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Abstract: Electromagnetic fields are involved in several therapeutic and diagnostic applications such
as hyperthermia and electroporation. For these applications, pulsed electric fields (PEFs) and transient
phenomena are playing a key role for understanding the biological response due to the exposure to
non-ionizing wideband pulses. To this end, the PEF propagation in the six-layered planar structure
modeling the human head has been studied. The electromagnetic field and the specific absorption
rate (SAR) have been calculated through an accurate finite-difference time-domain (FDTD) dispersive
modeling based on the fractional derivative operator. The temperature rise inside the tissues due
to the electromagnetic field exposure has been evaluated using both the non-thermoregulated and
thermoregulated Gagge’s two-node models. Moreover, additional parametric studies have been
carried out with the aim to investigate the thermal response by changing the amplitude and duration
of the electric pulses.
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1. Introduction

The modeling of electromagnetic field propagation through dispersive materials is a subject
of increasing research activities since these dielectric media are found in a growing number of
applications [1–7]. In particular, biological tissues are an important class of dispersive media especially
taking into account that their interaction with the electromagnetic fields has a great influence on the
behavior of living systems. In fact, the increasing number of power and telecommunication systems
leads to human exposure to non-ionizing radiation, causing an increased public concern about the
potential health hazards [8–10]. On the other hand, biological tissues are involved in a variety of
therapeutic and diagnostic applications of electromagnetic fields such as hyperthermia, electroporation
and the treatment of specific diseases [11–15].

Pulsed electric fields and transient phenomena are playing a key role in understanding the
biological response to electromagnetic field exposure. As a result, the development of theoretical
models and computational techniques describing the interaction between pulsed electric field (PEF) and
dispersive materials is an invaluable research activity to increase the knowledge of the electromagnetic
field distribution inside biological tissues, as well as to impose the development of specific therapeutic
approaches. In fact, the efficiency of PEF therapies and treatments strongly depends on the electric
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field strength, the duration of the applied field, the shape of the electric pulse, the polarity and the
number of intervals between pulses [12,13,16–18].

Generally, accurate modeling of the nanosecond PEF propagation inside biological tissues
needs to account for the effects of dielectric relaxation. As revealed by a number of experiments,
the dielectric response of a broad variety of biological media cannot be described by a simple
exponential expression with a single relaxation time [19]. Therefore, exponential laws based on
Debye-type dispersion or the combination of such dispersions cannot fully model the relaxation
processes in such materials. As a consequence, a number of empirical dispersion functions (Cole–Cole,
Cole–Davidson, Havriliak–Negami, Raicu) have been proposed to fit such types of dielectric spectra.

The finite-difference time-domain (FDTD) method has been widely used in electromagnetic
modeling due to its straightforward implementation and its ability to manage a broad range of
exposure conditions [20,21]. Since Cole–Cole, Cole–Davidson, Havriliak–Negami and Raicu dispersion
functions include fractional powers of angular frequency jω, mathematical models adequately
representing this kind of response have to be incorporated into FDTD simulators. Recently, the authors
have proposed a novel FDTD formulation based on the Riemann–Liouville theory of fractional
differentiation where the fractional operator is directly approximated using finite differences [22–26].
The reflectance, transmittance, absorbance and penetration depth were computed and compared with
the corresponding analytical solution in a wideband frequency range.

Considering that common protocols for therapeutic applications of PEF involve the delivering
of multiple pulses and taking into account that a high potential drop occurs across the skin, where
the electric field is the largest, deleterious thermal damage due to Joule heating can occur. To this
aim, the proposed FDTD scheme has been extended to incorporate further physics for evaluating the
temperature distribution inside a layered heterogeneous biological system. In particular, a multiphysics
model based on the fractional calculus-based FDTD algorithm, bioheat equation and thermoregulated
Gagge’s two-node model [27] has been developed. As a test case, a six-layered planar structure
modeling the human head and consisting of air, skin, fat, bone, dura, cerebro-spinal fluid (CSF)
and brain was taken into account [28]. The computation of the electromagnetic field, power density
and specific absorption rate (SAR), as well as the temperature rise inside the tissues when exposed
to an incident plane wave was performed. Moreover, the temperature profiles with and without
thermoregulation phenomenon have been calculated and compared. In particular, they have been
evaluated by changing electric parameters such as the amplitude and duration of the electric pulses.

2. Mathematical Formulation

2.1. Complex Permittivity

The dielectric properties of biological tissues result from the interaction of electromagnetic
energy with the tissue constituents at the cellular and molecular level. As a result, the dielectric
permittivity and conductivity values vary from tissue to tissue and depend on frequency. In order
to model realistic electromagnetic wave propagation over a broad frequency range, an exhaustive
and reliable analytic model of dielectrics is needed. To this aim, the relative permittivity, εr, of the
biological tissues exhibiting an N-th order relaxation process has been modeled by using the general
Havriliak-Negami (HN) relationship [29,30]:

εr(ω) = εr∞ +
N

∑
i=1

∆εri[
1 + (jωτi)

αi
]βi
− j

σ

ωε0
, (1)

where τi and ∆εri are the relaxation time and the amplitude change of the i-th relaxation process,
respectively, N is the number of dielectric relaxation processes, εr∞ is the relative permittivity at
ωτ → ∞, σ is the static ionic conductivity, 0 < αi, βi < 1 are heuristically-derived fitting parameters,
ω = 2π f , and ε0 is the free space permittivity.
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To test the developed numerical code, a planar layered system is considered. It consists of skin, fat,
bone, dura, CSF and brain, and a schematic diagram is shown in Figure 1. This structure well describes
the human head locally and does not require extensive computational efforts. In fact, considering the
occurrence of tissues having small thickness, the existing anatomical computer models can provide
reliable results if huge computational resources are available. Despite its simplicity, it was proven that
this simple planar model produces SAR values very close to those obtained by using more complex
ones [31]. Moreover, it has been demonstrated that the developed fractional derivative-based FDTD
scheme allows an accurate space-time evaluation of electromagnetic field profiles in a broad frequency
range [22–26].
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Figure 1. Sketch of the layered structure considered in the simulations.

The reflection and transmission of a electromagnetic wave at the tissue interface depends on
the frequency, permittivity and conductivity of the involved biological materials. Tissues are very
inhomogeneous materials, and the fluid content of the material generates large differences in their
electric properties. Dielectric data of several bulk tissues in a wide frequency range have been
reported in the literature [32,33]. Therefore, to estimate the dielectric properties in a desired frequency
range, these experimental results have been fitted using (1) and minimizing the error function, E , by
means of a dedicated numerical procedure based on the enhanced weighted quantum particle swarm
optimization (EWQPSO) [34]:

E =

√√√√√√
∫ ωmax

ωmin

∣∣∣εexp
r (ω)− εr(ω)

∣∣∣2dω∫ ωmax
ωmin

∣∣∣εexp
r (ω)

∣∣∣2dω

≤ δ, (2)

In Equation (2), δ is the maximum tolerable error, ε
exp
r is the measured permittivity and εr

represents the general HN dielectric response.
By using (2) in the frequency bandwidth ranging from fmin = 100 MHz to fmax = 10 GHz and

considering N = 2, the HN parameters recovered for each medium are listed in Table 1.
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Table 1. Dielectric and geometrical parameters of the simulated layered structure.

Parameter Skin Fat Bone Dura CSF Brain

α1 0.93 0.92 0.91 0.88 0.92 0.93

α2 0.92 0.91 0.70 0.81 0.99 0.99

β1 0.99 0.99 0.99 0.99 0.99 0.99

β2 0.87 0.85 0.99 0.97 0.85 0.79

τ1 (ps) 8.02 8.34 13.79 8.02 8.03 8.01

τ2 (ns) 67.68 23.98 63.96 105.85 24.71 117.25

∆εr1 36.94 2.35 8.18 37.89 63.23 42.93

∆εr2 1789.8 79.20 130 1087.4 315.09 2823.9

σ (S/m) 0 0.01 0.006 0.5 2 0.02

εr∞ 4 2.5 2.5 4 4 4

d(mm) 0.7 1.6 20.5 0.5 2 ∞

2.2. Electromagnetic Analysis

In order to evaluate the electromagnetic field propagation inside the layered structure involving
HN dielectric materials, the FDTD scheme proposed in [22–26] has been used. In particular,
it implements a more general series representation of the Riemann–Liouville fractional derivative
operator, and it takes into account multiple relaxation times, as well as ohmic losses occurring in
common biological media displaying different dispersion mechanisms. Dedicated uniaxial perfectly
matched layer boundary conditions have been also derived and implemented in combination with the
basic time-marching scheme. Moreover, the conventional total field/scattered field approach and the
Courant stability criterion are considered. Thus, applying a second order accurate finite-difference
scheme and the procedure detailed in [22–26] for the finite-difference discretization, the FDTD update
equations for the electric field, E, the magnetic field H and the auxiliary displacement current density, Ji,
can be calculated within the HN media and UPML regions. In particular, by considering the standard
Cartesian Yee cell grid for the FDTD scheme and applying the central difference discretization, a second
order O (∆z)2 truncation error is achieved.

2.3. Bioheat Equation with Thermoregulation

It is well known that the interaction of an electromagnetic field with living biological tissues
generates an increase of the local temperature [31]. For this reason, it is important to know the
amplitude of the electromagnetic wave propagating inside the considered biological structure to
evaluate the temperature rise. The electromagnetic power transferred inside the biological tissue is
related to the SAR, and it is defined as follows:

SARm (z) =
1

ρm (z)

∫ ωmax

ωmin

σm (z, ω) |E (z, ω)|2 dω, (3)

where σm (S/m) and ρm (kg/m3) are the m-th tissue conductivity and density, respectively, and E is
the electric field at the generic z coordinate.

The temperature distribution inside each tissue exposed to radio frequency (RF) power can
be evaluated solving the Pennes bioheat equation. It is based on the classical Fourier law of heat
conduction, and it incorporates the effects of metabolism and blood perfusion on the energy balance
within tissue in terms of distributed heat sinks or sources. The generalized 1D Pennes equation for the
m-th tissue can be written as [35]:

ρmCm
∂T
∂t

=km
∂2T
∂z2 + ρbCbWb,m(Tart − T) + ρmSARm + qm, (4)
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where T is the tissue temperature, Tart is the time-dependent temperature of the arterial blood,
ρb = 937 kg/m3 is the blood density, Cb = 3889 J/kgK is the blood specific heat, Wb,m (1/s) is the
blood perfusion rate, qm (W/m3) is the metabolic heat generation rate, km (W/mK) and Cm (J/kgK)

are the thermal conductivity and the specific heat of the m-th tissue, respectively.
The Pennes model does not take into account the thermoregulation mechanisms of the human

body such as shivering, regulatory sweating and vasomotion affecting the thermal response of the
human body. In order to overcome this drawback and to calculate a more accurate temperature field,
a thermoregulated bioheat model combining Pennes’ equation and Gagge’s two-node model has
been coupled to the fractional calculus-based FDTD code. In this approach, the layered structure,
called the outer layer, is sandwiched between the inner layer, called the core, and the surrounding air
(see Figure 1).

A part of the heat produced in the core by metabolic and perfusion rates (when it is treated as the
source) is lost via conduction and mass transfer to the outer layer. A portion of this energy may be
expended as external work done by the muscles and as dispersion at the skin/air interface. The rest
of the core energy is stored, and it causes temperature to rise. All these phenomena are controlled
by hypothalamus via a complex thermoregulation mechanism. In particular, the warm and cold
receptors located in the core and outer layers send signals to the hypothalamus which, depending on
the integration of such stimuli, suitably activates the vasomotion, shivering and regulatory sweating
(see Figure 2). By using this concept, Gagge’s two-node mathematical model is based on the energy
balance equation involving the outer and inner layers. In particular, the energy balance equation for
the core is [27]: (

1− αby

)
ρbyCby

dTcr

dt
= rmqm −

(Keff + Cbṁb) (Tcr − Tsk)

lby
, (5)

where αby is the fraction of the body mass concentrated in the skin, ρby = 985 kg/m3 is the body
density, Cby = 3490 J/kgK is the specific heat of the body [36], Tcr is the core temperature, rm is the
remaining metabolic coefficient, Keff = 5.28 W/m2K is the effective conductance between the core and
outer layer, ṁb (kg/m2s) is the rate of blood flow due to the vasomotion of the blood vessels caused
by the cold/warm thermal conditions and lby = Vby/AD (m) is the characteristic length of the body
where Vby (m3) is the volume of the human body and AD (m2) is the nude body surface area given by
the DuBois formula [37]:

AD = 0.202m0.425l0.725, (6)

where m and l are the body mass and height, respectively. Moreover, taking into account that
the external mechanical efficiency is insignificant in many human thermal response applications,
the remaining metabolic coefficient can be defined as [38]:

rm = 1− 0.0014 (34− TA)− 0.0173 (5.87− PA) , (7)

where TA (◦C) is the air temperature and PA (kPa) is the water vapor pressure in the air given by [39]:

PA =

exp
{

77.34 + 0.0057 (TA + 273)− 7235
TA + 273

}
1000 (TA + 273)8.2 . (8)

Finally, the parameter αby can be defined as [40]:

αby = 0.0418 +
0.745

3600ṁb + 0.585
, (9)
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Discretizing (5) gives:

Tcr (t + ∆t) =Tcr (t) +
∆t(

1− αby

)
ρbyCby

[
rmqm +

(Keff + Cbṁb) (Tsk(t)− Tcr(t))
lby

]
, (10)

which is used as thermal boundary condition for the core in Pennes’ equation.

EM 

Wave 

Outer layer Core 

Air 

Tsk 

Tcr 

Blood 

CSIGcr 

CSIGsk 

Hypothalamus 
WSIGsk 

WSIGcr 

Warm signal 

Cold signal 

Sweating 

Shivering 

Vasomotion 

TA 

z*=zsk 

 

rsw
mɺ

shiv
M

b
mɺ

Figure 2. Sketch illustrating the thermoreceptor signals and the thermoregulation mechanisms involved
in Gagge’s two-node model.

The thermal boundary condition at the outer layer surface z∗ = zsk, zsk being the z coordinate of
the skin/air interface, is:

−ksk
∂T (z, t)

∂z

∣∣∣∣
z=z∗

= h [T (z, t)− TA]︸ ︷︷ ︸
convective heat loss

∣∣∣∣∣∣∣
z=z∗

+ σsεsk

{
[T (z, t) + 273]4 − (TA + 273)4

}
︸ ︷︷ ︸

radiative heat loss

∣∣∣∣∣∣∣∣
z=z∗

(11)

+ (3.054 + 16.7hwsk) [0.256T (z, t)− 3.37− PA]︸ ︷︷ ︸
evaporative heat loss

∣∣∣∣∣∣∣
z=z∗

,

where ksk = 0.42 W/mK is the thermal conductivity of the skin, h = 10.5 W/m2K is the
convective heat transfer coefficient at the air temperature, εsk = 0.98 is the skin emissivity,
σs = 5.67× 10−8 W/m2K4 is the Stefan–Boltzmann constant and wsk is the total skin wettedness.
Moreover, considering that only a part of the total skin surface, dSAR, is irradiated by the
electromagnetic field, the skin temperature Tsk is computed using the equation:

Tsk (t) = dSAR T (z, t)
∣∣∣∣
z=z∗

+ (1− dSAR) TnoSAR (z, t)
∣∣∣∣
z=z∗

, (12)

where T (z, t)
∣∣
z=z∗ is the temperature evaluated when the electromagnetic field source is applied

(E 6= 0) and TnoSAR (z, t)
∣∣
z=z∗ is the temperature for the part of the body not irradiated by the

electromagnetic field (E = 0).
In Equations (10) and (11), some physiological parameters such as qm, ṁb, wsk, αby depend on

the thermoregulation mechanisms. The metabolic heat production mainly depends on the physical
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activity of the human body (qm,act), as well as it can be increased by shivering against cold (qm,shiv)
as follows [38]:

qm = qm,act + qm,shiv (13)

where:
qm,shiv =

19.4CSIGskCSIGcr

lb
, (14)

In (14), CSIGsk and CSIGcr are the cold signals of the human body for the outer layer and core
compartments, respectively, given by [38]:

CSIGsk = max {0, Tsk,n − Tsk} , (15)

and:
CSIGcr = max {0, Tcr,n − Tcr} , (16)

where Tsk,n = 33.7 ◦C and Tcr,n = 36.8 ◦C are the neutral outer layer and core temperature, respectively.
Vasomotion of the blood vessels changes both parameters ṁb and αby. In particular, ṁb can be

calculated using the equation [40]:

ṁb =
6.3 + 200WSIGcr

3600 (1 + 0.5CSIGsk)
, (17)

where WSIGcr is the warm signal for the core compartments, and it is given by:

WSIGcr = max {0, Tcr − Tcr,n} , (18)

The regulatory sweating increases the skin wettedness. In particular, the total skin wettedness is
due to both diffusion through the skin (wdif) and regulatory sweating (wrsw) [27]:

wsk = wdif + wrsw, (19)

where:
wdif = 0.06 (1− wrsw) , (20)

and:

wrsw =
ṁrswhfg

qmax
evap

, (21)

In Equation (21), hfg = 2260× 103 J/kg is the heat of water vaporization, ṁrsw( kg/m2s) is the
rate of the sweat production per unit of skin area and qmax

evap is the maximum evaporative potential.
The parameter qmax

evap can be estimated by using the equation [40]:

qmax
evap =

|Psk − Pa|
Ret

, (22)

where Psk is the water vapor pressure in the saturated air at the skin temperature given by:

Psk =

exp
{

77.34 + 0.0057 (Tsk + 273)− 7235
Tsk + 273

}
1000 (Tsk + 273)8.2 , (23)

and Ret = 0.017 m2kPa/W is the total evaporative resistance between the body and the air.
The parameter ṁrsw can be estimated by the following equation [40]:

ṁrsw = 4.7× 10−5WSIGby exp{WSIGsk/10.7} (24)
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where:
WSIGsk = max {0, Tsk − Tsk,n} , (25)

is the warm signal for the outer layer compartments. In (24), WSIGby is the warm signal of the body
given by:

WSIGby = max
{

0, Tby − Tby,n

}
. (26)

Moreover, the body temperature, Tby (◦C), and the neutral body temperature, Tby,n (◦C), are
given by:

Tby = αbyTsk + (1− αby)Tcr (27)

Tby,n = αbyTsk,n + (1− αby)Tcr,n. (28)

3. Numerical Results

In order to validate the fractional calculus-based FDTD model, the electromagnetic field
propagation in the six-layered dielectric slab shown in Figure 1 and over a frequency band spanning
from fmin = 100 MHz to fmax = 10 GHz has been simulated. In the simulation, the geometrical and
dielectric parameters listed in Table 1 have been considered. The system is irradiated by a plane
wave propagating along the z-direction with the electric field linearly polarized along the x-axis.
In particular, the excitation signal is a sinusoidally time-modulated Gaussian pulse having the same
parameters reported in [22]. The chosen time and spatial steps are ∆t = 0.3 ps and ∆z = 0.1 mm,
respectively. Moreover, the time and spatial computational domain are ttot = 10 ns and ztot = 6 cm,
respectively. The stability of the proposed FDTD numerical scheme has been tested by following von
Neumann’s spectral approach and assuming the harmonic time dependence of the electromagnetic
field quantities. At any time step, the instantaneous distributions of the E, H and Ji fields can be
Fourier transformed with respect to the space variable z to provide the spectrum of monochromatic
plane-wave modes propagating along the computational lattice. In this way, it has been checked that
the resulting characteristic polynomial equation has zeros inside the stability circle [20,24].

The numerical results given by the FDTD scheme are compared with an analytical
frequency-domain technique. In particular, the reflectance |R|2 and transmittance |T |2 have been
calculated. The transmission coefficient is evaluated as the ratio of the Fourier transform of the electric
field computed in two different points, z′ and z′′, across the biological structure,

T
(
z′′, ω

)
=

E (z′′, ω)

E (z′, ω)
. (29)

where E is the amplitude of the electric field.
The frequency-domain behavior of reflectance and transmittance calculated using the developed

FDTD and a rigorous fully-analytical technique based on the transfer matrix approach for layered lossy
media [41] is illustrated in Figure 3. The excellent agreement with the analytical technique validates
the proposed methodology.

The bioheat Equation (4) and the boundary conditions (5) and (11) were discretized using the
standard finite difference method in both the spatial and temporal domain. Considering that the
temporal evolution of the heat is slower than the electromagnetic field one, the time step used to
determine the SAR is not suitable for the heat transfer simulation. To this aim, a new time step has been
assigned to solve the bioheat equation. More specifically, to fulfill the constrains due to the numerical
stability and accuracy requirements, it has been chosen according to the von Neumann’s condition:

∆t <
2Cρ (∆z)2

12k + CbρbWb (∆z)2 (30)
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where C (J/kgK) is the specific heat, ρ (kg/m3) is the medium density and k (W/mK) is the thermal
conductivity. In particular, the spatial and temporal step size considered in the bioheat simulations are
0.1 mm and 3.5 ms, respectively, as well as the blood temperature is assumed to be 37 ◦C. Moreover,
the thermal properties of the involved biological tissues are listed in in Table 2 [31]. The temperature
rise, ∆T, due to the PEF interaction with the biological tissues is calculated as:

∆T = TSAR − TnoSAR (31)

where TnoSAR is the steady-state temperature distribution calculated solving the bioheat equation with
SAR = 0 and assuming that the core and skin temperatures are 36.8 ◦C and 33.7 ◦C, respectively, and
TSAR is the temperature calculated with SAR 6= 0 and using the model including the thermoregulation
mechanisms. Moreover, in order to quantify the thermoregulation effect, the temperature rise ∆T1 has
been calculated as:

∆T1 = Tnoreg − TSAR = Tnoreg − TnoSAR − ∆T (32)

where Tnoreg is the temperature evaluated neglecting the thermoregulation mechanisms. The SAR
distribution inside the stratified system has been evaluated using (3), where the electric field is
computed solving the Maxwell equations.
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Figure 3. Reflectance and transmittance spectrum of the six-layered dielectric slab shown in Figure 1.

Table 2. Bioheat parameters of the layered media.

Medium ρ (kg/m3) C (J/kgK) k (W/mK) Wb (1/s)

Skin 1100 3600 0.42 0.0025

Fat 920 3000 0.25 0.0005

Bone 1850 3100 0.39 0.0005

Dura 1050 3600 0.5 0.0003

CSF 1060 4000 0.62 0

Brain 1030 3650 0.535 0.011

Blood 937 3889 - -

The proposed model has been validated by comparison with the literature results [42].
In particular, in Table 3 is reported the maximum temperature rise inside the whole head calculated
by considering an electromagnetic source with the power equal to 0.6 W at 900 MHz and 0.27 W at
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1500 MHz. The good agreement between the two models highlights the numerical algorithm’s ability
to model the biological media exposure to electromagnetic pulses well.

Table 3. Thermal increase comparison inside the brain layer by considering the thermal model
published in [42] and the proposed thermoregulated model.

Model f = 900 (MHz) f = 1500 (MHz)

Thermal model in [42] 0.160 K 0.132 K

Proposed thermoregulated model 0.156 K 0.117 K

In the following investigations, a PEF burst characterized by a hold time thold = 1 ns, rise time
tr = thold/5, repetition time tprt = 10 ns and maximum amplitude Emax has been considered as
the source. Figure 4a shows the time evolution of the PEF source by fixing Emax = 1600 V/m, and
Figure 4b illustrates the corresponding spatial distribution of the SAR. The different dielectric losses
characterizing the biological tissues result in a non-homogeneous SAR profile. In particular, an higher
value of SAR can be noticed inside the biological tissues exhibiting higher losses.
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Figure 4. (a) PEF source having Emax = 1600 V/m and thold = 1 ns; (b) the corresponding SAR profile
inside the multilayered head structure.

Figure 5a illustrates the increase in temperature ∆T versus the time in the skin, bone and brain
layers. In the simulations, a PEF exposure of 30 min followed by 30 min without exposure have
been used. Moreover, the thermoregulated model and the external temperature equal to 23 ◦C are
considered. By an inspection of the figure, it can be inferred that, with respect to the skin and bone
layers, the brain is more protected by the temperature increase. In fact, the temperature grows more
than 1.3 ◦C in the outer layer of the head and around 0.7 ◦C inside the brain. The temperature rise
in each biological medium is directly connected to the corresponding thermal properties such as the
thermal conductivity and blood perfusion rate. In particular, higher thermal conductivity enhances
the thermal diffusion resulting in a lowering of the mean temperature. Meanwhile, higher blood
perfusion rate increases the heat exchange with the blood ensuring a more stable temperature around
the steady-state value. On the basis of these remarks, it is possible to justify the highest increase in
temperature occurring inside the bone layer since it exhibits the lowest values of both the thermal
conductivity and blood perfusion rate. Instead, the higher values of such parameters result in a more
limited temperature rise in the brain layer. On the other hand, the temperature improvement due to the
PEF exposure is mitigated by the thermoregulation process, which reduces the metabolic heating and
improves, via vasodilatation, the blood flow, as well as it enables the production of sweat. Moreover,
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when the sources is turned off, the reduced metabolic activity and the starting of the sweating process
allow a temporary temperature reduction below the steady-state value.

Figure 5b highlights the temperature changes due to the model including the thermoregulation
mechanisms. It can be noticed that when the PEF signal is turned on, ∆T1 ≥ 0 in each biological layer.
This means that the temperature rise calculated using the thermoregulated model is lower than that
calculated using the non-thermoregulated one. This occurrence can be explained by considering that
the thermoregulation phenomenon modifies the blood perfusion and the metabolic heating, as well
as it activates the sweating process. When the PEF signal is turned off, the sweating process and the
reduced metabolic heating generate a faster temperature decrease compared to the one calculated using
the non-thermoregulated model. As a result, a temporary negative value of ∆T1 occurs. In response to
such a negative value, the thermoregulation phenomenon should seek to stabilize the temperature as
much as possible closer to the steady-state value. However, the noticeable discordance is a compelling
argument for necessarily using the more complex model employing the thermoregulation mechanisms.
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Figure 5. (a) Time-dependent temperature rise in the skin, bone, and brain layers; (b) comparison
between non-thermoregulated and thermoregulated models.

In order to gain insights into the interaction of PEF with the multilayered human head, additional
parametric studies have been carried out. Two different test cases have been considered. In the first
one, the PEF amplitude is changed, and the hold time is equal to thold = 1 ns. The second test case
pertains to the parametric analysis performed by varying the hold time and fixing Emax = 1600 V/m.
Figure 6 displays the spatial distribution of the SAR concerning (a) the first and (b) the second test
case. As it would be expected, the electromagnetic power enhancement due to the PEF amplitude
rise generates higher SAR in each biological layers (see Figure 6a). The SAR also increases for longer
pulse durations (see Figure 6b). In the latter case, the SAR improvement depends on the spectral
band associated with the pulsed signal as well as on the penetration depth of the PEF inside the head.
For shorter PEF signals, the SAR value is higher in the outer layer because the electromagnetic wave is
strongly attenuated by the skin. Instead, by increasing the pulse duration, the electromagnetic wave
propagates deeper, generating higher values of SAR inside the CSF layer, which shields the brain from
the electromagnetic radiation.

Figure 7 shows the temperature versus the time for three different PEF amplitudes (a) at the
air-skin boundary and (b) at the outer surface of the brain layer. In the simulations, the SAR profiles
illustrated in Figure 6a have been used, as well as the source is active for the first 30 min and turned off
for the following 30 min. The temperature improvement is directly correlated with the amplitude of the
PEF source. In fact, for Emax = 800 V/m, a negligible temperature rise can be observed. On the other
hand, for Emax = 3200 V/m, a strong thermal effect occurs inside the whole multilayered structure.
Such behavior is due to the electromagnetic power associated with the pulse propagating inside
the biological system. The power lost inside the biological tissues increases as the PEF amplitude
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increases, producing a higher heat load. In particular, the temperature increases more than 5 ◦C on the
skin surface and around 3.5 ◦C inside the brain, reaching values that would result in damage to the
biological tissues.
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Figure 6. SAR profile obtained by considering a PEF source with (a) three different pulse amplitudes;
(b) three different hold times.
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Figure 7. Temperature versus the time for three different PEF amplitudes; (a) at the air-skin boundary
and (b) at the outer surface of the brain layer.

Figure 8 shows the temperature versus the time for three different PEF durations (a) at the air-skin
boundary and (b) at the outer surface of the brain layer. The SAR profiles illustrated in Figure 6b
have been used, as well. It is clear that the temperature increases by increasing the pulse duration.
In particular, with respect to the steady state value, the temperature improvement at the air-skin
boundary changes from 0.7 ◦C, for thold = 0.5 ns, to 2.8 ◦C, for thold = 2 ns. However, at the outer
surface of the brain, a more limited temperature change occurs ranging from 0.2 ◦C, for thold = 0.5 ns
to 2 ◦C, for thold = 2 ns. The temperature rise exhibits a non-linear dependance respect to the PEF
duration. In fact, it is higher for a longer pulse duration since the electromagnetic field propagates
deeper. As a result, a more efficient heating occurs. For this reason, the temperature at the air-skin
surface linearly increases for longer PEF durations, and a more evident changes inside the brain can
be observed. In fact, for shorter pulses, the high frequency spectral components exhibit a strong
attenuation before reaching the brain, thus producing a lower temperature rise. On the other hand,
by extending the pulse duration, the spectral energy is mainly associated with lower frequency spectral
components, which can reach the brain layer.
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Figure 8. Temperature versus time for three different PEF durations; (a) at the air-skin boundary and
(b) at the outer surface of the brain layer.

4. Conclusions

In this paper, a novel mathematical model based on an electromagnetic FDTD fractional
scheme coupled with the bioheat equations and thermoregulated Gagge’s two-node model has been
illustrated. In the presented model, the fractional derivatives appearing in the permittivity function
characterizing the dispersive materials are directly incorporated into the FDTD scheme by using
the Riemann–Liouville definition. The developed numerical tool has been applied to the analysis of
pulse wave propagation in a multilayered human head structure. After a validation carried out by
comparison with a fully-analytical approach, the numerical code has been applied to study various
test cases. The obtained results show that the presented multiphysics model provides the space-time
temperature distribution inside the biological layers forming the human head when it is exposed to
PEF radiation. Moreover, in order to investigate the effects of the amplitude and pulse duration on the
temperature rise inside the head, several parametric simulations have been carried out. The obtained
results demonstrate that the proposed numerical model could be a useful tool to study the coupled
thermal and electromagnetic problems occurring in biological tissues.
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