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Abstract. We focus on a triaxial compression at constant pressure in which a granular material, after an isotropic preparation,
is sheared in a small range of monotone deformation. The aggregate is made by identical, elastic, spheres that interact
through a non central contact forces. Because of the loading condition the material is transversely isotropic. Through a
numerical analysis we show that aggregates with same pressure and porosity behave differently depending on the initial
coordination number (i.e. the average number of contacts per particle). The relation of stress, volume change, elastic moduli
and microstructure with the initial contact network is investigated.
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INTRODUCTION

Granular materials, in nature, are essentially anisotropic.
We typically deal with an induced and/or inherent
anisotropy. The former is associated with the loading
conditions, the latter occurs because of the particulate
nature of the material that can show preferential direc-
tions in the contact network. In both cases anisotropy is
an important ingredient of any constitutive law for gran-
ular materials. In the past years, numerical simulations
(e.g. [1, 2]), theoretical analysis (e.g. [3, 4, 5]) and phys-
ical experiments (e.g. [6, 7, 8]) have been able to capture
some features associated with anisotropy in phenomena
like dilatancy, shear bands, wave propagation or ratch-
eting [9]. An interesting open issue concerns the essen-
tial state variables needed to describe the anisotropic ag-
gregate. Conventional approaches in the framework of
solid-state elasticity consider the response to be depen-
dent on the solid volume fraction and the stress state. On
the other hand, micromechanics has supported the idea
that along with macroscopic properties, the response of
an aggregate is characterized by the fabric tensors and the
coordination number [13, 14, 8, 18]. The former refers
to the geometric arrangement of the contacts, the latter is
the (scalar) average number of contacts per particle.
Here we follow the micromechanical approach and in-

vestigate the influence of the coordination number on the
behavior of the anisotropic granular material. We con-
sider an ideal aggregate made by identical, frictional,
elastic spheres. We employ a numerical protocol that is
able to generate isotropic packings with constant pres-
sure and solid volume fraction but different coordina-

tion numbers [13, 14]. We subsequently apply an axial-
symmetric compression at constant pressure to the differ-
ent packings.We focus on a regime of deformation where
the deviatoric strain is small compared to the isotropic
strain associated with its compression. In this range,
we can assume that deformations are homogeneous [10]
with a value of the stress rather high, close to the peak
[11]. Moreover, due to the induced anisotropy, the effec-
tive moduli show a not negligible evolution with respect
to their initial values [12]. We analyze the dependence
of the response on the initial configuration fully charac-
terized by the isotropic structure. We find that deviatoric
stress, volume change, coordination number, as well as
the contact orientation, evolves differently with the shear
strain depending on the initial coordination number k0 of
the granular sample.

NUMERICAL SIMULATION

Initial isotropic state. We perform DEM simulations
[15, 16] on random assemblies of identical, frictional,
elastic spheres. Our numerical experiments consider N =
10,000 particles, each with diameter d = 0.2 mm, ran-
domly generated in a periodic cubic cell. We employ ma-
terial properties typical of glass spheres: shear modulus
μ = 29GPa and Poisson’s ratio, ν = 0.2. The static fric-
tion coefficient is set to μs= 0.3. The interaction between
particles is given by a non-central contact force in which
the normal component follows the non-linear Hertz in-
teraction. The tangential component is bilinear and it in-
corporates elastic displacement and frictional sliding.
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After random generation, particles are isotropically
compressed in the absence of gravity from an initial gas
to the desired solid volume fraction. Because we are in-
terested in dense aggregates of frictional particles, we re-
quire that the solid volume fraction φ is close to the ran-
dom close packing value φRCP � 0.64. It is well known
that different packing structures are obtained experimen-
tally according to the preparation protocol [17, 18]. Our
approach is to generate numerical packings with differ-
ent final structure. To do this we employ a protocol where
φ and p are set in two different stages of the deformation
(details are given in [13]). The result is that, for a given
pressure (p = 100kPa) and identical solid volume frac-
tion (φ � 0.638), we obtain isotropic packings with dif-
ferent coordination number; here we consider three ag-
gregates with k0 = 6.17,5.36,4.88 and volumetric strain
Δ0 = 7.59x10−4,8.96x10−4,9.93x10−4, respectively.

RESULTS

Axialsymmetric compression. The three samples de-
scribed above are subjected to axisymmetric deformation
with ĥ= e3 as direction of the major (compressive) prin-
cipal strain. The test is carried out at constant mean stress
p= p0 = 100 kPa [1]. During each loading step, the tar-
get pressure is maintained with a servo mechanismwhich
continuously adjusts the applied strain rate according to
the difference between the desired stress state and the
stress measured at that time step [13]. We want to re-
produce a quasi-static, triaxial loading so we compress
the sample very slowly (γ∂ t/Δ0 is lower than 5× 10−3,
where γ∂ t is the accumulated strain in the time step ∂ t).
After each increment we let the system to relax until a
new equilibrium state is reached.
In Figs. 1a, 1b and 1c we plot the evolution of the nor-

malized deviatoric stress, volumetric strain and coordi-
nation number during the deviatoric path. Hereafter we
normalize the deviatoric strain with the initial isotropic
volume, Δ0. Although each sample maintains the same
confining pressure, the volume strain is different because
the initial coordination number, k0, varies. The deviatoric
stress is defined as

q
p0
=

1

2p0

[
σ11+σ22

2
−σ33

]
, (1)

where σii are the diagonal components of the average
stress tensor σσσ obtained from the simulation [2].
In the figures we observe three different curves, de-

pending on the initial value k0. During the deformation φ
remains almost constant while the pressure is kept con-
stant; that is the behavior of the aggregate depends on
the initial microstructure through k0. The stress increases
faster for higher initial coordination number, as it leads
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FIGURE 1. Normalized (a) deviatoric stress, (b) volumetric
strain and (c) coordination number versus normalized devia-
toric strain for different initial coordination numbers k0. The
black stars indicate the points where the shear moduli (Fig. 2)
are calculated.

to higher initial shear resistance [13, 14]. The volumet-
ric strain (Fig. 1b) and the coordination number (Fig. 1c)
behave in a similar fashion, their variation being faster
for higher k0. Interestingly, the less connected sample
(k0 = 4.88) contracts rather then dilate and preserves al-
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FIGURE 2. Evolution of the shear moduli with the normal-
ized deviatoric strain for samples with different initial coordi-
nation number k0. Solid lines with empty symbols, dotted lines
with filled symbols denote G12 and G13 = G23 respectively.

most the same number of contacts.

Shear Moduli. At different steps along the loading
path (see black stars in Fig.1), the shear moduli of the
aggregate are calculated applying an incremental strain
and measuring the corresponding incremental stress re-
sponse [19, 13]. The transversal and axial shear mod-
uli are respectively G12 = Δσ12/Δε12 and G13 = G23 =
Δσ23/Δε23, where εi j are components of the strain ten-
sor. The friction coefficient is set on a very high value to
prevent sliding between grains because we are interested
in the elastic resistance of the aggregate.
In Fig. 2 we report the evolution of the shear moduli

with respect to the initial isotropic value G0, for samples
characterized by k0 = 6.17,5.36 and 4.88. The response
depends on the initial microstructure through k0 and the
evolution of the coordination number k that differs in the
three samples (see Fig.1c). The more contacts are lost,
the faster the moduli decrease. Interestingly, for all the
three samples, the modulus in the transversal isotropic
plane G12 varies faster than the axial shear modulus
G13 (in particular, G13 stays almost constant in the case
k0 = 5.36 and 4.88). This is reasonable since deletion
mostly affects pairs of particles with contact vectors in
the equatorial plane [3]. So, due to the loss of contacts,
the material can be sheared more easily in the isotropic
plane.

Microstructure. Finally we carry out DEM simu-
lation to investigate the modification of the contact
network during the axial-symmetric compression. It is
known that a granular material becomes anisotropic
when sheared. Partly this is due to contacts lost in the
minor principal strain direction, i.e. the geometric fabric
changes [20]. But also, when contacts obey the Hertzian
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FIGURE 3. Evolution of the deviatoric fabric with the nor-
malized deviatoric strain for samples with different initial co-
ordination number k0.

law, they become stiffer in the major direction and softer
in the minor direction, depending on the angular force
distribution [3]. If no particular boundary condition are
used, both geometric and stiffness effects occur during
the axial-symmetric compression.We want to distinguish
between the two effects. We focus on the fabric tensor
[20] defined as

Fi j =
1

Nc

Nc

∑
c=1

d̂c
i d̂

c
j , (2)

where Nc is the total number of contacts in the aggre-
gate and d̂c are direction cosines of the c-th contact. The
second order tensor F is symmetric and its trace is equal
to 1. While k is a measure of the contacts density in the
aggregate, the fabric tensor F provides information on
the spatial distribution of the contacts through its eigen-
values. In order to study the evolution of the geometric
anisotropy in the samples, we calculate the eigenvalues
Fii of F and the deviatoric fabric in the anisotropic states
(stars in Fig.1) as Fdev = [F33− (F11+F22)/2]/2. Results
in Fig.3 show that Fdev evolves with strain, with a slight
difference between the sample at lower k0 and the other
two.
We also scrutinize the evolution of the contact stiffness

in different directions during the deformation. We define
the average contact stiffness as

〈KN〉d̂ =
1

Mp ∑
d(AB)⊂ΔΩp

K(AB)
N , (3)

where K(AB)
N is the normal stiffness for a contacting pair

AB within the element of solid angle centered on d̂p and
Mp is the number of pairs in that solid angle ΔΩ (see
[21]). In the initial, isotropic state, 〈KN〉0 is independent
of the direction d̂p. We introduce the contact stiffness
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FIGURE 4. Stiffness ratio κ versus polar angle with γ/Δ0 that varies from 0 to 0.4, for samples with different initial coordination
number. In all figures black squares, red circles and blue triangles correspond to k0 = 6.17,5.36 and 4.88 respectively.

ratio as

κ =
〈KN〉d̂
〈KN〉0

(4)

in order to quantify the evolution of the κ with respect
to the initial reference state. In Fig. 4 we plot κ with
d̂p oriented along a given θ every 10◦ in the interval
0◦ − 90◦. With increasing γ/Δ0 and for k0 = 6.17 and
k0 = 5.36, κ increases in the axial direction (0◦) and
decreases in the proximity of the horizontal isotropic
plane (90◦). At about 60◦, with κ = 1, we find the angle
where the overlap between contacting particles does not
change with the strain. This is a "neutral" direction of
contacts in the triaxial test. Interestingly, for k0 = 4.88
(Fig. 4c), κ shows an opposite trend with respect to the
highly coordinate aggregates. Moreover, a much smaller
variation of κ (in magnitude) is observed for this sample,
in agreement with the behavior of the macro-quantities
in Fig. 1 and the effective moduli (Fig. 2). The neutral
direction stays at about 60◦ also in this last case.

CONCLUSIONS

In the small range of deformation that precedes the stress
peak, we investigate the influence of the initial isotropic
structure on the subsequent deviatoric behavior of a gran-
ular assembly. The initial structure seems to play a cru-
cial role with respect to the evolution of stress, volu-
metric strain and coordination number itself during the
axialsymmetric deformation. Interestingly, when look-
ing at the microstructure, we find that the value of the
coordination number in the isotropic configuration de-
termines how the anisotropic contact network evolves
with shearing. Consequently, the shear resistance in ax-
ial/horizontal direction is affected by the initial state.
The poorly coordinate aggregate shows a very peculiar
behavior with respect to the highly coordinated ones
(k0 = 5.36 and k0 = 6.17), its features resembling the
response of loose rather than dense samples.
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