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Abstract. A new rationale for deriving the probability distribution of floods and help in 
understanding the physical processes underlying the distribution itself is presented. On the 
basis of this a model that presents a number of new assumptions is developed. The basic 
ideas are as follows: (1) The peak direct streamflow Q can always be expressed as the 
product of two random variates, namely, the average runoff per unit area u• and the peak 
contributing area a; (2) the distribution of u• conditional on a can be related to that of 
the rainfall depth occurring in a duration equal to a characteristic response time •'• of the 
contributing part of the basin; and (3) •'• is assumed to vary with a according to a power 
law. Consequently, the probability density function of Q can be found as the integral, over 
the total basin area A, of that of a times the density function of u• given a. It is 
suggested that u• can be expressed as a fraction of the excess rainfall and that the annual 
flood distribution can be related to that of Q by the hypothesis that the flood occurrence 
process is Poissonian. In the proposed model it is assumed, as an exploratory attempt, that 
a and u a are gamma and Weibull distributed, respectively. The model was applied to the 
annual flood series of eight gauged basins in Basilicata (southern italy) with catchment 
areas ranging from 40 to 1600 km 2. The results showed strong physical consistence as the 
parameters tended to assume values in good agreement with well-consolidated 
geomorphologic knowledge and suggested a new key to understanding the climatic control 
of the probability distribution of floods. 

1. Introduction 

The theoretical derivation of flood probability distributions 
is a matter of great interest for hydrologists as an attractive 
tool for flood frequency analysis in regions where sufficient or 
reliable direct measurements of streamflow are lacking. Fur- 
thermore, it helps in providing physical support to the classic 
statistical analysis and remains a significant way to improve 
knowledge of the climatic and geomorphologic processes lead- 
ing to the generation of extreme floods. 

Klemes [1987] ascribes the principal differences between ob- 
served flood series to the mechanisms underlying the genera- 
tion of floods. In addition, a remarkable influence of the cli- 
mate on the variability of the statistical behavior of floods was 
clearly identified by Farquharson et al. [1992]. They analyzed 
flood data relative to arid and semiarid areas spread all over 
the world (162 sites in Africa, Iran, Jordan, Saudi Arabia, 
Russia, and the United States), in comparison with other flood 
data recorded in the United Kingdom, in humid and temperate 
climates. In arid areas a significant homogeneity between the 
observed frequency curves was recognized. 

All the theoretical models deriving flood distributions owe a 
tribute to Eagleson [1972], who first depicted a complete 
framework to describe the physical mechanisms underlying the 
probability distributions of rainfall-generated floods. In his 
model the kinematic wave theory was used to account for the 
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surface runoff. The intensity and the duration of rainfall were 
expressed as exponentially distributed and reciprocally inde- 
pendent, and the infiltration process was schematized by way 
of a constant loss rate. Other kinematic wave-based models are 

those of Shen et al. [1990] and Cadavid et al. [1991], who 
investigated, within the same framework, some situations not 
completely developed by Eagleson [1972]. 

Hebson and Wood [1982] and Wood and Hebson [1986] used 
the geomorphologic instantaneous unit hydrograph theory 
[Rodriguez-Iturbe and Valdes, 1979; Rodriguez-Iturbe et al., 
1982] to model the basin response. Diaz-Granados et al. [1984] 
introduced the Philip's equation to model infiltration. 
Moughamian et al. [1987] tested the Hebson and Wood [1982] 
and Diaz-Granados et al. [1984] methods and noticed unsatis- 
fying performances in both cases. 

Sivapalan et al. [1990] investigated the case of partial con- 
tributing areas controlled by different mechanisms such as 
Hortonian infiltration excess and Dunne's saturation excess 

[Leopold, 1974]. They assumed that the rainfall intensity was 
gamma-distributed and used the geomorphologic unit hydro- 
graph to account for the basin response. Raines and Valdes 
[1993] used the Soil Conservation Service curve number 
method to model infiltration. Kurothe et al. [1997] accounted 
for the bivariate probability density function of rainfall inten- 
sity and duration, which were supposed to be negatively cor- 
related. 

It seems to us that the various quoted authors who have 
gone through Eagleson's [1972] model have always limited 
their action to improve either the rainfall statistic model or the 
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basin response function. In other words, they only modified 
some parts of the model, leaving unchanged the general frame- 
work. The first exception is given by Gottschalk and Weingart- 
ner [1998] where the peak runoff is synthetically linked to the 
rainfall volume by means of a runoff coefficient which is con- 
sidered to vary stochastically according to a beta function. 

In this paper the basic idea arises from Eagleson's [1972] 
paper where he strongly highlighted the important role of the 
partial area contributing to the direct runoff. In that paper this 
area was identified as a stochastic variable dependent on storm 
intensity, duration, and size as well as on antecedent surface 
and subsurface conditions like vegetation and soil moisture. 
Only because of the difficulty in handling a trivariate joint 
distribution, did Eagleson consider the contributing area as a 
basin feature, being independent of the rainfall variables. 

In our approach the partial area a which contributes to the 
flood peak is considered as a stochastic variable. In addition, 
the "storm duration," here intended as the rainfall duration 
most significant for flood peak generation, is treated as a vari- 
able dependent on it. In particular, given a certain a, the lag 
time *a, depending on the contributing area a, is supposed to 
be the duration of the storm "responsible" for the flood peak. 
This lag time is here intended as the lag of direct runoff 
centroid to effective rainfall centroid. 

Such a scheme allows for simplifying the routing model, at 
the price of the increased complexity needed to model the 
marginal distribution of the runoff contributing area. In this 
paper it is also suggested that this distribution may be some- 
how related to the long-term climatic characteristics of the 
basin. 

The paper begins with a general description of the method 
proposed to derive the cumulative distribution function of 
floods. The method is based on the combination of the prob- 
ability density functions of the contributing areas with that of 
the peak runoff per unit contributing area. Next, the whole 
group of governing parameters involved in the proposed dis- 
tribution is surveyed focusing on their physical interpretation, 
and an expression for the index flood is derived. In section 3, 
the application of the model to eight annual flood series re- 
corded in southern Italy suggests that the flood distribution 
parameters that have a stronger physical sound are sensitive to 
the long-term climatic features of the basin. Then, on the basis 
of a dimensionless formulation of the derived distribution, a 

preliminary sensitivity analysis also highlights such a climatic 
control. 

2. Theory 
In the presence of a storm of any size, duration, and inten- 

sity, whatever process of transformation of effective rainfall 
into runoff is considered or whatever model for that transfor- 

mation is adopted, the peak of direct streamflow is always 

O = tiaa , (1) 

where a is the peak contributing area, that is, the partial area 
contributing to the peak flow, and u a is the discharge per unit 
(contributing) area at the flood hydrograph peak. 

The "contributing area" accounts for both the facts that the 
storm area is finite and that the direct runoff comes from only 
a fraction of the area covered by a storm. Moreover, for short- 
duration storms the "peak contributing area" is also controlled 
by the routing process. It is sometimes as low as 5% [Betson, 
1964]. 

Considering u a and a as two stochastic dependent variables, 
it is possible to derive the cumulative distribution function of 
peak streamflow integrating the joint density function #(Ua, a) 
over the region R(q) within which the peak streamflow, de- 
pending on U a and a as in (1), is smaller then q. 

Ge(q)=prob[Q<q]=ff• g(ua, a) duada. (2) (q) 

Analogously, we get the exceedance probability function of 
the peak streamflow Q, G•(q) integrating the same joint 
density function #(Ua, a) over the region R' (q), within which 
Q is greater then q. 

G Q q) prob[Q q] 1 GQ(q) 

= ffR g(tia, a) dtiada. (3) '(q) 

As already stated, ua and a are mutually dependent; thus the 
joint density function #(ua, a) may be calculated as 

g(Ua, a) = g(ua[a)g(a) = g(altia) g(Ua), (4) 

where g(u al a) is the distribution of the average runoff per unit 
area given the same contributing area, g(alua) is the distribu- 
tion of the peak contributing area conditional on the unit 
runoff, while g(a) and g(Ua) are the respective marginal dis- 
tributions. 

Substituting (4) into (3), we get 

Gb(q) = g(uala)g(a) dua da 
/a 

(5) 

or 

f0I A Gb(q) = g(alua) g(Ua) da du a. 
/u 

(6) 

Thus the domain R(q) in (3) becomes explicit as the contrib- 
uting area a may assume only values lower or equal to the total 
area A of the basin, and then, in (5), for any a, U a must be 
greater or equal to q/a, while in (6), a must range between 
q/Ua and A. In principle, either (5) or (6) could be exploited; 
in the following, consistent with the assumptions which we will 
make in sections 2.1 and 2.2, we will use (5), which can also be 
expressed as 

A ( ) Gb(q) = G;ala q •-, a #(a) dua da, (7) 

which may lead to different formulations for the G • as differ- 
ent hypotheses are assumed for G Lla, that is, the exceedance 
probability function of u a given a and # (a). 

2.1. Contributing Areas 

Let us refer to floods produced by runoff coming from an 
area that may represent only a portion of the entire basin. This 
happens for the following arguments. Thinking of the basin 
area as composed of some independent subbasins, the storm 
may affect only one or a few of them. Furthermore, within any 
of these subbasins the conditions needed to produce surface 
runoff, and eventually significant through flow, are not reached 
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everywhere during the flood event. Therefore the contributing 
area is composed of the sum of the partial areas belonging to 
the contributing subbasins. In other words, the flood peak is 
given by the superposition of flows coming from a random 
number of subcatchments involved by the storm according to 
the storm size and movement. This number depends on the 
basin size relative to two characteristic space scales, namely, 
the storm and rain-cell sizes, hereafter indicated as S s and Sc, 
respectively. In fact, for very small basins, whose area is com- 
parable to or less than S c, there is a high probability that the 
entire catchment contributes to the peak flood with space-time 
homogeneous rainfall. Whereas for basins whose area ranges 
between S c and Ss, it is much more likely that a is given by the 
sum of separate subcatchment contributing areas. This is due 
to different timing and duration with respect to which separate 
portions of the basin are involved by the rain cells and to 
different response times of these portions. 

We assumed that the probability density function (pdf) of 
the peak contributing area is a gamma distribution for any a 
smaller then A. Thus letting P•4 be the finite discrete proba- 
bility that the whole catchment is contributing to the flood 
peak, we get 

g(a) = aF'(/3) exp (--•)+8(a-A)P.4, (8) 

where, indicating with •,( , ) the incomplete gamma func- 
tion [e.g., Gradshteyn and Ryzhik, 1980, p. 940], 

PA = prob[a = A] = •,(A/a, 13) 

while the impulsive function/3( ) is the generalized function 
defined by 

ax = (lO) 

so that 

• P.48(a -A) da = (11) 

Basically, the choice of the gamma distribution is a working 
hypothesis. Nevertheless, it can be justified when it is reminded 
that this function arises as the distribution of the sum of/3 
stochastic (independent) variables exponentially distributed 
with equal mean value a. 

This justification helps in giving a meaning to the distribu- 
tion parameters. In fact, without any loss of generality, We may 
think of any flood peak as being due to the superposition of 
flows coming from a number of subbasins which can be differ- 
ently involved by the storm. In addition, it is always possible to 
postulate that the subbasins that may provide runoff have 
comparable sizes, so that it is consequent to suppose, for mod- 
eling purposes, that their contributing areas have equal mean. 
They can also be thought of as being independent of each 
other, with the warning that in the eventuality of lack of inde- 
pendence, attention should be paid to the meaning of/3. 

The number of these subbasins is lower bounded by unity for 
very small basins. Instead, for basins whose area ranges be- 

tween S c and S•, it is possible to think of/3 as the number No, 
of subbasins of Horton order immediately smaller than that of 
the whole basin. In fact, these subbasins are, on average, of 
comparable sizes and may consequently be modeled by the 
same value of a. For larger catchments, /3 could be even 
greater than No, because of the probable superposition of 
discharges coming from different subbasins covered by more 
than one storm. Incidentally, it may be interesting to remem- 
ber that, according to well-consolidated geomorphologic 
knowledge, No, tends to be invariant at any scale and assumes 
values ranging between 3 and 5 in nearly all cases [Horton, 
1945]. According to Gupta and Waymire [1983], its expected 
value is dose to 4. 

However, the estimation of the gamma parameters could be 
left to direct observation, and it is pointed out that even other 
assumptions for the probability distribution of a could be 
made, especially if local information is available to support 
them. 

2.2. Peak Runoff per Unit Area and Flood Distribution 

Let us make the following basic assumptions: (1) The peak 
discharge per unit contributing area u a can be linearly related 
to the total amount of excess rainfall occurring on the contrib- 
uting part of the basin in a duration equal to a characteristic 
response time •-a of the area itself; within this duration the 
areal and temporal variability of the rainfall intensity can be 
neglected thanks to the basin storage effect. (2) The duration 
,• depends on the size of the contributing area only and is, on 
average, related to it by a power law. (3) The probability 
distribution of the areal rainfall depth which may occur in a 
fixed duration presents all the moments of order higher than 
one independent of the duration, whereas its mean scales with 
the duration according to a power law. 

The first assumption is quite often invoked as a first-order 
approximation and leads to a rational type formula. Accord- 
ingly, the duration •'• is assumed as the so-called critical du- 
ration (different from the flow equilibrium duration), that is, 
the rainfall duration which leads, for a given return period, to 
the maximum peak discharge. To support the assumption, we 
refer to Fiorentino et al. [1987], who showed that under differ- 
ent choices of the basin hydrologic response function, the crit- 
ical duration approaches the lag time. This is particularly true 
when the shape parameter c' of the intensity-duration function 
(idf) is in the range (-0.5, -0.7). Here the idf is intended such 
that the rainfall intensity is proportional to the rainfall dura- 
tion to the power c'. Moreover, with particular regard to the 
hydrologic response functions more dose to the reality, the 
ratio • of the peak direct runoff to the time-averaged excess 
rainfall intensity in the critical duration appeared very stable. 
In fact, •, which is a routing factor, was found to vary condi- 
tionally on c' in a narrow range (0.6, 0.8) with an average value 
close to 0.7. 

The assumption that the time variability of the rainfall in- 
tensity can be neglected within the critical duration is sup- 
ported by the above quoted observation that this duration is 
often close to the lag time. In fact, according to that and owing 
to the smoothing effect provided by the routing of excess rain- 
fall through the basin, intensity fluctuations within the rainfall 
duration should not be significant. Moreover, since the lag 
time tends to scale, as is well known, with the basin area by a 
power law, the second assumption is also supported. 

The third assumption is usually very accurate for rainfall 
duration ranging from more or less 1 hour to a little more than 
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1 day. Thus it can be confidently applied when analyzing catch- 
ments with area ranging from a few tenths to some thousands 
square kilometers. It is still reasonable out of (but not too far 
from) this range. In the range considered, in fact, the pdf 
moments different from the first are controlled by climatic 
features, for example, the average humidity conditions and the 
probability of occurrence of extreme rainfall. These quantities 
can be considered event features and then considered inde- 

pendent of the within-the-event rainfall characteristics. More- 
over, in this range the rainfall idf is often expressed as a simple 
power law. 

Let us make an additional assumption: (4) The excess rain- 
fall can be derived by finding the difference between the rain- 
fall depth and the total loss amount. 

This is mainly based on the first assumption, according to 
which, within the contributing area and during the production 
of runoff, the storage and infiltration losses can be clustered 
into a loss factor fa, dependent on the contributing area a. We 
express this quantity as the ratio of the total water losses to the 
rainfall duration. Thus the peak hydrograph can be predicted 
without discriminating between the initial adsorption and in- 
filtration. The coefficient fa is strongly dependent, at the event 
scale, on the antecedent moisture conditions of the watershed, 
while it is expected to be much more stable with respect to the 
basin permeability and to its degree of vegetation. However, 
we believe that in the frequency domain, fa can confidently be 
assumed as mainly controlled by the expected basin status at 
the timing of a heavy storm. 

All that being stated, we may write: 

Ua = •(ia,, -- fa), (12) 

where i a,, is the space-time averaged intensity of the total 
rainfall which occurs in a duration ra over the area a contrib- 
uting to the peak discharge Q. Hence, following the aforemen- 
tioned assumptions, it is possible to state that the probability 
distributions of U a and i a,, are mutually related. In addition, 
the pdf of U a given a will exploit the above-quoted relation- 
ships existing between the expectation of i .... ra, and a. 

As a distribution of i .... we assume, consistent with the 
exploratory nature of the paper, a Weibull pdf which is well 
suited to account for the frequently observed skewness of rain- 
fall intensity. It can be written as 

k .k-x exp a,, (13) g(ia,0 = • ta,• -- , 

S(uli, > fa) = - exp • + fa -- fa • , - ß 
In addition, let E[ia,,] be related to a by a simple power law: 

E[i,3 = (18) 

where i • is the mean areal rainfall intensity referred to the unit 
area and e is a scaling factor that is somehow dependent on 
both the exponents of the idf and of the power law relating % 
to a. 

The local infiltration process may be modeled by means of 
the Philip's equation: 

1 -1/2 (19) fi = •Sit + c, 

where S i is the sorptivity and c is the gravitational rate of 
infiltration. Integrating (19) with respect to time, we get the 
cumulated infiltration volume at time t: 

Fi = Si t1/2 q- ct, (20) 

which, divided by t, gives the mean infiltration rate: 

fi = Si t-l/2 q- c. (21) 

Inserting the relation between the lag time and the contrib- 
uting area, 

ra = rla v, (22) 

and neglecting the gravitational term and passing from the 
local scale to that the contributing area, we get 

fa = f l a-•', (23) 

where f• is a constant value and e' = v/2; e' tends to 0.25 when 
considering for the exponent v of (22) the classic value 0.5. 
However, because of the uncertainty about both the gravita- 
tional term and the exponent of the Philip's equation when 
used at the basin scale, one should expect that the best esti- 
mate of •' could be significantly different from v/2. 

The exceedance probability function of Ua, given a, is ob- 
tained by (17), (14), (18), and (23) as 

-•' k -•' k (lia(f •fla____)__--_!fla__ ) • 
G'(ualia,,>fa) - exp - [ixa-UF(l+ l/k)] k J' (24) 

By means of (8) and (24), (7) becomes 

with 

Oa, , = E[iak,,] = {E[ia,,]/F(1 + l/k)} • (14) 

Accordingly, the cumulative distribution function (cdf) of 
ia,•. is written as 

G(ia,•.) = 1 - exp - • . (15) 

Then, the cdf of i .... given ia,•. greater than fa, is 

t a,•' -- f a 
G(ia,,[ia,, > h) = 1 - exp - b•,•- . (16) 

fo A { [q/(•a) +fla-•']•-(fla-•')•} Gb(q) = a(a) exp - [ila-UF(1 + l/k)] • da, 
(25) 

where #(a) is given by (8). 
Since Q is the peak direct streamflow, the flood peak is 

found as 

Qp = Q + qo, (26) 

with qo as a base flow. 
Under the hypothesis of Poissonian occurrence of indepen- 

dent flood events the cdf of the annual maximum values of Qp 
is 

Following (16), because of the monotonic relation between 
and i .... (12), the cdf of U a is 

1 

Fop(qp) = 1 - 7 = exp [-AqGbp(qp)], (27) 
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where T is the recurrence interval in years and Aq is the 
average annual number of independent peak streamflow 
events. 

Finally, after (8), (25), and (26), (27) becomes 

Fe,(q•,) = exp {-Aq[ fo•#(a) 
[ ((qv-qo)/(•a)+f•a-Q•'-(f•a-Q•] ]} ß exp •-_•(• •_- i•-)-5- • da . (28) 

2.3. Governing Parameters 

Summarizing, the quantities that have been recognized as 
responsible for controlling the probability distribution of an- 
nual floods can be grouped as (1) those affecting the proba- 
bility distribution of contributing areas, that is, a and/3 as in 
(8); (2) the ones regarding the probability distribution of areal 
excess rainfall intensities given a certain contributing area, 
namely, il, fl, 6, a ', •, and k as in (24); (3) the base discharge 
q o above which the flood sequence can be schematized as a 
compound Poisson process; and (4) the annual rate Aq of this 
process. 

Although the meaning of these parameters has been clari- 
fied in sections 2.1 and 2.2, it is useful to discuss the way they 
can be reconnected, when needed, to other measurable and 
physically interpretable quantities. Furthermore, something 
may be said about their typical range and their stability. 

With regard to the first group of parameters most have been 
discussed in section 2.1 with respect to/3. Regarding a, that is, 
the ratio of the mean contributing area to/3, one can argue that 
its ratio to the basin area A should be strongly controlled by 
the runoff-generating mechanism and by the climate. In fact, 
this ratio is expected to be lower in humid basins where a 
saturation excess mechanism is likely to prevail. This will be 
hereafter confirmed in section 3. In arid zones, where the 
vegetation is usually scarce or absent, the mean contributing 
area may also strongly depend on the watershed geology. 

The parameters ascribed to the second group can further be 
discriminated into three subcategories. In particular, i 1, 6, and 
k depend on the space-time-frequency rainfall pattern, • is a 
routing coefficient which, as referred to in section 2.2, shows 
high stability, and fl and 6' are related to the infiltration and 
adsorption mechanisms. With regard to the first subcategory 
the necessary information may follow from knowledge of the 
space-time rainfall process which, however, can still be consid- 
ered as an area open for research development. However, a 
way to draw simplified information about the main features of 
this process is provided by empirical formulae relating the 
areal to the point precipitation. Moreover, when the probabil- 
ity distribution of the annual maximum rainfall is known, one 
can exploit the relationships existing between the annual max- 
ima and the base process. Incidentally, the use of information 
provided by the annual maxima rainfall process could be seen 
as more appropriate than investigating the base rainfall mech- 
anism when inferring extreme flood distribution, as in this case. 

Let pt be the annual maximum of the at-site rainfall intensity 
averaged on the duration equal to t; Pt varies with t according 
to the idf, then its expected value can be written as 

E[pt] = p•t n-•. (29) 
In (29), n - 1 is equal to the coefficient c' defined in section 

2.2. 

E[pa, r] 
(mm/h) n=0.5 

10 '1 
n=0.2 

lOø/. 
•0 • •o = 

a (•2) 

10 3 10 4 

Figure 1. Expectation of the annual maximum value of the 
areal rainfall intensity in the critical duration ra versus the area a. 

The mean rainfall intensity scales with the catchment area 
and duration in a quite complex manner [e.g., Rodriguez-Iturbe 
and Mejia, 1974; Ranzi and Bacchi, 1994]. However, according 
to the aim of this paper, it may be sufficient to refer to the 
simple and classic method of the areal reduction factor pro- 
posed by the U.S. Weather Bureau, invoked here as by Eagle- 
son [1972]. Thus letting Pa,, be the annual maximum of the 
rainfall intensity averaged in time over ra and in space over a, 

E[pa,,] _0.25x _0.25 
-- __ T a } ß T a E[pt] - 1 - exp (-1.1 + exp (-1 1 - 0.004a), 

(30) 

with % expressed in hours and a in square kilometers. As it will 
be shown below, this method allows for preservation of the 
simple scaling relationship of (29) with regard to E[œ•,•] too. 
In fact, as a simple exercise, we substituted (22) and (29) into 
(30) using, in equation (29),œ • - 25 (mm hr -•) and n ranging 
from 0.2 to 0.5, values typically observed in Basilicata (south- 
ern Italy). Also, in (22), let • = 0.16 (h km -•) and v = 0.5, 
values which account for the lag time spatial variability in most 
basins of the same region. 

Consequently, the curves shown in Figure 1, where E[œ•,•] 
is plotted versus the basin area a, are achieved. Although these 
curves clearly present a scaling break at the value a = 500 
km 2, it should be pointed out that before and after that point 
the slope does not change dramatically. In addition, the expo- 
nent of the relative power laws stays in a very narrow range 
between -0.1 and -0.3. 

This result supports the basic assumption leading to (18) 
because E[œ•,•] is linearly related to E[i•,•] in a number of 
compound Poisson processes. In our case we assumed the 
independent rainfall to be distributed as Weibull; hence the 
relative compound Poisson process accounting for the distri- 
bution of the annual maxima is the so-called power extreme 
value distribution [e.g., Villani, 1993]. In such a case the rela- 
tionship between the mean value E[i•,•] of the exceedances in 
the base process and the mean value E[œ•,•] of annual max- 
ima is 

E[pa,,] = AE[ia,?]SA, (31) 

with 

• (- 1)•A • 
S^ = • j!(j + 1)(•/k+•), (32) 

/=0 
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Table la. Observed Basins and Their Main Features With 

Particular Regard to the Length, the Moments, and 
Parameters of the Annual Series 

A, E[Qp], 
Site km 2 N m 3 s -1 Cv Ca Aq Ap 

Bradano--San Giuliano 1657 17 507 0.79 1.03 2.9 21 
Bradano•Ponte Colonna 462 32 202 0.76 1.21 4.0 21 
Basento--Menzena 1382 24 401 0.63 1.57 6.6 21 

Basento•Gallipoli 853 38 353 0.63 2.25 8.5 21 
Agri•Tarangelo 511 32 189 0.49 0.75 16.8 21 
Sinni•Valsinni 1140 22 555 0.56 2.42 19.1 21 

Basento•Pignola 42 28 35 0.43 1.1 19.6 21 
Sinni--Pizzutello 232 19 255 0.51 0.75 31.0 32 

Definitions are as follows: A, basin area; N, length; E[Qp], mean 
annual flood; Cv, coefficient of variation; Ca, skewness of annual 
flood series; Aq, mean annual number of independent floods; and Ap, 
mean annual number of independent storms. 

where A is the annual mean number of rainfall occurrences 

that exceed a given intensity threshold. It can be shown that 
i •, E[ a,,] is independent of that threshold, while A depends on it. 

In particular, assuming the threshold equal to zero, A coincides 
with the mean number of independent annual rainfall events 
Ap, and the expectation of ia, . may be calculated as in (31) 
replacing A with Ap. 

As frequently observed, the value of Ap may be considered, 
at least at an hourly timescale, as independent of z [e.g., 
National Environmental Research Council, 1975]. Therefore, 
following (31), E[ia,,] may be supposed to scale with a as in 
(18), where, according to Figure 1, s should range between 
-0.1 and-0.3. 

Consistent with (12), the mean annual number of indepen- 
dent floods Aq must equal the mean annual number of ex- 
ceedances over a threshold equal to fa' Then, according to the 
distribution adopted for i .... the independence of E[ia•,,] from 
fa • allows writing the following relation between Ap and Aq as 

which also gives 

( fa) mq =mp exp E[ia•,,] , (33) 

log (hp/hq) = fak/Oa,z. (34) 

The ratio at the right-hand side of (33) depends on the 
contributing area a that, in turn, is related to the critical rain- 
fall duration. Therefore, since Aq is independent of the rainfall 
duration, (33) supports the assumption s = e' when Ap is 
constant with respect to duration too. A convenient dimen- 
sionless parameter related to fa is 

f* = L/E[ia,z]. (35) 

This parameter represents a global loss coefficient that is 
independent of the contributing area a and of the rainfall 
duration as demonstrated by the following relationship derived 
by use of (33) and (14) 

[-log (Aq/Ap) ] 1/to 
f*= F(1 + l/k) (36) 

2.4. Index Flood 

On the basis of the above equations, we can now introduce 
an index flood Qi, defined as 

QI- E[U•sta]]E[a]AqS^a + qo. (37) 

Qi is as closer to the mean annual flood Qrn as u and a are less 
dependent on each other and as the probability distribution of 
u given a is better described by a Weibull law. Qi represents a 
consistent approximation for Q m, whose exact expression is 
not easy to derive because of the complexity of (28). Anyway, 
the fact that Qi provides a good approximation for Qm is 
supported by a number of numerical experiments presented in 
section 3.2. 

In (37), E[UEtal] can be obtained once E[ua] is calculated 
accordingly to (17): 

E[ua] = E[•(ia,,- fa)lia,, > L] 

la,z • fa = • • •,• (i•,• - h)i•,½ 1 exp b•,• di•,,. (38) 
Then, integrating by parts, 

E[u•]=•Ii•,exp(f•/O•O'Y(l+l/k'f•/O•'O 1 , ' F(1 + i/k) --fa ß (39) 
ThUS (37) becomes 

QI= •{ i• T[l + l/k, løg (Ap/Aq )] } F(1 + l/k) - f• AqSx, r•-•A•-• + qo 
(40) 

where r is the ratio of the mean contributing area to the total 
basin area ,4, that is, 

r = E[a]/,4. (41) 

This parameter is related to basin features such as climate 
and vegetation as shown in section 3. 

3. Validation 

An analysis aimed to test whether the proposed distribution 
is able to reproduce real-world data with parameter values 
consistent with the proper physical interpretation is reported 
here. The proposed distribution was applied to the annual 
flood series of eight gauged basins in Basilicata (southern It- 
aly), with at least 15 years of reliable observations, where 
floods were practically rainfall-generated only. 

3.1. Estimation Procedure 

All the distribution parameters needed for the analysis were 
drawn from available studies, except the contributing area ra- 
tio r as in (41), which we used for calibration purposes. This 
parameter is related to a as in (8) through (41), given the 
well-known property of the gamma distribution: 

a = E[a]/[3. (42) 

All the available studies were based on annual maximum 

data, with regard to both rainfall and floods. The main features 
of the basins are listed in Table la, where N, E[Qp], Cv, and 
Ca are length, sample average, coefficient of variation, and 
skewness of the annual flood series, respectively. In Table la 
the basin area ,4 and the mean annual number of independent 
floods Aq, as well as of independent storms Ap, are also listed. 
In particular, Aq and Ap were taken from Iacobellis et al. 
[1998], who used the generalized extreme value distribution 
[Jenkinson, 1955] for fitting floods and the two-component 
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extreme value distribution [Rossi et al., 1984] for analyzing 
rainfall annual maxima. 

The values of parametersp• and n, shown in Table lb, were 
derived by Claps and Straziuso [1996], who applied a kriging 
procedure in order to achieve basin representative values start- 
ing from the available at-site information. 

The values of the basin lag time z A (see Table lb) were 
drawn, with regard to basins 1, 2, 4, 5, and 7, from Rossi [1974], 
who recognized a local stability of zA for return periods greater 
than 10 years. For basins 3, 6, and 8 we used the empirical 
relationship z• = 0.16X/• (z• in hours and A in square 
kilometers), fitted to basins of Bradano, Basento, and Sinni 
[Dipartimento di Ingegneria e Fisica dellMmbiente, 1998]. 

With regard to k, we used annual maximum data of 78 
gauging stations located within the entire region. In particular, 
we decided not to deeply detail the regional analysis, and we 
put k = 0.8, equal to the overall average of the k at-site 
estimates obtained from the annual daily rainfall series. 

The base flow qo (see Table lb) was given a tentative value 
equal to the average monthly flow observed in January and 
February, which are the months with the highest probability of 
flood occurrence. Finally, for/3 as in (8), • as in (12), • and •' 
as in (18) and (23) respectively, we decided, following the 
above discussions, to assume all over the region and as a 
sufficiently good first-order approximation, /3 = 4, • = •' = 
0.25, and • = 0.7. Here f* was estimated by use of (36). 

For estimation purposes, in order to overcome the uncer- 
tainty in dealing with the parameters i • and f•, we substituted 
the following for (18) and (23): 

E[ia,,] --i•(a/A) -• (43) 

f• = f•(a/A) -•'. (44) 

Thus i• was calculated by use of (29), (30), (31), and (32) by 
putting t = z• in (29), a = A in (30), and A = Ap in (31) and 
(32). The loss coefficient fA was derived by (33) taking the 
quantities at the right-hand side as referring to the whole 
watershed. 

3.2. Results 

The estimated values of r are shown in Table 4 along with 
those of f• and f*; in subsection 3.3 we will focus on the 
climate influence on these parameters. In Table 2 the theoret- 
ical values of Q•r as from (37), of the mean (E[Qp]c) and of the 
coefficient of variation (Cvc), which were calculated by nu- 

Table lb. Observed Basins and Their Main Features With 

Particular Regard to the Basin Lag, the Intensity-Duration 
Function Parameters, and the Base Discharge 

A, *A, P•, qo, 
Site km 2 hours mm hr- • n m 3 s- 1 

Bradano--San Giuliano 1657 7.1 23.52 0.289 10 
Bradano--Ponte Colonna 462 4.3 22.20 0.283 5 
Basento•Menzena 1382 6.0 21.48 0.315 25 

Basento•Gallipoli 853 4.8 20.41 0.315 25 
Agri•Tarangelo 511 8.9 21.56 0.362 10 
Sinni•Valsinni 1140 5.6 23.13 0.405 45 

Basento--Pignola 42 2.9 21.00 0.311 1.5 
Sinni•Pizzutello 232 2.4 21.56 0.362 15 

Definitions are as follows: ,A, basin lag time; p• and n, intensity- 
duration function parameters; and q o, base flow. 

Table 2. Calculated Values of Mean Annual Flood, Index 
Flood, and Coefficient of Variation 

Site km 2 - m 3 s- 1 C v c 

Bradano--San Giuliano 1657 523 564 0.85 
Bradano•Ponte Colonna 462 201 213 0.77 
Basento•Menzena 1382 434 465 0.61 

Basento•Gallipoli 853 355 370 0.58 
Agri--Tarangelo 511 199 198 0.50 
Sinni•Valsinni 1140 556 541 0.48 

Basento--Pignola 42 37 36 0.49 
Sinni•Pizzutello 232 239 226 0.44 

Abbreviations are as follows: Q•, index flood; E[Qv] c, calculated 
mean annual flood; and Cvc, calculated coefficient of variation. 

merical integration based upon the proposed distribution, are 
displayed. 

The good agreement between E[Qp]c and Cvc and E[Qp] 
and Cv, respectively (see Table la) stems trivially because of 
the performed calibration. However, it is worth mentioning 
that because of the accordance between E[Qp]c and Q•r, the 
choice of the proposed index flood is validated. 

Figures 2 and 3 show the found cdfs of the peak flood and 
the contributing area pdfs, respectively. In Figure 2 we used 
the plotting position suggested by Cunnane [1978]: 

Pi = (i - 0.4)/(N + 0.2). 

Figures 2 and 3 clearly display that the theoretically derived 
distribution is able to describe the main statistical features of 

the observed annual flood series. This is not a trivial result if 

one notes that, despite the numerous parameters used in the 
distribution, only Aq and r were estimated by using the flood 
data. 

3.3. Climatic Control 

As pointed out by T. Dunne (quoted by Leopold [1974]), in 
humid and semihumid basins, where it is likely to find highly 
vegetated zones, one can observe that, depending on condi- 
tions, only the part of a basin that is near the channels con- 
tributes to surface runoff, and the rest of the basin area, farther 
away, makes no contribution. This contributing area expands 
and contracts depending on the surface and subsurface condi - 
tions such as vegetation and soil moisture at the time prior to 
the flood event. Accordingly, in such basins the area that con- 
tributes to overland runoff depends on the antecedent soil 
conditions and on the storm rainfall depth. The spatial exten- 
sion of the storm plays a role too. In semiarid zones, according 
to the Horton runoff generation model, in the presence of 
intense rainfall all parts of a drainage area contribute to over- 
land flow. In such a case the antecedent soil conditions are 

crucial to allowing activation of overland flow, but, once sur- 
face runoff has begun, the contributing area is rather con- 
trolled by the storm extension. 

In order to distinguish objectively between areas of different 
climatic characteristics, we used the simple index: 

I= Ep (45) 
where h is the mean annual rainfall depth and Ep is the mean 
annual potential evapotranspiration. Ep was calculated accord- 
ing to Turc [1961]. This index allows the climate classification 
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shown in Table 3. The sign of I discriminates between humid 
(positive) and arid (negative) basins. 

The values of I for the observed basins are shown in Table 

4; they allow for roughly splitting the entire region into two 
parts: semiarid and humid. In fact, the climatic index assumes 
negative values on the Bradano River basins only and always 
remains positive elsewhere. It is higher then 0.3 for those 
basins characterized by higher mean altitude and a greater 
degree of vegetation and forested hillslopes. More particularly, 
one can note that all the parameters in Table 4 show a clear 
dependence on the climatic index. 

First, as already recognized by Iacobellis et al. [1998], the I 
index seems to crucially influence the reduction of Aq with 

respect to Ap. This is consistent with the meaning of parameters 
f,4 and f* which, according to (36), control the ratio Aq/Ap. 

In fact, within the humid areas, where the probability of 
finding humid antecedent moisture conditions is high, the loss 
factor f,4 should decrease with I. In addition, the ratio Aq/Ap 
should tend to grow with I and approach unity in hyperhumid 
climate. 

Actually, a certain role may also be played by the mean value 
of the exceedances in the base rainfall process (as suggested by 
(35)). However, with regard to this issue, not too much can be 
said here since this quantity does not vary sensibly throughout 
the examined basins. The way the ratio Aq/Ap and the param- 
eters f.4 and f* depend on I is shown in Figure 4. 
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Figure 3. Probability density functions of the contributing area (square kilometers). 

It is so emphasized that the climate directly interferes with 
the hydrological losses, as these are strongly dependent on the 
characteristic moisture conditions. In other words, the basin 
aridity produces a greater initial adsorption capacity, which 
causes the low yield in the number of flood events compared to 
the number of storms. Instead, in humid basins, which are 
characterized by the presence of permanently saturated areas 
near the streams, any precipitation event tends to produce 
runoff, as also pointed out by Leopold [1997, p. 42]. 

The climate influence can also be noted with regard to the 
parameter r (Table 4). In fact, the expected fraction of the 

basin that contributes to flood peak is quite higher (about 0.5) 
for the arid Bradano River basin. Instead, humid basins have 
lower r values in the range 0.2-0.3. This could be related to the 
way the long-term climate tends to constrain the activation of 
a certain runoff generation mechanism. Since the storm size 
may become as large as the entire basin, in arid zones the finite 
probability that the whole watershed contributes to the flood 
peak (see (9)) cannot be neglected. Instead, in humid basins 
the presence of highly vegetated areas favors a saturation ex- 
cess mechanism which allows direct runoff only in those satu- 
rated parts, usually small, near the streams. 
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Table 3. Climate Classification 
, 

Climate I 
, 

Hyperhumid 1.0 -< I 
Humid 0.2 -< I < 1.0 
Subhumid 0.0 -< I < 0.2 

Dry subhumid -0.2 -< ! < 0.0 
Semiarid -0.4 -< I < -0.2 
Arid -0.6 -< I < -0.4 

I is climatic index. 

4. Dimensionless Cumulative Distribution 

Function and Preliminary 
Sensitivity Analysis 

Let us introduce the following dimensionless quantities: 

,_Qp ,_ qo a a 1 
QP- Qi q0- • a* = * .... . (46) ' ' rA' a rA fl 

Inserting these quantities into (25), along with the parame- 
ter f* defined by (36), we get a dimensionless expression for 
the exceedance probability function of the peak streamflow 
Q. 

G•;(q•) = •01/r g(a*) 

qp-qo f, f,/, , ß exp -F(1 + l/k) k rl a,(l_•) + - da* 
(47) 

with 

g(a*) = a*F(fl) •-• exp - 

+ • a* - 7 ra*' [3 (48) 

where 15( ) and 7( ) were introduced in (8) and (9), respec- 
tively. In (47), rl is given by 

AqS.% { Ap 711 + l/k, log (Ap/Aq)] r• = 1 - q} Aq r(1 + l/k) -f*}. (49) 
Finally, the dimensionless distribution of annual floods is 

readily achieved as 

1 

Fe;(q;) = 1 - 7 = exp [-AqG•;(q;)]. (50) 

This theoretical dimensionless distribution makes it possible 
to look at some interesting scaling properties of its moments 
and to investigate significant climatic effects on the flood dis- 
tribution. 

The sensitivity analysis of the derived distribution has been 
carried out with regard to two climatic conditions. The first is 
representative of humid regions and is characterized by a low 
f* value and consequently by a high Aq/A v ratio, •The second 
one, which is more typical of arid zones, presents higher values 
of f* (then, lower Aq/Ap). The following working parameter 
values were used: in the first case, f* = 0.13, Aq -- 16, and 
Ap = 20 (Aq/Ap = 0.8) and, in the second, f* = 1.60, Aq = 
4, and A v = 20 (Aq/Ap = 0.2). The analysis was carried out 
with regard to both configurations, starting from the following 
arbitrary set of the remaining parameters: k = 0.8, /3 = 4, 
e = 0.3 r = 0.5 andq* = 0, These values were changed , , 0 

one at time within the following ranges: k = 0.6-1,/3 = 1-5, 
e = 0 1-06, r = 0 1-0.7, andq* = 0-02. 
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Table 4. Parameters Controlled by Climate and Climatic 
Index 

A, f•, 
Site krn 2 r Aq/Ap mm/hr -1 f* 

Bradano--San Giuliano 1657 0.50 0.14 
Bradano•Ponte Colonna 462 0.50 0.19 
Basento•Menzena 1382 0.20 0.32 

Basento•Gallipoli 853 0.28 0.41 
Agri--Tarangelo 511 0.27 0.80 
Sinni--Valsinni 1140 0.20 0.91 

Basento•Pignola 42 0.30 0.93 
Sinni--Pizzutello 232 0.26 0.97 

2.170 2.040 -0.17 
2.360 1.645 -0.08 
1.210 1.050 0.08 

0.975 0.776 0.28 
0.141 0.136 0.47 
0.070 0.046 0.57 
0.069 0.032 0.70 
0.027 0.012 1.26 

Parameters are defined in sections 2.2 (fa, a = A), 2.3 (Aq, Ap, and 
f*), and 2.4 (r). 
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I 

Figure 4. (a) The ratio Aq/Ap, (b) the loss factorfa, and (c) 
the global loss coefficient f* versus the climatic index, within 
the observed region. See Table 3 for climate classification. 
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Table 5. Parameters Used in the Analysis of Sensitivity to 
k in a Humid Climate and an Arid Climate 

• Aq Ap Aq/Ap 
, 

Humid Climate (f* = O. 13) 
0.6 16 23.5 0.68 
0.8 16 20.0 0.80 
1 16 18.3 0.87 

Arid Climate (f* = 1.60) 
0.6 4 21.8 0.18 
0.8 4 20.0 0.20 
1 4 19.8 0.20 

The parameters Aq and Ap were also varied, keeping their 
ratio constant; in particular, in the first case we put Aq/Ap - 
16/20, 24/30, and 32/40 (all ratios = 0.8), and in the other 
case, Aq/Ap = 4/20, 6/30, and 8/40 (all ratios = 0.2). This 
was not possible while investigating the case of variable k, 
since, according to (36), fixing f* and k, does not allow pres- 
ervation of the ratio Aq/Ap. In this case we chose such values 
of Ap leading to the selected values of f* (see Table 5). 

Figures 5 and 6 show the derived dimensionless frequency 
curves with reference to the humid and arid areas, respectively. 
It is possible to observe the different sensitivity of the cdfs to 
the parameters in the two climates. In fact, as also frequently 
observed, flood distributions relative to arid climates are 
steeper than others. Furthermore, in comparison it seems that 
in humid climate the cdfs are more sensitive to the parameter 
values, with particular regard to the Weibull shape parameter 
k. This could be explained by the observation that in arid areas 
the scarcity of flood events makes the process mainly random 
thus hiding the influence of physical features. 

In Figure 7 the way the mean of the dimensionless distribu- 
tion varies with Aq within the above-defined range of variabil- 
ity of k /3, , r, and q* and for f* ranging between 0.1 and , , O, 

2, is displayed. Figure 7 highlights that the calculated values of 
the mean are close to unity, so validating the use of the index 
flood Q i as an approximation for the mean annual flood. 

Thus, on the basis of the definition of the index flood it is 
also possible to speculate about the scale features of Q i with 
respect to the basin area. In fact, dividing Qi by the catchment 
area A and neglecting the role of the base flow, (40) suggests 
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Figure 5. Dimensionless cumulative probability function of Q•, = •d•/•Q in humid climate: (a) k - 0.6-0.8-1; (b) Aq/Ap = 16/20-24/30-32/40; (c) r = 0.1-0.5-0.7; % !-3-5; (e), = 0.1-0.3--0.6; 
and (f) q* = 0-0.1-0.2 0 , 
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that this ratio varies with A according to a power law with the 
exponent equal to -e. Since the probable values of • range, as 
seen before, between 0.1 and 0.3, such a result is in fairly good 
agreement with real-world observations [e.g., Robinson and 
Sivapalan, 1997]. 

5. Conclusions 

A derived distribution of flood frequency is proposed with 
dear reference to the climate influence. It arises from the 

analysis of the stochastic features of rainfall and of basin hy- 
drologic response. The theoretical scheme is founded on the 
identification of a probabilistic model of the basin response, 
which accounts for both the geomorphoclimatic features of the 
basin and the spatial distribution of rainfall. The distribution 
seems to be able to reproduce the observed patterns of flood 
annual maxima by means of a number of physically based 
parameters in a wide range of climatic conditions. 

The influence of stochastic and pseudodeterministic factors 
influencing the process of generation of floods is highlighted 
taking into account in a synthetic manner some crucial elements 
involved in processes like the mechanisms of runoff generation. 

This model identifies the combined role played by climatic 
and physical factors at the basin scale. Conversely, it indicates 
the influence of dimate on the water loss processes and sheds 
more light on the way to identify the relative importance of 
climate, lithology, and land use. It also highlights that the 
probability distribution of floods is controlled by the expected 
values of some quantities, for example, contributing area and 
soil moisture conditions, whose high randomness is significant 
at the event scale only. 

Moreover, the influence of the runoff generation mechanism 
on the probability distribution of the contributing areas is re- 
vealed. Thus the need for a deeper knowledge of conditions at 
which a certain mechanism tends to prevail at the basin scale 
clearly arises. Further research with regard to the spatial vari- 
ability of rainfall is also recommended. Therefore field exper- 
iments aimed at better understanding the physical processes 
underlying flood generation processes are also advised, paying 
particular attention to the role played by the long-term climate 
and degree of vegetation of the basin. 

In this paper the influences of nonlinear processes of flood 
generation were not taken into account. However, we should 
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remark that these influences may play a crucial role in ampli- 
fying the skewness of flood series, mainly in humid basins. In 
fact, in these watersheds, sensible skew may be induced by 
possible activation of the Horton type mechanism in very se- 
vere storms. In addition, a smoother nonlinear behavior may 
be related to the catchment response time *a, which tends to 
decrease as the rainfall intensity increases. Both these effects 
should be less important in arid basins. In fact, dry soils allow 
only high-intensity rainfall to produce floods, and scarce veg- 
etation tends to make the runoff generation mechanism less 
dependent on the rainfall intensity. The developed model, 
besides suggesting remarkable hints for further scientific re- 
search and unlike the merely statistical flood frequency meth- 
ods, succeeds in highlighting the differences, rather than the 
similarities, in the physioclimatic features of the basins. 
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