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Abstract: The research of a general methodology to predict the pump performance in a reverse
mode, knowing those of a pump in a direct mode, is a question that is still open. The scientific
research is making many efforts toward answering this question, but at present, there is still not much
clarity. This consideration has been the starting point of this research that thanks to artificial neural
networks and evolutionary polynomial regression methods have tried to investigate and define the
real weight of every input parameter, representing the efficiency of a pump in a direct way, on the
output parameters, and representing efficiency of a pump used like a turbine.

Keywords: pumps as turbines; artificial neural networks; evolutionary polynomial regression;
multi-objective optimization

1. Introduction

Electric vehicles (EVs), as an alternative to fuel vehicles (FVs), are considered zero emission cars.
This statement is actually a half-truth; in fact, while EVs drastically reduce polluting emissions, more
EVs will require more and more energy and the question becomes: how will this energy be produced?
The European Environment Agency (EEA) [1] has tried to make assumptions about the future number
of EVs and what their impact could be. In an optimistic scenario, the percentage of EVs by 2050 will be
80%; however, in a more realistic scenario, EVs in 2050 will represent half of the vehicles in circulation.
It is only a hypothesis, but in future, EVs will be widespread and governments, even if the times
remain unknown, will have to face the following problem: the FVs will be replaced by EVs and the
electricity demand will increase very fast.

The future road transport and electric power sectors will become more closely linked if there
is a wide uptake of electric vehicles in the European Union (EU). Recent findings from the EEA
show that, if a hypothetical 80% of cars in 2050 will be electric, an additional 150 GW of additional
electricity generation capacity would be needed across the EU. The risk, however, is that despite the
great advance in mobility, global emissions will not drop and pollution will double. If most world
governments, in fact, will keep relying on fossil fuel, the problem of pollution will shift from cars to
power plants. The European Environment Agency suggests covering the additional 150 GW required
by the advanced scenario for powering EVs with renewable energies with the following subdivision:
87 GW from wind power, 45 GW from photovoltaic, 24 GW from hydropower, and 13 GW from
biomass [1].

The last statement highlights a very interesting question in terms of water resources because
the hydropower generation, which is probably the oldest renewable energy source [2], is nowadays
extensively exploited and the energy produced is already sent into the electric grid. Hydropower is
already a mature technology in Europe, with an estimated total installed capacity of 294 GW [3]. Most
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of the hydropower potential is developed in northern Europe and alpine regions; in particular, Italy
already has an installed hydropower capacity of 21.9 GW; however, most of the unutilized potential is
concentrated in eastern Europe. Today the majority of investments in Europe are concerned with the
renovation of existing facilities to minimize environmental impacts, improve efficiency, flexibility, and
system resilience.

However, if on one hand the large- and medium-hydroelectric sector has been exploited
extensively, and at the same time, the potential reduction of water resources due to extensive agriculture
and drinking water demand grows, on the other hand small-, mini-, and micro-hydropower may
represent an optimal and useful solution to produce energy from small water streams supplying rural
centers and hilly areas. An interesting opportunity is represented nowadays by the energy recovery
from water distribution networks (WDNs) converting water pressure in excess into electric energy or
using hydraulic jumps in open channels.

Pressure control is one of the most important issues in optimizing the operation of WDNs [4].
Currently, a common practice that aims to control and reduce leakages involves the installation of
pressure reduction valves (PRVs) in those points of the WDN where the pressures are high. A novel
approach consists of installing pumps-as-turbines (PATs) or replacing PRVs already installed into
the WDN and producing significant amount of energy converting water pressure into electric energy.
Undoubtedly, the flow rate and water pressure are extremely variable at every point of a WDN;
however, there are nodes of the network whose elevation is the lowest of the surrounding nodes,
where often the pressure is greater than necessary. Technical literature summarized several examples
about PAT devices in a real aqueduct or WDN: Muhammetoglu et al. [5] reported the results of a PAT
system installed on a by-pass line of the Antalia (Turkey) WDN and demonstrated how the system is
able to produce energy between 0.7 and 7 kWh. Rossi et al. [6] selected the optimal PAT to insert into
the aqueduct of Merano, a town located in South-Tyrol. Puleo et al. [7] analyzed the potential energy
recovery obtained through the use of PAT devices installed in a district metered area in Palermo (Italy)
with private tanks and their filling/emptying process. Samora et al. [8] presented a feasibility study of
the installation of micro-turbines in the WDN of Fribourg (Switzerland). Furthermore, Balacco et al. [9]
pointed their attention to coupling a PAT system for the recovery of excess pressure levels in a WDN
throughout the day with a dedicated system that supplies electric energy for the recharging points
of EVs with the double advantage of turbinating water energy otherwise lost and providing electric
energy “on site,” avoiding saturation of electric grids by putting energy into the same ones.

Nowadays, PATs are an optimal compromise for the growth of energy production in a WDN
thanks to their low cost compared with traditional turbines, a wide range of sizes and specific speed
numbers. However, even if the technical literature is rich in studies, models, and pilot experiences [2,10],
water management authorities and local administrations still fear and doubt PATs’ effectiveness for
the recovery of energy into a WDN. Many doubts are due to scarce technical information provided
by pump manufacturers about their machines operating under reverse mode. In addition to the
above-mentioned limits, it should be highlighted that there is a large variability of hydraulic working
conditions in a WDN and the necessity to guarantee pressure head at each node within a well-defined
interval, which is indispensable to satisfy water demand at any time. Considering these aspects,
Carravetta et al. [11] proposed three different approaches to regulate a PAT inserted in parallel into a
WDN: a hydraulic regulation thanks to control valves, an electric regulation thanks to inverters, and a
combined regulation system.

The best efficiency point (BEP) parameters in turbine mode (BEPt) are quite different from those
in pump mode (BEPp); the relation between the pump and turbine modes is not the same for all type
and size of machine and depends on the specific speed and the losses incurred expressed in terms
of machine efficiency [12]. For the sake of clarity, flow through impellers of a machine in a pump
mode is subjected to a secondary flow known as “circulation loss,” which is due to the rotation of the
impeller; this secondary flow in reverse mode is negligible since it is located at the inner periphery of
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the impeller. Because of this phenomenon, both the flow rate and head at the BEP are bigger in reverse
mode than in normal operation.

Based on this consideration, a correction factor is normally adopted for both flow rate and head rate:

q =
Qt

Qp
, h =

Ht

Hp
(1)

A different approach has been adopted by a few researchers [13–16] by representing numerical
and experimental results with a non-dimensional approach:

ψ =
gH

n2D2 , φ =
Q

nD3 , π =
P

ρn3D5 (2)

and defining several regression curves that put these three parameters in relation to each other.
In particular, Fontana et al. [17] conducted an experimental and numerical analysis and highlighted
how the regression curves for ψ and π can be better described with the following equations:

ψ = 280.3φ2 − 27.55φ + 4.156 (3)

π = 24.01φ3 + 27.60φ2 + 0.126φ− 0.148 (4)

These equations showed a very good agreement with experimental data inferred for a flow
number φ < 30 since they observed how the optimal operation of a PAT is reached for a φ value of
about 0.12, and for this reason, regression curves can be obtained by fitting data for a restricted flow
number field.

As a whole, the common interest of part of the scientific community is still to define a general
methodology for pump performance in a reverse mode, known as the optimal conditions of operation
of a pump. Table 1 summarizes some of suggested models to predict PAT performance: flow ratio
(q) and head ratio (h). Expressions have been subdivided in chronological order and grouped into
two classes, the first based on the BEP parameters [18–27] and the second based on the specific speed
number (Ns) [13,28–33].

The same table shows how there is still no clarity on this issue, expressions are often very different
from each other in numerical terms, and the parameters on which they depend on are not always
the same.

In this framework, and considering the complexity and difficulty to define a general law for
the BEP of a PAT, a beneficial strategy is to adopt an estimation approach for the PAT selection that
investigates the role of the candidate input parameters with the aim to define the model structure.
An estimation approach permits one to seek all possible models; nevertheless, it is necessary to identify
those having a physical meaning. Starting from this consideration, Venturini et al. [34] presented
a comparison of different approaches that can be used for the prediction of a PAT: a physics-based
model; two models called “gray,” supported by literature data and based on a priori knowledge of
the physical process but without a priori knowledge of the parameters influencing the process; and
finally an evolutionary polynomial regression (EPR) model using field data. Values predicted by the
four models and compared to the original literature experimental data [30] showed a good agreement
with the latter, even if the EPR goodness is clearly well-founded on the input database dimension.
Rossi and Renzi [35], using a non-dimensional approach, adopted artificial neural networks to forecast
both BEP and PATs performance in reverse mode by fitting operating data extrapolated from technical
literature. However, the obtained formulas in both applications, even if showing a very good fitness,
are extremely complicated and characterized by a polynomial structure with numerous terms that are
difficult to interpret from a physical point of view.
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Table 1. PAT performance models in chronological order.

Year Researcher Criteria Head Ratio Equation (h) Flow Ratio Equation (q) Notes

1957 Stepanoff [18] BEP 1
ηp

1√
ηp

40 < Ns < 60

1962 Childs [19] BEP 1
ηp

1
ηp

1963 Hancock [20] BEP 1
ηp

1
ηp

1976 McClaskey [21] BEP 1
ηp

1
ηp

1980 Grover [28] NS 2.693− 0.0229Nst 2.379− 0.0264Nst 10 < Ns < 50

1982 Hergt [29] NS 1.3− 6
Nst−3 1.3− 1.6

Nst−5

1985 Sharma [22] BEP 1
ηp1.2

1
ηp0.8 40 < Ns < 60

1986 Gopalakrishnan [23] BEP 1
ηp2

1
ηp

1988 Schmiedl [24] BEP −1.4 + 2.5
ηhp

−1.5 + 2.4
ηhp

2

1994 Alatorre-Frenk [25] BEP 1
0.85ηp5+0.385

0.85ηp
5+0.385

2ηp9.5+0.205

1998 Sharma [26] BEP
[

Ng
Nm

]2
× 1.1

ηp1.2

Ng
Nm
× 1.1

ηp0.8 Ng = 240× f
p − N

2008 Derakshan and
Nourbakhsh [30] NS both f (Nst) considering Nsp = 0.3705Nst + 5.083 Ns < 60

2009 Singh [13] NS both f (Nst) considering Nst = 0.94Nsp − 3.12

2011 Nautiyal [27] BEP 41.667
[
(ηp−0.212)

ln(Nsp)

]
− 5.042 30.303

[
(ηp−0.212)

ln(Nsp)

]
− 3.424

2012 Yang et al. [31] NS
1.2

ηp1.1
1.2

ηp0.55

2016 Tan and Engeda [32] NS 1
HBEP,P

(
ωD0

Nst Dst g0.75

)2 ωD0
3

QBEP,P Nst Dst
3g0.75

2017 Stefanizzi [33] NS both f (Nst) considering Nst = 0.9237Nsp − 2.6588

The technical literature (see Table 1) shows a considerable dispersion in terms of formulas to
predict the performance of a pump in turbine mode. The parameters that influence the phenomenon
in each formula not only change, but above all, the exponent with which to represent them is different
for each of them. In the light of the above-mentioned studies, the present paper conducted a sensitivity
analysis on a PAT efficiency while knowing the pump efficiency in direct mode. Sensitivity analysis has
been carried out by comparing results of artificial neural networks (ANNs) and EPR methodologies
with the aim to understand the real weight of every input parameter on the evaluation of a PAT
performances while knowing those of a pump in a direct mode.

In detail, the paper makes use of a multi-objective genetic algorithm (MOGA) strategy to address
the optimal design of ANN [36,37] with the aim of finding the optimal trade-off among parsimony
and accuracy for the returned models. In addition, EPR has been applied with the aim to identify a
relation between some of the input candidates and every output parameter.

In order to guarantee a more general applicability of the prediction model for PAT performance,
the analysis is supported by an input literature database [6,13,16,30,31,33,38–40] consisting of pumps
operating in a range of specific speeds from 9 to 80 (rpm) and characterized by several impeller sizes.

The rest of this paper is organized as follows. Section 2 of this paper summarizes the adopted
methodology, Section 3 describes the considered case study, and finally Section 4 presents the obtained
results and a comparison between two adopted methodologies.

2. Two Modeling Approaches

2.1. Artificial Neural Networks (ANNs)

ANNs represent a data-driven technique useful to model non-linear relationships and, more
generally, complex phenomena barely modeled by classical methods. For this reason, a similar approach
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does not return explicit equations but conducts a sensitivity analysis with the aim to quantitatively
describe the observed phenomenon, obtaining one or more output given an input data set.

Using ANNs, a researcher has to face the selection of the input data and the selection of the
number of hidden neurons. In the present study, a particular tool of ANN named ANN MOGA (ANNs
using a multi-objective genetic algorithm) developed by Giustolisi and Simeone [36] is applied; this
tool is based on a particular structure of ANNs known as an input–output dynamical neural network
(IODNN) [41]. ANN MOGA permits one to go beyond the innate difficulty of ANNs, minimizing the
model’s input dimension and the number of hidden neurons; in this way it guarantees the results
accuracy and assures the model’s parsimony. A multi-objective analysis is performed, simultaneously
minimizing the fitness of the returned models, the number of the hidden neurons, and the number of
the input variables. The multi-objective approach is based on the Pareto dominance criterion and an
evolutionary strategy has been used to solve the combinatorial optimization. A general structure of
IONN can be represented as [42–44]:

ŷ(t, W1, W2, K) =
s

∑
j=1

(
KjW1i × ϕ(t) ·W2i

)
+ W20 (5)

where ŷ(t, W1, W2, K) and ϕ(t) are, respectively, the model’s output and input at time t, which depends
on its recurrent structures [43,44]; and W1 and W2 are first and second layer weights, respectively
(Figure 1). This paper uses an ARX (Auto-Regressive eXogeneous) model’s input (the name of the
related ANNs structure is NARX) [44]; this input’s structure is characterized by three parameters (na, nb,
nk), where nb and na are the number of inputs x and outputs y, while nk is the related delay expressed
in units of time. Consequently, Kj is referred to as the kernel and its argument is a hyper-plane in
the space Rd + 1 since it is a linear combination of d (= na + nb for NARX structure) elements of the
input space and the bias and, finally, the weights W1i,j, where i ∈ [0, d] and j ∈ [1, s] represent scale
parameters [45].
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Figure 1. IODNN with an ARX regressor [45].

After an initial selection of the number of hidden neurons (s), the input matrix, and the transfer
function (K), the training is performed by solving a least squares non-linear optimization problem
using the Levenberg–Marquardt approximation [46] and the adaptive search direction [44]. The core
of the modeling problem concerning the ANN construction is that, normally, the user has to select the
dimension of the model’s input and its components; therefore, in this application the selection of both
the model’s input and the number of hidden neurons for IODNN is a combinatorial problem because,
for a given accuracy, there is a great number of possible combinations to examine in order to look for
the optimal solution in terms of the coefficient of determination (CoD). Finally, all possible results are
selected by minimizing three objective functions: the number of input variables, the number of hidden
neurons, and (1 − CoD).
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2.2. Evolutionary Polynomial Regression (EPR)

ANNs models, even if able to describe complex phenomenon learning from data, do not permit
the return of an explicit formula and do not provide a clear relationship between input parameters
and output. An alternative is represented by EPR techniques [45] that use an evolutionary search to
determine the structure of the polynomial expression and the least squares approach to determine the
regression coefficient.

The EPR technique is a two-stage technique for constructing symbolic models: structure
identification and parameter estimation. The EPR searches for symbolic polynomial structures in the
first stage using a simple genetic algorithm (GA) and estimates constant values of polynomials by
solving a least squares (LS) linear problem in the second stage, thus assuming a biunique relationship
between a structure and its parameters [37].

The EPR framework allows the user to choose among different pseudo-polynomial expression
structures:

Y = a0 +
m

∑
j=1

aj(Xi)
ES(j,1) · . . . · (Xk)

ES(j,k) · f ((Xi)
ES(j,k+1)) · . . . · f ((Xk)

ES(j,2k)) (6)

where aj = adjustable parameter for the jth term; a0 = optional bias; m = number of terms in the
polynomial expression; Xk = the kth column of the matrix of inputs X; ES = matrix of candidate
exponents; f (•) is a function defined by the user among a set of available functions (logarithm,
exponential, hyperbolic tangent, hyperbolic secant); and Y = vector of outputs.

The search process performed by EPR within the domain of solution starts from the model structure
(Equation (6)) chosen by the user. EPR looks for the best form of the function, thanks to the GA search
paradigm, and performs the parameter estimation of aj by means of the singular value decomposition
(SVD) in order to make the process of finding the solution to the LS problem more robust.

In order to avoid overfitting of returned models to training data, EPR tries to exploit the known
principle of parsimony by finding the optimal compromise between the model simplicity and the
accuracy of the regression-based returned model. EPR can achieve this purpose by penalizing the
complexity of the returned expressions, controlling the variance of coefficients aj with respect to
their values, and, finally, controlling the variance of polynomial terms with respect to the variance of
residuals. Once this procedure has been completed, the user obtains a set of optimal model solutions
of increasing complexity and different accuracy according to the above-described reasoning. In order
to fully exploit the abilities of the EPR, the set of candidate exponents needed to build the matrix ES
has to include the exponent 0 among others. This allows the search procedure to include in the best
formulas the most important inputs among those available.

Giustolisi and Savic [47] improved the original version of EPR with a multi-objective genetic
algorithm (MOGA-EPR). This algorithm changes the number of m pseudo-polynomial terms
maximizing the model accuracy, minimizing the number of polynomial coefficients, and, finally,
minimizing the number of inputs. The search into the space of solutions problem is solved using
a MOGA approach based on the Pareto dominance criterion, which is named OPTIMOGA. This
algorithm makes the EPR search faster because the search for all models (j = 1, 2, . . . , m) is performed
simultaneously. Therefore, in the evaluation of the more complex optimal expressions, the presence of
such inputs becomes a key point for the final choice of the best model.

3. Case Study

Starting from the state of the art and the literature data, ANNs and EPR models have been
applied for predicting PATs performances. ANNs and EPR are both nonlinear global stepwise
regression approaches providing a sensitivity analysis and a symbolic formulation, respectively,
of the relation between inputs and output datasets. The analysis has been supported by an input
literature database [6,13,16,30,31,33,38–40] including 33 pumps operating with a wide range of specific
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speeds and impeller sizes. The aim of this study has been to forecast BEP performance of a PAT starting
from the operative data referred to BEP of a pump in direct mode. The input values for model training
are represented using flow rate (QBEPp), water head (HBEPp), efficiency (ηBEPp), and specific speed (Nsp)
related to the BEP in direct mode; whereas output values for model training are represented using
flow rate (QBEPt), water head (HBEPt), efficiency (ηBEPt), and specific speed (Nst) related to the BEP in
turbine mode, as well as flow ratio (q) and head ratio (h). On the whole, an input dataset of 132 records
and 198 output data points were adopted into the study.

4. Results and Discussion

4.1. ANNs Application

ANNs methodology does not furnish a formula or a well-defined relation to describe a physical
process but permits one to evaluate the real weight of each input candidate parameter.

The optimization parameters used for all ANNs applications were respectively:

• a hyperbolic tangent transfer function for the neurons also named kernel function;
• an optimization strategy based on three objective functions to minimize: the number of hidden

neurons, the number of inputs, and the value of the function 1 − CoD for fitness on the
validation set;

• a number of generations equal to 100;
• a maximum initial number of hidden neurons equal to 12;
• first layer bias and second layer bias used as decision variables;
• a maximum number of estimated parameters equal to 73.

Results of every ANN prediction are summarized into a table where W10 and W20 are the first and
the second-layer bias indicators, # Xi is the dimension of the model input, # Hid is the number of the
hidden neurons, # W is the number of weights, and % W is the percentage of the weights considering
the maximum number as a reference.

4.1.1. ANNs Prediction for Nst

The ANNs methodology found a Pareto front size of 11 solutions for the specific speed number
Nst. Full details of results are reported in Table 2. Results revealed that the IONN model characterized
by the maximum number of inputs and hidden neurons was also characterized by the higher CoD
value; however, models more parsimonious in terms of hidden neurons and inputs exhibit optimal
performances and the difference between the first and the remaining was irrelevant. Moreover,
solutions were characterized by an 88% average reduction in total parameters and the total inputs
were selected only twice.

Table 2. Pareto front (min(neurons, inputs, 1 − CoD)) of IONNs for Nst.

Parameters of IONNs
CoD

Model Nsp QBEPp HBEPp ηBEPp W10 W20 # Xi # Hid # W % W

1 1 1 1 1 1 1 4 3 19 26% 0.990
2 1 0 1 1 1 1 3 3 16 22% 0.990
3 1 0 1 0 1 1 2 3 13 18% 0.989
4 1 1 1 0 0 1 3 2 9 12% 0.989
5 1 0 1 0 1 0 2 2 8 11% 0.988
6 1 1 1 1 1 1 4 1 7 10% 0.987
7 1 0 1 1 1 1 3 1 6 8% 0.987
8 1 0 0 0 1 0 1 2 6 8% 0.987
9 1 0 1 0 1 1 2 1 5 7% 0.987

10 1 0 0 0 1 1 1 1 4 5% 0.987
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For the sake of clarity, the sensitivity analysis revealed a preeminent role of Nsp that appeared in
all models, followed by the water head HBEPt and efficiency ηBEPt. These data confirm the decisive role
that Nsp exercising on Nst, also confirmed by literature [30,32,33], and starting from this consideration,
the best model, indicated with a gray line (Model 8), has been selected by taking into account both its
parsimony in terms of parameters and its prediction performance.

4.1.2. ANNs Prediction for QBEPt

The ANNs methodology found a Pareto front size of nine solutions for the flow rate QBEPt (Table 3).
Results reveal again that the IONN model characterized by the maximum number of inputs and hidden
neurons was also characterized by the higher CoD value and the solutions were characterized by an
89% average reduction in total parameters and the complete set of inputs was selected only once.

Table 3. Pareto front (min(neurons, inputs, 1 − CoD)) of IONNs for QBEPt.

Parameters of IONNs
CoD

Model Nsp QBEPp HBEPp ηBEPp W10 W20 # Xi # Hid # W % W

1 0 1 1 1 1 1 3 3 16 22% 0.935
2 0 1 1 0 0 1 2 3 10 14% 0.887
3 0 1 1 1 1 0 3 2 10 14% 0.808
4 0 1 0 1 1 1 2 2 9 12% 0.756
5 1 1 1 1 1 0 4 1 6 8% 0.749
6 1 1 0 1 1 0 3 1 5 7% 0.747
7 0 1 0 1 1 0 2 1 4 5% 0.745
8 0 1 0 0 1 0 1 2 6 8% 0.736
9 0 1 0 0 1 1 1 1 4 5% 0.727

Results revealed an irrefutable role of QBEPp that appeared in all models, followed by the efficiency
ηBEPp. On the whole, models having QBEPp and ηBEPp as input variables revealed higher performance
in terms of parsimony.

The best model, indicated with a gray line (Model 7), even if not characterized by the higher
performance, was selected by taking into account both its parsimony in terms of parameters and its
prediction performance.

4.1.3. ANNs Prediction for HBEPt

The ANNs methodology found a Pareto front size of eight solutions for the head rate HBEPt
(Table 4). Results highlighted again that the IONN model characterized by the maximum number of
inputs and hidden neurons was also characterized by the higher CoD value.

Table 4. Pareto front (min(neurons, inputs, 1 − CoD)) of IONNs for HBEPt.

Parameters of IONNs
CoD

Model Nsp QBEPp HBEPp ηBEPp W10 W20 # Xi # Hid # W % W

1 1 1 1 1 1 0 4 2 12 16% 0.792
2 1 0 1 1 0 1 3 3 13 18% 0.790
3 1 0 1 0 0 1 2 3 10 14% 0.788
4 1 0 1 1 1 0 3 2 10 14% 0.773
5 1 1 1 1 1 1 4 1 7 10% 0.769
6 1 0 1 1 1 1 3 1 6 8% 0.769
7 1 0 1 0 1 1 2 1 5 7% 0.766
8 0 0 1 0 1 1 1 1 4 5% 0.596

Also, solutions in this case were characterized by an 89% average reduction in terms of candidate
inputs and hidden neurons. The total inputs were selected only twice. Results demonstrate an
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irrefutable role of HBEPp, which was present in all models, followed by the specific speed Nsp and
efficiency ηBEPp. The best model, indicated with a gray line (Model 7), was selected by taking into
account both its parsimony in terms of parameters and its prediction performance, also confirmed by
the technical literature [30,33].

4.1.4. ANNs Prediction for ηBEPt

The ANNs methodology found a Pareto front size of only three solutions for the efficiency ηBEPt
(Table 5), even if these solutions were all characterized by a CoD of about 0.83. Paying attention to the
results, it was very interesting to verify that ηBEPt depends on the pump efficiency ηBEPp.

Table 5. Pareto front (min(neurons, inputs, 1 − CoD)) of IONNs for ηBEPt.

Parameters of IONNs
CoD

Model Nsp QBEPp HBEPp ηBEPp W10 W20 # Xi # Hid # W % W

1 0 1 0 1 1 1 2 1 5 7% 0.831
2 0 0 0 1 1 1 1 3 10 14% 0.830
3 0 0 0 1 1 1 1 1 4 5% 0.827

Solutions were characterized by an 91% average reduction in total parameters. The best model,
indicated with a gray line (Model 2), as selected by taking into account both its parsimony in terms of
parameters and its prediction performance.

4.1.5. ANNs Prediction for q and h

A separate discussion must be made for the results of the analysis conducted for the flow ratio q
and head ratio h. The ANNs methodology found, respectively, a Pareto front size of only four solutions
for the q (Table 6) and two for h (Table 7), which, except one for q, were all characterized by a very low
coefficient of determination. This situation was dramatic for h, highlighting how input data did not
permit a fit for the returned models. Starting from this result, an attempt was made by changing the
transfer function from hyperbolic tangent to linear. This attempt gave slightly better results for h but
worse for q, and the obtained results are summarized into Tables 8 and 9, respectively.

However, as verified in Reference [35], the obtained results for q and h did not satisfy in terms of
prediction and accuracy.

Table 6. Pareto front of IONNs for q for a hyperbolic tangent transfer function.

Parameters of IONNs
CoD

Model Nsp HBEPp ηBEPp W10 W20 # Xi # Hid # W % W

1 0 1 1 1 1 2 3 13 28% 0.759
2 0 1 0 1 0 1 2 6 13% 0.507
3 0 1 1 1 1 2 1 5 11% 0.443
4 0 1 0 0 1 1 1 3 7% 0.155

Table 7. Pareto front of IONNs for h for a hyperbolic tangent transfer function.

Parameters of IONNs
CoD

Model Nsp QBEPp ηBEPp W10 W20 # Xi # Hid # W

1 0 1 0 1 2 1 4 9% 0.069
2 0 0 1 1 1 1 4 9% 0.065
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Table 8. Pareto front of IONNs for q for a linear transfer function.

Parameters of IONNs
CoD

Model Nsp HBEP ηBEPp W10 W20 # Xi # Hid # W % W

1 1 1 1 1 0 3 1 4 9% 0.168
2 0 1 1 1 0 2 1 3 7% 0.155
3 0 0 1 1 0 1 1 2 4% 0.121

Table 9. Pareto front of IONNs for h for a linear transfer function.

Parameters of IONNs
CoD

Model Nsp QBEPp ηBEPp W10 W20 # Xi # Hid # W % W % W

1 1 1 1 1 0 3 1 4 1 9 0.196
2 1 0 1 1 0 2 1 3 1 7 0.115
3 0 0 1 1 0 1 1 2 0 4 0.070

4.2. EPR Application

With the aim to discover a relationship between the specific speed number Nst, the flow ratio
q, and the head ratio h, the candidate input data set the model structure adopted in this study as
the following:

Y = a0 +
m

∑
j=1

aj · ((X1)
ES(j,k+1) · . . . · (Xk)

ES(j,2k)) (7)

The exponents ranging from −3 to 3 with a step of 0.5 were selected to limit the dimension of
the search space, and consequently, the complexity of the identified models. The models’ size m was
fixed to four terms (flow rate QBEPp, water head HBEPp, efficiency ηBEPp at the BEP, and specific speed
Nsp). Moreover, a bias was selected into the program and LS parameter estimation was constrained to
search for the set of positive polynomial coefficient values aj.

The MOGA optimization model adopted into the study focused its attention on the optimization
problem of three objective functions: the minimization of the number of input Xi, the minimization of
the number of terms m, and, finally, the maximization of model accuracy. The EPR-MOGA conducts a
number of generations, that in this case was 1080, a number that depended on the number of candidate
inputs, length of training set, exponents, and maximum number of monomial terms of each model.

The fitness of every prediction model was based on the evaluation of coefficient of determination
(CoD), and EPR-MOGA returned a number of models thanks to a Pareto set that returned the best
compromise between the model parsimony and the experimental data fitting. In the following tables,
only the best models of every analyzed output and the relative CoD, number of input candidates, and
number of polynomial coefficients are summarized.

4.2.1. EPR Prediction for Nst

EPR identified 15 non-dominated models for Nst with varying structural complexity and
performance, ranging from a linear model (Equation (8)) to more complex models (Equations (11)
and (12)). Table 10 reports the main characteristics of these formulas, and it can be observed how more
complex models do not return a significant CoD increase, even when Equation (8) is characterized by a
very high CoD. Comparing the selected formulas, one can observe that all contain the specific speed
velocity Nsp; however, Equation (8) is very close to the experimental ones found by Yang et al. [31] and
Stefanizzi et al. [33]. Figure 2 compares literature data versus Equation (8) models [31,33].
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Table 10. Models returned by EPR-MOGA for Nst.

EPR Formula CoD No. of aj No. of Xi

(8) Nst = 0.787Nsp + 1.312 0.955 2 1
(9) Nst = 9.35η3

BEPp + 0.727Nsp 0.961 2 2

(10) Nst= 0.716
Nsp

η0.5
BEPp

0.942 1 2

(11) Nst= 20.001
N0.5

s,P ηBEPp

H0.5
BEPp

+0.003N1.5
sp HBEPpη1.5

BEPp 0.974 2 5

(12) Nst= 10.293
N0.5

sp η0.5
BEPp

H0.5
BEPp

+0.578Nspη1.5
BEPp+5.370e−6 N2

sp H1.5
BEPpη1.5

BEPp

Q0.5
BEPp

+0.104 0.978 4 7
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4.2.2. EPR Prediction for QBEPt

EPR returned 11 models for QBEPt, where the first three are simple formulas, while the others are
complex models and also difficult to explain from a physical point of view. For these reasons, Table 11
summarized the first three and one of the remaining ones. However, by analyzing the obtained models,
Equation (13) has been chosen for its physical meaning; Figure 3 compares literature data with that
obtained by the selected formula.

Table 11. Models returned by EPR-MOGA for QBEPt.

EPR Formula CoD No. of aj No. of Xi

(13) QBEPt = 0.266 Q0.5
BEPp 0.729 1 1

(14) QBEPt = 0.380Q0.5
BEPp η1.5

BEPp 0.765 1 2

(15) QBEPt = 199.149
Q2

BEPp
Nsp

+ 0.084 η3
BEPp 0.801 2 3

(16) QBEPt= 2.370
Q0.5

BEPp η2.5
BEPp

N0.5
sp

+0.031Q2
BEPp H1.5

BEPp+1.233e−0.07 N2.5
sp

QBEPp HBEPp
0.905 3 8
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4.2.3. EPR Prediction for HBEPt

EPR returned eight models for HBEPt, where the first three are simple formulas while others are
complex models and also difficult to explain from a physical point of view. For these reasons, Table 12
summarizes the first three, and for the sake of example only, one of the remaining. However, analyzing
the obtained models, Equation (18) has been chosen for its physical meaning; the selected model is
also quite close to what is reported by the technical literature [18–21].

Table 12. Models returned by EPR-MOGA for HBEPt.

EPR Formula CoD No. of aj No. of Xi

(17) HBEPt = 1.66HBEPp + 4.657 0.481 2 1

(18) HBEPt = 1.284
HBEPp
ηBEPp

0.745 1 2

(19) HBEPt = 1.519
H1.5

BEPp

N0.5
sp

+ 135.956 1
HBEPp

0.771 2 3

(20) HBEPt = 1.485
H1.5

BEPp

N0.5
sp

+ 104.727 1
HBEPp ηBEPp

0.789 2 4

(21) HBEPt = 27.979 1
Nsp

+ 1.448
H1.5

BEPp

N0.5
sp

+ 100.33 1
HBEPp ηBEPp

0.791 3 5

4.2.4. EPR Prediction for ηBEPt

EPR returned eight models for ηBEPt. In this case, also, the first formulas, except the first one
characterized by a very low CoD, are rather simple while the remaining are complicated. For these
reasons, Table 13 summarized the more interesting obtained models, it Equation (22) was selected both
for its simplicity and for its good compromise between parsimony and data fitting.

Table 13. Models returned by EPR-MOGA for ηBEPt.

EPR Formula CoD No. of aj No. of Xi

(22) ηBEPt= 0.929 ηBEPp + 0.038 0.761 2 1
(23) ηBEPt= 0.404 1

HBEPp
+0.906 ηBEPp + 0.026 0.778 3 2

(24) ηBEPt= 1.461 1
HBEPp0.5 +0.143 H0.5

BEPpη2
BEPp + 0.02 0.815 3 3

(25) ηBEPt= 0.714 1
HBEPp0.5 +0.66 ηBEPp+0.001 H0.5

BEPpη3
BEPp 0.822 3 4
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4.2.5. EPR Prediction for q and h

Unlike what was found for other parameters and as already happened for the ANN predictions,
the application of EPR to q and h did not provide useful results.

EPR identified 11 non-dominated models for q with varying structural complexity and
performance; however, it can be seen that there was a very low CoD for each of the identified models.
Table 14 reports the main characteristics of these formulas. Meanwhile, EPR identified only five models
for h and Table 15 reports the main characteristics of these model.

Table 14. Models returned by EPR-MOGA for q.

EPR Formula CoD No. of aj No. of Xi

(26) q = 5.311 1
HBEPp

+1.178 0.103 2 1

(27) q = 1.304 1
ηBEPp

0.09 1 1
(28) q = 5.096 1

N0.5
sp

+8.631 1
HBEPp

0.317 2 2

(29) q = 1.197
HBEPpη2.5

BEPp
Nsp

+0.388
H0.5

BEPp

N0.5
sp

+9.4220 1
HBEPpηBEPp

0.394 3 6

Table 15. Models returned by EPR-MOGA for h.

EPR Formula CoD No. of aj No. of Xi

(30) h = 1.441 1
ηBEPp

0.068 1 1
(31) h = 1.267 1

ηBEPp
+ 0.007Nsp 0.065 2 2

(32) h = 22.657 1
Nsp

+
N1.5

sp

Q0.5
BEPpηBEPp

0.162 2 4

(33) h = 3.481 1
N0.5

sp ηBEPp
+

N1.5
sp

Q0.5
BEPpηBEPp

0.199 2 5

The retrieved models do not furnish CoD with interesting values despite Equation (27) for the
first case and Equation (30) for the latter being quite similar to those retrieved thanks to literature test
rigs [19–21].

5. Conclusions

The paper conducted a sensitivity analysis on the input parameters that most influence a pump
performance in reverse mode and offers a comparison between ANNs and EPR methodologies in
order to increase knowledge about different models for the prediction of PAT behavior. Literature data
summarized several studies based on experimental tests or numerical application, and overall, these
methods can be subdivided into a first category based on the best efficiency point (BEP) parameters
and a second one based on the specific speed number Nsp. Starting from this knowledge, the paper
provides a numerical analysis with the aim to understand the real weight of every input parameter on
the output ones.

The ANN approach, while containing the intrinsic limit of not providing a well-defined formula,
gives the user the possibility to identify the structure of the best model, emphasizing the correlation
among the most influential input factors and the output [45]. The EPR technique, instead, is able
to provide a clear formula, but in this study, this research was not simple and understandable in all
cases. The use of one methodology did not exclude the other because while ANN needs a preliminary
selection of the transfer function, the latter does not need an a priori knowledge of the model structure.

Overall, the paper, thanks to the application of ANNs, highlighted the real weight of each input
parameter on the outputs, and this is certainly an advantage and benefit to the scientific research
on this topic in the near future. Whereas, EPR application returned general formulas with a high
coefficient of determination values, the selected formulas for every output parameter had values of
CoD of about 0.75, except for the specific speed Nst, where the value was equal to 0.95.
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Both methods were not able to relate the flow ratio q and head ratio h to the input candidate
variables, in agreement with Reference [35], and this should mean that it is probably necessary to
deepen this aspect with wider experimental tests.

The results of this sensitivity analysis point out that while parameters like Nst certainly depend
on well-defined input parameters, others like q and h instead show a low correlation with the input
parameters, and for this reason, they are probably not able to provide a general formula for predicting
the pump performance in a reverse mode, knowing those of a pump in a direct mode. As a whole, the
study showed how the application of two different methodologies from a mathematical point of view
leads to absolutely consistent results.

In conclusion, the results of this study may represent a starting point for future research, thanks
to experimental apparatus and numerical approaches, that will be able to make use of this sensitivity
analysis and to focus its efforts on the most influencing input parameters, such as the specific speed
Nst, on the evaluation of PAT performances.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

List of general symbols and indexes used in the paper.
Q (m3/s) flow rate
H (m) water head
q (-) flow ratio
h (-) head ratio
η (-) efficiency
n (rpm) rotational speed
Ns (-) specific speed number (Q in (m3/s), H in (m) and n in (rpm))
D (m) impeller diameter
P (W) power
ρ (kg/m3) fluid density
g (m/s2) gravitational constant
φ (-) flow number
ψ (-) head number
π (-) power number
Ng (rpm) generator rotational speed
Nm (rpm) mechanical rotational speed
ω (rad/s) rotational speed
D0 (m) impeller diameter at the outlet position

Ds (-) impeller specific diameter defined as D(gH)0.25

Q0.5

ηhp (-) hydraulic efficiency defined as
√

η0.5
p η0.5

t

f (Hz) frequency
p (-) number of poles
aj, a0 (-) jth polynomial coefficient in the EPR model
CoD (-) coefficient of determination
ES (-) matrix of exponents of input variables in the EPR model
f (-) functions that can be selected in the EPR model structure
LS (-) least squares
m (-) number of polynomial terms in the EPR model
SSE (-) sum of squared errors
Xi (-) ith EPR input variable
Y (-) vector of target values
ŷ(t, W1, W2, K) (-) model’s output
ϕ(t) (-) input at time t
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W1, W2 (-) first and second layer weights
Kj (-) kernel function
W1i,j (-) weights in ANNS
nb (-) number of inputs x
na (-) number of outputs y
nk (s) related delay expressed
K (-) transfer function
s (-) hidden neurons number
p pump mode
t turbine mode
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