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ABSTRACT: Classical lubrication theory is unable to explain a variety of phenomena and experimental observations involving
soft viscoelastic materials, which are ubiquitous and increasingly used in e.g. engineering and biomedical applications. These
include unexpected ruptures of the lubricating film and a friction−speed dependence, which cannot be elucidated by means of
conventional models, based on time-independent stress−strain constitutive laws for the lubricated solids. A new modeling
framework, corroborated through experimental measurements enabled via an interferometric technique, is proposed to address
these issues: Solid/fluid interactions are captured thanks to a coupling strategy that makes it possible to study the effect that solid
viscoelasticity has on fluid film lubrication. It is shown that a newly defined visco-elasto-hydrodynamic lubrication (VEHL)
regime can be experienced depending on the degree of coupling between the fluid flow and the solid hysteretic response.
Pressure distributions show a marked asymmetry with a peak at the flow inlet, and correspondingly, the film thickness reveals a
pronounced shrinkage at the flow outlet; friction is heavily influenced by the viscoelastic hysteresis which is experienced in
addition to the viscous losses. These features show significant differences with respect to the classical elasto-hydrodynamic
lubrication (EHL) regime response that would be predicted when solid viscoelasticity is neglected. A simple yet powerful
criterion to assess the importance of viscoelastic solid contributions to soft matter lubrication is finally proposed.
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1. INTRODUCTION
Soft matter mechanics has recently become the focal point of
much research in engineering and material science. This is
driven by the continuously increasing demand for new
polymers,1,2 soft tissues,3 biomedical implants,4 biomimetic
solutions,5,6 and smart devices.7 Materials belonging to this
class are usually characterized by a range of outstanding
properties in terms of cost, versatility, and biocompatibility.
However, at the same time, because of the strongly time-
dependent constitutive laws governing their behavior, their
mechanical response is often difficult to predict, and indeed, a
comprehensive theoretical framework to tackle this issue is still
missing. A particularly high level of intricacy is reached when
soft bodies come into contact: the presence of rough interfaces
and the need to resolve interactions between asperities
exacerbates the problem’s complexity. Furthermore, at the
contact interface, different phases may exist, including gases and
fluids, and strong coupling effects have to be accounted for in a
fully multiphysics investigation.

Indeed, because of both its theoretical and technological
relevance, the case of the lubrication of soft bodies exhibiting a
time-dependent viscoelastic behavior is particularly interesting.
The mechanics of viscoelastic dry contacts has attracted a large
number of investigations applying analytical,8,9 numeri-
cal,10,11,29 and experimental12,13 methodologies. However,
upon consideration of a lubricated interface in the presence
of soft viscoelastic materials, limited research has been carried
out both experimentally and theoretically to shed light on the
mechanisms governing such interactions. In particular, in spite
of the development of interesting analyses that show the effect
of viscoelasticity in two-dimensional contacts,14−17 also
accounting for the role of surface roughness in a statistical
sense,14 theoretical and computational efforts to study three-
dimensional contacts and to determine the effect of solid
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viscoelasticity on lubrication regime are lacking. As a result,
lubrication science, as so far developed for time-independent
elastic,18,19 hyper-elastic,21 and elasto-plastic22 rheologies of the
lubricated bodies, cannot explain a variety of natural
phenomena and experimental observations. An example is
given by interferometric tests carried out on PMMA recently
reported by Marx and co-workers,23 which reveal film thickness
maps and contact patches whose shapes and values are
unexpectedly different from conventional Hertzian-like contact
configurations. In particular, a marked shrinkage at the flow
outlet, depending on the flow speed, is shown. Additional
surprising experimental evidence linked to the interplay
between solids and fluids in soft contact problems is provided
in ref 24 where, in the presence of strongly viscoelastic
materials, the rupture of the fluid film is shown to occur at the
flow inlet of the lubricated interface. This suggests that a point
of minimum for the film thickness occurs there: Such a result is
very hard to explain in the absence of time-dependent
deformations, and is unexpected in classical lubrication,
where, because of the flow conservation, a minimum is usually
predicted close to the flow outlet. Furthermore, standard
lubrication models predict a friction−speed dependence that
follows the so-called Stribeck curve: Boundary and mixed
lubrication regimes experienced at low and moderate speeds are
replaced, at larger speeds, by elasto-hydrodynamic lubrication
(EHL) and hydrodynamic (HD) regimes, where friction is
controlled by viscous losses in the fluid and depends linearly on
the logarithm of the speed.18 This approach neglects
completely the hysteretic dissipation that occurs inside the
lubricated body if the material is viscoelastic. However, such a
contribution, as experimentally shown in the literature,25 may
play a significant role and strongly modify the Stribeck curve
previously described.
Building up a theoretical framework for soft matter

lubrication is not only fundamental to fully understand such
experimental observations, but also has significant implications
in allowing for many systems and applications to be studied. As
sketched also in Figure 1, these include the vast field of
lubrication in soft biological systems. This is, for example, the

case of the tree frog’s outstanding ability to adhere on wet
interfaces after lubricant film breakage. Indeed, as shown in the
recent literature,24,26 frogs’ toe pads frequently slip on smooth
lubricated surfaces, and regain grip only when the lubricating
film breaks after a small slide. Such a mechanism cannot be
explained without accounting for the real rheology of the
contacting interfaces. Similarly, the interaction between soft
tissues and liquids is crucial also in many other contexts, like
the skin grip in the presence of wet interfaces. As shown
experimentally in the literature,27 the human fingertip gripping
contact is dramatically influenced by the amount of liquid at the
interface and, therefore, by the lubricating film thickness. In this
respect, our study is prompted also by the fact that, in the era of
touchscreens, a theoretical framework to provide better
understanding of gripping and fingertip sliding mechanisms is
still missing. Furthermore, we should not forget the relevance
of viscoelastic lubrication when looking at the important role
played in determining the efficiency in a variety of engineering
components. The applications dealing with the sealing
technology are particularly interesting, where, in spite of a
number of accurate scientific contributions (see, e.g., ref 10),
the coupling between the percolating fluid and the viscoelastic
solid usually is not fully accounted for.
In this paper, by means of an innovative numerical

methodology that captures fluid/solid interactions, obtained
by coupling a boundary element approach that deals with the
solid viscoelastic deformation and a finite difference scheme
used to model fluid flow dynamics, we shed light on some of
the peculiarities experienced by linearly viscoelastic bodies
when subjected to lubricated contact. In particular, for a simple
tribosystem model, i.e., a rigid sphere in pure rolling over a
viscoelastic layer, we show how non-Hertzian pressure
distributions and the relative unconventional shapes for the
contact film thickness can be explained by considering the
actual rheology of the contacting solids. Furthermore, after
providing experimental evidence for corroboration and
discussing implications of our computational results, we
propose a basic but effective criterion to establish when solid
viscoelasticity is strongly coupled with the fluid viscous losses
and has significant effects on the system response and frictional
losses. The fundamental understanding gained in introducing
the effect of solid viscoelasticity in the solution of lubrication
problems will play an essential role in overcoming some of the
limitations of classical lubrication theory and, thus, in providing
a new tool to investigate the mechanisms governing some of
the aforementioned phenomena.

2. MATHEMATICAL FORMULATION
In order to deal with the lubrication in the presence of deformable
bodies, as schematically reproduced in Figure 2, let us focus on a
scheme typical in tribology. A rigid spherical punch clamped in its
center rolls, with a velocity ub equal to ub = Ω × R with Ω and R
being, respectively, the angular velocity and the position vector, over a
viscoelastic layer sliding with a constant speed ud. We can assume that
ub and ud are constant and have the same direction, i.e., ub = ubi and ud
= udi with i being the unit vector, identifying the common motion
direction (corresponding to the horizontal direction in Figure 2). It is
noteworthy to underline that the mathematical approach developed
below is absolutely general and can be employed for any contact
configuration, once the geometry of the contact and ub and ud are
defined.

Now, the complete solution of the lubrication problem requires
determination of two unknown distributions, i.e., the film thickness in
the contact region and the normal interfacial stress. To this aim, it is

Figure 1. Lubrication of viscoelastic solids: schematic illustration of
the experimentally detected film thickness and of relevant applications
governed by this phenomenon.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b09381
ACS Appl. Mater. Interfaces 2017, 9, 42287−42295

42288

http://dx.doi.org/10.1021/acsami.7b09381


necessary to couple a solver for the steady-state hydrodynamic
lubrication equations with a methodology that, given the pressure
distribution, provides the elastic (or viscoelastic) deformation
experienced by the interacting pair. Indeed, the two aspects of the
problem are coupled since the displacement of the solid surface
influences the lubricating film and, consequently, the solution of the
flow equations. Such a coupling is particularly strong in soft materials
since deformations can be significant when compared to the fluid film
thickness.
Before dealing with the problem equations, let us briefly recall how

linear viscoelastic materials can be described from a mechanical point
of view.30,31 Indeed, the most general form to model the linear
viscoelasticity response can be encompassed in the following relation:

∫ε τ τ τ= − ̇
−∞

t t g( ) d ( ) ( )
t

(1)

with ε(t) being the time-dependent strain, g(t) being the stress [the
symbol “·” stands for the time derivative], and the function t( ) being
the creep function. We observe that t( ) must satisfy causality, and
therefore, < =t( 0) 0. It is possible to show that t( ) is equal to30
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where t( ) is the Heaviside step function, the real quantities E0 and
E∞ are, respectively, the so-called rubbery and glassy elastic moduli,

τ( ) is a positive function usually referred to as the creep (or
retardation) spectrum,30 and τ is the relaxation time continuously
distributed on the real axis. For employment of eq 2 to characterize
any real linear viscoelastic solid, such a relation has to be discretized by
writing τ δ τ τ= ∑ −C( ) ( )k k k and, thus, obtaining the following:
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where the quantities Ck and τk are, respectively, the creep coefficients
and the relaxation times.

Furthermore, for exhaustive description of the linear viscoelasticity,
it is crucial to introduce an additional quantity, that is, the so-called
viscoelastic modulus of the material E(ω). Indeed, if we carry out the
F o u r i e r t r a n s f o r m o f e q 1 b y i n t r o d u c i n g

∫ω ω= −t t i t( ) d ( ) exp( ), σ(ω) = ∫ dt σ(t) exp(−iωt), and
ε(ω) = ∫ dt ε(t) exp(−iωt), we obtain ε(ω) = σ(ω)/E(ω) where
E(ω) is equal to E(ω) = [iωJ(ω)]−1. By moving from eq 2, one can
easily prove the sum rule:

∫π
ω

ω ω
− =

∞

∞

E E E
1 1 2

d
1

Im
1
( )0 0 (4)

Now, after introducing the fundamentals of linear viscoelasticity, let
us focus on the linear viscoelastic solid deformation experienced
because of the indentation of such a material in a contact problem. As
shown in detail in ref 11 by recalling the translational invariance of the
geometrical domain and the elastic−viscoelastic correspondence
principle,30 the general linear−viscoelastic relation between the normal
surface displacement u(x, t) and the normal interfacial stress σ(x, t)
can be described by means of the following integral equation:

∫ ∫τ τ σ τ= ′ − − ′ ̇ ′
−∞

u t x tx x x x( , ) d d ( ) ( ) ( , )
t

2
(5)

where x is the in-plane position vector, t is the time, and x( ) and
t( ) are, respectively, the elastic Green’s function and the creep

function previously introduced. Incidentally, it should be observed
that, in eq 5, the factorization of the integral equation kernel in two
terms, that is, x( ) and t( ), is allowed because of the assumption on
the rheology of the contacting solids, which are considered
homogeneous linear viscoelastic.

Now, since the sliding of the viscoelastic materials occurs at the
constant velocity ud, and neglecting any effect due to a nonuniform
temperature field, we can rely on a steady-state assumption and
observe that, in such a case, σ(x, t) = σ(x − udt), and u(x, t) = u(x −
udt). Consequently, eq 5 can be rewritten in the following form:

∫ σ= ′ − ′ ′u x Gx x x u x( ) d ( , ) ( )2
d (6)

In refs 11 and 32, the kernel G(x, ud), which depends only
parametrically on the speed ud, has been proven to be equal to
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where Θ(|X|/b) is a corrective parameter introduced to account for the
viscoelastic slab thickness b and depending on the different constrains
or boundary conditions set on the layer (see refs 32−34 for more
details). When the contact region is much smaller than the slab
thickness, the layer behaves like a half-space, and Θ(|X|/b) tends to 1.

Once the Green’s function G(x, ud) is explicitly given, for a
numerical solution, eq 6 has to be discretized as a linear system.28,36

Indeed, this strategy consists of discretizing the contact domain in N
square cells and, then, assuming that in each square cell the normal
stress σ is constant and equal to σk = σ(Xk), where Xk is the position
vector of the center of the square cell Dk. Consequently, the normal
displacement ui = u(Xi) at the center of the i-th square cell can be
expressed as
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where the terms ∫ Dk
d2X′ |Xi − X′|−1 and ∫ Dk

d2X′ |Xi + udτz − X′|−1

can be easily calculated by exploiting Love’s solution for elastic

Figure 2. Schematic of the model implemented in the numerical
methodology. The sphere rolls over a viscoelastic layer with a speed ub
= Ω × R with Ω and R being, respectively, the constant angular
velocity and the position vector. The viscoelastic layer slides with a
constant speed ud.
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materials,35 as shown in ref 36. In this way, the problem is reduced to a
vectorial linear relation:

σ=u L u( )i ik kd (9)

where the response matrix Lik(ud) parametrically depends on the
velocity ud. We observe that the total load acting on the system Fn is
equal to Fn = Dk∑k=1

N σk with the Dk being the area of each square cell.
Now, we can focus on the second equation, which is related to the

fluid dynamics of the problem. We can assume all of the commonly
employed assumptions are valid when dealing with soft lubrication,
and in particular, we assume no-slip boundary conditions at both
solids’ interface. Let us, then, introduce the Reynolds equations, whose
general form can be written as follows (see refs 18 and 19):

ρ ρ ρ
η

σ∂
∂

+ ∇· = ∇· ∇
⎛
⎝⎜

⎞
⎠⎟

h
t

h
h

U( )
12

3

(10)

where U is the entrainment speed, i.e., the mean surface velocity that
for the system depicted in Figure 2 is equal to U = (ub + ud)/2, ρ is the
density (which here is considered constant), η is the fluid viscosity,
and h is the film thickness. The latter quantity can be easily related to
the normal displacement of the deformable surface u, and specifically,
h(x, y) = h0 + s(x, y) + u(x, y) with h0 and s(x, y) being, respectively, a
rigid motion constant and the separation due to the undeformed
geometry of the contacting surfaces. For the tribosystem studied in this
paper and sketched in Figure 2, s(x, y) is equal to s(x, y) = R − (R − x2

− y2)1/2 with R being the radius of the sphere.
Given the steady-state conditions of our study, eq 10 simplifies since

the time derivative vanishes and is, then, solved by means of a finite
different scheme, whose nodes are equally spaced in the computational
domain and correspond to the centers of the boundary elements
previously defined for the solid problem. Indeed, such a procedure,
where the differential terms in eq 10 are discretized with central finite
differences,18,19 allows us to reduce eq 10 to the following linear
system:

μ σ=h R U( , )i ik k (11)

Ultimately, the problem consists of coupling the solid mechanics and
fluid dynamics18−20 and, consequently, of finding the pressure
distribution that satisfies, at the same time, both eqs 9 and 11. An
iterative scheme is adopted to solve the system formed by these two
equations provided in vector form. Basically, at each iteration, given
the estimation of the film thickness h̃i computed at the previous
iteration, eq 11 is inverted to calculate an estimated stress field σ̃k,
which then is inputted in eq 9 to obtain the new viscoelastic
deformation field u ̃i and, consequently, the film thickness to employ at
the next iteration. The iterative procedure, properly under-relaxed by
means of the Aitken acceleration approach (see, e.g., ref 19), continues
until film thickness and pressure distributions numerically converge in
two consecutive iterations. Furthermore, with regards to the inversion
of eq 9, in order to speed up the solving procedure, we may observe
that the matrix Rik is pentadiagonal thanks to the central finite
difference discretization, and consequently, we may implement a direct
solver which requires storing only the nonzero elements of the matrix
Rik.

37 The main advantage is the possibility of implementing a fine
mesh and, at the same time, obtaining fast computational times. Once
the problem is fully solved in terms of pressure distribution and
deformations, it is straightforward to calculate the total friction as the
sum of the viscoelastic hysteretic term11 and the contribution coming
from the fluid losses.18

Incidentally, we observe that, as usually done when dealing with
numerical methods and, in particular, in lubrication problems, in this
paper, the outcomes of the methodology are reported in dimensionless
form. To this aim, we note that the characteristic length of the
problem is the radius R: Consequently, when considering the film
thickness h (and all deformations and quantities defined using units of
length), we will look at the ratio h/R. Furthermore, when we have to
analyze the stress distribution σ, it is convenient to make such a
quantity dimensionless and write it as σ/E0, by introducing the rubbery
elastic modulus E0.

11 Such a modulus is, then, employed as reference

for quantities characterized by units of stress. As a consequence, the
normal dimensionless load will be Fn/(R

2E0). Finally, to introduce a
dimensionless speed ξ, we compare two time scales: The first one is a
characteristic relaxation time τ of the material and the second one is
the time employed by the fluid to cover the length R with the speed
U.11 Then, ξ is equal to ξ = Uτ/R. Finally, to deal with the viscosity η,
we employ the dimensionless group ηUR/Fn, that is, the so-called
Hersey number.

3. RESULTS AND DISCUSSION

3.1. Film Thickness and Interfacial Pressure Distribu-
tion. We focus on the description of the physics governing the
lubrication of a rigid sphere in pure rolling over a viscoelastic
half-space. Consequently, the slide−roll ratio SRR, defined as
SRR = (ub − ud)/((ub + ud)/2) with ub and ud being the speed
of the sphere and of the disc, respectively, is set to zero.
Although these two conditions, i.e., the layer assumed as a

half-space and the SRR being equal to zero, can be seen as a
simplification with respect to the general formulation, they are
only used here to reduce the number of parameters and show
the effect of viscoelasticity in one of the simplest possible
configurations. Furthermore, as a starting point and again in
order to show the main peculiarities of lubricated viscoelastic
response using a simple material model, we employ a one
relaxation time material with a ratio E∞/E0 equal to E∞/E0 =
100 and several different values of the relaxation time τ.
Without loss of generality and for illustration purposes, all the
calculations are carried out for a constant dimensionless normal
load Fn/(R

2E0) = 8.5 × 102.
Now, by employing the numerical methodology described

above, we can calculate how the pressure distribution and the
film thickness depend on the dimensionless speed ξ = Uτ/R,
where the fluid entrainment speed U is equal, in pure rolling
conditions, to ud. As shown in Figure 3, for very low values of ξ,
the deformable solid is in the elastic rubbery region and
behaves, consequently, as a soft elastic body: No viscoelastic
effect is present. When looking at the lubricating film, as
expected (see, e.g., refs 18 and 22), we observe an almost
perfectly circular shape, and because of the flow conservation, a
minimum at the fluid outlet can be observed. This is
particularly evident in Figure 4, where both the fluid meatus
and the normal stress distribution are plotted at the centerline
of the contact depicted in Figure 3. Indeed, for ξ = 0.005, we
notice a Hertzian-like pressure distribution, typical of low
pressure contacts and iso-viscous fluids.18

However, a very different story has to be told when the speed
is increased. Indeed the contact zone (i.e., the region delimited
by low film and high pressure) gradually decreases its size and,
most importantly, evolves toward a shape that is increasingly far
from a circle and is affected by a sharp shrinkage at the fluid
outlet. In Figure 3, the contour plots of the pressure clearly
show this trend; as emphasized upon focus on the centerline in
Figure 4, there exists a stress peak that increases with the speed
and produces, ultimately, a strong asymmetry toward the
contact inlet. Interestingly, such changes produce an additional
local minimum in the fluid film: With an increase in the speed,
this effect becomes predominant, and the absolute film
thickness minimum moves from the flow outlet to the inlet.
This is in agreement with recent experimental evidence;23,24

however, this is certainly not intuitive and might come as a
surprise for researchers familiar with classic lubrication
models18 and would be inadmissible if the rheology of the
contacting solids were not to be considered. Hence, further
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considerations must be made to corroborate and explain these
trends.
First of all, let us observe what happens in dry conditions

when a rigid ball moves in rolling or sliding contact over a
viscoelastic half-space. As shown in ref 11, the contact pressure

has a peak at the leading edge, where the material has not been
previously in contact with the rigid punch, and is smaller at the
trailing edge, where the viscoelastic solid has been deformed
and has not yet fully relaxed. Such a pressure field produces a
contact area that is asymmetric and has a marked shrinkage at
the trailing edge. When a fluid is inserted between the rigid
punch and the viscoelastic layer, a similar mechanism occurs: At
the flow inlet, i.e., where the lubricant is “sucked in”, the
viscoelastic material is basically undeformed; on the contrary, at
the outlet, where the lubricant exits the contact region, the solid
is still relaxing. This can be seen very clearly in Figure 5, where
the viscoelastic displacement u(x, y) is plotted for different
values of the dimensionless speed ξ. As a consequence, similarly
to what happens in dry conditions, larger pressure values have
to be expected toward the inlet rather than at the flow outlet. A
shrunk nonsymmetric film thickness and a minimum value at
the inlet correspond to such a pressure distribution.
Furthermore, experimental comparisons with numerical

results can be carried out by employing the same experimental
setup shown in ref 23. This is based on the optical
interferometry. Such a technique is normally used to detect
the fluid film between two lubricated bodies: Fundamentally,
light is shone into the lubricated contact through a transparent
body, that is, usually glass or sapphire. Some of this light is
reflected from the lower surface of the transparent disc while
some passes through the lubricating film and is reflected on its
turn from the reflective ball surface, which is usually steel.

Figure 3. Contour plots of the film thickness (left) and the pressure
distribution (right) predicted for a normal load of Fn/(R

2E0) = 8.5 ×
102 and different values of the dimensionless speed ξ. Calculations are
carried out for a viscoelastic half-space with a glass modulus E∞ = 108

Pa, a ratio E∞/E0 = 100, and a relaxation time τ = 0.01 s, in contact
with a sphere with a radius R = 0.02 m. The fluid has a constant
viscosity equal to η = 1 Pa s.

Figure 4. Film thickness (top) and pressure distribution (bottom)
measured at the centerline of the contact (y/R = 0) for a normal load
of Fn/(R

2E0) = 8.5 × 102 and different values of the dimensionless
speed ξ.
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When the two light beams recombine, they interfere in a way
that depends on the path difference between them and,
consequently, on the lubricant film thickness. Such an
experimental setup has been applied successfully to transparent
poly(methyl methacrylate) (PMMA) disks by applying a
semireflective chromium coating on the polymeric material.
As for the lubricant, an additive-free base fluid, of a gas-to-liquid
origin and corresponding broadly to API group IIIÃ, is
employed. More details, including the viscometric properties
of the fluid, can be found in ref 23. With regards to the disk
material, PMMA is a viscoelastic polymer whose properties
have been obtained by means of dynamic mechanical analysis
performed on the Q800 dynamic mechanical analyzer (DMA)
manufactured by TA Instruments (see the Supporting
Information for more details). In Figure 6, results show a
good qualitative and quantitative agreement between the
contour map of the film thickness experimentally measured at
the temperature of T = 40 °C and the equivalent contour plot
obtained numerically. A marked deviation from the circular
shape of the contact zone, which cannot be captured using
classical elasto-hydrodynamic lubrication, and neglecting the
effect of the solid rheology, is clearly shown. As shown also in
ref 23, and coherently with the theoretical framework so far
developed, such an effect and, in particular, the shrinkage at the
flow inlet are strongly dependent on the entrainment speed.
A more direct quantitative analysis of the film at the contact

centerline, carried out for different values of entrainment speed
and for a normal load of Fn = 15 N, shows a good agreement

with the numerical outcomes with discrepancies always below
8%. The observation of the pronounced shrinkage of the
lubricating film and the accuracy of the quantitative comparison
between experimental and numerical results highlight the role
that might be played by solid viscoelasticity. However, at the
same time, in the current experimental setup, viscoelastic effects

Figure 5. Displacement distribution u(x, y) for different values of the dimensionless speed ξ. Dotted lines refer to the position of the rigid punch.

Figure 6. Interferometer map (top right) and numerical contour plot
(bottom right) of film thickness for a normal PMMA sample subjected
to a normal load of Fn = 15 N and an entrainment speed U = 1.17 m/s.
Comparison between numerical predictions and experimental out-
comes at the centerline (y/R = 0) for different values of the
entrainment speed (left).
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are not as strong as those observed, for example, in Figures 3
and 4. Indeed, the experimental evidence and the numerical
results presented so far suggest that viscoelastic effects can be
more or less pronounced depending on the fluid viscosity and
the frequency/speed range in which solid viscoelasticity is
prominent for the specific material under investigation. In other
words, the rheologies of the fluid and of the solid undergo a
complex interplay, with different levels of coupling between the
fluid film and the deformation of the solid bodies, which leads
to different lubrication scenarios and frictional responses. Such
an interplay is discussed next.
3.2. Solid Viscoelasticity and Fluid Viscosity: A

Coupling Criterion. To quantify the coupling and the
interaction between viscoelastic deformations in the solid and
fluid film, let us primarily focus on the two parameters that
govern the phenomenon. Starting from the aspects linked to
the dynamics of the fluid, all the properties and, in particular,
friction, which will be used as a measure of the effect that the
coupling has on dissipation, are determined by the Hersey
number, ηUR/Fn.

18 With regards to the solid, we have a
frequency where viscoelastic losses and, specifically, the loss
tangent reach a maximum: In the very simple case of a one
relaxation time material, such a frequency, which maximizes the
ratio Im[E(ω)]/|E(ω)|, can be estimated analytically and is
equal to ω π≈ −

∞E E/cr
1

0 .
11 The critical disc speed associated

with this frequency is equal to ud|cr ≈ ωcrR/τ, and therefore,
since in rolling conditions U = ud, the critical entrainment
speed can be estimated as πτ= ∞U R E E( / ) /cr 0 .
Now, it is straightforward to observe that, given a constant

normal load, when we increase the speed, the minimum and the
mean film thickness increase, and as expected from classical
lubrication theory, once we pass from the elasto-hydrodynamic
to the hydrodynamic regime, any deformation in the contacting
solids tends to decrease. As shown also in Figure 5, when the
deformable layer is viscoelastic, the situation is similar to the
only difference that, by increasing the speed, the solid become
stiffer until we reach the elastic glassy regime where E(ω) is
equal to E∞. Therefore, the transition between a deformable
regime, that we could now define as visco-elasto-hydrodynamic
lubrication (VEHL), to the hydrodynamic behavior can be even
faster. Now, given a viscoelastic solid, we may wonder what
happens if, for a given load, Ucr falls into the hydrodynamic
region, and consequently, no deformation occurs at the critical
speed: Simply, no viscoelastic effect will be observed. We have
an elasto-hydrodynamic regime (the solid behaves elastically
with a rubber modulus E0) followed by a hydrodynamic regime
at larger speeds. It emerges that viscoelasticity is a necessary,
but not sufficient, condition to see a marked deviation from
classical EHL conditions. For observation of the visco-elasto-
hydrodynamic regime, the solid deformation at the critical
speed Ucr has to be large and comparable with the film
thickness. This observation leads to the introduction of the
following coupling parameter:

δ
Γ =

hhydro

cr (12)

with hhydro and δcr being, respectively, the minimum film
thickness in hydrostatic conditions and the solid penetration at
the critical speed. For a VEHL regime, Γ ≈ 1. The minimum
hydrostatic film thickness can be found solving the Reynolds
equations and, for our configuration, as shown in ref 38, is

equal to hhydro = RHhydro with Hhydro being a dimensionless
quantity equal to Hhydro = α(ηUcrR/Fn)

2 with α a constant
numerically found equal to α ≈ 1.3 × 102. The penetration δcr
can be approximately estimated using the Hertzian relations as
δcr ≈ (9Fn

2/16R(E*(ωcr))
2).

This is a powerful tool, as evaluating Γ allows, given the
viscoelastic modulus E(ω) and the fluid viscosity η,
determination of if a visco-elasto-hydrodynamic behavior has
to be expected in first order approximation for materials
governed by linear viscoelasticity. To show the effects induced
by the VEHL regime, let us focus on the friction force, which is
the sum of the fluid contribution and the viscoelastic dissipation
in the solid. Incidentally, we observe that the role of the
roughness is out of the scope of this paper since it would play a
significant role in the so-called boundary and mixed regimes
and would not influence the regimes in which the fluid film is
fully formed, which are the subject of our investigation. Now, if
viscoelastic effects are not significant we have a transition
between EHL and hydrodynamic (HD) regimes regulated by
the Stribeck curve: At very low speeds, the friction tends to
zero, whereas, at larger speeds, we have a linear dependence
between the friction and the logarithm of the speed. The
situation is different when viscoelasticity is significant since
viscoelastic hysteresis adds a source of dissipation and modifies
the friction curve. This appears very clearly in Figure 7 where

the coefficient of friction is plotted for a material whose
viscoelasticity is characterized by one relaxation time material,
with a ratio E∞/E0 = 100, and four different values of relaxation
time. By changing the relaxation time, we are shifting the
viscoelastic spectrum, thus obtaining four different values of Γ:
Γa = 0.065, Γb = 0.65, Γc = 6.5, and Γd = 65. As shown in Figure
7, when Γ is small, we have a deviation from the Stribeck curve
with a marked “bump” due to the viscoelastic hysteretic
contribution; for larger values of τ and, consequently, of Γ, the
viscoelastic friction peak moves toward larger speeds and, then,
as explained before, decreases its intensity until it disappears.
Indeed, for Γ = Γd, we have a standard Stribeck curve:
Specifically, for low speeds, we have an EHL region, where the
body deforms elastically with a modulus equal to the rubber

Figure 7. Friction coefficient f as a function of the speed for a
dimensionless load equal to Fn/(R

2E0) = 8.5 × 102 and different values
of the parameter Γ: Γa = 0.065, Γb = 0.65, Γc = 6.5, and Γd = 65. They
have been obtained by employing the following four different values of
τ: τa = 10−2 s, τb = 3.5 × 10−2 s, τc = 10−3 s, and τd = 10−4 s.
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modulus E0, and then, for larger values of the speed, there is the
HD regime where the solid would be potentially able to show
viscoelastic effects; however, since the pressure is not large
enough to significantly deform the material, no energy
dissipation occurs.
As expected, and consistent with the proposed theoretical

framework, all the four curves tend to collapse at low speed
(low Hersey number) to a soft-EHL behavior, and at large
speeds (high Hersey number) we find the same hydrodynamic
regime, which is dictated only by the ball geometry and the
fluid viscosity.

4. CONCLUSIONS
In this study, we have shown that when dealing with the
lubrication of soft solids that exhibit a viscoelastic rheology, the
role of viscoelasticity has to be carefully accounted for since it
can be responsible for phenomena that cannot be predicted by
classical lubrication models. Indeed, it has been shown that the
rheology of the solid can have profound effects on both the
fluid film thickness and pressure distribution, in turn affecting
the capacity to predict the behavior of soft systems under
lubricated conditions. Indeed, the lubricating film shows a
marked shrinkage at the outlet with a possible additional
minimum point at the inlet, where the pressure distribution
presents a peak. Looking at friction and dissipation, viscoelastic
hysteretic contributions must be added to fluid viscous losses,
leading to friction−speed dependencies different from those
conventionally encountered in the Stribeck curve. Such a
scenario may provide a theoretical explanation to a number of
phenomena, like, for example, the unexpected rupture of the
lubricating film at the flow inlet shown in ref 24, and is
confirmed experimentally by carrying out an interferometer
analysis on PMMA samples.
What emerges from this investigation is that, given a

viscoelastic material, viscoelastic effects may be more or less
marked depending on the degree of coupling between the
rheologies of the fluid and the solid: If the maximum loss
tangent corresponds to a speed where no significant
deformation occurs, i.e., a speed that falls into a hydrodynamic
regime, no visco-elasto-hydrodynamic regime can be observed.
A new criterion has been provided to assess the effect that the
interplay between solid and fluid rheologies has in soft contacts:
This can be effectively used to design systems (e.g., for
industrial components, like rubber bearings and seals,
bioinspired devices, and soft electronics) in which the
viscoelastic effects need to be controlled through careful
development of new materials and tuning of their properties.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsami.7b09381.

Detailed description of the mechanical characterization
carried out for PMMA employed in the comparison
between the experimental outcomes and the numerical
simulations (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: carmine.putignano@poliba.it.
ORCID
Carmine Putignano: 0000-0001-6225-9630

Daniele Dini: 0000-0002-5518-499X
Notes
The authors declare no competing financial interest.
Data reported in this paper can be obtained upon request by
emailing tribology@imperial.ac.uk.

■ ACKNOWLEDGMENTS

The authors thank Dr. N. Marx for fruitful discussions on the
experimental technique used in the paper. C.P. and D.D. also
acknowledge the support of the Marie Curie Intra-European
Fellowship SOFTMECH (Grant 622632) and the EPSRC
Established Career Fellowship (EP/N025954/1).

■ REFERENCES
(1) Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Surface-
initiated self-healing of polymers in aqueous media. Nat. Mater. 2014,
13, 867−872.
(2) Olabisi, O., Adewale, K. Handbook of Thermoplastics; CRC Press,
2016.
(3) Bao, G.; Suresh, S. Cell and molecular mechanics of biological
materials. Nat. Mater. 2003, 2, 715−725.
(4) Licup, A. J.; Münster, S.; Sharma, A.; Sheinman, M.; Jawerth, L.
M.; Fabry, B.; Weitz, D.; MacKintosh, F. C. Stress controls the
mechanics of collagen networks. Proc. Natl. Acad. Sci. U. S. A. 2016,
112, 31.
(5) Heepe, L.; Gorb, S. N. Biologically Inspired Mushroom-Shaped
Adhesive Microstructures. Annu. Rev. Mater. Res. 2014, 44, 173−203.
(6) Pastewka, L.; Robbins, M. O. Contact between roughsurfaces and
a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. U. S. A.
2014, 111 (9), 3298−3303.
(7) Rus, D.; Tolley, M. T. Design, fabrication and control of soft
robots. Nature 2015, 521, 467−475.
(8) Hunter, S. C. The rolling contact of a rigid cylinder with a
viscoelastic half space. J. Appl. Mech. 1961, 28, 611−617.
(9) Persson, B. N. J.; Albohr, O.; Tartaglino, U.; Volokitin, A. I.;
Tosatti, E. On the nature of surface roughness with application
tocontact mechanics, sealing, rubber friction and adhesion. J. Phys.:
Condens. Matter 2005, 17, 1.
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