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Abstract

Climate change is one of the biggest challenges that humanity will face in the upcoming decades.
Hence, over the last few years, the environmental engineering research community has focused
its effort on the development and deployment of (often distributed) smart sensor systems,
specifically designed for environmental monitoring. These sensors produce large amounts of
data, which can be used to describe climate changes and, hopefully, suggest future actions to
prevent further damages to the environment. However, to enable the ’smart’ capabilities in
such systems, researchers must pay attention to several aspects, including two on which this
thesis work is focused. The first one, which is often underestimated, is the design of the data
acquisition phase: a poor experimental setting will lead to biased data, and therefore ineffective
results. The second one concerns the algorithm used to model data, which should be chosen to
reflect their intrinsic nature. This work tries to give a first contribution to both these aspect,
describing the results of two specific use case scenarios, and highlighting how experiments can
greatly benefit from some simple, yet effective, design guidelines. The final goal is to define
an initial working pipeline for environmental data processing, which can be both flexible to
be adapted to different scenarios, and accurate enough to give an effective description of the

observed phenomena.
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Chapter 1

Motivations behind this work

While this thesis is being written, the ’Global Climate Change’ informative by NASA [1] states
that the global temperature has risen of about 0.45 Celsius degrees since 1880, the Arctic
Ice is reducing at a constant rate of 13.2% per decade, and the sea level is increasing by 3.2

millimeters per year.

The trend is clear: humanity, with his way of living, is leading Earth towards a catastrophe.
Air and seas are being polluted indiscriminately, radioactive wastes are dumped without any
concrete disposal plan, and plastics is let degrade within the oceans. Even if the ozone layer
is slowly recovering, there are increasing emissions of carbon dioxide within the air, and future

trends do not appear to be promising [2].

Nevertheless, most of the scientific community is seamlessly throwing an alert. Here is a citation

by Klein:
Our economic system and our planetary system are now at war |...]
That means that we can either:

[...] allow climate disruption to change everything about our world, or change pretty

much everything about our economy to avoid the fate.



2 Chapter 1. Motivations behind this work

Concrete action must be taken, to change the economic and social system, protecting environ-

ment while keeping current high life standards.

However, to put in place concrete strategies to for environmental monitoring, its current status
must be monitored through proper methodologies. This is not an easy task: environment is an
incredibly complex system, with a high number of variables, whose interaction causes sudden,

unpredictable (and, often, dramatic) changes.

This work summarizes the analysis, experiments and researches conducted to address mainly
three aspects of environmental engineering, giving an initial contribution towards a complete

set of out-of-the-box tools for environmental monitoring and data analysis.

The first contribution concerns a proposal for a methodology able to deal with the issues re-
lated to data transmissions in networks made by distributed environmental sensors. The math-
ematical foundation of this approach have therefore been defined, and an initial assessment is
presented. The second contribution depicts the idea behind the development and deployment
of an electronic nose called Vapor Phase electronic Nose (VPeN), describing its possible ap-
plication scenarios along with the challenges it tries to address. Finally, the third, and more
significant, contribution lies in the initial definition of a data-driven approach to environmental
data analysis, which can hopefully create a foundation on which enhancements to the current
sampling and analysis methodologies will be built. Obviously, the impact of the proposed
methodology is limited to the small set of real use cases to which it has been applied; however,
this preliminary assessment highlights the need an extremely compelling need for a data-driven

pipeline for environmental data analysis.

The rest of this work is structured as follows. In chapter 2, an overview on the theoretical
background which has led this thesis is described. In chapter 3, a perspective on related works
is also given. Then, in chapter 4, the main experimental results achieved during are shown.
Finally, in chapter 5, there will be a brief discussion on the implications of this work, and on

how it can be further improved in the future.



Chapter 2

Background

This chapter describes the theoretical background on which this work is based.

The first section will introduce a brief overview on the topic of spectrum sensing in the context
of opportunistic radio. The, section 2.2 will briefly describe the principles which lead the

development of gas sensor arrays.

Afterwards, section 2.3 will introduce the concepts needed for the analysis and interpretation
of data acquired by environmental sensors. The discussion will first describe the principle of
Ezxploratory Data Analysis (EDA) (section 2.3.1), which has been used as a basis for part of the
experimental section of this thesis. Then, a gentle introduction to the specific techniques used
for data analysis will be given in section 2.3. Specifically, in section 2.3.4 there will be a focus
on the analysis of data when interpreted as independent samples, while time series analysis will
be described in section 2.3.5. Finally, the foundations to the mathematical tools called complex

networks will be given in section 2.4.



4 Chapter 2. Background

2.1 Spectrum sensing in Environmental Sensor Networks

2.1.1 Environmental Sensor Networks

Environmental Sensor Networks (ESN) [113] are a specific application of the concept of Wireless

Sensor Networks (WSN) [112] in an environmental use case.

This type of network allows for the acquisition and management of large (big) quantities of
environmental data, which can then analyzed for several purposes. Let us highlight that an
ESN is, by definition, distributed: that is, sensors within the network are geographically located
apart from each other. The data analysis techniques described in this work can be extended
to data acquired by such a network: however, one should consider a proper preprocessing step,
to envisage for dynamic conditioning parameters (such as different acquisition settings, clock

synchronization, different hardware usage, etc.).

A typical ESN is composed by three layers [11]:

e a local layer, made by distributed sensors which gather data and send them towards the

next layer;

e an intermediate layer, where local concentrators store data sent by the sensors of the local

layer;

e a cloud-based information system layer, which performs all the necessary analysis.

It is also important to underline that these layers are not tied to a specific technology, even if,
in modern architectures, the use of paradigms such as RESTful communication and distributed

computing should be more advisable.

However, apart from the specific implementation, the development and deployment of an ESN
poses several, heterogeneous, issues. Examples of such challenges are the identification of

frequency slots that can be used by the local layer to send data towards the intermediate layer,
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or the evaluation of the wireless bandwidth availability needed to allow high speed, short range

communication between sensors.

To specifically address these issues, cognitive (or opportunistic) radio approaches have been

developed|[114].

2.1.2 Cognitive radio

The main aims of cognitive radio are the correct estimation of both the spectrum usage in a
given time slot and the bandwidth needed at the receiver end. It is therefore important to
specify a set of requirements for such a system; thus, one should first classify the frequency slot

under analysis, which can belong to one of three different types [115]:

e white spaces, that is, frequency slots where no radio-frequency interferences are found

(apart from white noise due to natural and artificial sources);

e gray spaces, that is, frequency slots which are partially occupied by radio-frequency in-

terferences or noise;

e black spaces, that is, frequency slots which are totally occupied by either radio-frequency

interferences or noise.

Another important aspect that cognitive radio approaches must take into account is that the
distribution of white, gray and black spaces can vary either in time or space. Finally, it is
unlikely that pure white spaces exist in commercially-available bandwidths, due to the wide

range of possible interferences.

All these considerations lead to a more realistic scenario, where the following set of non-

parametric characteristics is required by a cognitive radio network:

e first, the cognitive radio network should be able to classify each spectrum hole, either as
a white, gray or black space, with an adequate degree of confidence, which depends by

the application;
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e second, the spectral resolution of the cognitive radio system should be accurate enough

to achieve an efficient use of available bandwidth;

e third, the cognitive radio network should be able to estimate the direction of arrival of
the signals of each interferer, to provide the whole system with information concerning

its location;

e finally, the cognitive radio network should be able to exploit cyclostationarity, and use
it to reinforce both spectrum hole detection and signal classification, when the band of

interest is occupied by a primary user.

2.1.3 Spectrum sensing principles

Spectral estimation first envisages for a two-step preprocessing [11], where the spectrum of the
signal is first shifted of an amount equals to the frequency under analysis, and then low-pass

filtered, taking a sample at the center of the filtering window for analysis.

This procedure can be carried out through an algorithm which implements the Fast Fourier
Transform (FFT), such as the Cooley-Tukey algorithm [3]. However, such algorithm requires a
computational load equals to % - log (%), which can considerably grows as N does; therefore,
as these algorithms must be implemented at the local layer level, where the hardware often
has low power consumption as a requirement (due to the fact that it should be deployed with
an embedded battery, which should last as long as possible), an algorithm which guarantees a

lower computational load is desirable.

In the approach developed in [11], such issues are addressed by means of a chirp signal. More

details will be given in chapter 4.
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2.2 Electronic noses for Environmental Monitoring

Like many others in ICT, the concept of electronic noses is directly 'borrowed’ by nature, and

was developed thanks to the efforts made during the 80s while researching machine olfaction.

From a biological perspective, when a nose ’sniffs’ a compound, the interaction between odorants
and chemical-sensory receptors within the nose triggers several classes of olfactory neurons [57];
these, in turn, produce an electrical signal, which is transmitted towards the brain [58]. An
interesting consideration is that a single olfactory neuron may respond to several odorants, and

each odorant can be sensed by multiple olfactory neurons [59].

These notions lead to the ideation of the electronic nose, which, according to Gardner and
Bartlett [60], can be defined as a [...] measurement system, composed by an array of (gas)
sensors, each one of which is (partially) delegated to sense a specific set of compounds [...]. An
electronic nose is therefore capable of recognizing both simple and complex odors, thanks to

pattern recognition algorithms.

2.2.1 Composition

An electronic nose is usually composed by three systems. The first one is called sample delivery
unit, and is used to transfer volatile molecules from the source to the sensor array, which is usu-
ally fixed within a measurement chamber under constant temperature and humidity conditions.
The second one is the detection unit, which consists of an electro-chemical transducer, whose
outputs is given by a properly filtered electric signal. Then, the third system is the processing
unit, which embeds a computing unit (e.g. a system-on-a-chip, a micro controller, etc.), whose

main role is to process these data, and send them towards an external storage unit.

2.2.2 Operating principles

Sensors generally operate according to the principle which states that a change within the

environments modifies the properties of the sensor in a measurable way.
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Gas sensors obey to this rule, yet, there are several types of principles that they can exploit.

In the following, a brief description of each one of these principles will be given[65].

Conductivity-based gas sensors. These sensors exploit the principle that a change in some
physical property of the materials used in the sensor leads to a change in its resistance as well.
While the mechanisms which lead to these changes are different for each type of material,

sensors of this family rely on the same structure and layout.

Specifically, these sensors are composed by a heater (often used when the sensor uses metal-oxide
materials, due to the high temperatures involved), and a sensing element, which is deposited

over two electrodes, measuring the relative resistance between them.

Conductivity-based gas sensors use conducting polymers composite as sensing elements. These
materials change their resistance due to percolation effects, that is, the vapor permeates the
polymer and causes its expansion, with a consequent variation in electric resistance [66]. An-
other type of polymeric material on which these sensors are based are intrinsically conducting
polymers (ICP), which operates according to the principle that the absorption of the odorant

into the ICP alters its conductivity [67].

Metal-oxide sensors are also used. These are based on variations in the conductance of the oxide
when it interacts with a gas; obviously, such variations are proportional to the concentration of

the gas itself. Their working principle somehow resemble the one of traditional MOSFET [68].

Polymeric sensors can operate at room temperature, and are cheap; however, it is important
that the measurement chamber has a proper thermal isolation. On the other hand, metal-
oxide sensors require high working temperature, and suffer from gas poisoning; however, their

response are faster than the ones from polymeric sensors.

Mass-based gas sensors. Mass-based gas sensors belong to two different classes: the surface

acoustic wave (SAW') sensors, and the quartz crystal microbalance (QCM) sensors.

The first type of device is composed by an input and an output digital transducer, between
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which an acoustic wave with a fixed frequency is sent. A sensitive membrane is placed between
the input and the output transducers; when the sensing element interacts with a compatible
analyte, it changes its mass, with a consequent change in the frequency of the acoustic wave

[69)].

QCM are also based on a principle which is similar to SAW; however, in this case, the sensing
element is a quartz crystal, which oscillates at its resonant frequency, and whose variations in

mass are registered when an interaction with an analyte occurs.

SAW sensors are characterized by high sensitivity and fast responses, but are complex, and
measurements are difficult to reproduce. QCM partially address these issues, but are also

complex and have a poor SNR.

Optical-based gas sensors. Optical-based gas sensors are based on optical fiber, whose sides
are coated with a fluorescent dye, encapsulated in a polymeric matrix. Polarity alterations in the
fluorescent dye, or interaction with the vapor, change its optical properties, and can therefore
be measured [71]. These sensors are both fast and cheap; however, they are complex, and can

suffer from poisoning from photobleaching.

As a final remark, it must be underlined that newly developed sensors are manufactured through
micro-fabrication techniques, and are getting increasingly compact, lightweight and inexpensive

61].

In chapter 4, the development and deployment of the VPeN, the electronic nose used in this

thesis to analyze a water flow in real time, will be discussed.

2.3 Data Analysis

In this section, the theoretical foundations for the analysis of environmental data will be given.
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2.3.1 Exploratory Data Analysis

Data acquired in real-world scenario are not always of easy understanding. In the era of the Big
Data, one may easily found him/herself overwhelmed with data, which have only one thing in
common: they are intrinsically complex. In fact, these data often show noise, redundancies and,
in general, their distribution do not resemble a normal one. Therefore, a preliminary analysis of
these data is often required: and this is where the concept of exploratory data analysis (EDA)

comes into help.

The term EDA was coined by John Tukey (who was both a mathematician and a chemist)
in 1977 in a work that, since then, has become seminal [4]. Tukey proposed a revolution in
the methodological approach to data analysis: instead of relying on confirmatory techniques,
which had been used until his proposal, EDA suggested the use of a variety of (mostly visual)

techniques to analyze the characteristics of a dataset.

Confirmatory and exploratory techniques are complementary approaches. On one side, confir-
matory techniques are model-driven, meaning that they confirm that data adhere to a previously
established model. On the other side, exploratory techniques are data-driven, in the sense that

they derive a model directly from data.

To understand why EDA has been proposed by Tukey, let us suppose that one must analyze a
dataset acquired during a field experiment. Usually, there are protocols to which field experi-
ments must adhere, each one tailored on the specific application. These protocols are obviously
created for purposes such as reducing noise within data, allow for experimental reproducibility,
and improve the overall quality of the samples. However, following a protocol does not ensure
to gather ideal data. There are infinite sources of randomness and bias which cannot be under
the control of the experimenter. As a consequence, the main assumptions on which most of the
models used in confirmatory data analysis, i.e. the normality of the data distribution, do not

(always) hold in real world.

EDA, however, deals with this randomness by analyzing the totality of data, finding patterns

and relationships, and creating a meaningful description of the data themselves: as an example,
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even outliers are used, as they are representative of non-experimental behavior.

It is clear that exploratory and confirmatory data analysis may not be considered as monolithic
blocks, but must interact. The role of EDA the exploratory analysis is to extract information
from data, and make assumptions, which can be thereafter confirmed by the confirmatory data

analysis, whose output can refine the exploratory analysis, and so on, in an iterative procedure.

The application of these techniques will be shown in chapter 4, where they will be used to

analyze the results coming from the VPeNs.

2.3.2 Representing and learning from data

Data coming from sensors can be of several different types. However, they can be considered
either as wdentically and independently distributed, when the sampling process does not have
a (relatively) high sampling rate, or as time-dependent series, if the process has a sampling
rate high enough to cause dependencies between consecutive samples. Clearly, the knowledge
of both the settings and the type of process which is involved in the measurement can help to
define the mathematical tools which are most well suited for data analysis. In the following,

the process behind this choice will be described.

2.3.3 The importance of the dataset

Every data analysis technique relies on two factors: the algorithm and the dataset. Choosing
the most appropriate algorithm is not trivial, and the motivation behind the choice of each
method will be discussed from case to case in chapter 4. However, here there will be a brief
focus on why the dataset is also important. To this end, let us describe the experience from
the field of computer vision, which has been used as a basis for several concepts in this thesis,

and lead some complementary works.

ImageNet [12] has been developed by Fei-Fei Li and her team in the time span between 2007

and 2009. The main goal was to create a dataset which could ’entirely’ model the real world,
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so a total of more than 13 millions of images, which represented more than 1000 classes of
objects, were gathered. In 2012, Alex Krizhevsky introduced AlexNet [13], the first deep
convolutional neural network which could achieve more than the 90% of accuracy on ImageNet.
From then, deep learning became the 'next big thing’, and has been used for nearly every

possible application.

However, it was not a novel machine learning algorithm which led towards this success. Con-
volutional neural networks are indeed a relatively old concept: their introduction can be traced
to 1968, when Hubel and Wiesel released a study on the receptive fields associated to each
neuron within the monkey striate cortex [14]. Even if AlexNet 'legitimized’ several important
solutions, which since then had become the standard, such as the use of rectified linear unit for
the activation, the (huge) step forward was made by the combination of three factors, i.e. the
use of a (sufficiently) deep architecture, the availability of enough computational power to train
such a network (thanks to GPGPU), and the dataset itself, which was big enough to ensure

that all the parameters of the network could be properly trained.

This leads towards a conclusion: data are important. Data science envisage for the knowledge
of data, through techniques such as EDA. And the selection of the algorithm can be only
consequential to an accurate knowledge of the dataset. The implication of this in the framework

of the data used in this work will be clear in chapter 4.

2.3.4 Identically and independently distributed data

One of the main assumption for data analysis is that data are identically and independently
distributed iid [5]. This means that each sample is independent from the others, and must be

considered as a single representation of a physical phenomena.

Starting from this, it is crucial to define the difference between several type of analysis which

can be carried on iid data. First, there is the difference between classification and regression:

e classification envisage for data belonging to (at least) one class. A class is a sort of
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‘prototype’ for data, which are supposed to adhere to the physical characteristics of the

class itself;

e regression, on the other hand, allows to characterize an algebraic relationship between

data.

In this work, only classification techniques will be used. However, between these, it is possi-
ble to find further differences, specifically between supervised [7] and unsupervised [8] learning
techniques. In the following, the simple (yet deep) difference between these two types of clas-

sification will be described.

Supervised learning

In supervised learning, the algorithm learns a function that maps an input to an output,

according to a set of example input-output pairs.

This is a generic definition, which should be properly analyzed. The first, relevant concept is
related to the fact that supervised learning algorithm are learning a function. Therefore, one
could expect that a classifier C' learns a (possibly non-linear) mathematical function f which
maps an input x to an output y. To do that, the classifier C' uses an adequate number of
input-output pairs, therefore evaluating how x must be ’transformed’ by f to be turned into y.

This can be put in a simpler, yet elegant, form:

C=f:z—y (2.1)
Let us analyze the form of both z and y. Supervised learning is often used for classification,

where a discrete label y € {1, ...k} is associated to an n-dimensional vector x € R". Therefore,

equation 2.1 can be also written following the definition given by Szegedy in [9]:

C=f:R"—{1,... k} (2.2)
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The above equations can be easily understood through a simple real-case example. Let us
suppose that X is the set of samples taken during an experiment with an electronic nose, and
that each sample x; € X is associated to a label y; € K. Furthermore, let us suppose that
each label y; describes the substance, known beforehand, to which the sample z; is referred to.

Therefore, equation 2.2 simply states that classification associates a substance to each sample.

Despite the underlying conceptual simplicity, supervised learning algorithms require a rigorous
training strategy to be effective. As an example, one must consider that the algorithm tends
to adhere to the set of input-output pairs on which is trained: that is, C' founds a function f
which is fine-tuned to minimize the relative distance between the output of the algorithm g
and the real labels y. As a consequence, if training data do not adequately represent a wide
range of possible cases, the algorithm will suffer from a lack of generalization. Going back to
the previous example, if the largest part of X represents a single solution s, while the other
part represents all the other substances, C' will probably classify samples which refer to s with

a high degree of accuracy, while samples referred to other solutions will be plausibly mixed up.

This issue, along with several other related problems, can be addressed making an effort to
gather more (and, possibly, more significant) data is needed; specifically, C' should be trained
on a large number of samples taken by all the possible solutions. Furthermore, a testing
procedure is needed to evaluate the generalization capabilities of C. Specifically, testing can be
performed either splitting the dataset in two groups (that is, training data, on which training is
actually performed, and testing data, against which the accuracy of the function f is tested), or
using a k-fold cross-validation, which is an iterative procedure where, at each iteration, samples
are randomly excluded from the training procedure, and, at the end, only the mean value of

accuracy is considered.

To classify data used in this thesis work, a deep supervised learning algorithm, based on the
concept of artificial neural networks and multi layer perceptron, has been used. The procedure

is extensively described in chapter 4.
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Unsupervised learning

Unsupervised learning differs from supervised learning mainly as no labels are given. As a
consequence, it is not possible to evaluate the accuracy of such algorithms simply relying on

how much the outputs of f adhere to the ground truth given by the actual labels.

There are several examples of unsupervised learning algorithms. As an example, there are deep
neural networks which are based on unsupervised learning, such as autoencoders [120] and

Self-Organizing Maps [121].

Another class of widespread unsupervised algorithms is given by clustering algorithms. Clus-
tering can be intuitively defined as the task of grouping a set of data objects in such a way
that similar objects are grouped together, while different objects are 'pushed away’ from each
other. This similarity is determined from the clustering criteria, which is a metric that should
be minimized for objects that belong to the same cluster, while being maximized for objects

which belong to different clusters.

Over time, several clustering methods have been developed, each one suited for a specific
situation, with a certain type of data. As an example, centroid-based methods, cluster data
with respect to the distance between each data point and the centroid of the cluster itself,
and are often more suited when clusters are elliptical and normally distributed; on the other
side, connectivity models evaluate the connectivity (also known as linkage) within each cluster,

according to a certain distance metric [122].

In this work, a clustering algorithm has been used to evaluate the goodness of the data acquired

by the VPeNs. The whole procedure will be described in chapter 4.

2.3.5 Time series analysis

When the sampling rate of data acquired during an experiment is high enough, samples are

no longer independent and identically distributed, but may present some relationships due to
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previous effects. Therefore, traditional learning techniques cannot be used, and the concept of

time series has to be introduced.

A time series can be though of as a series of data point which are listed in time order, with a high
sampling rate; another way to represent a time series is as a sequence taken at consecutive points
over time. An example of time series is given by spoken language: in a sentence, consecutive
words are dependent and, to predict the next words, one should know the context, as given by

previous words.

It is important to underline that, usually, time series are assumed to be evenly spaced, that is,
samples are taken at regular intervals. When time series are unevenly spaced, one can either
re-sample the time series to fill missing values [107, 108], use a maximum likelihood function
to estimate them [123], or adopt a type of model which specifically deals with this situation,
such as GARCH [124]. In this work, as shown in chapter 4, the first approach has been used,

mainly as it is the most adopted when dealing with natural phenomena.

Let us now introduce the concept of time series modeling, as depicted in [17].

Time series modeling

A time series can be formally defined as a sequence of observation yi, ...,y [17], which are
assumed to be relative to an unobservable generating process. The modeling of a time series

make a fundamental assumption: this generating process is a stationary stochastic process.

Let us recall the definition of stationarity. A stochastic process {y;}L, is defined as strictly
stationary if the distribution of {y;,,}L , for an arbitrary value of s has the exact characteristics
of {y:}{_,. In other words, a time series is strictly stationary if its distribution is independent

from time; obviously, this assumption does not (always) hold in real world.

A more realistic assumption for a real process is covariance stationarity. A process {yt}thl is

covariance stationary if:

e its mean and variance are finite, and independent of time ¢;
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e the autocovariance between time instants ¢ and ¢ — s is finite, and depends only on the

lag 7 =1 —s.

Formally:

Ely]=p < oo vt
Viy] =0*< oo %
v(t,s) =[] < o0 Y(t,T)

Let us focus on the concept of autocovariance, which describes the covariance between two

values of the stochastic process at different time instants[18]:

v(t,5) = Cov(ye, ys) = E[(yr — pe) (Ys — p1s)] (2.3)

The autocorrelation function is given by:

o(t, s) = 12) (2.4)

005

The value of p(t,s) can span from —1 to 1, and is a better measurement for the dependency
structure, as autocovariance is strongly related to the actual values of the signal and, in some
cases, does not necessarily give an indication about the relationship between observation in

different time instants.

Visualizing autocorrelation. Let us give a simple example to better explain how autocor-

relation can be used to evaluate stationarity through visual techniques.

First, let us start by considering figure 2.1, which shows the time representation of the Passen-

gers Dataset used by Box and Jenkins [19)].
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Figure 2.1: The time representation of the Passengers Dataset from Box and Jenkins.

At a first glance, figure 2.1 appear to be non-stationary, due to the values which constantly

increase over time. However, let us consider figures2.2a and 2.2b, which represent the scatter

plots of the number of the passengers at time ¢ against time ¢ — 1 and time ¢ — 2, respectively.
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Figure 2.2: Scatter plots of the Passenger Datasets

There are strong evidences that there are linear dependencies for the two lagged version of the

time series. If one continues to check scatter plots, linear dependencies will be found until at

least s =9 [19]. This leads to a conclusions: autocorrelation effects are, sometimes, not evident

through a simple analysis.

Obviously, it is unrealistic to assume that one can draw the scatter plot until non-linear depen-

dencies between lagged versions of the time series show up. Therefore, an useful set of tools is

given by the autocorrelation function (ACF) and the partial autocorrelation function (PACF)

[19].
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The ACF is a function of the time displacement of the time series itself. Informally, it repre-
sents the similarity between lagged observation as a function of the time lag s between them.
The PACF, instead, represents the conditional correlation between two variables, under the
assumptions that the effects of all previous lags on the time series are known. As it will be
shown in the following, ACF and PACF can be used to define to which class of process the

time series under analysis belongs.

Types of time series processes

White noise processes. The first type of process is white noise. In a white noise process,
each time sample has a probability distribution with zero mean and finite variance.

White Noise
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Figure 2.3: The EDA for a random process.

Furthermore, time samples are uncorrelated.Such processes can be expressed as z; = ¢;, where



20 Chapter 2. Background

g, ~ (0,0%). Figure 2.3 shows an example of a white process. It can be seen that both the ACF
and the PACF of white noise processes only have a spike at s = 0, meaning that the process
at time x; is uncorrelated with the value of the process at any other time lag. Intuitively, the

QQ plot and the histogram indicate a normally-distributed behaviour.

Random walk. The second type of process is called random walk. The expression for a
random walk is x; = x;_1 + £;, meaning that consecutive time samples are correlated by white
noise. This type of process is completely non-stationary, and, as such, time series governed by
random walks are unpredictable. Random walks usually show a slowly decreasing ACF, while
PACF dramatically drops after the first lag. It is also important to underline how both the

normal Q-Q plot and the histogram clearly show that the process is not normally distributed.

Random walk process
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Figure 2.4: The EDA for a random walk.
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Autoregressive process. Random walks belongs to a more general group of processes, called

autoregressive (AR) processes, which have the following form:

p
T =+ Z ApTi—p + €4 (2.5)

i=1
Equation 2.5 shows that the value of the process at time ¢ is a linear combination of previous
observation, plus a bias term « and white Gaussian noise. In figure 2.5, the EDA for an AR(1)
process is shown. As it can be seen, both the ACF and the PACF drops after the first lag.

Furthermore, values are normally distributed, due to the presence of the white noise term.
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Figure 2.5: The EDA for an AR(1) process.

It can be noted that a random walk is an AR process where o« = 1. This particular situation

is called wunit root, and it is directly related to non-stationarity.
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Moving Average process. A moving average (MA) process assumes that the observed time

series can be represented by a linear combination of white noise terms:

q
Ty =&+ Z bigt—i (26)
i=1

A MA process is always stationary. In figure 2.6, an MA(1) process is shown. It can be seen
that both ACF and PACF quickly decay after the first lag, with a small ’sinusoidal tale’ on the
PACEF. Obviously, both QQ-plot and histogram fit a normal distribution, as the MA process is

a linear combination of normally distributed random samples.
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Figure 2.6: The EDA for a MA(1) process.

Let us now perform an EDA for the Passengers Dataset (cfr. figure 2.7. Clearly, the dataset is
non-stationary, as it can be seen from the time plot. Furthermore, it resembles a random walk

process, and, as a consequence, forecasting cannot be made.
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However, let us recall something we mentioned above, that is, random walk processes are
autoregressive with a bias term equals to 1. Therefore, there may be a method to transform

this process, and allow forecasts. To this end, let us first introduce the concept of time series

decomposition.

Time Series decomposition

Time series can be decomposed into several components. One of the most used techniques for

decomposition is Seasonal-Trend Decomposition (STL) [20], which envisage for the following

components:
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Figure 2.7: The EDA for the Passengers Dataset.

e trend, which represents the overall 'direction’ of the series;
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e seasonality, which represent monthly or yearly patterns;

e noise, which is an irregular residual left after the extraction of all the components.

There may be another component, referred to as cycle, which represents long-term cycles, and

is usually found in financial time series [125].

STL decomposition considers either a multiplicative or an additive composition of three terms,
that is, the trend, the seasonal component, and the residuals. The difference between multi-
plicative and additive decomposition is intuitive: in the multiplicative decomposition, the time

series is given by y; = {; - s; - €, while in the additive decomposition the time series is given by

Y =t + S+ &

An example of STL additive decomposition on the Passenger Dataset is shown in figure2.8.
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Figure 2.8: Results of an additive STL decomposition for the Passengers Dataset.

It is important to note that STL decomposition is often used only as a visual tool, and more

rigorous approaches are available to test for stationarity.

One of the tests most commonly used is the augmented Dickey-Fuller (ADF) test[21], whose
main purpose is to test the null hypothesis that a unit root is present in a time series data. Let
us recall that a time series has a unit root when the characteristic equation has at least one

root whose value is 1 [21].

The ADF test tests the following regression model:



2.3. Data Analysis 25

P
Ayy = a+qy1 + Z ABiyi—i + & (2.7)

=1

with the hypothesis:

Hy:~v=

Hy:v<0

The results are compared against the Dickey-Fuller test statistics, and if the test statistics is
smaller than the critical value (which is usually 5%), the hypothesis is rejected. As an example,
running the ADF test against the Passenger Dataset, one obtains a value for the test statistic
of 0.81, with a p-value of 0.99, both of which are above the 5% threshold. Therefore, the null

hypothesis cannot be rejected, and the series is non-stationary.

Hence, a method to transform a non-stationary series is needed. There are several ways to
achieve this: two of the most popular methods consist in the application of a reversible trans-
formation to the the time series (such as a logarithmic transform), and differencing the time

series, removing trends from data.

In this work, the latter approach has been used. Specifically, differencing a time series allows
to obtain a new time series, by subtracting the value at instant y;_; to the value at instant y;,
with k£ being the order of the difference. As an example, applying a first-order difference (with
k = 1) simply means subtracting the value of the time series at the instant ¢ to the value of the
time series at the immediately precedent instant. If such transform is applied to the Passenger
Dataset, the ADF test on the transformed series will give a value for the test statistics of about

—2.83, with a p-value slightly above 0.05, clearly improving further analysis.

Let us evaluate the results of differencing and log-transforming the Passenger Dataset, which
are shown in figure 2.9. As it can be seen from ACF and PACF, there are effects which are

characteristic of both an AR and a MA process, which should therefore be characterized. This
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is possible thanks to autoregressive-integrated-moving average (ARIMA) models, which will be

described in the following.
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Figure 2.9: EDA for the differenced and transformed Passenger Datasets.

ARIMA modeling and forecasting

ARIMA models[19] are a family of models which are used to model a time series. ARIMA

modeling allows to describe all the behaviors described in previous sections, ranging from

autoregressive to moving average; furthermore, it allows to automatically transform a non-

stationary time series by differencing it.

To achieve this goal, ARIMA models make use of three parameters, namely (p, d, ¢), which are

also known as orders of the model. Specifically, p is the order of the AR component component,

d is the order of the differencing component (that is, the number of differentiations which should
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be considered), while ¢ is the order of the moving average component.

An ARIMA model is described by the following characteristic equation:

(1 — Zp:@y) (1—L)'y, = pu+ (1 + iwﬂ) £t (2.8)

i=1

In equation 2.8, the lagged operator L performs a lagged transformation of a certain order £k,

that is:

Y L¥ =y, (2.9)

Equation 2.9 simply states that the lagged operator ’delays’ the time series y; of k time lags.

ARIMA models can be extended to cope with seasonality [19]. These models, which are often
referred to as SARIMA models, have four additional parameters, that is, (P, D,@)s, which
account for seasonal effects. The meaning of (P, D, Q) is, intuitively, directly related to the
orders of the seasonal component of the SARIMA model; as for the s term, it represents the
value for seasonality, that is, the number of lags after which a seasonal effect is expected to
repeat itself. As an example, if the time series under analysis is sampled on a per-month basis,

seasonality should be set to 12, as seasonal effects are expected to be come back after 12 months.

Intuitively, the effectiveness of ARIMA models relies on the correct choice of the parameters.
In simple cases, one can effectively choose p and ¢ from the ACF and PACF plots, respectively,
while d can be determined by evaluating the temporal plot of the time series. However, in this

work, a more complex (yet complete) procedure has been used; it will be described in chapter

4.
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2.4 Representing real world systems with complex net-

works

Real world is filled by examples of complex systems. Most of them are part of daily lives: as
an example, social networks, where users interacts in complex, non-linear ways through posts,
relationships, file sharing, and much more, are complex systems. The Internet itself, where a
huge number of hubs exchange information through packets and streams of data, is a complex
system. Nature, also, tends to organize itself in complex systems, such as schools of fishes or
storms of birds, where several individuals act as a whole, without an apparent leader, by means
of a complex system of interactions. Also human brain is a complex system, whose interactions
can be characterized in terms of electrical signals, and have long-term, complex consequences

on the way human body operates.

Intuitively, heterogeneous principles which guide each one of the aforementioned systems. How-
ever, these all have something in common, as they are ruled by short-range interactions between
components, whether these are individual, computers, or anatomical parts, and which are non-

linearly related to the overall behavior of the system.

It is therefore possible to identify a small set of common properties for complex systems:

e complex systems are composed by several interacting parts: a school of fish is made up by

several individual fishes;

e cach part in a complex system has its own internal structure: each fish is an independent

organism;

o the individual behavior of each component affects the whole system in a non-linear way:
a movement of a fish, which spots a predator, can influence the movement of another fish

in another part of the school;

e the relationships between individuals determine the overall behavior of the system: the

movement of the school of fish is directly related to the movement of each fish within it.
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It is interesting that all of these properties can be perfectly characterized using just a single

mathematical tool: graphs.

2.4.1 Complex networks and complex systems

Graphs and graph theory are relatively new fields in mathematics. They have been originally de-
veloped by Euler, who found a formal solution to the problem of the seven bridges of Knigsberg

[15] introducing the concept of graph.

Formally, a graph is a pair G = (V, F), where V = vy, v9,..., vy is a set of N nodes, inter-
connected by M edges E = ey, es,..., Ey. A graph is weighted if there is a set of M weights
W =w;,w, ..., wy, each one associated to a specific edge; otherwise, the graph is unweighted.
Intuitively, weights model the strength of the relationship between nodes: the higher the value
for the weight, the greater the strength of the relationship. In unweighted graphs, relationships
are therefore supposed to be binary (that is, either the relationship exists or do not exists).
Another important distinction is between directed and undirected graphs. In the first, there is
a direction associated to each edge e;, that is, the relationship goes from v; to v;. Obviously,

this does not hold for undirected graphs.

These concepts have helped to build the theory behind the modeling of complex systems, and

have been used to develop the mathematical tools known as complex networks [16].

Let us start with a simple example taken directly from the aforementioned complex systems.
Social networks can be modeled by a graph, where each node is associated with an user, while
an edge between two users states whether they have a friendship relation or not. Clearly, this is
an undirected and unweighted graph, as a friendship is (hopefully) a mutual relationship, and,
in its simplest form, is not weighted. Let us consider, however, different types of friendships,
such as ’co-worker’, 'friend’, or ’family member’. Obviously, each one of these types has a

different ’strength’; and, therefore, this allows to rephrase the graph as a weighted one.

The correspondence between a complex network and a graph is clear: a complex network is a

graph, and therefore all the algorithms and concepts which are used in graph theory can be
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used to model complex networks. In the following, some of the most important concepts will

be described.

2.4.2 Properties of complex networks

Complex networks allow to model systems which exhibit chaotic and highly non-linear behav-

iors; therefore, the early focus on such systems was on the characterization of the spread of

information.

In that sense, the first noticeable effort was made in 1958 by Erds Rnyi, who introduced the
Erds-Rnyi (ER) model [29] as a way to generate random graphs. Such structures, an example
of which is shown in figure 2.10, are characterized by the property that the probability of having

an edge which connects two nodes is the same for all possible pairs of nodes.

To understand the implication of this, let us briefly introduce two concepts, directly inherited
from graph theory, that is, degree and degree distribution. Specifically, the degree k of a node
v; is given by the number of nodes which are adjacent to the node itself; the degree distribution

P(k) is the probability distribution of values k; for all the nodes in the network.
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Figure 2.10: A random graph.
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Given these definitions, a perfect ER random graph is characterized by an uniform degree
distribution. And, obviously, this is not a property which can be found in real complex systems:
as an example, it is unlikely that each pair of users in a social network has the same number

of relationships.

World is intrinsically heterogeneous, and complex systems often reveals high levels of hier-
archical organization. Thus, these system can be characterized by networks with a degree

distribution which follows a power law in the following form:

P(k) = k= (2.10)

Networks characterized by a degree distribution as in equation 2.10 are called scale-free net-
works, and were discovered by De Solla Price during the studies of citations between scientific
papers. However, they were described only some years later, by Barabsi et Bonabeau [30]

during a study concerning the World Wide Web.

Scale-free networks are characterized by an interesting property: there are a small number of
high-degree nodes, called hubs, which connect areas whose nodes are of lower degree. This
property has a natural reflection in real world: as an example, in social networks there are
few highly-connected hubs, which (indirectly) connect different ’'communities’ of non-densely
connected users. This has also led to the definition of the small-world phenomenon, which is
well described by the concept of six degrees of separation: even if each user has only a small
set of connections, the length of the path needed to reach every other user in the network is

given by a limited number of steps (usually six).

In this work, the application of complex networks to the modeling of an electronic nose has
been described. Unfortunately, data acquired by VPeNs were unsuitable to perform this task;
therefore, as it will be described in chapter 4, another affine, publicly available dataset has been

used to perform this task.
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Related Works

In this chapter, a perspective on related works is given.

First, in section 3.1, the usage of sensor arrays for environmental monitoring, along with some
of the challenges which must be addressed, are described. Then, in section 3.2, techniques
which are most commonly used to analyze data coming from gas sensors are shown, while in

section 3.3 a particular focus on the analysis of wastewater is given.

3.1 Sensors arrays for environmental monitoring

Sensors, possibly arranged as in a sensor network, have been subject to several studies in the
environmental engineering field [133]. In chapter 2, a specific type of sensor array (electronic
noses) has been introduced. However, it is important to underline that another type of sensor

arrays, called electronic tongues [134] is commonly used for environmental monitoring.

The main difference between these two types of sensor arrays lies in the phase in which they
operate [102], as electronic noses detect the analyte in gas or vapor phase, whereas electronic
tongues work in the liquid phase. Hence, electronic tongues tend to suffer more from poisoning,
as they are directly in contact with the analytical sample, while for electronic nose there is

a physical separation between the analyte and the sensing element [135]. This is especially

32
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important in the context of wastewater monitoring, as the complex chemical composition of
urban and industrial wastewater discourages a direct contact between the sensing elements and
the water matrix under analysis [136]; however, using a gas sensor implies that the system

should envisage for a mechanism to transform the water matrix into the vapor phase [102].

Controlling such transformation is not trivial, therefore many approaches to water and wastew-
ater monitoring have mainly used electronic tongues. This type of sensors may be based on
two different effects, that is, potentiometric or voltammetric effects [127]. The main difference
between the two types of array lies in the method which is used to determine the concentration
of the analyte: specifically, with potentiometric e-tongues, the concentration of the analyte is
assumed to be proportional to the potential between two electrodes, while, in voltammetric
e-tongues, a voltage is applied between the electrodes, and the concentration of the analyte
is computed as proportional to the measured current. Throughout the years, e-tongues have
been mainly used in food industry, especially for wine classification [128]; however, they found

application also to water quality monitoring [129].

Specifically, e-tongues have also been used for wastewater monitoring. As an example, in
[126] a voltammetric array composed by eight metallic electrodes, capable of sensing gold,
platinum, iridium rhodium, silver, copper, nickel and cobalt is used to determine and predict
parameters measured in wastewater treatment plants. Another example is given in [137], were
authors use both an e-tongue and high-performance liquid chromatography to forecast the value
for pollutants found within wastewater deriving from detergents used in washing machines;
results from both methods are compared, highlighting the slightly better performance achieved
by the e-tongue. Furthermore, e-tongues have been exploited also in the development on
innovative chemical techniques, such as flow-injection analysis [138], which allowed to quantify
the concentration of nitrate ion in a water matrix without the treat the matrix itself by the

removal of chloride.

Despite the aforementioned difficulties in the control of the transition between gas phase and
liquid phase, and due to the poisoning effects to which e-tongues are subject, several efforts have

been made to create electronic noses for water quality monitoring. One of the first approaches
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is depicted in [139], where Gardner et al. describe a measurement system in which one of the
main stages for the analysis is an electronic-nose made by six commercial odor sensors, each
one based on the MOS effect described in chapter 2. Specifically, such system was used to
monitor cyanobacteria over a period of 40 days and, due to several noise sources related to the
setting, several preprocessing techniques were implemented in hardware to allow for a proper
interpretation of data. However, results achievable by the system were satisfactory enough
to allow the prediction of the different phases of the growth of cyanobacteria within water.
Another approach was described in [140], where an electronic nose was also used to determine
the presence within water of three different microbial species. In this case, a gas sensor array
with 14 conducting polymeric sensors was used, and the results of the comparison between
sterile water and water with traces of heavy metals such as arsenic, cadmium, lead and zinc
were shown, highlighting that this type of system could be used to find either microorganisms
or low concentration of heavy metals within different types of waters. In [141], a wastewater
treatment plant was monitored with an electronic nose consisting of 12 metal oxide sensors.
The monitoring campaign lasted 12 weeks, and both reference (that is, deionized water) and
efluent were heated to 60 and 90 degrees to promote the volatilization and increase sensitivity.
The main contribution of this work was in the development of both a relative sensorial odour
perception, which expresses the correlation between the response of each sensor within the array,
and the relative fingerprint of each substance. Finally, the possibility to deploy several e-noses
throughout a water body, such as a lake or a basin, has been explored in [142], where an ESN
made by several e-noses were deployed throughout the Riachuelo River, in Argentina, and the

parameters acquired by each node of the network were compared to evaluate its status.

Still, several critical aspects of sensor arrays remains to be addressed. The first, important
challenge is selectivity: as described by Nicolas et al. in [130], sensor arrays are limited in both
detection (that is, the minimum value for the concentration of analyte which can be detected
by the sensor) and resolution (defined as the minimum concentration needed to discriminate
between two different analytes). Another issue is related to the drift of the sensors within the
array: in [131], it is shown how humidity influences the response of QCM sensors, and underlines

the need for a compensation model, which is achieved using a post-processing unit which embed
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an ANN which has been previously trained on reference training data. Other approaches to drift
compensation envisage for drift estimation using PCA [132]. Another important challenge lies
in the standardization of methods, as actual implementations do not share common guideline
in aspects such as data processing or number and typology of embedded sensors [32]. Finally,
sensors are sensitive to several conditioning parameters, such as meteorological conditions, and

may need recalibration even when the monitored environment changes [61].

To address some of the afore-mentioned issues, an integrated assessment platform, tailored
for specific applications, has been proposed[63], and its usefulness has already been proved in

several scenarios [64].

The next section will introduce a perspective on how data coming from sensor arrays are

interpreted.

3.2 Data interpretation

From section 3.1, it is clear how gas sensor arrays generally require several precautions during
their deployment. Once these challenges have been addressed, data can be processed. Current

researches focus on two aspects: preprocessing and algorithms used for classification [31, 32].

Usually, preprocessing involves data conditioning, such as denoising and standardization. Also,
feature extraction techniques may be used to obtain meaningful feature, possibly in comple-

mentary domains, such as frequency [33, 34].

Exploratory Data Analysis has also been used to properly understand data, for example by using
polar plots[35]. However, if data are mapped into a high dimensional space (as an example,
when the signature is composed by the readings of several sensors), visual exploration can
be impossible; as a consequence, dimensionality reduction techniques are usually employed to
perform an initial cluster analysis [37], remove redundancies [38], and allow for a simpler data
visualization [39]. A widespread technique is PCA [36]; however, apart from it, feature selection,

along with advanced data visualization techniques, such as t-SNE [40], may be suitable to be
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used.

Afterwards, machine learning algorithms can be used to infer knowledge from data. Recalling

the differences already depicted in chapter 2, data can either be considered as iid or time series.

In the first case, simpler approaches rely on the notion of distance between data points. That
is, as each data point can be mapped to an n -dimensional space, with n equals to the number
of feature, the distance between data points can be evaluated through a similarity index, as
in [41]. Such approaches are similar to ranking procedures, where each data point can be
ranked as closer or farther from the other one. Classification algorithms, need some kind of
boundary between classes. Therefore, in [42] k-NN, which uses the Euclidean distance to first
'learn” about these boundaries, and the assign every new sample to one of these boundaries,
is used for classification. k-NN is simple, and has good performance; however, as noted in
[43], especially when n is high, the Euclidean distance may not be the best choice to compute
distance between a couple of points. Other traditional statistical approaches are also used, such
as discriminant function analysis [44, 45, 44] and partial least squares [46]. Artificial Neural
Networks are also been employed for classification tasks in gas sensors [37]; more advanced
approaches have used ensemble learning [47], with [96] which proposes the use of an inhibitory
SVM[48]. Specifically, an ISVM trains one classifier f; for each class i available within the

dataset, and compares its output to the average output of the ensemble of classifier.

If data coming from gas sensor arrays are considered as time dependent, different algorithms
are needed. A tool which has been widely used for such task are Time-Delay Neural Networks
[49, 51, 50], and also recurrent neural networks have been employed for such tasks [52]. Another
perspective has been given by [55], which proposes the use of generative topographic mapping
trough time as an unsupervised model for time series inspection. Another interesting approach
deals with the need to perform forecasting and prediction in real-time, which is especially
useful in case of dangerous environments. Specifically, [53] provide predictions starting from

data acquired in real time by using reservoir computing [54].

This section has given an overview on how data coming from sensor arrays are generally inter-

preted. In the next section, a particular focus will be given on wastewater data.
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3.3 Water quality and wastewater

Wastewater are defined by Tilley [72] as follows:

(...) used water from any combination of domestic, industrial, commercial or agri-
cultural activities, surface runoff or storm water, and any sewer inflow or sewer

infiltration (...)

Wastewater may be the outcome of a wide range of heterogeneous sources; hence, the character-
istic of different effluents can be heterogeneous, and specific treatments must be used to restore
water quality. Let us now introduce the concepts that should be used for an efficient evaluation
of water quality indexes, therefore allowing for the implementation of a proper prevention and

restoration intervention.

3.3.1 Wastewater identification and treatment methods
Possible sources of wastewater

The first step in the definition of a proper strategy of wastewater treatment lies into the
identification of the source of the wastewater. Specifically, there could be two main possible

sources:

e urban wastewater is composed by a mixture of black water (i.e. human excreta mixed with
used toilet paper), gray water (i.e. washing water used by individuals for cars, dishes, or
personal hygiene), and heterogeneous sources of domestic liquids (e.g. drinks, oils, paint,

ete.) [74];

e industrial wastewater is composed by a wider range of compounds, including materi-
als derived from industrial processes (e.g. site drainages, cooling or processing waters),
organic wastes (either biodegradable, such as residuals from food production, or non-
biodegradable, such as residuals from pharmaceutical manufacturing), toxic wastes, and

many more|[73].
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There are also other possible sources of wastewater, such as agricultural wastewater, or residuals

related to urban runoffs|[74].

Treatments for wastewater

Once the source of the wastewater has been identified, a proper treatment strategy can be
defined. Generally, the idea is to perform water reclamation [75], that is, treat the wastewater

to make it again usable, with minimal risks.

One (desirable) precondition is to remove solid particles (e.g. mud, grit, etc.) as a pretreatment
step, as they can easily compromise further processes. Afterwards, there are three levels of

treatments:

e primary treatments aim to remove suspended solids, both organic and inorganic;

e secondary treatments aim to degrade biodegradable organics, therefore removing them

through the intervention of biological processes such as bacterial digestion;

e tertiary treatments aim to chemically remove nutrients, toxic compounds, residual of sus-
pended solids, and microorganism, using advanced techniques such as membrane filtra-
tion, percolation, active carbon and disinfection through chemical agents (such as chloride

or ozone) or UV light.

Important characteristics for wastewater evaluation

The overall quality of the wastewater, both before and after the treatment, can be evaluated

through standard methods and indexes[76].

First, one should evaluate physical characteristics of the wastewater. Specifically, temperature
is important, as aquatic organisms (both fishes and plants) can survive only if the temperature
of the water is within a certain range. Furthermore, high temperature may lead to sea warming

[77], which a consequent replacement of indigenous species with alien ones. Another important
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aspect is the presence of solids within water, which can be dissolved, suspended or settled as
sediments. Turbidity is related to the fraction of suspended solids within the water, and can
be evaluated by measuring the scattering of light which goes through the water; on the other
hand, salinity, which influences the conductivity of the water, allows to determine the total

dissolved solids.

Another important aspect are chemical characteristics. The first chemical characteristic is the
concentration of ionized hydrogen, expressed by pH. Furthermore, one should evaluate the
dissolved oxygen, which is important to sustain marine life, and oxygen demand, which can be
either biochemical (BOD) or chemical (COD). Specifically, BOD measures how much oxygen
is needed by bacteria and nutrients contained in the wastewater, while COD measures the
demand related to reducing chemical within the matrix. Other chemical compounds which are
usually monitored are nitrogen, which can be found in several forms and, being an important
nutrient for plant growth, can contribute, in high concentrations, to eutrophication and algal
bloom; phosphate, which are not toxic, but may be directly related to eutrophication [78]; and

chlorine, a residual from bleaching and disinfection that can be harmful to animals [79].

Wastewater sampling procedure

The World Health Organization [80] depicts some guidelines to identify proper timing and

location for sampling water destined to human consumption.

As for the location, samples should be taken from locations which are representative of im-
portant facilities or assets, such as a water source, treatment plants, storage facilities, and
points where water is generally delivered or used. Furthermore, each of these location should
be sampled individually. As for the minimum set of tests to perform, the most important (that
is, microbiological quality, turbidity, free chlorine residual and pH) should be taken whenever
a sample is taken. Finally, the guidelines suggest to perform a sampling operation whenever
the ’situation demands’, or when a ’change in environmental condition, outbreak of waterborne
disease, or increase in incidence of waterborne diseases’ occurs. However, these suggestions

are quite generic, and, even if monthly sampling are suggested, data may not be sufficient to
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perform a rigorous numerical analysis and, therefore, properly characterize the site. Further-
more, it is important to underline that these are only suggestions, and each country has its own
commissioning authority to regulate water sampling; therefore, no global standard is currently

available, and mathematical models cannot be therefore effectively generalized.

3.3.2 Wastewater Data Interpretation

Once data are acquired, they should be properly analyzed. It is important to underline that

such analysis are often carried over time to assess the overall trend of water quality indexes.

In [81], Arya et al. use time series to perform univariate prediction on both dissolved oxygen
and temperature for data acquired by four water quality assessment stations located near
Stillaguamish River, in the state of Washington. Authors start from two consideration: first,
univariate time series are long-memory processes, and, therefore, the present value is dependent
on the values of the time series which lie several lags in the past; second, this type of series
are rarely Gaussian distributed, and may not be successfully standardized. Therefore, the
order series method is first used to standardize these series [82]; afterwards, authors deal with
long-memory effects using FARIMA models [83]. Once the model is estimated, predictions are
made, and evaluated using Pearson correlation coefficient, root mean square error and mean
absolute percentage error. In [84], authors use ARIMA and Thomas - Fiering modeling [85]
to forecast time series for water quality. Specifically, T-F model consider average monthly
variations and correlation between data, and fit parameters into a set of n regression equations,
where 7 is the number of time intervals (e.g. years, months, weeks, etc.) available within data.
In the specific context of the dataset, authors conclude that all of the water flows analyzed
showed seasonal patterns, probably due to the influence of annual cycles in the hydrological
input to water streams, and no significant overall trends throughout the study period. In
[86], authors perform an initial analysis through visual descriptors, which uses box-and-whisker
plots for a visual description of possible trends within data. Then, seasonal Kendall test [87]
is used to return a quantitative index. A multiplicative ARIMA model is then fitted [88], and

both ACF and PACF are used to reveal seasonality. To evaluate the best fitted model, the
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Akaike Information Criteria (AIC) [89] is used. Authors found that most of the stations do not
show significant overall trends in water quality parameters, similarly to [84]; however, patterns
show seasonal effects, and multiplicative ARIMA shows good fitting results. In [90], analysis
are focused on dissolved organic carbon concentrations across the UK, along with flow, pH,
alkalinity, air temperature and rainfall analysis. First, a seasonal Kendall test is used to give
a quantitative index on these parameters. Then, a time series analysis, using ARIMA models,
is performed. In this case, no clear evidence on the relationships between dissolved organic
carbon and the aforementioned conditioning parameters are shown; however, trends show an
overall increase in dissolved organic carbon, and several conclusions about relationships between
increases in temperature and dissolved organic carbon can be made. This study can therefore
be used for suggestions on concrete measures to take in both hydrological and climate change
terms. In [91], four time series are taken from three catchments in the North and South of
England, two near to agricultural catchments, one at the tidal limit, and one downstream of a
sewage treatment works. ARMA models are used to evaluate nitrate levels, and predictions have
been tested using standard RMSE, with an average percentage error below the 10% threshold.
ARIMA and SARIMA modeling is also used in [92] to evaluate the concentration of boron in a
specific test case; authors conclude that their approach is generalizable, thus ARIMA modeling
is recommended for predicting the (univariate) boron concentration series within a generic river.
In [93], one-month-ahead forecasts with transfer-function noise (TFN) [94] are combined with
ANN, in a technique called hybrid TFN+ANN, to perform stream flow forecasting. Results
indicates that this approach show improvements in generalization capability with respect to

single TFN and ANN models.

Some of these techniques, along with the principles already described in chapter 2, will be used

to describe numerical results in chapter 4.



Chapter 4

Experiments

In this chapter, the main contribution of this work is described.

The chapter will start with section 4.1, where an opportunistic sensing approach to cogni-
tive radio in environmental sensor network is presented. Section 4.2 will then describe the

development of the VPeN, an e-nose specifically tailored for water quality monitoring.

Afterwards, the approach to data analysis for three possible applications will be illustrated. It
will start in section 4.3, where the datasets which have been used throughout this work are
described. Then, in 4.4, results on the dataset acquired using the VPeN are shown, while in
section 4.6 results of the analysis of time series acquired by two waste treatment plants are
depicted. Finally, a multivariate approach based on the concept of complex network for the

analysis of environmental data will be presented in section 4.7.

The last part, in section 4.8, will give a brief introduction to Env Lab, a tool which has
been developed to perform numeric analysis on environmental data, and which has been made

available as an open source project.

42
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4.1 Opportunistic sensing approach to cognitive radio

Starting from the challenges highlighted in chapter 2, an approach to spectrum sensing for

cognitive radio has been developed and presented in [11].

This approach has been lead by a simple design principle: that is, to guarantee good sensing
performance, while keeping the related computational cost reasonably low. To this end, the

method bases its foundations on the concept of chirp signal.

A chirp signal is a signal linearly modulated in frequency, and is described by the following:

- 6j@(n) _ chrom2 (41)

From equation 4.1, it is possible to compute the instantaneous frequency of the signal, which

is expressed by:

C1do)

The term « in equation 4.2 is the chirp rate. The instantaneous frequency spans the frequency

axis on a band determined approximately by the following:

B.=a-T, (4.3)

In equation 4.3, T, is known as chirp duration. The value for o has to be defined according to
the desired frequency resolution; it is important to underline that a high frequency resolution
implies a lower chirp rate and, as a consequence, a longer observation time needed to span

across all the bandwidth of interest.

In the time-frequency domain, the chirp signal is represented as a very narrow-band signal,

linearly sweeping along a large bandwidth. A chirp can therefore be used to demodulate an
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input signal to baseband, instead of the two-steps algorithm described in chapter 2. Specifically,
the estimation is made multiplying the chirp signal for each input sample, and then applying

a filter on the output signal, followed by an amplitude detector.

The scheme of the proposed algorithm is shown in figure 4.1.
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Figure 4.1: The block scheme of a possible implementation of the chirp-based spectrum sensing
method.

-{ Rectifier }$~

The block scheme shows an example implementation of a chirp-based spectrum sensing method.
Specifically, after the input signal is converted by an ADC, it is multiplied by a chirp at the
required frequency, and then first low-pass filtered and, afterwards, goes through a rectifier, to
give the spectrum at the given time instant. The estimation of the spectrum at delayed time

instant can be achieved by simply using a delayed version of the chirp signal.

This scheme achieves two important goals: that is, each operation has a lower computational
cost, if compared to the cost of the radix-2 FFT algorithm (see 2), and the demodulation of

the whole signal can be easily parallelized.

To test the feasibility of the approach, simulations have been performed using an OFDM mod-
ulated signals with channelization of 1 MHz, and symbol duration of 1 ms, on a channel service
bandwidth of 10 MHz, and the method has been compared with a reference implementation
of a short-term Fourier transform. Results, which are extensively shown in [11], shows that,
despite the lower computational complexity, the chirp-based demodulation scheme achieves re-
sults comparable to STFT in terms of SNR, and therefore is able to properly discern between

the presence and the absence of the signal.
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Thus, these encouraging results show that it is possible to implement this approach to allow for
a better communication between distributed sensors in an ESN. This approach can be therefore
taken into account for future deployment of a distributed architecture of VPeNs, whose working

principles will briefly be described in the following.

4.2 Working principles of the VPeN

The architecture of the VPeN[102] is designed to be flexible, with each one of its components
which can be interchanged with other, equivalent, devices, to upgrade, enhance and adapt its

capabilities.

A working scheme of the VPeN is shown in figure 4.2.

Water Evaporator Sensor
heater unit chamber

Vapor

Clean air |

A 4

Peristaltic SoC Air del‘lvery
pump unit

Figure 4.2: The block scheme of the VPeN.

At the core of the VPeN;, there is a System on a Chip (SoC), which is responsible for the coor-
dination of various parts of the instrument; furthermore, it collects, preprocess and store data
coming from the measurement chamber, and handles all the tasks related to communication,

storage and control.

A peristaltic pump injects the wastewater into the heater, which is responsible to regulate the
temperature of the water matrix. An heating phase is needed to support the operation of
the gas sensor array, as already described in chapter 2. To this end, the water heater uses a
Peltier cell with three PID controllers, as described in [116]. The first PID controller operates

in switch mode, interrupting the water flow to the first Peltier cell when it reaches a certain
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threshold. The other two PID controllers are connected in series; the first heats the liquid,

while the second cools it.

Once the water matrix has been heated, it is sent to the evaporator unit, which is able to
vaporize the heated flow through impact. Vapor is then channeled to the sensor chamber, were
measurement is performed; finally, an air delivery unity, based on an opposing fan system able to
activate the measurement /cleaning cycles. Specifically, when the VPeN is in the measurement
phase, air is pulled from the evaporator unit towards the external area, while in the cleaning

phase external air is pushed towards the measurement chamber.

It is important to underline that the VPeN is tailored to allow the choice of sensors within the
measurement chamber according to the specific application. The choice for the experiments

which are the subject of this work will be described in the following section.

4.3 Datasets description

As already stated in chapter 2, the dataset is one of the main aspects which must be considered

to perform a good data analysis.

To be effective, a methodology has to be tested against a significant amount of data, which must
adequately model the real world: let us recall the example of ImageNet for image classification

(cfr. chapter2).

However, acquiring a dataset such as ImageNet requires a lot of time and efforts. Therefore, it
is desirable to design the acquisition of the dataset, using a multi-disciplinary approach, which
involves both ICT and domain experts. Flaws in the design phase will lead to unpredictable

results in data analysis.

And this will be the leitmotif of this section: how a good design helps in the interpretation
of data, otherwise almost impossible to understand, disregarding the chosen machine learning

algorithm.
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4.3.1 The VPelN Dataset

The first dataset which has been acquired and evaluated will be referred to as VPeN Dataset.
Data contained in this dataset are relative to two different use cases: the first one, called IRSA
Dataset, has been acquired during the campaign described in [104] and [102], while the second
one, called ISMAR Dataset, has been depicted in [98].

The IRSA Dataset

IRSA Dataset is described in [104], and has been acquired during the acquisition campaign of
the MAUI experiment [102]. The IRSA Dataset contains a list of solutions selected to artificially
resemble a set of compounds commonly found within urban and industrial wastewater. The
campaign has been preceded by an extensive chemical study, which underlines the motivation
behind the choice of the compounds [95]. Here, a brief, non-exhaustive overview of the solutions

will be given.

Selected compounds and chemical considerations. Compounds have been analyzed in
two different tranches, the first one made by the first four solution, while the second made by

all the others.

The first three compounds which have been selected for the analysis are three salts dissolved in a
water matrix. The first solution is composed by water and sodium acetate, the second by water
and ammonium bicarbonate, while the third by water and monobasic potassium phosphate.

Each one of these solutions has a single, fixed concentration, described in [95].

Chemical analysis performed on each one of these solutions states that[95]:

e the most relevant parameters found within solution 1 are ammonia, nitrates, nitrogen,
chloride, phosphorus, fluoride and phosphate. Furthermore, the solution shows a relevant

chemical-oxygen demand;
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e the most relevant parameters found within solution 2 are ammonia, nitrates, nitrogen,

chloride, phosphorus, sulphates, fluoride and phosphate;

e the most relevant parameters found within solution 3 are nitrates, nitrogen, chloride,

phosphorus, sulphates and phosphate.

The fourth compound is made by a solution of all the above salts within a water matrix. The
most relevant parameters found within solution 4 are ammonia, nitrates, nitrogen, chloride,

phosphorus, sulphates, fluoride and phosphate, with a relevant chemical-oxygen demand.

Results are summarized in table 4.1.

Solution | Saline compound | NHy | NO3 | N | Cl= | P | SO4 | F'| POy | COD
1 CH3;COONa X X X X | % X X X
2 NHHCOs; X X X X | X X X X
3 KHyPO, X X X | % X X
4 All of the above X X X X | X X X

Table 4.1: Results of chemical analysis performed on solutions 1-4 of IRSA Dataset

In the second tranche, solutions 5, 6, 7 and 8 have been analyzed. These solution were chosen to
resemble compounds which can be commonly found within wastewater. In this case, however,
each one of these solutions has been analyzed choosing three different concentrations within

the water matrices. Again, the exact values for the concentrations are reported in [95].

Solution 5 is composed by soya peptone dissolved in a water matrix. Chemical analysis reveal

the following:

e an increment in ammonia, nitrogen, phosphorus, sulphates, fluoride and phosphates as

the concentration of soya peptone increases;

e a relevant chemical-oxygen demand.

Solution 6 is composed by starch dissolved in a water matrix. Chemical analysis reveal the

following:
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e an increment in ammonia, nitrogen, phosphorus, sulphates and fluoride as the concentra-

tion of starch increases;

e a relevant chemical-oxygen demand.

Solution 7 is composed by mulk powder dissolved in a water matrix. Chemical analysis reveal

the following:

e an increment in nitrogen, chloride, phosphorus, sulphates, fluoride and phosphates as the

concentration of milk powder increases;

e a relevant chemical-oxygen demand.

Solution 8 is composed by yeast extract mixed with a water matrix, and chemical analysis

reveals the following:

e an increment in ammonia, nitrogen, chloride, phosphorus, fluoride and phosphates as the

concentration of yeast extract increases;

e a relevant chemical oxygen demand.
The last solution under analysis is solution A, given by a mixture of all previous solutions in a
water matrix. Three different settings for the concentrations of the solutions were used, mainly
by increasing the concentration of compounds belonging to the second tranche, while keeping
the concentration of compounds belonging to the first tranche stable. Chemical analysis reveal
the following:

e a decrement in ammonia as the concentration of compounds 5, 6, 7 and 8 increases;

e an increment in nitrates, nitrogen, chloride, phosphorus, sulphates, fluoride and phosphate

as the concentration of compounds 5, 6, 7 and 8 increases;

e a relevant chemical-oxygen demand.

Results are summarized in table 4.2.
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Solution | Saline compound | NHy | NO3 | N | Cl= | P | SO4 | | POy | COD
) Soya peptone X X X X X X
6 Starch X X X X X X
7 Milk powder X X | X X X X X
8 Yeast extract X X X X X X
A All compounds x* X X | x | x| x |Xx X X

Table 4.2: Results of chemical analysis performed on solutions 5-6-7-8-A of IRSA Dataset. *It
is important to underline that the chemical analysis shows that ammonia decrements when the
concentration of compounds in solution A increases.

ISMAR dataset description

ISMAR Dataset is described in [98], and has been acquired during another sampling campaign,
conducted in the aquaculture plant located in Ravenna, Italy. Specifically, three samples were

taken:

e solution B is made up by sea water taken from a water tank for aquaculture before the

insertion of mussels;

e solution C resembles artificial sea water;

e solution D is made up by sea water taken from a water tank after five hours from the

insertion of mussels.

As for the water tank, its volume is of 1500 liters; the quantitative of mussels which are inserted
into the tank is of about 200 kilograms. Finally, water inside the tank gets replaced by external

water through a pump.

In this case, tests are not carried with different concentration, but, instead, with different

heating temperatures (specifically, 30, 45 and 60 Celsius).

No further chemical analysis have been carried on samples. However, it is important to underline
that, as depicted in [99], it is expected that this experiment highlights the contribution of

bivalves to methane and nitrous oxide fluxes within the water matrix.
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Acquisition settings

The measurement chamber of the VPeN has been set up as described in table 4.3.

Port | Sensor LPG H2 CH4 C3H8 —Ofv{>i< NH4 cO COQ G** | Digila C7H8
1 MQ 2 X X X

2 MQ 3 X X

3 MQ 4 X X

4 MQ 5 X X X

5 MG 811 X

6 MQ 8 X X

7 MQ 7 X X

8 MQ 9 X X X

9 MQ 6 X X

10 MQ 137 X X X

11 MQ 135 X X X

Table 4.3: Gas sensors in the measurement chamber of the VPeN, along with sensed substance.
*Alcohol **Gasoline ***Ethanol

This configuration has been used for the acquisition of both the IRSA and the ISMAR datasets.
Obviously, the main focus of this configuration is in the capability to discern organic compounds,

along with hydrogen, carbon dioxide and ammonia.

By comparing the compounds which have been found in the analysis carried in [95], one should
expect that the sensors which should be more discriminative should be the ones which can sense

ammonia for IRSA Dataset, and nitrogen/methane for ISMAR Dataset.

The period used for sampling is of two seconds, and each measurement cycle lasts 300 sec-
onds; therefore, there are 150 samples per measurement cycle. Afterwards, a cleaning cycle is
performed, whose duration can vary according to specific needs, as designed by the hardware

producer and maintainer.

It is important to underline that this procedure does not envisage for an initial 'zero calibration’
stage, diverging from the methodology described by [53]. It is therefore important to normalize

data in a post-processing step to compare results from different experiments.

It is also important to consider the experimental conditions: specifically, it has not been used

a laboratory with a strictly monitored equipment, but results were directly recorded on the
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field. Therefore, experiments were performed in suboptimal conditions, with inadequate venti-
lation and thermal control; this has lead to noisy data. Furthermore, measurement cycles were
characterized by non-constant transients, which have not been characterized by the produced.
Therefore, due to this chaotic behavior, an experimental threshold has been used, removing the
first 30 seconds of each measurement cycle. This value has been set experimentally using the
average time in which an ’elbow’ was found within the temporal plots of the sensors, and may

be susceptible of variations in the future.

4.3.2 Gas Sensor Array in Open Settings

This dataset, which has been acquired by Vergara et al. and described in [96], has been used
for mainly two reasons. First, it is less noisy than the VPeN Dataset; second, it offers enough
data to model 72 different sensors, therefore allowing to test a multivariate methodology based
on complex networks. The dataset is freely available at the UCI Machine Learning Repository

[97].

The Gas Sensor Array in Open Settings dataset holds data acquired by a set of nine iden-
tical electrical noses, each composed by eight different MO-X sensors. The selected sensors
belong to the TGS26-XX family, and are sensitive to hydrocarbons, hydrogen, nitrogen, sulfur

compounds, and carbon monoxide.

Data are acquired in a wind tunnel test-bed facility, where the electrical noses were positioned
at six different locations, namely Ly, ..., Lg, normal to the wind direction, and uniformly dis-
tributed throughout the tunnel. At each trial, a different chemical compound is injected within
the tunnel, with a specific concentration. Specifically, these chemical compounds are acetalde-
hyde, acetone, ammonia, benzene, butanol, carbon monoxide with two different concentrations,
ethylene, methane, methanol and toluene. Let us note that, in contrast with what happens in
the VPeN dataset, each one of these substances are characterized by high volatility. Further-

more, the choice of the sensors appears to be well-suited to respond to the selected compounds.

The entire reference-measurement-cleaning cycle lasts about 260 seconds. Throughout the



4.4. Results on the VPeN Dataset 53

trials, two different conditioning parameters are considered. The first is the heater voltage Vj,,
which is directly related to the temperature at the active surface of each sensor, while the
second is the airflow speed S, i.e. the speed of the fan within the test-bed. For V},, five values
are considered, while only three were considered for S. Specifically, allowed values for V}, are

{4.0,4.5,5.0,5.5,6.0}, while allowed values for S are {0.10,0.21,0.32}.

4.3.3 IRSA Wastewater

This dataset contains samples gathered from two different wastewater treatment plants, located

in Monza and Vimercate, next to Milan, Italy.

Sampling has been performed across a time span of about two years, spanning from January

2016 to October 2017.

Several types of parameters were monitored; however, just a subset of them was considered for
analysis, as explained in [95]. Tt is also important to note that sampling was not performed on a
regular basis, therefore some data preprocessing has been needed to apply time series modeling

algorithms.

4.4 Results on the VPeN Dataset

The goal of this analysis is to evaluate the goodness of data acquired by the VPeN, and, hence,
its suitability to be used as a device for real-time wastewater quality monitoring. A protocol
to evaluate the correspondence between chemical analysis and numerical results has therefore
been established, along with some guidelines which should lead future deployment of networks

of such sensor.

The protocol is directly established from the following considerations:

e data can be labeled according to the chemical analysis, that is, the knowledge of which

substance is being analyzed automatically allows the experimenter to set some labels
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suitable for supervised learning;

e cxperiments are executed on field, and therefore in suboptimal conditions. Hence, a way

to evaluate how achieved results fit the expected ones is needed.

To this end, some of the ideas presented in [109] have been borrowed. Specifically, a clustering
algorithm has been used to verify the fitness between the data distribution in the feature space,
and the given assignment of labels. This also gives several hints on how to improve the design

of the experimental phase, processing data to make them suitable for real-time monitoring.

4.4.1 Experimental settings

Selection of the clustering algorithm

The clustering algorithm has been selected according to two different factors.

The first one is related to the distribution of data. In fact, many clustering algorithms, such
as K-means [144], require data to follow a specific distribution, which is often a normal dis-
tribution, or even a specific shape in the feature space. As for the first hypothesis, a one
sample Kolmogorov-Smirnov test on VPeN dataset confirmed that data within it do not follow

a normal distribution.

The second factor is related to one of the most important hyper parameters needed by several
clustering algorithms, that is, the number of clusters which are expected to be found within
data. As already stated, these experiments are meant to be data driven, therefore the algorithm

should automatically derive the number of clusters from data themselves.

Given these factors, DBSCAN [143] has been chosen as clustering algorithm. DBSCAN bases
its clustering on density: clusters are defined as areas of highly dense data points, separated
by areas with low density. As a consequence, it is not required that data have a predefined

distribution or shape.
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An important concept on which DBSCAN is built upon is the concept of core samples. A core
sample is a sample such that exists a number of min-pts other data points within a distance
¢ from the sample itself; these points are defined as neighbors of the core sample, and may be
core samples as well. DBSCAN operates recursively, by taking a first core sample, evaluating
all its core samples within a range ¢, and then evaluating its core samples as well, and so on,
therefore building clusters from zones with high density. DBSCAN also includes a mechanism
to found outliers, which are defined as non-core samples which are at a distance above ¢ from

any other core sample.

Evaluation of clustering performance

Another important thing that has been considered in this work is the metric used to evaluate
clustering performance. The main idea behind this choice is that the clusters found by DBSCAN
should both resemble the labeling and be well separated into the feature space (that is, not
overlapped). Therefore, two metrics have been selected, that is, Adjusted Rand Indez [110] and

Silhouette Score [111].

Adjusted Rand Index is a function of the similarity between a given labeling and the results

achieved by the clustering algorithm, and is expressed as follows:

RI — E[RI]
ARI = 4.4
max(RI) — E[RI] (44)
In the previous equation, RI is the Rand index, expressed as:
b
RI - % (45)

2

and:

e (' is the ground truth;
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e ¢ is the number of pairs of elements that are in the same set in C' and in the same set in

the given clustering K;

e b is the number of pairs of elements that are in different sets in C' and in different sets in

the given clustering K.

Silhouette Score allows instead to define how ’separated’ clusters are in the feature space.

Specifically, it is defined as:
d—c
"~ mazx(d, c)

Where:

e d is the mean distance between a sample and all other points in the same class;

e c is the mean distance between a sample and all other points in the nearest cluster.

In the following, the application of these two scores will be properly described.

Hyper parameter selection

It must be underlined that DBSCAN still requires two hyper-parameters, that is, the values
for min-pts and . However, due to the large quantity of data which should be evaluated, a
method to automatize the selection of both these hyper-parameters through grid search [145]

has been developed.

However, the range for the values to be searched have been set according to some common rules

of thumbs used to set hyper-parameters in DBSCAN.

First, the value chosen for min-pts is directly related to the number of dimensions of the dataset
[105, 106], and lies within the range [d + 1,2 - d], where d is the number of dimensions of the

dataset. Furthermore, in case of noisy data, the authors suggest to select a value larger than



4.4. Results on the VPeN Dataset 57

2-d. As for the value of ¢, it can be determined using a k-distance graph [105, 106], and choosing
an optimal elbow from the plot of the distances between the k-nearest points. Obviously, with
noisy data, choosing a higher value for min-pts is desirable, due to the fact that data are more
scattered and, as a consequence, high density areas are likely to be more spread throughout

the feature space.

These rules of thumbs have lead to select the following values for grid search:

e the lower admissible value for min-pts has been set to (min — pts), = d + 1 = 12, since
the VPeN dataset is supposed to have 11 dimensions (a dimension per sensor, excluding
port 8 which does not hold any sensor in the experiments); the higher admissible value

has set to (min — pts), = 3 - d = 36, to take into account noisy data;

e a k-nearest neighbor graph obtained using data from all the experiments has been eval-
uated for both & = 12 and k = 36, obtaining an approximate values for the elbows of

g; = 0.02 (for the lower admissible value) and ¢, = 0.8 (for the higher admissible value).

Description of the experiments

The experiments can be described as follows. First, the impact of the conditioning parame-
ters (that is, either the heating temperatures or the concentration of the solution) has been
evaluated. The idea is to determine whether the instrument is able to discriminate when such
parameters vary. However, if it is intuitive that a correct evaluation of the concentration of the
substance is relevant to quality monitoring, assessing the discriminative power of the device to
different temperature may not be so obvious. Let us recall the device which has been proposed
by Dewettinck [141], whose working principle is very similar to the one on which VPeN is based.
Specifically, the e-nose proposed by Dewettinck uses different temperatures to facilitate the va-
porization of the solution, specifically 30, 60 and 90 Celsius degrees. Therefore, the question
that one may ask is: how does different temperature influence the response of the sensors? An-

swering this question may be useful to determine the narrow the range of temperature in which



58 Chapter 4. Experiments

the VPeN may operate, therefore improving its sensitivity, and either narrowing or widening

the range of sensed compounds.

Another important aspect that has been evaluated is the capability of the VPeN to discriminate
between two (or more) different solutions. To this end, the signature acquired by the VPeN for
the solutions within each tranche have been compared. Obviously, if n solutions are compared,

one should expect exactly n (hopefully well-separated) clusters.

Furthermore, as experiment had the possibility to evaluate the response of two VPeNs, the
coherence and, therefore, the repeatability of the measurements have been tested. Intuitively,
since the instruments are supposed to be identical (that is, with the same set of sensors in
the measurement chamber, and exposed to the same environmental setting), one should expect
that results for the same solution on different VPeN should belong to the same data generation

process and, after proper normalization, roughly to the same cluster.

For each solution, two pair of values for both ¢ and min-pts have been reported in the results.
The first pair is the one which guarantees the best possible value for the ARI; the second is
relative to the best possible value for the silhouette score. One may argue that just one value for
e and min-pts can be chosen, combining both scores in a single metric; however, in this work,
the two aspects have been kept distinct, even if it is reasonable that, in optimal conditions, the
values for € and min-pts should be almost equal, as cluster should be both well separated and

maximally resemble the ground truth.

Finally, the percentage of outliers found by each clustering procedure has been reported. As
already depicted when describing the algorithm on which DBSCAN is based, outliers are directly
related with noise, and can help to identify whether there is an alert (if the number of outliers
is relatively low, that is, anomalous situations are not common, and are an effective indicator
that something unusual is happening in the water matrix) or if the measurement chamber is
unsuited for the specific wastewater composition (i.e., if the number of outliers is relatively high,
it is possible that either sensors are poisoned, or that they are sending chaotic, non coherent

responses due to saturation, drift, or values below the instrumental threshold).
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Results are presented in tabular form. For each solution, performance scores and number
of clusters will be reported, along with the theoretical number of clusters expected from the
knowledge of the ground truth. To guarantee for the repeatability of the results, values selected

by the grid search algorithm for both ¢ and min-pts are also given.

Feature importance with random forests

Random forests have been introduced by Breinman in [146]. These algorithms are based on an
ensemble of decision trees [147], where each node in the tree is a condition on a single feature
which allows to split the dataset, therefore causing similar responses to end up within the same
split. Random forests also provide two methods for feature selection, that is, mean decrease

impurity and mean decrease accuracy.

The impurity in a random forest is a measure on which the local optimal condition is chosen;
typical choices for measuring impurity are either gini index or information gain criteria [148].
Intuitively, when a tree is being trained, it is possible to compute how much each feature
decreases the weighted impurity in a tree; for the whole forest, the impurity decrease from each
feature can be averaged, and the features can be ranked accordingly. It is extremely important
to note that impurity is biased towards variables with more features [149], and that if the
dataset has two or more correlated features, these are interchangeable from the point of view of
the model. Another method is to evaluate the decrease in the accuracy, iteratively permuting
the set of features used for classification, and evaluating the impact of this permutation on the

accuracy of the model.

In this work, the mean decrease impurity has been used, as variables within the dataset have the
same number of features. To address the effects which may be related to the correlation between
variables, a correlation analysis is performed on relevant features, to ensure that these are not
correlated and, therefore, effectively relevant. Finally, features are considered to be relevant if
their relative score, in terms of mean decrease impurity, is above the relevance threshold of 25%

(that is, they account for at least a quarter of the variations which can be found within data).
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It is important to note that, in many cases, data have been found too noisy by the imple-
mentation of the random forest classifier, even with the optimal settings suggested in [150],
that is, fully developed trees, a high number of trees in the forest (higher than the number of
sample itself), and a number of maximum considered features set to d, where d is the number
of features within the dataset (i.e. the sensors in the measurement chamber). Therefore, only
the combinations which have been successfully been analyzed by the random forest have been

reported.

4.4.2 Results on IRSA Dataset

The first results which are reported have been achieved on the IRSA Dataset. Let us briefly
note that, as for the ARI, it is not reported for solution 4, as data are supposed to belong to
one expected cluster. Therefore, recalling the definition given in section 4.4.1 for the ARI, it
is clear that both term a and b need more than one cluster in the labels to be defined, and, in

this case, this condition is not met.

In the following, results will be first described for each VPeN (in sections 4.4.2 and 4.4.2), and

then for data coming from both the instruments to evaluate for repeatablity (in section 4.4.2).

This protocol will be also used to report results for the ISMAR Dataset in section 4.4.3.

VPeN 11

Single solutions. Let us start by analyzing table 4.4, which describes the best ARI for the

single solutions under analysis.

Let us start by analyzing the results on the first tranche. For solutions 1 and 2, the best ARI is
low, and the number of clusters which have been found considerably differs from the expected
values. Also, the percentage of outliers is relevant; this suggests both environmental noise
(due to the high number of outliers) and suboptimal acquisition settings (due to the low ARI).

Solution 3 shows a higher ARI and a lower number of outliers, suggesting a reduced impact of
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Solution | ARI | min-pts | Clusters | Exp. clusters | Outliers (%)
1 0.29 | 0.8 | 12 10 3 20.89 %

2 0.22 | 0.8 | 12 11 3 18.2 %

3 0.70 1 0.8 | 12 6 3 3.78 %

5 0.84 | 0.78 | 12 4 3 2.89 %

6 0.92 | 0.8 | 12 4 3 2.2 %

7 0.96 | 0.8 | 12 3 3 2.44 %

8 0.64 | 0.76 | 12 8 3 311 %

A 0.33 | 0.8 | 12 7 3 777 %

Table 4.4: Best Adjusted Rand Index for VPeN 11 on single solutions of IRSA Dataset

environmental noise and a better suitability of the selected acquisition settings.

As for the second tranche, solution 5, 6, and 7 show a high value for the ARI, while solution

8 and especially solution A show a considerably lower value. However, as the percentage of

outliers is low, the suggestion is that either the acquisition settings are biased, or there are con-

ditioning effects due to environmental settings which repeat themselves and, as a consequence,

can be modeled and removed. However, such evaluation require a proper knowledge on the

environmental setting, which is not available within the VPeN Dataset.

In table 4.5 the best silhouette score for the experiments on single solutions is shown.

Solution | Silhouette | € min-pts | Clusters | Exp. clusters | Outliers(%)
1 0.18 0.8 |13 9 3 24.3 %

2 0.08 0.68 | 13 13 3 29.78 %

3 0.49 0.78 | 17 8 3 6.2 %

4 0.25 0.8 |14 4 1 26.3 %

5) 0.48 0.66 | 19 6 3 10.44 %

6 0.61 0.27 | 30 2 3 69 %

7 0.56 0.8 |17 4 3 5.44 %

8 0.59 0.76 | 17 7 3 8.33 %

A 0.15 0.59 | 12 12 3 16.33 %

Table 4.5: Best Silhouette Score for VPeN 11 on single solutions of IRSA Dataset

Interestingly, the values of € and min-pts for which the best possible silhouette score is achieved

are similar to the ones obtained for the best possible ARI. However, silhouette score is, on

average, low; this suggest that, even if the instrument is capable to return results which adhere

to the assigned ground truth, most of the clusters found within data are overlapped. This,

again, suggest uncontrolled biases in the acquisition and environmental settings, which result
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in chaotic data and overlapped clusters.

Let us now show results when a feature selection is performed through random forest.

Important features for single solutions. In figure 4.3, the results of the features ranked
by a random forest classifiers on solutions 2, 6, 8 and A are shown. As already stated, these
are the only solutions on which a random forest classifier, with the optimal settings suggested

in [150], could work.
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Figure 4.3: Features ranked according to their relevance for VPeN 11 single solutions

The most discriminative sensors, according to the conditioning parameters (which are temper-

ature for solution 2, and concentration for solutions 6, 8 and A) are:

e for solutions 2 and 6, sensor MQ 137;

e for solutions 8 and A, sensor MG 811.
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Let us now briefly recall table4.3, which states that:

e the most discriminative sensor for solutions 2 and 6 (MQ 137) can sense ammonia, hy-

drogen and ethanol;

e the most discriminative sensor for solutions 8 and A (MG 811) can sense carbon dioxide.

Recalling the experiments performed in [95], it can be found that:

e solution 2 decomposes into the water matrix into ammonia and carbon dioxide, and one

of the expected compounds is (indeed) ammonia,

e solution 6 decomposes into the water matrix into several compounds, one of which is

ammonia;

e solution 8 is composed by yeast extract which, in absence of oxygen, are subject to a

process called fermentation [95], which produces carbon dioxide and ethanol;

e solution A simulates an urban wastewater.

Given that, the following can be deduced:

e the highly-discriminative response of the MQ 137 sensor to solution 2 is related to a
different quantity of particles of ammonia which are released when the temperature of
the water heater changes. Therefore, one of the working principle of the VPeN, that is,
pre-heating the solution facilitates the release of compounds of interest, is confirmed, and

different behaviors correspond to different temperatures;

e the highly-discriminative response of the M(Q 137 sensor to solution 6 extends previous
consideration to the situation where the concentration of the solution varies. Hence, the
VPeN can be used, if properly set, to discriminate between increasing concentrations of
compounds which emits ammonia when dissolved into the water matrix, therefore allowing

one to use it for alert detection;
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e the highly-discriminative response of the MG 811 sensor to solution 8 is related to a
different concentration of yeasts within the water matrix, and, therefore, to a different
impact of the fermentation phenomena. Previous consideration on solution 6 can therefore

be extended to solution 8;

e the highly-discriminative response of the MG 811 sensor to solution A is probably related
to complex interactions between organic matter and bacteria found within wastewater.
These are likely to produce carbon dioxide [95], therefore considerations shown for solution

6 and 8 are confirmed.

Let us evaluate how performance change when only a reduced set of features is used for clus-

tering.

In table 4.6 the best ARI achieved for the aforementioned solutions when only relevant features
are selected is shown. It is interesting to note how, if compared with the analysis with the full
feature set, there is an improvement for solutions 2 and A, but results on solutions 6 and 8 are
deteriorated. This suggest that, in this case, the value set for the relevance threshold (that is,
0.25) is too high. Hence, for these two solutions, analysis have been carried out lowering the

threshold value to 0.15, and are also reported in tables 4.6 and 4.7.

Solution | ARI | e min-pts | Clusters | Expected clusters | Outliers (%)
2 0.37 | 0.18 | 13 ) 3 34 %

6 0.56 | 0.25 | 12 3 3 0.22 %

6* 1 0.72 ] 12 3 3 0%

8 0.49 | 0.02 | 21 11 3 7.55 %

8* 0.87 | 0.55 | 12 4 3 0%

A 0.63 | 0.16 | 12 3 3 0%

Table 4.6: Best Adjusted Rand Index for VPeN 11 on single solutions of IRSA Dataset when
most important features are selected. *Results with relevance threshold lowered to 0.15.

As it can be seen, lowering the relevance threshold to the experimentally-found value of 0.15
helps to achieve improved results, with a perfect match for solution 6, and a considerable
enhancement for solution 8. However, results in terms of silhouette score, which are reported
in table 4.7, show a deterioration when this threshold is lowered. This may be acceptable for

the specific application purposes, as a perfect match with the ground truth is achieved, but
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should be further investigated, by improving both environmental and acquisition settings, to
give a proper explanation of this phenomena; as often happens in these cases, more data are

needed to give further suggestions..

Solution | Silhouette | € min-pts | Clusters | Expected clusters | Outliers (%)
2 0.91 0.06 | 12 10 3 4.0 %

6 0.96 0.24 | 24 3 3 4.0 %

6* 0.42 0.71 | 12 3 3 0%

8 0.86 0.22 | 12 2 3 0%

8* 0.74 0.25 | 26 6 3 0%

A 0.89 0.12 | 14 4 3 0%

Table 4.7: Best Silhouette Score for VPeN 11 on single solutions of IRSA Dataset when most
important features are selected. *Results with relevance threshold lowered to 0.15.

It is important to briefly examine the effects of a lowered relevance threshold on solutions 6

and 8.

For solution 6, sensors which are found to be relevant with the lowered threshold are MQ 137
and MG 811. This suggests that, as the concentration of starch increases, the release of carbon

dioxide slightly varies, therefore allowing a proper discrimination between different solutions.

For solution 8, sensors which are found to be relevant with the lowered threshold are MQ 7,
MQ 137 and MG 811. This reinforces the consideration that a fermentation occurred within
the water matrix, and that the release of the products of such a chemical reaction are the
ones which have been read by the VPeN: in fact, sensor M(Q 137 can sense another product of
fermentation, that is, ethanol [95]. The relevance of sensor MQ 7 should be examined in depth

with the help of a domain expert.

For both solutions, a correlation analysis of the responses of the most relevant sensors is shown
in 4.4. Correlations have been computed using the Kendall’s 7, as monotonicity and linear

relationships between responses cannot be supposed.

From figure 4.4, it can be underlined that the responses of these sensors are not correlated
over time (but, instead, the responses of MQ 7 and MQ 137 on solution 8 are anti-correlated).
Hence, it is possible to conclude that each one of these sensors has a role in the discrimination

between different concentrations of solutions 6 and 8, and therefore should be considered in an
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optimal acquisition setting.

Let us now evaluate how readings from the VPeN are fit to distinguish between several sub-
stances. It is important to underline that this is not a classification, therefore the final goal is
not to establish whether the VPeN is able to classify different solutions, but, instead, to have
some hints about undergoing processes which bias the data acquisition (and, as a consequence,

to have a perspective on how to remove such effects).

Multiple solutions. In tables 4.8 and 4.9, results of the comparison between multiple solu-
tions for the VPeN 11 are shown. In this case, the effects of the variation of the conditioning

parameter, along with the variation of the solution, must be considered.

Let us start with table 4.8. Results show that the adjusted rand index is low for most of the

comparisons, except for solutions 1-3 and solutions 5-6-7-8.

Solutions | ARI | man-pts | Clusters | Exp. clusters | Outliers
1-2 0.36 | 0.72 | 19 13 6 19.4 %
1-3 0.62 | 0.76 | 12 13 6 7.06 %
2-3 042 | 0.8 | 18 11 6 7.33 %
1-2-3 0.40 | 0.8 | 13 12 9 7.78 %
1-2-3-4 0.41 | 0.51 | 32 13 10 19.16 %
5-6-7-8 0.76 | 0.70 | 12 13 12 2.22 %

Table 4.8: Best Adjusted Rand Index for VPeN 11 on the comparison of multiple solutions on
IRSA dataset
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As for the best silhouette score, it is shown in table 4.9. Results are also poor, and suggest

that clusters are overlapped in the feature space.

Solutions | Silhouette | € min-pts | Clusters | Exp. clusters | Outliers
1-2 0.20 0.70 | 12 13 6 14.72 %
1-3 0.51 0.8 |17 10 6 9.17 %
2-3 0.45 0.78 | 13 11 6 6.83 %
1-2-3 0.47 0.8 |13 12 6 7.78 %
1-2-3-4 0.45 0.8 |12 8 10 1.53 %
5-6-7-8 0.26 0.8 |30 13 12 3.5 %

Table 4.9: Best Silhouette Score for VPeN 11 on the comparison of multiple solutions on IRSA
dataset

It is important to underline how, on average, the number of outliers is low; however, especially
the low ARI suggest that, for multiple solutions, there are several bias effects which should be

considered.

Suggestions. Results on VPeN 11 highlight the following: on one hand, in several cases,
the acquisition settings, that is, the choice of the sensors which have been embedded in the
measurement, chamber, is not adequate to the specific use case scenario. On the other hand,
except for some relevant cases, data do not appear to be excessively noisy and, therefore,
experimental settings may be accepted. Therefore, the suggestion may be to refine the selection
of sensors to better fit them to the use case. Let us now proceed with the evaluation of the
results coming from the other instrument, named VPeN 12, which is supposed to be identical
to VPeN 11. The experimental protocol which has been followed is the same followed for the
VPeN 11.

VPeN 12

Single solutions. In table 4.10, the best ARI achieved for single solutions on VPeN 12 is
shown. For the first tranche of solutions, results are on average slightly better than the ones

achieved by VPeN 11. However, for the second tranche, results are considerably worse.

In table 4.11, the best silhouette score is shown for the same solutions. These results are more
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Solution | ARI | e min-pts | Clusters | Exp. clusters | Outliers
1 0.58 | 0.76 | 12 4 3 2.89 %
2 0.37 | 0.8 | 12 11 3 16.2 %
3 0.72 1 0.76 | 12 5 3 3%

5 048 | 0.8 | 12 7 3 712 %
6 0.76 | 0.8 | 12 5 3 5.33 %
7 0.53 | 0.8 | 12 6 3 4 %

8 0.37 | 0.8 |12 10 3 15.56 %
A 0.37 | 0.8 |12 10 3 12.11 %

Table 4.10: Best Adjusted Rand Index for VPeN 12 on single solutions of IRSA Dataset

in line with the ones achieved by VPeN 11, even if there is an anomalous situation for solution

2, where the best possible silhouette score envisage for an extremely high number of outliers.

Solution | Silhouette | € min-pts | Clusters | Exp. clusters | Outliers
1 0.62 0.8 |26.6 3 3 6.67 %
2 0.29 0.02 | 17 1 3 97.56 %
3 0.63 0.66 | 12 6 3 3.77 %
4 0.34 0.72 | 13 4 1 36.67 %
5 0.45 0.8 |12 7 3 712 %
6 0.66 0.8 |12 5 3 5.33 %
7 0.54 0.8 |13 7 3 4.33 %
8 0.33 0.8 |12 10 3 15.56 %
A 0.43 0.8 |13 10 3 12.55 %

Table 4.11: Best Silhouette Score for VPeN 12 on single solutions of IRSA Dataset

Overall, the instruments achieve similar results, which is expected due to the fact that they are
exposed to the same exact environmental conditions, and have the same acquisition setting.
Furthermore, slight differences are expected to be found, due to complex drift phenomena, and
different usage and/or poisoning of different sensors. However, data acquired by VPeN 12 are
found to be, on average, noisier than readings coming from VPeN 11; this may be a symptom

of an excessive wear of the sensors within the array.

Important features on single solutions. Results shown in figure 4.5 highlights that both
solutions 5 and 7 can take advantage of feature selection (again, other solutions were too noisy

to give meaningful results with the optimal settings suggested for random forest).

Let us evaluate which sensors are maximally discriminative for the conditioning factors, and
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Figure 4.5: Features ranked according to their relevance for VPeN 12 single solutions

whether domain knowledge can give to these effects a proper explanation:

e for solution 5, the maximally discriminative sensor is MG 811;

e for solution 7, the two maximally discriminative sensors are MQ 137 and MG 811.

The analysis performed on IRSA Dataset in [95] show, for solution 7, the release of ammonia,
which is directly related to the concentration of the solution. This may be due to anaerobic
fermentation; furthermore, as described in [151], there are evidences that, at least in sediments,

the presence of carbon dioxide is related to the presence of peptone. Therefore:

e results on solution 5 shows that the instrument is able to discern between different concen-
trations of a solution of soya peptone dissolved in a water matrix thanks to their different

contributions in terms of carbon dioxide;

e results on solution 7 shows that the instrument is able to discern between different con-
centrations of a solution of milk poweder dissolved in a water matrix thanks to their
different contributions in terms of both ammonia and carbon dioxide, due to anaerobic

fermentation.

As for VPeN 11, this suggests that, with proper settings, the e-nose is capable to evaluate the

impact of a conditioning parameter (in this case, concentration) on the overall solution.
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In figure 4.6, the correlation analysis for the response of sensors MQ 137 and MG 811 on

solution 7 is shown:
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Figure 4.6: Correlation analysis through Kendall 7 for solution 7 on VPeN 12

The response of both sensors appears to be anti-correlated; this, as explained in section 4.4.1,

confirms that both the responses are relevant.

It may be interesting to analyze how correlation vary with the concentration of the solution
within the water matrix. It appears that, with the lowest concentration, responses are corre-
lated, with a value of 7, = 0.63. As the concentration increases, responses became slightly

anti-correlated, with 7,,.¢ = —0.22 and 75,549, = —0.19.

A possible interpretation of this effect lies in the fact that when the concentration of milk powder
is low, effects of the release of either ammonia or carbon dioxide (or both) are negligible and,
therefore, normalized responses for both sensors similarly depends on effects such as thermal
noise. However, as the concentration of the solutions increases, the emissions of ammonia
and carbon dioxide either increase or decrease over time, concealing the effects which were
predominant when the concentration of the solution was low. Obviously, such hypothesis needs
domain knowledge to be confirmed; however, it shows the possibility to discern between different
signatures based simply on the evolution of the response of a set of sensors. This concept will

be extended and applied to a real case in section 4.7.
Tables 4.12 and 4.13 show the clustering results using only the most meaningful features.

In this case, both scores benefits from the use of the subset of relevant features. The suggestion
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Solution | ARI | e min-pts | Clusters | Exp. clusters | Outliers
5 0.87 | 0.23 | 12 4 3 0%
7 1 0.47 | 12 3 3 0%

Table 4.12: Best Adjusted Rand Index for VPeN 12 for most important features on single
solutions of IRSA Dataset

that a proper setting, with a limited, yet meaningful, number of sensors, can easily outperform

a complex, yet suboptimal, sensor array is therefore confirmed.

Solution | Silhouette | € min-pts | Clusters | Exp. clusters | Outliers
5 0.80 0.06 | 12 5 3 0%
7 0.78 0.43 | 12 4 3 0%

Table 4.13: Best Silhouette Score for VPeN 12 for most important features on single solutions
of IRSA Dataset

Multiple solutions. In tables 4.14 and 4.15, results of the comparison of multiple solutions

for VPeN 12 are shown.

Solutions | ARI | min-pts | Clusters | Exp. clusters | Outliers
1-2 0.51 | 0.57 | 12 10 6 5%

1-3 0.72 1 0.8 | 12 9 6 2.28 %
2-3 0.61 | 0.8 | 12 8 6 3.67 %
1-2-3 0.58 | 0.70 | 23 13 9 6 %
1-2-3-4 0.55 | 0.57 | 23 13 10 7.07 %
5-6-7-8 0.03 0.2 | 36 13 12 75.61 %

Table 4.14: Best Adjusted Rand Index for VPeN 12 on multiple solutions of IRSA Dataset

On average, results are aligned with the ones achieved by VPeN 11, with a remarkable differ-
ence found for the discrimination of solutions in the second tranche. As the instruments are
identical, this suggests that one or more sensors from VPeN 12 suffer from either excessive use

or poisoning.

Suggestions. It is clear that the results achieved for VPeN 11 are confirmed by VPeN 12
since, as already said, their settings are identical. However, some evidences suggest that VPeN
12 is somehow biased by an excessive use, or faulty hardware, as results are expected to be

considerably better in several situations. This highlights how an exploratory data analysis can
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Solutions | Silhouette | € man-pts | Clusters | Exp. clusters | Outliers
1-2 0.41 0.64 | 12 9 6 4.44 %
1-3 0.54 0.8 12 9 6 2.28 %
2-3 0.51 0. 68 | 12 9 6 4.5 %
1-2-3 0.47 0.04 | 27.65 1 9 98.03 %
1-2-3-4 0.38 0.8 12 9 10 2.37 %
5-6-7-8 0 0.08 | 31 1 12 98.86 %

Table 4.15: Best Adjusted Rand Index for VPeN 12 on multiple solutions of IRSA Dataset

be used not only to discover underlying data processes, but also how it can be exploited to
find inconsistencies within the producer of these data, therefore directing further investigation
aimed at improving the acquisition settings. Let us now evaluate the last part of the analysis

on the IRSA Dataset, which concerns the comparison of data acquired by both VPeNs.

Comparison between VPeNs

As already stated, the two VPeNs used in the comparison are supposed to be identical, as they
perform the same experiments under the same settings. One should therefore expect that data
coming from the two instruments, once normalized, reflect the the same underlying process. As
a consequence, one of the main assumptions on which this set of experiments has been based is
that the number of expected clusters should ezactly the same as shown for VPeNs 11 and 12.
For the rest, the protocol that has been used is the same as the one used for the experiments

on single instruments.

Single solutions. In table 4.16, the comparison between the results given by the two VPeNs

on single solutions is shown.

Interestingly, results perfectly reflect what has been shown for single VPeNs: on average, the
ARI is low, while a negligible number of outliers is found. As this evaluation takes into account
also the repeatability of the measures, for the aforementioned reasons, it is likely that the effects
which have been described for VPeN 12 (that is, a probable excessive usage or poisoning of
sensors within the array), along with the suboptimal design of the measurement chamber, can

be identified as the causes of such poor performance.
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Solution | ARI | e min-pts | Clusters | Exp. clusters | Outliers
1 0.37 | 047 | 13 7 3 2.84 %
2 0.2 0.2 |12 13 3 8.44 %
3 0.48 | 0.55 | 12 9 3 1.27 %
5 0.52 | 0.8 |12 7 3 1%

6 05 |08 |12 8 3 0.39 %
7 0.56 | 0.8 | 12 6 3 1.45 %
8 0.36 | 0.70 | 12 5 3 0%

A 0.36 | 0.53 | 29 7 3 1.83 %

Table 4.16: Best Adjusted Rand Index in the comparison of single solutions acquired by both
VPeNs.

In table 4.17, results for the silhouette score on data coming from both VPeNs substantially

confirm the achieved results.

Solution | Silhouette | € min-pts | Clusters | Exp. clusters | Outliers
1 0.83 0.72 | 12 3 3 0.67 %
2 0.67 0.76 | 15 2 3 2.39 %
3 0.61 0.49 | 12 10 3 2.05 %
4 0.73 0.78 | 28 2 1 10.33 %
5 0.53 0.74 | 31 11 3 5.67 %
6 0.55 0.53 | 31 10 3 4.72 %
7 0.57 0.72 | 12 6 3 1.5 %

8 0.69 0.70 | 12 5 3 0 %

A 0.75 0.78 | 16 4 3 0.28 %

Table 4.17: Best Silhouette Score in the comparison of single solutions acquired by both VPeNs.

Important features on single solutions. In figure 4.7, feature ranking for solutions 7 and

a, according to a random forest classifier, are shown. Results show that:

e for solution 7, the most discriminative sensor is MQ 137;

e for solution A, the most discriminative sensors are MG 811 and MQ 3.

In figure 4.8, the correlation for the most meaningful features for solution a is shown. Following
the same considerations made in previous scenarios, it is clear to see how the response of MG

811 and MQ3 are anti-correlated.



74 Chapter 4. Experiments

VPeSensors with most significant responses VPeSensors with most significant responses

MGB11

(a) Solution 7 (b) Solution a
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Figure 4.8: Correlation analysis between the responses of sensors MG 811 and MQ 3 or results
from both VPeNs on solution A.

Results show that the overall response from these sensors are anti-correlated. An per-concentration
analysis highlights that, for the lowest possible concentration value, sensors have a negative cor-
relation (70, = —0.15), for the intermediate concentration responses are almost uncorrelated

(Tine = 0.02), while for the highest concentration responses are slightly negatively correlated

(Thigh = —026)

A chemical interpretation of the results achieved on solution A is not given in [95], therefore
further domain knowledge would be needed to characterize the fact that one of the most dis-
criminating responses is coming from sensor M(Q 3, which, from table 4.3, is able to sense for

alcohol and gasoline. As for the milk powder, the most discriminative response given by MQ
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137 may be related to the fermentation caused by bacteria within the solution.

In table 4.18 the best ARI for solutions 7 and A on most relevant features is reported. Inter-

estingly, both results are lower than the results achievable when using the full feature set.

Solution | ARI | min-pts | Clusters | Exp. clusters | Outliers
7 0.5 | 04512 4 3 0 %
A 0.18 | 0.02 | 35 5 3 8.67 %

Table 4.18: Results of supervised DBSCAN for combined VPeNs on IRSA dataset - multiple
solutions

As for silhouette scores, as shown in table 4.19, it is almost equal to one in both cases, therefore

clusters are well defined in the feature space.

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
7 0.98 0.12 | 12 7 3 0.72 %
A 0.91 0.16 | 12 2 3 0%

Table 4.19: Results of unsupervised DBSCAN for combined VPeNs on IRSA dataset - multiple
solutions

One may suggest to lower the threshold for feature relevance, as already done for VPeN 11, to
include a wider (and, possibly, more comprehensive) set of features. However, results do not
improve even when the relevance threshold is set to 0.10, with a ARI for solution 7 of 0.24, and

of 0.35 for solution A.

The optimal number of important features can be evaluated through recursive feature elimina-
tion (RFE), which recursively prune the least important features from the feature set according
to a performance score of an estimator [158]. This procedure can be enhanced using cross val-

idation to reinforce achieved results.

Figure 4.9 shows results of such evaluation. It is possible to see that the optimal number of
suggested features is 11 (for solution 7) and 8 (for solution A). Hence, in these specific cases, it
is suggested to run the experiments without performing feature selection first, due to the fact
that the optimal number of features is almost equal to the actual number of features in the

dataset.
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Solutions | ARI | ¢ min-pts | Clusters | Exp. clusters | Outliers
1-2 0.36 | 0.37 | 29 13 6 10.67 %
1-3 0.44 | 0.49 | 35 11 6 5.81 %
2-3 0.42 1 0.74 | 18 6 6 0.89 %
1-2-3 0.33 | 0.51 | 35 13 9 5.09 %
1-2-3-4 0.40 | 0.41 | 30.79 13 10 4.03 %
5-6-7-8 0.37 1 0.78 | 36 13 12 1.29 %

Table 4.20: Best adjusted rand score for combined VPeNs on multiple solutions

Multiple solutions. In tables 4.18 and 4.21, results for adjusted rand index and silhouette

score are shown on the selected combination of substances.

Again, it appears that labels assigned by the best clustering in terms of ARI do not properfly

fit the ground truth, even if the number of outliers found within data is, on average, low.

As for silhouette score, results highlight that, on average, when the selected solutions are
compared, clusters which take form are sufficiently separated in the feature space, with a low

number of outliers. This does not hold for solutions 5, 6, 7 and 8, where, even if the number of

Solutions | Silhouette | min-pts | Clusters | Exp. clusters | Outliers
1-2 0.84 0.8 |20 3 6 0.67 %
1-3 0.66 0.70 | 16 7 6 0.44 %
2-3 0.67 0.61 | 12 9 6 0.89 %
1-2-3 0.65 0.7 | 16 8 9 0.48 %
1-2-3-4 0.71 0.57 | 12 8 10 0.55 %
5-6-7-8 0.24 0.78 | 36 13 12 1.29 %

Table 4.21: Best silhouette score for combined VPeNs on multiple solutions
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clusters which is found is almost correct, these are found to be highly overlapped.

4.4.3 Results on ISMAR Dataset

In this section, results achieved on the ISMAR Dataset are shown. The experimental protocol

which has been followed is the same used in the experiments on the IRSA Dataset.

VPeN 11

Single solutions. Table 4.22 shows the best ARI on single solutions of ISMAR Dataset.

Solution | ARI | ¢ Samples | Clusters | Exp. clusters | Outliers
B 0.26 | 0.8 | 12 13 3 20.45 %
C 0.69 | 0.8 | 12 6 3 6 %

D 0.80 | 0.8 | 12 5 3 3.78 %

Table 4.22: Results of supervised DBSCAN for VPeN 11 on ISMAR dataset - single solution

In this case, the value for the ARI is low for the solution B, which also shows several outliers;
however, it is considerably higher on solutions C and D. As for the silhouette scores, which are
shown in table 4.23, results show that a clear separation between clusters cannot be achieved.
It is important to note that the best performance in terms of both ARI and silhouette score
are achieved with exactly the same configuration for solutions B and C (this does not hold for

solution D).

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.21 0.8 |12 13 3 20.45 %
C 0.48 0.8 |12 6 3 6 %

D 0.37 0.78 | 17 4 3 3.78 %

Table 4.23: Results of unsupervised DBSCAN for VPeN 11 on ISMAR dataset - single solution

Interestingly, these results are confirmed by [98], where it has been shown, through a PER-
MANOVA analysis, that data do not allow to highlight the effect of different heating temper-

atures.
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Important features on single solutions. In table 4.24, results achieved while selecting

only the most important features on solutions B and D are shown.

Solution | ARI | e Samples | Clusters | Exp. clusters | Outliers
B 0.78 | 0.37 | 12 4 3 0.22 %
D 1 0.08 | 12 3 3 0%

Table 4.24: Results of unsupervised DBSCAN for VPeN 11 with most important features
selected on ISMAR dataset - single solution

Results show a considerably better improved value for ARI; this indicates that, in this case,
feature selection properly works. These results are confirmed by the improvements achieved by

the silhouette score.

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.98 0.37 | 12 4 3 0.22 %
D 0.85 0.18 | 12 2 3 0%

Table 4.25: Results of unsupervised DBSCAN for VPeN 11 with most important features
selected on ISMAR dataset - single solution

In figure 4.10, feature ranking resulting from the application of a random forest classifier on

solutions B and D is shown.

VPeSensors with most significant responses VPeSensors with most significant responses
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Figure 4.10: Features ranked according to their relevance for VPeN 11 on ISMAR dataset

It can be seen that responses which have been considered are:

e for solution B, the response from sensor MQ 5;

e for solution D, the response from sensor MG 811.
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Let us recall that sensor MQ 5 can sense either LPG, hydrogen of methane, while sensor MG
811 can sense carbon dioxide. Solution B is given by water taken from a tank for the production
of mussels before the insertion of the bivalves; however, the responsiveness of sensor MQ 5 to
different values of temperature, considering also the presence of highly volatile gases (such as
methane and LPG) suggests that water is not perfectly ’clear’, but there are instead residuals
from previous cycles of bivalves aquaculture (and, therefore, residuals from mussels digestion,
such as methane [99]. As for solution D, further chemical analysis may be needed to evaluate

the differences in the release of carbon dioxide as temperature varies.

Multiple solutions. In table 4.26, the adjusted rand index for the comparison of solutions
b, ¢ and d are shown. In this case, VPeN 11 does not perform well in discriminating between

different substances.

Solutions | ARI | ¢ Samples | Clusters | Exp. clusters | Outliers
B-C-D 0.59 | 0.66 | 12 12 9 419 %

Table 4.26: Results of supervised DBSCAN for VPeN 11 on ISMAR dataset -multiple solutions

Also the silhouette score, as shown in 4.27, is low, therefore clusters are overlapped.

Solution | Silhouette | Samples | Clusters | Exp. clusters | Outliers
B-C-D | 0.50 0.8 |12 7 9 2.26 %

Table 4.27: Results of unsupervised DBSCAN for VPeN 11 on ISMAR dataset -multiple solu-

tions

By comparing these results with the ones achieved by Cilenti in [98], it is clear that the VPeN
can correctly discriminate between an alert (that is, the presence of the compounds within
solution D) and a normal situation (supposedly normal water, such as solutions B and C).
However, when all these solutions are compared, VPeN does not appear to be able to correctly

discriminate between solutions as temperature changes.

VPeN 12

Single solutions. Let us evaluate the results achieved by the second VPeN. In table 4.28, the

best adjusted rand index on each solution belonging to ISMAR dataset is shown. It is important
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to note that solution D envisages only for two clusters as only data for two temperatures (30

C and 45 C) were retrieved from data repository.

Solution | ARI | ¢ min-pts | Clusters | Exp. clusters | Outliers
B 0.31 [ 0.8 | 12 10 3 20.67 %
C 0.44 | 0.8 | 12 11 3 16.78 %
D 0.66 | 0.8 | 12 3 2 9 %

Table 4.28: Best adjusted rand index for VPeN 12 on single solutions for ISMAR dataset

Experiments show how the achievable best ARI is relatively low (even for solution D, where
only two clusters are expected). This is confirmed also by the poor results achieved in terms

of silhouette score, as shown in table 4.29.

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.31 0.8 |13 8 3 26.11 %
C 0.30 0.8 |14 5 3 28.56 %
D 0.67 0.78 | 12 3 2 9.33 %

Table 4.29: Best silhouette score for VPeN 12 on single solutions for ISMAR dataset

Important features on single solutions. However, as for the VPeN 11, feature selection
can greatly improve clustering performance. Let us first evaluate table 4.30, which shows the

best adjusted rand index for the most meaningful set of features for solutions B, C and D.

Solution | ARI | € Samples | Clusters | Exp. clusters | Outliers
B 0.74 | 0.20 | 26 4 3 0.67 %
C 0.42 | 0.10 | 27 4 3 0%

D 1 0.60 | 12 2 2 0%

Table 4.30: Best adjusted rand index for most important features for VPeN 12 on single
solutions for ISMAR dataset

If compared to table 4.28, it is clear how, except for solution C, feature selection slightly
improves clustering performance, and, for solution D, DBSCAN is capable to achieve the best

possible scoring.

The same considerations hold for table 4.31, which shows a great improvement with respect to

the case in which all features are used for clustering.
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Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.96 0.20 | 26 4 3 0.67 %

C 0.66 0.08 | 13 7 3 1.67 % %
D 0.82 0.59 | 12 2 2 0%

Table 4.31: Best silhouette score for most important features for VPeN 12 on single solutions
for ISMAR dataset

If the relevance threshold is lowered to 20 % for solution C, the best ARI which could be
achieved is of 0.67, while the best silhouette score is of 0.65. In this case, two sensors are
considered, that is, sensor MG 811 and MQ 5. The correlation analysis for the response from

these two sensors is shown in figure 4.12.
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Figure 4.11: Features ranked according to their relevance for VPeN 12 on ISMAR dataset

It is interesting to note that data appear to be correlated. It can be noted that this correlation
is due to effects which manifest themselves at the temperatures of 30 C and 60 C, as at 45

C values are anti-correlated. This behavior should be properly characterized using domain
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Figure 4.12: Correlation analysis for solution C on ISMAR Dataset.

knowledge.

Multiple solutions. As for the comparison of multiple solutions, results are shown in tables

4.32 and 4.33.

Solutions | ARI | ¢ Samples | Clusters | Exp. clusters | Outliers
B-C-D 0.62 | 0.41 | 12 13 9 5.62 %

Table 4.32: Best adjusted rand score for VPeN 12 on multiple solutions for ISMAR dataset

Results essentially confirm what has been achieved by VPeN 11, even if, in this case, it appears

that VPeN 12 achieved slightly better performance if compared to the other instrument.

Solutions | Silhouette | Samples | Clusters | Exp. clusters | Outliers
b-c-d 0. 70 0.78 | 13 5 9 3.58 %

Table 4.33: Best silhouette score for VPeN 12 on multiple solutions for ISMAR dataset

VPeN Combined

Single solutions. Finally, let us show results achieved on single solutions of the ISMAR

dataset when using data acquired from both the VPeNs.

In table 4.34, it is shown as values for ARI is considerably low on each one of the solution.

Silhouette score (table 4.35) are slightly better.
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Solution | ARI | ¢ Samples | Clusters | Exp. clusters | Outliers
B 021 | 0. 27 | 25 9 3 21.94 %
C 0.36 | 0.33 | 32 9 3 17 %

D 0.41 | 0.64 | 12 6 2 3.08 %

Table 4.34: Results of unsupervised DBSCAN for combined VPeNs on ISMAR dataset - single
solution

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.62 0.76 | 14 4 3 1.33 %
C 0.70 0.74 | 14 4 3 2.11 %
D 0.70 0.74 | 16 4 2 4.42 %

Table 4.35: Results of unsupervised DBSCAN for combined VPeNs on ISMAR dataset - single
solution

Important features on single solutions. Also in this case, when only important features
are used for clustering, results do not improve for solutions B and D. This is probably due to

the effects described for VPeN 12.
Silhouette score, however, is greatly improved, as shown by results reported in table 4.37.

By lowering threshold to 20 % for solution B, also the response of sensor MQ 5 can be con-
sidered, slightly improving the best achievable ARI (to a value of 0.34) while worsening the
best achievable silhouette score (to a value of 0.79). This effect can also be seen for solution
D, as lowering the detection threshold to 15 % (lowering it to a higher value would mean to
not consider any other feature) improves results in terms of best achievable ARI (0.48) while
worsening the best achievable silhouette score (0.80). Hence, in this case, feature selection may

not be improve overall results.

Multiple solutions. As for results achievable on multiple solutions, these are reported in

the following tables.

Table 4.36: Results of unsupervised DBSCAN for combined VPeNs with most important fea-

Solution | ARI | ¢ Samples | Clusters | Exp. clusters | Outliers
B 0.17 | 0.25 | 26 4 3 0.33 %
D 0.45 | 0.02 | 12 5) 2 1.5 %

tures selected on ISMAR dataset - single solution
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Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B 0.98 0.25 | 26 4 3 0.33 %
D 0.90 0.06 | 12 3 2 0%

Table 4.37: Results of unsupervised DBSCAN for combined VPeNs with most important fea-
tures selected on ISMAR dataset - single solution

Solution | ARI | € Samples | Clusters | Exp. clusters | Outliers
B-C-D 0.41 | 0.43 | 13 13 8 317 %

Table 4.38: Results of supervised DBSCAN for combined VPeNs on ISMAR dataset -multiple
solutions

It is clear that both the best achievable ARI and the best achievable silhouette score are

considerably low.

Solution | Silhouette | € Samples | Clusters | Exp. clusters | Outliers
B-C-D | 0.62 0.70 | 12 11 8 0.96 %

Table 4.39: Results of unsupervised DBSCAN for combined VPeNs on ISMAR dataset -multiple

solutions

4.4.4 Discussion

Results depicted in this section highlight a complex situation, due to an ill-conditioned experi-
mental design: in fact, by simply comparing substances defined in [95] and [98] with the sensors
in the measurement chamber of the VPeNs, one may expect that many of the parameters which
are considered relevant for the analysis cannot be directly found by the actual settings of the

Sensor.

However, as these data were acquired during a prototypical stage test, they should be used,
along with the proposed techniques, to refine both the design and the acquisition methodologies.

In fact:

e it has been proved that the VPeNs are able to respond to several conditioning parameters,
given a proper knowledge of the domain, which should always lead the selection of sensors

within the measurement chamber;
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e it has been shown as feature selection can greatly improve achievable results, with the

exception of some specific cases, which should be investigate using domain knowledge;

e it has been suggested that the biases due to the environmental settings can be addressed
in a conditioning step, which should consider the external environmental conditions; such

method should be one of the first upgrades applied to the instrument;

e it has also been proved that an extensive calibration step is needed, as there are many
(and often hardly modelable without enough data) biases introduced by factors such as
different usages of the sensors within the VPeN, or even different working temperatures

or turbulence conditions.

4.5 Classification with Deep Neural Networks

The goal of the second set of experiments performed on the VPeN Datasets was to evaluate

the use of machine learning to classify data acquired by the instrument.

To this end, a deep artificial neural network (ANN) [22] has been used. This network is built
on the concept of multilayer perceptron (MLP), introduced by Rosenblatt in 1958 [23], which

is considered as the foundation’ for deep learning.

For the selected network, an architecture composed by three (hidden) fully connected layers
whose activation function is a rectified linear unit (ReLU) [13]. The use of this activation
function is suggested as Krizhevsky demonstrated, with AlexNet, that it can achieve the same
results that can be obtained with other activation functions, while substantially lowering the
computational cost needed to execute the network. In the last layer (the output layer), a
classical dense, fully connected layer has been used, with a softmax activation function to
perform classification [155]. As for the loss function, categorical cross-entropy has been used
[155]. To train the network, the Adam optimization algorithm has been used [156]. In the
training phase, a k-fold cross validation procedure, with k& = 10, has been used to validate

results achieved by the network. The use of dropout layers [157] between hidden fully connected
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layers has also been evaluated.

Results evaluation

First, it is important to underline that VPeN Datasets are imbalanced, meaning that the
quantity of data belonging to each experiment may differ according to the number of mea-
surement/cleaning cycles used (usually, two or three). If such imbalance does not afflict an
agglomerative clustering method as DBSCAN, it does have a negative impact on a learning

algorithm such as a deep neural network. In these situation, usually, three approaches can be

followed [155]:

e fine-tune the initial weights, to support specific classes of data;
e randomly remove samples of most represented classes (hard negative mining);

e accept the imbalance.

The third approach is usually the one to prefer when enough quantities of data are available, and
it has been shown that good performance can be achieved [118]. In these trials, the imbalance
has been accepted, as data have been proven themselves to be enough to deal with the number

of parameters (weights and biases of neurons) of the network.

Let us show the first batch of results, which have been performed on non-normalized data. In
this case, after 15 epochs of training for each one of the 10 validations, the model achieves a

mean accuracy of 82.2 %. In figure 4.13, the confusion matrix for this experiment is shown.

The confusion matrix shows how the highest number of misses are achieved when trying to

classify solution 6.

The achieved performance are overall good; however, they could be dramatically improved by
using some of the hints that came from the analysis performed in sections 4.4.2 and 4.4.3, that
is, data appear to be afflicted by several biases due to systemic errors and offsets within the

readings of the sensors. Therefore, by just applying a normalization procedure (that is, data are
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Figure 4.13: Confusion matrix with data without normalization

scaled to assume a normal distribution with zero mean and unitary variance), it is possible to
achieve an average accuracy on the 10-validation procedure of 98.16 %. The confusion matrix

(which is, obviously, almost diagonal) relative to this case is shown in figure 4.14.

As for the dropout, the effects of such layers have been testing imposing a dropout rate (that
is, the percentage of the total neurons which are not considered at each training iteration) from
10 % to 50 %, which is the value which has been found to guarantee the best performance in
case of overfitting [119]. However, in this case, cross-validation accuracy was reduced to 96.45
% when the dropout rate was of 10 %, and to 58.65 % when the dropout rate was of 50 %.
Hence, it can be concluded that no dropout layers are needed, and the selected configuration

for the network does not suffer from overfitting.

Now, let us recall the concept which lead the comparison between the results of the two VPeNs,
as shown in sections 4.4.2 and 4.4.3, that is: once data coming from two identical sensors,

exposed to identical experimental settings, are normalized, they should resemble the same
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Figure 4.14: Confusion matrix with data with normalization

data generation process. Therefore, if this condition is met, a network trained exclusively on
data coming from VPeN 11 should have comparable accuracy on data coming from VPeN 12,
and vice versa. As already pointed out, several biases do not allow to achieve this kind of
repeatability on the VPeN Dataset; however, here, a method to overcome this problem, and
allow to a network trained on a VPeN to be effective also on data acquired by the other without

a complete retraining, is shown.

Transfer learning

Transfer learning is an idea introduced by Szegedy in [9], and is based on the concept of feature
abstraction in a deep neural network. Let us briefly consider a deep convolutional neural
network for image recognition. Within this network, first layers are used to model generic
shapes, such as corners or edges, while later layers represent more complex layers, often strictly

related to the dataset on which the network is being trained.
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Intuitively, this idea can be borrowed, and applied to this specific case, where complex biases
exists between (supposedly) identical instruments. Specifically, two networks, with the same
configuration of the network used in the most generic case, have been trained from scratch
on data coming from VPeN 11 and VPeN 12, achieving an accuracy of 99.27 % and 97.69 %,

respectively.

These networks, as expected, achieved poor results on the other instrument: as for the network
originally trained on data from VPeN 11, it achieved an accuracy of only 15.95 % on data from
VPeN 12, while the network trained on VPeN 12 achieved an accuracy of 22.91 % on data

coming from VPeN 11.

By applying transfer learning, retraining on the new dataset only the last two hidden layers
(and, obviously, the output layer), results have significantly improved: as for the network
originally trained on VPeN 11, it could achieve an accuracy of 87,69 % on VPeN 12 with
transfer learning, and similar results have been achieved by the network originally trained on

VPeN 12, with an accuracy of 82.38 % on VPeN 11.

The interpretation of such results is straightforward: first layers of the network capture generic,
and common, behaviors of the instruments, while later layers capture phenomena characteristics
of the specific instrument, and which actually allow to model the existing biases between the

e-1noses.

4.6 Results on IRSA - Wastewater

In this section, results of univariate modeling of a subset of the compounds found within the

IRSA Wastewater Dataset are shown.

The selection of the compounds on which the analysis has been performed followed the direction
given in[95], which highlights how only data gathered from the wastewater treatment plant of
Vimercate should be considered, as more relevant from a biochemical perspective. Furthermore,

to follow one of the main assumption on which Box and Jenkins based the analysis of temporal
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series, only compounds with more than 50 samples available have been considered for the

analysis.

Hence, once the relevant compounds have been found, the following procedure has been used

for the analysis.

e An exploratory analysis is performed on each compound, to gather knowledge on the spe-
cific time series. Specifically, as already shown in chapter 2, the ACF and PACF functions,
along with the normal Q-Q plot and the histogram, have been explored. Furthermore,
the results of an STL decomposition are analyzed to roughly evaluate the presence of

trends and/or seasonal effects.

e After the exploratory analysis, the optimal seasonal ARIMA model has been found for
each compound. To this end, a grid search on two triples of hyper-parameters, which
represent the orders (p, d, q) and (P, D, Q) (cfr. chapter 2), is performed, with the specific
goal to minimize both the Akaike Information Criterion and the mean squared error
between the ground truth (a validation set which represents the last six months of the

series itself) and the found model.

e The residuals of the achieved SARIMA model are evaluated, to ensure that are uncorre-

lated and normally distributed, with zero mean and unitary variance [19)].

It is important to underline that time series are not densely or regularly sampled. Therefore,
experiments have been performed on both the original time series, and their resampled versions,
where missing samples were taken on a daily basis, using a cubic spline interpolation. This

approach was suggested by similar works in fields such as astronomy [108] and genetics [107].

4.6.1 Nitrogen Compounds

Chemical consideration. The first compounds which have been analyzed are the ones re-

lated to the total nitrogen. These are found within the wastewater in three different forms,
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that is, ammonia, nitric ozide and nitrous oxide. As shown in [95], each of these parameter
show high variability over time, and both ammonia and nitrous oxide are often above the al-
lowed thresholds, which are of 30 mg/1 for ammonia, and 0.6 mg/1 for nitrous oxide. As for
the nitric oxide, the parameter is considered, from the chemical perspective, negligible, as it
is often below the detection threshold. In the following, each one of these three forms will be

analyzed separately.

Ammonia

Time series Exploratory Data Analysis. The time series relative to ammonia is shown
in figure 4.15. By observing the time series itself, it appears to be randomly distributed around
an average value of about 35 mg/l. However, an analysis of both the ACF and the PACF plots
shows that, according to the given made in chapter 2, the series shows a slowly decaying ACF,
while the PACF is cut off after two lags, which may be an indication of an outgoing AR process.
As for the normal Q-Q plot and the histogram, they resemble a normal behavior, even if the

histogram appears to be slightly skewed.

As already said, the time series has not been sampled on regular basis. As a consequence, in
the (additive) STL decomposition, shown in figure 4.16, the sampling period has been set to 3
days, according to the number of samples available within the first year of the series (almost
120 samples), therefore the seasonality effect has been supposed to be exhibited every 120
samples. This procedure has been performed on each of the parameters which will be shown in
the following, obviously fixing the seasonality according to the number of samples within the

time series.

The STL decomposition shows an overall stable trend within data. Residuals appears to be

randomly distributed, and a slight seasonal effect is reported.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
1 1 9 0 0 0 2045.07 123.19

Table 4.40: Parameters found for best seasonal ARIMA model on ammonia time series.
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SARIMA modeling. Given the aforementioned results, let us evaluate the parameters found

by the SARIMA model.

Interestingly, there is an AR contribution with p = 1, and an MA contribution with ¢ = 9,
which is almost exactly where the ACF plot cuts off. Furthermore, achieved results do not
envisage for seasonal effects; therefore, the (superimposed) seasonal effects shown by the STL
decomposition are not found to be relevant by the SARIMA model. It must be underlined
that this could be expected from the exploratory analysis of the series itself. Finally, the mean
squared error on the last six months is relevant; as it can be seen from figure 4.17, the SARIMA

model is partially able to follow the original time series, but has several issues modeling quick

spikes.
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Figure 4.15: Analysis of ammonia for Vimercate Wastewater Treatment Plant
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Figure 4.17: Forecasts for best seasonal ARIMA model on ammonia time series.



94 Chapter 4. Experiments

Analysis can be further extended using the diagnostics shown in figure 4.18:

e from the histogram, it can be seen that the K DFE plot resemble N (0, 1), which is a normal
distribution with zero mean and standard deviation equals to 1, therefore, residuals are

normally distributed;

e from the normal Q-Q plot, the ordered distribution of residuals mostly follows the linear
trend of the samples taken from the normal distribution N(0,1). A slight deviation,
which can be also seen observing the kernel density estimation plot, can be found for

higher values;

e from the standardized residuals plot, it is clear that no obvious seasonal effects can be
found within residuals. This is also confirmed by the correlogram, which shows low

correlation between lagged residuals.

Achieved results, however, are unsatisfactory in terms of MSE on prediction. Therefore, it is
important to evaluate results achievable by re-sampling the time series through cubic spline

interpolation.

SARIMA modeling on resampled time series. Let us evaluate the parameters found for
the resampled time series. In this case, the period of seasonality is set to 365 (this procedure

will be extended to all the following cases).

AR | T | MA | sAR | sl | sMA | AIC | MSE forecasting
4 1] 9 0 [0 0 |42035 20.13

Table 4.41: Parameters found for best seasonal ARIMA model on resampled ammonia time
series.

Again, no seasonal effects are highlighted by the best model. Interestingly, the AIC is higher
than the one found for the original time series. However, the AIC can be used to compare
models obtained on the same dataset, therefore this value cannot be compared with the one
achieved in the previous evaluation, but only to compare different SARIMA models achieved

on the same data.
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Figure 4.18: Diagnostics for best SARIMA model on ammonia time series.
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Figure 4.19: Forecasts for SARIMA model found for ammonia resampled
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From table 4.41, it appears that the MSE on forecasting is considerably low. This is confirmed

by figure 4.19, which shows the use of the model for prediction.

Let us analyze the diagnostics for this model, as shown in figure 4.20.

e from the histogram, it can be seen that the K DE plot resemble N(0,1). However, the

fitness appears to be slightly lower than the one achieved with the original time series;

e from the normal Q-Q plot, the ordered distribution of residuals can be found to follow

the linear trend of the samples taken from N (0, 1), except for border values;

e 1o seasonal effects can be found within the standardized residuals, and the low correlation

shown by the correlogram confirms that indications.

These diagnostics allow to consider the SARIMA model satisfactory enough to be used.

Remarks. A relevant result from previous analysis is that the evaluation of such models
cannot rely only on a single metric, such as the AIC. As an example, in this specific case,
relying only on AIC would not allow to infer that data coming from a properly-conducted
acquisition campaign, with regular and (timely) dense samplings, would greatly enhance the
predictive capabilities of achievable models. These considerations can be extended to all the

cases which will be discussed in the following.

Nitric Oxide

Time series Exploratory Data Analysis. As reported in [95], many of the values found
for nitric oxide this parameter are below the detection threshold of the instrument used for
the acquisition. This is expected to be reflected on anomalies in the time series, and this is

confirmed by the diagnostics shown in figure 4.21.

From this diagnostics, it is clear that:
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e data hold more representative power starting from June 2017, when they have been more
densely sampled. Such irregular sampling obviously undermine the descriptive capability

of a model obtained on this series;

e the ACF and PACF plots do not give meaningful suggestions on underlying AR or MA

processes, as there are no clear (and permanent) cutoffs for both of the functions;
e the normal Q-Q plot greatly deviates from the behavior expected for a normal distribution;

e the histogram shows a main normal distribution, which is probably related to samples
below the detection threshold, and several ’tail distributions’ relative to the time period

where data appear to be sampled in a more meaningful way.
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Figure 4.20: Diagnostics for SARIMA model found for ammonia resampled

The STL decomposition 4.22, is able to capture the slowly increasing trend, which is probably
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Figure 4.21: Analysis of nitric oxide for Vimercate Wastewater Treatment Plant




4.6. Results on IRSA - Wastewater 99

due either to a more dense sampling or to values which are found to be above the detection

threshold of the instrument.
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Figure 4.22: STL decomposition for nitric oxide

SARIMA modeling. Let us evaluate the best SARIMA model obtained for the original

time series.

AR (p) | 1(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
3 1 10 0 0 0 804.01 12.24

Table 4.42: Parameters found for best seasonal ARIMA model on nitric oxide.

Table 4.42 that, again, seasonality is not accounted by the best model. Diagnostics, shown in
figure 4.23, show an overall good behavior of the model, as histogram and normal Q-Q plot
adequately resemble a normal distribution (with a remarkable deviation on the borders), while

correlogram shows no correlations between residuals.

However, it is clear that the model, shown in figure 4.24, cannot capture rapid spikes in data,

adhering only to the overall trend of the series.
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Figure 4.23: Diagnostics for SARIMA model found for nitric oxide
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Figure 4.24: Forecasts for SARIMA model found for nitric oxide
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Let us then evaluate the effect of oversampling of the time series.

SARIMA model on resampled time series. Parameters for the best SARIMA model
are shown in table 4.43, and, again, indicate a higher value of AIC, if compared with the best

model found on original data, with a lower mean squared error on forecasts.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
6 1 10 0 0 0 2409.45 5.44

Table 4.43: Parameters found for best seasonal ARIMA model on resampled time series of
nitric oxide.

Diagnostics, shown in figure 4.25, show an irregular behavior of the best SARIMA model:
specifically, the kernel density estimation of the distribution of the residual considerably diverges
from a normal distribution N(0,1), while the correlogram shows some correlations between

residuals.
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Figure 4.25: Diagnostics for SARIMA model found for nitric oxide resampled

However, the predictive capabilities of the model appears to be improved, as it can be seen

from figure 4.26, and the model appears to properly characterize spikes in data.
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Figure 4.26: Forecasts for SARIMA model found for nitric oxide resampled

Remarks. This time series is heavily compromised by a bad designed acquisition campaign,
which undermines the achievable results due to the presence of a relevant bias determined by the
high (with respect to the specific scenario) detection threshold of the instrument used during
the acquisition. Therefore, this should be one of the leading principles of future acquisition

campaigns.

Nitrous Oxide

Time series Exploratory Data Analysis. Data for nitrous oxide appear to be more densely
sampled with respect to data for nitric oxide; however, this series also presents some anomalies,
as shown by the diagnostics depicted in figure 4.27. Specifically, the ACF and PACF suggests
an ARMA behavior, due to the gradual tailing off of both the functions; however, there are
some spikes at samples with high lag, which somehow weaken this suggestion. Furthermore, the

normal Q-Q shows considerable deviations from normality at the borders, and effects related
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to an inadequate detection threshold can be found at the lower border of the plot. This is
confirmed by the histogram, which clearly suggests that data distribution is not normal, and

there is a bias effect related to a low detection threshold.

As for STL decomposition, shown in figure 4.28, there are no clear indications of trends within

data.
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Figure 4.27: Analysis of nitrous oxide for Vimercate Wastewater Treatment Plant

SARIMA modeling. Parameters of the best SARIMA model found on nitrous oxide data

are shown in table 4.44.

As expected, seasonal effects are not taken into account by the model. Diagnostics, shown in

figure 4.29, highlights that residuals resemble a normal distribution, and the normal Q-Q plot
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shows the usual behavior, following a normal distribution except for considerable deviations on

border values. As for the correlogram, it appears that no relevant correlations exist between

residuals.
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Figure 4.28: STL decomposition for nitrous oxide
AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
1 1 1 0 0 0 281.69 0.39

Table 4.44: Parameters found for best SARIMA model on data acquired for nitrous oxide.

The MSE on forecasts, from table 4.44, appears to be low; however, this is due to the values

assumed by the parameter itself and, as it is clear from figure 4.32, the model which has been

found is not able to follow the rapid variations of the time series.

SARIMA modeling on resampled series.

on the resampled version of the time series are shown in table 4.45.

Results for the best SARIMA model achievable

Interestingly, this is the first situation where a negative value (which is admissible) for the

AIC is found. Furthermore, the best SARIMA model for this series does not envisage for a
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Figure 4.29: Diagnostics for SARIMA model found for nitrous oxide
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Figure 4.30: Forecasts for SARIMA model found for nitrous oxide

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
3 0 3 0 0 0 -61.43 0.12

Table 4.45: Parameters found for best SARIMA model on resampled nitrous oxide.
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trend component within data. Diagnostics are shown in figure 4.31, and residuals appear to

adequately fit a normal distribution, with no correlation effects.
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Figure 4.31: Diagnostics for SARIMA model found for nitrous oxide resampled

Forecasts shown in figure 4.32 show the suitability of the model to make forecasts on the

resampled time series.

Remarks.

Interestingly, the differences in the MSE for forecasts between the original and the

resampled time series are not relevant. Therefore, one, by just looking at the numeric value,

would assume that no relevant improvements can be achieved by oversampling the time series.

However, forecast plots tell a different story: the model found on the original time series cannot

model any of the complexity of the underlying process, while the model found on the resampled

series can. This is a perfect showcase of the power of exploratory data analysis.
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Figure 4.32: Forecasts for SARIMA model found for nitrous oxide resampled

4.6.2 Chemical Oxygen Demand

Chemical considerations. COD shows high variability, and is often found to be above the
legal threshold value of 500 mg/1, with several peaks above the 1000 mg/l. Chemical analysis
specify that this is the only parameter considered relevant to the real time evaluation of the
presence of oxygen, as the time needed to determine the BOD is not compatible with real-time

requirements [95].

Time series Exploratory Data Analysis. The time series relative to COD is shown in
figure 4.33. In this case, both the ACF and PACF functions show a gradually decreasing tail,
which suggests that the underlying process is an ARMA. Furthermore, the normal Q-Q plot and
the histogram resemble a normal distribution, even if it is possible to infer from the histogram
a high skewness, since the distribution does not appear to be symmetrical around the mean

value.

It is also not possible to infer a clear trend from the STL decomposition, as shown in figure

4.34.
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SARIMA modeling. Parameters for the best SARIMA model found for COD data are

reported in table 4.46.

AR (p) | T (d)

MA (q)

sAR (P)

sI (D)

SMA (Q

AIC | MSE forecasting

0 1

4

0

0

0

3569.5 40566

Table 4.46: Parameters found for best SARIMA model on COD.
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Figure 4.33: Analysis of COD for Vimercate Wastewater Treatment Plant

Interestingly, no suggestions of an AR process are found within the model. This can be ad-

dressed while extending the range of values used for the grid search (which have been limited to

a maximum value of 10); however, such extension must also envisage for an increased computa-

tional load for grid search, which could not be addressed with the currently available hardware

equipment.
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Figure 4.34: STL decomposition for COD

Diagnostics, shown in figure 4.35, show how residuals are a good fit for a normal distribution
N(0,1), and that there are no correlations between them. However, forecasts show that, again,
the number of samples given to the SARIMA model are not adequate for the modeling of

sudden spikes in the time series.

SARIMA modeling on resampled time series. Parameters for the best SARIMA model

found for the resampled version of COD are reported in table 4.47.

AR (p) | I(d) | MA (q) | sAR (P) [ s (D) | sMA (Q) | AIC | MSE forecasting
4 1 4 0 0 0 8033.69 7579.27

Table 4.47: Parameters found for best SARIMA model on COD resampled.

Interestingly, the order of the AR component suggests that oversampling allows to highlight
this part of the process, which, again, was expected from the ACF and PACF plots shown in

the evaluation of the time series.

Diagnostics shown in figure 4.37 highlight a proper behavior of the residuals of the time series,
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Figure 4.35: Diagnostics for SARIMA model found for COD
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Figure 4.36: Forecasts for SARIMA model found for COD
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even though high lags in the correlogram may suggest some form of correlation between resid-

uals. However, as expected, the model is now able to follow quick variations in the values of

COD (figure 4.38).

Remarks.
the numeric value of MSE, one may assume that the capabilities of the SARIMA model are

limited. However, plots quickly highlight that the values obtained for the MSE also depends

Also this case shows the importance of exploratory data analysis: relying only on

on the values assumed by COD itself.
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Figure 4.37: Diagnostics for SARIMA model found for COD resampled
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Figure 4.38: Forecasts for SARIMA model found for COD resampled

4.6.3 Chloride

Chemical considerations. Chloride varies around an average value of 175 mg/1, with some
peaks during the first part of 2016; however, these values are always been found to be below the
legal threshold. Authors in [95] suggest, as a future extension, to evaluate the concentration of

active chloride, due to its impact on activated sludges.

Time series Exploratory Data Analysis. Chloride also shows the characteristics of an
ARMA process, at it can be seen from the ACF and the PACF in figure 4.39. However, the
decay of tails of both functions is combined with several consequent peaks. In this case, the

normal Q-Q plot and the histogram confirm that data are normally distributed.

As for the STL decomposition, shown in figure 4.40, it does not define a clear trend.

SARIMA modeling. Parameters for the best SARIMA model found for chloride data are

reported in table 4.48.

The best SARIMA model highlights the presence of the underlying AR and MA processes.

Residuals optimally fit a normal distribution, and no correlations are found by the correlogram.
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Figure 4.39: Analysis of the chloride samples over time for Vimercate Wastewater Treatment
Plant

AR (p)

I (d) | MA (q)

sAR (P) [sI (D) [ sMA (Q)

AIC

MSE forecasting

1 4

0 0 0

2866.77

2663.55

Table 4.48: Parameters found for best SARIMA model on COD.
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As expected, also in this case, the model is able to follow the overall data trend, but not to

capture the sudden variations shown by the process.
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Figure 4.40: STL decomposition for chloride

SARIMA modeling on resampled time series. Parameters for the best SARIMA model

found for the resampled version of chloride are reported in table 4.49.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC

MSE forecasting

3 1 4 0 0 0 6454.11

442.18

Table 4.49: Parameters found for best SARIMA model on chloride resampled.

Diagnostics for this model are shown in figure 4.43, and, also in this case, residuals show normal

behavior and no relevant correlation over time.

Remarks. Interestingly, the orders found for the best SARIMA model on the original time

series, and the ones for the corresponding model on the oversampled time series, are almost the

same, with a slight difference in the order of the AR component. This may apparently suggest
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Figure 4.41: Diagnostics for SARIMA model found for chloride
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that, if a SARIMA with p = 3 is used on the original time series, improved results can be
achieved. However, this is not true: first, grid search always return the best model, according
to the AIC, for a set of data and, as a consequence, a SARIMA with p = 2 outperforms
a SARIMA with p = 3 on the original time series. Also, effects of the interpolation must
be considered: even if the original and the oversampled processes are related, they are not

numerically equivalent, as the oversampled more values that, in the original, are missing.

As expected, oversampling significantly improves prediction results also in this case, as shown

in figure 4.44.
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Figure 4.43: Diagnostics for SARIMA model found for chloride resampled



4.6. Results on IRSA - Wastewater 117

Forecasts for Chloride- resampled

300 A .
—— Cloruri
One-step ahead forecasts
250 A
©
Q
Q
€ 200 A
B
g
3 150 -
5
<
O
100 -
50 A
Jun Jul Aug Sep Oct Nov
2017

NakA

Figure 4.44: Forecasts for SARIMA model found for chloride resampled

4.6.4 Phosphor

Chemical considerations. Phosphor fluctuates around the legal limit of 10 mg/1. This value
is referred to the total phosphor, which is made by an organic part, which is due to natural,
biological processes, and an inorganic part, related to chemical-physical processes, possibly
derived by anthropogenic sources. In [95], analysis underline that the total phosphor is not an
indicator of the status of the wastewater; hence, suggestions are to take, in the future, further

efforts to discriminate between the organic and inorganic components.

Time series Exploratory Data Analysis. Phosphor shows a behavior which resembles
the one assumed by chloride. Specifically, the ACF and PACF plots suggest As for chloride,
phosphor shows a more regular behavior, as it can be seen from the normal Q-Q plot and the
histogram in figure 4.45. However, it must be noted that also the distribution of this compound
appears to be skewed. As for the behavior of the time series, an AR process is expected, as the

ACF and PACF functions resemble such behavior, as shown in chapter 2.

Also in this case, the STL decomposition shown in figure 4.46 does not highlight any global

trend.
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SARIMA modeling. Parameters for the best SARIMA model found for phosphor data are

reported in table 4.50.

AR (p)

[(d)

MA (q)

sAR (P)

sI (D)

SNA (Q

AIC

MSE forecasting

0
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0
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Table 4.50: Parameters found for best SARIMA model on phosphor.
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Figure 4.45: Analysis of phosphor for Vimercate Wastewater Treatment Plant

In this case, diagnostics shows that residuals are slightly skewed (figure 4.47). However, no

correlations are found between them.

Again, the found SARIMA model lacks the capability to model sudden variations in the value

of original data.
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Figure 4.46: STL decomposition for phosphor
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SARIMA modeling on resampled time series. Parameters for the best SARIMA model

found for the resampled version of phosphor are reported in table 4.47.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC

MSE forecasting

1 1 4 0 0 0 2867.23

2.51

Table 4.51: Parameters found for best SARIMA model on phosphor resampled.

Diagnostics resemble results achieved by the SARIMA model for the original time series, even

if the skewness appear to be less emphasized.

Forecasts, as expected, show a proper behavior on the resampled time series.

Remarks. No particular remarks, apart from the one previously found, can be made on this

time series.
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Figure 4.47: Diagnostics for SARIMA model found for phosphor
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Figure 4.48: Forecasts for SARIMA model found for phosphor
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Figure 4.49: Diagnostics for SARIMA model found for phosphor resampled
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Figure 4.50: Forecasts for SARIMA model found for phosphor resampled
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4.6.5 Sulphates

Chemical considerations. Results reported by chemical analysis simply show that sulphates
are always found to be below legal threshold, with an unique peak during September 2016. No

more indications or interpretations are given.

Time series Exploratory Data Analysis. The diagnostic for sulphates shows several as-
pects which have been already found for chloride and phosphor, starting from the gradual
cutoff of the tails of both the ACF and the PACF. In this case, however, the histogram does

not appear to be skewed.
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Figure 4.51: Analysis of sulphates for Vimercate Wastewater Treatment Plant

STL decomposition again does not highlight a global trend within data.
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Figure 4.52: STL decomposition for sulphates

SARIMA modeling. Parameters for the best SARIMA model found for sulphates data are

reported in table 4.52.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
4 1 1 0 0 0 2240.54 219.44

Table 4.52: Parameters found for best SARIMA model on sulphates.

It should be remarked that, in this case, the value for the order of the MA component is found to
be inferior than the one that should be expected observing the PACF plot. However, residuals

appear to be normally distributed and uncorrelated.

Predictions confirm the usual pattern: the SARIMA model is able to follow the dynamic of the

process, but not to capture sudden variations within data.

SARIMA modeling on resampled time series. Parameters for the best SARIMA model

found for the resampled version of sulphates are reported in table 4.53.
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Figure 4.53: Diagnostics for SARIMA model found for sulphates
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Figure 4.54: Forecasts for SARIMA model found for sulphates
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Figure 4.56: Forecasts for SARIMA model found for sulphates resampled
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AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
1 1 4 0 0 0 4807.96 41

Table 4.53: Parameters found for best SARIMA model on sulphates resampled.

Diagnostics for resampled time series highlight the presence of a kurtosis effect on the distri-

bution of residuals. However, these do not appear to be correlated.

As expected, results are considerably better than the ones achieved by the SARIMA model for

the original time series.

Remarks. No particular remarks, apart from the one previously found, can be made on this

time series.

4.6.6 Suspended solids

Chemical considerations. The value for Total Suspended Solids fluctuates around the legal
threshold of 200 mg/l1, and is found to be almost always above this limit. The need for an
extended analysis, which highlights the differences which can be found between the wvolatile
suspended solids (that is, the part of suspended solids which is effectively into the water matrix)

and the sedimented suspended solids, would be desirable as a future work.

Time series Exploratory Data Analysis. The time series shows a behavior which resem-
bles the one followed by the phosphor, with skewed data, as shown by the histogram. Both ACF
and PACF plots gradually tails off, with spikes at higher lags; the normal Q-Q plot resemble a

normal distribution, with a considerable deviation on both the borders.

Again, STL does not suggest any global trend.

SARIMA modeling. Parameters for the best SARIMA model found for suspended solids

data are reported in table 4.54.
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Figure 4.57: Analysis of suspended solids for Vimercate Wastewater Treatment Plant

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
0 1 4 0 0 0 3426.79 19473.13

Table 4.54: Parameters found for best SARIMA model on total suspended solids.
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Figure 4.58: STL decomposition for suspended solids

There is nothing to remark on residuals found for the best SARIMA model on these data: these

appear to be normally distributed and uncorrelated.

Predictions confirm that the model is not capable of properly characterize rapid changes in

data.

SARIMA modeling on resampled time series. Parameters for the best SARIMA model

found for the resampled version of COD are reported in table 4.55.

AR (p) | I(d) | MA (q) | sAR (P) | sI (D) | sMA (Q) | AIC | MSE forecasting
1 1 4 0 0 0 7822.15 4679.22

Table 4.55: Parameters found for best SARIMA model on suspended solids resampled.

Diagnostics show a kurtosis phenomena on residuals, if compared to results achieved on the

original time series. Residuals, however, do not appear to be correlated.

As expected, forecasts of this model are capable to capture the quick variations within data.
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Figure 4.59: Diagnostics for SARIMA model found for suspended solids
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Figure 4.60: Forecasts for SARIMA model found for suspended solids
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Figure 4.61: Diagnostics for SARIMA model found for suspended solids resampled
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Figure 4.62: Forecasts for SARIMA model found for suspended solids resampled
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Remarks. No particular remarks, apart from the one previously found, can be made on this

time series.

4.6.7 Discussion

Analysis on time series contained in the IRSA Wastewater Dataset show a common problem:

that is, the sampling campaign has not been properly designed.

The main design issue is that data are not sampled on a regular basis. By establishing a proper
sampling methodology, with samples regularly acquired on daily (or even weekly) basis, this
issue can be overcome, and modeling methods should be able to capture the intrinsic charac-
teristics of underlying phenomena, as the behavior of SARIMA models show on oversampled

time series.

Another issue lies in data themselves. As often happens in these case, the more data, the
better: by taking a quick review on the literature, it is clear that proper modeling techniques
require many years of continuous acquisition. Data coming from IRSA Wastewater do not show
neither seasonal effects, nor trends, which is unexpected for environmental time series: seasonal
effects, related to urban and industrial activity cycles, should be evident, as an overall trend
which indicate whether pollution is increasing or the measures adopted to contrast pollution are
being effective. Furthermore, instruments selected to gather data should be properly selected,
as it has been highlighted in section 4.6.1 the negative impact of an excessively high detection

threshold.

As such, future analysis should adhere to the following protocol:

e reqular acquisition: samples should be taken once per day, if possible, or in any case on

a regular basis;

e dense acquisition: apart from being regular, the time period between two consecutive

acquisition should be as low as possible;
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e proper instrumentation: when the acquisition campaign is being designed, expected values
for the parameters should be assessed, and instruments with a proper resolution and

detection threshold should be chosen;

e long, continuous acquisition: the acquisition campaign should be designed to have a long

temporal horizon (at least five years), to capture trends and seasonal effects.

4.7 Multivariate analysis with complex networks

Despite not being one of the most relevant from the gquantitative point of view, this section
describes one of the most important results which have achieved during this work, that is,
a methodology for exploring the interactions between the responses of the sensors within an
e-nose. Specifically, the goal of this method is to verify if, through a multivariate analysis, it is

possible to define an optimal configuration for the sensors array.

It is clear that a gas sensor array can be framed as a complex system. There are complex interac-
tions between each sensor in the array, which can dynamically change over time. Furthermore,
responses of each sensor can be correlated: as a consequence, there may be redundancies within
the array, or, by analyzing the correlation map, one may infer the substances found within the

array with enhanced precision.

Hence, some of the ideas on which this work is based can be directly borrowed from neuro-
sciences, which is a field where complex networks are widely employed to model the complex
interactions between various areas of the brain [152]. Following this approach, a complex
network is built starting from bot the sensors within the e-nose (which are the nodes of the
network) and the correlation of the signals acquired by each possible couple of sensors (which

are the edges of such network).

Let us remark again that, unlike the univariate modeling presented in section 4.6, this approach
is inherently multivariate, and allows to simultaneously consider several conditioning factors

that could affect the sensing of chemical compounds, such as environmental condition and
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technical specifications of the devices.

The main purpose of this work, which, at the time this thesis is being written, has been
submitted for review [153], is to perform an exploratory analysis which investigates a method
for identifying a minimum set of both configuration parameters and flow conditions that allows

to properly discriminate responses of the e-nose to different compounds.

4.7.1 Mathematical description

Let us now briefly describe the mathematical approach used in the modeling.

First, recalling chapter 2 the e-nose has been modeled as a complex network G = (V| E), where
the set of nodes V' = vy, ..., v, represent the sensors within the array, and edges E = e, ..., €np

are defined according to the correlation between each couple of sensors. In this case, since the

(n(n=1))

5, as the

dataset described in 4.3.2 is used, n is set to 72, while the number of edge is

network is supposed to be dense.

As already stated, edges are defined in a way similar to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>