

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Measurement of the ZZ production cross section and search for anomalous couplings in 2l2l' final states in pp collisions at root s=7 TeV

This is a post print of the following article

Original Citation:

Measurement of the ZZ production cross section and search for anomalous couplings in 2121' final states in pp collisions at root s=7 TeV / Chatrchyan, S; Khachatryan, V; Sirunyan, Am; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Ero, J; Fabjan, C; Friedl, M; Fruhwirth, R; Ghete, Vm; Hammer, J; Hormann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knunz, V; Krammer, M; Kratschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schofbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, Ce; Mossolov, V; Shumeiko, N; Gonzalez, Js; Bansal, M; Bansal, S; Cornelis, T; De Wolf, Ea; Janssen, X; Luyckx, S; Mucibello, L; Availability: S. Roland, B. Rougny, R. Selvaggi, M. Stavkova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. This version is available at http://ndl.nande.be/11589/3214 since Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, Rg; Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W: Van Mulders, P; Van Onsem, Gp; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, Apr; Hreus, T; Leonard, A: Warage, Pe; Mohammadi, A; Reis, T; Thomas, L; Vander Marcken, G; Vander Velde, C; Vanlaer, P; Wang, P, Adler, 199, Belth Eent, 49, 13) Minino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Rios, Aao; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, Vetriaco of ulveritaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Garcia, Jmv; Beliy, N; Caebergs, T; Daubie, E; Hammad, Gh; Alves, Ga; Martins, Mc; Martins, T; Pol, Me; Souza, Mhg; Alda, WI; Carvalho, W; Custodio, A; Da Costa, Em; Damiao, Dd; Martins, Cd; De Souza, Sf; Figueiredo, Dm; Mundim, L; Nogima, H; Da Silva, Wlp; Santoro, A; Jorge, Ls; Sznajder, A; Pereira, Av; Anjos, Ts; Bernardes, Ca; Dias, Fa; Tomei, Trfp; Gregores, Em; Lagana, C; Marinho, F; Mercadante, Pg; Novaes, Sf; Padula, Ss; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, Jg; Chen, Gm; Chen, Hs; Jiang, Ch; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, Sj; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Gomez, Jp; Moreno, Bg; Oliveros, Afo; Sanabria, Jc; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, Pa; Finger, M; Finger, M; Assran, Y; Elgammal, S; Kamel, Ae; Mahmoud, Ma; Radi, A; Kadastik, M; Muntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Harkonen, J; Heikkinen, A; Karimaki, V; Kinnunen, R; Kortelainen, Mj; Lampen, T; Lassila Perini, K; Lehti, S; Linden, T; Luukka, P; Maenpaa, T; PettatialeTbergiousnionene Et, prager) iniemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, JI; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, Gh; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; de Cassagnac, Rg; Haguenauer, M; Mine, P; Mironov, C; Naranjo, In; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, JI; Andrea, J; Bloch, D; Bodin, D; Brom, Jm; Cardaci, M; Chabert, Ec; Collard, C; Conte, E; OP Mayn 2024 Ferro, C; Fontaine, Jc; Gele, D; Goerlach, U; Juillot, P; Le Bihan, Ac; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Autermann, C; Beranek, S; Calpas, B; Edelhoff, M;

Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Gueth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, Sa; Sonnenschein, L; Steggemann, J; Teyssier, D; Thuer, S; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flugge, G; Geenen, H; Geisler, M; Ahmad, Wh; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Martin, Ma; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Pardos, Cd; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Kraemer, M; Kruecker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer Pellmann, Ia; Meyer, Ab; Mnich, J; Mussgiller, A; Naumann Emme, S; Novgorodova, O; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Cipriano, Pmr; Riedl, C; Ron, E; Rosin, M; Salfeld Nebgen, J; Schmidt, R; Schoerner Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Gorner, M; Hermanns, T; Hoing, Rs; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schroder, M; Schum, T; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbruck, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Boser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, Kh; Husemann, U; Katkov, I; Komaragiri, Jr; Pardo, PI; Martschei, D; Mueller, S; Muller, T; Niegel, M; Nurnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Rocker, S; Schilling, Fp; Schott, G; Simonis, Hj; Stober, Fm; Troendle, D; Ulrich, R; Wagner Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, Tj; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Zl; Ujvari, B; Beri, Sb; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, Mz; Nishu, N; Saini, Lk; Sharma, A; Singh, Jb; Kumar, A; Kumar, A; Ahuja, S; Bhardwaj, A; Choudhary, Bc; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, Rk; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, S; Jain, S; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, Ak; Pant, Lm; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, Gb; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, Sm; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Najafabadi, Mm; Mehdiabadi, Sp; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, Simranjit Singh; Colaleo, A; Creanza, Donato Maria; DE FILIPPIS, Nicola; De Palma, M; Fiore, L; Iaselli, Giuseppe; Maggi, Giorgio Pietro; Maggi, M; Marangelli, B; My, Salvatore; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, Gabriella Maria Incoronata; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, Ac; Bonacorsi, D; Braibant Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, Fr; Cuffiani, M; Dallavalle, Gm; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, FI; Odorici, F; Perrotta, A; Primavera, F; Rossi, Am; Rovelli, T; Siroli, Gp; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, Ra; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; de Fatis, Tt; Buontempo, S; Montoya, Cac; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, Aom; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, At; Nespolo, M; Pazzini, J; Ronchese, P; Simonetto, F; Torassa, E; Vanini, S; Zotto, P; Zumerle, G; Gabusi, M; Ratti, Sp; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, Gm; Fano, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, Rt; Dell'Orso, R; Fiori, F; Foa, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, At; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, Pg; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, Mm; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, Sg; Kim, Ty; Nam, Sk; Chang, S; Kim, Dh; Kim, Gn; Kong, Dj; Park, H; Ro, Sr; Son, Dc; Son, T; Kim, Jy; Kim, Zj; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Tj; Lee, Ks; Moon, Dh; Park, Sk; Choi, M; Kim, Jh; Park, C; Park, Ic; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Yk; Goh, J; Kim, Ms; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, Mj; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla Valdez, H; De La Cruz Burelo, E; Heredia de La Cruz, I; Lopez Fernandez, R; Villalba, Rm; Martinez Ortega, J; Sanchez Hernandez, A; Villasenor Cendejas, Lm; Moreno, Sc; Valencia, Fv; Ibarguen, Has; Linares, Ec; Pineda, Am; Reves Santos, Ma; Krofcheck, D; Bell, Aj; Butler, Ph; 000 (Realy 20) Reucroft, S; Silverwood, H; Ahmad, M; Asghar, Mi; Butt, J; Hoorani, Hr; Khalid, S; Khan, Wa; Khurshid, T; Qazi, S; Shah, Ma; Shoaib, M;

Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Gorski, M; Kazana, M; Nawrocki, K; Romanowska Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Almeida, N; Bargassa, P; David, A; Faccioli, P; Parracho, Pgf; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Belotelov, I; Bunin, P; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Y; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, Sv; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar Benitez, M; Maestre, Ja; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Llatas, Mc; Colino, N; De la Cruz, B; Peris, Ad; Vazquez, Dd; Bedoya, Cf; Ramos, Jpf; Ferrando, A; Flix, J; Fouz, Mc; Garcia Abia, P; Lopez, Og; Lopez, Sg; Hernandez, Jm; Josa, Mi; Merino, G; Pelayo, Jp; Olmeda, Aq; Redondo, I; Santaolalla, Lrj; Soares, Ms; Willmott, C; Albajar, C; Codispoti, G; de Troconiz, Jf; Brun, H; Cuevas, J; Menendez, Jf; Folgueras, S; Caballero, Ig; Iglesias, LI; Gomez, Jp; Cifuentes, Jab; Cabrillo, Ij; Calderon, A; Chuang, Sh; Campderros, Jd; Felcini, M; Fernandez, M; Gomez, G; Sanchez, Jg; Graziano, A; Jorda, C; Virto, Al; Marco, J; Marco, R; Rivero, Cm; Matorras, F; Sanchez, Fim; Rodrigo, T; Rodriguez Marrero, Ay; Ruiz Jimeno, A; Scodellaro, L; Vila, I; Cortabitarte, Rv; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, Ah; Barney, D; Benitez, Jf; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Perez, Jac; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont Sagorin, N; Elliott Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Garrido, Rgr; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Yj; Lenzi, P; Lourenco, C; Magini, N; Maki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, Mu; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Cortezon, Ep; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimia, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Antunes, Jr; Rolandi, G; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schafer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, Gi; Vlimant, Jr; Wohri, Hk; Worm, Sd; Zeuner, Wd; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, Hc; Konig, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Bani, L; Bortignon, P; Buchmann, Ma; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donega, M; Dunser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, Ac; del Arbol, Pmr; Mohr, N; Moortgat, F; Nageli, C; Nef, P; Nessi Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, Fj; Rossini, M; Sala, L; Sanchez, Ak; Starodumov, A; Stieger, B; Takahashi, M; Tauschert, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, Ha; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, Mi; Mejias, Bm; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Yh; Chen, Kh; Kuo, Cm; Li, Sw; Lin, W; Lu, Yj; Mekterovic, D; Singh, Ap; Volpe, R; Yu, Ss; Bartalini, P; Chang, P; Chang, Yh; Chang, Yw; Chao, Y; Chen, Kf; Dietz, C; Grundler, U; Hou, Ws; Hsiung, Y; Kao, Ky; Lei, Yj; Lu, Rs; Majumder, D; Petrakou, E; Shi, X; Shiu, Jg; Tzeng, Ym; Wan, X; Wang, M; Asavapibhop, B; Srimanobhas, N; Adiguzel, A; Bakirci, Mn; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, Ee; Karaman, T; Karapinar, G; Topaksu, Ak; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, Ds; Tai, B; Topakli, H; Vergili, Ln; Vergili, M; Akin, Iv; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, Am; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, Ue; Yalvac, M; Yildirim, E; Zeyrek, M; Gulmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Brooke, Jj; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, Gp; Heath, Hf; Kreczko, L; Metson, S; Newbold, Dm; Nirunpong, K; Poll, A; Senkin, S; Smith, Vj; Williams, T; Basso, L; Bell, Kw; Belyaev, A; Brew, C; Brown, Rm; Cockerill, Dja; Coughlan, Ja; Harder, K; Harper, S; Jackson, J; Kennedy, Bw; Olaiya, E; Petyt, D; Radburn Smith, Bc; Shepherd Themistocleous, Ch; Tomalin, Ir; Womersley, Wj; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, Ag; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, Am; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, Dm; Rogerson, S; Rose, A; Ryan, Mj; Seez, C; Sharp, P; Sparrow, A; Stove, M; Tapper, A; Acosta, Mv; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, Je; Hobson, Pr; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, Id; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Breedon, R; Breto, G; Sanchez, Mcd; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, Pt; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Mall, O; Miceli, T; Pellett, D; Ricci Tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; (Triphathi 2002 Sierra, Rv; Yohay, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C;

Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, Me; Ellison, J; Gary, Jw; Giordano, F; Hanson, G; Jeng, Gy; Liu, H; Long, Or; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, Jg; Cerati, Gb; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Wurthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, Hb; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Yang, Y; Zhu, Ry; Akgun, B; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; liyama, Y; Jang, Dw; Liu, Yf; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, Jp; Drell, Br; Ford, Wt; Gaz, A; Lopez, El; Smith, Jg; Stenson, K; Ulmer, Ka; Wagner, Sr; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, Lk; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Kaufman, Gn; Patterson, Jr; Ryd, A; Salvati, E; Sun, W; Teo, Wd; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, Lat; Beretvas, A; Berryhill, J; Bhat, Pc; Bloch, I; Burkett, K; Butler, Jn; Chetluru, V; Cheung, Hwk; Chlebana, F; Elvira, Vd; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, Rm; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, Jm; Maruyama, S; Mason, D; Mcbride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman Holmes, C; O'Dell, V; Sexton Kennedy, E; Sharma, S; Spalding, Wj; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, Nv; Uplegger, L; Vaandering, Ew; Vidal, R; Whitmore, J; W, Wu; Yang, F; Yun, Jc; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, Gp; Dobur, D; Drozdetskiy, A; Field, Rd; Fisher, M; Fu, Y; Furic, Ik; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, Jf; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Park, M; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, Lm; Linn, S; Markowitz, P; Martinez, G; Rodriguez, JI; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, Sv; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, Kf; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, Mm; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Yumiceva, F; Adams, Mr; Anghel, Im; Apanasevich, L; Bai, Y; Bazterra, Ve; Betts, Rr; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, Ce; Hofman, Dj; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Turner, P; Varelas, N; Akgun, U; Albayrak, Ea; Bilki, B; Clarida, W; Duru, F; Merlo, Jp; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, Cr; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, Ba; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, Av; Guo, Zj; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny, Rp; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, Js; Zhukova, V; Barfuss, Af; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, Sc; Gomez, Ja; Hadley, Nj; Kellogg, Rg; Kim, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, Ac; Pedro, K; Skuja, A; Temple, J; Tonjes, Mb; Tonwar, Sc; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, Ia; Chan, M; Dutta, V; Ceballos, Gg; Goncharov, M; Hahn, Ka; Kim, Y; Klute, M; Krajczar, K; Luckey, Pd; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, Gsf; Stockli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, Ea; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, As; Zanetti, M; Cooper, Si; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, Sc; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, Lm; Kroeger, R; Perera, L; Rahmat, R; Sanders, Da; Avdeeva, E; Bloom, K; Bose, S; Claes, Dr; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo Flores, J; Malbouisson, H; Malik, S; Snow, Gr; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Ofierzynski, Ra; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Chan, Km; Hildreth, M; Jessop, C; Karmgard, Dj; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, Dm; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, Ls; Hill, C; Hughes, R; Kotov, K; Ling, Ty; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, BI; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Koay, Sa; Pegna, DI; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroue, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, Js; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Vargas, Jer; Alagoz, E; Barnes, Ve; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, At; Leonardo, N; Maroussov, V; Merkel, P; Miller, Dh; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Marono, Mv; Yoo, Hd; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A: Boulahouache, C; Ecklund, Km; Geurts, Fjm; Li, W; Padley, Bp; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Ys; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia Bellido, A; Goldenzweig, P; Han, J; Hard, A; Miner, Dc; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, Jp; Contreras Campana, C; Contreras Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Walker, M; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Zc; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; @amgovobd/agoiu, C; Dudero, Pr; Jeong, C; Kovitanggoon, K; Lee, Sw; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, Ag; Florez, C; Greene, S;

Gurrola, A; Johns, W; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, Mw; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, Pe; Don, Ckk; Lamichhane, P; Sakharov, A; Anderson, M; Belknap, Da; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, Ks; Grothe, M; Hall Wilton, R; Herndon, M; Herve, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, Ga; Ross, I; Savin, A; Smith, Wh; Swanson, J.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 1(2013). [10.1007/JHEP01(2013)063]

03 May 2024

Published for SISSA by 🖉 Springer

RECEIVED: November 20, 2012 ACCEPTED: December 3, 2012 PUBLISHED: January 9, 2013

Measurement of the ZZ production cross section and search for anomalous couplings in $2\ell 2\ell'$ final states in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: A measurement is presented of the ZZ production cross section in the ZZ $\rightarrow 2\ell 2\ell'$ decay mode with $\ell = e, \mu$ and $\ell' = e, \mu, \tau$ in proton-proton collisions at $\sqrt{s} = 7$ TeV with the CMS experiment at the LHC. Results are based on data corresponding to an integrated luminosity of $5.0 \,\mathrm{fb}^{-1}$. The measured cross section $\sigma(\mathrm{pp} \rightarrow \mathrm{ZZ}) = 6.24^{+0.86}_{-0.80} \,(\mathrm{stat.})^{+0.41}_{-0.32} \,(\mathrm{syst.}) \pm 0.14 \,(\mathrm{lumi.})$ pb is consistent with the standard model predictions. The following limits on ZZZ and ZZ γ anomalous trilinear gauge couplings are set at 95% confidence level: $-0.011 < f_4^Z < 0.012, -0.012 < f_5^Z < 0.012, -0.013 < f_4^{\gamma} < 0.015,$ and $-0.014 < f_5^{\gamma} < 0.014.$

KEYWORDS: Hadron-Hadron Scattering

ARXIV EPRINT: 1211.4890

The study of diboson production in proton-proton collisions provides an important test of the standard model (SM). Many extensions of the SM predict new scalar, vector, or spin-2 particles that decay into a pair of W or Z bosons. In addition, these final states are sensitive to the self-interactions among the gauge bosons via trilinear gauge couplings (TGCs). These couplings are the direct consequence of the non-Abelian $SU(2) \times U(1)$ gauge symmetry of the SM and are a necessary ingredient to construct renormalizable theories. The values of these couplings are fully determined in the SM by the gauge structure of the Lagrangian. Therefore, any deviation of the observed coupling strength from the SM prediction would indicate the presence of new physics. This deviation would be manifested as a change in the production cross section, especially for energetic heavy gauge bosons.

In the SM, ZZ production proceeds via the t- and u-channel $q\bar{q}$ scattering diagrams, and via gluon-gluon fusion. The presence of anomalous neutral trilinear couplings (ATGCs) would lead to a sizable enhancement of ZZ final states via s-channel $q\bar{q}$ scattering. A model featuring such couplings can be constructed by means of an effective Lagrangian [1]. In this parametrization, two ZZZ couplings and two ZZ γ couplings are allowed by electromagnetic gauge invariance and Lorentz invariance for on-shell Z bosons. The couplings are parametrized by two CP-violating $(f_4^{Z,\gamma})$ and two CP-conserving $(f_5^{Z,\gamma})$ complex parameters, which are zero in the SM.

Measurements of the ZZ cross section were previously performed at the Tevatron [2, 3] and the Large Hadron Collider (LHC) [4, 5]. A first measurement of the ZZ cross section at center-of-mass energy $\sqrt{s} = 7 \text{ TeV}$ by the Compact Muon Solenoid (CMS) Collaboration in the decay mode ZZ $\rightarrow 2\ell 2\ell$, where ℓ is either e or μ , is presented in ref. [4]. The measured cross section $\sigma(\text{pp} \rightarrow \text{ZZ})\mathcal{B}(\text{ZZ} \rightarrow 2\ell 2\ell) = 28.1^{+4.6}_{-4.0} \text{ (stat.)} \pm 1.2 \text{ (syst.)} \pm 1.3 \text{ (lumi.)}$ fb agrees well with the SM prediction of $27.9 \pm 1.9 \text{ fb}$. In this Letter, we present an extended measurement of the ZZ production cross section based on the decay mode $2\ell 2\ell'$, where ℓ' is e, μ , or τ . If a τ is present in the final state, one Z is required to decay into e⁺e⁻ or $\mu^+\mu^-$, and the second Z into $\tau^+\tau^-$ in four possible final states: $\tau_{\rm h}\tau_{\rm h}$, $\tau_{\mu}\tau_{\rm h}$, and $\tau_e \tau_{\mu}$, where $\tau_{\rm h}$ represents a τ decaying hadronically, while $\tau_{\rm e}$ and τ_{μ} indicate taus decaying into an electron and a muon, respectively. The presence of four leptons in the final state provides a clean signature with only a small contribution from background processes. The background sources include reducible contributions from Zbb and tt processes, where the final states contain two isolated leptons and two b jets with secondary leptons, and from Z+jets and ZW+jets processes where the jets are misidentified as leptons.

In this Letter, we also present a search for the neutral ZZZ and ZZ γ ATGCs. Previous studies on neutral ZZZ and ZZ γ ATGCs were performed at LEP2 [6–10], the Tevatron [11], and the LHC [5]. The most restrictive limits were set in ref. [5], $-0.07 < f_{4,5}^Z < 0.07$ and $-0.08 < f_{4,5}^{\gamma} < 0.08$, with a data set corresponding to an integrated luminosity of 1 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV.

The measurements presented here are based on data collected in 2010 and 2011 with the CMS experiment at the LHC at $\sqrt{s} = 7 \text{ TeV}$, corresponding to an integrated luminosity of $5.0 \pm 0.1 \text{ fb}^{-1}$. A set of Monte Carlo (MC) event samples is used to simulate signal and background events. The ZZ production via $q\bar{q}$ is generated at next-to-leading order (NLO) with POWHEG [12–14], while other diboson processes (WW, WZ, $Z\gamma$) are generated with PYTHIA 6.424 and MADGRAPH [15]. The gg \rightarrow ZZ contribution is estimated using events generated with the gg2ZZ code [16]. The Z+jets samples, namely Zbb, Zcc, and Z+light jets, are generated with MADGRAPH. The tt events are generated at NLO with POWHEG. For leading-order generators, the default set of parton distribution functions (PDFs) used to produce these samples is CTEQ6L [17], while CT10 [18] is used for NLO generators. Finally, for the modeling of ATGCs, the SHERPA generator version 1.2.2 is used [19]. The τ -lepton decays are generated with TAUOLA [20]. All events are processed through a detailed simulation of the CMS detector based on GEANT4 [21] and reconstructed with the same algorithms as used for data.

A detailed description of the CMS detector can be found elsewhere [22]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL), and the brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux return yoke of the magnet. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angle ϕ is measured in the x-y plane. Variables used in this analysis include the pseudorapidity $\eta = -\ln[\tan(\theta/2)]$ and the transverse momentum $p_{\rm T} = \sqrt{p_x^2 + p_y^2}$. The ECAL is designed to have both excellent energy resolution and high granularity, properties that are crucial for reconstructing electrons and photons produced in τ -lepton decays. The ECAL is constructed with projective lead tungstate crystals that provide coverage in pseudorapidity $|\eta| < 1.48$ in a barrel region and $1.48 < |\eta| < 3.00$ in two endcap regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved with a total of $3X_0$ of lead is located in front of the EE. The energy resolution is 3% or better for the range of electron energies relevant for this analysis. The tracker measures charged particle tracks within the range $|\eta| < 2.5$. It consists of 1440 silicon pixel and 15148 silicon strip detector modules, and provides an impact parameter resolution of $\sim 15 \,\mu m$ and a transverse momentum resolution of about 1.5% for 100 GeV particles. The reconstructed tracks are used to measure the location of interaction vertices. The spatial resolution of the reconstruction in the transverse direction is $\sim 25 \,\mu m$ for primary vertices with more than 30 associated tracks [23]. The barrel region of the muon system is instrumented with drift tubes, and the endcap regions with cathode strip chambers. In both regions, resistive-plate chambers provide additional coordinate and timing information. Muons are reconstructed in the range $|\eta| < 2.4$, with a typical $p_{\rm T}$ resolution of $\sim 1\%$ for $p_{\rm T} = 40$ GeV.

At the trigger level, the selected events are required to have either at least two electrons, one with $p_{\rm T} > 17 \,\text{GeV}$ and the other with $p_{\rm T} > 8 \,\text{GeV}$, or at least two muons, one with $p_{\rm T} > 13 \,\text{GeV}$ ($p_{\rm T} > 17 \,\text{GeV}$ for high instantaneous luminosity data-taking periods) and the other with $p_{\rm T} > 8 \,\text{GeV}$.

Electrons are reconstructed within $|\eta^{\rm e}| < 2.5$ and with $p_{\rm T}^{\rm e} > 7 \,\text{GeV}$ by combining information from the ECAL and tracker [24, 25]. Electron identification requirements rely on the electromagnetic shower shape and other observables based on tracker and calorimeter

information. The selection criteria depend on $p_{\rm T}^{\rm e}$ and $|\eta^{\rm e}|$, and on a categorization according to observables that are sensitive to the amount of bremsstrahlung emitted along the trajectory in the tracker. Muons are reconstructed [26] within $|\eta^{\mu}| < 2.4$ and $p_{\rm T}^{\mu} > 5 \,{\rm GeV}$ with information from both the tracker and the muon spectrometer. The track must have more than 10 out of up to 24 possible hits in the silicon tracker [23] to ensure a precise measurement of the momentum. The efficiencies are measured in data, using a tag-and-probe technique [27] based on an inclusive sample of $Z \rightarrow \ell^+ \ell^-$ events. The measurements are performed in several ranges of $p_{\rm T}^{\ell}$ and $|\eta^{\ell}|$. The product of reconstruction and identification efficiencies for electrons in the ECAL barrel (endcaps) varies from about 68% (62%) for the $p_{\rm T}^{\rm e}$ range 7–10 GeV, to 82% (74%) at 10 < $p_{\rm T}^{\rm e}$ < 20 GeV, and reaches up to 90% (89%) at $p_{\rm T}^{\rm e} > 20 \,{\rm GeV}$. The muons are reconstructed and identified with efficiencies above 98%.

Since the ZZ final state is expected to have only a small contribution from background processes, the algorithms are tuned to maximize the lepton-reconstruction efficiency, resulting in an increased lepton-misidentification rate. A particle-flow (PF) technique [28] is used for $\tau_{\rm h}$ reconstruction. In the PF approach, information from all subdetectors is combined to reconstruct and identify particles produced in the collision. The particles are classified into mutually exclusive categories: charged hadrons, photons, neutral hadrons, muons, and electrons. These particles are used to reconstruct the $\tau_{\rm h}$ candidates with the "hadron plus strip" (HPS) algorithm [29], which is designed to optimize the performance of $\tau_{\rm h}$ identification and reconstruction by considering specific $\tau_{\rm h}$ decay modes. The neutrinos produced in all τ decays escape detection and are ignored in the $\tau_{\rm h}$ reconstruction. The algorithm provides high $\tau_{\rm h}$ identification efficiency, approximately 50% for the range of $\tau_{\rm h}$ energies relevant for this analysis, while keeping the misidentification rate for jets at the level of 1%.

Events are required to have at least one $Z \to \ell^+ \ell^-$ candidate, denoted by Z_1 . The invariant mass of the reconstructed Z_1 is required to be $60 < m_{\ell\ell} < 120 \,\text{GeV}$. The two leptons must have opposite charges, one with $p_T > 20 \,\text{GeV}$ and the other with $p_T > 10 \,\text{GeV}$, and with $|\eta| < 2.5$ for the electrons and $|\eta| < 2.4$ for the muons. If more than one candidate is found, the one with the mass closest to the Z mass is considered as Z_1 .

Lepton isolation requirements depend on the ZZ decay mode. For the final states with only electrons and muons, the isolation criteria are based on a combination of the tracker, ECAL, and HCAL information. The standard combined relative isolation is defined as

$$I_{\rm rel}^{\rm std} = \left(\sum_{i} p_{\rm T, \ track}^{i} + \max\left(\sum_{j} E_{\rm T, \ ECAL}^{j} + \sum_{k} E_{\rm T, \ HCAL}^{k} - \pi \cdot \Delta R_{\rm max}^{2} \cdot \rho; 0\right)\right) / p_{\rm T}^{\ell},$$

with the sums running over the charged tracks and the energy deposits in the ECAL and HCAL within a cone around the lepton direction defined by $\Delta R < \Delta R_{\text{max}} = 0.3$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, and E_{T} stands for the transverse energy. The neutral isolation is made largely independent of the pileup of pp collisions by correcting for the average energy density, ρ , calculated in each event using a "jet area" technique [30] and defined as the median of the energy distribution for the neutral particles around all jets. The isolation variable $I_{\text{rel}}^{\text{std}}$ is required to be less than 0.275 for each lepton. The significance of the impact pa-

rameter of each lepton relative to the event vertex (S_{3D}) is required to satisfy $|S_{3D}| < 4$. The primary vertex is chosen as the vertex with the highest sum of p_T^2 of its constituent tracks.

In the $2\ell 2\tau$ final states, instead of standard isolation, the leptons from the Z₁ are required to have a combined PF relative isolation $I_{\rm rel}^{\rm PF} < 0.25$. The $I_{\rm rel}^{\rm PF}$ is defined similarly to $I_{\rm rel}^{\rm std}$, however in this case the sums run over charged hadrons, photons, and neutral hadrons, all measured in the isolation cone of $\Delta R < 0.4$ around the lepton direction.

The selection requirements for the second Z, denoted by Z_2 , also depend on the final state. In the final states with electrons and muons only, the isolation requirements are the same as for the leptons from Z_1 , but $p_T > 7 \text{ GeV}$ and $p_T > 5 \text{ GeV}$ are required for electrons and muons, respectively. If the final state is $\tau_{\rm e}\tau_{\mu}$, the lepton $p_{\rm T}$ values are required to exceed 10 GeV. The remaining criteria are identical to those for Z_1 . Since hadronically decaying τ leptons have much larger misidentification rates than the other leptons, the isolation requirement based on $I_{\rm rel}^{\rm PF}$ for the electrons and muons in the final states $\tau_{\rm e}\tau_{\rm h}$ and $\tau_{\mu}\tau_{\rm h}$ is changed to 0.15 and 0.1, respectively. A study of inclusive $Z \to \tau^+ \tau^-$ production [31] demonstrated that modifying the electron and muon isolation requirements is a more effective way to reduce background in such final states than requiring tighter isolation on $\tau_{\rm h}$. The τ leptons are required to have $p_{\rm T} > 20 \,{\rm GeV}$ and $|\eta| < 2.3$, and to satisfy the requirements of a loose HPS working point. If the Z_2 decays to $\tau_h^+ \tau_h^-$, both τ_h are required to satisfy the requirements of a medium working point of the HPS algorithm. The loose (medium) working point requires the scalar sum of the $p_{\rm T}$ of the charged hadrons and $E_{\rm T}$ of the neutral hadrons within the isolation cone to be less than $2 \,\text{GeV}$ (1 GeV). The loose (medium) working point corresponds to a probability of approximately 1% (0.5%) for jets to be misidentified as $\tau_{\rm h}$. Using the medium instead of loose working point leads to a decrease in the $\tau_{\rm h}$ reconstruction efficiency from $\approx 50\%$ to $\approx 40\%$.

The invariant mass of the reconstructed Z_2 is required to satisfy $60 < m_{\ell\ell} < 120 \text{ GeV}$, when Z_2 decays into e^+e^- or $\mu^+\mu^-$. In the $2\ell 2\tau$ final states, the visible invariant mass of the reconstructed $Z_2 \rightarrow \tau^+\tau^-$ is required to satisfy $30 < m_{\tau\tau}^{\text{vis}} < 80 \text{ GeV}$. The upper bound reduces contributions from $Z_2 \rightarrow \ell^+\ell^-$, where an electron or a muon is not well reconstructed and is misidentified as a $\tau_{\rm h}$. For the $Z_2 \rightarrow \tau_e \tau_{\mu}$ final state, the upper bound on $m_{\tau\tau}$ is increased to 90 GeV, as this state is not produced in $Z_2 \rightarrow \ell^+\ell^-$ decays. In the final states involving $\tau_{\rm h}$, leptons from the same Z are required to be separated by $\Delta R > 0.4$ for the Z_1 , and by $\Delta R > 0.5$ for the Z_2 .

The major contributions to the background are due to Z production in association with jets, WZ production in association with jets, and tt. In all of these cases, a jet or nonisolated lepton is misidentified as an isolated electron, muon, or $\tau_{\rm h}$. The relative contribution of each source of background depends on the final state.

The background estimate is performed in two steps. Firstly, the rate for loosely isolated objects to be misidentified as isolated ones is measured in a control region that does not contain any signal contribution. The misidentification rate is estimated with events in which the Z₁ passes all selection requirements, and which contain an additional probe electron, muon, or $\tau_{\rm h}$. No isolation requirement is applied to the probe. The misidentification rate is defined as the ratio of the number of probe candidates that pass the isolation requirements to the initial number of probe candidates, and is measured as a function of $p_{\rm T}$ and η for each lepton flavor.

Decay	Expected ZZ	Background	Total	Observed
channel			expected	
eeee	$10.50 \pm 0.04 \pm 0.95$	$0.25 \pm 0.14 \pm 0.07$	$10.75 \pm 0.14 \pm 0.95$	9
$\mu\mu\mu\mu$	$15.91 \pm 0.05 \pm 1.43$	$0.52 \pm 0.26 \pm 0.25$	$16.43 \pm 0.26 \pm 1.45$	14
$\mathrm{ee}\mu\mu$	$26.74 \pm 0.10 \pm 2.41$	$0.58 \pm 0.18 \pm 0.23$	$27.32 \pm 0.21 \pm 2.41$	31
$ee \tau_h \tau_h$	$0.75 \pm 0.01 \pm 0.07$	$0.76 \pm 0.16 \pm 0.05$	$1.51 \pm 0.16 \pm 0.09$	1
$\mu\mu au_{ m h} au_{ m h}$	$0.82 \pm 0.02 \pm 0.07$	$0.75 \pm 0.16 \pm 0.08$	$1.57 \pm 0.16 \pm 0.11$	0
$ee\tau_e\tau_h$	$1.17 \pm 0.02 \pm 0.11$	$0.96 \pm 0.34 \pm 0.12$	$2.29 \pm 0.34 \pm 0.16$	3
$\mu\mu au_{ m e} au_{ m h}$	$1.15 \pm 0.02 \pm 0.10$	$0.35 \pm 0.34 \pm 0.11$	$1.60 \pm 0.34 \pm 0.15$	3
$\mathrm{ee} au_{\mu} au_{\mathrm{h}}$	$0.94 \pm 0.02 \pm 0.08$	$0.22 \pm 0.14 \pm 0.04$	$1.17 \pm 0.14 \pm 0.06$	0
$\mu\mu au_{\mu} au_{ m h}$	$1.08 \pm 0.02 \pm 0.10$	$0.55 \pm 0.24 \pm 0.11$	$1.64 \pm 0.24 \pm 0.15$	2
$ee \tau_e \tau_\mu$	$0.54 \pm 0.01 \pm 0.05$	$0.64 \pm 0.44 \pm 0.16$	$1.22 \pm 0.44 \pm 0.17$	0
$\mu\mu\tau_{ m e} au_{\mu}$	$0.60 \pm 0.01 \pm 0.05$	$0.14 \pm 0.30 \pm 0.10$	$0.74 \pm 0.30 \pm 0.11$	2

Table 1. The expected yield of ZZ events obtained from simulation and the estimated yield of background events obtained from data, as described in the text, are shown for each decay channel and are summed in the total expected yield ("Total expected"). They are compared to the number of events observed in the signal region. The first uncertainty is statistical while the second one is systematic.

The second step is to estimate the number of background events in the signal region. The measured misidentification rate is applied to events that pass all selection requirements, including the opposite-charge requirement for the Z_2 , but requiring the candidates to not be isolated.

Theoretical uncertainties on the ZZ $\rightarrow 2\ell \ell \ell'$ acceptance are evaluated using MCFM 6.2 [32], varying QCD scales up and down by a factor of two with respect to the default factorization ($\mu_{\rm F}$) and renormalization ($\mu_{\rm R}$) scales $\mu_{\rm F} = \mu_{\rm R} = m_{\rm Z}$, where $m_{\rm Z}$ is the mass of the Z boson. The variations in the acceptance are 0.1% ($q\bar{q} \rightarrow ZZ$) and 0.4% (gg $\rightarrow ZZ$) and can be neglected. The uncertainties related to the PDFs are evaluated following the PDF4LHC prescription [33]. Using the CT10 [18], MSTW08 [34], and NNPDF [35] sets, the uncertainties are estimated to be 4% for $q\bar{q} \rightarrow ZZ$ and and 5% for gg $\rightarrow ZZ$ processes.

The uncertainties on Z+jets, WZ+jets, and $t\bar{t}$ backgrounds reflect the uncertainties on the measured values of the misidentication rates and the limited quantity of data in the control regions in the data and amount to 30–50% depending on the decay channel. The uncertainty on the integrated luminosity is 2.2% [36]. Systematic uncertainties on trigger efficiency (1.5%), lepton identification efficiency, and lepton isolation are evaluated from data. The uncertainties associated with lepton identification and isolation are 1–2% for muons and electrons, and 6–7% for $\tau_{\rm h}$. Uncertainties on energy scales, 3% for $\tau_{\rm h}$ and 1–2.5% for electrons, contribute to variations in the shape of the mass spectrum.

Table 1 presents the number of observed events in the signal region in each channel, as well as the expected number of signal events and the estimated number of background events. We observe a total of 54 candidate events in the 4e, 4μ , and $2e2\mu$ channels, compared to the SM expectation of 54.5 ± 0.3 (stat.) ±4.8 (syst.) events, which includes 1.4 from background processes. In the $2\ell 2\tau$ channels, 11 candidate events are observed, compared to 11.7 ± 0.8 (stat.) ±1.0 (syst.) events expected, including 4.4 from background processes. The reconstructed four-lepton invariant mass distributions are compared to the SM expectations in figures 1 (a) and (b) for the sum of the 4e, 4μ , and $2e2\mu$ channels, and the sum of all the $2\ell 2\tau$ channels. The shapes of the signal and background are taken from the MC simulation, with each component normalized to the corresponding estimated value from table 1. The reconstructed masses in $2\ell 2\tau$ states ($m_{2\ell 2\tau}^{\rm vis}$) are shifted downwards with respect to the generated Z masses by about 30% due to the undetected neutrinos in τ decays. Figures 1 (c) and (d) demonstrate the relationship between the reconstructed Z₁ and Z₂ masses.

To include all the final states in the calculation of the cross section, a simultaneous fit to the numbers of observed events in all the decay channels is performed. The fit is constrained by the requirement that all the measurements come from the same initial state via different decay modes. It allows for combining many decay modes with either very few or no events observed. The joint likelihood is a combination of the likelihoods for the individual channels, which include the signal and background hypotheses. Each τ -lepton decay mode is treated as a separate channel because they are mutually exclusive owing to the methodology adopted for event reconstruction and subsequent event selection. The statistical and systematic uncertainties are introduced in the form of nuisance parameters via log-normal distributions around the estimated central values.

The resulting cross section is measured to be

$$\sigma(\text{pp} \to \text{ZZ}) = 6.24 \substack{+0.86 \\ -0.80} \text{ (stat.)} \substack{+0.41 \\ -0.32} \text{ (syst.)} \pm 0.14 \text{ (lumi.) pb.}$$

This result is to be compared to the theoretical value of 6.3 ± 0.4 pb calculated with MCFM at NLO for $q\bar{q} \rightarrow ZZ$ and LO for $gg \rightarrow ZZ$ with the MSTW08 PDFs and for both Z bosons in the mass range $60 < m_Z < 120$ GeV. This is the most precise published pp $\rightarrow ZZ$ cross section measurement to date, which for the first time extends the pp $\rightarrow ZZ \rightarrow 2\ell 2\ell$ measurement to include final states with hadronically decaying τ leptons.

The limits on ATGCs are calculated with the modified frequentist construction CL_s [37–39] based on the shape of the four-lepton invariant mass distributions, including the 4e, 4 μ , and 2e2 μ channels in the likelihood combination. Figure 2 presents the distribution of the four-lepton reconstructed mass for the sum of the 4e, 4 μ , and 2e2 μ channels. The dashed and dotted histograms represent the results of the SHERPA simulation for the SM ($f_4^Z = 0$) and in the presence of an ATGC ($f_4^Z = 0.015$), while all the other anomalous couplings are set to zero. The presence of ATGCs would be manifested in an increased yield of events at high four-lepton masses. The invariant mass distributions are interpolated from SHERPA simulation for different values of the anomalous couplings. For each distribution only one or two couplings are varied, while all others are set to zero. The fit is performed to find the maximum likelihood value and limits are calculated. To avoid unitarity violation at energies above the scale Λ of new physics, the ATGCs are often modified with a form-factor parametrization of the type $1/(1 + \hat{s}/\Lambda^2)^2$, where $\sqrt{\hat{s}} \approx m_{2\ell 2\ell}$

Figure 1. Distributions of the four-lepton reconstructed mass for (a) the sum of the 4e, 4 μ , and 2e2 μ channels and (b) the sum of the $2\ell 2\tau$ channels. Points represent the data, and the shaded histograms represent the expected ZZ signal and the reducible background. The shapes of the signal and background are taken from the MC simulation, with each component normalized to the corresponding estimated value from table 1. The distributions (c) and (d) demonstrate the relationship between the reconstructed Z₁ and Z₂ masses.

is the effective center-of-mass energy of the collision. However, no unitarity violations occur in the sensitive region $m_{2\ell 2\ell} \leq 1.5 \text{ TeV}$ for bare anomalous couplings of order 0.05 or smaller [40], so we calculate the limits without form-factor scaling. This choice has the advantage of avoiding any bias from energy-dependence assumptions and is exact in the limit in which the scale of new physics is much larger than $\sqrt{\hat{s}}$.

Figure 3 presents the expected and observed two-dimensional exclusion limits at 95% confidence level (CL) on the anomalous neutral trilinear ZZZ and ZZ γ couplings. The green and yellow bands represent the one and two standard-deviation variations from the expected limit. The present limits are dominated by statistical uncertainties. Systematic uncertainties arising from the uncertainty on the theoretical cross section, PDFs, detector

Figure 2. Distribution of the four-lepton reconstructed mass for the sum of the 4e, 4 μ , and the 2e2 μ channels. Points represent the data, and the shaded histograms represent the expected ZZ signal and the reducible background. The dashed and dotted histograms represent the results of the SHERPA simulation for the SM ($f_4^Z = 0$) and in the presence of an ATGC ($f_4^Z = 0.015$), while all the other anomalous couplings are set to zero.

Figure 3. Expected and observed two-dimensional exclusion limits at 95% CL on the anomalous neutral trilinear ZZZ $(f_{4,5}^Z)$ and ZZ γ $(f_{4,5}^\gamma)$ couplings. The green and yellow bands represent the one and two standard-deviation variations from the expected limit. In calculating the limits, the anomalous couplings that are not shown in the figure are set to zero.

efficiencies, and luminosity are introduced in the form of nuisance parameters with log-normal probability density functions. One-dimensional 95% CL limits for the $f_4^{Z,\gamma}$ and $f_5^{Z,\gamma}$ anomalous coupling parameters are measured to be

$$-0.011 < f_4^{\rm Z} < 0.012, \ -0.012 < f_5^{\rm Z} < 0.012, \ -0.013 < f_4^{\gamma} < 0.015, \ -0.014 < f_5^{\gamma} < 0.014, \ -0$$

In the one-dimensional fits, all of the ATGC parameters except the one under study are kept fixed to zero. These values extend previous results on vector boson self-interactions and are currently the most stringent limits established for ZZZ and ZZ γ couplings.

In summary, we have presented an updated measurement of the ZZ production cross section in proton-proton collisions at 7 TeV in the ZZ $\rightarrow 2\ell 2\ell'$ decay mode, with $\ell = e, \mu$ and $\ell' = e, \mu, \tau$. The data sample corresponds to an integrated luminosity of 5.0 fb⁻¹. The measured cross section $\sigma(pp \rightarrow ZZ) = 6.24^{+0.86}_{-0.80} (\text{stat.})^{+0.41}_{-0.32} (\text{syst.})\pm 0.14 (\text{lumi.})$ pb is consistent with the SM prediction and is the most precise published pp $\rightarrow ZZ$ cross section measurement to date. For the first time the pp $\rightarrow ZZ \rightarrow 2\ell 2\ell$ measurements are extended to include final states with hadronically decaying τ leptons. Limits on vector-boson self-interactions are established, significantly restricting anomalous ZZZ and ZZ γ trilinear gauge couplings.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- [1] K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in $e^+e^- \rightarrow W^+W^-$, Nucl. Phys. B 282 (1987) 253 [INSPIRE].
- [2] CDF collaboration, T. Aaltonen et al., Measurement of ZZ production in leptonic final states at √s of 1.96 TeV at CDF, Phys. Rev. Lett. 108 (2012) 101801 [arXiv:1112.2978] [INSPIRE].
- [3] D0 collaboration, V.M. Abazov et al., Measurement of the ZZ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \ TeV$, Phys. Rev. D 84 (2011) 011103 [arXiv:1104.3078] [INSPIRE].

- [4] CMS collaboration, Search for the standard model Higgs boson in the decay channel H → ZZ → 4 leptons in pp collisions at √s = 7 TeV, Phys. Rev. Lett. 108 (2012) 111804
 [arXiv:1202.1997] [INSPIRE].
- [5] ATLAS collaboration, Measurement of the ZZ production cross section and limits on anomalous neutral triple gauge couplings in proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$ with the ATLAS detector, Phys. Rev. Lett. **108** (2012) 041804 [arXiv:1110.5016] [INSPIRE].
- [6] ALEPH collaboration, S. Schael et al., Measurement of Z-pair production in e^+e^- collisions and constraints on anomalous neutral gauge couplings, JHEP **04** (2009) 124 [INSPIRE].
- [7] DELPHI collaboration, J. Abdallah et al., Study of triple-gauge-boson couplings ZZZ, ZZ γ and Z $\gamma\gamma$ LEP, Eur. Phys. J. C 51 (2007) 525 [arXiv:0706.2741] [INSPIRE].
- [8] ALEPH collaboration, DELPHI collaboration, L3 collaboration, OPAL collaboration and the LEP ELECTROWEAK WORKING GROUP, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
- [9] OPAL collaboration, G. Abbiendi et al., Study of Z pair production and anomalous couplings in e⁺e⁻ collisions at √s between 190 GeV and 209 GeV, Eur. Phys. J. C 32 (2003) 303 [hep-ex/0310013] [INSPIRE].
- [10] L3 collaboration, M. Acciarri et al., Study of anomalous $ZZ\gamma$ and $Z\gamma\gamma$ couplings at LEP, Phys. Lett. **B** 436 (1998) 187 [INSPIRE].
- [11] D0 collaboration, V. Abazov et al., Search for ZZ and $Z\gamma^*$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \ TeV$ and limits on anomalous ZZZ and ZZ γ^* couplings, Phys. Rev. Lett. 100 (2008) 131801 [arXiv:0712.0599] [INSPIRE].
- [12] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].
- [13] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
- [14] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
- [15] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
- [16] T. Binoth, N. Kauer and P. Mertsch, *Gluon-induced QCD corrections to* $pp \rightarrow ZZ \rightarrow \ell \bar{\ell} \ell' \bar{\ell}'$, arXiv:0807.0024 [INSPIRE].
- [17] H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].
- [18] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024
 [arXiv:1007.2241] [INSPIRE].
- [19] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007
 [arXiv:0811.4622] [INSPIRE].
- [20] S. Jadach, Z. Was, R. Decker and J.H. Kuhn, The τ decay library TAUOLA: version 2.4, Comput. Phys. Commun. 76 (1993) 361 [INSPIRE].
- [21] GEANT4 collaboration, S. Agostinelli et al., GEANT4 a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

- [22] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST **3** S08004 [INSPIRE].
- [23] CMS collaboration, CMS tracking performance results from early LHC operation, Eur. Phys. J. C 70 (2010) 1165 [arXiv:1007.1988] [INSPIRE].
- [24] S. Baffioni et al., Electron reconstruction in CMS, Eur. Phys. J. C 49 (2007) 1099 [INSPIRE].
- [25] CMS collaboration, Electron reconstruction and identification at $\sqrt{s} = 7 \text{ TeV}$, CMS-PAS-EGM-10-004, CERN, Geneva Switzerland (2010).
- [26] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7 \ TeV$, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE].
- [27] CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE].
- [28] CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001, CERN, Geneva Switzerland (2009).
- [29] CMS collaboration, Performance of τ-lepton reconstruction and identification in CMS, 2012 JINST 7 P01001 [arXiv:1109.6034] [INSPIRE].
- [30] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
- [31] CMS collaboration, Measurement of the inclusive Z cross section via decays to τ pairs in pp collisions at $\sqrt{s} = 7 \text{ TeV}$, JHEP 08 (2011) 117 [arXiv:1104.1617] [INSPIRE].
- [32] J.M. Campbell and R. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].
- [33] M. Botje et al., *The PDF4LHC working group interim recommendations*, arXiv:1101.0538 [INSPIRE].
- [34] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
- [35] R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].
- [36] CMS collaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 update, CMS-PAS-SMP-12-008, CERN, Geneva Switzerland (2012).
- [37] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].
- [38] A.L. Read, Presentation of search results: the CL_s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
- [39] ATLAS collaboration, Procedure for the LHC Higgs boson search combination in summer 2011, ATL-PHYS-PUB-2011-011, CERN, Geneva Switzerland (2011).
- [40] M. Zralek and P. Khristova, Composite Z boson in the $e^+e^- \rightarrow ZZ$ process, Acta Phys. Polon. B 20 (1989) 739 [INSPIRE].

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl,
R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka[†], B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger,
G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein,

J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder, A. Vilela Pereira

Instituto de Fisica Teorica^{*a*}, Universidade Estadual Paulista^{*b*}, Sao Paulo, Brazil

T.S. Anjos^{b,3}, C.A. Bernardes^{b,3}, F.A. Dias^{a,4}, T.R. Fernandez Perez Tomei^a, E.M. Gregores^{b,3}, C. Lagana^a, F. Marinho^a, P.G. Mercadante^{b,3}, S.F. Novaes^a, Sandra S. Padula^a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

V. Genchev⁵, P. Iaydjiev⁵, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, R. Plestina⁶, D. Polic, I. Puljak⁵

University of Split, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus

A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran⁷, S. Elgammal⁸, A. Ellithi Kamel⁹, M.A. Mahmoud¹⁰, A. Radi^{11,12}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri,S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci,J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj¹³, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹⁴, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte¹⁴, F. Drouhin¹⁴, C. Ferro, J.-C. Fontaine¹⁴, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France

F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, J. Chasserat, R. Chierici⁵, D. Contardo,
P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca,
M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, P. Verdier,
S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze¹⁵

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

G. Anagnostou, C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous,
O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach,
J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov¹⁶

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann⁵, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz¹⁷, A. Bethani,
K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza,
D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov,
P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas,
C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange,
W. Lohmann¹⁷, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann,
A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, J. Olzem,
H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron,
M. Rosin, J. Salfeld-Nebgen, R. Schmidt¹⁷, T. Schoerner-Sadenius, N. Sen, A. Spiridonov,
M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, J. Sibille¹⁸, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff⁵, C. Hackstein, F. Hartmann, T. Hauth⁵, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov¹⁶, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁹, F. Sikler, V. Veszpremi, G. Vesztergombi²⁰

Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty⁵, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, S. Ganguly, M. Guchait²¹, M. Maity²², G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei²³, H. Bakhshiansohi, S.M. Etesami²⁴, A. Fahim²³, M. Hashemi, H. Hesari, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh²⁵, M. Zeinali

INFN Sezione di Bari^a, Università di Bari^b, Politecnico di Bari^c, Bari, Italy
M. Abbrescia^{a,b}, L. Barbone^{a,b}, C. Calabria^{a,b,5}, S.S. Chhibra^{a,b}, A. Colaleo^a,
D. Creanza^{a,c}, N. De Filippis^{a,c,5}, M. De Palma^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, G. Maggi^{a,c},
M. Maggi^a, B. Marangelli^{a,b}, S. My^{a,c}, S. Nuzzo^{a,b}, N. Pacifico^a, A. Pompili^{a,b},
G. Pugliese^{a,c}, G. Selvaggi^{a,b}, L. Silvestris^a, G. Singh^{a,b}, R. Venditti^{a,b}, P. Verwilligen,
G. Zito^a

INFN Sezione di Bologna^{*a*}, Università di Bologna^{*b*}, Bologna, Italy

G. Abbiendi^{*a*}, A.C. Benvenuti^{*a*}, D. Bonacorsi^{*a*,*b*}, S. Braibant-Giacomelli^{*a*,*b*}, L. Brigliadori^{*a*,*b*}, P. Capiluppi^{*a*,*b*}, A. Castro^{*a*,*b*}, F.R. Cavallo^{*a*}, M. Cuffiani^{*a*,*b*},

G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b}, P. Giacomelli^a, C. Grandi^a, L. Guiducci^{a,b}, S. Marcellini^a, G. Masetti^a, M. Meneghelli^{a,b,5}, A. Montanari^a, F.L. Navarria^{a,b}, F. Odorici^a, A. Perrotta^a, F. Primavera^{a,b}, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, G.P. Siroli^{a,b}, N. Tosi, R. Travaglini^{a,b}

INFN Sezione di Catania^{*a*}, Università di Catania^{*b*}, Catania, Italy

S. Albergo^{*a,b*}, G. Cappello^{*a,b*}, M. Chiorboli^{*a,b*}, S. Costa^{*a,b*}, R. Potenza^{*a,b*}, A. Tricomi^{*a,b*}, C. Tuve^{*a,b*}

INFN Sezione di Firenze^{*a*}, Università di Firenze^{*b*}, Firenze, Italy

G. Barbagli^{*a*}, V. Ciulli^{*a,b*}, C. Civinini^{*a*}, R. D'Alessandro^{*a,b*}, E. Focardi^{*a,b*}, S. Frosali^{*a,b*}, E. Gallo^{*a*}, S. Gonzi^{*a,b*}, M. Meschini^{*a*}, S. Paoletti^{*a*}, G. Sguazzoni^{*a*}, A. Tropiano^{*a,b*}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, S. Colafranceschi²⁶, F. Fabbri, D. Piccolo

INFN Sezione di Genova^{*a*}, Università di Genova^{*b*}, Genova, Italy P. Fabbricatore^{*a*}, R. Musenich^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca^{*a*}, Università di Milano-Bicocca^{*b*}, Milano, Italy

A. Benaglia^{a,b}, F. De Guio^{a,b}, L. Di Matteo^{a,b,5}, S. Fiorendi^{a,b}, S. Gennai^{a,5}, A. Ghezzi^{a,b},
S. Malvezzi^a, R.A. Manzoni^{a,b}, A. Martelli^{a,b}, A. Massironi^{a,b}, D. Menasce^a, L. Moroni^a,
M. Paganoni^{a,b}, D. Pedrini^a, S. Ragazzi^{a,b}, N. Redaelli^a, S. Sala^a, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli^{*a*}, Università di Napoli "Federico II" ^{*b*}, Napoli, Italy S. Buontempo^{*a*}, C.A. Carrillo Montoya^{*a*}, N. Cavallo^{*a*,27}, A. De Cosa^{*a*,*b*,5}, O. Dogangun^{*a*,*b*}, F. Fabozzi^{*a*,27}, A.O.M. Iorio^{*a*,*b*}, L. Lista^{*a*}, S. Meola^{*a*,28}, M. Merola^{*a*}, P. Paolucci^{*a*,5}

INFN Sezione di Padova ^a, Università di Padova ^b, Università di Trento (Trento) ^c, Padova, Italy

P. Azzi^a, N. Bacchetta^{a,5}, P. Bellan^{a,b}, D. Bisello^{a,b}, A. Branca^{a,b,5}, R. Carlin^{a,b},
P. Checchia^a, T. Dorigo^a, U. Dosselli^a, F. Gasparini^{a,b}, U. Gasparini^{a,b}, A. Gozzelino^a,
K. Kanishchev^{a,c}, S. Lacaprara^a, I. Lazzizzera^{a,c}, M. Margoni^{a,b}, A.T. Meneguzzo^{a,b},
M. Nespolo^{a,5}, J. Pazzini^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b}, E. Torassa^a, S. Vanini^{a,b},
P. Zotto^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy

M. Gabusi^{*a,b*}, S.P. Ratti^{*a,b*}, C. Riccardi^{*a,b*}, P. Torre^{*a,b*}, P. Vitulo^{*a,b*}

INFN Sezione di Perugia^{*a*}, Università di Perugia^{*b*}, Perugia, Italy

M. Biasini^{*a,b*}, G.M. Bilei^{*a*}, L. Fanò^{*a,b*}, P. Lariccia^{*a,b*}, G. Mantovani^{*a,b*}, M. Menichelli^{*a*}, A. Nappi^{*a,b*†}, F. Romeo^{*a,b*}, A. Saha^{*a*}, A. Santocchia^{*a,b*}, A. Spiezia^{*a,b*}, S. Taroni^{*a,b*}

INFN Sezione di Pisa^{*a*}, Università di Pisa^{*b*}, Scuola Normale Superiore di Pisa^{*c*}, Pisa, Italy

P. Azzurri^{*a,c*}, G. Bagliesi^{*a*}, J. Bernardini^{*a*}, T. Boccali^{*a*}, G. Broccolo^{*a,c*}, R. Castaldi^{*a*}, R.T. D'Agnolo^{*a,c*,5}, R. Dell'Orso^{*a*}, F. Fiori^{*a,b*,5}, L. Foà^{*a,c*}, A. Giassi^{*a*}, A. Kraan^{*a*},

F. Ligabue^{*a,c*}, T. Lomtadze^{*a*}, L. Martini^{*a*,29}, A. Messineo^{*a,b*}, F. Palla^{*a*}, A. Rizzi^{*a,b*}, A.T. Serban^{*a*,30}, P. Spagnolo^{*a*}, P. Squillacioti^{*a*,5}, R. Tenchini^{*a*}, G. Tonelli^{*a,b*}, A. Venturi^{*a*}, P.G. Verdini^{*a*}

INFN Sezione di Roma^{*a*}, Università di Roma^{*b*}, Roma, Italy

L. Barone^{*a,b*}, F. Cavallari^{*a*}, D. Del Re^{*a,b*}, M. Diemoz^{*a*}, C. Fanelli^{*a,b*}, M. Grassi^{*a,b,5*}, E. Longo^{*a,b*}, P. Meridiani^{*a,5*}, F. Micheli^{*a,b*}, S. Nourbakhsh^{*a,b*}, G. Organtini^{*a,b*}, R. Paramatti^{*a*}, S. Rahatlou^{*a,b*}, M. Sigamani^{*a*}, L. Soffi^{*a,b*}

INFN Sezione di Torino ^a, Università di Torino ^b, Università del Piemonte Orientale (Novara) ^c, Torino, Italy

N. Amapane^{*a,b*}, R. Arcidiacono^{*a,c*}, S. Argiro^{*a,b*}, M. Arneodo^{*a,c*}, C. Biino^{*a*}, N. Cartiglia^{*a*}, M. Costa^{*a,b*}, N. Demaria^{*a*}, C. Mariotti^{*a,5*}, S. Maselli^{*a*}, E. Migliore^{*a,b*}, V. Monaco^{*a,b*}, M. Musich^{*a,5*}, M.M. Obertino^{*a,c*}, N. Pastrone^{*a*}, M. Pelliccioni^{*a*}, A. Potenza^{*a,b*}, A. Romero^{*a,b*}, M. Ruspa^{*a,c*}, R. Sacchi^{*a,b*}, A. Solano^{*a,b*}, A. Staiano^{*a*}

INFN Sezione di Trieste^{*a*}, Università di Trieste^{*b*}, Trieste, Italy

S. Belforte^a, V. Candelise^{a,b}, M. Casarsa^a, F. Cossutti^a, G. Della Ricca^{a,b}, B. Gobbo^a, M. Marone^{a,b,5}, D. Montanino^{a,b,5}, A. Penzo^a, A. Schizzi^{a,b}

Kangwon National University, Chunchon, Korea

S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

I. Belotelov, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin⁴, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin,
O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov,
L. Sarycheva[†], V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁵, V. Kachanov, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic³¹, M. Djordjevic, M. Ekmedzic, D. Krpic³¹, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini³², M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney,
J.F. Benitez, C. Bernet⁶, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker,
T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D'Enterria,

A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi³³, C. Rovelli³⁴, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³⁵, D. Spiga, A. Tsirou, G.I. Veres²⁰, J.R. Vlimant, H.K. Wöhri, S.D. Worm³⁶, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli³⁷, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov³⁸, B. Stieger, M. Takahashi, L. Tauscher[†], A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland

C. Amsler³⁹, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias,
P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz,
U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder,
E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Chulalongkorn University, Bangkok, Thailand

B. Asavapibhop, N. Srimanobhas

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci⁴⁰, S. Cerci⁴¹, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis,
G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar⁴², A. Kayis
Topaksu, G. Onengut, K. Ozdemir, S. Ozturk⁴³, A. Polatoz, K. Sogut⁴⁴, D. Sunar Cerci⁴¹,
B. Tali⁴¹, H. Topakli⁴⁰, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak⁴⁵, M. Kaya⁴⁶, O. Kaya⁴⁶, S. Ozkorucuklu⁴⁷, N. Sonmez⁴⁸

Istanbul Technical University, Istanbul, Turkey

K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold³⁶, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso⁴⁹, K.W. Bell, A. Belyaev⁴⁹, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar,
P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert,
A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli,
L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko³⁸,
A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi⁵⁰, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp[†], A. Sparrow, M. Stoye, A. Tapper, M. Vazquez
Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, U.S.A.

K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, U.S.A.

O. Charaf, C. Henderson, P. Rumerio

Boston University, Boston, U.S.A.

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, U.S.A.

J. Alimena, S. Bhattacharya, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian,

U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer

University of California, Davis, Davis, U.S.A.

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok,

J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, D. Pellett, F. Ricci-Tam, B. Rutherford,

M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, R. Yohay

University of California, Los Angeles, Los Angeles, U.S.A.

V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein[†], P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, U.S.A.

J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng⁵¹, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, U.S.A.

W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner,
R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer,
G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu,
A. Vartak, S. Wasserbaech⁵², F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, U.S.A.

D. Barge, R. Bellan, C. Campagnari, M. D'Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, U.S.A.

A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, U.S.A.

B. Akgun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, U.S.A.

J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, U.S.A.

J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun,

W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, U.S.A.

D. Winn

Fermi National Accelerator Laboratory, Batavia, U.S.A.

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos⁵³, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko⁵⁴, C. Newman-Holmes, V. O'Dell, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, U.S.A.

D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic⁵⁵, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, U.S.A.

V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, U.S.A.

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.

M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O'Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, U.S.A.

U. Akgun, E.A. Albayrak, B. Bilki⁵⁶, W. Clarida, F. Duru, J.-P. Merlo, H. Mermerkaya⁵⁷,
A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok⁵⁸,
S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, U.S.A.

B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo,G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, U.S.A.

P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, U.S.A.

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, U.S.A.

J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, U.S.A.

A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg,
M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple,
M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, U.S.A.

A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta,
G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar⁵⁹,
P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph,
G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf,
B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, U.S.A.

S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, U.S.A.

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, U.S.A.

E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, U.S.A.

A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar

Northeastern University, Boston, U.S.A.

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, U.S.A.

A. Anastassov, A. Kubik, L. Lusito, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, U.S.A.

L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, U.S.A.

B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, U.S.A.

E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay,
D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué,
X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, U.S.A.

E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, U.S.A.

E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett,
Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov,
P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal
Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, U.S.A.

S. Guragain, N. Parashar

Rice University, Houston, U.S.A.

A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, U.S.A.

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, U.S.A.

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, U.S.A.

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, M. Walker

University of Tennessee, Knoxville, U.S.A.

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, U.S.A.

R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon⁶⁰, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, U.S.A.

N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, U.S.A.

E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, U.S.A.

M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, U.S.A.

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, U.S.A.

M. Anderson, D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis,

L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers,

J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo,

- F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson
 - †: Deceased
 - 1: Also at Vienna University of Technology, Vienna, Austria
 - 2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
 - 3: Also at Universidade Federal do ABC, Santo Andre, Brazil
 - 4: Also at California Institute of Technology, Pasadena, U.S.A.
 - 5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
 - 6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
 - 7: Also at Suez Canal University, Suez, Egypt
 - 8: Also at Zewail City of Science and Technology, Zewail, Egypt
 - 9: Also at Cairo University, Cairo, Egypt
 - 10: Also at Fayoum University, El-Fayoum, Egypt
 - 11: Also at British University in Egypt, Cairo, Egypt
 - 12: Now at Ain Shams University, Cairo, Egypt
 - 13: Also at National Centre for Nuclear Research, Swierk, Poland
 - 14: Also at Université de Haute-Alsace, Mulhouse, France
 - 15: Also at Joint Institute for Nuclear Research, Dubna, Russia
 - 16: Also at Moscow State University, Moscow, Russia
 - 17: Also at Brandenburg University of Technology, Cottbus, Germany
 - 18: Also at The University of Kansas, Lawrence, U.S.A.
 - 19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary

- 20: Also at Eötvös Loránd University, Budapest, Hungary
- 21: Also at Tata Institute of Fundamental Research HECR, Mumbai, India
- 22: Also at University of Visva-Bharati, Santiniketan, India
- 23: Also at Sharif University of Technology, Tehran, Iran
- 24: Also at Isfahan University of Technology, Isfahan, Iran
- 25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 26: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
- 27: Also at Università della Basilicata, Potenza, Italy
- 28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
- 29: Also at Università degli Studi di Siena, Siena, Italy
- 30: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
- 31: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
- 32: Also at University of California, Los Angeles, Los Angeles, U.S.A.
- 33: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 34: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
- 35: Also at University of Athens, Athens, Greece
- 36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 37: Also at Paul Scherrer Institut, Villigen, Switzerland
- 38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- 40: Also at Gaziosmanpasa University, Tokat, Turkey
- 41: Also at Adiyaman University, Adiyaman, Turkey
- 42: Also at Izmir Institute of Technology, Izmir, Turkey
- 43: Also at The University of Iowa, Iowa City, U.S.A.
- 44: Also at Mersin University, Mersin, Turkey
- 45: Also at Ozyegin University, Istanbul, Turkey
- 46: Also at Kafkas University, Kars, Turkey
- 47: Also at Suleyman Demirel University, Isparta, Turkey
- 48: Also at Ege University, Izmir, Turkey
- 49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 50: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
- 51: Also at University of Sydney, Sydney, Australia
- 52: Also at Utah Valley University, Orem, U.S.A.
- 53: Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom
- 54: Also at Institute for Nuclear Research, Moscow, Russia
- 55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 56: Also at Argonne National Laboratory, Argonne, U.S.A.
- 57: Also at Erzincan University, Erzincan, Turkey
- 58: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 59: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- 60: Also at Kyungpook National University, Daegu, Korea