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Amendola 173, Bari, I-70126 Italy

3Consiglio Nazionale delle Ricerche, CNR-IFN, via Amendola 173, Bari, I-70126 Italy
∗lorenzo.columbo@gmail.com

Abstract: We study the instability thresholds of the stationary emission
of a quantum cascade laser with optical feedback described by the Lang
Kobayashi model. We introduce an exact linear stability analysis and an
approximated one for an unipolar lasers, who does not exhibit relaxation
oscillations, and investigate the regimes of the emitter beyond the continu-
ous wave instability threshold, depending on the number and density of the
external cavity modes. We then show that a unipolar laser with feedback
can exhibit coherent multimode oscillations that indicate spontaneous
phase-locking.
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1. Introduction

Since long Quantum Cascade Lasers (QCLs) have triggered a widespread interest for several
reasons: wavelength agility (1− 100T Hz), high output power (> 100mW ), continuous wave
(CW) emission, narrow linewidth (< 10KHz), high speed modulation (up to several tens of
GHz) [1, 2, 3]. Such features led to a row of highly prized applications in imaging, communi-
cations technology, sensing, astrophysics and space-science [3].

The search for mode-locked regimes in multimode QCLs, aiming at applications such as fre-
quency comb generation, time-resolved measurement, and nonlinear wavelength conversion is
in its initial stages. Contrary to the case of conventional bipolar semiconductor (s.c.) lasers, the
fast gain recovery time of QCLs (∼ 1ps) due to intrasubands transitions (non-radiative phonon
scattering) seems to favor the onset of multimode regimes such as those associated with the
spatial hole burning and with a coherent instability similar to the Risken-Nummedal-Graham-
Haken instability, although preventing spontaneous mode-locking [4]. So far, few examples of
active mode-locking among longitudinal modes obtained by modulating the bias current have
been recently demonstrated and used to generate ultrashort picosecond pulses [5, 6, 7]. Also,
an example of stable phase coherence of multiple transverse modes is reported in [8].
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From a theoretical point of view a complete understanding of the coherent multimode dy-
namics in QCLs is still to be achieved and this would eventually help to identify favorable phase
relations for pulsed emission.

On the other side, QCLs entered with success the community of self-mixing interferometric
sensing in which the laser source is used to simultaneously generate and detect electromagnetic
radiation [9, 10, 11, 12]. As an emitter, a QCL is characterized by a class A dynamics, where
the carriers and the polarization variables are enslaved by the electromagnetic field. This is
due to high values of the ratio between photon and carrier lifetime in unipolar lasers where
the latter is dominated by non-radiative phonon scattering. This unique feature leads to the
absence of relaxation oscillations in the evolution of a free running QCLs towards its steady-
state [13]. In the case of conventional s.c. lasers subject to optical feedback (OF) it is well
known that the amplification of relaxation oscillations under increasing feedback power is the
fundamental mechanism of CW destabilization, leading to chaotic dynamics [14]. Also, the
linewidth enhancement factor (LEF) or Henry factor known to play a role in conventional s.c.
lasers as evidenced in [15, 16], favoring stability for low values.

Recently, we predicted that a THz single mode QCL with OF, due precisely to the absence
of relaxation oscillations and negligible LEF (α < 1) can exhibit an absolute stability against
OF and experiments proved that it can sustain a feedback strength ∼ 70 times larger than that
typically leading to the onset of chaos in a diode laser [17].

In this work we focus on the instabilities and dynamical behavior of the retroinjected QCLs,
and investigate in particular the occurrence of regular oscillatory dynamics, that can be quali-
fied as form of phase synchronization among modes. This can be an important heralding feature
towards mode-locking and pulse generation. In absence of relaxation oscillations, the instabil-
ity we deal with is characterized by the competition of modes, not defined by the free running
laser, but by the external cavity (EC) formed by the feedback mirror and the laser output facet.
As we will show, the LEF and EC length strongly influence the multimode dynamics and can
either remove the instability altogether or favor a chaotic dynamics. We are of course inter-
ested in regimes comprised between the two, where regular dynamics can ensue from mode
competition. To address this issue, we will adopt an essential and simple modelization of a
QCL with OF, that allows us to focus on crucial dynamical parameters such as the LEF and
characteristic time scales of the field and carriers dynamics. This is important to gain a physical
insight towards the complex dynamics originating by the destabilization of the single mode CW
emission, typical of lasers with OF [17].

The paper begins with the description and motivation of the adopted model (Sec. 2), it then
proceeds with the analysis of the CW solutions and their spectral properties, with respect to
the dependence on critical parameters (LEF and EC length). A Linear Stability Analysis (LSA)
in Sec. 3 identifies the conditions for the loss of stability of the CW solutions and provides a
simpler approximation valid for unipolar lasers. Section 4 is devoted to the analysis of the laser
behavior above the instability threshold and shows the existence of regular oscillations where a
number of CW solutions contributes to the emission. The conclusions are drawn in Sec. 5.

2. The model

We consider a QCL to which OF is provided by an external mirror placed at a distance L from
the laser output facet as sketched in Fig. 1. The intensity of the back reflected radiation can
be varied by an attenuator (not shown in the picture). We describe the system dynamics in
the framework of the well known Lang-Kobayashi (LK) approach [18]. With respect to more
complex descriptions of the QCL dynamical behavior based on Maxwell-Bloch equations for
two [4] o three level systems [19, 20], it keeps a relatively simple formalism while still having
remarkable success in describing the actual behavior of retroinjected lasers [14]. Actually it has
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Fig. 1. Schematic layout of the self-mixing configuration. The QCL radiation is focused on
the external target and re-injected into the cavity laser after a cavity round trip.

been recently used to derive relevant parameters of Mid-IR and THz quantum cascade lasers
such as the LEF or to measure dynamical features of the target [21, 22, 23].

The model consists in two rate equations for the spatio-temporal evolution of the electric
field and the carrier density in the laser cavity; it considers a phenomenological refractive index
and gain, independent from the frequency and linearly dependent from the carriers density and
a single delay term in the equation for the field. The flat gain is a sustainable approximation
at this investigatory stage, since the number of external cavity modes (ECMs) we will con-
sider and the free spectral range of the EC (EFSR) will in general allow this approximation
for a QCL, whose gain width easily exceeds few T Hz. Another fundamental limiting assump-
tion in the LK model is the single roundtrip approximation, where multiple reflections in the
EC are neglected assuming a moderate feedback [18]. Of course, when the strength of the OF
grows this approximation fails and more refined approaches must be used [14]. We neverthe-
less checked that even when corrections accounting for multiple reflections are introduced, the
relevant dynamics remains unchanged.

The standard LK model in Eqs. (7.4) of [14] can be written in an adimensional form by
introducing the field E = Ẽ

√
Gnτe, the carrier density N = (Ñ− Ñ0)Gnτp:

dE(t)
dt

=
1
2
(1+ iα)(N(t)−1)E(t)+

kτp

τc
E(t− τ)e−iω0τ (1)

dN(t)
dt

= γ
(
Ip−N(t)(1+ |E(t)|2)

)
(2)

where Gn is the modal gain coefficient, τe is the carrier density decay time from the upper laser
level, the time t is scaled to τp, the photon lifetime. The carrier density at transparency is Ñ0
and the pump parameter Ip is defined as Ip = GnτpÑ0(Ggenτe/Ñ0−1) where Ggen is electrical
pumping term. Other parameters are α , the LEF; the photon to carrier lifetime ratio γ; the free
running laser frequency ω0 (equal to the laser cavity resonance) which will be the reference
frequency; the laser cavity round trip time τc, and the EC length L which defines the delay
time τ = 2L/c and of course the EFSR. The feedback parameter k depends on the effective
fraction of the back-reflected field re-entering the laser ε , the laser exit facet reflectivity R and
the external mirror reflectivity Rext trough the relation: k = ε

√
Rext/R(1−R).

Looking for CW solutions of Eqs. (1) and (2) in the form E = Es exp i(ωF −ω0)t and N = Ns

lallenbaugh
footer



we get:

Ns = 1−
2kτp

τc
cos(ωF τ) (3)

ωF = ω0−
kτp

τc
[αcos(ωF τ)+ sin(ωF τ)] (4)

|Es|2 =
Ip

1− (2kτp/τc)cos(ωF τ)
−1 (5)

As it is well known the s.c. laser with OF is an infinite dimensional system and its steady state
characteristic might be strongly modified with respect to the free running laser case. We observe
in particular that: 1) from Eq. (5) it directly follows that k is limited by kmax = τc/2τp; 2) Eq.
(4) for the field frequency ωF is transcendental, so its multiple solutions cannot be determined
in closed form.

If not otherwise specified we use a set of parameters for the THz QCL model reported in
Table 1. They refer to typical GaAs/AlGaAs heterostructures and have been derived from ex-

Table 1. Physical parameters for a QCL in the LK model

Rext = 0.9 R = 0.315 ω0 = 24.8T Hz
γ = 10 τc = 37.4ps τp = 32.4ps

perimental data [24, 17]. Note the large value of the photon to carrier lifetime ratio γ , a unique
feature of s.c. unipolar lasers.

While the complex structure of the CW stationary solutions of this model has been studied
for decades, we now dwell to some extent thereon, in order to clarify the relation among the
number of solutions, their ordering with respect to the ECMs, the feedback strength and to
highlighten the role of the LEF in this model.

Choosing a pump 50% above free running laser thershold (Ip = 1.5), k = 0.5, and a cavity
length of L = 146mm (i.e. τ = 30 that corresponds to a cavity round trip time of ≈ 1ns), we
report in Fig. 2(a) the complete set of CW solutions in the intensity–frequency plane (ω−ω0,
|E|2) for three different values of the LEF α = 0.35,1.3,3. Roughly speaking, the first two
values can be considered appropriate for a THz QCL, a Mid-IR QCL [21, 22], while 3 is more
typical of diode lasers. Moreover, in Fig. 2(b) we plot the frequencies of the CW solutions ωF
vs k for the chosen values of α . We remind that the upper limit of k in Fig. 2(b) is imposed by
the self-consistency of the LK model and it is given by kmax =

τc
2τp

= 0.58.
Figure 2(a) shows that the CW solutions are close but not exactly coincident with the ECMs

(vertical dashed lines) that are separated by the EFSR = 2π/τ ' 0.21 (that corresponds to
' 6.45GHz in physical units).

Starting from the CW closest to ω0, the CW solutions separated by ' 2π/τ and associated
with higher intensities are called ”modes” of the system and correspond to in–phase interference
between the electric field in the laser cavity and the reinjected delayed field. The other solutions
are called ”antimodes” and correspond to destructive interference; such antimodes are always
unstable in standard operation as demonstrated by T. Erneux and coworkers for a diode laser
[25]. Modes and antimodes appears in pairs via a saddle-node bifurcation as we increase the
feedback strength.

It is important to remark that the number of CW solutions increases with increasing α . This
can be understood by considering that in the hypothesis of a linear dependence of the gain G
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Fig. 2. (Continuous wave solutions (a) in the (ω −ω0, |E|2) plane for k = 0.5 and three
values of α; (b) in the (ω −ω0, k) plane for three different values of α . The dashed lines
represents a set of adjacent ECMs. The other parameters are: Ip = 1.5, τ = 30.

and refractive index η from the carrier density N:

G(N) = Gth +∆N
∂G
∂N

η(N) = ηth +∆N
∂η

∂N

where Gth and ηth represent the values of G and η at threshold of the free running laser and
∆N is a small variation around the value for the carrier density at threshold, the dressed laser
cavity resonances ωn(N) = nπc/Lη(N), change with N (and thus with the field amplitude E)
according the formula (for a details refer to Eqs. (2.10)–(2.15) in [14]):

ωn(N) = nπc/Lη(N) = ω0 +
α

2
(N−1)
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where the phase-amplitude coupling is explicitly accounted for through the use of the α−factor.
Using Eqs. (3)–(4) the CW solutions ωF can be expressed as:

ωF = ωn−
kτp

τc
sin(ωF τ),

thus in presence of feedback the CW solutions differ from the dressed laser cavity resonances
ωn by an amount that depends on the feedback strength. Since the EFSR is much smaller
than the FSR of the laser, only the dressed cavity resonance ω1 should be considered in the
previous expression. For fixed k, an increase in α causes an increase in the separation of ω1, and
consequently of ωF , from ω0. In particular, the maximum distance between a CW frequency
and ω0 is given by:

Max(|ωF −ω0|)k = (α +1)
kτp

τc
. (6)

It is thus obvious that the number of CW solutions increases with α .
We now turn our attention to the dependence of the CW solution frequencies on the feedback

parameter k. A qualitative picture can be garnered from Fig. 2(b). We now fix α and, in agree-
ment with Eq. (6), we observe that a line parallel to the x−axis drawn for growing values of
k, will exhibit an increasing number of intersections with the e.g. red curve (α=3); this means
that the number of CW solutions increases with k and their frequencies always belong to an
interval centered in ω0 with halfwidth Max(|ωF −ω0|)kmax = (α/2+ 0.5). Moreover we ob-
serve that, for k << 1 (”bad external cavity limit”) the CW solutions reduce to a single one,
close the free running laser frequency ω0, while for k −→ kmax (”good external cavity limit”)
the modes approach the EC resonances i.e. the ECMs. In the following we denote as CW0 the
CW solution closest to ω0.

The behavior of the steady state CW solutions indicates that the number of modes that can
be involved in laser emission is, on the one hand, clearly linked to the EFSR, but on the other
hand it can be strongly affected by the feedback strength k and by the LEF. The CW solutions
stability clearly depends on such crucial parameters and a study of its boundary is presented in
the next section.

3. Linear stability analysis

While the CW solutions do not depend on the field and carrier decay rates, the linear stability
analysis (LSA) we will perform in this section is pivotally centered on the QCL property γ >>
1. Although we focus here on the LSA of the CW0 solution, the same approach can be easily
extended to any other CW solution.

By considering perturbations to the CW0 solution (Es, ωF , Ns) in the form:

δE(t) = δEs exp(λ t)exp [i(ωF −ω0)t], δE << Es (7)
δN(t) = δNs exp(λ t), δN << Ns (8)

we get, after linearization, the characteristic equation for the complex eigenvalue λ

λ
3 +a2(λ )λ

2 +a1(λ )λ +a0 = 0 (9)
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where:

a2 = 2
kτp

τc
(1− e−λτ)cos(ωF τ)+

γIp

Ns
(10)

a1 =

[
kτp

τc
(1− e−λτ)

]2

+ γ

[
2

kτpIp

Nsτc
(1− e−λτ)cos(ωF τ)+E2

s Ns

]
(11)

a0 = γ

{
E2

s Nskτp

τc
(1− e−λτ) [cos(ωF τ)−α sin(ωF τ)]+

Ip

Ns

[
kτp

τc
(1− e−λτ)

]2
}

(12)

We observe that because of the phase invariance of Eqs. (1) and (2) we can choose Es real

without loss of generality. We define the critical feedback kc as the minimum level causing
Max(Re(λ ))> 0 and thus a CW instability.

At difference from T. Erneux and coworkers that in [26] are able to analytically qualify
the roots of the secular equation and the associated CW instability, in the case of a single
mode QCL with OF, the delay-associated nonlocality renders Eq. (9) transcendental and this
prevents any analytical solution. We found the complex eigenvalues λ looking for the zeros of
Eq. (9) by implementing a very precise, though CPU-intensive, minimization algorithm based
on ”simplex” methods [27]. We will use its results as a reference for the following approximate
analysis.

In the limit γ >> 1 Eq. (9) can be reduced to the second order secular equation:

b2(λ )λ
2 +b1(λ )λ +b0 = 0 (13)

where:

b1 = 2
kτp

τc
(1− e−λτ)cos(ωF τ)+

E2
s N2

s

Ip
(14)

b0 =
E2

s N2
s kτp

Ipτc
(1− e−λτ) [cos(ωF τ)−α sin(ωF τ)]+

[
kτp

τc
(1− e−λτ)

]2

(15)

We note that the same result, can be obtained by first adiabatically eliminating the fast variable
N in the LK equations and then performing the LSA of the CW solutions of this simplified
model. As we demonstrated in [17], in this case the CW instability is due to the competition
among the CW solutions close to the ECMs, because the fast medium suppresses the well
known mechanism of destabilization via amplification of the relaxation oscillations. In the fol-
lowing we now further characterize the coherent character of this instability.

The instability boundaries are found by setting λ = iΩ, Ω ∈R in Eq. (13), that becomes:

−Ω
2 + iΩ

[
2C(1− e−iΩτ)cos(θ)+A

]
+CA(1− e−iΩτ) [cos(θ)−α sin(θ)]+C2(1− e−iΩτ)2

(16)
where to simplify the notation we introduce the quantities: C = τ

kτp
τc
, A = τ

E2
s N2

s
Ip

, θ = ωF τ

In the additional hypothesis that the instability is triggered by the competition between the
stable CW and the adjacent mode and that their distance is close to 2π/τ as discussed in the
previous section, we may write:

Ωτ = 2nπ + ε; 1− e−iΩτ ≈ ε2

2
+ iε (17)

where |ε| −→ 0 and we take n =±1.
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Inserting the previous expansion in the complex Eq. (16) and neglecting terms of order O(ε3)
we obtain the following system of two real second order equations for ε:

ε
2
[

1+2C
(

cos(θ)+
C
2

)
− CA

2
(cos(θ)−α sin(θ))

]
+4nπε(1+C cos(θ))+4n2

π
2 = 0 (18)

ε
24nπC cos(θ)+2εA [1+C (cos(θ)−α sin(θ))]+4nπA = 0 (19)

that can be solved analytically. An instability occurs when a common solution to Eqs. (18) and
(19) exists, and Fig. 3 shows the point pairs (kc,α) that satisfy this condition and thus represent
the sought CW instability boundary (dashed black line).

We compare this prediction to that obtained from the complete characteristic equation (9)
(full black line) and to the instability onset obtained numerically by integrating the LK equa-
tions (open square symbols). We observe a difference of few percents or less for α values in
(1.5−2.5) (suitable for Mid-IR QCLs), among the complete and approximated LSA, while the
numerics confirm the validity of the former one everywhere.

Finally, αc ≈ 0.35 is the critical value of α below which no instability is found; it represents
the limit of the ultra stable regime for THz QCL identified in [17].

While the decrease of the threshold with α was described for conventional inter–band lasers
in [15], we stress here that the underlying physics leading to the instability is quite different.

Results from the previous section (Fig. 2), allow to better interpret Fig. 3: in particular, we
ascribe the asymptotic threshold decrease to the fact that increasing α , increments the number
of CW solutions existing and this favors a multimode competition. Although not reported in
this paper, we extended the analysis for α > 3 and we found that the curves in Fig. 3 approach
the value kc ' 0.1, suggesting that, even in a flat gain scheme, once the number of CW solutions
is large enough and their separation small enough, the destabilization takes place with a role
determined (initially) by just a limited number of modes near the stable CW mode.
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Fig. 3. Linear stability analysis of the CW solutions for Ip = 1.5, τ = 30.

3.1. Variation of αc with τ

Since an increasing EC round trip time τ implies more and denser CW solutions (see Eq.
4), we study the variation of the CW instability boundaries, and in particular of αc, with this
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Fig. 4. Ip = 1.5. Numerically calculated values of αc against τ .

parameter. In Fig. 4 we plot the numerically calculated values of αc versus τ for Ip = 1.5. As
expected from the considerations reported in previous section, we observe that a smaller τ (i.e.
less solutions and more spaced ECMs) causes the onset of a CW instability for larger values
of α (up to αc = 1.7 for τ = 7.5). Moreover when τ becomes larger than ' 80, the ECMs
are so close that the number of competing CW modes leading to the CW instabilty does not
really depend on α , so that αc shows a general asymptotic behaviour towards αc ' 0.3. The
THz QCLs ultrastability is thus confirmed over a very large range of τ , or equivalently of EC
lengths.

In Fig. 4 though, some values of τ (evidenced by circles) can be noted, where the threshold
drops (i.e. the system is more prone to destabilize the stationary emission). By analyzing the
values τ = 22.5, 52.5 and 90, we noted that the frequency of the free running laser frequency
ω0 there falls close (less than 1/3 of the EFSR) to midway between two adjacent ECMs. This
is a situation where the competition between the modes is strongest and thus leads to easier
destabilization. In fact, by studying the distance of the closest (to the emitted one) CW mode
from the neighboring ECMs, one sees that it diminishes with increasing k, keeping always
smaller than for neighboring values of τ . This also tells us that the instability of this system
is a complex mechanism where the number of solutions and the EFSR isn’t the only criterion
involved, but the relative positions of the frequencies of the free-running laser, CW solutions
and ECMs play a role.

4. Dynamical simulations

In this section we study the dynamical behavior of the laser when the instability, studied in the
previous section, occurs and the steady states the laser achieves thereupon. Equations (1) and
(2) were integrated with a 6th order Adams-Bashforth-Moulton predictor-corrector algorithm
with fixed pump Ip and EC length L (or, equivalently, the delay τ).

We studied the dynamical regimes when the feedback k is increased across the threshold kc
for different values of α .

As a general rule, we identify different dynamical regimes.

- For values of α close to zero (α≤αc), typical of THz QCLs, the LSA does not predict an
instability boundary for k < kmax, the laser never destabilizes the continuous wave solu-
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tion closest to the free running laser frequency ω0 denoted here as CW0. This corresponds
to the ultrastable regime reported in [17]

- For values of α larger than αc, but still smaller than a second critical value that we
denoted as αsw, the CW0 destabilization leads the laser to switch to an adjacent CW
mode, and the emission is still constant (see subsection 4.1 for details)

- For α > αsw we observe a Hopf bifurcation leading to the onset of a regime of regular
oscillations given by the locking among few (usually two) CW modes as soon as the
feedback strength k overcomes kc. A further increase of k leads to the destabilization of
this regular regime to a stronger multimode competition that is generally associated with
a chaotic dynamics. For even higher feedback the system shows one of the following
dynamical behaviors: 1. a single chaos crisis leading to the restoration of single mode
operation on a different CW mode with constant intensity; 2. windows of chaotic
behavior alternated with single CW operation or regular oscillations; 3. a chaotic system
dynamics (see subsection 4.2).

As an illustrative case, in the next two paragraphs we describe the system dynamical behavior
beyond the CW instability threshold for Ip = 1.5, and τ = 30 (for which αc = 0.35).

4.1. CW-solution switching and multimode regimes of stationary emission

In Fig. 5 we plot for α = αsw = 1.3 the maximum and minimum values of the intensity I = |E|2
during a ramp in k from 0 to 0.5. To avoid transient latency, the system was allowed to relax to
steady state before changing k by each step.

On the overall, in all cases where αc ≤ α ≤ 1.3, all instabilities met by increasing k cause
the switching of a stationary emission from a CW mode (for k << 1 the laser starts from CW0)
to the adjacent one. This corresponds to the system transitions from region I to region II and
from region II to region III in Fig. 5. The switches are accompanied by a transient oscillation
that can be seen in Fig. 5 immediately after the thresholds.
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Fig. 5. Ip = 1.5, τ = 30, α = 1.3. Maximum and minimum value of the intensity obtained
by gradually increasing k during the system dynamical evolution. The corresponding values
of k are reported on the right vertical axis.
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4.2. Multimode regimes: irregular dynamics and locked states of regular high contrast oscil-
lations

When we depart from the regime of CW-switching, e.g. by increasing α , we observe a dynam-
ics where a limited number of modes appear in the optical spectrum. The regular oscillations
appearing in the intensity proves that the modes have a constant phase relation. As an example
Fig. 6(a) shows the system bifurcation diagram obtained as described in the previous paragraph
for α = 3. While in region I, the solution CW0 is stable, in the grey areas (regions II, III, IV ,
V ) the CW emission is unstable showing regular oscillations or a chaotic dynamics. In Fig. 6(b)
we show the power spectra for fixed values of k in the CW unstable regimes as marked by the
corresponding roman numbers.

In particular we observe that when k > kc the system enters a regime of regular oscillations
(see region II in Fig. 6(a) and in Fig. 6(b). An inspection of the spectrum (see Fig. 6(c) for k =
0.12), reveals a main peak at the frequency difference between the CW0 and the next stationary
solution denoted as CW1. The period of these oscillations varies with k and α according to the
dependency of the CW modes on k as illustrated in Fig. 2(b) and thus can be somewhat different
from the cavity round trip time τ . For the parameters in Fig. 6 the period of the oscillations
is ∆t ∼ 1.2τ = 35. By further increasing k the system enters a chaotic regime characterized
by continuous and multipeaked spectra with still dominant contributions linked to the CW
modes (see regions III and V in Figs. 6(a) and 6(b)). An example of this irregular dynamics
is shown in the spectrum and intensity plot in Fig. 6(d) for k = 0.163 where the ECMs are
indicated by vertical dashed lines. Interspersed within the chaos region, one meets windows of
regular oscillations (see region IV in Figs. 6(a) and 6(b) where again the multimode coherent
competition shows a regular dynamics with a period slightly variable with k. This is known
to occur also in bipolar lasers with phase–conjugated feedback (see chap.2 of [14]), where
windows of periodic orbits are separated from each other by ”bubbles” of irregular dynamics,
and the onset of chaos is associated with a torus breakup.

A detailed behavior of the oscillations in the regular regimes is shown in Fig. 6(f) where we
plot the correlation diagram for three different values of k belonging to the regions II, III and
IV . The intensity I(t +∆t) is plotted against I(t) with ∆t = 1.2τ . The points corresponding to
regular intensity oscillations in region II and IV depict two distinct limit cycles corresponding
to slightly different periods, while those corresponding to the irregular oscillations of region III
are more scattered but their density is higher around the two limit cycles, since the dominant
contribution in system dynamics is linked to the CW modes.

The stable periodic oscillations in Fig. 6(e) for k = 0.2 represent the phenomenon of coherent
dynamics involving the largest number of modes (' 5 in the first decade of the power spectrum)
that we were able to simulate for the chosen values of Ip and τ and we believe that it can be
considered an interesting phenomenon of coherent synchronization of multimode emission.
Here, without external modulation of laser gain (as in active mode-locking [5, 6]), the system
shows a self-organization of its emission with a (still limited) comb of ECMs. This is a condition
that may hint towards a spontaneous mode-locking in a QCL with feedback.

Since we are interested in QCLs, we scanned smaller values of α . Of course the reduction in
the number of solutions this implies, must be compensated by an increase of the EC length (i.e.
of τ) in order to have a sizable number of modes to compete and possibly lock in phase. We
found that the regime of coherent phase synchronization is rather widespread and it even occurs
close to the first instability window. We report here on α = 2, a value that is still compatible with
experimental evidences (a value as high as 2.5 is reported in [21]) and shows phase coherence
to appear for still moderate EC lengths.

As shown in Fig. 7 for τ = 60 and k = 0.13, close to the instability threshold of the CW0
solution and before any chaotic crisis, a regime of nontrivial regular oscillations appears where
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Fig. 6. Ip = 1.5, τ = 30, α = 3. (a), (b) Maximum and minimum value of the intensity and
intensity power spectrum obtained by gradually increasing k during the system dynamical
evolution. (c)-(e) Power spectrum and temporal variation of the intensity for k = 0.12 (c),
k = 0.163 (d) and k = 0.2 (e). (f) Correlation plot for ∆t = 1.2τ = 35 and three different
values of k.

the' 5 CW modes are present in the first decade. For k > 0.2 a complex multimode competition
causes the first abrupt transition to a highly irregular regime.

As anticipated, we verified that the regimes of coherent phase synchronization we met in dif-
ferent parametric conditions, are sustained even when multiple reflections in the EC are taken
into account. While the model extension is outside the scope of this paper, we relied on previous
knowledge gathered in [28] and adopted an expression of the feedback field generalized to an
arbitrary number of reflections (see Eqs. (15) and (17) in [28]). The general indications of the
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Fig. 7. Ip = 1.5, τ = 60, α = 2. Power spectrum (a) and temporal variation (b) of the field
intensity showing a regime regular multimode dynamics for k = 0.13.

extended model is that, of course, instability threshold values for k may vary, but the dynamical
scenery remains qualitatively the same: at threshold one meets the onset of laser regular oscil-
lations, linked to the competition of two adjacent ECMs, which upon increasing k show first
the occurrence of more modes, locked in phase and still producing a regular intensity pulsation,
and then the system abruptly plunges into a chaotic behavior, which again is interrupted by
windows of regular dynamics.

5. Conclusions

In conclusion, we analyzed the stationary solutions of a QCL with optical feedback and showed
their dependencies on critical parameters such as the LEF and the EC length, we provided an
exact LSA and a simpler, approximated one, valid for unipolar lasers which allows to study
the destabilization of the CW0 mode and also validates and extends the prediction of a regime
of absolute stability of THz QCLs against OF. By studying the behavior of the laser above
the instability threshold we could evidence the multimode dynamics typical of unipolar lasers
where the mechanism of amplification of relaxation oscillations is absent and the emission is
determined by the competition of several modes; in particular at threshold or in the windows of
regular dynamics between chaotic islands, we could prove the existences of regimes of coherent
multimode oscillations emerging from very simple physical processes in a 2-level model with
feedback, which could possibly indicate a path towards spontaneous mode-locking.
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