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ABSTRACT: 
 
The aim of the research has been the developing and implementing an algorithm for automated extraction of features from LIDAR 
scenes with varying terrain and coverage types. This applies the moment of third order (Skweness) and fourth order (Kurtosis). 
While the first has been applied in order to produce an initial filtering and data classification, the second, through the introduction of 
the weights of the measures, provided the desired results, which is a finer classification and less noisy. The process has been carried 
out in Matlab but to reduce processing time, given the large data density, the analysis has been limited at a mobile window. It was, 
therefore, arranged to produce subscenes in order to covers the entire area. The performance of the algorithm, confirm its robustness 
and goodness of results. Employment of effective processing strategies to improve the automation is a key to the implementation of 
this algorithm. The results of this work will serve the increased demand of automation for 3D information extraction using remotely 
sensed large datasets. After obtaining the geometric features from LiDAR data, we want to complete the research creating an 
algorithm to vector features and extraction of the DTM. 
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1. INTRODUCTION 

1.1 General introduction 

The LiDAR survey has the main advantage to provide a direct 
method for 3D data collection,infact, it directly collects an 
accurately georeferenced set of dense point clouds, which can 
be almost directly used in basic applications. However, the full 
exploitation of LiDAR’s potentials and capabilities challenges 
for new data processing methods that are fundamentally 
different from the ones used in traditional photogrammetry. 
Over the last decade, there have been many significant 
developments in this filed, mainly resulting from 
multidisciplinary research, including computer vision, computer 
graphics, electrical engineering and photogrammetry. 
Extracting thematic features, including road, building and 
vegetation, from these 3D point clouds are paid much attention 
recently. The processing of LiDAR data is still in an early 
phase of development although LiDAR systems are already in a 
mature state (Flood, 2001). Existing algorithms often exploit 
only part of information contained in LiDAR data, or just focus 
on processing specific scenes, for example, urban or forested 
areas. The penetrable vegetation or solid surfaces can be 
detected if multi-return LiDAR range data are available (Kraus 
et al. 2001). DTM generation is among one of the most direct 
applications for LiDAR data processing. Because the sampled 
LiDAR points are collected from the top of the Earth’s surface 
partly covered by aboveground features, the DTM generation 
needs to identify the terrain points on the bare earth, and to 
remove non-terrain points hit on trees, buildings and other 
constructions based on terrain points. In academic community, 
many algorithms have been developed to process relatively flat, 
urban, forested, mountainous areas, or in a few cases, hybrid 
areas (Weidner and Forstner, 1995; Axelsson, 1999). However, 
these algorithms usually use single-return range data only, and 
omit the valuable information contained in multi-return range 
data or intensity data. However, researchers have to customize 

different versions of these algorithms for different situations. In 
industry community, the adaptive filtering algorithm based on 
TINs was developed by Axelsson (2000), and has been 
implemented in the commercial software TerraScanTM from 
TerraSolid (2001). But, the production procedure needs 
interactive inputs from operators, and heavily depends on 
manual operations to generate high-quality DTMs. LiDAR data 
contains much 3D information about buildings. But buildings 
are highly unstructured segments with very complex contents 
and elevation variations in range data. Buildings can be located 
at any places, and may be surrounded by other objects with 
similar radiometric properties in intensity such as roads. The 
geometric resolution of LiDAR data may be limited due to 
irregular sampling patterns, and tall trees may occlude parts of 
building or house roofs in densely vegetated and built-up areas. 
Many algorithms focus on the detection of building footprints 
because the reconstruction of complex building roofs in 3D is 
very difficult (Baltsavias et al., 1999). The use of LiDAR 
intensity or range data can benefit the separation of buildings 
and vegetation ( Brunn and Weidner, 1998; Elberink and Maas, 
2000; Hofmann, 2001). But building footprints cannot be 
detected fully automatically and reliably and are often assumed 
to be of simple shapes with orthogonal corners such as 
rectangles or low- quality polygons (Weidner, 1995; 
Vosselman, 1999). The reconstruction of 3D building models is 
more difficult and is often limited to simple and specific cases 
assuming rectilinear footprints, parametric shapes, flat or 
symmetric sloped roofs (Weidner and Forstner, 1995; Lin et al. 
2008; Maas and Vosselman, 1999; Vosselman, 1999; 
Vosselman and Dijkman, 2001; Elaksher and Bethel, 2002). 
 
1.2 Area test and Dataset 

The Oria data set provided by Geocart s.r.l. Engineering 
Company The equipment included a RIEGL LMS-Q560 laser 
scanner. The instrument makes use of the time-of-flight 
distance measurement principle of nanosecond infrared pulses. 
Fast opto-mechanical beam scanning provides absolutely linear, 
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unidirectional and parallel scan lines. The instrument is 
extremely rugged, therefore ideally suited for the installation on 
aircraft. Also, it is compact and lightweight enough to be 
installed in small twin- or single-engine planes, helicopters or 
UAVs. The range and intensity images have a spatial resolution 
of 0.15 m. The data are in UTM33, based on the WGS84 
coordinate system. The data files are in simple LAS format with 
three ground coordinates and intensity values. The data sets 
have been processed with the hierarchical approach of the filter 
algorithm described above. Default values have been used for 
the parameters of the filter and no manual editing was 
performed. Tuning the parameters might have improved the 
result slightly but at the expense of more time spent. First, all 
strips were combined to one file. We used the whole data set 
(16717951 pts), which contains all the recorded echoes (pulses), 
because our aim was to filter the vegetation and houses and 
obtain a ground model. The covered area is ~ 600 m for ~ 600 
m and for practical reasons the Oria dataset was split in four 
areas. The amount of information contained in such high-
density 3D point clouds is enormous. Only two parts has been 
treated in more detail. The size of these sample areas are 19600 
m2 (Area Test I) and 13500 m2 (Area Test II) (figure 1). 
 
 

    
 

Figure 1 - LiDAR dataset: Area test I and Area test II 
 
The Area Test I is a typical suburban area with large terrain 
relief. Dense trees cover most area since the data was acquired 
in summer. In the center, there is the castle. At the east part, 
there are hills with large undulations, so this scene has high 
complexity. The Area Test II scene is a typical urban scene. 
This study area has relatively gentle variations in elevation, 
almost a relatively flat urban region. There are many small to 
large buildings, but few trees and cars on roads, the houses are 
larger but lower than the trees, and the buildings and trees are 
loosely sited. So this scene has medium complexity. As it can 
be seen (a small parts of the whole area, which can be seen in 
the left upper side of figure 1) there is a good mixture of ground 
and off-terrain points, including especially points on building 
roofs but also vegetation points (houses, vegetation and 
negative gross errors which have to be eliminated from the data 
set). The average point density is 50 pts/mq. The Area Test I is 
a typical suburban area with large terrain relief. Dense trees 
cover most area since the data was acquired in summer. In the 
center, there is the castle. At the east part, there are hills with 
large undulations, so this scene has high complexity. The Area 
Test II scene is a typical urban scene. This study area has 
relatively gentle variations in elevation, almost a relatively flat 
urban region. There are many small to large buildings, but few 
trees and cars on roads, the houses are larger but lower than the 
trees, and the buildings and trees are loosely sited. So this scene 
has medium complexity. 
 
1.3 Elaboration with SCOP++ and DTMaster 

The raw LiDAR points for Area Test have been processed with 
SCOP++ and classified into five classes, including bare surface 

(brown), building (cyan) and high, medium and low vegetation 
(green). Analysis of results suggests a misclassification for 
building points, problems for attached to building vegetation 
and for very steep profile terrain (figure 2). 
 
 

 
 

Figure 2 – SCOP++ Area test I 
 

DTMaster was used to improving the results gotten by SCOP++ 
or rather has been used to manual edit and refine the output of 
SCOP++ elaboration. Within DTMaster, it is possible to work 
on top, perspective or profile views. Figure 3 show the results 
obtained for Area test I. Each of them required more than two 
full days of work, despite their small area and there are present 
not so many buildings. 
 
 

 
 

Figure 3 - DTMaster Area test I 
 
 

2. EXPERIMENTAL ALGORITHM DEVELOPED 

2.1 Developed Algorithm 

The approach adopted addresses the separation of ground and 
object points in LiDAR data according to the following 
definitions. Ground points include the top layer soil, thin man-
made layering such as asphalt or tarmac as defined as bare earth 
in (Sithole and Vosselman, 2003). At this stage, grass and very 
low vegetation are also considered as ground points. Object 
points including detached objects (buildings, trees and bushes) 
and attached objects (bridges and ramps) as described in 
(Sithole and Vosselman, 2003) are segmented, too. Data set 
used, has been provided in LAS format, so it was necessary to 
use Terrascan software, to convert LAS file in to a MATLAB 
recognizable format such as TXT. The proposed algorithm 
works on balancing the distribution of points in LiDAR data. 
Statistical measures of distribution are independent from the 
relative position of the points. That is why they do not have to 
be regularly arranged in a DSM. Therefore, the proposed 
technique works also on raw point clouds. As kurtosis and 
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skewness both express the characteristics of the point cloud 
distribution, they can equally be treated as termination criteria 
in a segmentation algorithm. In this unsupervised segmentation 
algorithm, skewness is chosen as a measure to describe the 
point cloud distribution. This algorithm, shown in figure 4, 
works as follows: first, the skewness of the point cloud is 
calculated; if it is greater than zero, peaks dominate the point 
cloud distribution; thus, the highest value of the point cloud is 
removed by classifying it as an object point; to separate all 
ground and object points, these steps are iteratively executed 
while the skewness of the point cloud is greater than zero; the 
remaining points in the point cloud finally belong to the ground. 
 
 

 
 

Figure 4 – LiDAR data extraction 
 
The algorithm is divided into four steps. The first step allows us 
to crop a portion of user-defined area then which performs the 

processing. The cutting is done by choosing the dimension of 
window (in this paper 15x15 or 30x30) and choosing, here, the 
element i-th and j-th belonging to the dataset  matrix to the 
corresponding area test. The second step performs the data 
analysis and determines the estimated parameters, the third step 
performs, based on the parameter skewness calculated in the 
previous step, the separation between ground points and object 
points. 
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where: SK=Skewness; iz =altimetric coord.; z =mean zi; 

σ =standard deviation. 
 
The skewness (1) shows any asymmetry, if the mean of cubic 
residual is positive means that the distribution has a tail to the 
“right” (for values greater than the mean), otherwise it has a 
negative tail to the left. In order to obtain a measure of 
asymmetry with which to compare distributions that span 
several orders of magnitude and not depend on the unit of 
measurement used, is convenient to express the mean of the 
cubes of residuals in a unit that is “natural “ distribution of 
interest. This scale is a natural choice to be the cube of the 
standard deviations. 
Finally, the fourth step allows, based on kurtosis (2) and 
through the introduction of the weights of the measures, to 
obtain the desired results, which is a finer classification and less 
noisy. 
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where  KU=kurtosis; kw =weight; Pz =weighted mean.  
 
The latest measure executed, kurtosis, indicates the sharpness of 
the distribution, or rather if the shape is more reminiscent of a 
sharp peak “or” a kind of “plateau” (apart from the obvious 
“irregularities'') has been built from a weighted mean of the 
fourth degree of the residuals, properly scaled to the fourth 
power of the standard deviation. The choice of weights has been 
properly assessed on the basis of minimum value certainly 
belonging to the ground by introducing a discretization in bands 
decreased with weight up, or rather to the increasing distance 
from the presumed location of the ground. The determination of 
weights is directly related to the average slope of the data sets 
investigated, using a principle of polynomial interpolation. 
 
2.1.1 Results 

Results for same defined region of the Area Test I and Area 
Test II are depicted in figure 5 and 6 (with legend bars 
measured in meters) with the purpose to show how the analysis 
of the skewness parameter is effective for classification in 
Terrain and Off-terrain points. The following figures shows 
several example of the result gotten by the developed Matlab 
code. Figure 5 (sx) represents a sub-region (15x15 mq) of the 
Area Test I, where it is possible to distinguish a building 
façade, the road and two tall trees. Figure 5 (dx) shows the 
relative point cloud in false colors representing the skewness 
distribution. Figures 6 show a window 15x15 mq, in perspective 
view, of the last echo DSM of a portion of the Area Test II, 
with characteristics of urban area with buildings of different 
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height and the ground (road) and the relative skewness 
distribution. 
 
 

      
 
Figure 5 – Area Test I - Window 15x15 mq: (sx) Raw point 
cloud; (dx) Skewness distribution 
 
 

      
 
Figure 6 – Area Test II - Window 15x15 mq: (sx) Raw point 
cloud; (dx) Skewness distribution 
 
 

      
 
Figure 7 –- Window 15x15 mq Terrain (yellow) vs. Off-Terrain 
(red) points distribution: Area Test I (sx); Area Test II (dx) 
 
Using the skewness algorithm object and ground points, 
respectively red and yellow, have been separated as depicted in 
figure 7. In particular, is show the point clouds classified in the 
two class Terrain (yellow) and Off-Terrain (red) points for each 
area test. Using the kurtosis algorithm has been possible to 
obtain, relatively to the ground points, a clear reduction of noise 
(figure 8) and the emphasis of the ground (figure 9). In 
particular, the comparison of the figures 9 and 10, for the same 
subscene, shows the goodness and the efficiency of the 
implementation of kurtosis.  
 
 

      
 
Figure 8 – Area Test II - Window 15 m x 15 m, Kurtosis: (sx) 
Noise distribution top view; (dx) Noise distribution perspective 
view 

    
 
Figure 9 – Area Test II - Window 15 m x 15 m, Kurtosis: (sx) 
Terrain points distribution top view; (dx) Terrain points 
distribution perspective view 
 
 

    
 
Figure 10 – Area Test II - Window 15 m x 15 m, Skewness: 
(sx) Terrain points distribution top view; (dx) Terrain points 
distribution perspective view 
 
2.2 Roofs Extraction 
The next step has been the extraction of buildings between the 
Object points. To this end, it was executed the RANSAC 
algorithm to detect plans (flat roof and roof pitch of buildings). 
The RANSAC algorithm (RANdom Sample And Consensus) 
was first introduced by Fischler and Bolles in 1981 as a method 
to estimate the parameters of a certain model starting from a set 
of data contaminated by large amounts of outliers. Despite 
many modifications, the RANSAC algorithm is essentially 
composed of two steps that are repeated in an iterative fashion 
(hypothesize-and-test framework): 
1. Hypothesize. First minimal sample sets (MSSs) are 
randomly selected from the input dataset and the  model 
parameters are computed using only the elements of the MSS. 
The cardinality of the MSS is the smallest sufficient to 
determine the model parameters (as opposed to other 
approaches, such as least squares, where the parameters are 
estimated using all the data available, possibly with appropriate 
weights).  
2. Test. In the second step RANSAC checks which elements 
of the entire dataset are consistent with the model instantiated 
with the parameters estimated in the first step. The set of such 
elements is called consensus set (CS). 
RANSAC terminates when the probability of finding a better 
ranked CS drops below a certain threshold. In the original 
formulation the ranking of the CS was its cardinality (i.e. CSs 
that contain more elements are ranked well than CSs that 
contain fewer elements). RANSAC.m is the driver function that 
implements the RANSAC algorithm in MATLAB. It is possible 
to utilize RANSAC to identify points in R3 that belong to a 
plane in the space (i.e. to an affine linear manifold in R3) and 
simultaneously estimate the parameters of such manifold. 
Figure 11 and figure 12 show the results for the whole Area 
Test I and Area Test II, respectively. The LiDAR points hit on a 
building’s roof are retrieved from the raw LiDAR points by 
doing RANSAC test. At this point, a building model consists of 
a number of roof points, which can be triangulated to give a 
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rough delineation of the whole outer surface of a building 
including its footprint, roof and walls. 
 
 

.(a)  (b) 
 
Figure 11 – Area Test I: (a) Terrain (yellow) vs. Off-Terrain 
(red) points distribution top view; (b) Roof points detected top 
view 
 
 

  (a)   (b) 

  (c) 
 
Figure 12 – Area Test II: (a) Raw point cloud (viewed by 
intensity value); (b) Terrain (yellow) vs. Off-Terrain (red) 
points distribution top view; (c) Roof points detected top view 
 
TIN is widely used to model surfaces. A building was 
triangulated in 2D and was then visualized in 3D as shown in 
figure 13 (a). However, this kind of approximation still exhibits 
too many vertices and facets, and their direct use in GIS will 
lead to inefficient manipulations. To represent the building’s 
surface, we remove redundant edges, a part of which are outside 
the polygon in 2D. Figure 13 (b) shows the corresponding 
constrained 3D model representation. 
 
 

  (a)    (b) 
 
Figure 13 – Triangulated building surface models: (a) TINs of 
building surface points; (b) Constrained 3D Model 
 
The results obtained have shown a clear separation of detached 
and most of the attached objects from the ground. Applying 
RANSAC algorithm for the identification of plans, finally 
allowed the detection and extraction of the points making up the 
roofs of buildings. Quantities and quality measures are 

performed for above building extraction results. These building 
models were compared with their corresponding patterns in the 
orthophoto or CTR shape file (figures 14-15). 
 
 

    (a)    (b) 
 

    (c)      (d) 
 

Figure 14 – Area Test I: (a) Orthophoto; (b) CTR shape file; (c) 
Roof points detected; (d) Overlay 
 
The rule for determining a match is that the polygon model has 
an overlap larger than about 75% with the observed building 
patterns. The buildings sited on the boundaries of the study 
areas are not counted since it is difficult to detect them due to 
the shortage of complete information. 
 
 

  
(a)                                              (b) 

  
(c)                                             (d) 

 
Figure 15 – Area Test II: (a) Orthophoto; (b) CTR shape file; 
(c) Roof points detected; (d) Overlay 
 
The building extraction results for the two Area Test I and Area 
Test II are very good since this scene is of high and medium 
complexity. The completeness and correctness are as high as 
95% and 88%, for the Area Test I and are 93% and 87%, for the 
Area Test II, respectively. Very few vegetation objects are 
classified as buildings. The vegetated objects are identified 
correctly either by shape measures or by the removal of small 
objects. One of the parameters that most affects the results in 
the roof points extraction is the size of the moving window 
(figure 16). Indeed, for small size (i.e.1 m) there could be a 
Non-ground points over-classification, while for large size (i.e. 
50 m) there could be a Ground points over-classification. 
However, some classification errors can be detected in the 
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presence of land with slopes very high since, under these 
conditions, the geometric features of the ground are too similar 
to those of buildings (figure 17). 
 
 

 
 

Figure 16 – Biases in Roof points detection due to moving 
window size 
 
 

    
 

Figure 17 – Biases for very steep terrain 
 

3. CONCLUSIONS AND FUTURE PERSPECTIVES 

In this work, an automated, robust and efficient algorithm for 
building and ground extraction from LiDAR data is presented. 
Working on the original, un-gridded point cloud, measures of 
distribution have been used to characterize the point cloud 
distribution and subsequently to filter it. The skewness 
algorithm has implemented for object and ground point 
separation. The results presented have shown a clear separation 
of detached and most of the attached objects from the ground. 
The fourth step, or rather, the kurtosis has improved the results 
obtained with the skweness relative to the ground, giving more 
realistic results. Furthermore, applying the RANSAC algorithm, 
has been identified the plans for coverage of buildings. The 
results presented have shown that  the proposed algorithm is 
robust and has potential commercial applications since it is 
efficient and straightforward to Implement, compared to 
software SCOP + +   and DTMaster that, even though they 
produce good results, required considerable manual 
intervention. However, the implementation of the algorithm in 
matalab, that present the same results for the 15x15 and 30x30 
windows, require significant processing time,  about 1500 
pts/sec and 800 pts/sec. 
For future work, the algorithm will be extended to other 
datasets and to even more complex scenes in order to make it 
robust, also, against very sloped areas. The algorithm will be 
written in another programming language in order to obtain 
major processing speed. The issue of detecting all attached 
objects will be addressed, too. It is also planned for further 
research to classify the detected object points (attached and 
detached objects) into finer categories, it will be taken into 
account the investigation on the intensity data. 
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