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Abstract

Some constructions of maximal partial spreads of finite classical polar spaces are
provided. In particular we show that, for n > 1, H(4n−1, q2) has a maximal partial
spread of size q2n + 1, H(4n + 1, q2) has a maximal partial spread of size q2n+1 + 1
and, for n > 2, Q+(4n − 1, q), Q(4n − 2, q), W(4n − 1, q), q even, W(4n − 3, q), q
even, have a maximal partial spread of size qn + 1.

Keywords: finite classical polar space, maximal partial spread, Singer cycle, Segre
variety

1 Introduction

Let P be a finite classical polar space, i.e., P arises from a vector space of finite dimension
over a finite field equipped with a non–degenerate reflexive sesquilinear form. Hence P
is a member of one of the following classes: a symplectic space W(2n + 1, q), a quadric
Q(2n, q), Q+(2n + 1, q), Q−(2n + 1, q) or a Hermitian variety H(n, q2). A projective
subspace of maximal dimension contained in P is called a generator of P .

For further details on finite classical polar spaces we refer to [9],[14].

Definition 1. A partial spread S of P is a set of pairwise disjoint generators. A partial
spread is said to be maximal if it is maximal with respect to set–theoretic inclusion. A
partial spread S is called a spread if S partitions the point set of P .
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If a polar space does not admit spreads, the question on the size of a maximal partial
spread in such a space naturally arises. In general constructing maximal partial spreads
and obtaining reasonable upper and lower bounds for the size of such partial spreads
is an interesting problem. Recently maximal partial spreads of symplectic polar spaces
received particular attention due to their applications in quantum information theory. In
fact they correspond to so–called weakly unextendible mutually unbiased bases [13],[18].
In this paper we are interested in maximal partial spreads of H(2n+ 1, q2), Q+(4n−1, q),
Q(4n− 2, q), n > 2, for any q and of W(2n + 1, q), n > 2, when q is even. In particular
we show that, for n > 1, H(4n − 1, q2) has a maximal partial spread of size q2n + 1,
H(4n+ 1, q2) has a maximal partial spread of size q2n+1 + 1 and, for n > 2, Q+(4n−1, q),
Q(4n− 2, q), W(4n− 1, q), q even, W(4n− 3, q), q even, have a maximal partial spread
of size qn + 1. These results are obtained by investigating particular Segre varieties S1,n

“embedded” in polar spaces of Hermitian or hyperbolic type.

2 The geometric setting

We will use the term n-space to denote an n–dimensional projective subspace of the
ambient projective space. Also in the sequel we will use the following notation θn,q :=[
n+1

1

]
q

= qn + · · ·+ q + 1.

2.1 Linear representations and spreads of projective spaces

Let (V, k) be a non–degenerate formed space with associated polar space P where V
is a (d + 1)–dimensional vector space over GF(qe) and k is a sesquilinear (quadratic)
form. The vector space V can be considered as an (e(d + 1))–dimensional vector space
V ′ over GF(q) via the inclusion GF(q) ⊂ GF(qe). Composition of k with the trace map
Tr : z ∈ GF(qe) 7→

∑e
i=1 z

qi ∈ GF(q) provides a new form k′ on V ′ and so we obtain
a new formed space (V ′, k′). If our new formed space (V ′, k′) is non–degenerate, then
it has an associated polar space P ′. The isomorphism types and various conditions are
presented in [10], [7]. Now each point in PG(d, qe) corresponds to a 1–dimensional vector
subspace in V , which in turn corresponds to an e–dimensional vector subspace in V ′, that
is an (e− 1)–space of PG(e(d+ 1)− 1, q). Extending this map from points of PG(d, qe) to
subspaces of PG(d, qe), we obtain an injective map from subspaces of PG(d, qe) to certain
subspaces of PG(e(d+ 1)− 1, q):

φ : PG(d, qe)→ PG(e(d+ 1)− 1, q).

The map φ is called the GF(q)–linear representation of PG(d, qe).
A t–spread of a projective space P is a collection S of mutually disjoint t–spaces of P

such that each point of P is contained in an element of P. The set D = {φ(P ) | P ∈
PG(d, qe)} is an example of (e− 1)–spread of PG(e(d + 1)− 1, q), called a Desarguesian
spread (see [15], Section 25). The incidence structure whose points are the elements of D
and whose lines are the (2e−1)–spaces of PG(e(d+1)−1, q) joining two distinct elements
of D, is isomorphic to PG(d, qe). One immediate consequence of the definitions is that
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the image of the pointset of the original polar space P is contained in the new polar space
P ′ (but is not necessarily equal to it).

2.2 Segre varieties S1,n
Consider the map defined by

σ : PG(1, q)× PG(n, q)→ PG(2n+ 1, q),

taking a pair of points x = (x1, x2) of PG(1, q), y = (y1, . . . , yn, yn+1) of PG(n, q) to their
product (x1y1, . . . , x2yn+1). This is a special case of a wider class of maps called Segre
maps [9]. The image of σ is an algebraic variety called the Segre variety and denoted by
S1,n. The Segre variety S1,n has two rulings, say R1 and R2, where R1 contains θn,q lines
and R2 consists of q+ 1 n–spaces such that two subspaces in the same ruling are disjoint,
and each point of S1,n is contained in exactly one member of each ruling. Also, a member
of R1 meets an element of R2 in exactly one point.

Notice that the set R1 consists of all the lines of PG(2n + 1, q) incident with three
distinct members of R2 and, from [9, Theorem 25.6.1], three mutually disjoint n–spaces
of PG(2n + 1, q) define a unique Segre variety S1,n. A line of PG(2n + 1, q) shares with
S1,n 0, 1, 2 or q + 1 points. Also, the automorphism group of S1,n in PGL(2n + 2, q) is a
group isomorphic to PGL(2, q)×PGL(n+ 1, q) [9, Theorem 25.5.13]. For more details on
Segre varieties, see [9].

2.3 S1,n and Hermitian varieties

Let H(2n+ 1, q2) be a Hermitian variety of PG(2n+ 1, q2) and let G ' PGU(2n+ 2, q2)
be the stabilizer of H(2n+ 1, q2) in PGL(2n+ 2, q2). Let g1, g2, g3 be three mutually skew
generators of H(2n+ 1, q2). We recall the following lemma due to J.A. Thas [17, p. 538].

Lemma 2. The points of g1, that lie on a line of H(2n + 1, q2) intersecting g2 and g3,
form a Hermitian variety H(n, q2) in g1.

Remark 3. If ⊥ denotes the unitary polarity of PG(2n + 1, q2) induced by H(2n + 1, q2)
and ⊥′ the unitary polarity of g1 induced by H(n, q2), then ⊥′ is defined as follows. Let
P be a point of g1 and let ` be the unique line of PG(2n + 1, q2) through P intersecting
g2 and g3, too. Then P⊥

′
= g1 ∩ `⊥.

From [10, Table 4.2.A], the stabilizer of g1 and g2 in G contains a subgroup K iso-
morphic to PGL(n + 1, q2) inducing a group isomorphic to PGL(n + 1, q2) on both g1

and g2. If S1,n denotes the unique Segre variety containing g1, g2, g3, then it follows that,
among the θn,q2 lines of R1, there are |H(n, q2)| lines that are contained in H(2n+ 1, q2)
and θn,q2 − |H(n, q2)| that are (q + 1)–secant to H(2n+ 1, q2). Hence, we have that q + 1
members of R2 are generators of H(2n + 1, q2) and the remaining q2 − q elements of R2

meet H(2n+ 1, q2) in a Hermitian variety H(n, q2).
If H1,n := S1,n ∩H(2n+ 1, q2), it turns out that

|H1,n| = (q + 1)θn,q2 + (q2 − q)|H(n, q2)|.
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We will refer to H1,n as Hermitian Segre variety of H(2n+ 1, q2).
Let H be the subgroup of K fixing H1,n. Notice that |H| 6 |PGU(n + 1, q2)|. From

[11, Corollary 12] the number of generators of H(2n+1, q2) disjoint from g1 and g2 equals

q
n(n+1)

2

n+1∏
i=1

(qi + (−1)i).

On the other hand, the number of Hermitian varieties H(n, q2) in g1 equals the index of
PGU(n+ 1, q2) in PGL(n+ 1, q2), that is

|PGL(n+ 1, q2) : PGU(n+ 1, q2)| = q
n(n+1)

2

n+1∏
i=2

(qi + (−1)i).

Therefore we may conclude that H ' PGU(n + 1, q2). We have proved the following
proposition which shows that the converse of Thas’s lemma holds true.

Proposition 4. There exists a one to one correspondence between the set of Hermitian
Segre varieties H1,n of H(2n+1, q2) containing g1 and g2 and the set of Hermitian varieties
H(n, q2) of g1.

Remark 5. From [10, Table 4.4.A] the stabilizer ofH1,n in G is isomorphic to PGU(2, q2)×
PGU(n+ 1, q2).

We will need the following lemma.

Lemma 6. Let S1 and S2 be two distinct Hermitian Segre varieties of H(2n + 1, q2)
containing g1 and g2. Let Hi be the Hermitian variety of g1 determined by Si and let
⊥i be the unitary polarity of g1 induced by Hi, i = 1, 2. Then |S1 ∩ S2| = 2θn,q2 +
x1(q2 − 1) + x2(q − 1), where x1 = |{P ∈ H1 ∩ H2 | P⊥1 = P⊥2}| and x2 = |{P ∈
g1 \ (H1 ∩H2) | P⊥1 = P⊥2}|.

Proof. Let S ′i be the Segre variety of the ambient projective space such that Si = S ′i ∩
H(2n+1, q2), i = 1, 2. Notice that if P /∈ g1∪g2, then there exists a unique line ` through
P meeting both g1 and g2. Therefore if P ∈ S ′1 ∩ S ′2, then ` ⊂ S ′1 ∩ S ′2. Let Pi = ` ∩ gi,
i = 1, 2 and assume that P ∈ S1∩S2. Then P⊥1

1 = `⊥∩g1 = P⊥∩g1 = P⊥2
1 . On the other

hand, assume that there exists a point P1 ∈ g1 such that P⊥1
1 = P⊥2

1 . Let `′i be the unique
line of S ′i, i = 1, 2, passing through P1 and having a point in common with g2. Then
(P⊥i

1 )⊥ ∩ g2 coincides with the point g2 ∩ `′i, i = 1, 2. Therefore we have g2 ∩ `′1 = g2 ∩ `′2
and hence `′1 = `′2. The result now follows from the fact that if ` ⊂ S ′1∩S ′2 is a line meeting
both g1 and g2, then |` ∩H(2n+ 1, q2)| = q2 + 1 if and only if ` ∩ g1 ∈ H1 ∩H2.

2.4 S1,n and hyperbolic quadrics

Let Q+(4n − 1, q) be a hyperbolic quadric of PG(4n − 1, q) and let G ' PGO+(4n, q)
be the stabilizer of Q+(4n − 1, q) in PGL(4n, q). Let g1, g2, g3 be three mutually skew
generators of Q+(4n − 1, q). We recall the following lemma due to A. Klein, K. Metsch
and L. Storme [11, Theorem 6].
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Lemma 7. The lines of g1 lying in a solid of Q+(4n − 1, q) that intersects g2, g3 in a
line, are those of a symplectic space W(2n− 1, q) in g1.

From [10, Table 4.2.A], the stabilizer of g1 and g2 in G contains a subgroup K isomor-
phic to PGL(2n, q) fixing both g1 and g2. If S1,2n−1 denotes the unique Segre variety con-
taining g1, g2, g3, then it follows that the θ2n−1,q lines of R1 are contained in Q+(4n−1, q).
Hence, we have that the q + 1 members of R2 are generators of Q+(4n− 1, q). In partic-
ular S1,2n−1 ⊂ Q+(4n− 1, q) and, in this case, we will refer to S1,2n−1 as hyperbolic Segre
variety of Q+(4n− 1, q).

Let H be the subgroup of K fixing a hyperbolic Segre variety of Q+(4n−1, q). Notice
that |H| 6 |PSp(2n, q)|. From [11, Corollary 5] the number of generators of Q+(4n−1, q)
disjoint from g1 and g2 equals

qn(n−1)

n∏
i=1

(q2i−1 − 1).

On the other hand, the number of symplectic polar space W(2n− 1, q) of g1 is equal to

|PGL(2n, q) : PSp(2n, q)| = qn(n−1)

n∏
i=2

(q2i−1 − 1).

Therefore we may conclude that H ' PSp(2n, q). We have proved the following proposi-
tion which shows that the converse of Lemma 7 holds true.

Proposition 8. There exists a one to one correspondence between the set of hyperbolic
Segre varieties of Q+(4n − 1, q) containing g1 and g2 and the set of symplectic spaces
W(2n− 1, q) of g1.

Remark 9. From [10, Table 4.4.A] the stabilizer of a hyperbolic Segre variety in G is
isomorphic to PSp(2, q)× PSp(2n, q).

Arguing as in Lemma 6, we obtain the following.

Lemma 10. Let S1 and S2 be two distinct hyperbolic Segre varieties of Q+(4n − 1, q)
containing g1 and g2. LetWi be the symplectic polar space of g1 determined by Si and let ⊥i
be the symplectic polarity of g1 induced byWi, i = 1, 2. Then |S1∩S2| = 2θ2n−1,q+x(q−1),
where x = |{P ∈ g1 | P⊥1 = P⊥2}|.

3 Hermitian polar spaces

3.1 H(4n− 1, q2), n > 1

Let H1 and H2 be the two distinct Hermitian varieties of PG(4n − 1, q2) having the
following homogeneous equations

f1 : X1X
q
2n+1 + · · ·+X2nX

q
4n +Xq

1X2n+1 + · · ·+Xq
2nX4n = 0,
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f2 : X1X
q
2n+1 + · · ·+X2nX

q
4n + ωq−1(Xq

1X2n+1 + · · ·+Xq
2nX4n) = 0,

respectively, where ω is a primitive element of GF(q2). Then the Hermitian pencil F
defined by H1 and H2 is the set of all Hermitian varieties with equations af1 + bf2 = 0,
as a and b vary over the subfield GF(q), not both zero. Note that there are q+ 1 distinct
Hermitian varieties in the pencil F , none of which is degenerate. The set X = H1 ∩H2 is
called the base locus of F . Since the Hermitian varieties of a pencil cover all the points
of PG(4n− 1, q2), a counting argument shows that

|X | = (q4n−2 + 1)(q4n − 1)

q2 − 1

and any two distinct varieties in F intersect precisely in X . In particular X is a variety
defined by the following equation:

X1X
q
2n+1 + · · ·+X2nX

q
4n = 0.

Straightforward computations show thatX contains the following two (2n−1)–dimensional
projective spaces:

Σ : X1 = · · · = X2n = 0,Σ′ : X2n+1 = · · · = X4n = 0.

Also, through a point P of Σ (resp. Σ′) there pass θ2n−2,q2 lines entirely contained in X
and these lines are contained in a generator of H(4n− 1, q2) meeting Σ (resp. Σ′) exactly
in P .

Let Πr−1 be an (r−1)–dimensional projective space of Σ, 1 6 r 6 2n−1, and let Π⊥r−1

be the polar space of Πr−1 with respect to the unitary polarity ⊥ of H1 (or, equivalently,
H2). The intersection of Π⊥r−1 and Σ′ is a (2n− r − 1)–dimensional projective space, say
Π′2n−r−1. Note that 〈Πr−1,Π

′
2n−r−1〉 is a generator of H1 contained in X . In particular,

an (n − 1)–dimensional subspace of Σ corresponds to a uniquely determined (n − 1)–
dimensional subspace of Σ′.

Let D be an (n − 1)–spread of Σ. From the above discussion, D defines an (n − 1)–
spread, say D′ of Σ′. Corresponding elements of D and D′ determine a generator of any
member of F and hence D (D′) produces a partial spread S of H1 of size |D| = q2n + 1.

In the next result we prove that the partial spread S is maximal.

Theorem 11. Any (n − 1)–spread D of PG(2n − 1, q2) gives rise to a maximal partial
spread S of H(4n− 1, q2) of size q2n + 1.

Proof. Let S̄ denote the pointset of H1 covered by S. Let T be a generator of H1 disjoint
from Σ and Σ′ and let H1,2n−1 be the Hermitian Segre variety obtained by intersecting
the unique Segre variety S1,2n−1 defined by Σ,Σ′ and T with H1. Let HΣ and HΣ′ denote
the Hermitian varieties of Σ and Σ′, respectively, arising from Thas’s lemma. Let d be
a member of D. Then d⊥ ∩ Σ′ defines a unique member d′ of D′. Here ⊥ denotes the
unitary polarity induced by H1. Let Ld ⊂ R1 be the set of lines of S1,2n−1 meeting d. The
set Ld determines an (n− 1)–space of Σ′, say d′′. From Remark (3), it turns out that d′

and d′′ are conjugate with respect to the polarity of Σ′ induced by HΣ′ .
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Since members of D′ are pairwise disjoint and |HΣ′| = (q2n+2− 1)(q2n+1 + 1)/(q2− 1),
it follows that there exists at least one member X of D′ meeting HΣ′ in a degenerate
Hermitian variety. With respect to the unitary polarity of Σ′ induced byHΣ′ the conjugate
of X meets X in at least a point, say P , of HΣ′ . Let ` be the unique line of S1,2n−1 through
P . Then, on one hand ` meets T in a point Q. On the other hand, ` is contained 〈d, d′〉.
It follows that T has a non–empty intersection with S̄.

Remark 12. The automorphism group of the maximal partial spread S in PGU(4n, q2)
contains the automorphism group of D as a subgroup of PGL(2n, q2).

Remark 13. In [1] the authors observed that the qm+1 +1 elements of a spread ofW(2m+
1, q) embedded in H(2m+ 1, q2) extend to pairwise disjoint generators of H(2m+ 1, q2).
Maximality of partial spreads of H(2m + 1, q2) constructed in this way was shown for
m = 1, 2 in [1] and for all even m in [12]. When m = 2n− 1, m > 1, it is not immediately
clear whether this partial spread is maximal or not. From Theorem 11 it can be deduced
that if the spread ofW(4n−1, q) arises from a spread ofW(2n−1, q2) in the GF(q)–linear
representation, then the “extended” partial spread of H(4n − 1, q2) is maximal. Indeed,
if L is a Desarguesian line–spread of a W(4n− 1, q) embedded in H(4n− 1, q2), then we
may assume that Σ and Σ′ play the role of director spaces of L. Extending the elements
of a spread S ′ ofW(4n− 1, q), we get an (n− 1)–spread of Σ (Σ′) if and only if L induces
a line–spread on each of the members of S ′. Under this assumption, the partial spread of
H(4n− 1, q2), obtained by extending the elements of S ′, coincides with the construction
given above.

3.2 H(4n + 1, q2), n > 1

As already observed in Remark 13, the q2n+1 + 1 elements of a spread of W(4n + 1, q)
embedded in H(4n+ 1, q2) extend to pairwise disjoint generators of H(4n+ 1, q2) forming
a maximal partial spread of H(4n+ 1, q2) as shown in [1] for n = 1 and in [12] for n > 1.
On the other hand, it is known that the size of a partial spread in H(4n+1, q2) is at most
q2n+1 + 1, see [6], [19], [20]. In what follows we prove that H(4n + 1, q2) has a maximal
partial spread attaining the upper bound. We do not know if such a partial spread arises
from a spread of a W(4n+ 1, q) embedded in H(4n+ 1, q2).

From [5] we recall the following facts. Consider the projective space PG(2n, q2) in its
field–model representation: the points of PG(2n, q2) are the nonzero elements of GF(q4n+2)
and two elements x, y ∈ GF(q4n+2) define the same point of PG(2n, q2) if and only if
x/y ∈ GF(q2). The point of PG(2n, q2) represented by x ∈ GF(q4n+2) \ {0} will be
denoted by (x). The hyperplanes of PG(2n, q2) are the sets [u] := {(x) ∈ GF(q4n+2)
(mod GF(q2)) | Tr(ux) = 0}, where Tr denotes the usual trace map from GF(q4n+2)
to GF(q2), u ∈ GF(q4n+2) \ {0}. In this setting the map σ : (x) 7→ (ωx), where ω is a
primitive element of GF(q4n+2), is a Singer cycle of PG(2n, q2).

Let a ∈ GF(q4n+2) \ {0} such that aq
2n+1−1 ∈ GF(q2). Then

Πa :

{
(x) 7→ [axq

2n+1
], x ∈ GF(q4n+2) \ {0}

[u] 7→ (uq
2n+1

/a), u ∈ GF(q4n+2) \ {0}
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is a unitary polarity of PG(2n, q2). In particular, varying a, we get a set consisting of θ2n,q

Hermitian varieties, such that the intersection of any 2n of them is a (q2n+1 + 1)/(q+ 1)–
cap (i.e., a set of points such that no three of them are collinear) and there is a partition
of PG(2n, q2) into such caps which is invariant under a Singer cyclic subgroup of order
(q2n+1 + 1)/(q + 1).

Proposition 14. Let ai ∈ GF(q4n+2) \ {0} such that aq
2n+1−1
i ∈ GF(q2), i = 1, 2 and

a1 6= a2. Then Πa1Πa2 is a fixed point free projectivity of PG(2n, q2).

Proof. Since ai = ωki(q
2n+1+1)/(q+1), k1 6= k2, [5, Theorem 2.2], it follows that the projec-

tivity Πa1Πa2 sends (x) to (ω(k2q2n+1−k1)(q2n+1+1)/(q+1)x).

We are ready to give the aforementioned construction.

Theorem 15. H(4n + 1, q2) has a maximal partial spread of size q2n+1 + 1 admitting a
cyclic group of order θ2n,q2 as an automorphism group.

Proof. From Proposition 4, Lemma 6 and Proposition 14, we find θ2n,q Hermitian Segre
varieties containing two fixed generators g1, g2 ofH(4n+1, q2) and pairwise sharing exactly
g1 ∪ g2. Hence we get a set S of θ2n,q(q− 1) + 2 = q2n+1 + 1 mutually disjoint generators.
Of course S is maximal and by construction it is left invariant by a cyclic group of order
θ2n,q2 corresponding to a Singer cyclic group of g1.

Remark 16. If D is the set of extended elements of a Desarguesian spread of aW(4n+1, q)
embedded in H(4n + 1, q2), then it is easily seen that the q + 1 generators contained in
the Hermitian Segre variety determined by any three distinct elements of D are contained
in D. It is therefore plausible that the maximal partial spread constructed in Theorem
15 is equivalent to D.

4 Orthogonal and symplectic polar spaces

Let Q+(2n + 1, q) be a hyperbolic quadric of PG(2n + 1, q). The set of all generators
of Q+(2n + 1, q), that are n–spaces, is divided in two distinct subsets of the same size,
called systems of generators and denoted by M1 and M2, respectively. Let A and A′

two distinct generators of Q+(2n+ 1, q). Then their possible intersections are projective
spaces of dimension{

0, 2, 4, . . . , n− 2 if A,A′ ∈Mi, i = 1, 2
−1, 1, 3, . . . , n− 1 if A ∈Mi, A

′ ∈Mj, i, j ∈ {1, 2}, i 6= j

if n is even or{
0, 2, 4, . . . , n− 1 if A ∈Mi, A

′ ∈Mj, i, j ∈ {1, 2}, i 6= j
−1, 1, 3, . . . , n− 2 if A,A′ ∈Mi, i = 1, 2

if n is odd.
It follows that, if n is even, a maximal partial spread of Q+(2n + 1, q) has size two.

Therefore we will assume that n = 2m − 1 and in this case all the elements of a partial
spread of Q+(4m− 1, q) belong to the same system of generators.
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Remark 17. LetQ(4m−2, q) be a parabolic quadric obtained by intersectingQ+(4m−1, q)
with a non–degenerate hyperplane section. Then a (maximal) partial spread of Q+(4m−
1, q) induces a (maximal) partial spread of Q(4m−2, q). Actually the converse also holds
true.

Let Q+(3, qm) be a hyperbolic quadric of PG(3, qm), m > 2. In this special case
Q+(3, qm) coincides with S1,1. Hence, both systems of generators, R1 and R2, consist of
qm + 1 mutually disjoint lines each, and are called reguli, see [8]. Under the GF(q)–linear
representation of PG(3, qm) the points of Q+(3, qm) are mapped to (m − 1)–spaces of
a hyperbolic quadric Q+(4m − 1, q) and a line of Q+(3, qm) is mapped to a generator
of Q+(4m − 1, q). It follows that φ(R1) = {φ(`) | ` ∈ R1} is a partial spread of
Q+(4m − 1, q) of size qm + 1. We denote by Q the points of Q+(4m − 1, q) covered by
members of φ(Q+(3, qm)).

Theorem 18. φ(Ri) is a maximal partial spread of Q+(4m− 1, q).

Proof. Let `i ∈ Ri, i = 1, 2. Then φ(`1) ∩ φ(`2) is an (m− 1)–space.

m odd
Since m is odd, we have that φ(`1) and φ(`2) belong to distinct systems of generators of

Q+(4m−1, q). Therefore, we may assume that φ(`i) ∈Mi. This means that φ(Ri) ⊂Mi.
The result follows.

m even
In this case we may assume that both φ(R1), φ(R2) are contained inM1. Let g ∈M2.

Then |g∩Q| > qm + 1. If g∩Q contains a line, then every (2m− 2)–space contained in g
has at least one point in common with Q. If g ∩Q does not contain any line, then every
element of φ(R1) (and φ(R2)) has exactly one point in common with g. Let P1, P2, P3 be
three distinct points of g ∩ Q. Let gi ∈ φ(R1) such that gi ∩ g = {Pi}, i = 1, 2, 3. Then,
since g1, g2, g3 are three distinct mutually disjoint generators of Q+(4m−1, q), there exists
a unique hyperbolic Segre variety S1,2m−1 of Q+(4m− 1, q) containing g1, g2, g3. First of
all notice that the q+1 (2m−1)–spaces contained in S1,2m−1 are also contained in φ(R1).
Indeed, if Ai = `2 ∩ φ−1(gi), i = 1, 2, 3, then there exists a unique subline of order q,
say s, of `2 containing A1, A2, A3. Therefore {φ(`) | ` ∈ R1, ` ∩ `2 ∈ s} is the set of
q + 1 (2m − 1)–spaces contained in S1,2m−1. Let π be the plane 〈P1, P2, P3〉 and let ri
be a line of gi passing through Pi, i = 1, 2, 3. Then r1, r2, r3 are three mutually disjoint
lines and the set of points covered by the lines incident to r1, r2, r3 is a three–dimensional
hyperbolic quadric contained in S1,2m−1. It follows that π ∩ Q = π ∩ S1,2m−1 is a conic,
say C. Let P4 be a point of (g ∩Q) \C. By considering the planes 〈P,Q, P4〉, where P,Q
are distinct points of C and using again the previous argument we obtain that the solid
〈P1, P2, P3, P4〉 ⊂ g meets Q in a three–dimensional elliptic quadric. Hence, it turns out
that every (2m − 2)–space contained in g has at least a point in common with Q. The
result follows from the fact that through every (2m−2)–space contained in Q+(4m−1, q)
there passes exactly one generator of M1 and one of M2.

Remark 19. The idea of considering the image of a Q+(3, qm) under the GF(q)–linear
representation to construct maximal partial spread of polar spaces was first pointed out by
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M. Grassl during the conference ALCOMA ’15. In particular, using completely different
techniques, he presented a proof of the result of Corollary 23.

Now, we focus on the even characteristic case.

Proposition 20. Assume that q is even. If Q+(4m− 1, q) has a maximal partial spread
of size x then

• W(4m− 1, q) has a maximal partial spread of size x,

• W(4m− 3, q) has a maximal partial spread of size x.

Proof. Let S ⊂M1 be a maximal partial spread of Q+(4m− 1, q) and let S̄ be the set of
points covered by the members S. Let X be an element of M1 \ S. Since S is maximal,
there exists Y ∈ S such that |X ∩ Y | 6= 0. It follows that X contains at least a line of S̄.
Hence, as through a (2m− 2)–space contained in Q+(4m− 1, q) there passes a generator
of M1, we have that every (2m − 2)–space contained in Q+(4m − 1, q) has at least one
point of S̄.

As q is even, there exists a unique symplectic polar spaceW(4m−1, q) of PG(4m−1, q)
such that all the lines tangent to or contained inQ+(4m−1, q) are lines ofW(4m−1, q). In
other words, the orthogonal polarity defined by Q+(4m−1, q) polarizes to the symplectic
polarity induced by W(4m− 1, q). In this setting, a generator of W(4m− 1, q) that does
not belong toM1∪M2, meets Q+(4m−1, q) in a (2m−2)–space. Furthermore, through
a (2m− 2)–space contained in Q+(4m− 1, q) there pass q− 1 generators of W(4m− 1, q)
not contained in M1 ∪M2. It turns out that every generator of W(4m − 1, q) contains
at least a point of S̄ and hence S is a maximal partial spread of W(4m− 1, q).

The second assertion follows from Remark 17 and the fact that, for q even, Q(4m−2, q)
is isomorphic to W(4m− 3, q) [17, Theorem 4].

In the following result, with similar arguments to that used in the previous section for
Hermitian polar spaces, we give a construction of maximal partial spreads ofQ+(4m−1, q),
q even.

Theorem 21. Any (m − 1)–spread of PG(2m − 1, q), q even, gives rise to a maximal
partial spread of Q+(4m− 1, q) of size qm + 1.

Proof. Let Σ and Σ′ be two disjoint generators of Q+(4m− 1, q). Let Πr−1 be a (r − 1)–
dimensional projective space of Σ, 1 6 r 6 2m − 1, and let Π⊥r−1 be the polar space of
Πr−1. Here ⊥ denotes the orthogonal polarity induced by Q+(4m−1, q). The intersection
of Π⊥r−1 and Σ′ is a (2m − r − 1)–dimensional projective space, say Π′2m−r−1. Note that
〈Πr−1,Π

′
2n−r−1〉 is a generator of Q+(4m − 1, q). In particular, an (m − 1)–dimensional

subspace of Σ corresponds to a uniquely determined (m− 1)–dimensional subspace of Σ′.
Let D be an (m− 1)–spread of Σ. From the above discussion, D defines an (m− 1)–

spread, say D′ of Σ′. Corresponding elements of D and D′ determine a generator of
Q+(4m − 1, q) and hence D (D′) produces a partial spread S of Q+(4m − 1, q) of size
|D| = qm+1. Let S̄ denote the pointset of Q+(4m−1, q) covered by members of S. Let T
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be a generator of Q+(4m− 1, q) disjoint from Σ and Σ′ and let S1,2m−1 be the hyperbolic
Segre variety of Q+(4m − 1, q) containing Σ,Σ′ and T . Let WΣ and WΣ′ denote the
symplectic space of Σ and Σ′, respectively, arising from Lemma 7. Let d be a member of
D. Then d⊥ ∩ Σ′ defines a unique member d′ of D′. Let Ld ⊂ R1 be the set of lines of
S1,2m−1 meeting d. The set Ld determines an (m − 1)–space of Σ′, say d′′. It turns out
that d′ and d′′ are conjugate with respect to the polarity of Σ′ induced by WΣ′ .

We claim that there exists at least one member X of D′ meeting WΣ′ in a degenerate
symplectic space. If m is odd, the assertion is trivial. If m is even, assume, by way of
contradiction, that each of the qm+1 elements of D′ meetsWΣ′ in aW(m−1, q). Consider
a hyperbolic quadric Q+(2m − 1, q) of Σ′ such that the orthogonal polarity defined by
Q+(2m−1, q) polarizes to the symplectic polarity induced byWΣ′ . Then every element of
D′ meets Q+(2m−1, q) either in a Q+(m−1, q) or in a Q−(m−1, q). Let y1 and y2 be the
number of elements of D′ meeting Q+(2m−1, q) in a Q+(m−1, q) and in a Q−(m−1, q),
respectively. Then y1 +y2 = qm+1, |Q−(m−1, q)|y1 + |Q+(m−1, q)|y2 = |Q+(2m−1, q)|
imply that y2 = (qm/2 + 1)2/2, a contradiction, since q is even. So there exists an element
X of D′ meeting WΣ′ in a degenerate symplectic space.

With respect to the symplectic polarity of Σ′ induced byWΣ′ the conjugate of X meets
X in at least a point of WΣ′ . It follows that T has a non–empty intersection with S̄.

Corollary 22. Q(4m− 2) has a maximal partial spread of size qm + 1.

Corollary 23. W(4m− 1, q), q even, has a maximal partial spread of size qm + 1.

Corollary 24. W(4m− 3, q), q even, has a maximal partial spread of size qm + 1.

Remark 25. The result of Theorem 21 cannot be extended to the odd characteristic case.
Indeed, consider in PG(3, 3) a Desarguesian line–spread D such that D contains 4 lines
of a regulus R of a fixed symplectic space W(3, 3). In particular W(3, 3) can be chosen
in such a way that none of the lines of the opposite regulus of R, say R′, is a line of
W(3, 3). If D′ denotes the Hall spread (D \ R) ∪ R′, then each of the 10 elements of D′
is non–degenerate with respect to W(3, 3). Magma computations show that the partial
spread S of Q+(7, 3) constructed from D′ (as in Theorem 21) is not maximal; indeed
there exist 34 generators disjoint from all the members of S. Furthermore, among the 34
disjoint generators, it is possible to find a subset of 18 generators that, together with the
10 members of S, give rise to the unique spread of Q+(7, 3), admitting PSp(6, 2) as an
automorphism group.

4.1 The triality quadric

In this section we specialize to the case of the triality quadric Q+(7, q). We will denote
by ⊥ the polarity of PG(7, q) induced by Q+(7, q).

Let us denote byM1 andM2 the two families of generators of Q+(7, q), the set of lines
ofQ+(7, q) by L and the set of points ofQ+(7, q) by P ; then the rank 4 incidence geometry
Ω = (P ,L,M1,M2) can be attached to Q+(7, q) as follows. An element G1 ∈M1 is said
to be incident with an element G2 ∈ M2 if and only if the intersection G1 ∩ G2 is a
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plane of Q+(7, q). Incidence between other elements is symmetrized containment. Every
permutation of the set {P ,M1,M2} defines a geometry Ω′ isomorphic to Ω and hence
the automorphism groups of Ω and Ω′ are isomorphic.

A triality of the geometry Ω is a map τ :

τ : L → L,P →M1,M1 →M2,M2 → P

preserving the incidence in Ω and such that τ 3 is the identity.
The triality image of a maximal partial spread S ⊂ M2 of Q+(7, q) is a maximal

partial ovoid of Q+(7, q), i.e. a set of mutually non–collinear points of Q+(7, q) that is
maximal with respect to set–theoretic inclusion.

In the case of Q+(7, q) we can extend Theorem 21 to the case q odd as follows.

Theorem 26. Any symplectic spread of PG(3, q) gives rise to a maximal partial spread
of Q+(7, q) of size q2 + 1.

Proof. With the notation introduced in Theorem 21, assume that D is a symplectic spread
of PG(3, q), i.e. every line of D is a line of a fixed symplectic polar space W(3, q), and
that S ⊂M2. Since the members of S are incident with Σ and Σ′, under the triality map
we get a set E of q2 + 1 points of Q+(7, q) such that each of them is conjugate to two
points of Q+(7, q), say P, P ′, with P = Στ and P ′ = Σ′τ . This means that E is a partial
ovoid of a Klein quadric Q+(5, q). Since D is symplectic it follows that actually E lies on
a parabolic quadric Q(4, q) of Q+(5, q). Then, S is maximal on Q+(7, q) if and only if E
is maximal on Q+(7, q) (as a partial ovoid). Indeed, let P be a point of Q+(7, q)\Q(4, q).
Then P⊥ intersects Q(4, q) in either a cone or a hyperbolic quadric or an elliptic quadric.
In the former two cases the quadric section contains lines that certainly meet E. In the
latter case, from [4] an elliptic quadric of Q(4, q) must meet E, and we are done.

Remark 27. Assuming that D is Desarguesian, it follows that the triality image of S is
actually an elliptic quadric section Q−(3, q) of Q+(7, q). From [2, 15.1 8)] S corresponds
to the GF(q)–linear representation of a regulus of a hyperbolic quadric Q+(3, q2) and
hence we are in the case of Theorem 18.

Remark 28. It is not difficult to prove that the smallest maximal partial spread ofQ+(7, 2)
has size 5 and corresponds under triality to an elliptic solid section of Q+(7, 2). In the
spin representation of PSp(6, 2) such an elliptic solid section corresponds to a maximal
partial spread of W(5, 2). Also, the smallest maximal partial spread of W(5, 2) has size
5.

Taking into account Lemma 10, one can ask for the maximum number m of symplectic
polar spaces W(3, q) in a solid such that the projectivity obtained as the product of any
two associated symplectic polarities is fixed point free. This is equivalent to ask for
the maximum number of W(3, q) pairwise intersecting in an elliptic congruence (i.e. a
Desarguesian line–spread of a solid), which in turn, using the Klein correspondence, is
equivalent to ask for the maximum size of an exterior set of Q+(5, q), i.e., a set X of
points such that each line joining two distinct elements of X has no point in common
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with Q+(5, q). Since a spread of Q+(7, q) has size q3 +1, we have that m 6 q2 + q+1. On
the other hand it is known that |X| 6 q2 +q+1 and equality holds if and only if q = 2, see
[16]. Under triality the q+ 1 generators of a hyperbolic Segre variety are mapped to q+ 1
points forming a conic section of Q+(7, q). Therefore there exists no ovoid of Q+(7, q),
q > 2, that is union of conics sharing two points. However, this fact was already noted in
[3].

The next result is group–theoretic and gives some information on the stabilizer of a
hyperbolic Segre variety S1,3 of Q+(7, q), q even.

Proposition 29. The stabilizer of a hyperbolic Segre variety S1,3 of Q+(7, q), q even, is
a subgroup of Ω(7, q) in its spin representation.

Proof. Assume without loss of generality that the hyperbolic Segre variety of Q+(7, q)
consists of q+ 1 mutually disjoint solids ofM2. From Remark 9 such solids are permuted
by K ' PSp(2, q)× PSp(4, q). Under triality they are mapped to q + 1 points forming a
conic section C of Q+(7, q). Since q is even C has a nucleus N 6∈ Q+(7, q) that is fixed
by Kτ . From [2] the triality image of the stabilizer of a point not on Q+(7, q) is the spin
representation of Ω(7, q), and we are done.
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