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EXTENDED ABSTRACT (English) 

Coupling hydrologic and crop models is increasingly becoming an important 

task when addressing agro-hydrologic systems studies. Either for resources 
conservation or cropping systems improvement, the complex interactions between 

hydrologic regime and crop management components requires an integrative approach 

in order to be fully understood. Nevertheless, the literature offers limited resources on 
models’ coupling that targets environmental scientists. Indeed, major of guides are are 

destined primarily for computer specialists and make them hard to encompass and 

apply. To address this gap, we present an extensive research to crop and hydrologic 
models coupling that targets earth agro-hydrologic modeling studies in its integrative 

complexity. The primary focus is to understand the relationship between agricultural 

intensification and its impacts on hydrologic balance. We provided documentations, 

classifications, applications and references of the available technologies and trends of 
development. 

We applied the results of the investigation by coupling the DREAM hydrologic 

model with DSSAT crop model. Both models were upgraded either on their code source 
(DREAM) or operational base (DSSAT) for interoperability and parallelization. The 

resulting model operates at a grid base and daily step. The model is applied southern 

Italy to analyze the effect of fertilizer application on runoff generation between 2000 and 
2013. The results of the study show a significant impacts of nitrogen application on 

water yield. Indeed, nearly 71.5 thousand cubic-meter of rain water for every kilogram 

of nitrogen and per hectare is lost as a reduction of runoff coefficient. Furthermore, a 
significant correlation between the nitrogen applications amount and runoff is found at 

a yearly basis with Pearson’s coefficient of 0.93. 

Key words: Models coupling, crop models, hydrologic model, DSSAT, DREAM, 
Runoff, Nitrogen 



 

 

EXTENDED ABSTRACT (Italian) 

L'accoppiamento di modelli idrologici e di coltura sta diventando sempre più un 
compito importante quando si affrontano gli studi sui sistemi agro-idrologici. Sia per la 

conservazione delle risorse che per il miglioramento dei sistemi di coltivazione, le 

complesse interazioni tra regime idrologico e componenti di gestione delle colture 

richiedono un approccio integrativo per essere pienamente compresi. Tuttavia, la 
letteratura offre risorse limitate sull'accoppiamento di modelli che si rivolgono agli 

scienziati ambientali. In effetti, le guide principali sono destinate principalmente agli 

specialisti di computer e le rendono difficili da comprendere e da applicare. Per colmare 
questa lacuna, presentiamo un'estesa ricerca sui modelli di coltura e sui modelli 

idrologici che si rivolgono agli studi di modellizzazione agro-idrologica della terra nella 

sua complessità integrativa. L'obiettivo principale è capire la relazione tra 
l'intensificazione agricola e il suo impatto sull'equilibrio idrologico. Abbiamo fornito 

documentazione, classificazioni, applicazioni e riferimenti delle tecnologie disponibili e 

delle tendenze di sviluppo. 

Abbiamo applicato i risultati dell'indagine accoppiando il modello idrologico 

DREAM con il modello di coltura DSSAT. Entrambi i modelli sono stati aggiornati sia 

sulla sorgente del codice (DREAM) che sulla base operativa (DSSAT) per 
l'interoperabilità e la parallelizzazione. Il modello risultante opera su una griglia e su un 

passo giornaliero. Il modello viene applicato nell'Italia meridionale per analizzare l'effetto 

dell'applicazione del fertilizzante sulla generazione di ruscellamento tra il 2000 e il 2013. 
I risultati dello studio mostrano un impatto significativo dell'applicazione dell'azoto sulla 

resa idrica. Infatti, quasi 71,5 mila metri cubi di acqua piovana per ogni chilogrammo 

di azoto e per ettaro vengono persi come riduzione del coefficiente di deflusso. Inoltre, 
una correlazione significativa tra la quantità di applicazioni di azoto e il deflusso si trova 

su base annuale con il coefficiente di Pearson di 0,93. 

Parole chiave: Accoppiamenti di modelli, modelli culturali, Modelli idrologici, 

DSSAT, DREAM, Deflusso, Azoto 



 

 

EXTENDED ABSTRACT (French) 

Le couplage des modèles hydrologiques et culturaux est une tâche importante 
lorsqu’on aborde les études de systèmes agro-hydrologiques. Que ce soit pour la 

conservation des ressources ou l’amélioration des systèmes de culture, les interactions 

complexes entre le régime hydrologique et les composantes de la gestion des cultures 

nécessitent une approche intégrative pour être pleinement comprises. Néanmoins, la 
littérature offre des ressources limitées sur le couplage de modèles qui cible les 

scientifiques. En effet, la plupart des guides sont principalement destinés aux 

informaticiens et sont difficiles à appliquer. Pour combler cette lacune, nous présentons 
une recherche approfondie sur le couplage des modèles de cultures et des modèles 

hydrologiques, qui cible les études de modélisation agro-hydrologique dans leur 

complexité intégrative. L'objectif principal est de comprendre la relation entre 
l'intensification agricole et ses impacts sur l'équilibre hydrologique. Nous avons fourni 

des documentations, des classifications, des applications et des références des 

technologies disponibles et des tendances de développement. 

Nous avons appliqué les résultats de l'enquête en couplant le modèle 

hydrologique DREAM au modèle de culture DSSAT. Les deux modèles ont été mis à 

niveau soit sur leur code source (DREAM), soit sur leur base opérationnelle (DSSAT) 
pour assurer l’interopérabilité et la parallélisation. Le modèle résultant est appliqué dans 

le sud de l'Italie pour analyser l'effet de l'application d'engrais sur la production de 

ruissellement entre 2000 et 2013. Les résultats de l'étude montrent un impact 
significatif de l'application d'azote sur l'apport en eau. En effet, près de 71 500 mètres 

cubes d'eau de pluie par kilogramme d'azote et par hectare sont perdus sous la forme 

d'une réduction du coefficient de ruissellement. De plus, une corrélation significative 
entre la quantité d’application d’azote et le ruissellement est constatée chaque année 

avec un coefficient de Pearson de 0,93. 

Mots clés: Couplage de modèles, modèles de culture, modèle hydrologique, 

DSSAT, DREAM, Ruissellement, Azote 



 

 

EXTENDED ABSTRACT (Arabic) 

 

 

 

أصبحت نماذج الاقتران الھیدرولوجي والمحاصیل مھمة متزایدة الأھمیة عند معالجة دراسات النظم 
سواء بالنسبة للحفاظ على الموارد أو تحسین نظم المحاصیل ، فإن  .الھیدرولوجیة-الزراعیة

المحاصیل تتطلب اتباع نھج تكاملي من التفاعلات المعقدة بین النظام الھیدرولوجي ومكونات إدارة 
ومع ذلك ، توفر الأدبیات موارد محدودة حول اقتران النماذج التي تستھدف  .أجل فھمھا بشكل كامل

في الواقع ، یتم توجیھ كبیر من الأدلة في المقام الأول لمتخصصي الكمبیوتر وجعلھا  .علماء البیئة
جوة ، نقدم بحثاً موسعاً لاقتران النماذج المحصولیة ولمعالجة ھذه الف .من الصعب أن تشمل وتطبق

الھیدرولوجیة في تعقیدھا  -والھیدرولوجیة التي تستھدف دراسات نمذجة الأرض الزراعیة 
ینصب التركیز الأساسي على فھم العلاقة بین التكثیف الزراعي وتأثیره على التوازن  .التكاملي

 قات ومراجع للتكنولوجیات المتاحة واتجاھات التطویرقدمنا وثائق وتصنیفات وتطبی .الھیدرولوجي

. 
 الھیدرولوجي مع نموذج المحاصیل DREAM قمنا بتطبیق نتائج التحقیق من خلال اقتران نموذج

DSSAT. تمت ترقیة كلا الطرازین إما على مصدر الشفرة (DREAM) أو قاعدة التشغیل 
(DSSAT) یتم  .لناتج على قاعدة شبكیة وخطوة یومیةیعمل النموذج ا .للتشغیل البیني والتوازي

 2000تطبیق النموذج جنوب إیطالیا لتحلیل تأثیر تطبیق الأسمدة على تولید جریان المیاه بین عامي 
في الواقع ، یتم  .. وتظھر نتائج الدراسة آثار كبیرة لتطبیق النیتروجین على إنتاجیة المیاه2013و 

ب من میاه الأمطار لكل كیلوغرام من النیتروجین والھكتار ألف متر مكع 71.5فقدان ما یقرب من 
علاوة على ذلك ، یوجد ارتباط كبیر بین كمیة  .الواحد كتخفیض في معامل الجریان السطحي

 .0.93تطبیقات النیتروجین والجریان السطحي على أساس سنوي مع معامل بیرسون البالغ 

ماذج الزراعي ، النموذج الھیدرولوجي ، الجریان السطحي الكلمات المفتاحیة: اقتران النماذج ، الن
ل   



 

 

EXTENDED ABSTRACT (Amazigh) 

ⴰⴼⵓⴷⵀ ⴰⴳⵉ ⵣⴰⵜⵀⵡⴻⵏ ⵉⵜ ⵎⴻⵙⵍⴰⵢ ⴰⴼ ⵉⵎⵣoⵓⵏⴻⵏ ⴷⴻⴳ ⴰⵀⵔⵉⵛ ⵏ ⵡⴰⵎⴰⵏ ⵓⴽ 

ⴷ ⵢⴻⵎⴳⵀⵉ, ⵉⵙⴻⴼⵀⴰⵎ ⴰⵎⴻⴽⵀ ⵉⴳⴻⵣⵎⴰⵔ ⵓⵎⵓⵙⵏⴰⵡ ⴰⴷⵉ ⵙⴷⵓⴽⴻⵍ ⵉⵎⵣoⵓⵏⴻⵏ 
ⴼⵉⵀⴻⵍ ⴰⴳⵀⵯⴻⵍ. ⴰⵜⴰⵙ ⵜⴻⴽⵜⴰⵯⵉⵏ ⵢⴰ ⴽⴰⵏ ⵉ ⵉ ⴷⵉ ⵎⴻⵙⵍⴰⵢⴻⵏ ⴰⴼⵓ ⵙⴷⵓⴽⴻⵍ ⴳⴻ'ⵎⵣoⵓⵏⴻⵏ 
ⴽⵀⴰⵙ ⴰⴽⴽⴻⵏ ⵡⵍⴰⵙⵀ ⵜⵉⵏ ⵉⴳⴻⵣⵎⴰⵔ ⴰⵜⵉⵙⵀⴻⵎ ⵡⵉⵏ ⵓⵔ ⵏⴻⵍⴰⵔⴰ ⴷⴰⵎⵓⵙⵏⴰⵡ ⴷⵉ 

ⵍⵉⵏⴼoⵔⵎⴰⵜⵉⴽ. 

ⵙⵉⵏ ⵉⵎⵣoⵓⵏⴻⵏ ⵎⴻⵛⵀⵓⵔⴻⵏ ⴷⵉ ⴷⵓⵏⵉⵜ ⴷⴻⴳ ⵏⴰⴷⵉ ⴰⴼ ⵉⵎⴳⵀⵉ ⵓⴽ ⴷ ⵡⴰⵎⴰ 
(ⴷⴹⵚⵚⵄⵟ Uⵅ ⴷⵔⴻⴰⵎ) ⵜⵙⵡⴰⵙⴼⴰⵀⵎⴻⴷⵏ ⵓ ⵜⵙⵡⴰⵙⴷⵓⴽⵍⴻⵏ. ⵜⴰⴳⴰⵔⴰ, ⴰⵎⵣoⵓⵏ 
ⵏⵉⴰⵊⴷⵉⴷ ⵉ ⴷⵉ ⴼⴳⵀⴻⵏ ⵙⴻⴳ ⵙⴷⵓⴽⴻⵍ ⵏⵙⴻⵏ, ⵉ ⵜⵙⵡⴰⵙⴰⴽⵀⴷⴻⵎ ⴷⵉ ⵜⵀⵎⵓⵔⵜⵀ ⵏ 
ⵜⵀⵎⵓⵔⵜⵀ ⵏⴻⵜⴻⵍⵢⴰⵏ. ⵏⵓⴼⴰⴷⵀ ⵙⵡⴰⵎⵣⵓⵏ ⴰⴳⵉ ⴰⵊⴷⵉⴷ ⴱⴻⵍⵍⵉ 71.5*103 ⵎ3 ⵏ ⵡⴰⵎⴰⵏ 
ⵜⵙⵔⵓⵀⵓⵏ ⴽⵓⵍ ⵙⴻⴳⴳⴰⵙ ⵉ ⵢⴰⵍ 1ⴽⴳ ⵏ ⵏⵉⵜⵔoⴳⴻⵏ ⵉⵡ ⴳⴻⵜⵜⴰⵔ.  

ⵜⴰⵙⴰⵔⵓⵜⵙ ⴱ ⴰⵡⴰⵍⴻⵏ: ⴰⵎⴰⵏ, ⵉⵎⴳⵀⵉ, ⵉⵎⵣⵓⵏⴻⵏ, ⴰⵙⴷⵓⴽⴻⵍ ⵏ ⵢⴻⵎⵣoⵓⵏⴻⵏ 
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ANNEXES/ALLEGATI 

Ane. 1- Biccari: 2007-2008 Tops weight 138 
Ane. 2- Biccari: 2007-2008 LAI 139 
Ane. 3- Orsara di Puglia: 2007-2008 Tops weight 139 
Ane. 4- Orsara di Puglia: 2007-2008 LAI 140 
Ane. 5- Faeto: 2007-2008 Tops weight 141 
Ane. 6- Faeto: 2007-2008 LAI 142 
Ane. 7- Orto di Zolfo: 2007-2008 Tops weight 143 
Ane. 8- Orto di Zolfo: 2007-2008 LAI 144 
Ane. 9- Troia: 2007-2008 Tops weight 145 
Ane. 10- Troia: 2007-2008 LAI 146 
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General introduction 

Food security, as defined by the United Nations’ Committee on World Food 

Security, is the condition in which all people, at all times, have physical, social and 
economic access to sufficient safe and nutritious food that meets their dietary needs 

and food preferences for an active and healthy life. Nevertheless, globalization, rise of 

living standard, increase of life expectancy and economic competition are some of the 

leading factors that accelerate human pressure on the environment in order to feed a 
continuously growing population (Shirokanov, 2014). Over the coming decades, a 

changing climate and market price instability will have significant yet highly uncertain 

impacts on food security.  

Scientists participate, to address food security and related environmental 

issues, by developing models with which they can experiment and search for potential 

solutions and enhance our understanding (Brandmeyer and Karimi, 2000). The role of 
simulation models has increased significantly in understanding the processes in the 

soil-plant-atmosphere system in recent years (Jones et al., 2003). Mathematical 

models physically or empirically based, have   the promising potential to explore 
solutions to water sustainability and food security problems. Evaluation of water 

management scenarios helps to provide better recommendations to enhance 

productivity and water economy (Pauwels et al., 2007b). 

Many complex processes occur within and between environmental media (e.g., 

air, surface, groundwater, soil, and crop) (Lambin et al., 2000). Specialized simulation 

models are strong in this regard; they can simulate the processes and predict the 
variables’ state at every stage of the simulation (Ines et al., 2001). Models validation 

with field observations, or intercomparing models, provides information on the models’ 
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performance and will reveal their strong and weak points (Biondi et al., 2012). This is 

a crucial step in selecting adequate models for practical applications. Models 

comparison will give information on how a model fares in its performance respectively 
to the other (Thornton and Hoogenboom, 1994). If the simpler model can adequately 

simulate the processes, then this could be an alternative to the complex and data 

intensive one. This does make sense economically speaking because this will minimize 
the need for data in the simulation. However, this should not be the only criterion 

because a model has to be robust enough in most of the conditions prevailing in the 

system if its relative capability has to be considered (Pereira et al., 2015). 

Hydrological practice has been developed to its greatest degree to the study of 

water resources from large catchments, usually for industrial and domestic 

consumption (Jia et al., 2011). Historically, hydrological practice has had a limited role 
in agriculture. Even where large-scale irrigation schemes have been undertaken (Betts, 

2005), civil or agricultural engineering expertise has usually taken a dominant place. 

But with a continuous interest in improving poor and marginal regions of agricultural 
activity, where capital investment is uneconomic, in-depth understanding of the 

hydrological conditions that prevail is essential (Bormann et al., 2007, Bormann et al., 

2009, Breuer et al., 2009, Huisman et al., 2009, Viney et al., 2009, Antonelli et al., 

2015).  

Particularly where agriculture is a subsistence activity, or where water 

harvesting is the determinant of agricultural production, knowledge of the hydrological 

environment is crucial to determine the existence of optimal soil moisture conditions, 
and how to exploit them (Webb et al., 2011, Boegh et al., 2004b). The impacts of 

hydrological conditions on farming practice and farming systems are substantial, and 
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in the case of rainfed crops, the availability, timing and volume of surface runoff is 

critical to success or failure of the season’s yield (Soler et al., 2007a). 

Anticipation of watershed’s river fluxes, within a changing environment and 
under changing boundary conditions, is an important, but yet not easy task, requires 

integrative models with strong parameterization in order to be realistically evaluated. 

Furthermore, such models have to be evaluated for several environmental conditions 
(ex: soils and vegetation cover, climatic conditions, topography) to be able to assess 

and quantify human induced impacts. Nonetheless, investigating a multidimensional 

and heterogeneous problems requires models that are generally expensive to develop 
and difficult to maintain (Boegh et al., 2004b). As scientific understanding advances, 

new models are developed and existing ones are enhanced leading to a large body of 

codes (Ritchie et al., 2009). In addition to the costs normally associated with design 
and development (Gross et al., 2016), models’ results must be compared to field 

observations and may be challenged by data scarcity (Webber et al., 2010).  

Due to time and money concerns, a current approach in model development is 
to couple legacy models (Argent, 2004), and replacement only when necessary. The 

challenges addressed by such approach is the numerous existing methodologies 

(Salas et al., 2012). Indeed, when coupling existing models, identifying the components 

required to link them is central to the coupling design (Kakpakov and Polukarova, 
1975). Coupling provides a practical approach to thinking about ‘modeling in the large’ 

which forces attention beyond the scope of definition to include operations upon 

models as well. Model is not a formal notion but rather a useful concept, which may 
be considered as another analogy of data management and exchange between models. 
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The present thesis aims to provide an initiation to model coupling practices 

applied to agro-hydrologic systems. In addition to reviews of existing methodologies 

and their applications alongside with their applied studies, we provided a detailed 
example of work by coupling the  Decision Support System for Agrotechnology Transfer 

(DSSAT) model (Jones et al., 2003) with the Distributed Runoff, Evaporation and 

Antecedent soil Moisture model (DREAM)(Manfreda et al., 2005). The work 
encompasses major steps involved in coupling which are model interoperability, 

integrability, data cohesion and homogenization, and models’ upgrade. Most 

importantly, as Manfred Eigen quoted “A theory has only the alternative of being right 
or wrong. A model has a third possibility: it may be right, but irrelevant.”, the resulting 

coupled model is applied southern Italy for integrated study of the impacts of fertilizer 

application of runoff yield 
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CHAPTER I: REVIEW OF COUPLING TECHNOLOGIES FOR AGRO-
HYDROLOGIC SYSTEMS 

1.Introduction 

Numerical models took place as tools for supporting and  enhance 

understanding of the processes involved in the agro-hydrological systems (Brandmeyer 

and Karimi, 2000). Indeed, the use of simulation models in soil-plant-atmosphere 

interactions studies is continuously increasing (Jones et al., 2003). Physically or 
empirically mathematical models have a promising potential for exploring solutions 

related to water conservation and sustainable management. Thus, they are robust 

decision-making tools at the farm and catchment level, for supporting the handling of 
croplands under marginal climatic and pedogenic conditions. Furthermore, they are 

also used to assist in selecting the most suitable practices and best cultivars for a given 

climatic region, as well as for a given risk imposed by pests and diseases. Additionally, 
they also help in deciding on opportunities and economic investments. Especially, 

where agricultural pricing and policies have a high impacts on farmers’ incentives to 

have a high control of their cropping systems (Siad et al., 2017). 

Yet, current hydrologic and crop models cannot handle alone all the biophysical 

processes occurring in the agro-hydrological system level. For example, field modeling 

studies confirmed that interactions within crop-hydrologic systems are central in short- 
and long-term simulations. Due to time and budget constraints, the current approach 

adopted in model development is the coupling of hydrologic and crop legacy models 

(Argent, 2004). The challenges addressed by such an approach are the large body of 
simulation codes and the numerous existing technics (Salas et al., 2012). Indeed, when 

coupling existing models, identifying the components required to link them is central 

for the coupling design, resulting in system integration problems (Kakpakov and 
Polukarova, 1975). 

This chapter presents an extensive synthesis of technologies, methodologies 

and tools available for coupling models related to study agro-hydrologic systems and 



 

21 

their interactions. In addition, we provided decision support recommendations for 

models coupling.  

2.Methods, frameworks and tools for models’ coupling 

An exhaustive and universal method for coupling hydrologic with crop growth 

models has not been yet developed. Also, all the existing methods and frameworks are 

purely software-based approach. The following review summarizes the common 
techniques used. Depending on requirements of the specific analysis, they range 

between a simple hand-made data exchange (inputs/outputs) between the models to 

be coupled, to a full source cods’ integration. 

2.1.Methods 

2.1.1.Sequential coupling 

This is the simplest coupling hierarchy form (Fig. 1). Data have to be transferred 
from Model A to Model B (or from Model B to Model A). The models can be operated 

on binary data stored in different formats or languages and executed under different 

operating systems. In all cases, the data transfer is done through a series of manual 
extraction, transfer, and conversion processes. In some cases, a manual-edited data 

file may be also required.  
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Fig. 1- Sequential coupling 

The models are separated and coupled only in the sense that the output 
produced by one model becomes an input to another. The minimal design, 

development, and testing requirements of this coupling method reduce its initial cost. 

The cost advantage of not developing an automated transfer method is lost if data must 
be manually and frequently transferred between the two models.  

2.1.2.Loose coupling 

Unlike the sequential coupling method, data transfer in loose coupling is 

automated between Models A and B. In addition, data may be interchanged in a 
dynamic feedback during the simulation (Fig. 2). Often, a series of steps, involving 
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extraction of data of a certain structure in Model A, and its conversion to data of another 

structure in Model B is required. 

 
Fig. 2- Loose coupling 

The automatic data transfer is done by using a third-part software, for example 

GIS, employed as a pre-processor or postprocessor for transfer, reducing time on data 
collection and manipulation by several folds. Consequently, the user could more easily 

modify and analyze alternatives. 

2.1.3.Shared coupling 

In shared coupling, the models share external components, either through the 
Graphical User Interface (GUI) or data storage. A single graphical interface links the 

models in GUI coupling, but data are separately stored for each of the models A and B.  

In contrast, in data coupling, the models share data storage but not the user interfaces, 
thereby, the user is required to interact with each model. 

2.1.3.1.Unified Graphical Interface 

The GUI provides the modeler with access to a virtual environment (Fig. 3). The 
single GUI provides a user-friendly method of coupling the models while hiding the 

internal coupling method, therefore, the models are less confusing. The user is no 

longer aware of the locations or configurations of computer systems being accessed. 
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Fig. 3- Unified graphical interface coupling 

2.1.3.2.Shared data 

In the shared data method (Fig. 4)the user has simultaneous, direct and 

separate interactions, with each model. The models may share data files when needed. 

This technique is less frequently used. Also, models are generally independently 

developed and not as a part of a modeling system. Therefore, the data structure is 
optimized for each modeling or computer architecture. In addition, limitations due to 

proprietary rights for some models restrict the ability to share data files.  

 
Fig. 4- Shared data coupling 

The computer industry provides several methods for sharing data, such as: 

Open Database Connectivity (ODBC), Object Linking and Embedding (OLE) and 

Dynamic Data Exchange (DDE). However, none of these data sharing methods 
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supports all: (i) the data types (e.g., integer, float, double, text, logical, date, time, 

multidimensional array, sparse array), geospatial data (e.g., point, vector, arc, polyline, 
polygon, volume, raster), and multimedia data (e.g., images) in environmental 

modeling; and (ii) four dimensions (i.e., x, y, z, and time), including heights both above 

and below a specified sea level datum, terrain- following heights, and pressure-defined 
heights.  

2.1.4.Embedded 

In this methodology, Model A contains Models B in a subroutine relationship 

(Fig. 5). The user interacts only with the host model through its GUI (Model A). 

 
Fig. 5- Embanded coupling 

When an adequate programming language is used, simple mathematical 

models may be easily embedded. The GUI enables the user to display, interact, 
calculate, and modify model’s parameters for various simulations. 

2.1.5.Integrated 

In this method, each model is peered to the other model (Fig. 6). The common 
GUI allows the user to interact independently with any model. The functions and 

subroutines are integrated through shared libraries. Nevertheless, if the computing 

environment is heterogeneous, these libraries must be duplicated for each type of 
computer/operating system. 
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Fig. 6- Integrated coupling 

2.1.6.Third-part tool 

Using an overall modeling framework, the models are coupled by using a third-

part tool commonly called “Coupler” (Fig. 7). The framework itself comprises both 

joined and shared coupling, and presented as a single GUI to the modeler, with a shared 

data storage.  

 
Fig. 7- Schema of typical integrative coupler framework 
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2.2.Review of tools and frameworks technologies 

The framework may be implemented with server technology on the networked 
computers within heterogeneous computing environments. Tab. 1 summarizes the 

advantages and disadvantages of such integration with web services. In addition, while 

managing data and computing resources, this framework also provides tools and 

functions common to multiple models. Studies involving complex interactions between 
models and data facilitate the process of coupling thanks to the cohesive modeling 

framework. 

Tab. 1- Couplers’ implementation  

Base 
approach 

Characteristics  Advantage Disadvantages 

Component 
based 

Models are presented as 
modules/ components that 
can be replaced, upgraded 
and reused. 

Plug & play; separation of 
concern; minimizes context 
switching time of 
components; system level 
functionalities. 

Challenging 
development of 
interoperable 
modules.  

Web service 
based 

Models are presented as web 
services; loosely coupled 
systems; distributed services. 

Plug & play; location 
independence; platform 
independence; scalable. 

May require heavy 
data exchange, and 
high availability. 

Hybrid A mix of components and web 
services of models 
‘presentation. 

Enables linkage to different 
frameworks; manage 
heterogeneity; reuse existing 
frameworks. 

Requires parsing 
data between 
components and 
services. 

Custom-
made 

Tailor-made techniques with 
ad-hoc collection of 
methods/techniques 

Use of ad-hoc techniques 
for coordination. 

May not support 
models’ updates; 
rigid structure.  

According to Dunlop et al., the framework coupling technologies can be 
formally divided into coupling libraries, frameworks, and workflows (Dunlap et al., 

2013). Nevertheless, there are significant overlaps between the technologies. While all 

couplers have the same basic functions, they do differ in the level of components 

standardization, data exchange, and degree of integration. Furthermore, the existing 
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methods of coupling are perceived as either data, models, or information-centric. Thus, 

there is a growing need of methods that facilitate generic coupling of both data and 
models. 

Tab. 2, along with the Tab. 3, indicate that there are numerous available 

solutions of frameworks and tools. Even addressing multiparadigm systems, all have 
restrictions on their use and are tailored to the issues facing their users/communities. 
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Tab. 2- Coupling tools/frameworks 

CF : Coupling Framework; F : Framework; GC : Generic Components; W/O : Workflow/Orchestration; L/I : Language/Interface. 

Tool/framework Type Description References  

AGROBASE Generation II F A Windows-based software licensed as a CORE System, with additional 

modules licensed separately. The CORE System and modules are being 

enhanced annually. 

(Wallach and Rellier, 

1987, Mulitze, 1990) 

APSIM framework F  Composed of a suite of modules which enables the simulation of systems that 

cover a range of plant, animal, soil, climate and management interactions. 

(Keating et al., 2003a) 

ARAMS F Information delivery, dynamic modeling and analysis system that integrates 

multimedia fate/transport, intake/uptake and effects of contaminants and 

military-relevant components. 

(USACE, 2017) 

ARIES W/O A tool for assessing and validating ecosystem services in decision making. (Bagstad et al., 2011) 

BASINS F GIS based integrated modeling and assessment tools with watershed data. (Lahlou et al., 1998) 

BFG F A system for writing customized wrapper code for linking Fortran models. it 

uses XML to capture metadata describing models, how they exchange, and 

how they can be run.  

(Armstrong et al., 2009) 

BPEL L/I An OASIS standard executable language for specifying actions within business 

processes with web services.  

(Arkin et al., 2005) 
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Coupling tools/frameworks (continue) 

CCA L/I  A standard for Component-based software engineering. The CCA model 

components provide functionalities through export interfaces. 

(Armstrong et al., 2006) 

CCMP GC A set of interchangeable individual modules covering all aspects of 

hydrodynamics, ecosystem dynamics and watershed interactions towards a 

future linked watershed-estuary model. 

(CCMP, 2017) 

C-Coupler 

(C-Coupler1) 

CF  A parallel 3-D coupler that achieves a higher-level sharing, where the 

component models and the coupler can keep the same code version. 

(Liu et al., 2014) 

CESM  

(EX. CCSM) 

F  A centralized coupler component with integration of MCT and flux 

computation.   

(Kay et al., 2015) 

CHPS GC A US National Weather Service (NWS) initiative that uses Delft-FEWS for a 

nationwide early warning system. 

(Roe et al., 2010) 

CHyMP CF A CUAHSI initiative to develop, provide and support advanced simulation 

models for the academic community within a community-based ‘development-

user-feedback’ framework.  

(Famiglietti et al., 2008) 

CMP F A set of rules for building simulation software in a modular set.  (Moore et al., 2007) 

CSDMS GC A framework software that provides models for simulation of earth surface 

processes such as sediment dynamics and hydrology on High-Performance 

Computing platform. 

(Peckham, 2008) 
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Coupling tools/frameworks (continue) 

DDB CF A tool for coupled systems that deal with large volumes of data exchanges 

and/or are computational expensive.  

(Drummond et al., 2001) 

elft-FEWS GC Whether on a server or stand-alone model, it can operate around data and 

model as workflow or run in centralized database.  

(Werner et al., 2013) 

Delta Shell F An integrated modeling environment with a focus to setup, configration, run 

and analyze results of the integrated environmental models. 

(Donchyts and Jagers, 

2010) 

DIAS CF An object-oriented simulation system providing an integrating framework in 

which new or legacy software applications can operate in a context-driven 

frame of reference. 

(Sydelko et al., 1999) 

DSSAT F A set of computer programs for simulating agricultural crop growth. Built with a 

modular approach with extended interfaces such as GIS. 

(Jones et al., 2003) 

EnSym F A computer program designed to model the impacts of landscape modeling on 

the environment using spatial information. 

(Ha et al., 2010) 

ESMF F  A high-performance, flexible software infrastructure for climate, numerical 

weather prediction, data assimilation, and other earth science applications.  

(Hill et al., 2004) 

EvoLand/ 

ENVISION 

F  Spatially explicit environmental assessment tool and multi-agent based 

regional planning.  

(Bolte et al., 2007) 
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Coupling tools/frameworks (continue) 

FluidEarth F  OpenMI-wrapped based model. (Harpham et al., 2014) 

FMS F A software framework for efficient development, construction, execution, and 

scientific interpretation of atmospheric, oceanic, and climate system models. 

(Balaji, 2012) 

FrAMES F Allows coupling of gridded terrestrial model outputs with an aquatic modeling 

component to explore nitrogen and water kinetics. 

(Wollheim et al., 2008) 

FRAMES F A statistically based risk assessment framework. (Babendreier and 

Castleton, 2005) 

FSE L/I FORTRAN 77 programming environment for continuous simulation of agro-

ecological processes, such as crop growth and water balances. 

(Kraalingen, 1995) 

GCF CF Using lightweight development rules for single models, coupling is achieved on 

information, composition and deployment onto computational resources as 

machine-readable metadata. 

(Ford et al., 2006) 

GME (1) CF Designed for spatial analysis and modeling. The framework provides a suite of 

analysis and modeling tools for sophisticated workflow and self-contained 

analysis programs.  

(Beyer, 2017) 

GME (2) CF A configurable toolkit for creating domain-specific modeling and program 

synthesis environments. 

(Molnár et al.) 

GMS/WMS/SMS GC Groundwater, watershed, and surface water modeling systems framework. (Aquaveo, 2017) 
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Coupling tools/frameworks (continue) 

GoldSim W/O The Monte Carlo simulation software solution for dynamically modeling complex systems in 

engineering, science and business.  

(GoldSim, 2017) 

HLA W/O Developed by the Defense Modeling and Simulation Office (DMSO), USA, as a general-

purpose architecture for distributed real-time simulations. 

(Dahmann et al., 2016) 

Hydrologists Workbench W/O A services-oriented scientific workflow framework for integrating hydrology models and data. (Cuddy and Fitch, 2010) 

HydroModeler CF An extension to HydroDesktop desktop application and adopts the OpenMI standard for 

model coupling 

(Castronova et al., 

2013) 

ICMS F  A framework for linking environmental models. Particularly used for catchment and 

associated ecosystem applications.  

(Rizzoli et al., 1998) 

IMA W/O A semantic framework and software design for enabling the transparent integration, 

reorganization, and discovery of natural systems knowledge. 

(Villa, 2007) 

IWRMS GC Integrated collection of water resource models (watersheds, rivers, lakes, estuaries) for 

supporting decision makers. 

(Thurman et al., 2004) 

Jcup CF Supports both the point-to-point communication algorithm and the multi-component data 

exchange. 

(Arakawa et al., 2011) 

Kepler CF A JavaTM based environment for integrating disparate software components, such as "RTM" 

scripts with compiled "C" codes, or facilitating remote, distributed execution of models.  

(Ludäscher et al., 2006) 
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Coupling tools/frameworks (continue) 

LHEM GC Flexible landscape model structures that ca be easily modified or extended for 

different goals. 

(Voinov et al., 2004) 

MCT F Consists of a setoff small library and a set of Fortran90 modules that provide 

model interoperability solution through a simple API. 

(Larson et al., 2005) 

MIMOSA W/O A model simulation platform for building and running conceptual models. (Müller, 2010) 

MIMS F A software infrastructure or environment for constructing, composing, 

executing, and evaluating cross-media (ie.: air, water, soil, and animals) 

models 

(MIMS, 2017) 

MMS CF An integrated system of computer software framework built to support 

development, testing, and evaluation of physical-process algorithms and to 

facilitate integration. 

(Leavesley et al., 1996) 

ModCom CF The framework interfaces use binary standards and allows developers to 

implement the interfaces using a broad range of computer languages.  

(Hillyer et al., 2003) 

MpCCI CF An environment for direct coupling of different simulation source codes. It is a 

neutral standard for simulation code coupling and provides with multi-physics 

framework.  

(Joppich et al., 2006) 

NextFrAMES CF Built around a modeling XML standard which lets modelers to express the 

overall model structure and provides an API for dynamically linked plugins to 

represent the processes. 

(Fekete et al., 2009) 
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Coupling tools/frameworks (continue) 

OASIS F A system for running complex climate-ocean models on high performance 

computing systems. 

(Valcke, 2013) 

OMS CF Provides the ability to construct models and applications from a set of 

components on multiple platforms. 

(David et al., 2002) 

OOPS F A framework designed to support programming of concurrent scientific 

applications for parallel execution 

(Sonoda and Travieso, 

2006) 

OpenMI CF A model linking technology that allows components running within a 

framework to be exchangeable. It consists of the OpenMI standard and GUI 

based model configuration editors. 

(Gijsbers et al., 2002) 

OpenPALM/ 

PALM 

F Framework for dynamic coupling of numerical models with high performance 

computing. The package comprises a GUI for model coupling, scheduling and 

parallelization. 

(Lagarde et al., 2001) 

PCSE L/I A Python package for building crop simulation models. It allows the 

environment to implement crop models’ components and tools for reading 

ancillary data. 

(Wit, 2017) 

Pegasus W/O A scientific workflow that allows users to set-up and run multi-step 

computations and different environments including desktops, clusters, grids, 

and clouds. 

(Deelman et al., 2005) 
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Coupling tools/frameworks (continue) 

PETSc L/I A suite of data structures and routines for the scalable (parallel) solution of 

scientific applications modeled by partial differential equations. 

(Balay et al., 2016) 

PMML L/I The standard language for data mining models that use statistical techniques 

for learning patterns hidden in large volumes of historical data 

(Grossman et al., 1999) 

PRISM GC A portable and flexible infrastructure for assembling, compiling, running, 

monitoring and post-processing state-of-the-art models developed in the 

different European modeling groups. 

(Guilyardi et al., 2003) 

R (language) L/I The core of RTM is an interpreted computer language which allows branching, 

looping and modular programming. It can interface procedures written in C, 

C++, or FORTRAN. 

(Hornik, 2017) 

RECORD F Developed under the VLE environment, It integrates different time steps and 

spatial scales and proposes some standard formalisms used to model agro-

ecosystems. 

(Bergez et al., 2014) 

RHEAS F Modular software framework that has been developed to facilitate the 

deployment of water resources simulations and the assimilation of remote 

sensing observations 

(Andreadis et al., 2017) 

Scup F A general-purpose coupler developed by Meteorological Research Institute 

(MRI) in Japan. It is like the OASIS coupler (it contains only data transfer and 

data transformation). 

(Yoshimura and Yukimoto, 

2008) 
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Coupling tools/frameworks (continue) 

SEAMLESS CF An integrated framework for linking models, data and indicators. in support of 

environmental, economic and social analysis for agricultural systems. It based 

on the OpenMI standard. 

(Van Ittersum et al., 2008) 

SELES F A tool for building and running landscape dynamics models. It combines 

discrete events simulation with a spatial database. 

(Fall and Fall, 2001) 

SISS F An architecture and suite of tools for spatial data interoperability. (Caradoc-Davies, 2017) 

SME F An integrated environment for high performance spatial modeling. It links tools 

with advanced computing resources to support dynamic spatial modeling of 

complex systems. 

(Maxwell et al., 2004) 

Tarsier CF A WindowsTM based modeling framework. it integrates several modules, highly 

customizable and comes with pre-developed data management, modeling, GIS 

and statistical modules. 

(Watson et al., 1998) 

Taverna W/O Domain-independent Workflow Management System, it is a suite of tools used 

to design and execute scientific workflows and aid in silico experimentation. 

(Wolstencroft et al., 2013) 

TDT L/I A library designed to transfer data between programs independently of platform 

and programming language. It mainly targets data intensive simulations. 

(Linstead, 2012) 
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Coupling tools/frameworks (continue) 

TIME F A model framework for developing, testing, linking, and calibrating 

environmental simulation models.  

(Rahman et al., 2003) 

Trident W/O A scientific workflow and workbench, it is set of tools based on the Windows 

Workflow Foundation for analyzing large and heterogeneous datasets.  

(Barga et al., 2008) 

VisTrails W/O An open-source scientific workflow that allows the combination of loosely-

coupled resources, specialized libraries, grid and Web services. 

(Bavoil et al., 2005) 

WRF GC A next-generation mesoscale numerical weather prediction system designed 

for both atmospheric research and operational forecasting applications. 

(Skamarock et al., 2001) 
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Tab. 3-Tools /frameworks references 

Acronym Web Link 

AGROBASE GEN. II: Agronomic Base Generation II  www.agronomix.com 

APSIM: Agricultural Production Systems Simulator www.apsim.info 

ARAMS: The Adaptive Risk Assessment Modeling 

System 

http://www.erdc.usace.army.mil/Media/Fact-

Sheets/Fact-Sheet-Article-

View/Article/500113/adaptive-risk-

assessment-modeling-system-arams/ 

ARIES: ARtificial Intelligence for Ecosystem Services http://aries.integratedmodelling.org/ 

BASINS: Better Assessment Science Integrating Point 

and Nonpoint Sources 

https://www.epa.gov/exposure-assessment-

models/basins 

BFG: Bespoke Framework Generator https://source.ggy.bris.ac.uk/wiki/GENIE_BFG 

BPEL: Business Process Execution Language docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.pdf 

CCA: Common Component Architecture www.cca-forum.org 

CCMP: Chesapeake Community Modeling Program ches.communitymodeling.org 

C-Coupler: Chinese Community Coupler -/- 

CESM: The Community Earth System Model (Ex. 

CCSM: Community Climate System Model) 

www.cesm.ucar.edu 

CHPS: Community Hydrology Prediction System  www.nws.noaa.gov/ohd/hrl/chps 

CHyMP: Community Hydrology Modeling Platform www.cuahsi.org 

CMP: Common Modeling Protocol -/- 

CSDMS: Community Surface Dynamics Modeling 

System 

csdms.colorado.edu 

DDB: Distributed Data Broker https://people.eecs.berkeley.edu/~sklower/D

DB/paper.html 

Delft-FEWS: Delft Flood Early Warning System www.deltares.nl 

Delta Shell: Delta Shell https://oss.deltares.nl/web/delta-shell 
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DIAS: Dynamic Information Architecture System -/- 

DSSAT: Decision Support System for Agrotechnology 

Transfer 

http://dssat.net 

EnSym: Environmental Systems Modelling Platform https://ensym.dse.vic.gov.au 

ESMF: Earth System Model Framework www.earthsystemmodeling.org 

EvoLand/ENVISION: Environmental Vision http://envision.bioe.orst.edu 

FluidEarth: Fluid Earth  https://fluidearth.net 

FMS: Flexible Modeling system https://www.gfdl.noaa.gov/fms/ 

FRAMES: Framework for Risk Analysis in Multimedia 

Environmental Systems 

mepas.pnnl.gov/framesv1/sum3ug.stm 

FrAMES: Framework for Aquatic Modeling of the Earth 

System 

http://terra.whrc.org/denitrification/WS1/WS1

models/FrAMES.pdf 

FSE: FORTRAN Simulation Environment -/- 

GCF: General Coupling Framework -/- 

GME (1): Geospatial Modeling Environment   www.spatialecology.com 

GME (2): Generic Modeling Environment http://www.isis.vanderbilt.edu/projects/GME 

GMS/WMS/SMS: Groundwater, Watershed, Surface-

water Modeling System 

www.aquaveo.com 

GoldSim: Golder Simulation www.goldsim.com 

HLA: High Level Architecture -/- 

Hydrologists Workbench: Hydrologists Workbench http://www.mcs.anl.gov/~jacob/ehwb/index.h

tml 

HydroModeler: Hydrologic Modeler www.HydroDesktop.org 

ICMS: Integrated Component Modelling System www.clw.csiro.au/products/icms/ 

IMA: Integrating Modelling Architecture -/- 

IWRMS: Integrated Water Resource Modeling System https://www.witpress.com/Secure/elibrary/pap

ers/BF204/BF204010FU.pdf 

Jcup: Japanese coupler https://github.com/Jcuplib/jcup/wiki 
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Kepler: KEPLER https://kepler-project.org/ 

LHEM: Library of Hydro-Ecological models -/- 

MCT: The Model Coupling Toolkit www.mcs.anl.gov/research/projects/mct/ 

MIMOSA: MIgration MOdelling for Statistical Analyses http://mimosa.sourceforge.net/documentation.

html 

MIMS: The Multimedia Integrated Modeling System http://mimsfw.sourceforge.net/ 

MMS: Modular Modeling System https://pubs.usgs.gov/of/1996/0151/report.pd

f 

ModCom: Modular Communications -/- 

MpCCI: The Mesh based parallel Code Coupling 

Interface 

www.mpcci.de 

NextFrAMES: Next-generation Framework for Aquatic 

Modeling of the Earth System  

http://terra.whrc.org/denitrification/WS1/WS1

models/FrAMES.pdf 

OASIS: Ocean, Atmosphere, Sea, Ice, Soil www.cerfacs.fr/3-26568-OASIS.php 

OMS: Object Modelling System http://oms.colostate.edu 

OOPS: Object-Oriented Parallel System -/- 

OpenMI: Open Modeling Interface www.openmi.org 

OpenPALM: Projet D’Assimilation par Logiciel Multi-

methodes 

www.cerfacs.fr/globc/PALM_WEB/ 

PCSE: Python Crop Simulation Environment http://pcse.readthedocs.io 

Pegasus-WMS: Planning for Execution in Grids - 

Workflow Management System 

https://pegasus.isi.edu/ 

PETSc: Portable, Extensible Toolkit for Scientific 

Computation 

https://www.mcs.anl.gov/petsc/ 

PMML: Predictive Model Markup Language www.dmg.org 

PRISM: Partnership for Research Infrastructures in 

Earth Systems Modeling 

https://www.dkrz.de/daten-

en/wdcc/projects_cooperations/past-

projects/prism-1/prism-detailed-

documentation 
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R: R r-project.org 

RECORD: REnovation and COORDination of agro-

ecosystems modelling 

https://www6.inra.fr/record_eng/ 

RHEAS: Regional Hydrologic Extremes Assessment 

System 

http://rheas.readthedocs.io/en/latest/ 

Scup: Simple Coupler http://www.mri-jma.go.jp/Project/1-21/1-21-

1/scup-en.htm 

SEAMLESS: System for Environmental and Agricultural 

Modelling: Linking European Science and Society 

http://www.seamless-ip.org 

 

SELES: Spatially Explicit Landscape Event Simulator https://greatlakesinform.org/decision-

tools/355 

SISS:Spatial Information Services Stack https://www.seegrid.csiro.au/wiki/Siss/WebHo

me 

SME: Spatial Modelling Environment http://likbez.com/AV/Spatial_Modeling_Book/2

/index.html 

Tarsier: Tarsier ecoviz.csumb.edu/wiki/index.php/Tarsier 

Taverna: Taverna www.taverna.org.uk 

TDT: a library for Type Data Transfer https://www.pik-

potsdam.de/research/transdisciplinary-

concepts-and-methods/tools/tdt 

TIME: The Invisible Modelling Environment https://toolkit.ewater.org.au/Tools/TIME 

Trident: Trident tridentworkflow.codeplex.com 

VisTrails: Visual Trails www.vistrails.org 

WRF: Weather Research and Forecasting www.wrf-model.org/index.php 

2.3.Integrated environmental modelling communities 

The development of research and user communities becomes an important 

requirement for a better understanding of environmental processes and systems. 
Furthermore, the importance of the community and human dimension in the 
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development of integrative modeling has the potential to assist communities in adapting 

to increasingly complex environmental stresses. Communities of practice are 

emerging, attempting to address this challenge.  

Currently, the initiatives and their communities are relatively at their early stage. 

Some models have been released in open source form with a view of building-up a 

large user community. Tab. 4, Tab. 5, Tab. 6 and Tab. 7 list some of the leading 
communities built around integrated environmental modeling initiatives and 

framework/tools. 

Tab. 4- Coupling frameworks/tools-based communities 

Community Web Link 

CCA Forum ccaforum.com 

Consortium of Universities for the Advancement of 

Hydrologic Science (CUACHI) 

cuahsi.org 

Community Surface Dynamics Modeling System (CSDMS) csdms.colorado.edu 

OpenWEB (FluidEarth) fluidearth.net 

Integrated Environmental Modelling Hub (iemHUB) -/- 

Open Geospatial Consortium (OGC) opengeospatial.org 

Partnership for Research Infrastructures in Earth Systems 

Modeling (PRISM) 

dkrz.de/daten-en/wdcc/projects_ 

cooperations/past-projects/prism 

SEAMLESS Association seamlessassociation.org 

Chesapeake Community Modelling Program (CCMP) ches.communitymodeling.org 

The Earth System Modelling Framework (ESMF) earthsystemmodeling.org 

Framework for Risk Analysis of Multi-Media Environmental 

Systems (FRAMES - 3MRA) 

epa.gov/athens/research/modeling/3mr

a.html  

OpenMI Association openmi.org 

FluidEarth fluidearth.net 

The Kepler Project kepler-project.org/ 
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Community Earth System Model (CESM) www2.cesm.ucar.edu 

The Model Coupling Toolkit (MCT) mcs.anl.gov 

Multimedia Integrated Modelling System (MIMS) mimsfw.sourceforge.net 

Community Modeling and Analysis System (CMAS) cmascenter.org 

OpenPALM cerfacs.fr/globc/PALM_WEB 

EPA’s (Environmental Protection Agency) modelling 

community 

epa.gov/modeling 

Tab. 5- Models/software packages communities: Crop 

Agricultural Production Systems Simulator (APSIM) apsim.info 

Decision Support System for Agrotechnology Transfer 

Foundation (DSSAT) 

dssat.net 

Modeling European Agriculture with Climate Change for food 

Security (MACSUR) 

macsur.eu 

The Agricultural Model Inter-comparison and Improvement 

Project (AgMIP) 

agmip.org 

Wheat initiative wheatinitiative.org 

Tab. 6- Models/software packages communities: Hydrology  

Community Web Link 

CUAHSI-HIS his.cuahsi.org/wofws.html 

The Community Hydrologic Modelling Platform (CHyMP) cuahsi.org 

Hydrology Thematic Exploitation Platform (Hydrology TEP) hydrology-tep.eo.esa.int 

MIKE-SHE Community mikepoweredbydhi.com 

Community Sediment Transport Modeling System (CSTMS) woodshole.er.usgs.gov/project-

pages/sediment-transport 

eWater toolkit.ewater.org.au 

Soil and Water Assessment Tool (SWAT) swat.tamu.edu 
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Tab. 7- Models/software packages communities: Other 

Community Web Link 

The Comprehensive R Archive Network (CRAN) cran.r-project.org 

Geographic Resources Analysis Support System (GRASS) grass.osgeo.org 

MapWindow mapwindow.org 

Deltares Open Source and Software oss.deltares.nl 

International Environmental modelling & Software Society 

(iESs) 

iemss.org 

3.Discussion and implications 

In order to be coupled, models must be interoperable, a property often referred 

to but missing a single and precise definition. For instance, Wileden and Kaplan, (1999) 
defined this as the capability of two or more programs to share and process information 

irrespective of their implementation language and platform (Wileden and Kaplan, 1999). 

Similarly, Buehler and McKee (1999) defined interoperable geo processing as “the 
ability of digital systems to: (i) freely exchange all kinds of spatial information about the 

Earth and about objects and phenomena on, above, and below the Earth’s surface; and 

(ii) cooperatively, over networks, run software capable of manipulating such 
information.” (Buehler and McKee, 1996). Both definitions apply to computer 

programs, hardware, and data file formats. 

Models and their respective data must be interoperable with both spatial and 
temporal scale. If a scale difference cannot be resolved, then the models cannot be 

meaningfully coupled. Although the models may share information, if the models’ 

scales are different, the results from the coupled system are meaningless. In such 

cases, an intermediate program is required to reconcile the scales. For example, two 
models may assume the same data type with the same dimensions and extends. 

However, if the output is in the time unit but one is in minute and the other one is in 

month, a temporal scale conversion for interoperability is required. Similarly, if the 
spatial scale is different, a spatial conversion is required (2009, Kumar et al., 2006).  
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Due to the substantial number of available models and practical tools, and the 

different approaches, e.g., from empirical to mechanistic, that characterize them, 

choosing of a suitable model to be coupled and the specific method of data processing 
may be difficult. Moreover, a lack of knowledge on the domain heterogeneity can make 

its application entirely misleading. 

Often, computer resources encompass a restrictive factor for such 
combinations. Nevertheless, reasonable computational time and precision can be 

achieved when simulated processes are not overloaded (i.e. in the Random-Access-

Memory (RAM) or Central Processing Unit (CPU)). In addition to hardware resources, 
both programming languages and framework of combination play a key role in 

managing the available resources. These aspects are purely computer science-oriented 

criteria and may represent a serious barrier to the source models to be combined. 

Among the available methodologies and frameworks for coupling, many factors 

should be considered prior the selection of an appropriate one. These factors include 

the nature and relative scale of the crop system, basin characteristics, data and 
information availability, method requirements, time constraints for producing an 

assessment and the required accuracy. In some cases, process selection is a context 

shaped approach. Therefore, the process should be transparent, where the 
assumptions, simplifications, and other limitations are clearly indicated. This would 

assist in validating the results with observation data. The process needs also to be 

adaptive, where new or improved information can be incorporated.  

The first criterion for modeler when selecting models to be coupled should be 
the end purposes, followed by the selection of the adequate compromise between 

precision and ease-of-use for investigating the models’ assumptions and qualifications. 

This implies that the addressed user should have a comprehensive overview on the 
selected models’ purposes, metrics, capabilities and field of validity. Then, the user has 

to consider the biophysical cycles that have to be modeled, along with the crop and 
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hydrologic cycle. The greater is the number of simulated processes, the larger is the 

complexity of the resulting coupled model.  

Going on through the choice of models, specific purposes regarding the 
investigated agro-hydrologic system and climatic regions, such as their ecological 

relevance, economic importance, expected risks, etc. should be defined. Hence, it is 

necessary to refer to the geographic regions where models have been already applied. 
Successful studies for assessments and analyses serve as guides towards most 

suitable planning for coupling, especially those targeting climate changes and 

adaptation issues. Literature offers several models’ reviews, mostly focused on topics 
of specific interests, such as the description of general approaches and evaluation, 

inter-comparison of models’ performance, forecasts, and gaps analysis 

.
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CHAPTER II: REVIEW OF COUPLED HYDROLOGIC AND CROP GROWTH 
MODELS 

1.Introduction 

Hydrologic and crop growth numerical modeling has progressed over the last 
decades, where the scientific modeler community has derived to recognize that various 

aspects are complementary between hydrologic and crop systems. Debates and issues 

on food security, environmental degradations and climate change have raised the need 
for integrated simulation models to cope with issues of sustainable agriculture 

production tandem with resources scarcity and climate stresses. A proper answer to 

the question of how water can be used efficiently to produce more is therefore needed 
(White et al., 2011b). Furthermore, agricultural pricing and policies have a high impacts 

on farmers’ incentives to have a high control of their cropping systems (Siad et al., 

2017). Being major user of water, agriculture is a potential adequate field to study water 
use efficiency (Jia et al., 2011).  

Agricultural water use for crops relies on several factors, such as: topography, 

lithology, management practices, soil, climatic conditions, type of crop, etc. Knowledge 
of these parameters allows to estimate crop-water requirement and for establishing 

cropping management procedures. Water requirements by agricultural crops can be 

determined locally at the field. Nevertheless, while all these processes being observed 

at small spatial scales, they are mainly conditioned by rainfall and its distribution and 
redistribution at the basin scale. To date, hydrological practices had been developed to 

their greatest advancement in the study of large catchments for water resources 

purposes and they had a limited implication in agriculture (Jia et al., 2011). With an 
increasing importance of improving low agricultural productivity in marginal regions, 

where capital investments are not beneficial (subsistence activity), water harvesting is 

the determinant of agricultural production. Thus, a profound understanding of 
hydrological conditions is essential to exploit soil moisture opportunities (Antonelli et 

al., 2015).  
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This chapter presents a review of coupled crop growth and hydrologic models’ 

studies. It starts by introducing general concepts related to hydrologic, crop growth 

and coupling models, and coupling computer models. Then after, a synthesis of 
literature studies comprising coupled hydrologic and crop growth applied for different 

purposes. In addition, we provided some considerations and implications.   

2.Concepts and notions 

The conception of environmental modeling deals with the relationships of 

water-climate-soil-plant (White et al., 2011c, Iacobellis et al., 2002), and includes 

temporal and spatial features (Meiyappan et al., 2014). Behavior of each feature is 
controlled by its own components (Jajarmizadeh et al., 2012). Accordingly, models are 

a simplified representations of the real world (Anothai et al., 2008). Models can be 

either physical, electrical analogue, or mathematical (Gutzler et al., 2015). The physical 
and analogue models have been very important in the past (Refsgaard, 1996). 

Nowadays, the mathematical group of models is by far the most easily and universally 

applicable, the most widespread and rapidly developing with regards to scientific basis 
and application (van Kraalingen et al., 2003). 

2.1.Crop growth modeling 

Crop models are simulations that help estimating crop yields as a function of 

weather, soil conditions, and the applied management practices (Hoogenboom et al., 
2002). There are several types of models that have been developed over the years. 

They can be classified into various groups or types, ranging from empirical to 

explanatory models (Hoogenboom, 1999). 

Empirical models are based on direct descriptions of observed data, expressed 

as regression equations and used for yield estimation. This approach analyzes data and 

fits an equation, or a set of equations, to the data. These models have no information 
on the mechanisms behind the outputs (Phakamas et al., 2013). In contrast, 

mechanistic models do explain not only the relationships between weather parameters 
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and crop yields, but also the mechanisms that control these relationships (Bannayan 

et al., 2003).  

In Stochastic models, each output is attached to a probability element. For each 
set of inputs, different outputs are given along with probabilities. These models define 

a state of dependent variable at a given rate (Etkin et al., 2008). Explanatory models 

consist of quantitative description of the mechanisms that cause the behavior. In such 
models, the processes are quantified separately, and then integrated into the entire 

system (Hoogenboom, 1994).  

Among the successfully used models are the EPIC (Williams, 1990), CERES-
maize (Bao et al., 2017), ALMANAC (Kiniry et al., 2005), CROPSYST (Stöckle et al., 

2003), WOFOST (van Diepen et al., 1989) and ADEL (Fournier et al., 2003) for 

simulating maize growth and yield. The SORKAM (Rosenthal et al., 1989), SorModel 
(Arora, 1982), SORGF (Wiegand and Richardson, 1984), and ALMANAC used for 

sorghum crop management. CERES-pearl millet model (Santos et al., 2016), 

CROPSYST, and PM  Models (Boylan and Russell, 2006) used for simulating of pearl 
millet genotypes across the globe. Similarly, the PNUTGRO (Hoogenboom et al., 1992) 

is used for groundnut, CHIKPGRO (Singh and Virmani, 1996) for chick pea, WTGROWS 

(Sehgal and Sastri, 2005) for wheat, SOYGRO (Hoogenboom et al., 1990) for soybean, 
QSUN (Schnable et al., 2009) for sunflower, and GOSSYM(Boone et al., 1993) and 

COTONS (Jallas et al., 2000) for cotton. Those are some of the models in use for 

meeting the requirements by farmers, scientists, and decision makers at present. 

2.2.Hydrologic modeling 

Hydrologic models are developed for estimating, predicting and managing 

water distribution and fluxes, at the soil-atmosphere interface, as a function of various 

parameters that are used for describing soil and watershed characteristics (e.g. 
(Manfreda et al., 2005, Gioia et al., 2011)).The inputs generally required are 

atmospheric data (e.g. rainfall and temperature) while the model parameterization 
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includes watershed characteristics like the topographical relief, geomorphology, 

vegetation cover, soil and bedrock properties (Fig. 8).  

 
Fig. 8- Example of catchment with water distribution (ESA/AOES-Medialab, 2004b) 

When restricted to land surface processes, they are referred to as Rainfall-

Runoff models and are often based on a conceptual representation of physical 

processes (Iacobellis et al., 2015). In general, they can be classified as lumped or 
distributed models (e.g. (Milella et al., 2012)), depending on the spatial discretization 

of parameters. In lumped model, the entire watershed is taken as a single unit and the  

On the other hand, distributed models can deal with space distributed quantities by 
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dividing the catchment into subunits, usually square cells or triangulated irregular 

network, so that the parameters, inputs and outputs can vary spatially. 

A large number of models with different applications ranges, from small 
catchments to global models, has been developed, such as DHSVM (Wigmosta et al., 

2002), MIKE-SHE (Refsgaard and Storm, 1995), TOPLATS (Bormann, 2006), WASIM-

ETH (Schulla and Jasper, 2007), SWAT (Santhi et al., 2001), PRMS (Heckerman et al., 
2007), SLURP (Barr et al., 1997), HBV (Lindstrom et al., 1997), LASCAM (Viney and 

Sivapalan, 2001), IHACRES (Croke et al., 2005), DREAM (Manfreda et al., 2005), etc., 

where each model has got its own unique characteristics and respective applications. 
The model choice and implementation are basically constraint by data availability (e.g. 

gauged or ungauged catchment), and modeling purpose such as streamflow and flood 

forecasting, water resource management, evaluation of water quality, erosion, nutrient 
and pesticide circulation, etc.  (Manfreda et al., 2015, Di Modugno et al., 2015, 

Gorgoglione et al., 2016). 

2.3.Complementarily of simulation processes 

The role of hydrological modeling and the collection of hydrological data in the 

efficiency of crop production is to provide accurate soil moisture distribution in space 

and time accounting for basin scale water dynamics (Dokoohaki et al., 2016b, 

Balenzano et al., 2013, Iacobellis et al., 2013). Indeed, rainfall amount and its space-
time distribution determine the quantity of water that reaches the land's surface. 

Temperature, humidity, vegetation cover (i.e. type, amount and distribution) determine 

the proportion of water that evaporates. Vegetation, soil conditions, and topography 
determine the quantity of water that infiltrates into the soil vs. that runs on the ground 

surface (Gioia et al., 2014). It is the interactions among these complex processes that 

define the quantity of water effectively available for crops in the rhizosphere (Fig. 9). 
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Fig. 9-  Soil water balance interaction with vegetation (ESA/AOES-Medialab, 2004a) 

Vegetation affects water balance by evapotranspiration (ET) and interception. 

Thus, canopy properties such as the leaf area index (LAI) and the rooting depth, are 
obtained offline (externally), and are considered as parameters in most physically 

based hydrologic models (McNider et al., 2015b, Gigante et al., 2009). LAI estimates 

provide an indication of vegetation growth cycle and of the plant activity in terms of 
water transpiration. Nevertheless, keeping LAI constant throughout a model simulation 

may lead to errors in the model results. LAI may also be treated as an input variable, 
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being regularly updated by means of earth observation products (Milella et al., 2012, 

Balacco et al., 2015). On the other hand, exploiting crop growth models, the hydrologic 

model could be enhanced with a module able to simulate vegetation development. Crop 
growth models, which accurately model soil water flow processes, should be preferred 

compared to other method to obtain vegetation stats (Betts, 2005). Nevertheless, they 

can be improved by a proper modeling of water flow distribution for a better estimation 
of ET’s rates. Since all these processes are represented in hydrologic models, the 

coupling of hydrologic and crop growth models can be expected to be beneficial for 

both simulations (Manfreda et al., 2010). 

2.4.Coupling models 

Coupling is used in the context of feedbacks between various processes. It 

does refer to physics, but it is conducted on software-development base with numerical 
implications. There several methods of coupling models, they range from simple hand-

mad data exchange to automated framework of integration as follow: 

1. Sequential coupling: Models are completely decoupled  
2. Loose coupling: Models do exchange I/O data  

3. Shared coupling: 

a. Unified GUI: Models share graphical user interface (GUI) 

b. Shared data: Models share I/O database 
4. Embedded: One model is completely contained in the other (usually as a 

subroutine) 

5. Integrated: Models are merged at the code source level in one coherent model. 
6. Framework: Using an overall modeling framework, the models are coupled 

using a third-part tool commonly called “Coupler” based on a combination of 
the previous methods. 

The level of coupling refers to the degree to which model variables depend upon 

each other. In high-level coupling (i.e. Embedded, Integrated) each component and its 
linked one must be presented in order for code or framework to be executed. At the 
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same time, low level coupling (i.e. shared and Loose coupling) allows components to 

be autonomously managed and to communicate among them. In a completely 

decoupled coupling (i.e. Sequential coupling), components operate separately and 
independently. 

2.5.Open- and Closed-source models 

Th notion of openness/closeness of a source can be applied either for the code 
source of a model and/or its data. Flexibility uses, and modifications, of closed-source 

models are predetermined by the creator(s), which is subjected to copyright and limit 

their accessibility and modification. In other hand, open source allows more freedom 
in modification, reproduction and use according to needs. Also, open source, with the 

possibility to change their code, develop more rapidly. Generally, we may define three 

level of openness to third party models: 

• Open Source: A completely open source code. 

• Partially Open Source: part of the source code is restricted. 

• Close Source: An entirely restricted source code.  

And three other level for third party data: 

• Heterogeneous: No restriction for third party data source. 

• Partially Heterogeneous: Some data sources are restricted. 

• Homogeneous: Only pre-determined data source is accepted. 

These characteristics must be considered for model development based on 

coupling. An integrated method offers a highly cohesive system but makes its 

maintenance and upgradability harder (for instance, if new versions of the legacy 
models are released). In contrast, less invasive method offers easier maintenance and 

more homogeneity but with weak cohesiveness (Fig. 10). 
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Fig. 10- Compromise between methods and integration 

3.Review of coupled hydrologic and crop growth model 

Coupling hydrologic and crop model’s studies are relatively scarce and still at 
its early development stage. Nevertheless, it is an important work for scientific modeler 

community dealing with sustainable water resources management for crop system 

improvement. The principal objectives of the reviewed studies (Tab. 8) concern a better 
quantification of ET, CO2, water and chemical flux estimation with dynamic vegetation. 

For this reason, exchanges between atmosphere– surface–subsurface water fluxes 

need to be complemented with crop development and other physiological processes. 

The developed models have been parameterized for a given target crop(s) 

according to area extend and/or relevance for the study focus. All studies’ results show 

that hydrologic processes are sensitive to changes led by the incorporation of crop 
dynamics in the hydrologic models and significantly improve fluxes estimation 

(compared to the original hydrologic models). It was concluded (case study related) 

that improving the estimation of energy, ET, CO2, pollutants and water fluxes over 
croplands is achieved through a more accurate description of vegetation dynamics.  
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In other hand, with the numerous crop models available and their different levels 

of sophistication, water requirement and availability are basic inputs. Increased 

accuracy of soil hydrology better the understanding of temporal dynamics as a function 
of agricultural production and inter-seasonal plant physiological changes, while at the 

same time improves irrigation practices. 
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Tab. 8- List of coupled hydrologic and crop models’ studies 

Note: Not all studies do use the nomenclature shown previously in “Error! Reference source not found..Error! Reference source not found.” for 
describing the coupling method. In such case, the coupling method is drawn from the description of the coupling process when enough 
information is provided. 

Method Models Description Study focus Reference study 

Hydrology Crop Coupled 

-/- Built from 
scratch 

Built from 
scratch 

-/- Coupling based on a predetermined 
empirical relationship. 

Seasonality and 
energy balance effect 
on rice. 

(Maruyama and 
Kuwagata, 2010) 

Integrated CHAIN-2D EPIC -/- Models’ subroutines/functions 
codded with FORTRAN 90. 

Simulation of furrow 
irrigation and crop 
yield. 

(Wang et al., 
2014) 

Loose 
coupling 

CMF PMF CMF-PMF Follow recommendation of (Perkel, 
2015). 

Effect of CO2 on 
grassland 

(Kellner et al., 
2017) 

Integrated DRAINMOD DSSAT DRAINMOD–
DSSAT 

Modular codes integration. Integrated agricultural 
system modelling. 

(Negm et al., 
2014) 

Integrated HYDRUS 1D DSSAT -/- Simplified version of HYDRUS 1D 
integrated to DSSAT Code source. 

Simulations of Soil 
Water Dynamics 
in the Soil-Plant-
Atmosphere System. 

(Shelia et al., 
2017) 
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List of coupled hydrologic and crop models’ studies (continue) 

Integrated HYDRUS 1D  EPIC -/- Models’ 
subroutines/functions codded 
with FORTRAN 90. 

Irrigation water 
salinity impacts 
assessment. 

(Wang et al., 
2017) 

Embedded HYDRUS 1D EPIC based -/- HYDRUS 1D is the host model 
and the SWAT’s EPIC crop 
module is simplified and 
added. 

Impacts of 
groundwater balance 
on cotton growth. 

(Han et al., 2015) 

Integrated HYDRUS 1D PS123 WHCNS The models are integrated in 
whole WHCNS modelling 
framework 

Water and nitrogen 
management. 

(Liang et al., 2016) 

Framework HYDRUS 1D WOFOST -/- OMS V.3 framework Agricultural water 
management. 

(Zhang et al., 
2012) 

Integrated  HYDRUS 1D WOFOST -/- Modules and functions 
integration. 

Irrigation modeling of 
wheat cultivation. 

(Zhou et al., 2012) 

Loose coupling  JULES InfoCrop -/- One-ways data exchange Estimation of 
evapotranspiration 

(Tsarouchi et al., 
2014) 

Integrated  JULES SUCROS JULES-
SUCROS 

Modular incorporation of 
derived SUCROS model to 
JULES. 

Crop growth 
simulation. 

(Van den Hoof et 
al., 2011) 
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List of coupled hydrologic and crop models’ studies (continue) 

Framework MIKE-SHE DAISY DAISY-MIKE 
SHE 

OpenMI framework Nitrate leaching. (Thirup, 2013, 
Thirup et al., 2014) 

Integrated  MIKE-SHE DAISY -/- Hard code integration of 
models. 

Macropore flow and transport 
processes modeling. 

(Skovdal 
Christiansen et al., 
2004) 

Integrated  MIKE-SHE DAISY -/- Hard code integration of 
models. 

Integration of remote sensing 
in agro-hydrologic modeling. 

(Boegh et al., 
2004a) 

Loose 
coupling 

ORCHIDEE STICS -/- One-way data exchange 
with shared inputs. 

Croplands influence water and 
carbon balance. 

(De Noblet-
Ducoudré et al., 
2004) 

Embedded RZWQM DSSAT RZWQM2 Wrapping approach for 
model integration. 

Presentation of the RZWQM2 (Ma et al., 2012) 

Embedded RZWQM DSSAT-
CERES 

RZWQM-
CERES 

CERES-Maize added as 
a module to RZWQM. 

Maize crop growth and yield 
modelling. 

(Ma et al., 2006) 

Embedded RZWQM DSSAT-
CROPGRO 

RZWQM-
CROPGRO 

CROPGRO added as a 
module to RZWQM. 

Model coupling for soybean 
production modeling. 

(Ma et al., 2005) 

Loose 
coupling 

SHAW WOFOST -/- Custom framework with 
dynamic feedback 

Irrigated maize study for 
water, carbon and energy 
balance. 

(Li et al., 2013) 
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List of coupled hydrologic and crop models’ studies (continue) 

Not 
indicated 

SiB2 SiBcrop -/- Daily-base data exchange 
coupling. 

ET and carbon exchange in 
wheat-maize croplands. 

(Lei et al., 
2010) 

Integrated SWAP EPIC -/- Substitution of the WOFOST 
model in SWAP by EPIC  

Ground water level effects on 
soil salinity and wheat yield. 

(Xu et al., 
2013) 

Integrated SWAP WOFOST SWAP WOFOST integrated as a 
submodule in SWAP. 

Presentation of the integrated 
SWAP model. 

(Kroes et al., 
2000) 

Integrated  SWAT EPIC HEXM Upgraded hydrologic module in 
SWAT with original EPIC 
module. 

Integrated hydrologic system 
modelling 

(Zhang et al., 
2014) 

Integrated  VIC CropSyst VIC–
CropSyst 

Tightly source code integration 
with modular approach. 

Presentation of the VIC–
CropSyst-v2 

(Malek et al., 
2017) 

Framework VIC DSSAT -/- RHEAS framework RHEAS framework 
presentation. 

(Andreadis et 
al., 2017) 

Loose 
coupling 

WaSSI DSSAT GriDSSAT GIS based I/O exchange 
coupling. 

Hydrological impacts of 
irrigation. 

(McNider et al., 
2015a) 

Framework WRFV.3.3-
CLM4 

AgroIBIS WRF3.3-
CLM4crop 

CESM1 framework Crop growth and irrigation 
interact to influence surface 
fluxes 

(Lu et al., 
2015) 

Loose 
coupling 

WEP-L WOFOST -/- One-ways data exchange with 
feedback. 

Climate change impact on 
winter wheat. 

(Jia, 2011) 

Embedded TOPLATS WOFOST WOFOST WOFOST is coupled as 
subroutine to TOPLATS. 

Coupled model optimization 
using LAI/soil moisture. 

(Pauwels et al., 
2007a) 
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Models’ References:  

WOFOST (Diepen et al., 1989); AgroIBIS (Kucharik, 2003); CESM1 (Kay et al., 2015); CHAIN-2D (Simunek and Van Genuchten, 1994); 
CMF (Kraft et al., 2011); DRAINMOD (Skaggs et al., 1996); HYDRUS 1D (Simunek et al., 2005); InfoCrop (Aggarwal et al., 2006); JULES (Best 
et al., 2011); LSP (Yuei-An and England, 1998); OMS (David et al., 2002);  OpenMI (Gijsbers et al., 2002); PILOTE (Mailhol et al., 1997); PMF 
(Multsch et al., 2011); PS123 (Driessen and Konijn, 1992); RHEAS (Andreadis et al., 2017); RZWQM (Ahuja et al., 2000); SiB2 (Sellers et al., 
1996); SiBcrop (Lokupitiya et al., 2009); STICS (Brisson et al., 1998); SUCROS (Goudriaan and Van Laar, 2012); SWAP (Kroes et al., 2000); 
SWAT (Santhi et al., 2001); VIC (Liang et al., 1994); WaSSI (Averyt et al., 2013); WEP-L (Jia et al., 2001);  
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4.Discussion conclusion 

Meteorological observations, crop production, soil samples… etc., many data 

pertinent to watershed system are gathered at local scale. Current research support 
integrated assessments of complex systems based on place-oriented assessment. 

Building larger-scale understandings from localized case studies is an upscaling task 

(aggregation). Nonetheless, not all data are prompt to aggregation to estimate larger 
scale values, such as vector (i.e. wind) or intensive (i.e. temperature) data. However, 

technical solution for problems in upscaling exists, such as linking models between 

scales, changing model resolution or comparing aggregates with overall records (Fig. 
11). 

 
Fig. 11- Up/down simulation scaling  
- integration /discretization of point-based/distributed simulation 

Challenges related to data availability at detailed scales, the increasing 

complexity of causal relationships, and capturing contextual detail led to another 

essential aspect of coupling, downscaling. Because many driving forces (i.e. rainfall, 

topography…etc.) operate at watershed scale, they shape on-field realities. However, 
this is not easily attainable by interpolating spatially data, which results in great 
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uncertainties (Fig. 12 and Fig. 13, examples for rainfall and wind data). In addition, 

validation processes of the model’s outputs that are not always attainable, due to lack 

of detailed observational datasets. 

 
Fig. 12- Example of up/downscaling of rainfall data 

 
Fig. 13- Example of up/downscaling of wind data 
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Assuming that all relevant data are converted to a common metric, the coupling 

challenge has been greatly simplified. If the aim is to attain an integrated understanding 

of processes, simply converting numbers to a common spatial scale does not 
necessarily assure conceptual integration, as contrasted with computational integration 

where coupling method has a crucial role in system processes assimilation. It is often 

a matter of reconciling differences in process assumptions, theoretical foundations and 
perceived standards. 

Last but not least, distributed hydrologic models are land-use dependent for 

soil function and rainfall distribution. Land use can significantly alter the seasonal and 
annual hydrological response within a catchment. Nevertheless, cropping systems 

represent one category among others (i.e. urban areas, forests, …etc.). The prevalence 

of agricultural activity in a given hydrologic system will determine the potential benefit 
of incorporating crop model in hydrologic simulation. 
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CHAPTER III: IMPLEMENTING PARALLEL PROCESSING FOR DSSAT 
MODEL 

1.Introduction 

There are varying reasons to adopt parallelism, and it’s important to understand 
the motivations and expectations for doing so (Craig et al., 2005, D'Amore et al., 2011, 

Dennis et al., 2012, Evans et al., 2012, David et al., 2013, Valcke, 2013, Dufaud and 

Tromeur-Dervout, 2013, Cohen-Boulakia et al., 2014, Formetta et al., 2016). Usually, 
scientific adopt parallelism for one or more of the following reasons:  

• Application performance  

• Applications where deriving the solution is time critical (i.e. weather 

prediction)  

• Power savings by doing the same amount of work via efficiently threaded 

code  

• Allow offering new capabilities for your application (e.g. add modules to an 

application with minimal impact to overall performance)  

While the application domain has broadened, and modeling networks have 
expanded (Yao and Buzacott, 1986, Famiglietti and Wood, 1994, Probert et al., 1995, 

Adler, 1995, Sawik, 1995, Sellers et al., 1996, Wu and Crestani, 2003, Argent, 2004, 

Hill et al., 2004, Voinov et al., 2004, Malone et al., 2004, Bao et al., 2017, Qiu et al., 

2017, Behr et al., 2017, Kotey, 2017, Rigolot et al., 2017, Will et al., 2017, Coleman et 
al., 2016, O'Keeffe et al., 2016), DSSAT (Jones et al., 2003) model implementations 

(along with other major models e.g. APSIM (Keating et al., 2003b)) have largely 

remained as it was a decade ago and FORTRAN is still used as the programming 
language(Fry et al., 2017, Attia et al., 2016, Vianna and Sentelhas, 2016, Corbeels et 

al., 2016, Ahmed et al., 2016, Dzotsi et al., 2010, Saseendran et al., 2010, Soler et al., 

2007b, Ma et al., 2006, Jones et al., 2003). FORTRAN remains dominant primarily due 
to its legacy as the predominant language used by scientists and modelers from its 

inception in the 1950s through to the 80s and 90s when much of the science or 
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biological part of today's simulation models were initially developed (Jones et al., 2017, 

Sinclair and Seligman, 1996). DSSAT’s models are typically large constructions each 

containing their own implementations of very common approaches to modelling crop 
and soil processes(White et al., 2011b, Weerts et al., 2010, Bao et al., 2017, Dokoohaki 

et al., 2016b, Jing et al., 2016, Li et al., 2015b).  

This reliance comes from significant past efforts spent to build those model 
components, which to date are still performing and functioning well, and are heavily 

used by many scientists as critical parts of ongoing research delivery. Those legacy 

codes, however, are typically written using procedural languages, which challenges the 
options for evolving the code toward a more modern code base(Badr et al., 2016, 

Dokoohaki et al., 2016b) . 

To overcome this issue, this chapter introduces a method for implementing 
DSSAT-CSM for parallel processing on Windows -based Operating System (OS) 

without incorporating changes to the source code. It explains procedural technics of 

organizing and executing a set of runs in order to take advantage of CPU hardware 
resource and speedup simulations. 

2.Summary of DSSAT-CSM run structure 

The default DSSAT home directory provides the user a comprehensive an 

organized folders’ structure and database. DSSAT Shell provides simple and effective 
tools for multiple simulation exercises. Nevertheless, applications that potentially 

involve many runs are best conducted through batch processing. It involves the use of 

MS-DOS command prompt to launch and control DSSAT-CSM execution. 

Fig. 14, schemes the call and operations of DSSAT-CSM executable 

(DSCSM***.EXE, where the ’***’ indicate the version of the executable). The operation 

starts by defining and Execution directory where the command prompt (CMD) will be 
locked to. The command line that executes a given simulation has the following general 

form: 
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[DRIVE]:\[PATH:Directory]>[PATH:DSCSM***.EXE] B [optional: DSSAT-
Model***] [PATH:DSSBatch.v**] 

Example:  

C:\myfolder>C:\DSSAT**\DSCSM***.EXE B CSCER*** C:\DSSAT47\Wheat\ 
DSSBatch.v** 

If the version of DSSAT used is 4.7, the ** and *** will be 47 and 047 

respectively. In this case the command will be: 

C:\myfolder>C:\DSSAT47\DSCSM047.EXE B CSCER047 C:\DSSAT47\Wheat\ 
DSSBatch.v47 

In this example, the location of DSCSM047.EXE is the default DSSAT directory, 

nevertheless it is not restricted to this location and it can be wherever it is accessible 

by the operating system. 

 
Fig. 14- Summary of DSSAT-CSM execution structure 
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The batch file contains a list of experimental files with their full path and 

treatment(s) that will be run for each of them. It is the reference list of runs of the 

DSCSM and it is executed sequentially (Fig. 15). The DSSATPRO file contains 
information about the locations of data directories and files required by the model (i.e. 

soil, weather, and genotype…etc.). 

 
Fig. 15- Example of DSSAT’s batch file 

3.Method description and testing 

The method described here follows is based on the use of Windows batch file 

(BAT). Where the list of sequences of runs are executed in the DSSAT batch file are 
split at the initial CMD commands. This allows the OS to schedule the runs in multiple 

parallel threads and make an optimal use of CPU resources (Fig. 16). The requirements 

for this method are listed in Tab. 9.  

The method consists on reducing the work assigned to the DSCSM executable 

to one unique run, as such, the threads will be scheduled by the OS and multiple 

independent runs can be spread across CPU’s core. 
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Fig. 16- DSSAT-CSM parallel execution structure 

Tab. 9- Table of requirements 

Resource Comment 

Windows OS This method is described for this platform. 

Multi-CPU hardware To take advantage of parallel processing. 

DSSAT Installation of DSSAT should be present. 

Lists of commands That includes creation of folders and DSSAT batch file, and DSCSM runs 

Parallel execution Routine to execute multiple tasks simultaneously.  

SSD (Optional) Solid Stat Drive: Speed reading and writing operations 

3.1.Parallel execution routine 

The routine is written in Windows batch file and allow execution of a list of MS-

DOS commands in parallel. The code is the following: 

Tab. 10- Description of the BAT Parallelizer code 
Order Description Code  

1.  Display the output of each process if the 
/O option is used, if else ignore the output 

of each process. 

@echo off 
setlocal enableDelayedExpansion 
if /i "%~1" equ "/O" ( 
set "lockHandle=1" 

set "showOutput=1" 
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) else ( 
set "lockHandle=1^>nul 9" 

set "showOutput=" 

) 

2. List of commands goes here. Each 

command is prefixed with ‘:::’ 
::: [command] 
 

3. Define the maximum number of parallel 

processes to run. Each process number 

can optionally be assigned to a particular 

server and/or CPU via PSEXEC specs 

(untested). 

set "maxProc=[value]" 
 

4. Optional - Define CPU targets in terms of 
PSEXEC specs (everything but the 

command). If a CPU is not defined for a 

PROC delete this section, then it will be run 

on the local machine. 

set cpu1=psexec \\server1 ... 
set cpu2=psexec \\server2 ... 
set cpu3=psexec \\server3 ... 

5. Set the number of CPUs for /l %%N in (1 1 %maxProc%) do 
set "cpu%%N= [CPU number]" 

6. Get a unique base lock name. Incorporate 

a timestamp from wmic if possible, 

otherwise, incorporate a random number. 

set "lock=" 
for /f "skip=1 delims=-+ " %%T in 
('2^>nul wmic os get 
localdatetime') do ( 
set "lock=%%T" 
goto :break 
) 
:break 
set 
"lock=%temp%\lock%lock%_%random%_" 

7. Initialize the counters set /a "startCount=0, endCount=0" 
8. Clear any existing end flags for /l %%N in (1 1 %maxProc%) do 

set "endProc%%N=" 
9. Launch the commands in a loop set launch=1 

for /f "tokens=* delims=:" %%A in 
('findstr /b ":::" "%~f0"') do ( 
if !startCount! lss %maxProc% ( 
set /a "startCount+=1, 
nextProc=startCount" 
) else ( 
call :wait 
) 
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set cmd!nextProc!=%%A 
if defined showOutput echo -- 
echo !time! - proc!nextProc!: 
starting %%A 
2>nul del %lock%!nextProc! 

10. Redirect the lock handle to the lock file. 

The CMD process will maintain an 

exclusive lock on the lock file until the 

process ends. 

 

start /b "" cmd /c 
%lockHandle%^>"%lock%!nextProc!" 
2^>^&1 !cpu%%N! %%A 
) 
set "launch=" 

11. Wait for procs to finish in a loop. If still 

launching, then return as soon as a PROC 
ends. Otherwise, wait for all procs to 

finish, redirect stderr to null to suppress 

any error message if redirection within the 

loop fails. 
 

:wait 

12. Redirect an unused file handle to the lock 
file. If the process is still running, then 

redirection will fail and the IF body will not 

run. 

 

for /l %%N in (1 1 %startCount%) do 
( 
if not defined endProc%%N if exist 
"%lock%%%N" ( 
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13. Made it inside the IF body so the process 
must have finished. 

if defined showOutput echo = 
echo !time! - proc%%N: finished 
!cmd%%N! 
if defined showOutput type 
"%lock%%%N" 
if defined launch ( 
set nextProc=%%N 
exit /b 
) 
set /a "endCount+=1, endProc%%N=1" 
) 9>>"%lock%%%N" 
) 2>nul 
if %endCount% lss %startCount% ( 
1>nul 2>nul ping /n 2 ::1 
goto :wait 
) 
2>nul del %lock%* 
if defined showOutput echo = 

Parts number 2 and 5 (optionally 4 when running on a server cluster) are the 

editable parts that have to be adapted for the simulation and hardware resources. This 
routine is used for: Create execution folders, Create DSSAT Batch files and runs by 

inserting the appropriate commands in section 2. 

Here follow the general forms of the commands lists that has to be formulated 
for the section 2: 

a) Folder commands form: 

::: mkdir [PATH:Directory of execution] 

b) DSSAT Batch commands form: 

::: echo $BATCH([DSSAT-Model***]) >[PATH:DSSBatch.v**] & echo 
[DSSBatch.v** variables header]>>[PATH:DSSBatch.v**] & echo 
[PATH:FileX and control variables]>> [PATH:DSSBatch.v**] 

c) Runs commands form:  
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::: cd [PATH:Directory of execution]> & [PATH:DSCSM***.EXE] 
[optional: DSSAT-Model***] B [PATH:DSSBatch.v**] &exit 

We recommend using distinct BAT file for every operation, then orchester their 

execution using an additional BAT file. Example: 

If the BAT commands files routine are FC.BAT , DB.BAT  and RUN.BAT for 
directories, DSSAT Batch files and Runs respectively. The control BAT file will be: 

[PATH:FC.BAT] && [PATH:DB.BAT] && [PATH:RUN.BAT] 

3.2.Benchmark 

The method is tested using DSSAT’s defaults database.  DSSAT-Ceres model 
and (Campbell and Paul, 1978) experiments with its first treatment as a base run. A list 

of runs was generated (Tab. 11) and launched using the described method. 

Tab. 11- Time benchmark assessment for different sets of runs 

Run 
Duration (seconds) 

CC=1 CC=2 CC=4 CC=6 CC=8 

1 0.8 0.7 0.7 0.8 0.7 

50 191.5 83.4 36.3 22.3 15.8 

100 383.1 166.7 72.6 44.6 31.6 

500 1915.3 833.6 362.8 223.0 157.9 

1000 3830.0 1667.1 725.6 446.1 315.9 

2500 9575.4 4167.8 1814.1 1115.2 789.6 

4000 15320.6 8868.4 3902.6 1784.3 1263.4 

6000 22980.0 14502.6 6853.9 2676.5 1895.1 

* CC: Core-Count 

To control the computer resources, we used virtual machine where the different 

configurations of Core-Count were set. The CPU frequency is 2.6 gigahertz and the 

amount of virtual memory allocated for all the sets is 8 gigabits. The OS and DSSAT 
were installed on a Solid-State Drive (SSD) with 550 megabits/s and 540 megabits/s 
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for read and write speed respectively. We used MATLAB Tic-Toc time routine to 

estimate time of execution of the setup batch (BAT) files. 

Some aspects of the test are not controlled and have to be take into account 
for the following analysis. Such as OS threads and priority schedule, multi-threading 

and CPU Turbo-Boost activation. Nevertheless, we limited the background tasks as 

much as possible and the only user executed task is the simulation. 

The performance increased from 6 hours and half to about 30 minutes for 6000 

runs on single and 8 cores respectively. Nonetheless, Fig. 17 show non-linear relation 

between the number of runs and the time required for execution for every set of CC. 

 
Fig. 17- Time benchmark of setoff runs with different core-count configuration 
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Fig. 18 shows the proportional gain in time relatively to the increase in CC. The 

results suggest that for relatively low number of runs, the performance is not noticeable. 

Nevertheless, as much as the number of runs increases, time gain become more 
noticeable. 

 
Fig. 18- Difference increase of time and core-count 
*delta_duration: difference increase in execution time 
*delta CC: dfference increase in CC 

4.Discussion and conclusion 

In this chapter we presented a method for implementing parallel processing in 
DSSAT model. The benchmark results demonstrate that it is suitable for heavy 

simulations where many independent DSSAT runs has to be launched. With some 
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precedent requirements, the method is mainly based on the implantation of the 

parallelization routine and doesn’t’ require incorporating any change to the DSSAT’s 

DSCSM source code. 

In case of spatial implantation of DSSAT, it remains point-based. The 

parallelization routine runs multiple points in parallel as the DSCSM instances 

themselves remain intrinsically independent, in that they respond to a combination of 
soil and weather, they are being wrapped and executed in parallel to simulate broader 

scales. A key challenge is in how the individual point models are parameterized in these 

gridded applications, and whether these points interact with each other. Climate, soil 
and management information are required at each grid cell, but accurate, detailed data 

are almost never available. 
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CHAPTER IV: VICA - GENETIC CALIBRATION TOOL FOR DSSAT MODEL 

1.Introduction 

Crop growth models provide knowledge and tools of important utility in 
sustainable land and water resources management for crop system performance 

improvement (Kroes et al., 2000, Adam et al., 2013, Argent et al., 2009, Attia et al., 

2016, Manfreda et al., 2010). Models are increasingly used in order to simulate 
scenarios for food insecurity and required adaptation to climate change in order to 

provide management insights and help mitigate external forces on crop systems (Guan 

et al., 2017, Bao et al., 2017, Joshi et al., 2017, Vanuytrecht and Thorburn, 2017). 
Nevertheless, many issues are challenging scientists in this regard. For instance, the 

endemic lack of reliable data for calibration-testing of models, the optimization of model 

parameterization, the identification of breakthrough technologies that are expected to 
improve crop modelling (Magombeyi and Taigbenu, 2011, Papajorgji et al., 2004, 

Dokoohaki et al., 2016a, Hoogenboom, 1999, White et al., 2011b).  

The Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et 

al., 2002) is a widely used simulation tool for cropping systems that was designed to 
combine accurate predictions of economic products (e.g., grain, biomass, or sugar 

yield) for many species in response to climate and management conditions (Gijsman 

et al., 2002, Jones et al., 2003, Suleiman and Ritchie, 2004, Saseendran et al., 2007, 
Dzotsi et al., 2010, Liu et al., 2011, Lizaso et al., 2011). As in its actual version 4.7, it 

comprises dynamic crop growth simulation models for over 40 crops. DSSAT is 

supported by a range of utilities and apps for weather, soil, genetic, crop management, 
and observational experimental data, and includes example data sets for the included 

crop models (Ahmed and Hassan, 2011, Alexandrov, 1997, Anothai et al., 2013, Araya 

et al., 2017, Asadi and Clemente, 2003, Beinroth et al., 1997, Yang and Huffman, 2004, 
Yellin, 2001, Vazquez et al., 2009). 

In an agricultural system, crop productivity varies with varying climatic and 

edaphic conditions (Lal et al., 1993, Probert et al., 1995, Carberry et al., 2002, Asseng 
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et al., 2002, Ittersum et al., 2003). Models have been developed to best understand 

yield gaps and optimization of yield potential (Singh and Virmani, 1996, Gerke et al., 
1999, Hartkamp et al., 2002, Huth et al., 2002, Bannayan et al., 2003, Yu et al., 2006, 

Gijsman et al., 2007, Saseendran et al., 2009, Persson et al., 2010, White et al., 

2011a). Crop model parameters are usually determined by iterative parameter 
adjustment and comparison with observed data from field trials (Singh and Virmani, 

1996, Robertson et al., 2002, Soler et al., 2007b, Anothai et al., 2008, Chen et al., 

2008, Bannayan and Hoogenboom, 2009). A time-consuming task that depends highly 

on the expertise of the scientist, familiarity with the model, the field investigated and the 
crop-cultivar. DSSAT incorporate two tools to help the user in this regard:  

• Generalized Likelihood Uncertainty Estimation (GLUE): a statistical R tool based 

on the assumption that the parameters belong to a normal distribution. 

• Genotype coefficient calculator (GenCalc): a rule-based tool for estimation of 

genetic coefficient (Anothai et al., 2008, Bao et al., 2017). 

Nevertheless, the proposed tools miss in encompassing the nonlinearity of 
DSSAT model and are either time consuming, this is the case of GLUE, or propose 

sequential approach by calibration in series the genetic coefficients (GenCalc).  

The present work presents VICA, a new genetic coefficient calibrator tool for 
the DSSAT software. VICA is based on observations of DSSAT’s models’ responses to 

genetic coefficients variation. It aims of proposing an analytical approach for genetic 

parameters estimation and optimal use of computer hardware resources. VICA will be 
applied in CHAPTER VI of the present thesis. 

2.VICA: Visual-based Insights Calibration Analogue 

2.1.VICA user interface 
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VICA Graphical User Interface (GUI) (Fig. 19) is presented as one window 

divided in numbered sections. The numbers serve as guide for the user in setting the 
simulation configuration.   

 
Fig. 19- VICA GUI 

In section I. System configuration, user starts by selecting a crop in the drop-
down list and a list of models associated will be proposed. All the remaining section 

after that is configured automatically. The user can adjust the parameters: INC, NPT 

and PL; described in the following (Tab. 12); to adapt to system hardware resource.  

In section II. Experiments sets a mix of experiments and treatments related to 
a cultivar to be calibrate can be selected and their shared experimental data. III. Coefs. 
Intervals, the tables are filled using default values present in cultivar file of DSSAT 

database. The user can have an estimation of the simulation performance through the 
Simulation info section. 

The IV. Control section the user can define the base benchmark parameters 

among the three available (NRMSE, KGE and r2). After completion of the calibration, 



 

84 

results will be displayed in the Results section. The best run candidates are listed based 

on the parameters NRMSE, KGE and r2, experiments and treatments. An advanced 
plotter module is available through the View button.  
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Tab. 12- VICA GUI sections description 

*: manual entries can be set 

Section Components Description  

I. System  
configuration 

Crop  Crops list. 

Models Models associated with the crop selected. 

INC Initial Number of Classes is the number of sub 
interval on which be divided the parameters interval 
length. 

NPT* Number of Parallel Threads is the number 
simultaneous runs that will be launched.  

PL* Precision Level is the maximum interval length and 
it is expressed in percentage of initial interval length. 

II. Experiments  
sets  

Experiments Experiments available in the DSSAT crop directory. 

Treatments Treatments of the experiment. 

DATA Data records of the experiments. 

Ecotype Ecotype associated with the cultivar currently 
calibrated. 

III. Coef. intervals Cultivar coef.: 
 Min. Values* 

Set of minimums of parameters’ values from the 
database associated with the cultivar file. 

Cultivar coef.: 
 Max. Values* 

Set of maximums of parameters’ values from the 
database associated with the cultivar file. 

VI. Controls Run Launch simulations. 

Results  
base benchmark 

Parameters that will be used for experimental data 
and simulation comparison. 

View Simulation plot. 

Source Files View of combination and statistics sources files. 

Simulation info. N° of runs/iteration Number of runs per iteration. 

Duration/iteration Duration per iteration. 

N° of iterations Number of iterations. 

Total runs Total runs of the calibration. 

Total duration Duration of the calibration. 

Results Results summary Table of results of the best run displayed based on 
the benchmark parameters selected along with 
statistics of fit. 
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2.2.Directory structure 

VICA is a DSSAT dependent tool. It has to be installed on machines where 
DSSAT database is already installed (Fig. 20). Nevertheless, it is completely 

independent from its shell and execution. VICA route directory has three types of file:  

• Route execution directory: runs are carried in a series of subfolder classed as 

indicated in Fig. 20 

• Combinations.CCF: Coefficients combination file where the cultivar coefficients 

are generated 

• VICA: Stand-alone executable 

 It worth mention that only the VICA executable is necessary for execution. 
Other folders and files are generated during simulation. 

The files resident in the DSSAT’s execution directories are the same as the one 

present in the crop folders within DSSAT home directory. Nevertheless, all the outputs 
for all the simulations and iterations are kept and no file is overwritten. 

 
Fig. 20- VICA directories structure 
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2.3.Execution structure 

VICA routines are organized as described in Tab. 13 and Fig. 21. 

Tab. 13- VICA routines description and organization 

Order Routine Description 

1 Data reader Reads experiments, treatments, ecotype and cultivar formatted data. 

2 Simulation 
configuration 

Compute the number of runs and iterations and estimate time 
requirement for execution. In addition, it determines system resources 
allocation.  

2 File editor/copier Defines the experiments, ecotype and cultivar files needed. 

3 Tasks configurator Defines the execution and organize operations (file copying and 
editing) runs and iterations in sequences.  

4 Tasks lister Organize sequences of operation and order. 

5 Task Parallelizer Schedule execution of lists of operations that will be provided to the 
Operating system 

6 Task scheduler Launches and orchesters the execution of the lists of operations: 
Creation of directories, copy files, runs and benchmark. 

7 Data reader Read one iteration data and perform benchmark of the runs. 

- Data plotter Used at the end of calibration to visualize data. 

 
Fig. 21- VICA execution structure 
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3.Theory and concepts 

3.1.Background 

DSSAT is a non-linear model and the error 𝑒𝑒 between simulated and recorded 

variables is a function, denoted 𝐹𝐹, of the cultivar coefficients.  

Eq. 1:  ∀ 𝑛𝑛 ∈ 𝑁𝑁∗, 𝑒𝑒 = 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛) 

Where: 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 are the cultivar coefficients, and 𝑛𝑛 the number of 
coefficients. 

When reduced to one coefficient, 𝑥𝑥𝑥𝑥, the optimization process of the function 

𝐹𝐹 follows typically a second order polynomial curve (Fig. 22). 

Eq. 2:  ∀ 𝑥𝑥 ∈ 𝑁𝑁∗, 𝑒𝑒 = 𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑎𝑎 ∗ 𝑥𝑥𝑥𝑥2 + 𝑏𝑏 ∗ 𝑥𝑥𝑥𝑥 + 𝑐𝑐 

 Where: 𝑥𝑥 is the variable index and 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are the polynomial parameters of 

a smoothed fitting second order function, and 𝑓𝑓 the reduced function of 𝐹𝐹.  

 
Fig. 22- Example of error records 𝑒𝑒 in function of cultivar coefficient xi.  
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*The trails are done using wheat, MANITOU cultivar, DSSAT-Ceres model and (Campbell and Paul, 1978) 
experiments. The variable analyzed is leaf area index with the coefficient PHINT. 

The solution, 𝑋𝑋, to the equation Eq. 2 corresponds to the value of 𝑥𝑥𝑥𝑥 that 
minimizes the function 𝑓𝑓on the interval 𝐼𝐼. 

Eq. 3:   ∀ 𝑥𝑥 ∈ 𝑁𝑁∗,∀ (𝑋𝑋, 𝑥𝑥𝑥𝑥) ∈ 𝐼𝐼𝑥𝑥, 𝑓𝑓(𝑋𝑋) ≤ 𝑓𝑓(𝑥𝑥𝑥𝑥) 

Eq. 4:   ⇒ 𝑓𝑓′(𝑥𝑥𝑥𝑥) = 0 

Where 𝑓𝑓′is the derivative of first order of the function 𝑓𝑓. 

Considering the parameters 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛, the function 𝐹𝐹 can be 

expressed: 

Eq. 5:  ∀ 𝑛𝑛 ∈ 𝑁𝑁∗,∀ {(𝑋𝑋1, 𝑥𝑥1), … , (𝑋𝑋𝑛𝑛, 𝑥𝑥𝑛𝑛)} ∈ {𝐼𝐼1^2, … , 𝐼𝐼𝑛𝑛^2},𝐹𝐹(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) ≤ 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

Eq. 6:   ⇒ 𝐹𝐹′(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0 

Where: (𝑋𝑋1, 𝑥𝑥1), … , (𝑋𝑋𝑛𝑛, 𝑥𝑥𝑛𝑛) are the couples (solution, variable) and 

𝐼𝐼1, . . , 𝐼𝐼𝑛𝑛 are the corresponding interval of variation. 

3.2.Cultivar coefficients solver 

Eq. 6 is a multidimensional system for which the solution is the set of cultivar 

coefficients corresponding to the minimum of the function 𝐹𝐹. The solution proposed is 
a graphical-based approach that uses the properties of the function 𝑓𝑓 in combination 

with combinatory iteration. 

For each stat of the system 𝐹𝐹, a function 𝑓𝑓 can be defined for one of the 
cultivar’s variable 𝑥𝑥𝑥𝑥. In combination, each value of the variable 𝑥𝑥𝑥𝑥 correspond to 

distinctive functions of the other variables (Example in Fig. 23) 
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Fig. 23- Example of error records 𝑒𝑒 in function of two cultivar coefficients xi.  
Trails sets are the same as in Fig. 23, except the addition of P1V, for which three values are given 
corresponding to the three curves. 

To determine the minimum of all sets of stats, the interval variation of each 

cultivar coefficient, denoted 𝐼𝐼1, … 𝐼𝐼𝑛𝑛 , is divided in sub-interval; the designation of 

Classes will be adopted from now on to refer to sub-intervals; Such as: 

Eq. 7:   ∀ 𝑥𝑥,𝑚𝑚 ∈ 𝑁𝑁∗, 𝐼𝐼𝑥𝑥 = 𝐶𝐶𝑘𝑘𝑖𝑖1 ∪ 𝐶𝐶𝑘𝑘𝑖𝑖2 ∪ 𝐶𝐶𝑘𝑘𝑖𝑖3 ∪ …∪ 𝐶𝐶𝑘𝑘𝑖𝑖𝑚𝑚 

Where: 𝐼𝐼𝑥𝑥 is the interval corresponding to the variable 𝑥𝑥𝑥𝑥, and 

𝐶𝐶𝑘𝑘𝑖𝑖1,𝐶𝐶𝑘𝑘𝑖𝑖2,𝐶𝐶𝑘𝑘𝑖𝑖3, … ,𝐶𝐶𝑘𝑘𝑖𝑖𝑚𝑚 are the classes of the interval 𝐼𝐼𝑥𝑥 and the 𝑘𝑘th iteration. 

A minimum of three classes per interval are required (**). Then a combination 

of sets of all the variables are generated (Tab. 14) and analyzed to determine the set 

that correspond to the lowest value of the function 𝐹𝐹 using three benchmark parameters 
to perform the selection of best set configuration( Kling-Gupta Efficiency (KGE) (Gupta 

et al., 2009),  correlation coefficient (r2) and the Normalized Root-Mean Square Error 

(NRMSE)).   
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**: three points are required to construct a second order polynomial. 

Eq. 8:  𝐾𝐾𝐾𝐾𝐸𝐸 = 1 −�((𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2) 

Eq. 9:  𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑖𝑖𝑠𝑠,𝑐𝑐𝑜𝑜𝑠𝑠)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠∗𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠

 

Eq. 10:  𝛽𝛽 = 𝜇𝜇 �𝑠𝑠𝑖𝑖𝑠𝑠
𝑐𝑐𝑜𝑜𝑠𝑠
� 

Eq. 11:  𝛼𝛼 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠

 

Tab. 14- Variables and classes matrix 

𝒙𝒙𝟏𝟏 … 𝒙𝒙𝒙𝒙 

𝒄𝒄𝟏𝟏𝟏𝟏𝟏𝟏 … 𝑐𝑐1𝑛𝑛1 

… 𝑐𝑐𝑙𝑙𝑖𝑖𝑗𝑗 … 

𝒄𝒄𝟏𝟏𝟏𝟏𝒎𝒎 … 𝑐𝑐1𝑛𝑛𝑚𝑚 

* 𝑐𝑐𝑘𝑘𝑖𝑖 𝑗𝑗 is the central value of the class 𝐶𝐶𝑘𝑘𝑖𝑖 𝑗𝑗 And 𝑗𝑗 the class index. 

The number of combinations, 𝑄𝑄, for one iteration is: 

Eq. 12:  Q= 𝑚𝑚𝑛𝑛 

Where: 𝑚𝑚 is the number of classes and 𝑛𝑛 the number of coefficients.  

The above procedure corresponds to one iteration, then after, each class 

candidate selected of every variable is divided into classes and the process is repeated 

till the interval length of the class 𝐶𝐶𝑘𝑘𝑖𝑖 𝑗𝑗 is inferior to a threshold of its initial length (Eq. 

14) (corresponding to the PL in the VICA initial setup configuration). 

 Eq. 13:   ∀ 𝑥𝑥, 𝑗𝑗, 𝑘𝑘,𝑚𝑚 ∈ 𝑁𝑁∗,   𝐶𝐶𝑘𝑘𝑖𝑖 𝑗𝑗 = 𝑐𝑐𝑘𝑘𝑖𝑖 1 ∪ …∪ 𝑐𝑐𝑘𝑘𝑖𝑖𝑚𝑚  

 Eq. 14:  Condition :  𝑐𝑐𝑘𝑘𝑖𝑖 𝑗𝑗 ≤ 𝑃𝑃𝑃𝑃 ∗ 𝐼𝐼𝑥𝑥 
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The algorithm is valid with the assumption that the solution is part of the initial 

interval: 

 Eq. 15:  ∀ 𝑥𝑥, 𝑗𝑗, 𝑘𝑘 ∈ 𝑁𝑁∗,𝐸𝐸 𝑐𝑐𝑘𝑘𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼𝑥𝑥, 𝑓𝑓(𝑐𝑐𝑘𝑘+1𝑖𝑖 𝑗𝑗) ≥ 𝑓𝑓(𝑐𝑐𝑘𝑘𝑖𝑖 𝑗𝑗) 

Where: 𝑐𝑐𝑘𝑘+1𝑖𝑖 𝑗𝑗 and 𝑐𝑐𝑘𝑘𝑖𝑖 𝑗𝑗 are the class candidate at iteration 𝑘𝑘 and 𝑘𝑘 + 1. 

4.Discussion and conclusion 

The design of the VICA was undertaken to help overcome the complexity of 

cultivar calibration and to facilitate this process for broader user who are not advanced 

in using DSSAT. Although the VICA is new and doesn’t not support all the crops 
available in DSSAT (i.e. rice) in its actual version, it offers an insight on DSSAT’s 

models’ behavior and adapt its use for modern computer architecture. 

 A more difficult issue is, however, the gap between software development and 

applied research contributors. As in the case of VICA development, the implementation 
of parallel processing can be implemented with DSSAT its self, but this will require it 

restructuration at a code level. This cause a major issue as DSSAT development relies 

on its community contributors in code development and modules extension. 
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 CHAPTER V: DETERMINATION OF PLANTING DATE USING MODIS LEAF 
AREA INDEX 

1.Introduction 

Planting date is an important management information, which is typically 

required by crop models. time of sowing has a considerable effect on yield due to the 

variability of weather (timing and amount of wet and dry periods, temperature 

variability) that strongly interacts with crop phenological phases (International 
Research Institute for et al., 2018, Li et al., 2015b, Dzotsi et al., 2010, Gijsman et al., 

2007, Hoogenboom et al., 1992). climate change has already been found to modify 

plant phenology mainly due to the extension of the growing season in many areas. 
shifts in precipitation patterns (e.g. the expected decrease in summer precipitation 

together with earlier growing season start) require reconsideration of existing planting 

dates in order to avoid drought induced yield loss(Bao et al., 2017, Vanuytrecht and 
Thorburn, 2017, Okoro et al., 2017, Araya et al., 2015). In order to create adaptive 

agroecological simulations, realistic estimations of human management practices are 

needed, including planting practice and its potential changes in the future.  

Three planting date estimation methods are used in crop modelling for different 

purposes. The  first one uses predefined and constant planting dates based on 

observations, typically representing average planting time for some period (De Noblet-
Ducoudré et al., 2004, Drewniak et al., 2013, Waha et al., 2012, Deryng et al., 2011). 

The second,  to optimizes planting date in order to maximize the yield (Stehfest et al., 

2007, Waongo et al., 2015). The third approach uses climate data to estimate the 
optimal conditions for a given crop for planting (Arthur et al., 2017, Jones et al., 2017, 

Jones et al., 2003) and can be particularly useful in climate change impact studies.  

In addition to the mentioned option, the majority of state-of-the art crop models 
allow to define planting dates using predefined rules (Moore et al., 2014). For instance, 

the CropSyst model determines the planting date using air temperature and the actual 

soil water content (Stöckle et al., 2003). The STICS (Brisson et al., 1998) model uses 
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soil moisture and precipitation thresholds to determine the planting date. In DSSAT 

model (Jones et al., 2003), soil water content, management depth for water and soil 
temperature thresholds need to be set to estimate planting date within an interval 

sowing window (Jones et al., 2003, White et al., 2011a). the APSIM  model provides 

more flexibility by allowing the user to defined sowing rules based on any internally 
calculated model variable (Keating et al., 2003b, Holzworth et al., 2014). 

Plating date is a fundamentally an input data in non-forecasting simulation. A 

realistic reproduction of given cropping system development requires the actual 

planting date. The attempt to encompass farmers’ decisions that affect the planting 
date in a mathematical representation is challenging task because of a large portion of 

subjective factors included in such decisions. Nevertheless, technological 

advancement offers great opportunities to address this issue. Indeed,  remote sensing 
science and the art of acquiring information about an object by observing it from a 

distance is great alternative for estimating planting date. Indeed,  sensors can acquire 

data remotely while being on board different platforms (i.e: satellites, aeroplanes, 
etc.)(Li et al., 2017, Kharbouche et al., 2017, Martinez-Lopez et al., 2016, Locherer et 

al., 2015, Butler et al., 2014).  

Remote sensing data are mostly based on light interception (especially LAI or 
Fraction of Photosynthetically Active Radiation  fAPAR) and can provide information on 

different growth status of the crop(Li et al., 2017, Li et al., 2015a, Jia, 2011, De Noblet-

Ducoudré et al., 2004). To date, most of the studies examine the assimilation of LAI as 
a variable for crop yield estimation but there are other factors affecting crop 

development, such as water stress, nutrient supply and pests that cannot be integrated 

in actual modelling framework without changing their mechanistic modeling approach. 
In this chapter, we propose an alternative use and assimilation of LAI data into crop 

models. We present a method for determination of plating date using remotely sensed 

LAI. The method is applied in Chapter VI of this thesis as a validation. 

2.Material and methods 
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2.1.Base principle 

The method aims to investigate LAI data series for crop growth emergence 
phase.  It uses remote sensed datums at a temporal scale to determine the temporal 

interval that contains the actual planting date. The interval is determined in three steps 

as follow: 

1. Split LAI data series into local minimums and maximums 
2. Locate flat zones just afterward the local minimums 

3. Locate the last local non-inflecting minimum inside the flat zone. 

4. Step backward for the previous datum to set the interval. 

The length of the interval is function of the initial data temporal resolution. Post-

process for this method can help to determine the exact date. 

2.2.Illustration sets 

The following illustration uses the level-4 MODIS global LAI and fPAR product 

(MOD15A2) at 8 days and 1-km resolution on a Sinusoidal grid (Disney et al., 2016). 

The data are for 2000-20013-time frame. 

 The data sample are for the Celone watershed, southern Italy. An agricultural 

dominated watershed dedicated to grow durum wheat. The MODIS’ LAI data are 

averaged spatially over the area. An example application is shown using the DSSAT-
Ceres wheat model over one growing season. 

2.3.Description 

In the present description, MATLAB is used, nevertheless, it is not limited to 
and other tools might be used for time series data analysis.  
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The smoothing (or fitting) using a piecewise sum of parabolic functions (a sum 

of parabolic functions by interval determined by the peaks in data points series) (Fig. 
24) allows to split data series and estimate local minimums and maximums (Fig. 25). 

 
Fig. 24- MODIS’ LAI data fitting using some of parabolic functions 

 
Fig. 25- MODIS’ LAI data series devision  according to local minimums and maximums 
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Despite noises in MODIS’ LAI data due to the spatial averaging, a flat zone is 

observable on the fitting curve (Fig. 26) that will allow then after to gather the set of 
MODIS’ LAI datums that shows an emergence of crop growth phase (Fig. 27). 

 
Fig. 26- Example of flat zones locations 

The last lowest point in MODIS’ LAI data correspond the start continuous 
increase in the fitting curve. Along with the precedent datum (Fig. 27), the set interval 

has a length of 8 days (MODIS’ LAI temporal resolution). 
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Fig. 27- Planting date interval 

Fig. 28 shows a simulation example of DSSAT-Ceres wheat model.  The 
extracted datum is set as input for the model. As post process, we considered MODIS 

LAI and DSSAT-Ceres LAI peaks matching (Fig. 28). This allowed to reduce the initial 

8 days interval to one day, which is the planting day considered. 

Fig. 29 shows growth emergence of the DSSAT-Ceres wheat model that 

correspond to MODIS LAI trend variation. 
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Fig. 28- Last minimum in the planting date interval: Application to the DSSAT-Ceres model 

 
Fig. 29- DSSAT-Ceres LAI at emergence 
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3.Conclusion and recommendations 

We presented in this chapter a relatively simple method to estimate planting 
date using remotely sensed LAI. It aims to propose an alternative to traditional fixed 

and/or based on climatic factors to estimate plating date. Nevertheless, it worth to 

record that the case application of this work is predominated by wheat cultivation area 

where the sensed LAI trends is mainly assigned to wheat growth. 

Another important aspect to consider is the scale of data averaging. Indeed, a 

low spatial resolution of the LAI sensed induces a significant noise in data series and it 

might lead to difficulties in the visual assessment of the flat zones described in Fig. 3. 

The temporal resolution plays an important role in the post processing and the 

estimation of the exact day of plating. Indeed, the emergence phase of seasonal crops 

is relatively short. In order to be observable, it is recommended to have LAI datum of 
less than 2 weeks temporal resolution.  

A secondary data source is required for trails to shorten the interval and fix the 

planting date. Peaks in simulated and observed LAI matching is one option, 
nevertheless, other corresponding data, such as yield, can be used for the final set of 

planting date. 
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CHAPTER VI: DREAM-DSSAT COUPLED HYDRO-CROP MODEL FOR 
INTEGRATED AGRO-HYDROLOGIC SYSTEM STUDY  

1.Introduction 

Population growth, rise of living standard, increase of life expectancy, 
economic competition and globalization are some of the leading factors that accelerate 

human pressure on the environment (Shirokanov, 2014). Irremediably, landscapes are 

being remodeled through urbanization and intensification of agricultural activities to 
feed a tremendous growing food demand. Consequently, agricultural land management 

has a strong impact on river’s water balance and associated catchments (DeFries and 

Eshleman, 2004). During recent decades, concerns are mainly focused on changing 
patterns of land associated with deforestation and agricultural transformation. In extent, 

the most important form of land use is the expansion of crop and pastoral land in natural 

ecosystems. Raising concerns about environmental services globally speaking. 

The consequences of agricultural practices on water supply and demand are 

high and they have a strong impact on local and downstream hydrological hazards as 

well as on biodiversity conservation (Thanapakpawin et al., 2007). Economic 
globalization also increases the in fluency of large agribusiness enterprises and 

international   financial flows on local land use decisions, in some cases weakening 

national policies intended to promote a public good (Lambin and Meyfroidt, 2011). 

Quantitative assessment of agricultural intensification inpacts on hydrological system 
can serve as a basis for developing watershed management schemes and decision 

support tools. Water quantity and quality are key environmental indicators which are 

sensitive to various external perturbations (Fan and Shibata, 2015).  

Over the last decade, several research studies have been conducted in the field 

of agro-hydrology. But, extrapolating the results to other watersheds is not always 

feasible. This is mainly due to ungauged basins where the principal issue is the model 
calibration and the model sensitivity itself to changes in agricultural patterns and its 

relevance. Furthermore, contrast and identification of the human induced pressure from 
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the natural one will lead to a better understanding of the agro-hydrology interaction 

mechanics. 

In the present chapter, we propose integrated modeling study by coupling the 
Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003) 

and the Distributed Runoff Evaporation and Antecedent soil Moisture (DREAM) Model 

(Manfreda et al., 2005) to assess the impacts of fertilizer application on runoff 
generation. The case study for model implementation and validation is a durum wheat 

agricultural (the Celone watershed, southern Italy). 

2.Material and method 

Tab. 15- Study materials and methods summary 

Material Descriptions 

location 
Region 
Country 

Celone at. san Vincenzo watershed 
Apulia region 
Italy 

Goal  Impact of agricultural intensification on runoff generation 
Mean Fertilizer application as mean of intensification 
Variable(s) analyzed Leaf area index (LAI), runoff and discharge 

Time frame  
Crop seasons 
Hydrologic cycles 

2000-2013 
Multiple discrete sequences 
Multiple continuous cycles 

Hydrologic model  
Implementation 
Spatial resolution 
Temporal res. 

DREAM Model 
Semi-distributed model 
90 km 
Daily 

Crop model 
Implementation 
Spatialization method 
Temporal res. 

DSSAT-Ceres version 4.7 
Point base model 
Multiple fertilizer-based treatments 
Daily 

Crop considered Durum wheat 
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Coupling method 
Data exchanged 
Execution order 
Data interpreter and converter 

Loose coupling (One-way data exchange) 
Leaf area index 
Sequential 
Custom MATLAB script 

2.1.Study background 

Coupling the DSSAT and DREAM models will allow to understand the effects 
of durum wheat cultivation and Celone’s basin water balance. Assuming that farmers 

provide optimal conditions in terms of soil and pests management. The spatiotemporal 

distribution of rainfall and durum wheat growth impact the water distribution throughout 
land cover. Thus, the questions of how the intensification of crop growth impact 

hydrological regime, the effects of canopy cover development and leaf area index on 

water distribution and runoff generation and the relationship between crop development 
and runoff generation. Those are some of the potentially crucial questions to be 

answered to understand how rainfall distribution relies on agricultural intensification in 

this particular area.  

2.2.Study case 

Celone at. San Vincenzo watershed, Candelaro basin, Capitanata (Puglia, 

Southern Italy) is a typical Mediterranean climate, with warm to hot, dry summers and 
mild, wet winters (Fig. 30). Precipitation events are often characterized by heavy rain, 

with a high intensity during a short period of time (Iacobellis et al., 2015, Gioia et al., 

2014), rainfall is unevenly distributed and often occurs as convective thunderstorms 
(Balenzano A., 2011, Fiorentino et al., 2011, Gioia et al., 2008, Manfreda et al., 2015). 

The Celone at San Vincenzo sub-basin is situated in mountainous areas characterized 

by Flyschoid formations. Soils predominantly belong to the class of Entisols (Andales 

et al., 2000) or Fluvisols (Gioia et al., 2011) and have a fine clayey–loamy texture, low 
organic matter content, poor natural fertility and lower water-holding capacity.  

The watershed is characterized by intensive agriculture activity. It is one of the 

main zone for the production of durum wheat with 75% of the total basin area, followed 
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by broad-leaved forest (5%), annual crops (4%), land principally occupied by 

agriculture with areas of natural vegetation (3%) and olive groves (2.7%) (Diacono et 

al., 2012). The residential area covers less than 2% of the whole area (Gigante et al., 
2009). Deciduous and mixed forests are present at the highest elevations where also 

some pasture lands can be found. The industrial activity is not relevant in this area.  

The irrigation in the plain part of the watershed is managed by a local authority 
“Consorzio per la Bonifica della Capitanata” of Foggia (CBC), that gives irrigation water 

on demand through a pipeline network. In the areas equipped with the irrigation 

systems, the durum wheat is cultivated in rotation with tomatoes or sugar-beet. The 
sowing date for the tomatoes is generally in late April or after the harvesting of durum 

wheat in the rotation. A marked differentiation exists between seasonal and permanent 

vegetation (for instance between winter wheat and olives) (Gioia et al., 2012). During 
the winter season, the watershed is covered almost completely by rainfed cereal durum 

wheat. Planting is generally in November, while harvesting occurs during the summer, 

according also to the weather conditions. Tree crops, such as olives, grapes and citrus, 
have a lower percentages of vegetation ground cover (Gigante et al., 2009, Diacono et 

al., 2012). 
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Fig. 30- The Celone at. San Vincenzo watershed. 

2.3.Data 

The hydro-meteorological data base, provided by the “Protezione Civile di 
Puglia”, it includes daily records of rainfall and discharge (Tab. 16), monthly minimum 

and maximum temperature and monthly wind. The spatial distribution of daily rainfall is 

accounted for by applying the Thiessen polygon method to the following stations (Orto 
di Zolfo, Biccari, Faeto, Orsara di Puglia and Troia). 

Tab. 16- Hydro-meteorological data  

Station name  Period observation  Parameters  

Orto di Zolfo 

2000-2013 
Daily rainfall, min. max. and med. Temperatures, 
wind velocity and direction 

Biccari 

Faeto 

Orsara di Puglia 

Troia 
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S.Vicenzo 2000-2013 Daily discharge (discontinued records) 

The hydraulic properties of soils are assigned from the “HarvestChoice Project” 
at International Food Policy Research Institute (IFPRI) in collaboration with International 

Research Institute (IRI) at Columbia University and Michigan State University (A Global 

High-Resolution Soil Profile Database for Crop Modeling Applications Version 2.4 
database  at 5’ spatial resolution) (International Research Institute for et al., 2015). This 

allows a priori estimates of parameters such as: porosity of soil, field capacity, wilting 

point, saturation, soil depth (cm), soil permeability (mm/day). 

Experimental data required for durum wheat cultivars are taken from previous 

study conducted by (Dokoohaki et al., 2015, Ventrella et al., 2012), where the “Simeto” 

cultivar is referenced as the most spread and largely used by the farmers of Celone. 

The studies provide assessment of DSSAT’s Ceres-wheat based on several years of 
calibration and extensive experimentation data. 

The level-4 MODIS global LAI and Fraction of Photosynthetically Active 

Radiation (FPAR) product (MOD15A2) is provided every 8 days at 1-km resolution on 
a Sinusoidal grid. Science Data Sets available in the MOD15A2 dataset include LAI, 

FPAR, a quality rating and standard deviation for each variable. Version-5 MODIS/Terra 

LAI products are “Validated Stage 2”; accuracy has been assessed over a widely 
distributed set of locations and time periods via several ground-truth and validation 

efforts (Disney et al., 2016). MODIS LAI data images were collected over a time span 

of 13 years (2000–2013) to characterize the changes in land vegetation cover. Lastly, 
using the capabilities of the MODIS Reprojection Tool, the data were projected in the 

cartographic reference system WGS 84 zone 33 Nord from the original MODIS 

Sinusoidal Projection System. 

2.4.Modeling framework 

The coupling framework schemed in Fig. 31 allows quantify the effect field level 

management on hydrological cycle and quantify its impacts. Preliminarily, a set of 



CHAPTER VI: DREAM-DSSAT COUPLED HYDRO-CROP MODEL FOR INTEGRATED AGRO-HYDROLOGIC SYSTEM STUDY  

109 

scenarios are defined and implemented in DSSAT. Using MODIS satellite LAI images, 

the planting date is calibrated for all the cases uniformly using the method described in 

Chapter V . Then DSSAT is coupled with the DREAM model using a custom MATLAB 
script that allows integration of DSSAT’s LAI into DREAM. The implementation is done 

at a grid base where both models operate sequentially (Fig. 32). 

 
Fig. 31- DREAM-DSSAT coupling framework 
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Fig. 32- Layers structure and data coupling 

Using a performance-based approach, the implementation is reversed to 

extract the management candidates that fit best simulated discharges based on 
DSSAT’s LAI data (Fig. 33).  

 
Fig. 33- DREAM-DSSAT modeling framework 
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2.4.1.Model presentation 

2.4.1.1.The DREAM model 

The DREAM model is presented as a MATLAB code, it includes two sub-models 
operating at distinct time scales. Daily-DREAM (D-DREAM) model is mainly designed 

to reproduce daily runoff and soil dynamics. When a given threshold of rainfall is 

exceeded, a different module (Hourly-DREAM, in the following H-DREAM), reproducing 
the flood event at an hourly step, becomes   operative. DREAM simulations are 

compound by the alternation of D-DREAM and H-DREAM runs or otherwise the two 

models may be applied separately. In both cases, the hydrological processes are 
computed on a grid-based representation of the river basin. But for our purpose, we 

will limit the simulation to the daily time step. Data concerning vegetation coverage, soil 

texture, local slope, etc., are required for each cell. 

2.4.1.2.The DSSAT model 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a 

computer application program that comprises crop simulation models as well as tools 

to facilitate effective use of the models. The crop simulation models simulate growth, 
development and yield as a function of the soil-plant-atmosphere dynamics. The 

models require daily weather data, soil surface and profile information, and crop 

management as input. Crop genetic information is defined in a crop species file that is 
provided by DSSAT and cultivar or variety information that should be provided. The 

simulations are conducted at a daily step. at the end of each day, the crop’s vegetative 

and reproductive development stage are updated.  

2.4.2.Procedure 

Being a point-based model, DSSAT spatialization without having to use a third 

part tools requires to define a set-up of experiments that must be representative of the 
existing spatial homogeneity. We divided the watershed according to two criterions: the 

soil variability and the weather station covered (Fig. 34). 
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Fig. 34- Celone’s division For DSSAT spatialization 

Over the entire watershed, 6 different soils and 5 weather stations are selected 

(Fig. 35). The overlapped polygons’ maps, prepared in ArcGIS, provides 14 different 
homogenous zones in terms of soil and weather. In addition, to assess the level of 

intensification reached in the region, 8 level of fertilizer supply (i.e.: 0 kg/ha, 30 kg/ha, 

60 kg/ha, 90 kg/ha, 120 kg/ha, 150 kg/ha, 180 kg/ha and 210 kg/ha) were set for all 
the experiments. 

 
Fig. 35- soil and weather station distributions 
IT********: Soil type codename  

Following the same procedure, the DREAM’S data inputs scheme was prepared 

using raster maps (Fig. 36). The cells are 90 m spatial resolution. 
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Fig. 36- DREAM's raster’s inputs based on soil-weather homogeneity 

2.4.3.Models’ setup 

2.4.3.1.DSSAT 

Method for soil organics carbon 

The simulations were done with the setting of organics carbon to “Ceres-

Godwin” for both calibration of Simeto cultivar and scenarios. 

Soil initial conditions 

The soil chemical composition is set as in the following table. NO3 and NH4 

are assumed to be reset to zero for soil N balance (Tab. 17). 

The following table shows the input soil file of DSSAT used to generate the 

scenarios. 
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Tab. 17- Initial soil conditions  

 

Cultivar coefficient 

The cultivar coefficients were estimated using the original experiments obtained 
from Dr. Michele Rinaldi. His experiments were conducted in 1991,1992 and 1993 in 

the region of Foggia, southern Italy. VICA is used to estimate the coefficient showed in 

Tab. 18 

Tab. 18- Simeto cultivar coefficients 

Coeff. P1V P1D P5 G1 G2 G3 PHINT 

Unite  Vday  %/10h o.C.d #/g mg g o.C.d 

Value 1.018 69.52 616.2 30 35 1.0 60 

An example of application for the season 2007-2008 is provided in Ane. 1 

through Ane. 5. 
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2.4.3.2.DREAM and Coupler 

Being the host model of the coupling, DREAM source code was changed 

extensively. Along with coupler itself written in MATLAB, the following changes, but not 
limited to, were added the DREAM model: 

1. Upgrade from monthly based simulation to daily 

2. Addition of DSSAT’s outputs reader 
3. LAI input maps were replaced with DSSAT’s LAI with coupler routine.  

The coupler is a MATLAB script for DSSAT’s LAI rasterization, parallel 

execution and file editing. The coupler generates daily DSSAT’s LAI grids for each 
polygon of the Celone’s map. 

3.Results 

3.1.Simulations 

3.1.1.DREAM model 

D-DREAM run was performed for the period 2000-2013 at daily basis. Where 

the years for which recorded discharge, data were used for model calibration. The soil 

moisture content at the beginning of the calibration period was arbitrarily assumed 
equal to the field capacity. Notwithstanding the unreliability of the choice, the length of 

the calibration period and the good quality of results hereafter indicates that model 

performances are not affected by such initial condition. Simulations results are 
displayed in Fig. 37. Comparing simulated versus measured time series, both relative 

to the entire record of observation, we obtained satisfactory results. The KGE coefficient 

is always above 0.85 (for the years where records are available). 
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Fig. 37- Simulated vs. recorded discharges for the Celone watershed (2000-2013) 

The runoff coefficient in Fig. 38 (Calculated by mean annual discharge and 

annual rainfall) shows a distinctive breakpoint in 2006. Followed by a continuous 
increase with a peak in 2009. Apart from rainfall characteristics such as intensity, 

duration and distribution which are responsible of runoff generation and variation at a 

relatively long-term observation. There are several sites (or catchment) specific factors 
which have a direct bearing on runoff occurrence and fluctuation at a shorter time. 

Considering the vacation of the watershed, land use and management is the first 

parameters to consider for investigation. 
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Fig. 38- Average yearly runoff of the Celone watershed 

3.1.2.DSSAT model 

Fig. 39 shows the variation of LAI for the different setup scenarios. As the N 
application increases the biomass production follows the same trend. Nonetheless, as 

the N application increases, Fig. 40 and Fig. 41 show a saturation effect where we 

observe a constant linear response of LAI in respect to N. This phenomenon is also 
observed for yield production and its N productivity (Fig. 42 and Fig. 43).  

This response is purely related to the DSSAT-Ceres model and the 

implementation of plant response to N application. The model uses common soil  C/N  
and  water  models,  which  integrate  mathematical  equations  to  describe  the  basic  

flow  and  conversion processes of soil carbon, water and nutrient balances on a daily 

or hourly basis. At the same time, it also predicts the temporal changes in crop growth, 
nutrient uptake, water use, final yield as well as other plant traits and outputs. 
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N concentration in plants’ leaves is a factor that determines the amount of 

Radiation Use Efficiency (RUE) and biomass productivity.  The accumulation of  large  

amounts  of  N  in leaves  is  essential  for  high  biomass  and  grain  yield  and  higher  
amounts  of  N  are  commonly  associated  with  high  harvest  indices.   

 
DAS: Days After Sawing  
Fig. 39- MODIS vs. DSSAT’s LAI for different scenarios 

 
Fig. 40- LAI relation to N application for the different scenarios 
*N_Scenario: Nitrogen application scenario 
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Fig. 41- N productivity for LAI 
*Delta_LAID: variation difference of leaf area index between two successive scenarios 
*Delta_N: difference between two successive N scenarios application.  

 
Fig. 42- Yield relation to N application for the different scenarios 
*CWAD:Yield 
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Fig. 43- N productivity for yield 

3.1.3.DREAM-DSSAT coupled model 

Results of Error! Reference source not found. Error! Reference source not 
found. simulations are displayed in Fig. 44. For all the scenarios, we observe an inverse 

response for discharge generation. Indeed, an increase in LAI lead to a reduction in 

discharge. This response is explained by the principle implemented within DREAM 
modulization of water balance and the amount of canopy interception, storage and 

evaporation. Such as: 

Eq. 16: 𝑤𝑤𝑠𝑠𝑐𝑐 = 0.2 ∗ 𝑃𝑃𝐿𝐿𝐼𝐼 (𝑚𝑚𝑚𝑚) 

Where:  

𝑤𝑤𝑠𝑠𝑐𝑐 : Water bucket of limited capacity 

The canopy water content: 
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Eq. 17: ∆𝑤𝑤𝑐𝑐
∆𝑡𝑡

= 𝑝𝑝𝑐𝑐 − 𝑒𝑒𝑤𝑤𝑐𝑐 

Where: 

𝑝𝑝𝑐𝑐 : The interception rate and 𝑒𝑒𝑤𝑤𝑐𝑐  is the direct evaporation rate. 

Direct evaporation of water from the canopy is computed as: 

Eq. 18: 𝑒𝑒𝑤𝑤𝑐𝑐 = (𝑤𝑤𝑐𝑐 𝑤𝑤𝑠𝑠𝑐𝑐� )2/3 ∗ 𝑒𝑒𝑤𝑤𝑐𝑐𝑡𝑡   𝑥𝑥𝑓𝑓  𝑤𝑤𝑐𝑐 > 0 

Where: 

(𝑤𝑤𝑐𝑐 𝑤𝑤𝑠𝑠𝑐𝑐� )2/3 : Ratio of wet canopy 

𝑒𝑒𝑤𝑤𝑐𝑐𝑡𝑡 : Potential evaporation rate from the entire canopy. 
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Fig. 44- Scenarios’ simulated discharges for the Celone watershed (2000-2013) 

3.1.4.Reversed DREAM-DSSAT coupled model 

The coupling framework was inverted to extract scenarios that fits best 
recorded discharges at yearly basis. Fig. 45 shows the different N scenarios candidates 

that best fit the simulated discharges. A break in trend is observed throughout the period 

2007-2008 anteceded by a generally decreasing trend from 2000 to 2006. After 2008, 
the trend is relatively of slight increase. 

 
Fig. 45- N application candidates for the period 2000-2013 

As expected, the trend variation is like the LAI one (Fig. 46). Particular attention 
is given to the maximum values achieved throughout the successive seasons, where 

the similar trends variation correlate with the fertilizer application level (Fig. 47). This 

correlation demonstrates the relevant effect that management has on the vegetation 
dynamics and that agriculture is the dominant land use in this area. 
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Fig. 46- LAI spatial mean 2000-2013 
 

 
Fig. 47- N vs. LAI 



CHAPTER VI: DREAM-DSSAT COUPLED HYDRO-CROP MODEL FOR INTEGRATED AGRO-HYDROLOGIC SYSTEM STUDY  

124 

3.2.Analysis 

As the LAI increases, the water stored and prone to be evaporated and stored 

follow the same trend. It is known that at an annual scale,  it may be responsible for 
losses reaching 20% of the total precipitation (Chang, 2012). This phenomenon is 

observed in Fig. 48, where 19% of the total volume through the entire period of 

simulation is lost between the scenarios one, with 0 kg.N/ha, and eight, with 210 
kg.N/ha,  which represent over 200 million m3 in terms of volume. In other words, 15 

million m3 as average in yearly basis and nearly 71.5 *103 m3 /kg.N.ha.year .  

 
Fig. 48- Total discharge volume 2000-2013 for the all scenarios 
*TV0N,…,TV210: Total discharge volum for the different scenarios 

This loss in discharge volume is interestingly found to be not linearly 

proportional to the increment of N application. Fig. 49 shows that it has it peak between 
scenario 4 and 5, with 60 and 90 kg.N/ha applications respectively. This response 

translates the saturation effect observed in LAI production.  
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Fig. 49- Discharge volume gain/loss vs. increment in N application 
*Delta_discharge: difference in discharge volum between two successive scenarios 
*Delta_Nitrogen: difference between two successive nitrogen application scenarios 

Fig. 50 shows the ratio of runoff respectively to the average N application 

scenario for each its corresponding year. It is worth notice that the overall 

proportionality is continuously increasing over the years. Nonetheless, is has noticeable 
higher variability after 2006.   

 
Fig. 50- Ratio runoff/N for the period 2000-2013  

Interesting insights is drawn from the scattered plot shown in Fig. 51 between 
runoff and N application. Two distinct relationship are observed over the period of 
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investigation. R1 and R2 correspond to linear relationships between N and runoff 

coefficient for 2000-2006 and 2007-2013 continuous timeframe respectively. The 

linear correlation had strengthened significantly after 2006. Indeed, r2 increased from 
0.3 for R1, to 0.93 for R2. In the other hand, the yearly average N applied had increased 

by 18% where runoff by 128% runoff from 2000-2006 to 2007-2013. 

 
Fig. 51- Runoff vs. N 

 To assess the process of watershed’s runoff response to N application, we 

calculated the first finite difference of runoff with respect to N. The results are shown 

in Fig. 52. The positive values in the first finite difference indicate the same trend 
variation of runoff and N, and inversely for the negative values. Through the entire 

period, we noticed that before 2006 and starting from 2008 a positive correlation. This 

means that an increase (or decrease) in N induces the same variation in runoff. Between 
the seasons 2005-2006 and 2006-2007, we observe inverse trends (negative values). 

According to Fig. 51, 2006 and 2007 belong to distinctive relationships between runoff 

and N (i.e: R1 and R2) and the inverse trends could be led by a variation of cultivated 
area. Indeed, from 2005 to 2006, Fig. 52 shows a decrease in N applied and this results 
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in a decrease of runoff. More area is covered with vegetation, yields less runoff than 

the bare one. 

 
Fig. 52- Finite difference of N application and runoff production 
*dYear: difference in yearly calandar; dRunoff: difference in yearly runoff; dN: difference in in yearly N 
application 

4.Discussion and conclusion 

In the present chapter we undertook an integrated modeling work in order to 

establish the relationship between runoff generation and N in the Celone watershed. the 

modeling framework consists of coupling the DREAM hydrologic model and DSSAT-
Ceres model. The coupling method used is the one-way data exchange. Prior coupling, 

a common a spatio-temporal framework of operation at grid level and daily step base 

was established and both models have been upgraded to match it. Afterward, the 

framework coupling was reversed to extract N application that matches simulated 
discharges.  

The LAI analysis in respect to N application scenarios provided expectable 

results. Indeed, the increase in N correspond to an increase of LAI. Nevertheless, the 
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relationship between LAI and N is not linear, and above 90 kg.N/ha, a phenomenon of 

saturation is observed where a significant reduction in LAI tendency variation in respect 

to N scenario. This phenomenon is a plant physiological aspect that is implemented 
within the DSSAT-Ceres model. 

The volumetric analysis over the period of study shows that the ratio gain/loss 

of rainfall water is not linearly proportional to the amount of N applied. Indeed, the 
conjugated effect of N saturation along with the DREAM canopy bucket water balance 

show that much of the volume is gained/lost above the scenario 5 that correspond to 

90 kg.N/ha. A significant the annual average gain/loss factor for N application was 
estimated over the study period to 71. 5*103 m3/ha.kg.N. Considering the price of 

irrigation water in Italy, 0.01-0.8 €/m3(Giannakis et al., 2015), this represent in 

monetary value a 715 €/ha.kg.N up to  57 200 €/kg.N.ha. 

Interesting insights were identified in order to establish the relationship between 

runoff and N in the Celone’s agricultural watershed. Two distinctive relationships over 

the study period were established between runoff and N (RON1 and RON2). The 
correlation coefficient was found significantly higher for RON2 with 0.93 respectively 

to RON1 with 0.3, along with significant increase in the average N applied over the 

corresponding timeframe (2000-2006 and 2007-2013). For almost the entire period, 
we observed a positive response of runoff changes respectively to N, the exception is 

underline for the seasons 2005-2006 and 2006-2007. 

It is worth mention the similar results found by (Siad et al., 2017). Indeed, the 

research findings show that the policy changes implemented by the CAP program 
explain the correspondence of the trend between market price, durum wheat LAI, the 

land use and the farmers in the Celone watershed. In addition, the farmers of Celone 

showed a positive response to the CAP reforms in terms of land management and 
production. The land allocation and the intensification of durum wheat cultivation was 

found in accordance with the CAP intervention. 
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General conclusion 

The study of linkages between crop and hydrologic processes has a relatively 

long history based on modelling, experimental work, watershed analyses and 
measurements. Nevertheless, hydrological studies have received little attention as far 

as agricultural practices impacts assessment are involved. This thesis tried providing 

a modest contribution to these types of studies and research. 

The reviews studies involving coupled hydrologic and crop growth models’ 

coupling, even if still not exhaustive, provides useful examples for practical information 

and purposes of this new tendency in model development. It can be of interest for 

researchers, practitioners, and policy-makers involved in agro-hydrologic studies and 
projects. Particularly, it may help understanding the potential benefit raising from 

incorporating crop models in hydrologic simulation for water resources conservation, 

sustainability and performance improvement of crop and irrigation systems. 

DSSAT parallelization provides a great opportunity for model spatialization. 

Climate data are now becoming more readily available as gridded data (current and 

future climate scenarios) (Weedon et al., 2011), and soil profiles can be synthesized 
effectively at each grid cell (White et al., 2008b; Wu et al., 2010a, 2010b). However, 

defining management interventions for each cell is a major constraint. 

VICA algorithm bases it iteration on reducing the error function on the cultivar 
coefficients intervals, crop development strategy is an important aspect that is not 

transcoded within VICA and further research and investigation is needed in setting 

cultivars intervals. Nevertheless, DSSAT’s experiments database provide a valuable 
starting point and provides a guideline on cultivar coefficients and their inter-

relationship. 

Remote sensing data presents a great option for management practices data 
retrieval. An example was presented for planting date investigation, using MODIS’s LAI 

product. It is worth mention that outside of controlled experimental trails, crop planting 
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date in crop models is always a result of assumptions based on diverse criterion as 

saw in chapter V. 

The Celone watershed comprises complex and adaptive agricultural system. 
With the strong agricultural activity involved, the yearly average runoff is directly 

affected by N application. The system level patterns in hydrology (i.e. runoff) emerge 

from actions and interactions of autonomous agents and could not be predicted from 
examining and aggregating their individual behavior.  

In conclusion, the impact assessment procedure throughout the integration of 

crop and hydrologic models, which are based on a quantitative understanding of 
underlying processes of integrated effects of soil, weather, crop and management 

factors on growth and hydrologic regime allowed a better understanding of the complex 

dynamic of the hydro-agricultural system with its heterogeneity and interactions 
between runoff and N application management decision. 
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Recommendations and further works 

In this work we synthetized the current state-of-the-art advancement in 

technologies used to simulate integrative agro-hydrologic systems. Nonetheless, 
models’ integration is not a straightforward task and still challenges researchers on 

many aspects. Such as estimating of uncertainty or error covariances between models’ 

resolution interaction and parameterizations at the interfaces between components of 
coupled models. 

Current data exchange-based coupling methods are not suitable to 

simultaneously analyses multiple spatiotemporal scales. Indeed, there is no 
standardization of observation data or their delivery systems across models. The size 

and complexity of large-scale coupled agro-hydrologic models make difficult to 

investigate uncertainty due to sensitivities in models’ parameters and coupling 
parameters. Indeed, the errors lead to local biases that can transfer between different 

models’ components can lead to coupled models’ biases and long-term model drift. 

Favor community-based models’ integration to legacy one. This will facilitate 
exchange, maintenance and support access for the coupled models and the users by 

first gathering expertise before the models themselves. 

Further work is needed to: 

• understand information propagation across models’ components with 

different spatiotemporal and scales for error estimation and 
improvement. 

• Improve and advertise community-based models for cross disciplines 

that will accelerate models’ development and facilitate cross 

boundaries integration. 

• How to concretize models results to formulate decision support for 

policy improvement to enhance crop system performance and preserve 
resources. 
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Ane. 1- Biccari: 2007-2008 Tops weight 
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Ane. 2- Biccari: 2007-2008 LAI 
 

 
Ane. 3- Orsara di Puglia: 2007-2008 Tops weight 
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Ane. 4- Orsara di Puglia: 2007-2008 LAI 
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Ane. 5- Faeto: 2007-2008 Tops weight 
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Ane. 6- Faeto: 2007-2008 LAI 
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Ane. 7- Orto di Zolfo: 2007-2008 Tops weight 
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Ane. 8- Orto di Zolfo: 2007-2008 LAI 
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Ane. 9- Troia: 2007-2008 Tops weight 
 
 



Annexes 

 

Annexes 

146 

 
Ane. 10- Troia: 2007-2008 LAI 
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