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Abstract: Speech Emotion Recognition (SER) is a recent field of research that aims at identifying the emotional 
state of a speaker through a collection of machine learning and pattern recognition techniques. Features based on 
linear source-filter models have so far characterized emotional content in speech. However, the presence of 
nonlinear and chaotic phenomena in speech generation have been widely proven in literature. In this work, 
recurrence properties of vowels are used to describe nonlinear dynamics of speech with different emotional 
contents. An automatic vowel extraction module has been developed to extract vowel segments from a set of 
spoken sentences of the publicly available German Berlin Emotional Speech Database (EmoDB). Recurrence 
Plots (RPs) and Recurrence Quantitative Analysis (RQA) have been used to explore the dynamic behavior of six 
basic emotions (anger, boredom, fear, happiness, neutral, sadness). Statistical tests have been performed to 
compare the six groups and check possible differences between them. The results are promising since some RQA 
measures are able to capture the key aspects of each emotion. Copyright © 2016 IFSA Publishing, S. L. 
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1. Introduction 

 

The last decade has seen the rapid and growing 
development of new algorithms and methods to make 
the process of human-machine interaction more 
natural, creating the so-called “Affective Computing" 
[1]. In many application areas of Artificial Intelligence 
(e.g. Ambient Assisted Living, Virtual Reality, Smart 
Recommended System) is required the presence of 
intelligent agents able to recognize human emotions 
and process different types of information in order to 
synthesize empathic reactions. 

Among the various ways to detect the emotional 
state of a user, the employment of some parameters of 
the speech signal, seems to be one of the most rapid 
and efficient. Indeed, the presence of a particular 
affective state is due to the triggering of a series of 

reactions that take place in the nervous system, which 
dynamically modify some characteristics of the organs 
involved in the production of the speech [2]. 

Speech Emotion Recognition (SER) is a recent 
field of research that aims at identifying the emotional 
state of a speaker through a collection of machine 
learning and pattern recognition techniques. Until 
now, SER has been used in different application 
contexts improving the overall performance of the 
automated systems in which it has been built in: e.g. 
by detecting the degree of satisfaction of users in the 
interaction with remote customer-care services, by 
allowing better communication with students in 
computer-enhanced learning, by monitoring the stress 
and attention levels of a driver for in-car board systems 
and so on (for a complete review see [3-4]). 
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As a classification problem, a SER system needs a 
set of features able to optimally reflect the emotional 
content in speech. According to the existing literature, 
it is possible to distinguish three main categories of 
features: prosodic, spectral, and quality-based [5]. 
Prosodic features such as the fundamental frequency 
(pitch), the energy of the signal and the 
rhythm/articulation rate, have been combined with 
spectral measures (Mel Frequency Cepstral 
Coefficients (MFCC), Linear Predictor Cepstral 
Coefficients (LPCC) and formants) in different ways 
to improve the performances of the classifier [6]. The 
third category includes acoustic cues related to the 
shape of glottal pulse signal, its amplitude variation 
(shimmer) and frequency variation (jitter) [7]. 

Despite the great variety of classification methods 
developed for SER applications, still there is no 
agreement on an optimal set of speech features that can 
describe and uniquely identify a group of emotional 
states [3]. This fragmentation of thought is due to 
several factors. The various sets of features reflect 
different mechanisms involved in the production of 
speech sounds but robust theoretical basis about the 
link between the characteristics of the speech and the 
emotional state of a speaker does not exist yet [6]. In 
addition, all the mentioned categories of features are 
based on a source-filter model [8-9], which represents 
a simplification of the process of voice production that 
ignores more complex physiological mechanisms. 

Numerous studies carried on since the 1990 s  
[10-12], have confirmed the presence of non-linear 
phenomena in speech generation. From these 
discoveries, new nonlinear tools for speech signal 
processing have been employed to overcome the 
limitations imposed by the linear model. In particular, 
the evidence of the chaotic behavior of some processes 
involved in the speech production (e.g. turbulent 
airflow) [13], made the Chaos Theory a favored 
approach for the study of nonlinear dynamics in the 
system voice. 

To describe these dynamics it is necessary to 
reconstruct the phase space, which is the set of the 
possible states that the system can take. This approach 
assumes that the speech signal represents a projection 
of a higher-dimensional nonlinear dynamical system 
evolving in time, with unknown characteristics. 
Embedding techniques can be employed to reconstruct 
the attractor of the system in the phase space and 
provide a representation of its trajectories. Afterward, 
it is possible to describe the dynamic behavior of the 
system by studying the properties of the embedded 
attractor: chaotic measures such as Lyapunov 
exponents, correlation dimension and entropy, have 
been successfully applied to the analysis of vocal 
pathologies and speech nonlinearities [14-15]. 

The behavior of the trajectories of a system in the 
phase space can also be modeled through the 
recurrence, a property that quantifies the tendency of 
a system to return to a state close to the initial one [16]. 
By exploring similarities between different states at 
different time epochs, useful information can be 
provided on the long-term behavior of a system and 

important aspects about its nature can be revealed. The 
behavior of the trajectories of a system in the phase 
space can be easily viewed by means of a recurrence 
plot (RP). This tool was introduced by Eckmann [17] 
to facilitate the analysis of the properties for systems 
with high-dimensional phase space. In contrast to the 
most of chaotic measures, it is an effective tool even 
for short and non-stationary data. Recurrence 
Quantitative Analysis (RQA) [18-19] supplies a 
quantitative description of the structures contained in 
a RP through some nonlinear measures. RQA methods 
have been widely applied in various research fields 
including biology, astrophysics, engineering, 
neuroscience, analysis of audio signals and, recently, 
also for detection and classification of voice disorders 
[20-22]. 

In this work we have extended a framework 
presented in a previous article [23] to explore the 
recurrence properties of vowel segments taken from a 
set of spoken sentences of a publicly available 
database, for six categories of basic emotions (anger, 
boredom, fear, happiness, neutral, sadness). An 
automatic vowel extraction module has been built up 
to extract vowel segments from each sentence; then, 
their time evolutions have been analyzed by means of 
the RQA measures. To test the ability of these 
measures to characterize the different emotional 
contents, they have been grouped according to the 
emotion they belong to and statistical tests have been 
performed to compare the six groups. 

The rest of the paper is divided into four sections: 
theoretical background, general framework, results, 
discussion and conclusions. In Section 2 theoretical 
notions on dynamic systems, reconstruction of phase 
space and recurrence properties are provided; the 
framework adopted is exposed in details in Section 3; 
qualitative and quantitative results are shown in 
Section 4; finally, discussion and conclusions  
are presented. 
 
 
2. Theoretical Background 

 
This section provides a general overview of the 

basic concepts related to the state space reconstruction 
of a dynamical system and of the main tools used for 
the analysis of its recurrence properties. 

 
 

2.1. The Embedding Theorem 
 

The state of a dynamical system is determined by 
the values of the variables that describe it at a given 
time. When such system evolves in time, it defines a 
trajectory in a multidimensional state space, given by 
the sequence of points that represent all the states of 
the system. Starting from different initial conditions, a 
real physical dissipative system tends to evolve in 
similar ways, so its trajectories converge in a region of 
the phase space called attractor, which represents the 
steady state behavior of the system [24]. 
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However, in a real scenario, not all the variables of 
the system can be inferred and often only a time series ሼݑ௜ሽ௜ୀଵே  is available as an output of the system. 

Takens demonstrated that it is possible to use time 
delayed versions of the signal at the output of the 
system to reconstruct a phase space topologically 
equivalent to the original one. According to Takens’ 
embedding theorem [25], a state in the reconstructed 
phase space is given by a ݉-dimensional time delay 
embedded vector: 

 

( )ττ )1(,,, −++= miiii uuux 
, (1) 

 

where ݉ is the embedding dimension and ߬	is the time 
delay. 

If 	݉ ≥ ܦ2 + 1 , where ܦ  is the correlation 
dimension of the attractor, the original and the 
reconstructed attractor are diffeomorphically 
equivalent so the properties of the dynamical system 
are preserved. 

For the embedded parameters estimation, several 
techniques have been proposed. As an example, the 
First Local Minimum of Average Mutual Information 
algorithm [26] can be used to determine when the 
samples of the time series are independent enough to 
be useful as coordinates of the time delayed vectors. 
On the other hand, the false nearest-neighbors 
algorithm [27] is the method usually employed to 
estimate the minimum embedding dimension. 
 
 

2.1. Recurrence Plots 
 

A recurrence plot is a graphical tool that provides 
a representation of recurrent states of a dynamical 
system through a two-dimensional square matrix: 
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With ji xx


, the system state at times ݅  and ݆,Θ the 

Heaviside function, ε  a threshold for closeness,  

N  is the number of considered states and •  a norm 

function. 
The recurrence matrix contains the value one for 

all pairs of neighboring states below the threshold ε
and zero elsewhere; therefore it allows a quick and 
effective visual inspection of the dynamic behavior of 
the system. 

The value of the parameter ε  must be estimated 
carefully, as it influences the creation of structures in 
the plot. In literature, there are some heuristic 
indications that guide the selection of an appropriate 
value for such threshold. In general, by choosing ε  
equal to a few percent of the maximum phase space 
diameter, a sufficient number of structures in the 
recurrence plot are preserved, reducing at the same 
time the presence of artifacts [28]. 

The resulting plot is symmetric and always 
exhibits the main diagonal, called line of identity 
(LOI). Apart for the general RP structure, it is often 
possible to distinguish small scale structures, which 
show local (temporal) relationships of the segments of 
the system trajectory (for a visual reference, see Fig. 
4). In details: 
- Single isolated points are related to rare states; 
- Diagonal lines parallel to the LOI indicate that the 

evolution of states is similar at different times; 
- Vertical lines mark time intervals in which states 

do not change. 
 
 
2.1. Recurrence Quantitative Analysis 

 
Several measures of complexity (RQA) have been 

proposed to obtain an objective quantification of the 
patterns in a recurrence plot [18-19]. 

RQA can be divided into three major classes: 
1) Measures based on recurrence density. Among 
these, the simplest measure is the recurrence rate (RR) 
defined as: 
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It is a measure of the density of the recurrence 

points in the RP. 
2) Measures based on the distribution ܲ(݈) of lengths ݈ of the diagonal lines. Among these: 

- The determinism (DET) is the ratio of the 
recurrence points that form diagonal structures 
(with minimum length ݈௠௜௡ ) to all recurrence 
points and it is an index of the predictability of a 
system: 

 





=

==
N

l

N

ll

llP

llP

DET

1

)(

)(
min  (4) 

 
- The average diagonal line length (L) is the 
average time in which two segments of the 
trajectory move close together: 
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- The length of the longest diagonal line (ܮ௠௔௫) 
found in the RP is related to the exponential 
divergence of the phase space trajectory: 
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- where ௟ܰ  is the total number of  
diagonal lines. 
- The entropy (ENTR) shows the complexity of 
the diagonal lines in a RP. It is the Shannon 
entropy of the probability ݌(݈) to find a diagonal 
line of length ݈ in the RP: 

 


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- The RATIO, defined as the ratio between DET 
and RR, combines the advantages of the two 
categories of measures: it has been proven that it is 
able to detect some types of transitions in particular 
dynamics. 

3) Measures based on the distribution ܲ(ݒ)	 of 
vertical line lengths ݒ	 . This distribution is used to 
quantify laminar phases during which the states of a 
system change very slowly or do not change at all. 

- The ratio of recurrence points forming vertical 
structures longer than ݒ௠௜௡	to all recurrence points 
of the RP is called laminarity (LAM): 
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- The average length of vertical lines (TT) is the 
trapping time and represents the average time in 
which the system is trapped into a specific state: 
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- The length of the longest vertical line ( ௠ܸ௔௫) is 
analogous to ܮ௠௔௫	for the vertical lines: 
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From a recurrence plot it is possible to extrapolate 

the recurrence times [29]. Let us consider the 

recurrence points of the ith row { }N

jjiR
1, =
 of an RP 

which correspond to the set of points of the trajectory 
which fall into the ε -neighbourhood of an arbitrary 
chosen point at	݅. The recurrence times between these 
recurrence points (recurrence times of first type) are: 
 

{ } Nkkkk jjT ∈+ −= 1
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Removing all consecutive recurrence points with ௞ܶ(ଵ) = 1	 to avoid tangential motion, the recurrence 

times of second type are: 
 

{ } Nkkkk jjT ∈+ −= '
1

')2( , (12) 
 

where the set of the remaining recurrence points is 
used. It turns out that ܶ(ଶ) measures the time distance 
between the beginning of subsequent recurrence 
structures in the RP along the vertical direction and it 
can be considered as an estimate of the average of the 
lengths of white vertical lines in a column of the  
plot [19]. 

A great advantage offered by this analysis is that 
the calculation of the RQA measures for moving 
windows along the recurrence plot, allows to identify 
the transitions of dynamical systems. In particular, it 
was shown that the positions of the local maxima and 
local minima in the temporal trends of some measures 
correspond to chaos-order and chaos-chaos transitions 
[19]. 
 
 

3. General Framework 
 

The algorithm block scheme is represented in 
Fig. 1. Since the voice has a non-stationary nature, we 
perform a short term analysis with a frame size of 
40 ms and an overlap of 50 %. Given an input track, 
an automatic vowel extraction module is used to detect 
and retain only the vowel frames and for each of them, 
the optimal parameters (݉  and ߬ ) for state space 
reconstruction are found. Then, RPs are generated 
using the time delay method, and some RQA measures 
extracted to describe RPs quantitatively. Since a set of 
RQA measures can be extracted, in principle, for each 
frame, statistics on these measures may be collected to 
give a general description of the emotional content of 
the input sentence. 

Each step of the adopted framework is detailed in 
the following sections. 
 
 

3.1. Database 
 

The German Berlin Emotional Speech Database 
(EmoDB) [30] has been employed for all the 
experiments carried out in this work. The database 
contains ten sentences pronounced by ten actors (five 
males and five females) in seven different emotional 
states: neutral, anger, fear, happiness, sadness, disgust 
and boredom. The audio tracks were sampled as mono 
signals at 16 kHz, with 8 bit/sample. Most of the 
sentences were recorded several times in different 
versions and the resulting corpus was subjected to a 
perception test where the degree of recognition of 
emotions and their naturalness were evaluated by a 
group of listeners. Utterances with an emotion 
recognition rate better than 80 % and a naturalness 
score greater than 60 % were included in the final 
database. As shown in Table 1, among the 
535 available sentences, some emotions prevail over 
the others. The emotion disgust has been excluded 
from our analysis because of the too low number of 
tracks belonging to this group. 
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Fig. 1. The algorithm block scheme for an example 
input sentence. 

 
 

Table 1. Number of utterances in EmoDB. 
 

Emotion No. of utterances 

Anger 127 
Boredom 81 
Disgust 46 
Fear 69 
Happiness 71 
Neutral 79 
Sadness 62 

 
 

3.2. Automatic Vowel Extraction 
 

Speech production starts with a compression of the 
lung volume causing an airflow that is converted in a 
glottic signal by passing through the vocal folds. This 
signal is then filtered by the vocal tract and converted 
into different audible sounds by moving the 
articulators (i.e. velum, tongue, lips and jaw) [31]. 

To produce vowel sounds, the vocal tract is open 
with a uniform cross-sectional area along its length 
resulting in quasi-periodic sounds. In contrast, when 
the consonants are pronounced, the vocal tract has a 
constriction at some point that produces a resistance to 
the airflow generating turbulent noise. Therefore, the 
two categories of sounds have very different 
characteristics that can be highlighted by analyzing the 
spectral content of the waveforms. The analysis in the 
frequency domain can be simplified considering that 
the vocal tract acts as a resonator filter, which has its 
own resonance frequencies known as formants. By 
varying the shape of the vocal tract through different 
combinations of articulations, the formant frequencies 

of the filter change too. Hence, each vowel sound can 
be described through its formant frequencies [9]. 

In particular, it was shown that the distinctive 
qualities of the vowels can be attributed to differences 
in the first three formant frequencies and that, very 
often, the first two formants can univocally identify a 
vowel [9, 32]. 

For these reasons, we have extracted some spectral 
features from the formant frequencies estimated from 
the power spectral density of the audio track. These 
features have been used to train a classifier that 
automatically detects vowel segments in the signal. 

Supposing each frame the output of a stationary 
process, an autoregressive model (AR) has been used 
to estimate the power spectral density. First, the order 
of the model has been identified with the Akaike’s 
Information Criterion (AIC) [33] to avoid splitting line 
and spurious peaks in the final spectrum. 
Subsequently, the Burg’s method [34] has been 
employed to find the parameters of the AR model. 
This technique has been preferred over the simple 
linear prediction analysis as the former identifies the 
optimal set of parameters by minimizing the sums of 
squares of the forward and backward prediction errors 
while the latter uses only the backward errors. 

Furthermore, as compared with other parametric 
methods, the Burg’s algorithm ensures more stable 
models and a higher frequency resolution [35]. 

The peaks of the power spectral density are in 
correspondence of the formants position. The first 
three peaks have been identified in the estimated 
spectrum and for each of them the following 
characteristics have been collected: 

- The frequency at which they occur; 
- The amplitude of the peak; 
- The area under the spectral envelope within the 

-3 dB bandwidth. 
To distinguish the vowel sounds from all other 

types of phonemes (including silence intervals) a one-
class classification approach has been adopted. This 
method was introduced by Schölkopf [36] as a variant 
of the two-class SVM to identify a set of outliers 
amongst examples of the single class under 
consideration. Thus, according to this approach, the 
outlier data are examples of the negative class (in this 
case, the not vowels frames). A kernel function is used 
to map the data into a feature space ܨ in which the 
origin is the representative point of the negative class. 
So, the SVM returns a function ݂  that assigns the 
value +1 in a subspace in which the most of the data 
points are located and the opposite value -1 elsewhere, 
in order to separate the examples of the class of 
interest from the origin of the feature space with the 
maximum margin. 

Formally, let us consider ,ଵݔ	 ,ଶݔ … , ௟ݔ , ݈  training 
vectors of the one class	ܺ, where ܺ is a compact subset 

of ℝே. Let Φ : ܺ →  be a kernel function that map	ܨ
the training vectors into another space	ܨ. Separating 
the data set from the origin is equivalent to solving the 
following quadratic problem:  
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ݓ݊݅݉ ∈ ,ܨ ߦ ∈ ℝ௟, ߩ ∈ ℝ	12 ‖ଶݓ‖ ௜ߦ෍݈ߥ1 − ௟,ߩ
௜ୀଵ  (13) 

 
subject to: 
 

( ) 0,)( ≥−≥Φ⋅ iiixw ξξρ , (14) 

 
where ߥ ∈ (0; 1]  is a parameter that controls the 
decision boundary of the classification problem, ߦ௜ are 
the nonzero slack variables, ݓ a weight vector and ߩ 
an offset that parametrizes a hyperplane in the feature 
space associated with the kernel. If ݓ and ߩ solve for 
this problem, then the decision function: 
 

( )ρ−Φ⋅= )()( xwsignxf , (15) 
 
will be positive for the most of the examples  ௜ݔ	
contained in the training set. 

Of course, the type of kernel function, the 
operating parameters of the kernel and the correct 
value of ߥ, must be estimated to build the one-class 
SVM classifier. As suggested by the author, we have 
chosen a Gaussian kernel with Sequential Minimal 
Optimization (SMO) algorithm to train the classifier, 
since the data are always separable from the origin in 
the feature space. For generic patterns ݔ		and ݕ	 , a 
Gaussian kernel is expressed as: 
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where the parameter ܿ is the kernel scale that controls 
the tradeoff between the over-fitting and under-fitting 
loss in the feature space [37] ܨ. 

Regarding the choice of the value ߥ, it should be 
taken into account that it represents an upper bound on 
the fraction of outliers and, at the same time, a lower 
bound on the fraction of support vectors. It is then 
necessary to find a value that on the one hand is able 
to describe the whole dataset for training and on the 
other hand avoids the over-training of such data. 
Results on the tuning of the parameters on real data 
and classification performances are in Section 4.1. 

 
 

3.3. RP/RQA 
 
The general idea behind all the analysis carried out 

in this work is that the evolutionary dynamics of each 
vowel constitute local descriptions of the intrinsic 
process in the formation of a particular emotion. 
Therefore, after extraction of vowel segments from a 
sentence, a frame-level analysis is applied to monitor 
such dynamics. First, time delays and embedding 
dimensions are estimated to allow a correct 
reconstruction of the dynamics in the phase space. 

Hence, said ݏ the total number of vowel frames 
dynamically identified by the Automatic Vowel 

Extraction module, the time delays vector  ࢀ = (߬ଵ,… , ߬௦) and the embedding dimensions vector ࡹ = (݉ଵ,… ,݉௦) are saved for each sentence. Please 
note that ݏ is a sentence dependent parameter. At the 
end, the Recurrence Plots are obtained and the 
Recurrence Quantitative Analysis is performed  
on RPs. 

In order to explore the time dependent behavior of 
the recurrence measures, the computation is 
performed using sliding windows of length ܹ  (less 
than the duration of a frame) with an offset of ௦ܹ 
samples along the main diagonal of the RP of each 
vowel frame. The values of these two parameters are 
calculated accounting for the scale of the dynamics to 
be investigated (local/global) and for the temporal 
resolution to be achieved [38]. 

In detail, for the estimation of the window, the 
smallest value of the first formant among all the vowel 
frames of the sentence is considered. The choice of ܹ 
must allow at least the observation of the largest 
fundamental period: 

 ଵ݂,௠௜௡ = ݉݅݊݇ = 1,… , ൛	ݏ ଵ݂,௞ൟ෡ܹ = ቜܨ௖ 1ଵ݂,௠௜௡ቝ ,  (17) 

 

where ܨ௖ is the sampling frequency. 
The offset ௦ܹ	is the embedding window, i.e., the 

length of the segment of time series that is necessary 
to reconstruct a single vector in the phase space. Its 
optimal value has been taken as: 

 ௦ܹ = 2 ݇ݔܽ݉ = 1,… , ݏ ሼ݉௞ሽ ݉݅݊݇ = 1,… ,  ሼ߬௞ሽ, (18)	ݏ

 

where ߬௞  are the elements in ࢀ , ݉௞	 the elements 
in ࡹ	 , while the factor two has been found as a 
compromise between high time resolution and 
computational complexity. 

The overall trend of each RQA measure is finally 
reconstructed considering the various vowel segments 
neatly placed in the sentence (see Fig. 2). For an 
experimental dataset of sentences, the trends of each 
RQA measures are grouped by emotion and some 
statistical tests performed to assess:  

1) If the different emotions are statistically 
different among them and  

2) The existence and the nature of relations 
between the various groups. In addition, some 
statistics are computed to explore the general 
characteristics of the emotions expressed in the 
sentences. The description of the successive analysis 
is reported in the Section 4.3. 

 
 

4. Results 
 

The following sections report the performances 
achieved by the one-class SVM classifier and  
both qualitative and quantitative results of the 
recurrence analysis. 
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Fig. 2. Example of RQA processing for an input sentence 
with emotional state boredom. Input track (top); averaged 
diagonal length computed on the estimated vowels frames 
(middle); reconstructed trend of the averaged diagonal 
length (bottom): not-vowel frames and overlapped samples 
are removed. 

 
 

4.1. Automatic Vowel Extraction 
 

To train the one class SVM classifier, a dataset was 
used of 128 segments of German vowels of duration 
equal to 40 ms, extracted from several sentences 
spoken by four people (two men and two women) for 
the six emotions. In order to identify the optimal 
values for the parameters ܿ and	ߥ, the classifier was 
trained and validated several times. In particular, due 
to the nature of the classification problem, an holdout 
validation scheme has been adopted. So, another set of 
83 speech segments including vowels, consonants and 
pauses, has been used to tune the parameters and 
identify the most effective model. Keeping fixed the 
value of	ߥ, the classifier was retrained by varying the 
value of the kernel scale in a predetermined range. For 
each model obtained, the performances on the 
validation set were evaluated in terms of accuracy, 
sensitivity (or true positive rate), specificity (or true 
negative rate) and false positive rate. The curves that 
illustrate the behavior of such measures for three 
values of 	ߥ and by varying the kernel scale from 0 to 
2.7 are shown in Fig. 3. 

In Fig. 3(b) and Fig 3(c) only one point can be 
identified to guarantee high performances of the 
classifier, since the values of accuracy, sensitivity and 
specificity are high (around 0.7), while the false 
positive rate remains low. For kernel scale values 

greater than this optimum, specificity and accuracy 
decrease rapidly, while sensitivity and false positive 
rate increase. These results suggest that there is a rapid 
growth of the number of false positives, i.e., the 
percentage of the not-vowels frames incorrectly 
predicted as vowels by the classifier increases. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 
 

Fig. 3. Accuracy, sensitivity, specificity and false positive 
rate of the one class SVM classifier in function  
of the kernel scale ܿ  for the fixed parameter (a) ߥ = 0.1,  
(b) ߥ = 0.5 and (c)	ߥ = 0.9. 

 
 
For our purposes, the system critically depends on 

the percentage of false positives, since the classifier 
acts properly if it is capable of rejecting the greatest 
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amount of not-vowel frames. Therefore, even at the 
expense of a lower number of true positives and higher 
percentage of false negatives (vowel frames 
incorrectly rejected), we have set ߥ = 0.1	 and 
consequently chosen the value of ܿ  at which the 
classifier returns high values of accuracy and 
specificity, while maintaining a false positive rate less 
than 15 % (see Fig. 3(a)). 

To assess the performances of the one class SVM 
with the chosen parameter settings ( ߥ = 0.1  and		ܿ = 1.75 ), we performed a final test on a set of 
40 speech segments independent of both the training 
and the validation sets. The confusion matrix is shown 
in Table 2. As it can be seen, the low rate of false 
positives (not-vowels incorrectly predicted as vowel 
frames) confirms the validity of the model for the 
selected parameters (represented in Fig. 3(a) for  ߥ = 0.1 and	ܿ = 1.75). 

 
 

Table 2. Confusion matrix of the one class SVM on the test 
set composed of 20 vowel and 20 not-vowel frames. 

 
  Predicted conditions
  Vowels Not vowels 

True 
Conditions 

Vowels 9 11 

 Not vowels 4 16 
 
 

4.2. Qualitative Results: RP 
 

The patterns in RPs can reveal typical behaviors of 
the system and so they can be used to provide a general 
description of the time evolution of the dynamic 
trajectories. Fig. 4 shows the RPs of the vowel /a/ 
extracted in the same sentence and approximately in 
the same position, pronounced by a female subject for 
different emotions. As it can be seen, all RPs have a 
topology with periodic patterns that are regularly 
repeated, with the exception of the emotion fear in 
which there are discontinuities and white bands that 
indicate the presence of abrupt changes in the 
dynamics of the system. Another distinctive feature is 
the length of the diagonal lines: the RPs of boredom 
and neutral, besides being very similar each other, 
have the longest diagonal lines; on the other hand, 
anger and fear show very short diagonal lines. 
Moreover, a drift can be noted in the emotion sadness: 
the RP fades away from LOI indicating that the system 
varies very slowly. The examples show that certain 
measures are most distinctive for some emotions and 
that certainly the density of points in the RPs, the 
length of the lines present in them and measures that 
are able to differentiate the different kinds of time 
periodicity (such as ܶଶ ), can effectively distinguish 
among several emotional levels. 

 
 

4.3. Quantitative Results: RQA 
 

The tracks used to train the one class SVM, 
together with repeated versions of the same tracks, 

were excluded from the whole set of tracks in EmoDB 
to respect the assumption of independent samples 
required by the statistical tests. The achieved dataset is 
described in Table 3.  

 
 

Table 3. Number of tracks in the dataset used  
for experiments. 

 
Emotion No. of utterances 
Anger 82 
Boredom 63 
Fear 51 
Happiness 48 
Neutral 62 
Sadness 48 

 
 

In this work, we used the method of false nearest-
neighbors to find the embedding dimension ݉ of each 
vowel frame and the First Local Minimum of Average 
Mutual Information algorithm to determine the 
appropriate delay	߬. The parameter ߝ was set to 10 % 
of the maximum space diameter and a maximum norm 
was used as norm function. Fig. 5 shows the box plots 
of the average values of ݉  and ߬  of the vowels 
extracted from the sentences analyzed and grouped by 
emotion. It is interesting to note that, while the average 
values of ݉ fluctuate around the same value (about 6) 
for all the emotions and almost in the same way, the 
distributions of values of ߬ are different each other, 
with the exception of boredom, neutral and sadness, 
which are more similar among them. In the latter case, 
the box plots suggest that to obtain new and useful 
information from successive coordinates of the time 
delayed vectors, it must be considered samples more 
spaced in the time series of vowels. 

The trends of each RQA measure were 
reconstructed as described in Section 3.3. Then, the 
trends of all the frames were grouped by emotions for 
the same RQA, obtaining nine sets of measures (one 
for each RQA measure. The list of RQA measures is 
in the first column of Table 4). Each set of measures 
consists of six groups of data, one for each emotion. 
The Shapiro-Wilk test [39] was used to check whether 
the 54 obtained samples came from normally 
distributed populations. All the 54 tests returned a  ݌ < 0.0001	with a significance level ߙ = 0.05, so the 
null hypothesis (normal distribution) was rejected. 

Hence, the non-parametric Kruskal-Wallis test 
[40] was employed as an alternative to one-way 
ANOVA, for testing whether the six different data 
groups of each RQA measure originate from the same 
distribution, at a significance level ߙ = 0.05. This test 
is used in the same way as ANOVA, but it performs 
for not-normally distributed populations. In order to 
better appreciate the possible differences among 
populations, mean, standard deviation (std), median 
and interquartile range (iqr) values of the nine RQA 
measures for all the groups of emotions were 
computed and are reported in Table 4,  
together with the results of the test ߯ଶ  and the 
corresponding p-values. 
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Fig. 4. RPs of vowel /a/ in the track 08a02 for emotions: (a) happiness, (b) anger, (c) fear, (d) neutral, (e) boredom, (f) 
sadness; ߝ	is setting to 10 % of maximum space diameter with a maximum norm. 

 
A significant Kruskal-Wallis test indicates only 

that at least one group is statistically different from at 
least one other group, but it does not identify neither 
the amount of groups that differ significantly, nor 
which pairs are statistically different. For the latter 
purposes, a post-hoc analysis must be performed to 
compare pairs of groups. Anyway, an inspection of the 
representative values of the statistics, can give a first 
impression about the characteristics of the  
RQA measures.  

By considering the medians of the measures with 
the highest statistics of the test ߯ଶ , it can be  
stated that: 
- for all of them, boredom and neutral exhibit very 

similar values; 
- the measures related to diagonal lines (RATIO, L, 

ENTR) and those concerning the vertical lines 
(TT, 	 ௠ܸ௔௫ ), have systematically the following 
sorting of emotions, in decreasing order of the 
median values: 
− Sadness; 

− Boredom; 
− Neutral; 
− Fear; 
− Happiness; 
− Anger; 

- ܶଶ	is the only measure that show the previous list 
in the reversed order. 
Finally, the Dunn’s post-hoc test [41] was chosen 

to perform multiple pairwise comparisons and 
determine which groups differ for each measure. The 
Bonferroni’s correction was used to control the 
family-wise error rate, with a confidence interval of 
95 %. The Table 5 provides the p-values of the Dunn’s 
test for all RQA measures. It can be noted that there 
are significant differences between all emotions, 
except for boredom-neutral regarding RATIO, LAM, 
TT and ௠ܸ௔௫ , and for fear-happiness in case of  
L (݌ > 0.05 ). The results achieved from multiple 
comparisons were confirmed by a permutation test. 
All the pairs of emotions with stochastic dominance 
(i.e. ݌ < 0.05) were permuted two by two using half 
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the samples of each group. The permuted samples 
were randomly selected and the Dunn’s post-hoc test 
was carried out with N = 100 repetitions, finally 
averaging the p-values of the multiple comparisons 
test to obtain a single p-value. The results reported a ݌ > 0.05 , confirming that the two populations are 
different. 

 
 

 
 

 
 

Fig. 5. Average values of ݉ (top) and ߬ (bottom) of vowel 
frames grouped by emotion. In each box plot the red line is 
the position of the median, the edges of the box are the 25th 
and 75th percentiles, the lower and the upper whiskers 
represent, respectively, the minimum and the maximum 
values of the statistics while outliers are plotted individually 
with red crosses. 
 
 

5. Discussion and Conclusions 
 

In this work we have investigated the dynamic 
behavior of vowels taken from a set of spoken 
sentences of the EmoDB database, for the six emotions 
anger, boredom, fear, happiness, neutral and sadness. 

To extract only the vowel frames, an automatic 
vowel extraction module was implemented. It consists 
essentially in a one class SVM classifier that processes 
the not-vowels frame as outliers. The tuning of the 
parameters of the classifier and an accurate validation 
step allowed us to identify a model able to achieve the 
79 % of accuracy. We accepted this performance 
result by considering it as a good compromise between 
the ability to reject the greatest number of not-vowel 
frames and that to retain a high number of true 
positives. 

Supposing that the expression of a particular 
emotional content in a spoken sentence is a gradual 

complex process, we exploited some properties of the 
local dynamics of the vowels in it to understand some 
aspects of the overall process. Firstly, the Takens’ 
embedding theorem was employed to reconstruct the 
dynamics of each vowel in the phase space. The 
embedding parameters gave important information 
about the different emotions: an almost unchanged 
value of the average of ݉ distributions among the six 
groups prove that the dimension of the space does not 
vary and that this parameter can be considered uniform 
for the general analysis of speech signals. On the other 
side, the unequal distributions of ߬ suggests that the 
trajectories in the phase space are linked to different 
information rate of the vowels belonging to distinct 
emotions. 

For these reasons, the behavior of the trajectories 
of vowels dynamics were explored by means of 
recurrence plots. Different RQA measures were 
extracted to describe RPs quantitatively. In particular, 
the computation of these measures was performed by 
using moving windows along the LOI of the RP of 
each vowel frame to explore their time dependent 
behavior. All the reconstructed trends of each RQA 
measure were grouped by emotion and a statistical 
analysis was carried out to verify whether these 
measures were able to describe the different 
mechanisms underlying the dynamics of each 
emotion, regardless of the speaker or of the sentence. 
The multiple pairwise comparisons test has shown that 
all the RQA measures result statistically significant for 
discriminating the six groups of emotions with the 
exception of RATIO, LAM, TT and ௠ܸ௔௫	for the couple 
neutral-boredom and L for the couple fear-happiness. 

These results confirm the observations made in 
Section 4.3, concerning the statistical values shown in 
Table 4 and the qualitative considerations on the 
examples shown in Fig. 4: boredom and neutral exhibit 
both comparable quantitative values and similar 
graphical patterns. In addition, the RPs of these two 
emotions are highly diagonal-oriented, so measures 
based on vertical lines are ineffective for 
discriminating between the two emotional levels. 

In this case, ܶଶ, which is related to the lengths of 
white vertical lines, can be more efficient. 
Furthermore, it can be observed that there is a 
relationship between the rank of the emotions based 
on the median values of the diagonal and vertical lines-
based RQA measures and their levels of activation (or 
arousal): the emotions with the highest median values 
are also those with less activation, while emotions with 
higher activation exhibit lower median values. 

In conclusion, it can be observed that certain RQA 
measures can better discriminate among the basic 
emotions examined; however it must be hold in 
consideration that some of them are dependent on each 
other, so a future development could include a 
multivariate analysis to identify a subset of measures 
that perform a better characterization of the different 
emotional levels. Such measures could be added to the 
features traditionally used in the literature to try to 
build a more efficient SER classifier. 
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Table 4. Means, variances, medians, interquartile range values and Kruskal-Wallis test results. The medians of the RQA 
measures with the highest statistics of the test ߯ଶare shown with bold borders (for a complete discussion see Section 4.3). 

 
 Fear Happiness Boredom Neutral Sadness Anger K-W Test 

RATIO 

mean 
std 

median 
iqr 

0.13 0.12 0.13 0.14 0.18 0.10 ߯ଶ = ݌ 17136.13	 = 0 
0.19 0.19 0.17 0.21 0.21 0.18 
0.06 0.05 0.07 0.07 0.10 0.04 
0.10 0.09 0.09 0.10 0.13 0.07 

DET 

mean 
std 

median 
iqr 

0.65 0.65 0.70 0.71 0.71 0.61 ߯ଶ = ݌ 9736.93	 = 0 
0.25 0.25 0.24 0.24 0.25 0.25 
0.54 0.55 0.64 0.75 0.63 0.50 
0.48 0.47 0.48 0.49 0.49 0.47 

L 

mean 
std 

median 
iqr 

8.26 8.07 9.77 10.39 11.73 7.00 ߯ଶ = ݌ 16290.25	 = 0 
9.48 9.36 9.23 10.25 11.43 8.77 
5.22 5.21 6.86 7.06 8.08 4.51 
6.20 5.59 7.53 8.30 9.55 4.65 

 ௠௔௫ܮ

mean 
std 

median 
iqr 

57.51 60.69 65.72 63.32 70.23 53.14 ߯ଶ = ݌ 6466.76	 = 0 
37.16 37.23 35.57 35.86 37.30 37.83 
52.00 54.50 57.50 56.00 64.00 46.50 
59.00 61.50 54.00 57.00 51.50 57.00 

ENTR 

mean 
std 

median 
iqr 

1.51 1.47 1.67 1.71 1.80 1.33 ߯ଶ = ݌ 10993.54	 = 0 
0.85 0.85 0.83 0.89 0.93 0.81 
1.28 1.26 1.46 1.49 1.55 1.14 
1.09 1.05 1.15 1.21 1.26 0.94 

LAM 

mean 
std 

median 
iqr 

0.63 0.61 0.68 0.68 0.69 0.55 ߯ଶ = ݌ 10363.09	 = 0 
0.26 0.27 0.25 0.25 0.25 0.27 
0.49 0.49 0.49 0.57 0.49 0.49 
0.49 0.49 0.49 0.49 0.49 0.48 

TT 

mean 
std 

median 
iqr 

4.11 4.84 4.87 5.09 6.28 3.53 ߯ଶ = ݌ 18147.99	 = 0 
5.11 5.25 5.50 6.21 7.15 5.12 
2.79 2.55 3.35 3.30 4.08 2.35 
2.56 2.31 3.12 3.21 4.42 2.06 

௠ܸ௔௫ 

mean 
std 

median 
iqr 

11.90 10.87 14.13 14.96 19.00 10.25 ߯ଶ = ݌ 19165.64	 = 0 
16.64 17.40 17.62 19.28 22.03 17.31 
7.00 6.00 8.00 8.00 11.00 5.00 
8.00 6.50 10.00 11.00 16.00 7.00 

ܶ(ଶ) mean 
std 

median 
iqr 

15.78 18.69 12.31 12.06 11.12 19.96 = ݌ 31404.79	 = 0 
10.43 10.53 9.81 9.89 9.92 11.22 
13.83 16.26 9.34 9.08 7.78 17.27 
14.99 14.92 11.90 11.93 10.19 15.20 

 
 

Table 5. p – values of the Dunn’s multiple comparison test for all RQA measures. 
 

Couple of emotions RATIO DET L ܮ௠௔௫ ENTR LAM TT ௠ܸ௔௫ ܶ(ଶ) 
Anger - Boredom * * * * * * * * * 
Anger - Fear * * * * * * * * * 
Anger - Happiness * * * * * * * * * 
Anger - Neutral * * 0.0006 * * * * * * 
Anger - Sadness * * * * * * * * * 
Boredom - Fear * * * * * * * * * 
Boredom- Happiness * * * * * * * * * 
Boredom - Neutral 1.00 * * * 0.0001 1.00 0.07 1.00 * 
Boredom - Sadness * * * * * * * * * 
Fear - Happiness * * * * * * * * * 
Fear - Neutral * * * * * * * * * 
Fear - Sadness * * * * * * * * * 
Happiness - Neutral * * * * * * * * * 
Happiness - Sadness * * * * * * * * * 
Neutral - Sadness * * * * * * * * * 

  
* Statistically significant with a ݌ − ݁ݑ݈ܽݒ < 2 ∙ 10ିଵ଺ 
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