency spaced mode fami-
lies (each one beating in frequency) coupled to the spatial hole burning due to the (x,y) field
profiles, often leads to chaotic dynamics. Here we start by showing that there exist domains of
transverse mode-locking, leading to a periodic regime, one above the free running laser (FRL)
threshold in the case of weak feedback and the other below the FRL threshold for strong feed-
back. In the next section we will show how in these cases the information encoded in the field
profile can be exploited to simultaneously and independently measure target displacements with
more than one degree of freedom.
We preliminary performed a wealth of checkpoints on the laser without feedback, in order to
reproduce results obtained in literature for GL-multimode lasers [33].
We numerically integrated the modal amplitudes equations derived in the previous section Eqs.
(8)-(9) by implementing an accurate and efficient numerical algorithm based on 6th order
Adams-Bashforth-Moulton predictor-corrector method. The integrals were computed by the
Gaussian quadrature method.
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3.1. Laser transverse dynamics in presence of uniform external feedback

In the case of interest we mainly investigated the dynamics of the two (q = 1) frequency degen-
erate modes for different values of the feedback strength k and the pump Ip at a fixed feedback
delay time τ given by the external cavity length L (τ = 2L/c).
In Fig.2(a) we summarize our most significant results for τ = 0.16ns which corresponds to an
external cavity of L = 2.4cm. In this figure, as in the following ones, we adopt the physical
units for the time t and longitudinal coordinate z. The red crosses represent the values of k and
Ip considered in the simulations. We were able to distinguish five different dynamical domains
denoted by the letters A, B, C, D, E and depicted in Fig.2(a).
As described in the following, we observed a regular system dynamics only in region A and
D. The former corresponds to weak or very weak feedback (k < 0.01) and pump Ip above the
FRL threshold (Ip > 1), the latter corresponds to strong feedback (k > 0.1) and Ip slightly be-
low (less than ' 15%) the FRL threshold. In the regions B and C the mode competition always
leads to an irregular dynamics. In the region E the feedback is insufficient to trigger lasing
emission.Although we did not perform a systematic study, we noted that the extension of the
different dynamical domains in the (k, Ip) plane varies with τ but maintains the same qualitative
appearance.

3.1.1. Dynamics of the (q = 1) frequency degenerate family. Above the FRL threshold.

For k = 0 (no feedback) the two modes oscillate regularly in anti-phase with average value,
amplitude and Fourier spectrum which depend on Ip.We interpret this in terms of spatial hole
burning, causing the carrier density and the gain to increase where the field intensity is smaller
so that the system tries to change the lasing regions as proposed in [31, 35]. It follows that the

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

k,τ=0.16ns

Ip

B

C

D

E

A

(a)

0 0.002 0.004 0.006 0.008

0.1

0.2

0.3

0.4

0.5

k

τ(ns)

(b)

Fig. 2. Parametric regime: α = 5, α0 = 3.0, Ψ = 50.0, γ = 0.001. (a) τ = 0.16ns. Summary
of the numerical results in the (k, Ip) plane for the family (q = 1). The red crosses represent
the values of k and Ip considered in the simulations. The vertical and horizontal gray lines
denote the k = 0 and Ip = 0 axis. The different dynamical domains A, B, C, D and E sepa-
rated by the black continuous lines are described in the text. The red crosses corresponding
to region A are not shown in the picture for sake of clarity. (b) Ip = 1.05. Each symbol
represents a numerical simulation. The red circles correspond to regular oscillations of the
field intensity while the black squares are associated to an irregular dynamical behavior.

frequency of this periodic dynamics must be close to the relaxation oscillation frequency which
is ωr =

√
γ(Ip−1) at the lowest oder in γ . The fact that the anti-phase dynamics has been

also reported in different models like those in [26, 27] indicates that this is a robust dynamical

#156317 - $15.00 USD Received 11 Oct 2011; revised 9 Dec 2011; accepted 2 Jan 2012; published 5 Mar 2012
(C) 2012 OSA 12 March 2012 / Vol. 20,  No. 6 / OPTICS EXPRESS  6295



feature of the system.
In region B a continuum of new frequencies is present in the power spectrum. For increasing
values of Ip the width and height of the Fourier spectrum maximum increases and blue-shifts
towards the closest external cavity resonance ω1 = 2π/τ .
In region C we observe that the number of peaks in the FFT increases by increasing k showing
again an irregular system dynamics (see for example Fig.3(a)). The central frequencies of their
envelopes gradually shift towards the closest external cavity resonances while their linewidths
decrease accordingly.

Above the FRL threshold we observed a phase-locking dynamics only in region A, i.e. when
the feedback strength k is smaller than a critical value. This is confirmed by the results in
Fig.2(b) which also show that the critical k depends on τ .
We plot in the left panel of Fig.3(b) the modal intensity evolution of the two (q = 1) modes,
T EM10 (B2) and T EM01 (B3), at steady state. In the inset we can see the averaged (50ns)
intensity profile of each mode and of the total intensity (sum of the modal intensities). The two
modes evolve with a frequency close to the relaxation oscillation frequency (see right panel of
Fig.3(b)). Note that they are not exactly in anti-phase since the total intensity, is not constant
in time. As expected the departure from the perfect anti-phase dynamics reduces by increasing
the photon-to-carrier lifetime ratio γ , i.e. by reducing the spatial hole burning characteristic
time scale. Moreover, as it happens in absence of feedback (k = 0), the average value and the
amplitude of these periodic oscillations increase with the pump Ip.

3.1.2. Dynamics of the (q = 1) frequency degenerate family. Below the FRL threshold.

Below the FRL threshold and for sufficiently high feedback strength we found region D where
the system exhibits again regular anti-phase oscillations with a frequency that approaches the
cavity resonance 2π/τ = 39.27GHz (see Fig.3(c)). This evidence might be explained if we
consider an effective photon-to-carrier lifetime ratio, and consequently an effective relaxation
oscillation frequency, calculated assuming the cavity length equal to the external cavity’s.
Being the new relaxation frequency much larger, we can thus expect the mode competition
to be ruled by the new, slower time scale that becomes the effective cavity round trip time τ .
Moreover we note that the amplitude and average value of the periodic oscillations increase
with the pump Ip and at regime the mode with higher intensity is determined by the initial
noise distribution. We plan to further investigate the process of generation of a periodic modal
intensity oscillation at a frequency much higher than the typical semiconductor laser relax-
ation’s (few GHz) because of its potential applications into the field of optical communication
(see for example [36]).

3.1.3. Dynamics of q = 2 frequency degenerate family.

As already stated in Sections 1 and 2, our model is suitable to describe the competition among
an arbitrary number of transverse modes, thus we devoted a limited number of simulations
looking for mode-locking phenomena when the 3 frequency degenerate modes of the q = 2
family are active. In general, here the dynamics is irregular but we were able to identify special
conditions where a transverse mode-locking can be found provided that the mode with central
maximum (B4 mode) is suppressed. In this case the remaining B5 and B6 modes, which breaks
the azimutal symmetry, evolve in anti-phase and we may in principle extend to this case all the
results reported in the next section about simultaneous measurements of target displacements
valid for the T EM10 (B2) and T EM01 (B3) in the phase-locking regime.
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Fig. 3. Parametric regime: α = 5, α0 = 3.0, Ψ = 50.0, γ = 0.001, τ = 0.16ns. (a) Region
C (Ip = 2.4, k = 0.4). Left: Temporal evolution of the modal intensities of the T EM10
(B2) and T EM01 (B3) modes. Right: Fast Fourier trasform (FFT) of the T EM10 modal
intensity. We plot the FFT of a single transverse mode, the FFT of the other mode is analo-
gous. The dashed lines denote the external cavities resonances ωi. (b) Region A (Ip = 1.05,
k = 0.0008) and (c) Region D (Ip = 0.9, k = 0.4). Left: Temporal evolution of the modal in-
tensities of the T EM10 and T EM01 modes. The blue trace represents the sum of the modal
intensities. The intensity profile of the two modes is reported in the inset together with the
total intensity distribution averaged over ∼ 50ns. The dimension of the transverse plane is
5W0×5W0 in the simulation. Right: FFT of the T EM10 modal intensity. The dashed line in
part (b) denotes the relaxation oscillation frequency ωr while in part (c) it denotes the first
external cavity resonance.
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We finally observe that when the six transverse modes of the (q = 0), (q = 1) and (q = 2)
families compete to rule the system dynamics we may get a phase-locking regime provided
large losses are added to the modes that gain in the central region (B4 and B0 modes). This
suggests that for a VCSEL emitting several mode families (as it is often the case with off-the-
shelf commercial multimode VCSELs), a locking regime might be found among modes with
m 6= 0, if one can suppress the modes with axial maxima.

4. Applications to displacements measurements

In this section, we exploit the complex features of the field emitted by a multimode mid-area
VCSEL, as considered above, for the simultaneous measure of target longitudinal displace-
ments and target rotations around the optical axis. To reach this goal we use the dynamical
properties and the spatial distribution of the T EM01 and T EM10 modes in the regimes dis-
cussed in the previous section.

4.1. Simultaneous measure of target rotations in the transverse plane and target longitudinal
displacements using spatially modulated feedback

The need to relay on regular mode dynamics, limits us to the two regions A and D in Fig. 2(a).
We note that physically the latter regime requires a high k and this implies a laser with a low
internal mirror reflectivity (R < 0.5) as can be achieved in optically pumped devices [37] or in
VCSEL with anti an reflection coating (e.g. those found in VECSEL devices) [38]. We chose
to investigate this regime first and more in depth since the modal behavior under feedback is
simpler and the measurements are cleaner and better understood. Nevertheless, for commercial
VCSEL with electrical pumping (we recall that the role and shape of the pump in our model
(section 2) is quite general) the high reflectivity (R > 0.95) leads to much lower values of k.
In this case the available operational regime is that corresponding to region A. At the end of
this section we show that the same measurement technique remains unchanged and can be
performed in a similar way with analogous results, although a reduced sensitivity is predicted.

4.2. Measure of target rotations in the transverse plane

In order to make our device sensitive to target rotations in the transverse plane, we now assume
that the target mirror is not uniform but has a spatial modulation of its reflectivity such as that
sketched in Fig.4(a). The two white quarters of the circle correspond to k = 0 (i.e. there is no
reflection), while in the gray parts k = 0.4. The mirror is then rotated by steps of Θ = 0.17rad
each 32ns around the optical axis. As Fig.4(a) shows, for each target rotation step we observe
a clear jump in the intensities of the T EM10 and the T EM01 modes that corresponds to the
rotation of the field profile shown in the bottom panel of Fig.4(a). The steep slopes following
each rotation define the fastest response time of the system in the ns range (∼ τe), corresponding
to a maximum detectable rotation frequency of about 50 MHz (see Fig 4b). Although such
upper limit is not achievable in a mechanical rotator, we note that the steady state reached
afterwards by the system (after some ringing) ensures that much slower rotation frequencies
will be equally detected.
We observe at this point that the proposed system is not able to detect the direction of the target
rotation. Of course one could think to realize more complex spatial profiles for the feedback
masks, e.g. by breaking the clockwise-anticlockwise symmetry, which would change the spatial
hole burning process for either TEM01 and TEM10 mode in a different way for clockwise and
anticlockwise target rotations, thus allowing to discriminate between the two.
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(a) (b)

Fig. 4. Parametric regime as in Fig.3(c). (a) Top: Time plot of the modal intensities during
a feedback mask rotation from Θ = 0 (left inset mask) to Θ = π (right inset mask) (rota-
tion steps of Θ = 0.17rad each 32ns). Bottom: Single frame extracted from the numerical
simulation of the field intensity variation (Media 1. (b) Time plot of the modal intensities
during a feedback mask rotation from Θ = 0 to Θ = 3π (rotation steps of Θ = 0.05rad each
0.32ns).

4.3. Measure of target displacement in the longitudinal direction

In the same parametric regime, in presence of spatially uniform feedback, we proved the de-
vice sensitivity to longitudinal displacements of the target. Our results are reported in Fig.5(a)
and Fig.5(b). In Fig.5(a) we plot the variation of the highest peak frequency in the FFT of
the modal intensities versus the target longitudinal displacement dL. We start with an external
cavity length L = 2.4cm, which corresponds to dL = 0, where the modal intensities oscillate
at a frequency close to the first cavity resonance of ∼ 39GHz. By gradually increasing dL we
observe at dL ∼ λ

4 a sudden change in the FFT peak position which becomes ∼ 3GHz. This
change is periodic with the target shift and allows to measure translations with the same λ

2
accuracy as the standard self-mixing methods; the frequency shift, though, does not allow to
discriminate between the directions of the translation. We attempt as an explanation for this
frequency discontinuity, observing that the frequency discontinuity we observe that when the
length L of the external cavity is different from an odd integer multiple of ' λ/4 the presence
of the dominant frequency peak at around the inverse of the first cavity resonance might be
justified as in paragraph 3.1.2: the system is assimilated to a laser with effective cavity equal to
the external one. On the contrary, when L is an odd integer multiple of ' λ/4 the interference
is almost destructive and we may expect that the oscillations of the modal intensities to drop
towards the relaxation oscillation frequency, thus showing a dominant low frequency peak.
In Fig.5(b) we plot the average total intensity versus target longitudinal displacement dL. It

is easy to identify the λ/2 periodicity typical of feedback interferometry when measuring dis-
placements. As in standard self-mixing (single transverse mode lasers) the intensity shift allows
to discriminate between the directions of the translation.
The previous results show that, contrary to what happens in the case of a conventional laser
diode emitting a single transverse mode, at least two different quantifiers can be potentially
associated with a measure of the target longitudinal displacements with a submicrometric res-
olution: the average total intensity (as in the single mode laser diode) and the frequency of the
modal intensity oscillations.
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Fig. 5. Parametric regime: α = 5, α0 = 3.0, Ψ = 50.0, γ = 0.001, Ip = 0.9, k = 0.4. (a)
Primary (low frequency) peak variation in the FFT of the T EM10 modal intensity (that of
T EM01 mode is very similar) with the displacement dL. (b) Variation of the average total
intensity with the displacement dL. The circles highlight the frequency discontinuity and
the corresponding values of the average total intensity.

4.4. Concurrent measurements of multiple target displacements: target rotations in the trans-
verse plane and target longitudinal displacements

The multiple informations encoded in the multimode field profile reported in the previous
paragraphs seem to indicate the possibility to simultaneously measure different target displace-
ments, i.e. target displacements with more than one degree of freedom.
To prove this we considered again a structured target mirror like that sketched in Fig.4(a)
and plot in Fig.6 the sum of the modal intensities, Isum=|g1|2 + |g2|2, and the normalized
difference, Idi f f=(|g1|2− |g2|2)/Isum, during a target rotation of π/2 in the transverse plane
for a fixed external cavity length (Fig.6(a)) and a target longitudinal displacement of 1µm for a
fixed angular position of the mask (Fig.6(b)). We see that Isum is not affected by the rotation,
while Idi f f allows to measure the rotation steps, while on the contrary, during the translation
Isum quantifies the motion while the Idi f f remains unaffected. This clearly shows that the two
quantities represent a couple of suitable quantifiers of multiple target displacements.

As anticipated in the beginning of this section we get similar results also above the FRL
threshold where transverse mode-locking occurs. The results are reported in Fig.7.
An inspection of Fig.7(a) and Fig.7(b) shows that the quantity Idi f f oscillates at a frequency
close to the relaxation oscillation frequency, contrary to what happens below the FRL threshold
(see Fig.6). Nonetheless, by low-pass filtering the Idi f f temporal trace, as shown in Fig.7(c),
we still get a proper measure of the rotational steps of the target. From an experimental point of
view this corresponds to use a ”slow” detector to measure Idi f f . Moreover, as observed below
the FRL threshold, the quantity Isum remains unchanged by the rotation.
Slightly different is the situation regarding the measurement of target translation (see Fig.7(d)).
The half wavelength periodicity in the Isum signal is still evident, but the contrast is reduced by
roughly a factor 2. The quantity Idi f f is not constant, but exhibits a slight modulation (< 1.5%)
which is anyway much smaller than the mean value jumps due to rotation. Thus, such a side
effect cannot shade out the independence of the two quantifiers with respect to the two target
motions.
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Fig. 6. Parametric regime: α = 5, γ = 0.001, Ip = 0.9, k = 0.4. Modal intensities sum (Isum)
and normalized difference (Idi f f ) during: (a) a target rotation of π/2 in the transverse plane
for a fixed external cavity length L = 2.4cm (We rotate the feedback mask of Θ = 0.17rad
each 48ns); (b) a target longitudinal displacement of 1µm (dL = 0 corresponds to L =
2.4cm, λ = 830nm) for a fixed angle Θ = 0rad.

A comment is in order to address the actual experimental realization and benefit of the pro-
posed scheme.
First of all, the requirement of a cooperative target, like a structured mirror, is necessary to
avoid speckle interference, but will restrict the range of possible applications. Speckles arising
from using a diffusive target would most probably disrupt the mode dynamics especially in
the case of frequency degenerate modes. Although most laser self-mixing applications operate
with diffusive surfaces, a number of relevant applications have been demonstrated for mirror
like target (see for example [3, 39–41]).
As far as the laser source is concerned, small-size VCSEL with few GL modes competing
just above threshold are readily commercially available. However, the residual birefringence of
the device structure usually breaks the intrinsic cylindrical symmetry of the system in such
a way that the GL modes belonging to the same family are no longer frequency degener-
ate and have orthogonal polarizations. Nevertheless there are critical points in the injection
current/temperature parameter space (the polarization switching points) where T EM01 and
T EM10 modes are simultaneously lasing with the same average power (see for example [24]).
Their different polarization would thus make experimentally easier the independent measure-
ment of their individual power required to calculate the sum and difference Isum and Idi f f . The
response time of the system averaged over 1µs would allow rotation speed measurement up
about 105rpm by counting the oscillation frequency of any of the two modes (as in Fig. 4(b)).
At the same time, any possible longitudinal displacement of the target could be detected with
sub-wavelength resolution by measuring the total power modulation (as in Fig. 6(b) and Fig.
7(d)). High precision drilling and milling applications could possibly benefit from resorting to
a single device to control both rotation speed and penetration depth. Second, while the conven-
tional self-mixing system, based on a laser diode or on a single longitudinal mode VCSEL, only
requires the reading of the internal photodiode current, or even just terminal voltage variation,
the proposed scheme, based on a multimode VCSEL, introduces a mechanical complication
given by the presence of a polarizing beam-splitter and two external detectors. However, such
a technical drawback is rewarded by having simultaneous access to two different degrees-of-
freedom of motion with a single device, the revolution speed being also entirely in the transverse
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Fig. 7. Parametric regime: α = 5, γ = 0.001, Ip = 1.05, k = 0.002. Plot of Isum and Idi f f
during: (a) a target rotation of π/2 in the transverse plane for a fixed external cavity length
L = 2.4cm (We rotate the feedback mask of Θ = 0.17rad each 160ns); (d) a target longi-
tudinal displacement of 1µm (dL = 0 corresponds to L = 2.4cm, λ = 830nm) for a fixed
angle Θ = π/4. In part (a) for sake of clarity not all the data points in the Idi f f trace are
plotted. The plot in part (b) represents a zoom of the traces in part (a). Figure 7(c) has been
obtained by low-pass filtering the oscillations shown in part (a) with a cut-off at 1MHz,
corresponding to a detector integration time of about 1µs.

#156317 - $15.00 USD Received 11 Oct 2011; revised 9 Dec 2011; accepted 2 Jan 2012; published 5 Mar 2012
(C) 2012 OSA 12 March 2012 / Vol. 20,  No. 6 / OPTICS EXPRESS  6302



plane, a plane typically unaccessible by interferometric measurements.
Finally, since spatially filtered optical feedback is already a widely used technique to stabi-
lize the mode emission in multimode VCSELs [17] as well as in broad-area diode lasers [42],
we believe that the proposed detection method could be experimentally implemented using
commercial devices, attaining mode control as well as two degrees of freedom measurement
capability at the same time.

5. Conclusions

In conclusion we developed a general model to describe the effect of spatially structured
feedback on mid-area semiconductor laser which quite generally describes the dynamics of an
arbitrary number of transverse and longitudinal modes. For simplicity and in order to demon-
strate applicative potentials of such systems, we reported results in the case of single reflection,
self-imaging external cavity, mean field approximation (single longitudinal mode) and we
limit the number of transverse modes to two (first family of frequency degenerate modes).
Our simulations reveal the existence of dynamical regimes of transverse mode-locking where
informations on target longitudinal displacements and target rotations in the transverse plane
are easily and independently encoded in the phase and/or amplitude field profile by introducing
a spatially structured feedback mirror. This indication is thus very promising for applications
in metrology since would allow to conceive a single-emitter device to simultaneous measure
target motion with different degrees of freedom.

Appendix

In this Appendix we report the detailed derivation of the equation (6) that describes the dynam-
ics of a mid-area semiconductor laser, e.g. a VCSEL, subjected to optical feedback in the mean
field limit.
Introduced the auxiliary field amplitudes:

ε
′
F ;p,m = exp(iδ0 + ln(

√
R)(z− l)/l)εF ;p,m +

z
l

√
T√
R

Y2,p,m

ε
′
B;p,m = exp(− ln(

√
R)z/l)εB;p,m

which obey the periodic boundary conditions:

ε
′
F ;p,m(0, t) = ε

′
B;p,m(0, t) (10)

ε
′
F ;p,m(l, t) = ε

′
B;p,m(l, t) (11)
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we can recast Eqs. (5) as:

∂ε ′F ;p,m

∂ z
+

1
v

∂ε ′F ;p,m

∂ t
− z

l

√
T√
R

∂Y2,p,m

∂ z
− z

vl

√
T√
R

∂Y2,p,m

∂ t
=

√
T
l

((
ε
′
F ;p,m−

z
l

√
T√
R

Y2,p,m

)(
iδ0√

T
+

ln(
√

R)√
T

)

+
( l

2
√

T
gn(1+ iα) ∑

p′,m′

(
ε
′
F ;p′,m′ −

z
l

√
T√
R

Y2,p′,m′

)
exp
(
−2i(q′−q)z

h

)
∫ 2π

0
dφ

∫
∞

0
ρdρA ∗

p,m(z)Ap′,m′(z)(N−N0)
)
+

Y2,p,m√
R

)
(12)

−
∂ε ′B;p,m

∂ z
+

1
v

∂ε ′B;p,m

∂ t
=

√
T
l

(
ε
′
B;p,m

ln(
√

R)√
T

+

(
l

2
√

T
gn(1+ iα) ∑

p′,m′
ε
′
B;p′,m′

∫ 2π

0
dφ

∫
∞

0
ρdρA ∗

p,m(−z)Ap′,m′(−z)(N−N0)

))
(13)

We chose as reference frequency that of the fundamental Gaussian mode of given longitudinal
index s̄ (ω0 = ωs̄,0) and we additionally suppose valid the mean field limit, i.e. small laser
facets transmission, small gain per cavity round trip and small cavity detuning. Under this
approximation by summing up side by side Eqs. (12)-(13), taking the average along z and using
the boundary conditions (10)-(11):

dEp,m

dt
=

v
√

T
2l

(
Ep,m

(
iθ −
√

T
)
+

l√
T

gn(1+ iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,m(N−N0)Ē +

Y2,p,m√
R

)
where we supposed that Ep,m = 1

l
∫ l

0 ε ′F ;p,mdz' 1
l
∫ l

0 ε ′B;p,mdz, that the carrier density N is almost
constant along z and we set Ē(ρ,φ)=∑p,m Ep,mAp,m(ρ,φ). These latter two hypothesis are very
well verified in a semiconductor laser cavity with a longitudinal dimension of few microns like
a VCSEL.
After renaming E the field Ē we finally get the following system of coupled, nonlinear, integro-
differential equations for the field modal amplitudes:

dEp,m

dt
=

(
iq∆ωT −

1
2τp

(1+ iα)

)
Ep,m+

1
2

Gn(1+iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,m(N−N0)E+

√
T√

Rτc
Y2,p,m

(14)
where we reset the reference frequency as the free running, single longitudinal mode laser
frequency (ω0 = ωs̄,0 +α/2τp) and we exploit the relation ωs̄,q−ωs̄,0−α/2τp ' ωs̄,q−ωs̄,0 =
q∆ωT .
In order to account for multiple reflections in the external cavity one may write:

Y2(l, t) =
exp(i(k0− k′0)l)√

n(0)
Ȳ2(l +L, t− τ/2)exp(−2ik′0L)

=
√

Rext
√

1−Rexp(2ik0l)exp(−iω0τ)EF(l, t− τ)−
√

Rext
√

Rexp(−iω0τ)Y2(l, t− τ)

According to the mean field limit we can set:

Y2(l, t) = ε
√

Rext
√

1−Rexp(−iω0τ)E(t− τ)− ε
√

Rext
√

Rexp(−iω0τ)Y2(l, t− τ) (15)

In deriving Eq. (15) we neglected diffraction in the external cavity by implicitly assuming a
self-imaging configuration. As anticipated in the introduction, although all the results reported
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in this paper refer to this simpler case, our model accounts for non self-imaging cavity if Eq.
(15) is replaced with:

Y2(l, t) = ε
√

Rext
√

1−Rexp(−iω0τ)∑
p,m

Ep,m(t− τ)DAp,m

− ε
√

Rext
√

Rexp(−iω0τ)∑
p,m

Y2,p,m(l, t− τ)DAp,m

where D denotes the propagation operator of the Gauss-Laguerre functions Ap,m in free space
[43]. Clearly we get the self-imaging configuration when D is the identity operator. This for
example allowed us to estimate the effect on the laser characteristics of a non perfect self-
imaging, which is likely to occur experimentally.
Introducing relation (15) in Eq. (14) we obtain:

dEp,m

dt
=

(
iq∆ωT −

1
2τp

(1+ iα)

)
Ep,m +

1
2

Gn(1+ iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,m(N−N0)E

+
1
τc

(
ε

√
Rext(1−R)√

R
exp(−iω0τ)Ep,m(t− τ)− ε

√
Rext
√

1−Rexp(−iω0τ)Yp,m(l, t− τ)

)
(16)

where we put Y2,p,m(l, t − τ) = Yp,m(t − τ). Finally, we may write in an alternative form Eq.
(16):

dEp,m(t)
dt

=

(
iq∆ωT −

1
2τp

(1+ iα)

)
Ep,m(t)+

1
2

Gn(1+ iα)
∫ 2π

0
dφ

∫
∞

0
ρdρA∗p,m(N(ρ,φ , t)−N0)E(ρ,φ , t)

+
1
τc

(
∞

∑
s=1

ksEp,m(t− sτ)exp(−isω0τ)

)
(17)

where the feedback coefficients ks are given by:

ks = ε
s (1−R)

√
Rext√

R

(
−
√

R
√

Rext

)s−1
, s ∈N

From Eq. (16) we derive Eq. (6) by further assuming a spatially modulated target and a single
reflection in the external cavity.
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