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This paper details the design and the hardware implementation of a real-time diagnostic system based on FPGA for the muscle
fibre conduction velocity estimation (MFCV). The MFCV is considered as a principal monitoring index for diabetic
neuropathy (DPN), as well as in muscle fatigue assessment, to evaluate the muscle fibre status. The FPGA platform evaluates
the MFCV during dynamic contractions (e.g., gait), by exploiting a multichannel sensing system composed of 4 wireless
surface EMG electrodes, placed in pair on each leg. Raw data are digitized and made binary to create two bitstreams for each
monitored limb. Then, a comparison between the two-bit streamed EMGs extracted from the same leg is carried out. The
comparison, which allows extracting the MFCV, exploits a computationally light version of the cross-correlation method. The
overall architecture implemented and validated on an Altera Cyclone V FPGA is HPS-free and exploits 22.5% ALMs, 10,874
ALUTs, 9.81% registers, 3.36% block memory, and <2.7% of the total wires available on the platform. The choice of FPGA as
computing system lies in the possibility to determine resource utilization, related timing constraints for a future real-time ASIC
implementation in wearable applications. From the actual muscle contraction during gait (cyclical starting point of the
computing), the system spends about 316ms to acquire useful data and 47.5ms (on average) to process the signal and provide
the output, dynamically dissipating 28.6mW. The accuracy of the tool evaluation has been evaluated proving the repeatability
of the measurements by in vivo test. In this context, 1250 contractions from each subject involved in a protocolled 10-meter
walk have been acquired (n = 10 subjects evaluated). On average, the same MFCV estimation has been extracted on 1184/1250
contractions (standard deviation of 11 contractions), reaching an accuracy of 94.7%. These estimations fully match the
physiological value range reported in literature.

1. Introduction

Peripheral neuropathy (DPN) is typical of patients with type
2 diabetes [1]. Clinically, DPN in these patients starts with
sole or predominantly sensory dysfunction and disturbance
[1]. Several currently in use methods for DPN assessment,
such as the nerve conduction velocity (NCV) analysis [2],
the laser-evoked potential (LEP) [3], and the Semmes-
Weinstein monofilament test (SWT) [4], require expensive
and cumbersome equipment [3], limiting the subjects’
comfort and movement freedom. Moreover, major draw-
back is the invasiveness [2, 4] or the need of an expert
support in handling the data. The NCV is an indirect
measure of the motor unit potential propagation speed

on nerve tissue by assessing the electromyographic patterns
(EMG) [2]. The method requires the use of needles as EMG
electrodes, to be positioned inside the skin, one to stimulate
the muscle under test with an electrical signal (electrostimu-
lation) and another one to collect, in a suitable different
point, the induced response. The timing between the trans-
mission and the response collection identify the NCV. This
practice excludes the possibility of an auto-positioning of
the electrodes.

The LEP test is used in neuropathy analysis on small
nerve fibres. It is based on the detection and evaluation
of the evoked potential latencies and amplitudes, obtained
by laser stimulations in different measurement experi-
ments [3]. Although the test meets the noninvasiveness
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requirement, the need to involve specialized medical person-
nel, as well as the patient’s movement restriction during the
test, remains insurmountable problems. The SWT [4] con-
sists of the use of a nylon filament that is placed in contact
with the foot surface. The force exerted by the filament and
the information provided by the patient are converted in a
measure of the sensory capacity of the subject. This test is
qualitative and does not offer an objective measure.

Starting from its first definition in 1943 by Denslow and
Hasset, the muscle fibre conduction velocity (MFCV) has
gained more and more importance in the neurophysiology
of healthy muscles [5]. It got a relevant role in gait analysis,
rehabilitation, and prosthetic scenarios [6, 7], as well as in
the clinical investigation of polyneuropathies, such as DPN
[1]. Recently, it has been proved that MFCV can be used
to detect muscle fibre denervation atrophy, as early sign
of motor axonal loss [2]. Indeed, abnormalities in MFCV
are a sign of the impairment of the motor unit in early
diabetic polyneuropathy, slowing the velocity in the con-
ducting fibres. Thanks to its noninvasiveness and the pos-
sibility to realize reliable portable solutions, the MFCV is a
valid candidate in the early DPN recognition and patient
remote monitoring.

Indeed, the MFCV can be evaluated by using surface
electrodes that acquire the electromyographic (EMG) signals
along the muscle fibre with the aim to define their propaga-
tion velocity [5]. In this case, the MFCV is derived by the
ratio between the interelectrode distance (Δd) and the
measure of the propagation time θ between two EMG
electrodes placed along the same muscle fibre [6]. Despite
its clinical applicability, the literature does not propose
solutions that allow a real-time assessment of the muscle
fibre conduction velocity (MFCV) and fatigue, in ordinary
life movements [7–10]. In the most cases, these solutions
require cumbersome static structure, such as an ergometer
cycle [9, 10], or force the subject to keep the contraction
all along the measurements [7–10], limiting the subject’s
movement freedom.

Aiming to bridge this gap, an FPGA-based cyber-physical
platform, for remote monitoring of MFCV in everyday life
(i.e., gait), is here proposed. Since the limbs primarily affected
by DPN are the lower ones [4], the platform extracts the
MFCV by analyzing data passively acquired (no electro-
stimulation is required) from 4 wireless surface EMG
electrodes, which are positioned on the patient legs. The
muscles selected for the acquisitions are the gastrocnemius
laterals, and an appropriate electrode positioning is guaran-
teed by an embedded positional tool. The MFCV estimation
exploits a 2-electrode time-domain comparison approach.
Since the velocity assessment between two points along the
same fibre is a linear problem, it is here solved by a simpli-
fied digital version of the classic cross-correlation method
between two time-shifted signals. The overall platform real-
izes a portable diagnostic tool that provides a stable
estimation of the MFCV. In future perspective of an ASIC
implementation, the architecture has been validated on an
FPGA (here an Altera Cyclone V) that will be the embedded
core of the final wearable device. The paper is structured as
follows. Section 2 introduces the state of the art for the

MFCV extraction, discusses the algorithm on which the
system is based, and finally presents the FPGA implementa-
tion. Section 3 outlines the experimental results from testing
and validation with special care to the resource utilization,
timing, and measurement repeatability.

2. Materials and Methods

2.1. MFCV Estimation: State of the Art. In the last ten years,
different methodologies for the MFCV evaluation have been
proposed by the literature [6]. Typically, they differentiate
each other in the analysis domain: frequency or time [6].

The method proposed in this work for the MFCV
evaluation is in time domain and can use just 2 electrodes
in the minimal configuration. Considering a muscular
fibre, the two electrodes are typically placed along a specific
muscle path [11] with minimum interelectrode distance
(Δd), which allows considering the fibre as a linear motor
unit potential conductor.

Under this hypothesis, the MFCV computing can be
operated by considering the classic algebraic relationship that
defines the transmission speed in a straight direction as

v = Δd
θ

1

where v is the conduction velocity (MFCV), Δd is the
minimum interelectrode distance that satisfies the above-
mentioned hypothesis, and θ represents the delay between
the signals collected at the two electrodes.

If the EMG signal moves from the position of the first
electrode, dA, to the position of the second electrode, dB,
the interdistance is given by Δd = dB – dA. The MFCV is
indirectly measured from the delay, θ. Mathematically, once
acquired in two points along the same muscle fibre, the
time-discrete signals can be described as follows [6]:

xA n = α n + εA n ,

xB n = α n − ϑ + εB n ,
2

where xA n and xB n represent the nth sample associated
with the signal detected on the electrodes A and B, respec-
tively. The terms α n and α n − θ define, respectively, the
useful components of the signal and their θ-shifted version.
The components εA n and εB n are the noise on both the
channels in a linear superposition hypothesis. ε is considered
as noise, independent, white Gaussian, with the same
variance. These assumptions make possible evaluating the
θ, by comparing the time distance between two peaks of
the EMG signal in the two different electrode positions [6].
The use of temporal peak distance between the EMGs to
evaluate θ and, thus, the MFCV is strongly dependent on
the signal/time resolution and can be improved by using a
cross-correlation approach between the acquisitions. The
cross-correlation time-lag, associated with the maximum
cross-correlation value, identifies θ. Farina and Merletti [6]
also propose the signal evaluation in the frequency domain,
studying the peaks and dips in the EMG spectrum. These
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methods extract the phase shifts to determine the time delay,
θ. These approaches are computationally heavier than the
time-domain ones and are strongly affected by the noise.

2.2. The System Overview. An overview of the implemented
platform is shown in Figure 1 and comprises the setup for
the data acquisition and the main blocks that constitute the
architecture. The main computing blocks, which are physi-
cally implemented on FPGA, are shown inside a grey box
and consist of (i) bitstream generator, (ii) θ (delay) comput-
ing block, and (iii) MFCV estimation. An accessory block is
the electrode positional scanner, which avoids the concrete
problem of the subjective EMG electrode positioning.

The acquisition interface, in Figure 1(b), includes 4
wireless smart EMG (2 for each leg) electrodes. The sensing
nodes transfer the data to a gateway [12, 13], which is directly
connected to the FPGA evaluation board (DE1-SoC) that
embeds the elaboration unit (grey box in Figure 1(b)).

At first, the acquired EMGs are elaborated by a com-
puting block (bitstream generator in Figure 1) that digitizes
the muscular signals [13]. This block reduces the data flow
towards the subsequent blocks, preserving useful informa-
tion for the MFCV computing [14]. The derived bit streams
(one for each monitored channel) feed the θ computing
unit, devoted to the conduction velocity estimation. The
θ computing block compares the bitstreams provided by
two EMGs along the same muscle fibre, extracting the
action potential propagation time θ .

2.2.1. EMG Positional Scanning. A reference literature study
[11], in the MFCV evaluation field, highlights that the most
critical point, in the MFCV estimation, is the optimal posi-
tioning of the surface EMG electrodes along the same muscle
fibre [11]. Typically, this step requires a good understanding
of the muscle anatomy, linked to the impossibility in placing
the electrodes on tendinous zones (TZ) and innervation ones
(IZ) [11]. Considering the abovementioned constraints, the
positioning is always entrusted to specialized medical staff.

In order to realize a completely automatic tool for the
electrode positioning, the influence of the muscle length
and the mutual electrode locations in EMG acquisitions
during dynamic tasks was evaluated. The study in [11]

accurately details the behaviour of each lower limb muscle
during the gait, also considering skin and fat layers. It shows
that the only muscle that does not present electrode shift
phenomena is the gastrocnemius. This muscle also presents
a stable IZ position during gait. Both the gastrocnemii are
then considered in this context for the MFCV evaluation.
Figure 1(a) shows a lateral gastrocnemius highlighting the
prohibited areas (TZ and IZ in red) and, on the available
zones, two virtually traced matrices. The EMG electrodes
should be collocated in the areas between TZ and IZ, with a
specific interelement distance (Δd).

In the EMG placement context, the guidelines in [15]
explain how to identify these muscle areas. The optimal
interelectrode distance (and thus a lattice interelement one)
can be also defined according to [15].

The action potential along the muscle fibre propagates
with same waveform but reduced in amplitude [15]. Exploit-
ing this concept, the optimal electrode placement can be
realized by using a covariance-based algorithm. The covari-
ance, differently from cross-correlation, allows to quantify
the similarity degree between the EMG signals from the same
muscle fibre in terms of waveform andmagnitude [10]. In the
available regions, the covariance is higher than in the IZ/TZ
zones. An optimal positioning returns a maximum degree
of covariance.

The proposed system implements an algorithm that
compares the EMG signals from two contiguous electrode
sites of the same column: 1 and 2 from Figure 1(a).

The signals acquired by these sites are named as follows:
EMG1 and EMG2. For the positioning phase, the subject
under test is asked to keep a static contraction of the gastroc-
nemius for 2 s, while the electrodes are positioned in the
proper sites with the prescribed interdistance [15], ensuring
a good linearization of the muscle fibre. During this first
contraction phase, the EMG samples acquired on the single
channel are used to define 4 threshold values (one per
channel). These thresholds (Thr) correspond to the 80% of
the squared value of the EMG amplitude, which has been
computed on the entire duration of the contraction (e.g., 2 s).

Once the thresholds are defined, the subject is asked to
carry out another contraction of the same duration. Referring
to a single leg and, thus, to the pair {EMG1, EMG2}, due to
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Figure 1: Overall system. (a) EMG positioning lattice with detailed EMG acquisition on 7 selected sites. (b) Block diagram of the architecture.
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the propagation direction (from top to bottom), only the top
electrode EMG1 is initially monitored by the system.

When an EMG1 sample satisfies the conditions:

EMG1
2 > Thr,

EMG1 > 0,
3

the system starts an iterative procedure to find the maximum
value of the signal on the EMG1 (EMG1MAX). Once the
EMG1MAX is found, the system acquires the EMG2 samples
for a physiological time range (e.g., 4ms [16]). The proposed
system extracts on this time span the EMG2MAX value. Once
both EMG1MAX and EMG2MAX are defined, the relative error
δ is extracted as

δ =
EMG1MAX − EMG2MAX

EMG1MAX
4

A low δ value corresponds to a high degree of similarity
between the signals (high covariance), then a position that
returns a δ<20% can be considered as optimal electrode
positions. When the optimal positioning is found, the system
provides a feedback to the user.

2.2.2. The Bitstream Generator. The bitstream generation
block exploits the pillar theory of a binary signal description
algorithm, treated in [17, 18], in order to realize the EMG
bitstream to be compared. It allows to convert the 16-bit
EMG signal in 1-bit equivalent one, here named bEMG (as
shown Figure 1). This “dimensionality reduction” exploits a
dynamic-thresholding approach, in which the EMG signal
is squared and stored in anM sample shift register. The mean
value of all the M samples is used as a dynamic threshold,
while a second averaging is computed on the last N samples
(N < <M), defining what we define the “instantaneous”
magnitude of the signal.

The resulting bEMG is “1” if the N-sample-based
magnitude is higher than the dynamic threshold, otherwise
“0.” The platform operates with a sampling frequency, f s,
of 2 kHz, then M = 1024 sample that corresponds to an
acquisition ~500ms andN = 8 sample, which are ~4ms. This
choice allows a fine bitstream description of the raw EMG
signals. Figure 2 shows the bEMG signals associated to the
EMGA and EMGB (only the raw data from EMGA channel
is shown in Figure 2) acquired during in vivo measure-
ments. The bEMGs in Figure 2 show the presence of a
time-shift θ between the electrode B signal and the one
on the electrode A.

2.2.3. The θ Computing Block. Once the two bEMGs (e.g.,
bEMGA and bEMGB) have been created, they undergo to
an iterative comparison stage, which allows extracting the
dynamic degree of resemblance between the two binary sig-
nals [14]. An observation window on J samples is defined
on both the bEMGs, starting from the first activation of
bEMGA (when the signal on A identifies a contraction).
In our work, the system operates with a window of J = 602
samples [19] (i.e., 301ms).

The two binary sequences, of J samples, are stored in two
shift registers and compared bit by bit, through and XNOR
gate, defining the signal x ∈ RJ. Then, the identical bit pair
number (IBPN) has been extracted as follows:

IBPN = 〠
J

i=1
x i with x i

1, bEMGA i = bEMGB i ,

0, bEMGA i ≠ bEMGB i

5

Each n∗ J comparison, with n = 1, 2… 602, a “0” is
appended in the LSB of the shift register that contains the
bEMGA (e.g., element bEMGA 0 ). In this way, a delayed
version of the original signal is created (n∗0 5ms shifted).
The θ shifted signal (bEMGB) present on the electrode B
is left in its original time positions. The comparison is
repeated, until bEMGA is a null vector. In this way, the IBPN
becomes a vector IBPN ∈ RJ . The index of maximum value
of IBPN, which represents the highest degree of similarity
between the bEMGs, returns the estimated θ. The MFCV is
then derived from this estimation according to (1).

2.3. The FPGA Implementation. The presented algorithm
has been implemented on an Altera Cyclone V SE 5CSE-
MA5F31C6N, by using theAltera Quartus Prime Lite Edition
17.0 developing environment. The processor system-level
design features of the implemented system are summarized
in Table 1, identifying the inputs, the outputs, and the global
signals (SYS) that ensure the system operation. General
enable and reset signals were excluded from the table.
Figure 3 shows a simplified block schematic of the whole
implemented system. Each functional subsystem is identified
by dotted grey line. It is important to note that only one
bitstream generator block has been reported on the sche-
matic (EMGA to bEMGA), but in our implementation, 4
identical branches operate in parallel (two for each leg).

2.3.1. Bitstream Generator Branch. The EMG samples
(EMG_A) are squared and undergo two separate finite state
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machines (FSM): dynamic threshold FSM and instantaneous
power FSM (Figure 3). The operation principle of the FSMs,
presented in Section 2.2.2, is the same for both, but exploits
two block RAMs of distinct size (RAM-M and RAM-N of
M = 1024 samples and N = 8 samples, 32 bit words) in which
the new squared EMG samples are written in a FIFO mode
[20, 21]. When a new EMG sample enters (@posedge
Clk_2kHz), it is put at the address 0 and the last sample of
the RAM (1023th for RAM-M and 7th for RAM-N) is sent
out to the FSM. This latter sample is subtracted, and the
new sample is added to refresh the overall power, overwriting
the RAM word with the new data. To cyclically refresh these
two magnitudes (i.e., threshold and instantaneous value), the
two FSMs divide the sum of the RAM-N elements by 8 [22]
for the instantaneous power and the RAM-M ones by 1024
for the dynamic threshold [23].

The ratios have been realized by using 3 bits right shift for
the former case and 10 bits for the latter value. A 64-bit
discriminator (represented as “>” in Figure 3) compares the
powers, generating the 1 bit EMG (bEMGA—Figure 3).

2.3.2. The IBPN Evaluation Block. In the downstream bEMG
generation, the architecture implements a subsystem in

which the degree of resemblance between bEMGA and
bEMGB is evaluated. When a contraction occurs, the
bEMGA rises to “1,” setting the enable signal, upstream the
switch control FSM, to “1.” It means that the system is
enabled to acquire and store data in the shift register electr.
A and B (Figure 3) for J = 602 sClk falling edge (301ms of
acquisition). When the shift registers are full, the switch
control FSM sets its output (ENA_Switch) to “1” enabling a
pure feedback on the shift register B, and a delayed version
of the stored vector on the shift register A, by using a DFF.
It allows to maintain unaltered the θ-shifted signal on B
and to shift the pure signal temporarily on the right. To
realize this shift, the DFF is reset at the 601th sClk falling
edge, inserting a “0” in append. Each “0” represents a tempo-
ral shift of 0.5ms. As shown in Figure 3, the implemented
algorithm analyzes the last bits of the shift registers, compar-
ing them by an XNOR gate. A dedicated clock (sClk) drives
the shift between the vectors for the comparison. The binary
waveform x , defined according to (5), enables the down-
stream counter (ENA—Figure 3), assessing the number of
sClk falling edges that occurs during ENA= “1.” This value
is the IBPN on the i-th temporal shift. On the J-2th sClk
falling edge (PI clock), the i-th IBPN is fixed, and at the

Table 1: Processor-system level design features.

Type n Name Description

IN 4 EMG 4 EMG from 2 surface electrodes on the right leg and 2 surface electrodes on the left one

OUT 2 MFCV 2 MFCV values associated to the right and left leg, derived according to (1) from the θ estimation

SYS 1 Clk_50MHz FPGA embedded 50MHz internal clock

SYS 1 Clk_8MHz 8MHz system clock, PLL derived from Clk_50MHz.

SYS 1 Clk_2kHz 2 kHz system clock for ADC management
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J-1th one (PO clock), it is sent to the θ estimation block. The
system repeats the above described comparison for J-1 times.
After all the iterations, the shift register A is a null vector and
the shift register B is the same of the first acquisition.

For sake of clarity, Figure 4 shows a functional testbench
generated considering J = 5 and making clearly visible the
Clk_8MHz. bEMGB is right-shifted of 1 bit w.r.t. bEMGA,
then we expect the maximum IBPN in this shift. At the end
of acquisition, the stored bEMGA is [10110], while bEMGB
is [01011]. It is possible to note that the bEMGA right shifts
of 1 bit after J comparisons (SR bEMGA). The maximum
value of x is reached after 1 shift, as expected. Here, 5 bit on
5 is identical, and thus IBPN=4.

2.3.3. The Glitch-Free Multiplexer. As shown in Figure 4, the
sClk signal on which the IBPN evaluation and the θ esti-
mation blocks are based is achieved by the contemporary
contributions of the Clk_2kHz and Clk_8MHz, in particular,
sClk≡Clk_2kHz during all the acquisition stage and shift
register filling. The sClk≡Clk_8MHz is instead defined when
the system starts the cyclic comparisons. The glitch-free
MUX is driven by the ENA_Switch, which goes to “1” if the
registers are full. In that moment, the system passes from
Clk_2kHz to Clk_8MHz. The here-adopted MUX architec-
ture (shown in the dotted gray line—Figure 4) eliminates
the glitch phenomena during the sCLK commutations [24].

2.3.4. The θ Estimation Block. The time delay (θ) estimation
block has been realized by a dedicated VHDL-based FSM.
This unit iteratively compares the IBPN, updating a tempo-
rary memory with the maximum value and the associated
indexes (number of signal right shifts). After J comparisons,
the maximum is defined and also the index that contains
this value:

i max IBPN = f s ⋅ θ + 1, 6

where f s is the adopted sampling frequency and θ is the
expected time delay.

According to (1), the MFCV is derived from the ratio
between the interelectrode distance Δd and θ.

3. Results and Discussion

This section is dedicated to the implementation and testing
of the proposed FPGA-based MFCV extractor in the contexts
of walking assessment. The system has been implemented on
the Altera Cyclone V FPGA and tested on 10 subjects (aged:
24± 4, height: 1.77± 0.12m, weight: 82± 4 kg) by wirelessly
capturing the data from 4 surface EMG electrodes on both
the gastrocnemius. Each task consists of a protocolled 10-
meter walk in which the subjects were asked to walk for
10m distance adopting a comfortable walking speed, for a
total of 25 steps per leg (50 dynamic contractions in total).
The test has been repeated 5 times each day, for 5 days, with
a total of 1250 dynamic contractions on each subject. The
validity of the algorithm in clinical literature matching has
been analysed in our previous work [19], then in this section
are explained the FPGA-implemented algorithm perfor-
mances, with focus on the resource utilization, operation
timing, and power consumption andmeasurement reliability.
In addition, this section is dedicated to the positional
scanning performance.

3.1. FPGA Resource Utilization. Under in vivo measure-
ment conditions [25], in the acquisition context, the sys-
tem involves approximately 128 kbps (2000Sa/(s⋅ch)⋅16bit/
Sa⋅4ch), while providing in output about from 50 bps to
128 bps (n. step/s⋅32 bit/out⋅2 out).

The overall MFCV estimation system uses 7214.5 logic
elements out of 32,070 available (22.5%), 136,638/4065280
memory elements RAM (3.36%), and the 6296/64140 regis-
ters (9.81%). Table 2 divided the resource consumption by
subsystems. In the table, the ADC controller, the bitstream
generators, the switch control units, the IBPN evaluation
blocks, θ estimation block, and 2 MFCV computing have
been evaluated. The bitstream generator field embeds 4
identical blocks, while each of the latter 4 listed blocks com-
prise two identical processing chains, one for each leg. Other
defines the surrounding circuitry. It is important to note that
the positional scanner is not enabled during the normal
operation stage of the system, considerably reducing the
functional resource utilization (ALMs: −34.1%, ALUTs:
−29%, registers: −11.5%, memory bits: −1.2%).
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Figure 4: ModelSim functional testbench of the proposed system, with a comparison window length of J = 5.
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3.2. FPGA Timing Requirements. From the actual contraction
to the MFCV generation, the overall processing stage takes
about 363.5± 0.25ms, of which 301ms for the useful signal
acquisition and 62.5± 0.25ms for the effective computing,
matching the time requirements for real-time applications.
Detailing the wireless recording system introduces a non-
negligible latency for data digitalization [26, 27] (which
is multiplexed) and transmission, amounting respectively
to 1ms and 14ms [28]. Starting from the FPGA-embedded
50MHz internal clock (Clk_50MHz), a 20MHz clock
(Clk_20MHz) has been derived by using a PLL to con-
trol the ADC. The implemented system requires 2500
Clk_20MHz pulses (~125μs) to multiplex among the moni-
tored channels (n = 4), ensuring on all the channels have the
sampling frequency value each 10,000 cycles at 20MHz
(Clk_2kHz). When the flag of new data occurs, the system
sends the 16 bit sample to the bitstream generator FSMs that
is driven from the Clk_8MHz. This clock is also derived from
a PLL, realizing Clk_8MHz=8.19209MHz. The block needs
from about 10μs and seven Clk_8MHz pulses to generate the
correspondent bit. The shift register filling operates on the
Clk_2kHz falling edges, avoiding the 10μs delay in the
bitstream generation. All the filling operations last 301ms
(602 cycles at 2 kHz), while downstream the XNOR gate,
the 602 iterative comparisons∗602 temporal shifts require
in the best case 362,404 Clk_8MHz pulses, and in the worst
one 362,403 cycles at 8MHz and one Clk_2kHz falling edge.
Experimentally, to complete the computing, the system
spends 47.49ms. Finally, 34 cycles at 8MHz are required to
generate the MFCV value according to (1). The FPGA
implementation has been optimized in terms of position
on board of the logic array block (LAB) combinational
cells and registers as shown in Figure 5. With the here-
adopted clocks (Clk_2kHz, Clk_8MHz), the design allows
realizing an architecture that presents a worst setup slack of
+54.094 ns (data arrives sufficiently early to the designed
LAB) and a worst hold slack of +1.03 ns [27]. It allows the
data input at any given memory remains stable after the clock
edge of the clock long enough to be reliably stored. This
distribution allows to use <2.7% of the total available wires.

The on-chip system area occupancy is shown in
Figure 5(a) (Chip Planner tool), while the wire utilization is
mapped in color (Figure 5(b)).

3.3. Power Consumption. The here-reported power con-
sumptions have been provided by the PowerPlay Power
Analyzer tool of the Altera Quartus Prime Lite Edition
17.0, with a “high” power estimation confidence. The over-
all implementation consumes 453.24mW without heat
sink with still air, of which 416.64mW is the core static
power dissipation.

PST is the power statically dissipated on chip, which is
independent of user clocks. It includes the leakage power
from all FPGA functional blocks, except for I/O DC bias.
The I/O management statically dissipated 8mW with a
VDDIO = 2 5V. The ADC (LTC2308) operating at 2 kHz has
a consumption of about 1.25mW. Considering 1 s of oper-
ation, the bitstream generator operates for the 100% of the
time, the IBPN evaluation block for the 34.5% of the time,
the θ estimation block, and MFCV computing, together it
operates for <0.001% of the considered time. Thus, the
power dissipation caused by signal transitions is dynami-
cally PDYN = 28 60mW, considering the two adopted clocks
(Clk_2kHz, Clk_8MHz) as shown in Figure 6. PDYN can be
divided in 3.60mW for the I/O, 1.04mW for the register
cells, and 0.04mW for the combinational ones; the memory
10 kB (M10K) blocks dissipate 11.12mW; and finally, the
PLL unit consumption is 11.55mW.

3.4. Positional Scanning Performance. To validate the imple-
mented electrode positioning scanner, a comparison between

Table 2: FPGA resources utilization.

Subsystem ALMs (Tot: 32070) ALUTs Registers (Tot: 64140) Memory block (bits) (Tot: 4065280)

ADC 58.4 (0.18%) 93 41 (0.06%) 0

Positional scanner 2461.3 (7.67%) 3162 782 (1.22%) 1598 (0.4%)

Bitstream generators 2979.7 (9.29%) 5144 1327 (2.07%) 132,096 (3.25%)

Switch control units 11 (0.03%) 21 14 (0.02%) 0

IBPN evaluation blocks 416 (1.30%) 226 1378 (2.15%) 1204 (0.03%)

θ estimation blocks 37 (0.11%) 64 100 (0.15%) 0

MFCV computing 1130.4 (3.50%) 2027 2504 (3.90%) 1740 (0.04%)

Other 120.7 (0.37%) 137 150 (0.24%) 0

MFCV system 7214.5 (22.5%) 10,874 6296 (9.81%) 136,638 (3.36%)

(a)

(b)

Figure 5: (a) On-chip area distribution in terms of LABs and
registers by Chip Planner tool. (b) Total wire utilization.
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the FPGA-extracted δ values (defined in (4)) and the covari-
ance coefficient provided by an offline dedicated MATLAB
script (via xcov function) is proposed. Due to the nature of
the δ value in (4), a specular behaviour between xcov and δ
is expected. As stated in Section 2.2.1 for the positioning
phase, the subject under test is asked to keep an isotonic con-
traction of the gastrocnemius for 2 s. Then, the EMG signal
acquired from a specific electrode (from 1 to 7 in Figure 7)
is compared with the one detected on the contiguous site
(from 2 to 8 in Figure 7).

For the validation, a whole column of the positioning
matrix (Figure 1(a)) has been considered, as shown in the
measure setup in Figure 6. Here, the imposed Δd (interelec-
trode distance) is 23mm. The blue diagram in Figure 7 shows
the relative cross-covariance coefficients between the elec-
trode pairs (e.g., 1-2 and 2-3). The red diagram shows the
FPGA extracted δ values on the same pairs. As expected, a
specular behaviour is found. The electrode combinations
with the minimum value of cross-covariance (poor simi-
larity) are linked to the δ values above the threshold
(δ > 0 17). The results identify 2-3 the optimal position,
as theorized in literature [15].

3.5. MFCV Tracking: In Vivo Measurements. This section is
dedicated to the assessment of the tool measurement repeat-
ability. To this aim, 12,500 dynamic contractions have been

acquired from the same subject during a natural walk along
two 10m long lines. We extracted 25 blocks of 25 steps for
each leg and subjects (i.e., 50 steps on both legs). Table 3
summarizes the worst, best, and typical cases in terms of
MFCV estimation occurrence during the single runs (50
steps) of the 10 subjects’ dynamic contractions. The typical
case shows that 7.67m/s is returned, on average, the 94% of
the cases. Also, the value 6.57m/s, which cover the 4%,
ensures a physiological value as in [16], but diverges from
the expected value. The best case shows the 100% in physio-
logical value estimation [16]. Finally, on 1250 dynamic
contractions, 1184± 11 contractions return the same conduc-
tion velocity estimation (94.72%).

4. Conclusions

In this paper, we presented the FPGA (Altera Cyclone V)
implementation and validation of a real-time MFCV estima-
tor, usable in cyclic dynamic contractions such as an ordinary
gait. The paper described the implemented 2-electrode com-
parative MFCV measurements, which exploits the signals
from 4 surface EMG electrodes, positioned on the gastrocne-
mius of both legs. The comparison between the signals is
entrusted by the custom implementation of a cross-
correlation algorithm that compares two 1-bit equivalent
signals on each leg. The implementation on the FPGA of

PDYN=28.6mW
(6%)

PST=416.64mW
(94%)

PPLL
11.55mW
(40.38%)

PM10K
11.12mW
(38.88%)

PI/O=3.60mW
(12.59%)

PREG=1.04mW (3.64%)

PCOM=0.04mW (0.14%)

PADC=1.25mW
(4.37%)

Figure 6: Compendium of the system power consumption with detailed PDYN.
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Figure 7: Positional scanning performances: (a) test setup; (b) cross-covariance coefficients with xcov function (blue) and δ values for each
electrode pair.
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the algorithm has been optimized: it exploits only the 22.5%
ALMs, 10,874 ALUTs, 9.81% registers, 3.36% block memory,
and less than 2.7% of the total wires available. The tool is able
to match the real-time requirements, with just a processing
latency of 47.49± 0.25ms.

In short-time test (50 steps walk), the system returns the
same value in 47/50 cases and the 96% of the estimations are
compatible with the medical literature [16], showing repeat-
ability and accuracy and representing a promising m-health
solution in the diagnosis and monitoring of DPN.

Finally, Table 4 compares the most important and recent
MFCV extraction solutions in terms of the used computing
dedicated platform, the applicability in the ordinary life,
number of electrodes, easiness of installation, usage, and
computing performance.

Data Availability

Later, the data set will be uploaded in DEISLab website
http://dee.poliba.it/DEIS/index.html.
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