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Abstract: We describe two different methods that exploit the intrinsic
mobility properties of cavity solitons to realize periodic motion, suitable in
principle to provide soliton-based, all-optical clocking or synchronization.
The first method relies on the drift of solitons in phase gradients: when the
holding beam corresponds to a doughnut mode (instead of a Gaussian as
usually) cavity solitons undergo a rotational motion along the annulus of
the doughnut. The second makes additional use of the recently discovered
spontaneous motion of cavity solitons induced by the thermal dynamics, it
demonstrates that it can be controlled by introducing phase or amplitude
modulations in the holding beam. Finally, we show that in presence of a
weak 2D phase modulation, the cavity soliton, under the thermally induced
motion, performs a random walk from one maximum of the phase profile to
another, always escaping from the temperature minimum generated by the
soliton itself (Fugitive Soliton).
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1. Introduction

Cavity solitons (CSs) [1, 2, 3, 4, 5, 6, 7, 8] are stationary bright/dark 1-peak localised structures
over a homogeneous background in the section of broad radiation beams. The possibility of
switching them on/off, controlling their location and their motion makes them interesting as
pixels for reconfigurable arrays or all-optical processing units [7, 8].

Most interesting from the practical viewpoint, for miniaturization purposes, is the case in
which the active medium is a semiconductor: the standard configuration on which we will
focus our attention is that of an optical cavity containing a semiconductor medium and driven
by a stationary holding beam (HB); both the material sample and the holding beam have a large
section.

Phenomenological models [8, 9, 10] have been proposed to describe the semiconductor mate-
rial; on the other hand, a more accurate modelization of the semiconductor materials, including
a microscopic description of the optical nonlinearity has been performed in [11, 12]. CSs have
been recently experimentally demonstrated in semiconductor amplifiers [13].

The analysis of this paper concerns and combines two different issues in the physics of cavity
solitons.

1) Motion of CSs induced by the presence of phase/amplitude gradients in the holding beam.
2) Spontaneous motion of CSs induced by the slow thermal dynamics. This phenomenon
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was predicted in [14] for the case of a driven VCSEL with population inversion, extended to
the 2D case in [15] and [16], and extended to a configuration without population inversion in
[15, 17]. It is caused by the circumstance that the temperature field evolves with a time scale
much larger than that of the carrier field and of the electric field. In an appropriate parameter
range, this gives rise to a pitchfork bifurcation [15, 18] which induces a spontaneous motion
of patterns and of CSs. When the CS is switched on, the optical spot remains stationarily in
the location where it was created for times shorter than the time scale (microsecond) which
characterizes the thermal dynamics, then it starts moving in a random direction; after an initial
transient, the velocity becomes constant when the holding beam (HB) is flat. When several CSs
are present, they move, in general, in different directions. The destabilization process arises in
the following way: after excitation of the CS, a minimum appears in the temperature profile,
at the spatial location of the optical spot. This is a consequence of the fact that a maximum of
intensity corresponds to less carriers and less heating (in active systems). When the temperature
in the minimum reaches a certain critical value, the optical spot starts moving towards larger
values of temperature [16]. The minimum of the temperature profile gradually disappears and
a dynamical equilibrium is reached, in which the optical spot and the temperature front move
together (see Fig. 4 of [16]).

Our analysis is subdivided into two parts of unequal lengths
a) The first part concerns only point 1) and is based on a model which does not include

the temperature. Up to now, the effects of gradients in the HB have been mainly studied by
introducing a phase modulation in a plane-wave HB [7], or an amplitude modulation which
converts the plane-wave configuration of the HB into a Gaussian one [10]. Here we consider
the case of a doughnut-shaped holding beam, which is both amplitude and phase-modulated,
and show that - as one can easily understand - one has a uniform rotational motion of CSs along
the annulus of the doughnut. This is the paradigmatic configuration of a HB which gives rise to
a rotatory motion. In addition, this is a visual demonstration of the orbital angular momentum
carried by the doughnut mode [19, 20].

b) The second part is based on a model which includes the temperature dynamics and we an-
alyze how the presence of phase/amplitude gradients affects the spontaneous motion described
above in point 2). Such a motion represents in principle a problem but, as we show, can be
controlled by gradients and this feature may open new opportunities for application. In [14]
our analysis was limited to the case of one transverse dimension and we showed that in 1D the
spontaneous motion can be confined or even suppressed by introducing a phase modulation. In
2D there is a far richer scenario of possibilities for example, Ref. [15] illustrates the collision
between two dark CSs in the passive (i. e. without population inversion) case. Here we examine
some of the simplest and most meaningful configurations.

2. The model

2.1. a) Without thermal effects

We consider a broad area semiconductor heterostructure in both the active (i.e., with popu-
lation inversion) and the passive configuration. The semiconductor microresonator is of the
Fabry-Perot type, with a MQW structure perpendicular to the direction z of propagation of the
radiation inside the cavity as in [10]. The dynamical equations for the slowly varying coherent
field and carrier density, in the paraxial and mean field limit approximations, are:

∂E
∂ t

= −κ
[
(1+η + iθ)E +EI −2CiΘ(N−1)E + i∇2

⊥E
]
, (1)

∂N
∂ t

= −γ‖
[
N+βN2− I +(N−1)|E|2−d∇2

⊥N
]
, (2)
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whereE, N are the normalized electric field and the carrier density normalized to the trans-
parency value, respectively,κ is the cavity damping constant,γ‖ is the carrier nonradiative
recombination rate,θ = (ωc−ω0)/κ is the cavity detuning parameter, withω0 being the fre-
quency of the holding field andωc the longitudinal cavity frequency closest toω0. The trans-
verse Laplacian, defined as usual as∇2

⊥ = ∂ 2/∂x2 + ∂ 2/∂y2, represents diffraction (in Eq. 1),
and carrier diffusion (in Eq. 2 through the diffusion parameterd), η is proportional to the linear
absorption coefficient per unit length due to the material in the region between the QWs and the
reflectors,β = BN0/γ‖ whereB is the coefficient of radiative recombination involving two car-
riers,N0 is the carrier density at transparency. The transverse coordinatesx andy are scaled to
the diffraction length. The parameterEI is the normalized injected field (taken real and positive
for definiteness),I is the normalized injected current,C is the bistability parameter.

In the passive configurationΘ = (∆ + i)/(1+ ∆2) and∆ = (ωe−ω0)/γe, whereωe is the
central frequency of the excitonic absorption line, approximated by a Lorentzian curve, andγe

is the half-width of the excitonic line. In the active configurationΘ = α + i, whereα is the
line-width enhancement factor typical of semiconductor lasers.

In order to perform an analysis as realistic as possible in comparison with the devices nowa-
days available, the choice of numerical values of the physical quantities characterizing our
model was inspired by some experimental works on optical bistability in GaAs MQW struc-
tures [21, 22]. The reader is referred to Ref. [10] for a more detailed discussion of the model
equations and of the calculations of the homogeneous stationary solutions and their stability
analysis.

2.2. b) Including thermal effects

The device is essentially the same as in casea), but here we also take into account the thermal
dynamics.

The time evolution of the system can be described by considering an additional equation
for the lattice temperatureT, that is coupled to the field and carrier equations through the
temperature dependence of the nonlinear susceptibility and of the cavity detuning parameter
(see [14, 15]) :

∂E
∂ t

= −κ
[
(1+ iθ(T))E−EI − iΣχnl(N,T,ω0)E− i∇2

⊥E
]
, (3)

∂N
∂ t

= −γ‖
[
N− Im(χnl(N,T,ω0)) |E|2− I −d∇2

⊥N
]
, (4)

∂T
∂ t

= −γth
[
(T−1)−DT∇2

⊥T
]
+ γZN+ γPI2 , (5)

whereT is the lattice temperature normalized to the room temperatureT0, γth is its decay rate
towards the environmental temperature.

The coefficientsZ andP describe the heating of the device due to carriers and to Joule effect,
respectively.

In order to take into account the thermal shift of the cavity frequency in this model, we have
considered a linear dependence on temperature in the cavity detuningθ , this effect being related
to the material layers in the regions between the nonlinear medium and the reflectors:

θ = θ0−λ (T−1) , (6)

with

λ =
4πT0

nΓ
∂n
∂T

, (7)
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whereθ0 is the cavity detuning at room temperature,n is the background refractive index,
∂n
∂T ' 10−4K−1 andΓ is the mean value of the mirror transmissivity. For a full description of
the system parameters of the homogeneous steady state and its linear stability analysis we refer
to [14]. As for the nonlinear susceptibilityχnl , as in [14] we adopt the microscopic description
of [12] to include the bandgap shift upon an increase of temperature.

3. Numerical Analysis

The numerical integration of dynamical equations was performed by using a split-step method
with periodic boundary conditions. This method implies the separation of the algebraic and the
Laplacian terms in the right-hand side of dynamical equations. The first part is integrated via a
Runge-Kutta algorithm, while the linear operator (Laplacian) is integrated via a FFT algorithm.

In both previous modelsa) andb), when the input filedEI is a plane-wave (i.e. it does not
depend on the transverse variablesx andy) the dynamical equations admit homogeneous (i.e.
x-andy-independent) stationary solutions. In all cases considered in this paper, the steady-state
curve of |ES|, whereES is the stationary value of the fieldE, as a function ofEI is S-shaped
(see e.g. Fig. 2 and 4 in the following) and its lower branch is stable. On the contrary, the
negative-slope branch and part of the upper branch are unstable against the growth of spatially
modulated perturbations.

3.1. a) Without thermal effects

We studied Eqs. (1) and (2) both in the passive and in the active configurations. In the passive
case, we setI = 0, η = 0.25, β = 1.6, d = 0.2 and∆ = −1. The values are derived from Ref.
[10]. As for the remaining parameters, we choseθ =−3 andC = 40.

Initially, we switch a CS on by exploiting the usual superposition of a narrow gaussian pulse
on top of the plane-wave holding beam. After the CS formation we change the holding beam
configuration by introducing a phase/amplitude modulation. Precisely, we convert the plan-
wave HB into a Gauss-Laguerre doughnut mode (TEM∗

10 or TEM∗
01), as shown in Fig. 1(a).

The CS moves towards the circle where the annulus of the doughnut mode is maximum (as
usually, CSs tend to the local maxima of the amplitude profile) and remains trapped there. In
addition, the CS experiences a force due to the phase modulationexp(±iϕ(x,y)) (with ϕ(x,y) =
tan−1( y

x)) of the doughnut mode which causes a rotational motion (see the movie in Fig. 1(b))
along the circle. The sense of rotation is determined by the helicity (or equivalently, by the
orbital angular momentum) of the HB and is counter-clockwise (clockwise) in the+(−) case.
We studied also the active configuration, where the device is pumped by an injected currentI
larger than the transparency valueI0, in such a way that it becomes an amplifier, slightly below
the threshold for laser emission, with an injected fieldEI .

Again, we adopt numerical values derived from Ref. [10]. In this case, the threshold current is
Ith = 2.11, and we setI = 2. We considered the parameterα = 5, θ =−2, C = 0.45, η = β = 0
andd = 0.052. In Fig. 2 we show the steady-state curve, the dotted segment is unstable because
of a modulational instability. We consider values ofEI just below the righthand turning point of
theS-shaped curve, so that the presence of CSs is observed. We create a pair of cavity solitons,
then we change the plane-wave HB into a doughnut-mode as before. Fig. 3 shows a movie in
which the two CSs rotate in the same direction.

In the active configuration we measured the velocity of cavity solitons in presence of a dough-
nut mode with phase modulationexp(±iϕ) and we gotν = 2.02µm/nsec, while by changing
exp(±iϕ) into exp(±2iϕ) we gotν = 2.2µm/nsec. Hence, the cavity soliton velocity does not
seem to be significantly affected. This is only apparently in contrast with the predicted linear
dependence of the drift speed on the field gradient [23, 24, 25], because the linear relation holds
when the field phase gradient can be treated perturbatively. In this case, the doughnut having
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�

Fig. 1. Gauss-Laguerre mode (TEM∗
10) that we used as holding beam (a). The movie (b)

shows the rotatory motion of CS due to the phase profilee+iϕ of the holding beam. Passive
configuration, without thermal effects. Parameters are:κ−1 = 10ps, γ−1

‖ = 10ns, I = 0, η =
0.25, β = 1.6, d = 0.2, θ =−3, C = 40, ∆ =−1 .

0,0 0,5 1,0 1,5 2,0
0,0

0,5

1,0

1,5

2,0

2,5

 Stable hom. branch
 Unstable hom. branch

|Es|

EI

 

Fig. 2. Active configuration without thermal effects: steady-state curve. Parameters are:
C = 0.45, θ =−2, α = 5, I = 2, η = 0 , β = 0 andd = 0.052.

�

Fig. 3. Gauss-Laguerre mode (TEM∗
01) that we used as holding beam (a). The movie (b)

shows the rotatory motion of 2 CSs due to the phase profilee−iϕ of the holding beam.
Active configuration, without thermal effects. Temporal parameters are:κ−1 = 10ps,γ−1 =
1ns. Other parameters are as in Fig. 2.
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Fig. 4. Active configuration with thermal effects: steady-state curve. Parameters are:
κ−1 = 10ps,γ−1

‖ = 1ns,γ−1
th = 1µs, DT = 1, d = 0.1, ∆ = 3, θ0 = −18.5, Σ = 80, Z '

1.2 ·10−4, P' 8.1·10−8, I = 1.43.

a unitary phase pitch, this is far from true. Moreover, we expect that for high CS velocity, the
carrier dynamics slows down the motion, thus providing a saturation effect in the drift speed.

We want to make further investigations on this topic to evaluate more finely the speed de-
pendence on the phase gradient and on the injected field amplitude, in order to quantify the
saturation. We leave this calculations for a future publication.

In Ref. [26], dealing with a different kind of cavity solitons (Dark Ring Cavity Solitons) that
exist in an optical parametric oscillator, the rotation of a domain wall on a doughnut beam is
analysed, with very good quantitative agreement between analysis and the simulations for the
rotation speed of the domain wall.

3.2. b) Including thermal effects

We solve numerically Eqs. (3-5) to demonstrate that the spontaneous drift of CSs, induced by
thermal effects, can be controlled by using a HB with appropriate phase/amplitude modulation.

As for the parameter set, we refer the reader to the case reported in [14], settingZ '
1.2×10−4, P' 8.1×10−8, Σ = 80, ∆ = 3, θ0 =−18.5, I = 1.43, d = 0.1 andDT = 1. The ho-
mogeneous stationary solution is shown in Fig. 4, where the dotted segment is unstable because
of a dynamical modulational instability, which indicates the drift of CSs.

We note that for a different choice of the parameter set, in particular of the diffusion param-
eters, an opposite situation can take place, and stationary CSs can be found [14].

We switch a CS on forEI = 2.55, where the lower branch of the steady-state curve is stable.
We remove the writing pulse and the optical spot persists in the position where it has been
excited for an initial interval time on the order ofγ−1

th , and then it starts drifting in a random
direction.

We decided to control the direction of motion by introducing a phase or an amplitude modu-
lation in the holding beam.

In the case of phase modulation, we superimpose to the homogeneous HB two orthogonal
standing waves of amplitudesρ1 andρ2, respectively, and out of phase byπ

2 with respect to the
homogeneous background; so that [10]

EI (x,y) = E(0)
I [1+ i(ε1cosKx+ ε2cosKy)] , (8)

whereεi = 2ρi/E(0)
I (i=1,2). Provided thatεi is sufficiently small,EI acquires essentially a pure
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Fig. 5. 1D phase profile of the holding beam (a). The movie (b) shows the dynamics of two
CSs. Parameters are as in Fig. 4.

phase modulation, becoming

EI (x,y)≈ E(0)
I exp(iϕ(x,y)) ,ϕ(x,y) = ε1cosKx+ ε2cosKy, (9)

Firstly, we consider a 1D sinusoidal phase profileϕ(x,y) = ε cos(Kx) by settingε2 = 0,
ε1 = ε = 0.2, as it is displayed in Fig. 5(a). In Fig. 5(b) we show the motion of two cavity
solitons in presence of this holding beam. It is well known [7] that CSs approach the nearest
maximum of the phase profile, hence initially the CSs move to their closest phase maxima, then
they continue their thermal motion in they direction, in which no phase modulation is present.

For both cases, with and without the phase modulation in the holding beam, the cavity soliton
velocity was measured. In absence of phase modulation we obtainv ∼= 47µm/µs, while in
presence the phase modulation we getv∼= 48.4µm/µs. Hence the drift velocity does not seem
to be significantly affected by the presence of the modulation, whose effect is thus mainly of
steering the CS in the initial phase of the drift.

In another simulation, we control the CS motion by using a holding beam with an amplitude
modulation. For this purpose two Gaussian beams created in the grid center were superimposed,
one with phase equal to zero and waist equal toσ1, the other with phase equal toπ and width
equal toσ2, with σ1 > σ2. The amplitudes of the two Gaussian beams have been taken equal.

The result of this superposition is a beam with an amplitude gradient that has the shape of a
ring (like a doughnut mode), as shown in Fig. 6(a), but in this case no phase gradient is present.

The CS is once again trapped in a circle but now it moves spontaneously because of thermal
effects and it is confined to the ring (see Fig. 6(b)) by the amplitude modulation. In the case of
Fig. 1, on the contrary, the CS was moving because of the phase modulation of the doughnut-
shaped holding beam.

Finally, we studied the case of HB with a pure 2D phase modulation, which corresponds to
ε1 = ε2 = ε in Eq. 9 (see Fig. 7(a)). The cavity soliton moves towards the nearest maximum of
the phase landscape and remains trapped there for a while. When the CS is trapped, a minimum
of temperature develops in the location of the optical spot and tends to destabilize it. In Ref.
[14] we showed (1D simulation) that the CS can be trapped at a phase maximum, momentarily
or indefinitely, depending on the strength of the phase modulation. If this is too high, the CS
dies.

In Figs. 7(b) and 7(c) we show the dynamics of the field intensity profile and of the tem-
perature profile, respectively, forε = 0.05. The optical spot starts moving and is momentarily
captured by one of the nearest phase maxima where, however, the temperature field starts dig-
ging a dip which, in this case, is capable of expelling the CS. As a consequence, the CS is
captured by another phase maximum for a while, then it is again expelled, and the process re-
peats again and again, generating random walk in the phase landscape, in a sense similar to a
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Fig. 6. The profile of the input holding beam with ring-shaped pure amplitude gradient is
shown in (a). The movie (b) illustrates the motion of CS. Parameters are as in Fig. 4.

�

 

Fig. 7. 2D phase profile of the holding beam (a). The movie shows the time evolution of
field intensity (b) and temperature (c). Parameters are as in Fig. 4.

slow pinball game.

4. Conclusions and discussion

The motion of CSs in presence of phase or intensity gradients is interesting for applications
such as all-optical encoding and processing of information and also controlled motion of small
molecules or optical tweezers.

In particular, we have shown the circular motion of CSs in presence of aTEM∗
10 or aTEM∗

01
mode as holding beam, both in the case of passive and active configurations, in absence of
thermal effects.

We have also demonstrated that the spontaneous drift induced by thermal effects on CS
can be controlled by using holding beams with phase or amplitude modulations. A peculiar
phenomenon has been shown in the case of 2D phase modulation: for suitable values of the
modulation amplitude, the combination of the thermally induced motion and of the attracting
action of the maxima of the phase profile gives rise to a random walk in which the the CS
visits in sequence the various maxima. Each jump from one maximum to another is induced by
the fact that the optical spot escapes from the dip that the temperature develops at its location.
This picture induces us to describe the spontaneous motion of CS, caused by the temperature
dynamics, with the name “Fugitive Soliton”. Quite interesting is that the random character of
the motion is not introduced by stochastic terms in the equations, but by casual choice of the
speed direction of the cavity soliton in its thermally induced motion.
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