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Abstract: Speech Emotion Recognition (SER) is arecent field of research that aims at identifying the emotional
state of a speaker through a collection of machine learning and pattern recognition techniques. Features based on
linear source-filter models have so far characterized emotional content in speech. However, the presence of
nonlinear and chaotic phenomena in speech generation have been widely proven in literature. In this work,
recurrence properties of vowels are used to describe nonlinear dynamics of speech with different emotional
contents. An automatic vowel extraction module has been developed to extract vowel segments from a set of
spoken sentences of the publicly available German Berlin Emotional Speech Database (EmoDB). Recurrence
Plots (RPs) and Recurrence Quantitative Analysis (RQA) have been used to explore the dynamic behavior of six
basic emotions (anger, boredom, fear, happiness, neutral, sadness). Statistical tests have been performed to
compare the six groups and check possible differences between them. The results are promising since some RQA
measures are able to capture the key aspects of each emation. Copyright © 2016 IFSA Publishing, S L.
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1. Introduction

The last decade has seen the rapid and growing
development of new algorithms and methods to make
the process of human-machine interaction more
natural, creating the so-called “ Affective Computing"
[1]. Inmany application areas of Artificial Intelligence
(e.0. Ambient Assisted Living, Virtual Reality, Smart
Recommended System) is required the presence of
intelligent agents able to recognize human emotions
and process different types of information in order to
synthesize empathic reactions.

Among the various ways to detect the emotional
state of auser, the employment of some parameters of
the speech signal, seems to be one of the most rapid
and efficient. Indeed, the presence of a particular
affective state is due to the triggering of a series of
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reactions that take place in the nervous system, which
dynamically modify some characteristics of the organs
involved in the production of the speech [2].

Speech Emotion Recognition (SER) is a recent
field of research that aims at identifying the emotional
state of a speaker through a collection of machine
learning and pattern recognition techniques. Until
now, SER has been used in different application
contexts improving the overal performance of the
automated systems in which it has been built in: e.g.
by detecting the degree of satisfaction of usersin the
interaction with remote customer-care services, by
allowing better communication with students in
computer-enhanced learning, by monitoring the stress
and attention levels of adriver for in-car board systems
and so on (for a complete review see [3-4]).
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Asaclassification problem, a SER system needs a
set of features able to optimally reflect the emotional
content in speech. According to the existing literature,
it is possible to distinguish three main categories of
features: prosodic, spectral, and quality-based [5].
Prosodic features such as the fundamental frequency
(pitch), the energy of the signal and the
rhythm/articulation rate, have been combined with
spectral  measures (Mel  Frequency Cepstral
Coefficients (MFCC), Linear Predictor Cepstra
Coefficients (LPCC) and formants) in different ways
to improve the performances of the classifier [6]. The
third category includes acoustic cues related to the
shape of glottal pulse signal, its amplitude variation
(shimmer) and frequency variation (jitter) [7].

Despite the great variety of classification methods
developed for SER applications, ill there is no
agreement on an optimal set of speech featuresthat can
describe and uniquely identify a group of emotional
states [3]. This fragmentation of thought is due to
several factors. The various sets of features reflect
different mechanisms involved in the production of
speech sounds but robust theoretical basis about the
link between the characteristics of the speech and the
emotional state of a speaker does not exist yet [6]. In
addition, all the mentioned categories of features are
based on a source-filter model [8-9], which represents
asimplification of the process of voice production that
ignores more complex physiological mechanisms.

Numerous studies carried on since the 1990 s
[10-12], have confirmed the presence of non-linear
phenomena in speech generation. From these
discoveries, new nonlinear tools for speech signal
processing have been employed to overcome the
limitations imposed by the linear model. In particular,
the evidence of the chaotic behavior of some processes
involved in the speech production (e.g. turbulent
airflow) [13], made the Chaos Theory a favored
approach for the study of nonlinear dynamics in the
system voice.

To describe these dynamics it is necessary to
reconstruct the phase space, which is the set of the
possible states that the system can take. This approach
assumes that the speech signal represents a projection
of a higher-dimensional nonlinear dynamical system
evolving in time, with unknown characteristics.
Embedding techniques can be employed to reconstruct
the attractor of the system in the phase space and
provide a representation of its trgjectories. Afterward,
it is possible to describe the dynamic behavior of the
system by studying the properties of the embedded
attractor: chaotic measures such as Lyapunov
exponents, correlation dimension and entropy, have
been successfully applied to the analysis of vocal
pathol ogies and speech nonlinearities [14-15].

The behavior of the trgjectories of a system in the
phase space can also be modeled through the
recurrence, a property that quantifies the tendency of
asystemtoreturnto astate closetotheinitial one[16].
By exploring similarities between different states at
different time epochs, useful information can be
provided on the long-term behavior of a system and

46

important aspects about its nature can berevealed. The
behavior of the trgjectories of a system in the phase
space can be easily viewed by means of a recurrence
plot (RP). This tool was introduced by Eckmann [17]
to facilitate the analysis of the properties for systems
with high-dimensional phase space. In contrast to the
most of chaotic measures, it is an effective tool even
for short and non-stationary data. Recurrence
Quantitative Analysis (RQA) [18-19] supplies a
guantitative description of the structures contained in
aRP through some nonlinear measures. RQA methods
have been widely applied in various research fields
including biology, astrophysics, engineering,
neuroscience, analysis of audio signals and, recently,
also for detection and classification of voice disorders
[20-22].

In this work we have extended a framework
presented in a previous article [23] to explore the
recurrence properties of vowel segments taken from a
set of spoken sentences of a publicly available
database, for six categories of basic emotions (anger,
boredom, fear, happiness, neutral, sadness). An
automatic vowel extraction module has been built up
to extract vowel segments from each sentence; then,
their time evolutions have been analyzed by means of
the RQA measures. To test the ability of these
measures to characterize the different emotional
contents, they have been grouped according to the
emotion they belong to and statistical tests have been
performed to compare the six groups.

The rest of the paper is divided into four sections:
theoretical background, general framework, results,
discussion and conclusions. In Section 2 theoretical
notions on dynamic systems, reconstruction of phase
space and recurrence properties are provided; the
framework adopted is exposed in detailsin Section 3;
gualitative and quantitative results are shown in
Section 4; finaly, discussion and conclusions
are presented.

2. Theoretical Background

This section provides a general overview of the
basi c conceptsrelated to the state space reconstruction
of adynamical system and of the main tools used for
the analysis of its recurrence properties.

2.1. The Embedding Theorem

The state of a dynamical system is determined by
the values of the variables that describe it at a given
time. When such system evolves in time, it defines a
trgjectory in a multidimensional state space, given by
the sequence of points that represent all the states of
the system. Starting from different initial conditions, a
real physical dissipative system tends to evolve in
similar ways, so itstrajectories convergein aregion of
the phase space called attractor, which represents the
steady state behavior of the system [24].
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However, in areal scenario, not al the variables of
the system can be inferred and often only atime series
{u;}Y., isavailable as an output of the system.

Takens demonstrated that it is possible to use time
delayed versions of the signal at the output of the
system to reconstruct a phase space topologically
equivalent to the original one. According to Takens
embedding theorem [25], a state in the reconstructed
phase space is given by am-dimensional time delay
embedded vector:

X, = (U' U 1ui+(m—1)7)’ (1)

where m isthe embedding dimension and t isthetime
delay.

If m>2D+1, where D is the correlation
dimension of the attractor, the origind and the
reconstructed  attractor are  diffeomorphically
equivalent so the properties of the dynamical system
are preserved.

For the embedded parameters estimation, several
techniques have been proposed. As an example, the
First Local Minimum of Average Mutual Information
algorithm [26] can be used to determine when the
samples of the time series are independent enough to
be useful as coordinates of the time delayed vectors.
On the other hand, the false nearest-neighbors
algorithm [27] is the method usually employed to
estimate the minimum embedding dimension.

2.1. Recurrence Plots

A recurrence plot is a graphical tool that provides
a representation of recurrent states of a dynamical
system through a two-dimensional square matrix:

R, (e)=0k-%-%])

- 2
i,]=1...,N

With X, X; the system state at times i and j, © the

Heaviside function, £ a threshold for closeness,
N isthe number of considered states and ||0|| anorm

function.

The recurrence matrix contains the value one for
all pairs of neighboring states below the threshold €
and zero elsawhere; therefore it allows a quick and
effective visual inspection of the dynamic behavior of
the system.

The value of the parameter € must be estimated
carefully, as it influences the creation of structuresin
the plot. In literature, there are some heuristic
indications that guide the selection of an appropriate
value for such threshold. In genera, by choosing &
equal to a few percent of the maximum phase space
diameter, a sufficient number of structures in the
recurrence plot are preserved, reducing at the same
time the presence of artifacts [28].

The resulting plot is symmetric and aways
exhibits the main diagonal, called line of identity
(LQI). Apart for the general RP structure, it is often
possible to distinguish small scale structures, which
show local (temporal) relationships of the segments of
the system trgjectory (for a visual reference, see Fig.
4). In details:

- Singleisolated points are related to rare states;

- Diagonal lines parallel to the LOI indicate that the
evolution of statesis similar at different times;

- Vertica lines mark time intervals in which states
do not change.

2.1. Recurrence Quantitative Analysis

Several measures of complexity (RQA) have been
proposed to obtain an objective quantification of the
patternsin arecurrence plot [18-19].

RQA can be divided into three major classes:

1) Measures based on recurrence density. Among
these, the simplest measureistherecurrencerate (RR)
defined as:

N

RR(S):é_Z Ri,j(g) 3

It is a measure of the density of the recurrence
pointsin the RP.
2) Measures based on the distribution P (1) of lengths
[ of the diagonal lines. Among these:
- The determinism (DET) is the ratio of the
recurrence points that form diagonal structures
(with minimum length [,,,;,) to al recurrence
points and it is an index of the predictability of a
system:

zN:IP(I)

DET =2 4

ZIP(I)

- The average diagona line length (L) is the
average time in which two segments of the
trajectory move close together:

N

>IP()

L = 1=l in (5)

N

> P()

- Thelength of the longest diagonal line (L,4x)
found in the RP is related to the exponential
divergence of the phase space trajectory:

Lo = (@3, ©)
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- where N; is the totd number of
diagonal lines.

- The entropy (ENTR) shows the complexity of
the diagona lines in a RP. It is the Shannon
entropy of the probability p(l) to find a diagonal

line of length [ in the RP:

ENTR = - ZN: p()In p(l) 7

min

- TheRATIO, defined as the ratio between DET
and RR, combines the advantages of the two
categories of measures: it hasbeen proventhatitis
ableto detect sometypes of transitionsin particular
dynamics.
3) Measures based on the distribution P(v) of
vertical line lengths v. This distribution is used to
quantify laminar phases during which the states of a
system change very slowly or do not change at all.
- Theratio of recurrence points forming vertical
structures longer than v,,,;,, to al recurrence points
of the RPiscaled laminarity (LAM):

ZN: VP (V)
LAM = Zfm (8)

N

D VP (V)

- Theaverage length of vertical lines(TT) isthe
trapping time and represents the average time in
which the system is trapped into a specific state:

zN: VP (V)
7T == 9)

> PY)

- Thelength of the longest vertical line (,,4,) IS
analogous to L,,,, for the vertical lines:

Vmax = ({Vi iN:vl) (10)

From arecurrence plot it is possible to extrapolate
the recurrence times [29]. Let us consider the

!
which correspond to the set of points of the trajectory
which fal into the & -neighbourhood of an arbitrary

chosen point at i. The recurrence times between these
recurrence points (recurrence times of first type) are:

recurrence points of the i row {R 4}']_\':1 of an RP

{Tk(l) = jk+1 - jk }keN (11)
Removing all consecutive recurrence points with

Tk(l) =1 to avoid tangential motion, the recurrence
times of second type are:
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{Tk(z) = jlk+1 - jlk }keN ) (12

where the set of the remaining recurrence points is
used. It turns out that T(® measures the time distance
between the beginning of subsequent recurrence
structures in the RP along the vertical direction and it
can be considered as an estimate of the average of the
lengths of white vertical lines in a column of the
plot [19].

A great advantage offered by this analysis is that
the calculation of the RQA measures for moving
windows along the recurrence plot, allows to identify
the transitions of dynamical systems. In particular, it
was shown that the positions of the local maxima and
local minimain the temporal trends of some measures
correspond to chaos-order and chaos-chaos transitions
[19].

3. General Framework

The agorithm block scheme is represented in
Fig. 1. Since the voice has a non-stationary nature, we
perform a short term analysis with a frame size of
40 ms and an overlap of 50 %. Given an input track,
an automatic vowel extraction moduleis used to detect
and retain only the vowel frames and for each of them,
the optimal parameters (m and t) for state space
reconstruction are found. Then, RPs are generated
using the time delay method, and some RQA measures
extracted to describe RPs quantitatively. Since a set of
RQA measures can be extracted, in principle, for each
frame, statistics on these measures may be collected to
give agenera description of the emotional content of
the input sentence.

Each step of the adopted framework is detailed in
the following sections.

3.1. Database

The German Berlin Emotional Speech Database
(EmoDB) [30] has been employed for &l the
experiments carried out in this work. The database
contains ten sentences pronounced by ten actors (five
males and five females) in seven different emotional
states: neutral, anger, fear, happiness, sadness, disgust
and boredom. The audio tracks were sampled as mono
signals at 16 kHz, with 8 bit/sample. Most of the
sentences were recorded several times in different
versions and the resulting corpus was subjected to a
perception test where the degree of recognition of
emotions and their naturalness were evaluated by a
group of listeners. Utterances with an emotion
recognition rate better than 80 % and a naturalness
score greater than 60 % were included in the fina
database. As shown in Table 1, among the
535 available sentences, some emotions prevail over
the others. The emotion disgust has been excluded
from our analysis because of the too low number of
tracks belonging to this group.
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Fig. 1. The algorithm block scheme for an example
input sentence.

Table 1. Number of utterancesin EmoDB.

Emotion | No. of utterances
Anger 127
Boredom 81
Disgust 46
Fear 69
Happiness 71
Neutral 79
Sadness 62

3.2. Automatic Vowel Extraction

Speech production starts with a compression of the
lung volume causing an airflow that is converted in a
glottic signal by passing through the vocal folds. This
signal is then filtered by the vocal tract and converted
into different audible sounds by moving the
articulators (i.e. velum, tongue, lips and jaw) [31].

To produce vowel sounds, the vocal tract is open
with a uniform cross-sectional area aong its length
resulting in quasi-periodic sounds. In contrast, when
the consonants are pronounced, the vocal tract has a
congtriction at some point that produces aresistance to
the airflow generating turbulent noise. Therefore, the
two categories of sounds have very different
characteristicsthat can be highlighted by analyzing the
spectral content of the waveforms. The analysisin the
frequency domain can be simplified considering that
the vocd tract acts as a resonator filter, which has its
own resonance frequencies known as formants. By
varying the shape of the vocal tract through different
combinations of articulations, the formant frequencies

of the filter change too. Hence, each vowel sound can
be described through its formant frequencies[9].

In particular, it was shown that the distinctive
qualities of the vowels can be attributed to differences
in the first three formant frequencies and that, very
often, the first two formants can univocally identify a
vowel [9, 32].

For these reasons, we have extracted some spectral
features from the formant frequencies estimated from
the power spectral density of the audio track. These
features have been used to train a classifier that
automatically detects vowel segmentsin the signal.

Supposing each frame the output of a stationary
process, an autoregressive model (AR) has been used
to estimate the power spectral density. First, the order
of the model has been identified with the Akaike's
Information Criterion (A1C) [33] to avoid splitting line
and spurious peaks in the final spectrum.
Subsequently, the Burg's method [34] has been
employed to find the parameters of the AR model.
This technique has been preferred over the simple
linear prediction analysis as the former identifies the
optimal set of parameters by minimizing the sums of
squares of the forward and backward prediction errors
while the latter uses only the backward errors.

Furthermore, as compared with other parametric
methods, the Burg's algorithm ensures more stable
models and a higher frequency resolution [35].

The peaks of the power spectral density are in
correspondence of the formants position. The first
three peaks have been identified in the estimated
spectrum and for each of them the following
characteristics have been collected:

- Thefrequency at which they occur;

- The amplitude of the peak;

- Theareaunder the spectra envel ope within the

-3 dB bandwidth.

To distinguish the vowel sounds from all other
types of phonemes (including silence intervals) aone-
class classification approach has been adopted. This
method was introduced by Schélkopf [36] asavariant
of the two-class SVM to identify a set of outliers
amongst examples of the single class under
consideration. Thus, according to this approach, the
outlier data are examples of the negative class (in this
case, the not vowelsframes). A kernel function isused
to map the data into a feature space F in which the
origin is the representative point of the negative class.
So, the SVM returns a function f that assigns the
value +1 in a subspace in which the most of the data
points are located and the opposite value -1 el sewhere,
in order to separate the examples of the class of
interest from the origin of the feature space with the
maximum margin.

Formally, let us consider x4, x5, ..., x;, L training
vectorsof theoneclass X, where X isacompact subset
of RY. Let @.x _, F be akernel function that map
the training vectors into another space F. Separating
the data set from the origin is equivalent to solving the
following quadratic problem:
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l
min 1 1
weFEER,pE RE”WZ“WZSCI' - @)

i=1

subject to:
(W'q)(xi))zp_é:i’éizo’ (14)

where v € (0; 1] is a parameter that controls the
decision boundary of the classification problem, &; are
the nonzero slack variables, w a weight vector and p
an offset that parametrizes a hyperplane in the feature
space associated with the kerndl. If w and p solve for
this problem, then the decision function:;

f(x) = sign (w-@(x) - p) (15)

will be positive for the most of the examples x;
contained in the training set.

Of course, the type of kernd function, the
operating parameters of the kernel and the correct
value of v, must be estimated to build the one-class
SVM classifier. As suggested by the author, we have
chosen a Gaussian kernel with Sequential Minimal
Optimization (SMO) algorithm to train the classifier,
since the data are always separable from the origin in
the feature space. For generic patterns x and y, a
Gaussian kernel is expressed as:

(x,y) = exp[%] ’ (19)

where the parameter ¢ isthe kernel scale that controls
the tradeoff between the over-fitting and under-fitting
loss in the feature space F [37].

Regarding the choice of the value v, it should be
taken into account that it represents an upper bound on
the fraction of outliers and, at the same time, a lower
bound on the fraction of support vectors. It is then
necessary to find a value that on the one hand is able
to describe the whole dataset for training and on the
other hand avoids the over-training of such data.
Results on the tuning of the parameters on real data
and classification performances are in Section 4.1.

3.3. RP/RQA

The general ideabehind all the analysis carried out
in thiswork isthat the evolutionary dynamics of each
vowel congtitute local descriptions of the intrinsic
process in the formation of a particular emotion.
Therefore, after extraction of vowel segments from a
sentence, aframe-level analysisis applied to monitor
such dynamics. First, time delays and embedding
dimensions are estimated to alow a correct
reconstruction of the dynamics in the phase space.

Hence, said s the total number of vowel frames
dynamically identified by the Automatic Vowel
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Extraction module, the time delays vector
T = (14, ..., T5) and the embedding dimensions vector
M = (m,, ..., my) are saved for each sentence. Please
note that s is a sentence dependent parameter. At the
end, the Recurrence Plots are obtained and the
Recurrence Quantitative Analysis is performed
on RPs.

In order to explore the time dependent behavior of
the recurrence measures, the computation is
performed using sliding windows of length W (less
than the duration of a frame) with an offset of W
samples along the main diagonal of the RP of each
vowel frame. The values of these two parameters are
calculated accounting for the scale of the dynamics to
be investigated (local/global) and for the temporal
resolution to be achieved [38].

In detail, for the estimation of the window, the
smallest value of thefirst formant among all the vowel
frames of the sentence is considered. The choice of W
must allow at least the observation of the largest
fundamental period:

min

fl,min = k = 1’ o) S {fl,k}

W—[F ! l
Cfl,min ’

where F, is the sampling frequency.

The offset W; is the embedding window, i.e., the
length of the segment of time series that is necessary
to reconstruct a single vector in the phase space. Its
optimal value has been taken as:

(17)

max min
VVS = 2 k = 1’ v, S {mk}k — 1' e, S {Tk}' (18)

where 7, are the elements in T, m, the elements
in M, while the factor two has been found as a
compromise between high time resolution and
computational complexity.

The overal trend of each RQA measure is finally
reconstructed considering the various vowel segments
neatly placed in the sentence (see Fig. 2). For an
experimental dataset of sentences, the trends of each
RQA measures are grouped by emotion and some
statistical tests performed to assess:

1) If the different emotions are dtatistically
different among them and

2) The existence and the nature of relations
between the various groups. In addition, some
dtatistics are computed to explore the genera
characteristics of the emotions expressed in the
sentences. The description of the successive analysis
isreported in the Section 4.3.

4. Results

The following sections report the performances
achieved by the oneclass SVM classifier and
both qualitative and quantitative results of the
recurrence analysis.
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Fig. 2. Example of RQA processing for an input sentence
with emotional state boredom. Input track (top); averaged
diagonal length computed on the estimated vowels frames
(middle); reconstructed trend of the averaged diagonal
length (bottom): not-vowel frames and overlapped samples
are removed.

4.1. Automatic Vowel Extraction

Totraintheoneclass SVM classifier, adataset was
used of 128 segments of German vowels of duration
equal to 40ms, extracted from several sentences
spoken by four people (two men and two women) for
the six emotions. In order to identify the optimal
values for the parameters ¢ and v, the classifier was
trained and validated several times. In particular, due
to the nature of the classification problem, an holdout
validation scheme has been adopted. So, another set of
83 speech segments including vowels, consonants and
pauses, has been used to tune the parameters and
identify the most effective model. Keeping fixed the
value of v, the classifier was retrained by varying the
value of thekernel scale in apredetermined range. For
each model obtained, the performances on the
validation set were evaluated in terms of accuracy,
sensitivity (or true positive rate), specificity (or true
negative rate) and false positive rate. The curves that
illustrate the behavior of such measures for three
values of v and by varying the kernel scale from 0 to
2.7 areshownin Fig. 3.

In Fig. 3(b) and Fig 3(c) only one point can be
identified to guarantee high performances of the
classifier, since the values of accuracy, sensitivity and
specificity are high (around 0.7), while the false
positive rate remains low. For kernel scale values

greater than this optimum, specificity and accuracy
decrease rapidly, while sensitivity and false positive
rateincrease. These results suggest that thereisarapid
growth of the number of false positives, i.e., the
percentage of the not-vowels frames incorrectly
predicted as vowels by the classifier increases.

0.6 i/
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sensitivity
specificity

false positive ralo

ke |
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& 0.
S r ¥
0.8 ~ f)'
0.6 /l((
J
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0 | icil
| false positive rate
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sensitivity
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Fig. 3. Accuracy, senditivity, specificity and false positive
rate of the one class SVYM classifier in function
of the kernel scale ¢ for the fixed parameter (a) v = 0.1,
(b)yv=0.5and (c)v =0.9.

For our purposes, the system critically depends on
the percentage of false positives, since the classifier
acts properly if it is capable of rgecting the greatest
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amount of not-vowel frames. Therefore, even at the
expense of alower number of true positives and higher
percentage of fase negatives (vowe frames
incorrectly rejected), we have set v=0.1 and
consequently chosen the value of ¢ a which the
classifier returns high values of accuracy and
specificity, while maintaining a false positive rate less
than 15 % (see Fig. 3(a)).

To assess the performances of the one class SVM
with the chosen parameter settings (v = 0.1 and
¢ =1.75), we performed a final test on a set of
40 speech segments independent of both the training
and the validation sets. The confusion matrix is shown
in Table 2. As it can be seen, the low rate of false
positives (not-vowels incorrectly predicted as vowel
frames) confirms the validity of the model for the
selected parameters (represented in Fig. 3(a) for
v=0.1andc = 1.75).

Table 2. Confusion matrix of the one class SVM on the test
set composed of 20 vowel and 20 not-vowel frames.

Predicted conditions

Vowels | Not vowels
True Vowels 9 11
Conditions
Not vowels 4 16

4.2. Qualitative Results: RP

The patternsin RPs can reveal typical behaviors of
the system and so they can be used to provide ageneral
description of the time evolution of the dynamic
trajectories. Fig. 4 shows the RPs of the vowel /a/
extracted in the same sentence and approximately in
the same position, pronounced by a female subject for
different emotions. As it can be seen, al RPs have a
topology with periodic patterns that are regularly
repeated, with the exception of the emotion fear in
which there are discontinuities and white bands that
indicate the presence of abrupt changes in the
dynamics of the system. Ancther distinctive featureis
the length of the diagona lines: the RPs of boredom
and neutral, besides being very similar each other,
have the longest diagona lines; on the other hand,
anger and fear show very short diagonal lines.
Moreover, adrift can be noted in the emotion sadness:
the RP fades away from L Ol indicating that the system
varies very slowly. The examples show that certain
measures are most distinctive for some emotions and
that certainly the density of points in the RPs, the
length of the lines present in them and measures that
are able to differentiate the different kinds of time
periodicity (such as T?), can effectively distinguish
among several emotional levels.

4.3. Quantitative Results: RQA

The tracks used to train the one class SVM,
together with repeated versions of the same tracks,
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were excluded from the whole set of tracksin EmoDB
to respect the assumption of independent samples
required by the statistical tests. The achieved dataset is
described in Table 3.

Table 3. Number of tracks in the dataset used
for experiments.

Emotion | No. of utterances
Anger 82
Boredom 63
Fear 51
Happiness 48
Neutral 62
Sadness 48

In this work, we used the method of false nearest-
neighbors to find the embedding dimension m of each
vowel frame and the First Local Minimum of Average
Mutual Information agorithm to determine the
appropriate delay t. The parameter £ was set to 10 %
of the maximum space diameter and a maximum norm
was used as norm function. Fig. 5 shows the box plots
of the average values of m and 7 of the vowels
extracted from the sentences analyzed and grouped by
emotion. It isinteresting to notethat, while the average
values of m fluctuate around the same value (about 6)
for all the emotions and almost in the same way, the
distributions of values of T are different each other,
with the exception of boredom, neutral and sadness,
which are more similar among them. In the latter case,
the box plots suggest that to obtain new and useful
information from successive coordinates of the time
delayed vectors, it must be considered samples more
spaced in the time series of vowels.

The trends of each RQA measure were
reconstructed as described in Section 3.3. Then, the
trends of all the frames were grouped by emotions for
the same RQA, obtaining nine sets of measures (one
for each RQA measure. The list of RQA measures is
in the first column of Table 4). Each set of measures
consists of six groups of data, one for each emotion.
The Shapiro-Wilk test [39] was used to check whether
the 54 obtained samples came from normally
distributed populations. All the 54 tests returned a
p < 0.0001 with asignificancelevel « = 0.05, sothe
null hypothesis (normal distribution) was rejected.

Hence, the non-parametric Kruskal-Wallis test
[40] was employed as an dternative to one-way
ANOVA, for testing whether the six different data
groups of each RQA measure originate from the same
distribution, at asignificancelevel « = 0.05. Thistest
is used in the same way as ANOVA, but it performs
for not-normally distributed populations. In order to
better appreciate the possible differences among
populations, mean, standard deviation (std), median
and interquartile range (igr) values of the nine RQA
measures for al the groups of emotions were
computed and are reported in  Table 4,
together with the results of the test y? and the
corresponding p-values.
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Fig. 4. RPs of vowel /a/ in the track 08a02 for emotions: (a) happiness, (b) anger, (c) fear, (d) neutral, (e) boredom, (f)
sadness; ¢ is setting to 10 % of maximum space diameter with a maximum norm.

A significant Kruskal-Wallis test indicates only — Boredom;
that at least one group is statistically different from at — Neutral;
least one other group, but it does not identify neither — Fear;
the amount of groups that differ significantly, nor — Happiness;

which pairs are statistically different. For the latter
purposes, a post-hoc analysis must be performed to
compare pairs of groups. Anyway, an inspection of the
representative values of the statistics, can give a first
impression about the characteristics of the
RQA measures.

the highest statistics of the testy?, it can be

— Anger;

- T?is the only measure that show the previous list
in the reversed order.

Finally, the Dunn’s post-hoc test [41] was chosen
to perform multiple pairwise comparisons and
determine which groups differ for each measure. The
Bonferroni’s correction was used to control the
family-wise error rate, with a confidence interval of

By considering the medians of the measures with

stated that: 95 %. The Table 5 provides the p-values of the Dunn’s

for all of them, boredom and neutral exhibit very  ogt for all RQA measures. It can be noted that there
similar values; . . are significant differences between all emotions,
the measures related to diagonal lines (RATIO, L, except for boredom-neutral regarding RATIO, LAM,
ENTR) and those concerning the vertical lines TT and V,,, , and for fear-happiness in case of
(TT’, Vinax )» ha\./e Sy;tematically the following L (p > 0.05). The results achieved from multiple
sorting of emotions, in decreasing order of the  ,mparisons were confirmed by a permutation test.
median values: All the pairs of emotions with stochastic dominance
— Sadness; (i.e. p < 0.05) were permuted two by two using half
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the samples of each group. The permuted samples
were randomly selected and the Dunn’s post-hoc test
was carried out with N = 100 repetitions, finaly
averaging the p-values of the multiple comparisons
test to obtain a single p-value. The results reported a
p > 0.05, confirming that the two populations are
different.

AvEerage 1Mt valies
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556¢ L "
fear happiness  boredom neutral
emolions

sadness anger

average 7 valies
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emotions

Fig. 5. Average values of m (top) and 7 (bottom) of vowel
frames grouped by emotion. In each box plot thered lineis
the position of the median, the edges of the box are the 251
and 75" percentiles, the lower and the upper whiskers
represent, respectively, the minimum and the maximum
values of the statistics while outliers are plotted individually
with red crosses.

5. Discussion and Conclusions

In this work we have investigated the dynamic
behavior of vowels taken from a set of spoken
sentences of the EmoDB database, for the six emotions
anger, boredom, fear, happiness, neutral and sadness.

To extract only the vowel frames, an automatic
vowel extraction module was implemented. It consists
essentially inaone class SVM classifier that processes
the not-vowels frame as outliers. The tuning of the
parameters of the classifier and an accurate validation
step allowed usto identify amodel able to achieve the
79 % of accuracy. We accepted this performance
result by considering it as agood compromise between
the ability to reject the greatest number of not-vowel
frames and that to retain a high number of true
positives.

Supposing that the expression of a particular
emotional content in a spoken sentence is a gradual
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complex process, we exploited some properties of the
local dynamics of the vowelsin it to understand some
aspects of the overal process. Firstly, the Takens
embedding theorem was employed to reconstruct the
dynamics of each vowel in the phase space. The
embedding parameters gave important information
about the different emotions: an almost unchanged
value of the average of m distributions among the six
groups prove that the dimension of the space does not
vary and that this parameter can be considered uniform
for the general analysis of speech signals. On the other
side, the unequal distributions of t suggests that the
trgjectories in the phase space are linked to different
information rate of the vowels belonging to distinct
emotions.

For these reasons, the behavior of the trgjectories
of vowels dynamics were explored by means of
recurrence plots. Different RQA measures were
extracted to describe RPs quantitatively. In particular,
the computation of these measures was performed by
using moving windows along the LOI of the RP of
each vowe frame to explore their time dependent
behavior. All the reconstructed trends of each RQA
measure were grouped by emotion and a statistical
analysis was carried out to verify whether these
measures were able to describe the different
mechanisms underlying the dynamics of each
emotion, regardless of the speaker or of the sentence.
The multiple pairwise comparisonstest has shown that
all the RQA measuresresult statistically significant for
discriminating the six groups of emotions with the
exception of RATIO, LAM, TT and V. for the couple
neutral-boredom and L for the couple fear-happiness.

These results confirm the observations made in
Section 4.3, concerning the statistical values shown in
Table 4 and the qualitative considerations on the
examples shown in Fig. 4: boredom and neutral exhibit
both comparable quantitative values and similar
graphical patterns. In addition, the RPs of these two
emotions are highly diagonal-oriented, so measures
based on vertica lines are ineffective for
discriminating between the two emotional levels.

In this case, T2, which is related to the lengths of
white verticad lines, can be more efficient.
Furthermore, it can be observed that there is a
relationship between the rank of the emotions based
on the median values of the diagonal and vertical lines-
based RQA measures and their levels of activation (or
arousal): the emations with the highest median values
are also those with less activation, while emotionswith
higher activation exhibit lower median values.

In conclusion, it can be observed that certain RQA
measures can better discriminate among the basic
emotions examined; however it must be hold in
consideration that some of them are dependent on each
other, so a future development could include a
multivariate analysis to identify a subset of measures
that perform a better characterization of the different
emotional levels. Such measures could be added to the
features traditionally used in the literature to try to
build a more efficient SER classifier.
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Table 4. Means, variances, medians, interquartile range values and Kruskal-Wallis test results. The medians of the RQA
measures with the highest statistics of the test y2are shown with bold borders (for a complete discussion see Section 4.3).

Fear Happiness Boredom Neutral Sadness Anger K-W Test
mean 0.13 0.12 0.13 0.14 0.18 0.10
RATIO std 0.19 0.19 0.17 0.21 0.21 0.18 x? = 17136.13
median 0.06 0.05 0.07 0.07 0.10 0.04 p=0
qr 0.10 0.09 0.09 0.10 0.13 0.07
mean 0.65 0.65 0.70 0.71 0.71 0.61
DET std 0.25 0.25 0.24 0.24 0.25 0.25 x% = 9736.93
median 0.54 0.55 0.64 0.75 0.63 0.50 p=0
igr 0.48 0.47 0.48 0.49 0.49 0.47
mean 8.26 8.07 9.77 10.39 11.73 7.00
. std .48 9.36 9.23 10.25 11.43 8.77 | 42 = 16290.25
mgdlan 5.22 521 6.86 7.06 8.08 451 p=0
1ar 6.20 5.59 7.53 8.30 9.55 4.65
mean 5751 60.69 65.72 63.32 70.23 53.14
L Stc_i 37.16 37.23 35.57 35.86 37.30 37.83 x% = 6466.76
max mgdlan 52.00 54.50 57.50 56.00 64.00 46.50 p=0
qr 59.00 61.50 54.00 57.00 51.50 57.00
mean 151 1.47 1.67 1.71 1.80 1.33
ENTR std 0.85 0.85 0.83 0.89 0.93 081 | 42 = 10993.54
m?d|an 1.28 1.26 1.46 1.49 1.55 1.14 p=0
1qr 1.09 1.05 1.15 1.21 1.26 0.94
mean 0.63 0.61 0.68 0.68 0.69 0.55
LAM std 0.26 0.27 0.25 0.25 0.25 0.27 x% = 10363.09
m(f:dian 0.49 0.49 0.49 0.57 0.49 0.49 p=0
qr 0.49 0.49 0.49 0.49 0.49 0.48
mean 411 4.84 4.87 5.09 6.28 3.53
T st(_j 5.11 5.25 5.50 6.21 7.15 5.12 x% = 18147.99
m(_edlan 2.79 2.55 3.35 3.30 4.08 2.35 p=0
1aqr 2.56 2.31 3.12 3.21 4.42 2.06
mean 11.90 10.87 14.13 14.96 19.00 10.25
v st(_j 16.64 17.40 17.62 19.28 22.03 17.31 x% = 19165.64
max m(_edlan 7.00 6.00 8.00 8.00 11.00 5.00 p=0
1ar 8.00 6.50 10.00 11.00 16.00 7.00
mean 15.78 18.69 12.31 12.06 11.12 19.96
@ st(_j 10.43 10.53 9.81 9.89 9.92 11.22 = 31404.79
T m(_edlan 13.83 16.26 9.34 9.08 7.78 17.27 p=0
ar 14.99 14.92 11.90 11.93 10.19 15.20
Table5. p—values of the Dunn’s multiple comparison test for all RQA measures.
Couple of emotions | RATIO | DET L Lonax ENTR | LAM T Vinax T®
Anger - Boredom * * * * * * * * *
Anger - Fear * * * * * * * * *
Anger - Happl ne$ * * * * * * * * *
Anger - Neutral * * 0.0006 * * * * * *
Anger - Sadness * * * * * * * * *
Bora:lom - F%r * * * * * * * * *
Boredom- Happiness * * * * * * * * *
Boredom - Neutral 1.00 * * * 0.0001 1.00 0.07 1.00 *
Boredom - Sadness * * * * * * * * *
Fear - Happl ne$ * * * * * * * * *
F%r - Nwtral * * * * * * * * *
Fear - Sadne$ * * * * * * * * *
Happl ness - Neutral * * * * * * * * *
Happl ness - Sadness * * * * * * * * *
Nwtral - Sajne$ * * * * * * * * *

* Statitically significant withap — value < 2 - 10716
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