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Abstract:  This work introduces a new simulation approach to the 
evaluation of the time-domain electromagnetic (EM) field useful in the 
modeling of tapered waveguide for the Photonic Crystal Slab (PCS) 
coupling.  Only solutions of two scalar Helmholtz-equations are used in the 
evaluation of electric and magnetic Hertzian-potentials that yields the EM 
field and the frequency response of the tapered waveguide. By considering 
simultaneously an analytical and a numerical approximation it is possible to 
reduce the computational burden. In order to compare the computational 
time we analyze the 2D structure by also using the Finite Difference Time 
Domain (FDTD) method and by the 3D Finite Element Method (FEM). The 
method is applied by starting from design criteria of the tapered structures in 
order to set the correct geometrical and physical parameters, and considers 
the field-perturbation effect in proximity of the dielectric discontinuities by 
generators modeling. 
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1. Introduction 
 
Time domain methods such as  finite-difference time-domain (FDTD) [1], transmission line 
matrix (TLM) [2], and wavelet-Galerkin [3] methods are gaining importance by virtue of their 
versatility and the natural way in which they simulate what happens in reality and represent a 
powerful methods for solving electromagnetic problems. For high frequency optical structures 
the complexity of problems grows, and an high computer performance is requested. The 
rigorous Hertzian Potentials formulation  can be used for simulation of full-wave propagation 
and reflection in the time domain, it is not  time- and memory-intensive and is suitable for 
structure of large optical dimensions [4],[5] (in the 2D model we estimate an half reduction of 
the computational time respect to the 2D TLM method [5]). We propose an efficient 
numerical algorithm to solve the EM field behavior in a practical case of  a coupling between 
a 3D tapered waveguide  and  photonic crystal slab (PCS) .  This method considers the Hertz 
vectors[6]-[8] starting from the Helmholtz scalar equations [8]-[9] and the perturbed effect of 
the dielectric discontinuities [10]-[12] . The number of equations to solve are reduced to two 
scalar equations instead of six, subsequently all the EM components are obtained by the 
Hertzian potentials [6]-[8]. In the frequency domain the transmission and reflection properties 
of dielectric discontinuities (slanted dielectric profile of the tapered waveguide) may be 
derived by means of an equivalent circuit [10],[11],[12] that automatically ensures continuity 
of the fields and their first derivatives along the propagation-directions. If potentials are used, 
instead, second derivatives are involved and generators are necessary at each dielectric 
interface. The generators decrease the grid cell dimension and so the computational time with 
a good convergent solution.  The method is developed by considering the design criteria of a 
tapered waveguide (see Fig. 1) that is coupled to a 2D PCS waveguide. As reported in Fig. 1 
the tapered waveguide is directly connected to the guiding region of the PCS in order to 
transfer the maximum energy with high efficiency. The analytical model ( used to reduce a 3D 
problems in 2D one through the effective index of the vertical structure), and the numerical  
Hertzian Potentials Method (HPM) model with generators (for solving the 2D problem) 
represent a good method for simulating complex 3D structures. We resume the analysis of this 
work in the following steps: i) analysis and design of tapered waveguide regarding to the PCS 
coupling in order to obtain a single TE mode at the PCS input (see Fig. 1) ; ii) time-domain 
Hertzian potentials modeling and computational time comparison between 2D Hertzian 
Potential Method (HPM), 2D FDTD method,  and 3D FEM method. i) We define a modal 
map by using the dispersion-equations [13] in order to fix all the operative geometrical and 
optical parameters. Only a TE mode will propagate at the PCS input (single mode condition). 
ii) We use the effective refractive index evaluated along the z-direction (see Fig. 2) for a 2D 
modeling of the tapered waveguide (we solve a 3D problem in a 2D case) which proves the 
coupling and the E field confinement at the input and inside a PCS with air circular holes and 
guiding region; the results are compared with 2D FDTD and 3D FEM in order to verify the 
convergence of the solution and to evaluate the computational cost performance.  
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Single TE guided-mode   

input 

 
Fig. 1. SEM image of the fabricated  photonic crystal with the tapered waveguide. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Cross section of tapered waveguide and analytical approach (α=atan((W1/2)-(W2/2))/L). 
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Fig. 3. Modal map by varying the thickness of the core dcore and width w2. The working region 
is the single TEz mode-region (λ0 =1.31μm, ncore(GaAs)=3.408).    

 

 

Fig. 4. Example of graphical approach of the dispersion equations solution (λ0 =1.30μm, 
ncore(GaAs)=3.408 , nsub(AlGaAs)=3.042, dcore=0.56μm + 20nm ). TE dispersion equation 
(above), TM dispersion equation (below).    

 
 

2. Analysis and design of tapered waveguide. 

In order to define a modal region map (Fig. 3) we have considered the GaAs core refractive 
index ncore(GaAs)=3.408 at the working wavelength λ0=1.31 μm (waveguide operation 
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wavelength). Figure 3 describes the modal region of the asymmetric slab waveguide and 
defines the geometrical parameters for a single mode condition. The analysis begins in the 
transverse z-direction in order to define the effective refractive neffz index.  The dispersion 
equations [13] are used for a graphical analysis of the single mode region that is useful to 
evaluate the sensitivity of the solution near the frequency cut-off (of the single TE guided  
condition) by changing  the core thickness. We show in Fig. 4 an example of  frequency-cut 
graphical evaluation concerning the TE and the TM analysis. The used dispersion-equations 
are [13]   
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and ε1=1(air), ε2=11.56(GaAs), ε3=10.89(AlGaAs), k0 is the wave number in the free space. 
By using (1),(2),(3) we evaluate  kz=u/dcore and then effective index in the z-direction εeffz by 
the wavenumber conservation equation 
 

2 2 2
0 0 2effz zk k kε ε= −     (4) 

 
With the help of  map shown in Fig. 3 we derived the core-thickness dcore  and the width w2 
(see Fig. 2) in order to obtain only one TE propagated-mode at the PCS input. In Fig. 3 we 
show the working region in which only TEz mode (only a propagation constant kz will be 
solution of the dispersion equation)  will propagates in the waveguide. In this map is also 
reported a security region (in to gray lines) by considering also a real possible error of ±20nm  
in the core thickness fabrication. In our case the single TEz propagated modes is obtained by 
dcore=0.19 μm (neffz=3.067 is the corresponding effective refractive index), w2=0.22 μm.     
After the z analysis we use the refractive neffz in the x-y plane in order to analyze the behavior 
of the tapered waveguide by different  α slanted-angles, and L lengths, by  the time-domain 
Hertzian formulation [4]-[5] reported in the next section. 
 
3. Time-domain  Hertzian potentials modeling of tapered waveguide.  

In Fig. 5 is shown the time-domain Hertzian Potentials algorithm used in this work[4]-[5] 
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Fig. 5. Finite difference time-domain Hertzian potentials algorithm. 

 
 

The Hertzian electric and magnetic vectors are [6]-[8] in rectangular coordinates represented 
by 
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where a is unit vector. From (1) it is possible to evaluate all the components of the EM field 
as 
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Ψe,h(x,y,z,t) represents the solution of the homogeneous wave equation for a non-dissipative 
medium [4] 
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It is known that the scalar wave equation may lead to inconsistencies because, in an 
inhomogeneous medium, it is, in general, not equivalent to Maxwell’s equations. 
Electromagnetic scattering problems, including free space, involve the calculation of the fields 
produced in the presence of geometrical discontinuities by arbitrary currents.  Such 
discontinuities may be replaced by equivalent generators [4], (see Fig. 6(a) and Fig. 7), giving 
an accurate solution of the EM field for structures with high dielectric contrast. In fact the  
scalar wave equation (5) for a non-dissipative medium can be rewritten as [4] 
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where  

e,hP(x,y,z,t) ( , , ,t) ( , , ,t)x y z x y zε= Δ Ψ     (7) 

represents the dielectric polarization and for the bi-dimensional case: 
 

1       in x direction .i i i cell positionε ε ε+Δ = − =             (8) 

1     j   in y direction .j j cell positionε ε ε+Δ = − =             (9) 

 
Therefore we solve (6) in proximity of the dielectric interfaces, and (5) in the homogenous 
region. The difference between the parametric solution of (5), and (6) in the iterative form (by 
using the finite difference FD discretisation [14]),is in the coefficients [4]; in fact for one 
propagation direction 
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Fig. 6. (a). Above :computational domain Ω=(x,y) and dielectric grid-mask of 45 degree 
tapered profile with transmission line perturbed modeling; below: PCS with guiding region and 
perturbed modeling of air hole  (radius R). 

 

 
Fig. 6. (b). Left: geometrical construction of  the  unit  cell of  dielectric tapered profile 
(α=atan(x/y)=18.449 deg) ; right: slanted angle of 45 deg. 
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Fig. 7. Transmission line modeling of  dielectric profile. 

 
 
In Fig. 6(a), Fig. 6(b) and Fig. 7 we show the discretisation and the modeling of the dielectric 
profiles (dielectric tapered profile and circular air hole profile). The algorithm define the sub-
domain boundaries (profiles) by inserting the generators around a reference cell when the 
perturbed conditions (8) and (9) are satisfied. We observe that the generators VP and IP of 
Fig.7 represent the variation of the coefficients (12), and the dielectric mask is loaded as a 
bidimensional vector of the x-y spatial domain , so it is possible to define the perturbed region 
(inhomogeneous region) by considering all the cells around the reference cell. The flow chart 
of this procedure is reported in Fig. 4. Therefore we solve (6) in proximity of the dielectric 
interfaces (inhomogeneous region) , and (5) in the uniform space (homogenous region) by 
considering the different parametric solutions given by (12). The absorbing boundary 
conditions (ABCs) [5],[14],[15], around the computational domain Ω=(x,y) (see Fig. 6), 
permits all outward-propagating numerical waves to exit Ω as if the simulation were 
performed on a computational domain of infinite extent. Extremely small local reflection 
coefficient of the order of 10-11 is attained  in the simulations. In the 2D case the matrix 
structure that considers the spatial domain and the ABCs is  
 

 i,j space domain position

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ( , ) ( 1, ) ( 2, ) ABC

ABC ( 1, 1) ( , 1) ABC

ABC ABC

ABC ( 1, ) ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

n n n

n n

n

i j i j i j

i j m j

i l

ψ ψ ψ
ψ ψ

ψ

↓→

⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎜ ⎟+ + +
⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎜⎜
⎝ ⎠

i i i i

i i i i i

i i i i i i i

i i i i i i

m  lx

⎟⎟

  (13) 

 
where m x l is the node number of the spatial domain , and time-step is fixed. By 
approximation (10),(11),(12) a small node number is requested for the numerical 
convergence.          

4. Time-domain Hertzian potentials results. 

As shown in  Fig. 8 (source time-evolution) the source is decomposed in two components ψe 

and ψh that construct the wavefront in the spatial domain (x,y). We use in both directions the 
source as a carrier modulated by an exponential signal: 
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where ω is the angular frequency referred to an operative wavelength λ0=1.31μm, T0 is a 
constant, and dt is the time step. Figure 9 proves that a tapered waveguide with w1=5.94μm, 
w2=0.22μm ,α=30 deg., after some time-steps, guides the single TE mode at the PCS input 
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(the parameters used in the simulation are: dx=dy=0.11*10-7m., dt= 3.67*10-16sec., 
λ0=1.31μm, T0= 8*10-15sec.) . A spatial monitoring  of the Ez field is reported in  Fig. 10: we 
fix the time-step and evaluate the spatial Ez profile for different cross-sections. Also in this 
case is possible to evaluate the coupled-field inside the structure and the radiated field in air 
(the field confined inside the waveguide is about one order higher than the radiated field) . For 
the simulation of Fig.10 we set  w1=5.94μm, w2=0.22μm and α=14 deg. 
The evaluation of transmission coefficient completes the analysis of the tapered waveguides.   
 In order to define the frequency response we consider the Discrete Fourier Transform (DFT). 
The scattering parameters Sm,n can be obtained for an impulsive excitation as follows [14] 

 

0,
,

0,

ˆ ( )( , )
( , , )

ˆ ( )( , )
nm m

m n m n
nn n

ZE y
S y y

ZE y

ωωω
ωω

=    (14) 

  
where Êm  is the phasor voltage (DFT of Ez component) at the port m at observation plane ym;  
Ên is the phasor voltage at the port n at observation plane yn ; and Z0,m and Z0,n are the 
characteristic impedances of the line connected to these ports defined as 
 

0 ( , ) ( , ) / ( , )i z i x iZ y DFT E y DFT H yω = .   (15) 

 
Figure 11 and Fig. 12 show the scattering transmission coefficient Sba=S21 with the port 1 and 
port 2 defined by the references line a=y1 and b=y2 respectively: the tapered waveguide with 
w1=5.94μm, w2=0.22μm and α=14 deg, and 45 deg. is characterized by an high transmission 
coefficient around the working wavelength λ0=1.31μm. In particular in Fig. 11 we show  the 
comparison between the frequency response of: a tapered waveguide with dx=dy=0.11μm 
with generators, of a tapered waveguide with dx=dy=0.05μm without  generators, and of a 3D 
tapered waveguide with tetrahedron length of 0.01μm (FEM simulation). We observe that the 
solution with dx=dy=0.05μm is characterized by a numerical error oscillations (absence of 
generators). It is evident by the graph that the solution with dx=dy=0.11μm (with generators) 
converges better without oscillations. In order to verify the convergence solution we show in 
the same graph the 3D FEM solution. Moreover in Fig. 12 is reported the convergence 
between the S21 Hertzian potentials coefficient and the 2D FDTD one: HPM results converge 
with greater unit cell grid dimension as compared to the FDTD method (in FDTD with 
dx=dy=0.01μm, instead in HPM by using dx=dy=0.11μm).   In order to observe the coupling 
effect  on a PC structure we simulate the whole structure (PC slab with a guide coupled to a 
tapered waveguide). This kind of  PC (with a guiding region) is important because it is 
possible to increase the  quality Q-factor of the whole structure. After about 400 time-steps 
the PCS will couple with the waveguide with width w2. By the single mode condition the 
maximum energy will be transmitted to the PC that will generate PC modes characterized by 
the group velocity defined by the geometry of the crystal.  In this simulation  we analyze the 
coupling at the PC input by observing also the propagation inside a PC structure in order to 
confirm the presence of  the field in the PC guiding region. We consider in our numerical 
example air holes with  radius R=0.11μm in an effective medium with neffz=3.067; the x-
period is 3*R, the y-period is 2,5*R , and w2 is the width of the guiding region.  We show in 
Fig.13 the time evolution of the Ez field component  inside the PCS by proving the efficacy of 
the tapered waveguide in terms of field confinement. We also evaluate the coupling efficiency 
at the PC input by : 
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 where Py represents the Poynting vector along the y propagation direction. Figure 14 shows 
how the efficiency decreases when the α-angle increases. For large α values most energy will 
be irradiate in the air region. By comparing Fig. 12 with Fig.14 it is evident that at working 
wavelength of  λ0=1.31 μm the transmission is high α=14 deg. and  α=45 deg. , but a good 
coupling efficiency is performed by a tapered waveguide with α=14 deg.  The results is 
validated also by Fig. 10 in which , for α=14 deg., the EM field is well confined at the output 
of the tapered waveguide. 
We validate the model presented in this work (analytical model by using effective index and   
numerical generators model) by comparing the Central Processing Unit (CPU) time for 
different numerical methods.  The computation time comparison is reported in the Table I for 
different  tapered waveguides with L1=L2=5 µm (see Fig.2), and for a 1-GHz PC, 512/M-
RAM. In this comparison we consider the 2D FDTD method (with effective index approach 
and dx=dy=0.01μm), and the 3D FEM method. In order to compare the 2D Hertzian 
Potentials solution with the 3D FEM one, we  refine the length of tetrahedral elements (FEM 
mesh) below the  specified value of 0.01 µm . The length of a tetrahedron is defined as the 
length of its longest edge. In the Hertzian Potential method all the field components depend 
only on the Ψe,h scalar potentials [4], instead in the FDTD algorithm the components are 
interrelated and so the computational cost increases.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8.  Source: time-evolution in air (pulse excitation). 
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Fig. 9. Time evolution of Ez components after 350 and 400 time-steps in spatial domain (x,y). 
After 400 time steps the field is coupled in the guide with thickness w2). 

#88268 - $15.00 USD Received 4 Oct 2007; revised 15 Nov 2007; accepted 19 Nov 2007; published 28 Nov 2007

(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  16495



Ez field after 380 time-steps

-8,00E+13

-6,00E+13

-4,00E+13

-2,00E+13

0,00E+00

2,00E+13

4,00E+13

6,00E+13

8,00E+13

1,00E+14

1,20E+14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

x cell position

E
z 

am
p

li
tu

d
e

ref1

 

Ez field after 380 time-steps

-1,00E+14

-5,00E+13

0,00E+00

5,00E+13

1,00E+14

1,50E+14

2,00E+14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

x cell position

E
z 

am
p

li
tu

d
e

ref2

 

Ez field after 380 time-steps

-1,00E+14

-5,00E+13

0,00E+00

5,00E+13

1,00E+14

1,50E+14

2,00E+14

2,50E+14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

x cell position

E
z 

am
p

li
tu

d
e

ref3

 
Fig. 10.  Ez field component after 380 time-steps for different cross-section (reference of y-
position). 
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Fig. 11. Frequency responses of  a tapered waveguide with w1= 5.94μm, w2=0.22μm  ,α=14 
deg; a and b are the  reference section of the  S21 transmission coefficient.  
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Fig. 12. FDTD and Hertzian Potentials  S21 transmission coefficient of a tapered waveguide 
with w1= 5.94μm, w2=0.22μm, α=14 deg., α=45 deg.  
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Fig. 13. Time evolution of Ez field component after 400, 410, 420,  and 430 time-steps inside 
the PC after the coupling with the tapered waveguide (with thickness w2). After about 400 
time-steps the wave arrives at the PCS input. 
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Fig. 14. Coupling efficiency for different alpha angles. 
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Table I. Comparison between CPU time for the 2D Hertzian Potenzials Method (HPM) , FDTD  
2D , and 3D FEM method. 

 
α [deg] L [μm] CPU time 2D 

HPM [sec.] 
CPU time 2D 
FDTD [sec.] 

CPU time 3D 
FEM [min] 

10 16.22 2.3  4.8 45 
14 11.47 1.9 4.3 42 
18 8.80 1.6 3.5 39 
23 6.73 1.3 2.9 38 
28 5.38 1.2 2.6 36 
32 4.57 1.0 2.4 33 
36 3.93 0.9 2.1 31 
40 3.40 0.8 1.9 29 
45 2.86 0.7 1.6 25 

 

5. Conclusion 

This Hertzian potentials formulation with effective refractive index approach provides the 3D 
behavior of the tapered waveguide with a low computational cost and a good numerical 
convergence solution.  The numerical model shows the field confinement and field PCS-
coupling for different slanted α angles at the working wavelength of λ0=1.31 μm. The 
proposed time-domain model is used to evaluate the single TE transmitted field at the PCS 
input by considering waveguide coupling, and the frequency response around the working 
wavelength. We complete the coupling analysis by comparing the method with the 2 FDTD 
and 3D FEM results,  and  by evaluating the field coupled inside the PCS along the guiding 
region. The numerical and the analytical approximations used in this work give the same 
convergent results of the 3D FEM model with less computational cost.   
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