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INTRODUCTION

This Ph.D. thesis focuses on the design and the analysis of high performance
Mesoscopic Photonic Crystal (MPhC) 3D waveguides and cavities. Moreover, in this
thesis it has been numerically demonstrated the efficiency of these 3D MPhC devices
for applications as refractive index sensors, optical trapping in air or in water, and
routing element. This thesis is based on a collaboration among Politecnico di Bari, C2N
CNRS of Université Paris-Sud and LAAS-CNRS of Toulouse.

In the Chapter 1 (“Mesoscopic Photonic Crystals”), the MPhCs State of Art
(Paragraph 1.1), the MPhCs Applications (Paragraph 1.2), the MSC principle
(Paragraph 1.3) and the 2D and 3D designs of the geometries of the single MPhC
multilayers (Paragraph 1.4) have been illustrated.

In the “MPhCs State of Art” (Paragraph 1.1), a review of Self-Collimation (SC)
phenomenon in traditional Photonic Crystals (PhCs), in metamaterials, in sonic crystals
and plasmonic crystals in recent literature has been presented. This paragraph has
highlighted the wide interest devoted to SC inside PhC, the SC problems and
limitations, and has illustrated that MPhC 2D devices based on MSC are an alternative
of the traditional PhCs since they avoid SC limitations. Aim of this paragraph is also to
highlight the performance variations of the MPhC 2D and 3D structures. The analysis of
3D structures is very complex and onerous from the point of view of required memory
and calculation time, but it is necessary when we want to carry out a realistic design of
structures for sensoring, optical trapping and routing element.

In the “MPhCs Applications” (Paragraph 1.2), a review of refractive index
sensors and optical trapping in air and in water in recent literature has been presented.

The Paragraph 1.2.1 (“Refractive index sensor”) has highlighted the wide
interest devoted to refractive index sensors based on ring resonators, microstructured
optical fibers, plasmonic crystals and PhCs. Aim of this paragraph is to highlight that
MPhC 2D and 3D strip microcavities can be exploited to tweeze-and-sense micro- and

nano-object systems thanks to the translation invariance property.



The Paragraph 1.2.2 (*“Optical trapping in air and in water”) has highlighted the
wide interest devoted to optoelectronic-, plasmonic-, solid core waveguide-, PhC-based
tweezers for optical trapping and manipulation (OTM) for biological applications in
liquid environments, and the wide interest devoted to OTM of air particulate. Aim of
this paragraph is to discuss the possibility to design a high performance MPhC 3D wide
microcavity for optical trapping of fine particulate matter in air. This device may be
suitable to linearly reposition nano- and micro-particles exploiting the translational
invariance. The MPhC 3D wide microcavity can be exploited for optical bio-trapping in
water.

In the “MSC principle” Paragraph 1.3, after an introduction on the essential
tools for dealing with MSC, the condition ensuring this phenomenon has been detailed.
The considered MPhC mesoperiod is obtained by interleaving focusing slab, constituted
by hole rows of a 45°-tilted hole-type square-lattice PhC, and defocusing slab,
constituted by bulk material, etched on a membrane.

In Paragraph 1.4 some results regarding the 2D and 3D design of MPhC
multilayers of the 3D cavities and waveguides are illustrated.

Chapter 2 (“Mesoscopic Photonic Crystal cavities”) reports some results
regarding the MPhC 2D and 3D strip cavities devoted to refractive index sensor
(Paragraph 2.1 and Paragraph 2.2), the experimental results of a MPhC 3D strip cavity
(Paragraph 2.3), the MPhC 3D wide cavity devoted to optical trapping in air (Paragraph
2.4) and the MPhC 3D wide cavity devoted to optical trapping in water (Paragraph 2.5).

Finally, Chapter 3 (“Mesoscopic Photonic Crystal waveguides”) is devoted to
the analysis of the MPhC 3D strip and 3D wide waveguides. The evaluation of the
influence of the gaussian source waist on the collimation phenomenon (Paragraph 3.2)
and the analysis of the MPhC 3D wide waveguide with tilted source (Paragraph 3.3) are
also 1illustrated.

These last results opens the way for developing a full class of routing elements
that can be combined together taking advantage of the spatial and spectral

reconfigurability that MSC offers.



1. MESOSCOPIC PHOTONIC CRYSTALS

1.1 Mesoscopic Photonic Crystals State of Art

The optical beam propagation without distortion and lateral spreading inside a structure
is called Self-Collimation (SC) [1]. This phenomenon has been proved in Photonic
Crystals (PhCs) and metamaterials for Bessel-like beams and for arbitrary beams [2],
and it has become a powerful tool for different fields that include light guiding and
routing thanks to the anisotropic dispersion of periodic structures [3].

This phenomenon is an alternative of the typical confining mechanisms, for example
bandgaps or index guiding, since it happens in flat regions of Photonic Crystal (PhC)
band structures: the energy flows in a fixed direction without lateral dispersion thanks
to the group velocity vector that, for topological reasons, remains constant for a wide
range of wavevectors. The traditional Photonic Crystals allow obtaining efficient SC
only in highly symmetric direction for the lattice and not in arbitrary directions. For this
reason, fixed key design parameters are required, allowing for only few degrees of
freedom and extreme difficulty to combine in the same structure SC with other optical
effects.

SC phenomenon in two-dimensional (2D) PhCs has been demonstrated both
theoretically and experimentally, firstly, in 1999 by Kosaka [3] and, after this work,
there were many studies both theoretical [4-11] and experimental [12]. Several 2D PhC
devices based on SC have been demonstrated both theoretically, such as waveguide [13,
14], invisibility cloak medium [15], Mach-Zehnder interferometer [16-18], optical
junction [19], bend [20, 21], splitter [22, 23], optical switch [24], cavity [25, 26], filter
[27] and experimentally, such as in-plane splitting coupler [28], reconfigurable optical
switch [29], splitter[30, 31], quantum walks [32], Mach-Zehnder interferometer [33,
34], cavity [35]. Furthermore, SC has been at the heart of a 3D PhC bend
experimentally demonstrated [36].

Recently, SC phenomenon has been proved also in metamaterials both theoretically

[37], in one dimensional (1D) PhCs combining positive and negative index layers and



experimentally [38], by alternating stripe layers of negatively refracting (PhCs) and
positively refracting (air) materials.

Also other periodic structures different from PhCs allow SC, such as sonic crystals [39-
41], plasmonic crystals [42-44] and array of the periodically drilled holes interacting
with liquids [45].

In this scenario, Mesoscopic PhCs (MPhCs) have attracted the interest of research as
possible alternative of the traditional PhCs since they avoid SC limitations [46-49]. The
MPhCs support the Mesoscopic SC (MSC) phenomenon to achieve °‘guideless’
waveguiding in linear media and that can be reached by engineering their angular
anisotropy [50]. A MPhC is a 1D periodic superstructure that can be realized by
cascading slabs of different materials (or metamaterials) showing opposite spatial
dispersion, such as traditional PhCs and slabs of bulk materials [46, 47, 51]. On the base
of the spatial dispersion engineering, for a given direction, MSC is obtained when the
focusing properties of the PhC slabs compensate the natural defocusing of the bulk
material slabs. The ‘guideless’ waveguiding paves the way for the conception of
structures showing discrete (vertical) translational invariance. In these MPhC 2D
structures a coexistence of several physical effects can occur, thanks to the many
degrees of freedom [1]: input facet impedance perfect matching [46], stable Fabry-
Pérot-like microcavities having flat parallel mirrors with an improved reflectivity able
to reflect even non-paraxial beams, as curved mirrors do [47, 52-54], slow light
waveguides [50], compensation of time and space dispersion to achieve linear solitons
[55].

At the same time, MPhCs can be exploited to design a full novel class of MSC based
devices, such as high sensitivity and Q-factor 2D microcavities [47, 56].

Recently, different approaches have been proposed to suppress optical diffraction. For
example, this goal was achieved experimentally, enhanced by transverse Anderson
localization, in chip-scale dispersion-engineered anisotropic media [57]. However, this
approach requires complex photonic crystal superlattice structure by modifying the
geometry of more than 4,000 scatterers in the superlattice.

In order to verify the performance variations of the MPhC 2D and 3D structures, I have



designed and analysed MPhC 3D waveguides and cavities. The analysis of 3D
structures is very complex and onerous from the point of view of required memory and
calculation time, but it is necessary when we want to carry out a realistic design of
structures for sensoring, optical trapping in air or in water especially of nanometric

particles, and routing and to obtain MSC along tilted direction.



1.2 Mesoscopic Photonic Crystals Applications

1.2.1 Refractive index sensor

Refractive index sensing has become a powerful tool for different fields that include
physical, chemical and biological parameter detection. The nanotechnology progress
allows the fabrication of high performance resonant sensors based on different
geometrical configurations such as ring resonators, microstructured optical fibers and
plasmonic sensors [58-60] to mention a few.

In the last years, Photonic Crystals (PhCs) have been largely exploited to realize high
performance refractive index sensors in different configurations such as line defect,
point cavity and Mach-Zehnder interferometer [61-64].

In this scenario the MPhCs pave the way for the conception of structures showing
discrete (vertical) translational invariance. Hence, MPhCs can be exploited to design a
full novel class of MSC based devices, such as high sensitivity and Q-factor
microcavities inheriting the translational invariance property. The strong near field
localized within the 2D cavity and the translational invariance, demonstrated in [47,
56], make this structure be fitting for devices able to tweeze-and-sense micro- and nano-
object systems. Furthermore, being its properties mainly topological (and less related to
material properties), it can be easily adapted to be fabricated by means of well-
established technological solutions (GaAs membranes, SOI, etc.) that can be integrated
in microfluidic systems and labs-on-chip.

I have designed and analysed refractive index sensors based on MPhC 2D and 3D strip
microcavities, that exhibit high quality-factor and good sensitivity. Moreover, these
results pave the way for a new class of highly compact refractive index sensors, where
the translation invariance property may be used for addressing different analytes on the
same sample. The high near-field localised within the cavity is suitable for optical
tweezing applications, where the translational invariance may allow for linear

repositioning of the trapped objects.



1.2.2 Optical trapping in air and in water

Optical trapping and manipulation (OTM) has become a widely utilized, non-invasive
tool for the optical control of nano-objects. Usually the OTM refers to biological
applications where living cells, nano-particles and DNA strands are placed, identified
and modified [65-67]. To this end, different technologies have been developed to
increase trapping efficiency as optoelectronic- [68], plasmonic- [69-72] and solid core
waveguide-based tweezers [73].

In this scenario, photonic crystals have become a key technology for light trapping and
photon manipulation [74] and efficient and enhanced optical trapping for small particles
has been demonstrated in both the near field [75] and far field [76].

Till now, efforts in OTM mostly concerned particles dispersed in liquid environments.
OTM of air particulate is more challenging mainly because of their faster Brownian
dynamics and reduced heat dissipation. Air (and water) pollutants can be in the form of
harmful particulate matter (PM) which may have devastating impact on health and on
the ecosystem. PM are directly emitted to the atmosphere or can be formed as the
outcome of complex reaction of precursor chemicals. Source of direct PM and PM
precursors are households, industries, vehicles, agriculture, waste management, and
power plants. Achieving a platform allowing the tweezing of fine particulate in air is
therefore mandatory for the analysis of indoor and outdoor air quality, in order to
increase the knowledge of PM origin, vehiculation and distribution.

Since the early pioneering work of Ashkin and associates [77-79], two main approaches
for OTM of micron- or nano-sized aerosol particles have been exploited: the former
based on the radiation pressure and gradient force for trapping transparent or low-
absorbing particles, and the latter based on the so-called “photophoretic force” for
trapping high absorbing particles [80-83].

I have designed and analysed high performance MPhC 3D wide microcavities for
optical trapping of fine particulate matter in air and in water, exhibiting high-Q and 3D-
light confinement. Moreover, it has been numerically demonstrated the efficiency of the

MPhC 3D wide microcavities for optical trapping in air and in water, exploiting the



aforementioned approach based on the radiation pressure and gradient force: it is
possible to obtain very high trapping potential for polystyrene particles having radii as
small as 245 nm in air and 200 nm in water. The obtained results are extremely
encouraging since it is possible to obtain extremely deep optomechanical potential well
(about 4 times in air and 5 times in water, bigger than the minimum requirement for
trapping) allowing for stable trapping, and opening the way for novel configurations for
optical trapping of nano- and micro-particles, over areas of ~10x10 pm’ in air and in
water, that could be linearly repositioned exploiting the translational invariance of the

MPhC microcavity along the transverse direction.

Fig. 1.1: Operation of the mesoscopic optical trapping: light source (red arrow), vertical shift of the light

source (black arrows), object able to interact with the localised mode in the microcavity (white sphere).



1.3 Mesoscopic self-collimation principle
1.3.1 Propagation inside an isotropic or anisotropic medium

A plane wave propagating within an isotropic medium (like as the slab of bulk
material) has the wavevector k parallel to the Poynting vector S = 1/2 E X H~, the
equiphase wavefronts always perperdicular to wavevector k, the propagation direction
always parallel to S, S always parallel to the group velocity vector v, the phase velocity
vector vg parallel to k, and the isofrequency curves (IFCs) in the k-space circular (Fig.
1.2a) [54] [84]. Then, S, vy and k are parallel.

A plane wave propagating within an anisotropic medium (like as the slab of
hole-type square lattice PhC), at a given angular frequency «, has the wavevector k not
parallel to the Poynting vector S, the equiphase wavefronts always perperdicular to
wavevector K, the propagation direction always parallel to S, S always parallel to the
group velocity vector vg, the phase velocity vector v parallel to k, and the isofrequency
curves (IFCs) in the k-space not circular but with a generic shape (Fig. 1.2b). Then, S

and v, are parallel, instead k 1s, in general, not parallel to S and vy.

(b)

@@
\,
!
isotropic !
medium :
. /
yi /-/ anisotropic
S 7 y medium
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P X \.\
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—_— .
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—_—

Fig. 1.2: A plane wave propagating within an (a) isotropic and (b) an anisotropic media. The wavevector
(red arrow), the Poynting vector (blue arrow), the equiphase wavefronts (orange parallel lines), the group
velocity vector (black arrow), the IFC in the k-space (thick green curve) and the osculator circle of the

corresponding IFC for a particular k-point (dashed circumference) are represented [54].



An IFC in the k-space is the locus defined by the head of the wavevector as a
function of the direction. The propagation of infinite plane waves in all directions and
their corresponding phase velocities vf allow to retrieve the IFC. In fact, the wavevector

k is equal to:
k(®) = kones{ o, 0)agx = o / v(®) (1.1)

where ky = w/c 1s the wavenumber in vacuum, c is the phase velocity of light in
vacuum, 7.y is the effective refractive index, 0 is the angle of k, ay is the unit vector
parallel to k.
Within an isotropic medium, the n.4 1s constant and equal to its refractive index.

The group velocity is the gradient of the bandstructure with respect to the

wavevector (vg = Vi w(Kk)) and, then, it is normal to the IFC.
1.3.2 The index of curvature

The IFC in the k-space of an isotropic medium is a ['-point centred
circumference with circle radius o equal to the wavevector k (Fig. 1.2a). The curvature
G of the IFC is 1/ 0. Then, the effective refractive index n.yof the isotropic medium is
ney= |K|/ko= 0 /ko = 1/(Gky), and it describes the behaviour of light in all the directions.

The IFC in the k-space of an anisotropic medium has a generic shape defined by
the variation of the wavevector k (Fig. 1.2b). For a given point of the IFC it can be
defined an osculating circle (Fig. 1.2b), an osculating circle radius 0, and a local index,
called curvature index n., equal to n. = o /ko = 1/(Gko) which describes the behaviour of

light in a given direction [50, 54, 55]. In particular, the curvature index n. is [54, 85]:
ne=p/ko=1/{ko[V(Vw / [Vw|)]} 2.1)
1.3.3 Propagation through a bulk medium/PhC interface

Considering a plane wave impinging a system with a discrete translational

10



invariance (that is a bulk medium/PhC interface) from the bulk medium side at a given
frequency, the Bloch theorem involves that any transmitted or reflected wave must
conserve the component K, of the impinging wavevector k parallel to the interface,
except for integer multiples of the reciprocal lattice vectors [54, 86].

Let us consider two IFCs with curvatures, that have opposite sign, of an
isotropic bulk medium and of a birefringent PhC, respectively, obtained by projecting
the respective band diagrams on the k-plane and considering the same frequency (Fig.

1.3a).

The impinging angle ¢, of the plane wave from the bulk medium side is given by its
wavevector ky, (Fig. 1.3(a) and (b)). & is equal to #,, because kyp is parallel to the
group velocity vgp.

Only considering the transmitted wave through the system with a discrete translational
invariance, the wavevector K. inside the PhC is obtained by projecting kp on the PhC
IFC along the direction normal to the interface (Fig. 1.3(a) and (b)). k. forms an angle

d k. with respect to the x-axis. The propagation direction inside the PhC is the direction

of the PhC group velocity vector v, that forms an angle ¢,. with respect to the x-axis.

(@) ky Vo b ,';’avb
gt ...... ke Voig...

_/ E " i}
interface k

Bulk direction

/1)
=
ol
ol
3
!
;
iy
Cod
x

Fig. 1.3: (a) IFCs of an isotropic bulk medium (blue thick circle) and of a birefringent PhC (violet thick
curve) on the same k-space. The interface direction (dashed line) is parallel to k,. The group velocity
vector (black arrow), the wavevector (red arrow), the wavevector component parallel to the interface
(orange arrow), the angle formed by each vector with respect to the x-axis (green arc), and the equiphase
wavefronts (orange lines) are represented. (b) A plane wave impinging on a bulk medium/PhC interface

from the side of the bulk medium [54].
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The IFC curvature can be positive or negative depending on the position of the
wavevector k with respect to the osculator circle. In particular for a given point of the
IFC in the k-space and the corresponding osculator circle in the given point, the IFC
curvature 1s positive if Kk 1s inside the osculator circle or intersects it in two points (as
for example in bulk medium of Fig. 1.3a); negative if k is completely outside the
osculator circle (as for example in PhC medium of Fig. 1.3a).

The Mesoscopic Self-Collimation can be obtained by cascading two slabs of different
materials, showing opposite curvature, that compensate their opposite lateral dispersion.

An isotropic medium (like as the slab of bulk material) has always positive
curvature (positive lateral dispersion), because k is always inside the osculator circle.
An anisotropic medium (like as the slab of hole-type square lattice PhC) can have
positive or negative curvature (positive or negative lateral dispersion). Increasing the

PhC refractive index contrast, the PhC anisotropic band diagram undergoes a

deformation moving away from the isotropic case (Fig. 1.4).

r=a/V(2n) —n=1.01 _ pand-replica
n =1 —n=1.5 - (alongk,)
hole —n=3 "~ intersections

u[a/A]

Fig. 1.4: The intersections between the (k, = 0)-plane with the first four bands of the TE band diagram of
a 2D unitary cell of a hole-type square lattice PhC, for nyeie = 1 and neg puc = 1.01, 1.5, 3. The first four
bands belonging to the FBZ (solid thick lines) and the intersections of the same bands belonging to the
adjacent Brillouin zones along the k-direction (the dashed thin lines) are represented. The hole has the

same area of the bulk within the PhC unitary cell (hole radius » = a/y/ (2 z) and lattice constant @) [54].
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1.3.4 Mesoscopic Self-Collimation condition

To obtain the Mesoscopic Self-Collimation the accumulated mean curvature
over one mesoscopic period D should be zero, considering the propagation along the

high symmetry x-direction of a gaussian source with waist wy [50, 54, 55]:

Ly= 1P

ne ~ po nc(l)_

3.1)

We consider a MPhC in which each mesoperiod is obtained by interleaving
focusing slab constituted by hole rows of a 45°-tilted hole-type square-lattice PhC
(having hole radius r, overall width d. and lattice constant a), and defocusing slab
constituted by bulk material having a effective refractive index n, and a width d;, (Fig.
1.5). The whole mesoperiod is etched on a membrane. Along the x-direction and the y-

direction of the PhC slab the centers of holes are distant V2xa from each other. Along
the x-direction the PhC slab has a length a/(2+/2) before the center of the first hole and

after the center of the last hole.

Unitary
cell of the
MPhC

(ImeD

Fig. 1.5: Sketch of an example of MPhC mesoperiod: focusing slab constituted by hole rows of a 45°-
tilted hole-type square-lattice PhC and defocusing slab constituted by bulk material.

To obtain the Mesoscopic Self-Collimation in the considered MPhC, the Eq. 3.1

becomes:

b (e ta) =0 @

cw)  my
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where n¢(u) is the curvature index of the PhC unitary cell along the I'M-direction and u
= a/A 1s the central normalized frequency of the gaussian source.

In MPhCs it is possible to combine MSC with other properties, because the MSC
condition is independent of the mesoperiod D = d. + dy, and of the effective refractive
index neg(u) of the PhC.

For example, considering n, = 2.90, air holes and » = 0.28%a, and evaluating n.(u),

several solutions (dy, d., u) of the Eq. 4.1 have been obtained (Fig. 1.6).

1
-3 1 L

1
0.23 0.24 0.25
u [a/A]

Fig. 1.6: The bulk width dy, (in logarithmic scale) that ensures MSC as a function of the normalized
frequency u, for several values of the number of PhC hole rows N, (that is the PhC width d,.),

considering, for example, n;, = 2.90, air holes and » = 0.28xa [54].
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1.4 The 2D and 3D designs of the geometries of the single MPhC multilayers

The design of 2D and 3D geometries of the single MPhC multilayers were performed
by means of the 2D Plane Wave Expansion Method (2D-Mit Photonic-Bands software
[87]) and 3D Plane Wave Expansion Method (3D-MPB software), respectively.

1.4.1 Properties of the 2D and 3D unitary cells of PhCs

The 3D design of the geometry of the single MPhC multilayer starts from the
calculation of the map of the isofrequential curves (IFCs) of a 3D unitary cell of PhC
for the first TE band, that is the band diagram projected in the k,-ky plane.
The 3D-FDTD LUMERICAL software allows to calculate (in the kf plane) the graphs
of the band diagrams obtained at the values that k assumes along I'-X, X-M, M-T.
Moreover, the 3D-FDTD LUMERICAL software allows to obtain, in linear scale and in
logarithmic scale, for the TE modes of a 3D unitary cell of PhC, the frequency spectra
as a function of k, that is in the kf plane the values of the ordinates of the points of the
frequency spectra.
The 3D Mit Photonic-Bands (MPB) software allows to calculate the isofrequential
curves (IFCs), that is the band diagram in the k,-k, plane.

In first approximation a 2D unitary cell of PhC has been designed and analysed
[46, 54] to define the geometries of the single MPhC multilayers of the 3D cavities and
waveguide.
The design and the analysis of the 2D unitary cell of PhC is reported in [46, 54].
Fig. 1.7 shows the map of the isofrequential curves (IFCs) of the 2D-unitary cell of an
infinite square-lattice PhC characterized by a air hole radius r = 0.28xa, a lattice
constant ¢ and a GaAs bulk membrane effective refractive index n,=2.90, for the first
TE band, obtained by means of 2D-MPB. The black line shows a single zero-curvature
point at its centre that corresponds to the PhC self-collimation frequency us.. Due to the
symmetry, only a quarter of the FBZ has been considered to describe the 2D-unitary
cell properties of PhC. The figure shows that along the I'-M-direction, as the frequency

increases, the radius of the osculating circle becomes bigger and the curvature is

15



positive. At the critical IFC, the radius becomes infinite and the curvature is zero.

Exceed this critical IFC, the curvature becomes negative and its modulus becomes

lower.
IFCs-TE
25
2
=
15 5
L i, =
s
N J
Q:-:_- -
SOVAIN

Fig. 1.7: IFCs-diagram of the 2D PhC unitary cell: the band diagram projected on the k-plane. The thick
black curve represents the zero-curvature locus, that corresponds to the PhC self-collimation frequency

[54].

Fig.1.8 shows (a) the effective refractive index nesr and (b) curvature index n., evaluated
by the map of isofrequential curves of the 2D unitary cell of the square-lattice PhC
along the I'M-direction, as a function of the normalized frequency u, calculated for the
first TE band. The I'-X-direction of the MPhC corresponds to the I'-M-direction of
the unitary cell of PhC, since the MPhC consists of a 45°-tilted PhC. The curvature
index n is positive and small for lower frequencies and diverges to an infinite value at
the normalized frequency uy=0.2272xa/A. Exceed this frequency, the curvature index n.

becomes negative and its absolute value decreases.
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Fig. 1.8: (a) Effective refractive index n.g and (b) curvature index n., as a function of the normalized

frequency u, calculated for the first TE band of the 2D unitary cell of a square-lattice PhC [46] [54].

Then, to define the geometries of the single MPhC multilayers of 3D cavities for

optical bio-trapping in water, I have designed and analysed different 3D unitary cells of
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PhCs in water: GaAs, Si and Si on SiO; 3D unitary cells of PhCs, with holes filled by
air or water, having hole radius r = 0.25%a and lattice constant ¢ = 350nm. The
membrane thicknesses are 250nm, 240nm, 260nm, respectively.

Fig. 1.9 shows the map of the isofrequential curves (IFCs) of the aforementioned GaAs
3D-unitary cell of an infinite square-lattice PhC in water, for the first TE band, obtained
by means of 3D-MPB. The water refractive index is n=1.33, the bulk refractive index is
equal to nga4s = 3.355 and the hole is filled by water. The black line corresponds to the
IFC showing a null curvature. The black line, showing a flat region, corresponds to the
PhC self-collimation frequency. Due to the symmetry, only one quarter of the FBZ has
been considered to describe the 3D-unitary cell properties of PhC. The figure shows that
along the I'-M-direction, as the frequency increases, the radius of the osculating circle
becomes bigger and the curvature is positive. At the critical IFC, the radius becomes
infinite and the curvature is zero. Exceed this critical IFC, the curvature becomes

negative and its modulus becomes lower.
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Fig. 1.9: IFCs-diagram of the GaAs 3D PhC unitary cell in water: the band diagram projected on the k-
plane. The thick black curve represents the zero-curvature locus, that corresponds to the PhC self-

collimation frequency.

Fig.1.10 shows (a) the effective refractive index nes and (b) curvature index n,
evaluated by the map of isofrequential curves of the aforementioned GaAs 3D unitary

cell of the square-lattice PhC in water along the I'M-direction, as a function of the
normalized frequency u, calculated for the first TE band. The I'-X-direction of the
MPhC corresponds to the I'-M-direction of the unitary cell of PhC, since the MPhC
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consist of a 45°-tilted PhC. The curvature index n. is positive and small for lower
frequencies and diverges to an infinite value at the normalized frequency
usc=0.2339xa/A. Exceed this frequency, the curvature index n. becomes negative and its

absolute value decreases.
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Fig. 1.10: (a) Effective refractive index n.s and (b) curvature index n., as a function of the normalized

frequency u, calculated for the first TE band of the GaAs 3D unitary cell of a square-lattice PhC in water.

Then, to define the geometries of the single MPhC multilayers of 3D cavities
and waveguide in air, | have designed and analysed different 3D unitary cells of PhCs in
air.

Fig. 1.11 shows the map of the isofrequential curves (IFCs) of the aforementioned
GaAs 3D-unitary cell of an infinite square-lattice PhC in air, for the first TE band,
obtained by means of 3D-MPB. The bulk refractive index is equal to ng.4s = 3.4, the
hole radius is r = 0.28%a, the lattice constant is ¢ = 360nm and the membrane thickness
1s 270nm. The black line corresponds to the IFC showing a null curvature. The black
line, showing a flat region, corresponds to the PhC self-collimation frequency. Due to
the symmetry, only one quarter of the FBZ has been considered to describe the 3D-
unitary cell properties of PhC. The figure shows that along the I'-M-direction, as the
frequency increases, the radius of the osculating circle becomes bigger and the
curvature is positive. At the critical IFC, the radius becomes infinite and the curvature is
zero. Exceed this critical IFC, the curvature becomes negative and its modulus

decreases.
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Fig. 1.11: IFCs-diagram of the GaAs 3D PhC unitary cell in air: the band diagram projected on the k-
plane. The thick black curve represents the zero-curvature locus, that corresponds to the PhC self-

collimation frequency.

Fig.1.12 shows (a) the effective refractive index nes and (b) curvature index n,
evaluated by the map of isofrequential curves of the aforementioned GaAs 3D unitary
cell of a square-lattice PhC in air along the I'M-direction, as a function of the
normalized frequency u, calculated for the first TE band. The I'-X-direction of the
MPhC corresponds to the I'-M-direction of the unitary cell of PhC, since the MPhC
consist of a 45°-tilted PhC. The curvature index n. is positive and small for lower
frequencies and diverges to an infinite value at the normalized frequency
usc=0.2254xa/A. Exceed this frequency, the curvature index n. becomes negative and its

absolute value decreases.
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Fig. 1.12: (a) Effective refractive index n.s and (b) curvature index n., as a function of the normalized

frequency u, calculated for the first TE band of the GaAs 3D unitary cell of a square-lattice PhC in air.
1.4.2 Tailored overall reflectivity

The Mesoscopic Photonic Crystals allow to obtain Mesoscopic Self-Collimation and

tailored Reflectivity at the same time. In fact, the Mesoscopic Self-Collimation
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condition (Eq. 4.1) permits an infinite number of solutions and, moreover, the
Mesoscopic Photonic Crystal can be designed as a 1D anti-reflection or high-reflection
multilayer. In particular, the MSC condition is independent on the mesoperiod D = d. +
dy, and on the effective refractive index ne{u) of the PhC. Moreover, as in the
Distributed Bragg Reflectors (DBRs), in the MPhCs it is possible to determine d. and dy
that allow to obtain anti-reflection or high-reflection multilayer.

A MPhC waveguide has to satisfy, at the same time, the MSC condition and the Anti-
Reflection (AR) multilayer design rule (both PhC and bulk slices equal to a quarter-
wave film), and shows minimal unwanted reflections at PhC input interfaces without
either affecting the feasibility or the complexity of the structure.

A MPhC mirror has to satisfy, at the same time, the MSC condition and the High-
Reflection (HR) multilayer design rule.

Then the single AR or HR MPhC multilayer has to satisfy the system of algebraic
equations (Eq. 5.1), where the first one represents the MSC condition while the second
and the third equations represent the single AR multilayer condition, if (m,p) are even

integers, and the single HR multilayer condition, if (m,p) are odd integers:

dpyn, = mA/4 = ma/(4u) (5.1)

{ d./n.(w) + dy/n, =0
dcnesr(u) = pA/4 = pa/(4u)

In these equations neg(u) is the PhC phase index, nc(u) is the PhC curvature index, u is
the central source normalized frequency (u = a/A), a is the lattice constant of the PhC, d.
is the length of the PhC slab, dy is the length of the bulk material slab, ny, is the bulk

membrane effective refractive index.
1.4.2.1  Single AR and HR MPhC multilayers searching algorithm

The single AR or HR MPhC multilayer has to satisfy the system of algebraic equations
(Eq. 5.1). The evaluation of the effective refractive index nes(u) and curvature index
ne(u) of the PhC, described in previous paragraph 1.4.1, and the value of the bulk

membrane effective refractive index ny allow to determine the triplets (dp, dc, u) that
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satisfy the equation system (5.1).

The searching algorithm consists of three steps:

1)

2)

3)

The length of the PhC slab d. is fixed. In particular, the number of rows of holes
Niow in the PhC is fixed (dc = aNyouV2/2).

The pairs of values “length of the bulk material slab d,” and the “normalized
frequency u”, that satisfty the MSC condition (the first equation of Eq. 5.1), are
retrieved for each normalized frequency u above the PhC self-collimation
frequency ug obtained in previous paragraph 1.4.1.

From this set of solutions, the pairs of values “length of the bulk material slab
dy” and “normalized frequency u”, that satisfy the single AR or HR multilayer
condition (the second and the third equations of Eq. 5.1), are retrieved. Thus the

triplets (dp, d., u) that satisfy the equation system (5.1) are obtained.

Then the whole procedure is repeated for different values of Ny, that is for different

values of d.. For Nio < 2 there are no solutions (dy, d., u), whereas for Ny, > 2 there

are several solutions increasing Noy.

In particular, the third step of the searching algorithm consists of four steps:

a)

b)

c)

After the second step of the searching algorithm, two quantities 71(u) and p(u)
are calculated from the single AR or HR multilayer condition (the second and

the third equations of Eq. 5.1).

() = 2
{ m(u) = —dpny 6.1)

P(u) = 2V2UN, g Mg pr (1)
The nearest integer approximation myound(u) and proung(u) for mM(u) and p(u),
respectively, are calculated.
Two errors erry(u) and erri(u) of the integer approximation myeund(u) and

Pround(11), respectively, are defined as follows:

{errb (w) = m(u) — Myouna (W)
erre (U) = ﬁ(u) — Pround (u)

(7.1)

The overall error err(u) of the two errors erry(u) and err.(u) is calculated:
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err(w) = \Jerr,(w)? + err,(u)? (8.1)

d) The pairs of values (dy, u), that minimize the overall error err(u) of the integer
approximation for m and p, are considered. Only if the integers m and p are both
even or both odd, the triplets (dy, d., u) are solutions of the equation system (5.1)
1.e. represent the geometries of the single AR or HR MPhC multilayers,

respectively.

To define the geometries of the single MPhC multilayers, in first approximation, of the
3D cavities and waveguide, the evaluation of the effective refractive index nes(u) and
curvature index nc(u) of the 2D unitary cell of PhC, described in Fig. 1.7 and in Fig. 1.8,
and the value of the bulk membrane effective refractive index n, have been considered
to determine the triplets (dp, dc, u) that satisfy the equation system (5.1) [46, 54].

Fig. 1.13 shows the set of retrieved solutions (dy, dc, u) of the equation system (5.1),
considering the 2D PhC unitary cell, obtained by minimising the overall error of the
integer approximation for m and p. The green and red triangles represent the AR (both
m and p even) and HR solutions (both m and p odd), respectively. The thick green and
red circles highlight the AR and HR MPhC multilayer geometries, respectively, fixed
for the 3D cavities and waveguide. In particular, the green circle highlights the solution
(de. =3.536%a, dy=0.747xa, u = 0.2299 a/A) and the red circle highlights the solution (d.
=9.192xa, dp=2.612xa, u=0.2311 a/d).

4 6 8 10 12 14

row

Fig. 1.13: Set of retrieved solutions of equation system (5.1), considering the 2D PhC unitary cell [54].
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Then, to define the geometries of the single MPhC multilayers of 3D cavities for

optical bio-trapping in water, the evaluation of the effective refractive index neg(u) and
curvature index nc(u) for each of the different 3D unitary cells of PhCs in water,
described in Fig. 1.9 and in Fig. 1.10, and the value of the bulk membrane effective
refractive index n, have been considered to determine the triplets (dp, d., u) that satisfy
the equation system (5.1).
Fig. 1.14 shows the set of retrieved solutions (dp, dc, u) of the equation system (5.1),
considering the aforementioned GaAs 3D unitary cell of PhC in water, obtained by
minimising the overall error of the integer approximation for m and p. The green and
red triangles represent the AR (both m and p even) and HR solutions (both m and p
odd), respectively. The thick red circle highlights the HR MPhC multilayer geometry
that I have fixed for the 3D wide cavity in water. In particular, the red circle highlights
the solution (d. = 9.192xa, dy= 16.9992%a, u = 0.2463 a/lA).
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Fig. 1.14: Set of retrieved solutions of equation system (5.1), considering the GaAs 3D unitary cell of
PhC in water.

Then, to define the geometries of the single MPhC multilayers of 3D cavities

and waveguide in air, the evaluation of the effective refractive index ner(u) and
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curvature index nc(u) for each of the different 3D unitary cells of PhCs in air, described
in Fig. 1.11 and in Fig. 1.12, and the value of the bulk membrane effective refractive
index n, have been considered to determine the triplets (dy, d., u) that satisfy the
equation system (5.1).

Fig. 1.15 shows the set of retrieved solutions (dp, dc, u) of the equation system (5.1),
considering the aforementioned GaAs 3D unitary cell of PhC in air, obtained by
minimising the overall error of the integer approximation for m and p. The green and
red triangles represent the AR (both m and p even) and HR solutions (both m and p
odd), respectively. The thick green circle highlights the AR MPhC multilayer geometry

that I have fixed for the 3D wide waveguide. In particular, the green circle highlights
the solution (d. = 3.536xa, d,=3.1048%a, u = 0.2368 a/)).
WAR A HR

ula/Al]

Fig. 1.15: Set of retrieved solutions of equation system (5.1), considering the GaAs 3D unitary cell of
PhC in air.
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2. MESOSCOPIC PHOTONIC CRYSTAL CAVITIES

2.1 Mesoscopic Photonic Crystal 2D strip cavity devoted to refractive index sensor

A refractive index sensor based on a mesoscopic photonic crystal 2D strip microcavity
has been designed and analysed, that exhibits high quality-factor and good sensitivity
[88, 89]. These results pave the way for a new class of highly compact index sensors,
where the translation invariance property may be used for addressing different analytes
on the same sample. Moreover, the high near-field localised within the cavity is suitable
for optical tweezing applications, where the translational invariance may allow for
linear repositioning of the trapped objects.

First, a mesoscopic photonic crystal 2D strip microcavity has been designed and
analysed by means of 2D-FDTD calculation (MEEP). The design of the geometry of the
single MPhC multilayer was performed by means of the 2D plane wave expansion
method (2D-MPB), described in Fig. 1.13.

Fig. 2.1 shows the Fabry-Pérot cavity obtained by combining two 5-mesoperiod-long
mesoscopic mirrors (MM). The whole device is etched on a 270 nm-thick membrane of
GaAs (ngq4s = 3.4), fully surrounded by a dielectric analyte having refractive index » in
the range 1.1-1.5. At telecom wavelength (1.55 um), the effective refractive index n;, of
the fundamental mode supported by the membrane is equal to n, = 2.885, 2.890, 2.895,
2.900, 2.907 and 2.914, when n is 1, 1.1, 1.2, 1.3, 1.4 and 1.5, respectively. Each MM is
obtained by interleaving focusing slabs constituted by 13 hole rows of a 45°-tilted hole-
type square-lattice PhC (having hole radius » = 0.28xa and an overall width d. =
9.192xa, where a is the lattice constant), and defocusing slabs constituted by bulk
material having a effective refractive index n;, and a width d;, = 2.612xa. The cavity
defect has width W=5.32xa.

Since the structure is periodic along the y-direction, showing a period V2xa, periodic
boundary conditions (PBCs) to the computational cell boundaries perpendicular to this
direction have been imposed. PMLs are imposed at the boundaries perpendicular to the

x direction. The structure is excited by injecting a broadband source (1400nm < A <
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1700nm) having a spatial distribution matching that of the fundamental TE mode (with
the x-component of the electric field Ex = 0) of the membrane (at A = 1550nm). The
source is constant in the y-direction.

— Cavity Defect
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i Left Mirror | § | Right Mirror
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Fig. 2.1: Sketch of the mesoscopic photonic crystal 2D wide microcavity. In first approximation, the

MPHC 2D strip microcavity has been designed and analysed.

For this structure, by means of 2D-FDTD calculation (MEEP), a numerical study on the
influence of the analyte has been carried out, evaluating the transmission, reflection,
“inside the cavity defect” and lateral losses spectra (normalized to the input power). An
analyte having refractive index »n equal to 1, 1.1, 1.2, 1.3, 1.4 and 1.5 has been
considered, when the MPhC holes are filled by air or by the analyte.

Fig. 2.2 illustrates the normalized transmission spectra for n equal to 1, 1.3, 1.4 and 1.5,
obtained for the structure having the MPhC holes fully filled by the analyte. When air
(n=1) 1is considered as surrounding medium, the device exhibits a high Q-factor equal to
7888; equal to 4638 for n=1.3; equal to 3834 for n=1.4; equal to 2851 for n=1.5. The
resonant peak within the bandgap, corresponding to the formation of a stable cavity
mode, redshifts linearly as n increases. A lattice constant a equal to 360 nm is

considered to locate the central wavelength of the gaussian source at about 1550 nm.
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Fig. 2.2: Transmittance as a function of (a) the normalized frequency and (b) the wavelength, for n, =
2.8853 (solid red line), 2.9005 (dash green line), 2.9067 (dash dot blue line) and 2.9136 (dotted violet
line), respectively, when the MPhC holes are filled by the analyte.

In order to investigate the nature of the modes, a second set of 2D-FDTD simulations
(MEEP) were carried out where the total energy density was recorded in xy-plane at the
resonant wavelength, considering n equal to 1, 1.1, 1.2, 1.3, 1.4 and 1.5 when the MPhC
holes are filled by air or by the analyte.

Fig. 2.3 (a) and (b) depict, respectively, the profile of the total energy density as a
function of the x-coordinate for y = 0 evaluated for the structure having n = 1.3 at the
resonant wavelength (holes filled by the analyte), and the map of self-normalized total
energy density (linear scale) in xy-plane evaluated for n=1.3 at the resonant wavelength
(holes filled by the analyte). Fig. 2.3 (a) and (b) show the strong localization of energy

in the cavity.
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Fig. 2.3: (a) Profile of the total energy density as a function of the x-coordinate for y = 0, evaluated for the
structure having n = 1.3 at the resonant wavelength (holes filled by the analyte); (b) Map of self-
normalized total energy density (linear scale) in xy-plane, evaluated for n=1.3 at the resonant wavelength

(holes filled by the analyte).

In order to evaluate the sensitivity, Fig. 2.4 shows the position of the resonant
wavelength as a function of the analyte refractive index. The sensitivity of the sensor is
S=AMAn where AA is the resonant wavelength shift and An is the refractive index
change of the analyte with respect to the air refractive index. The evaluated sensitivities
are 28 and 112 nm/RIU (RIU: refractive index unit), respectively, when the MPhC
holes are filled by air (blue line) or by the analyte itself (red line).
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Fig. 2.4. Resonant wavelength as a function of the analyte refractive index: the blue and red lines

correspond to a MPhC holes filled by air and by the analyte, respectively.
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2.2 Mesoscopic Photonic Crystal 3D strip cavity devoted to refractive index sensor

A more realistic design considers a refractive index sensor based on a mesoscopic
photonic crystal 3D strip microcavity.

The mesoscopic photonic crystal 3D strip microcavity has been designed and analysed
by means of 3D-FDTD calculation (LUMERICAL). In first approximation, the
geometry of the single MPhC multilayer of Fig. 1.13 has been considered.

The MPhC 3D strip microcavity has the same geometrical and physical parameters of
the structure described in Fig. 2.1 and has a thickness (equal to 270 nm) and a bulk
refractive index (equal to ng.s = 3.4) and a superstrate and a substrate (that is a
dielectric analyte having refractive index n equal to 1, 1.3, 1.4 and 1.5). The PMLs are
imposed at the boundaries perpendicular to the z direction, a lattice constant a is fixed
(equal to 360 nm), the central wavelength of the gaussian source is fixed (equal to 1550
nm) and the source band is in the range 1400nm <A < 1700nm.

For this structure, a numerical study on the influence of the analyte has been carried out,
evaluating the transmission, reflection, “inside the cavity defect” and out-of-plane loss
spectra (normalized to the input power). An analyte having refractive index n equal to 1,
1.3, 1.4 and 1.5 has been considered, when the MPhC holes are filled by the analyte.
Fig. 2.5 (a), (b) and (c) illustrate, respectively, the normalized transmission, reflection,
and out-of-plane loss spectra for n equal to 1, 1.3, 1.4 and 1.5, obtained for the structure
having the MPhC holes fully filled by the analyte. When air (n=1) is considered as
surrounding medium, the device exhibits a good Q-factor equal to 2631. As in the
previous paragraph 2.1, the resonant peak within the bandgap, corresponding to the
formation of a stable cavity mode, redshifts linearly as » increases. Moreover, the
resonant peaks are redshifted of about 60 nm compared to that of the 2D analysis

(paragraph 2.1).
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Fig. 2.5: (a) Transmittance, (b) reflectance, (¢) out-of-plane loss spectrum (that is normalized to the input

power and multiply by two) as a function of the wavelength, for n =1 (solid red line), 1.3 (dash green

line), 1.4 (dash dot blue line) and 1.5 (dotted violet line), respectively, when the MPhC holes are filled by

the analyte.
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In order to evaluate the sensitivity (S=AA/An), Fig. 2.6 shows the position of the
resonant wavelength as a function of the analyte refractive index. An analyte having
refractive index n equal to 1, 1.3, 1.4 and 1.5 has been considered, when the MPhC
holes are filled by the analyte. The evaluated sensitivity is 117 nm/RIU.
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Fig. 2.6. Resonant wavelength as a function of the analyte refractive index (MPhC holes filled by the
analyte).
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2.3 The experimental demonstration of a Mesoscopic Photonic Crystal 3D strip

cavity

A MPhC 3D Fabry-Pérot strip microcavity has been optimized and experimentally
demonstrated, exhibiting high-Q and 3D-light confinement [90, 91]. The 3D design,
fabrication and characterization are based on the collaboration among Politecnico di
Bari, C2N CNRS of Université Paris-Sud and LAAS-CNRS of Toulouse.

In first approximation, the geometry of the single MPhC multilayer of Fig. 1.13 has
been considered.

The MPhC 3D strip microcavity has the same geometrical and physical parameters of
the structure described in Fig. 2.1 and is fully surrounded by air and has a thickness
equal to 276 nm, a lattice constant a equal to 350 nm, a hole radius » = 0.25%a = 87.5
nm, a bulk refractive index equal to ng.4s = 3.31 (Fig. 2.7). The PMLs are imposed at
the boundaries perpendicular to the z direction, the central wavelength of the gaussian
source is fixed (equal to 1550 nm) and the source band is in the range 1400nm < A <
1700nm.

Figure 2.8 shows the simulated spectrum of the vertically scattered light above the
cavity (normalized to the input power) obtained by means of 3D-FDTD calculation
(LUMERICAL). In good agreement with 2D-FDTD simulations reported in [47],
despite the vertical losses, a long-lived mode showing a high-Q spectral peak around
1480 nm is observed with a Q-factor of about 4773 (= half of the corresponding 2D
one). Another weaker peak, with a lower Q factor is also observed around 1551 nm (Q-
factor equal to about 889).

In order to investigate the nature of both the modes, I have carried out a second set of
3D-FDTD simulations (LUMERICAL) where, in the xy-plane and in the xz-plane and
at two resonant peaks, and the magnitude image and the profile graph of the electric
field, the magnitude image and the profile graph of the Poynting vector, the absolute

value image of the z-component of the Poynting vector have been obtained.
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Fig. 2.7. (a) Sketch of the fabricated MPhC microcavity. The highlighted green and yellow area is
reported in (b), where the yellow one represents the elementary cell of the MPhC. The highlighted light
blue strip represents the portion of the structure that is actually designed and analysed in the 3D-FDTD
simulation. (b) Sketch of the MPhC elementary cell. (c¢) Sketch of the FDTD calculation region. The red
region, bordering the cell along the x- and z-directions, represent the PML boundary conditions. The two
black vertical arrows indicate the xz-planes where the PBCs enclose the computational region along the

y-direction. The orange strip, parallel to the xy-plane, represents the monitor where collect the scattered

power is collected.
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Fig. 2.8. 3D-FDTD vertically scattered light spectrum (normalized to the input power). The two peaks
suggesting the formation of an optical mode inside the cavity are highlighted by two markers: one at 1480

nm and one at 1551 nm.

Figure 2.9 shows the self-normalized magnitude image of total electric field (linear
scale) at 1480 nm (a) and at 1551 nm (b), and the self-normalized absolute value image
of the z-component of the Poynting vector at 1480 nm (c) and 1551 nm (d). To
highlight the vertically scattered light above the cavity, self-normalized Poynting vector
depicted in Figures 2.9 (c)-(d) is plotted using a logarithmic scale. From these
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simulations, we can conclude that both the spectral peaks correspond to modes that are
fully localized: in xy-plane by the MSC cavity, and in the vertical direction by the
membrane with partial leaking out of the membrane.

—1

0.8

0.6

0.4

A= 1480 nm A =1551 nm

Fig. 2.9. Self-normalised magnitude of the total electric field in linear scale (a-b) and (c-d) self-
normalised z-component of the Poynting vector in logarithmic scale at 1480 nm and 1551 nm,

respectively.

At LAAS-CNRS of Toulouse several samples with the geometry described in Figure
2.7 were fabricated on suspended GaAs membranes in a three-step process described in
[92]. Firstly, e-beam lithography was used to define the pattern in an electronic resist
and form a mask that, in a second step, was used to etch the PhC holes using dry etching
(ICP - RIE). In a last step, the samples were immersed into a hydrofluoric acid bath to
remove a 1.5um-thick AlGaAs sacrificial layer.

Fig. 2.10 (a, b) shows a scanning electron microscope (SEM) in-plane image of the
micro-cavity (with an overall length along y and x of 92.5 pum and 41.3 um,
respectively).

At Politecnico di Bari the samples were optically characterized. Fig. 2.10 (c) shows the
optical characterization set-up of the sample: the beam of a tunable laser (spanning 1460

— 1580 nm) 1s focused on the sample facet using two aspherical lenses; a polarizer,
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placed in between the two lenses, controls the input light polarization. A microscope
system, composed by a microscope objective and a VIS-IR vidicon camera, collects the
scattered light and displays it on a monitor. Finally, the video signal is acquired by a
commercial acquisition card and numerically processed.

An image of the scattered light is acquired for each wavelength, forming an
hyperspectral cube 4(px,py,hp), Where A, is a given wavelength, px and py are the pixel
indices along the x and y directions, respectively.

In Fig. 2.10 (a) the alignment position of the first and last row of the matrix of pixels
(px=1 and px=px,cav corresponding to the beginning and end of the cavity, respectively)

are superimposed on the SEM image.

light propagation
direction
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& mirror
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™
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45° beam-splitter
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Fig. 2.10. (a) In-plane SEM image of a fabricated MPhC based microcavity having a lattice constant
a=350 nm and a hole radius 7=0.25%a=87.5 nm. The white arrows on the right indicate the position of the
beginning and the end of the cavity and the defect position. The red stripe with a superimposed white
arrow indicates the incident light direction. (b) Close-up of (a) inside a PhC slab. (c) Sketch of the optical

characterization set-up of the sample.

In order to calculate the experimental vertically scattered light, we define a
pseudospectral map M(py,Ap) as the sum of the pixel intensities A along the transverse

direction of the cavity (y-direction):

M(px,/lp) = ZpyA(px,py,/lp). (1.2)
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The pseudospectral map M(py,A,) allows to determine the following quantities:

S(Ap) = Ty M(pxs Ap) 2.2)
N(Ap) = 252y, i M(Px A) (3.2)
a = Px,cav—1 (42)

- px,end_(px,cav"' 1)

The useful signal 1s represented by S(,) that is the pseudospectral map integrated along
the x-direction inside the cavity; the noise is represented by N(A,) that is the
pseudospectral map integrated along the x-direction outside of the cavity; a is a
corrective coefficient that normalizes the cavity length with respect to the length of the

noise region. Finally, the pseudospectrum /(1) is obtained as follows:
1(2,) = 5(2,) —a - N(2,) (5.2)

Fig. 2.11 (a) shows the experimental pseudospectral map of the fabricated microcavity
in the wavelength range of interest. The final experimental vertically scattered light
spectrum is evaluated by integrating the map along the x-axis.

Fig. 2.11 (b) shows the final experimental pseudospectrum (blue curve) that is
compared with the simulated normalized vertically scattered light spectrum that I have
calculated previously (red curve). This simulated spectrum is normalized to its
maximum (as the pseudospectrum). The experimental results show a good agreement
with the numerical ones. Specifically, in the experimental pseudospectrum the resonant
peaks within the bandgaps, corresponding to the formation of a stable cavity mode, are
at Ao = 1482.2 nm (green square mark) and A3 = 1547 nm (green star mark) allowing for
a Q factor equal to 1720 and 1170, respectively. The differences between simulated and
measured Q factors are attributed to the fact that the experimental beam is laterally

confined, while in the simulation, an infinitely large beam was used.

36



1

0.8
3 0.6
=2 0.4
x
=2 0.2
D 1500 1520 1580 = 1560 1580
| A [nm] |
| .
1| TEEL | | —
— 0.8 : —— meas. — FDTD N
3
g [
% 06 | i
|
% 0.4 | ]
<
w 1
£ 0.2 T —
0 ! ! !
1460 1480 1500 1520 1540 1560 1580

A [nm]

Fig. 2.11. (a) Measured pseudospectral map of the fabricated microcavity with a =350 nm. The
superimposed horizontal white dotted line indicates the pixel labelled py cav. (b) Experimental
pseudospectrum (blue curve) and the simulated self-normalized scattering spectrum (red curve), which
corresponds to the result shown on Figure 2.8. The green squared mark and the green star mark indicate
the resonant peaks wavelengths Ao = 1482.2 nm and A; = 1547 nm, respectively. The green triangle marks
denote the wavelengths A; = 1545 nm, A, = 1546 nm and A4 = 1548 nm, corresponding to the subfigures
shown in Fig 2.12.

To experimentally investigate the localization of the mode, we concentrate on the A3 =
1547 nm mode. We choose this mode as it exhibits a higher signal to noise ratio on the
camera signal as compared to the Ay = 1482.2 nm mode. Figures 2.12 depicts the
collected scattered light images at A; = 1545 nm, A, = 1546 nm, A3 = 1547 nm and A4 =
1548 nm. In particular, Fig. 2.12 (c) illustrates the formation of a stable mode at A3;. At
the same time, the region beyond the output facet in Figure 2.12 (c¢) is dark due to

absence of scatterers (PhC holes and PhC/bulk interfaces).
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Fig. 2.12. Collected scattered light at wavelengths (a) A, (b) A, (¢) A3 and (d) As. The py-axis and the

superimposed white dotted line indicate, respectively, the input facet (p,= 1) and the output facet (p,=
Px.cav) Of the cavity, respectively.
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2.4 Mesoscopic Photonic Crystal 3D wide cavity devoted to optical trapping in air

A high performance MPhC 3D wide microcavity for optical trapping of fine particulate
matter in air has been designed and analysed, exhibiting high-Q and 3D-light
confinement [93]. It has been numerically demonstrated the efficiency of the MPhC 3D
wide microcavity for optical trapping in air: it is possible to obtain very high trapping
potential for polystyrene particles having radii as small as 245 nm. The obtained results
are extremely encouraging since it is possible to obtain extremely deep optomechanical
potential well (about 4 times bigger than the minimum requirement for trapping)
allowing for stable trapping, and opening the way for novel configurations for optical
trapping of nano- and micro-particles, over areas of ~10x10 pum’ in air, that could be
linearly repositioned exploiting the translational invariance of the MPhC microcavity
along the transverse direction.

In first approximation, the geometry of the single MPhC multilayer of Fig. 1.13 has
been considered.

The MPhC 3D wide microcavity has the same geometrical and physical parameters of
the structure described in Fig. 2.7 and has a length equal to 18 pm along the y-direction,
the PMLs are imposed at the boundaries perpendicular to the y direction, the source is
gaussian in the y-direction (Fig. 2.13).

I have carried out a numerical study on the influence of the source characteristics,
evaluating the transmission, reflection and vertically scattered light spectra (normalized
to the input power). I considered different values of the gaussian source waist radius (wo
=17.5 xa/2, 15%a/2, 20xa/2).

Figures (2.14a) and (2.14b) show, respectively, the simulated transmission and
reflection spectra, normalized to the input power, when the source waist radius is fixed
equal to 20xa/2. The wavelength resolution in the range 1460-1580nm is equal to 0.2
nm. When MMs composed by only 5 superperiods are considered, a long-lived mode
showing a high-Q spectral peak around 1484 nm is observed with a Q-factor of about
3709. Another peak, with a lower Q-factor, is also observed around 1554 nm (Q-factor

equal to about 706). By decreasing the source waist radius wo down to 7.5 xa/2, the
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spectral position of the peaks remains unchanged while the Q-factor of both spectral
peaks decreases, reaching the values 2473 and 409 for the peaks at A= 1484 and 1554

nm, respectively. Higher Q-factors are expected for MMs composed by a larger number
of superperiods.
— Cavity Defect
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Fig. 2.13. (Top) Sketch of the MPhC microcavity simulated by means of the 3D-FDTD method. (Bottom)
The highlighted area represents the elementary cell of the MPhC. The orange region, overlapping the cell
along the x- and y-directions, represents the PML boundary conditions. The yellow region, parallel to the

xy-plane, represents the monitor where the total electric field is collected.
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Fig. 2.14. 3D-FDTD (a) transmittance and (b) reflectance spectra: the two peaks, suggesting the

formation of an optical mode inside the cavity, are highlighted by two markers: the former at 1484 nm

and the latter at 1554 nm. Source waist radius wo = 20xa/2.
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In order to investigate the nature of both the modes, the in-plane total electric field on
the top of the membrane and at two resonant peaks, considering different values of the
gaussian source waist radius (wo = 7.5 xa/2, 20xa/2) has been evaluated.

Figure 2.15 shows the self-normalized magnitude of the electric field (linear scale) at
1484 nm (a) and at 1554 nm (b), considering the source waist radius wo = 20xa/2. Both
the spectral peaks correspond to modes that are fully localized in xy-plane by the MSC
cavity while partial leaking out of the membrane has been observed in the vertical
direction (z-axis). It is worth noting that the MSC cavity provides 2D confinement in
the xy-plane despite being essentially translationally invariant along the transverse
direction y. The cavity can be arbitrarily extended along the y direction without
modifying the in-plane confinement. Moreover, the excitation beam and, in turn, the
confined optical mode can be freely moved along the y direction, allowing one degree

of freedom.
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Fig. 2.15. Close-up of the self-normalised magnitude of the total in-plane electric field at (a) 1484 nm and

(b) 1554 nm, respectively, considering the source waist radius wy = 20xa/2.

Moreover I have performed the analysis, finalized to the optical trapping evaluation, of
the MPhC 3D wide microcavity by means of 3D-FDTD simulations (LUMERICAL),
evaluating the total electric field in the air volume at the top of the structure at two
resonant peaks in absence of the bead to be trapped, considering wo = 20xa/2. The 3D
region, where I have retrieved the field, has dimensions equal to 50 um along the x

direction, 18 pm along the y direction and 0.5 pm along the z direction.
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Based on these last results considering the waist radius wy = 20xa/2, to evaluate the
optical trapping two approaches have been considered: the former is based on
computing the optomechanical trapping potential by means of the gradient force density
convolution method (Matlab) and the latter is based on the calculation of the total
optomechanical force by means of Maxwell stress tensor-based method (Lumerical).

In particular, the total optomechanical force acting on an object, that interacts with an
arbitrary electromagnetic field, arises from the light-matter momentum exchange
occurring during the interaction. This force can be considered as the superposition of
two terms:

(1) a reactive term, the so-called gradient force F,, which is conservative and arises from
field intensity gradients;

(i1) a dissipative one, known as scattering force, that takes into account the non-
conservative interactions, such as the momentum transfer due to field scattering and the
radiation pressure [71].

These two contributions can be rigorously separated for very small particles (d << A) and
become increasingly intertwined as the fields become rapidly varying in the spatial
region occupied by the object. However, it has been shown in [71, 72, 94], that, in
presence of a strong near field and when the Poynting vectors cancels out (as it happens
within the defect of a cavity due to the establishment of steady waves), the gradient

term can be a good approximation of the total force. This can be calculated as follows:
& 2
Fg(r)=—V(—TOOC ] jgead|E0 (s) de =-VU (6.2)

where g is the void permittivity, a is the object polarizability, and Ej the total electric
field that I have retrieved by means of 3D-FDTD calculations in absence of the bead to
be trapped.

Thus, the trapping potential U can be seen as the convolution integral between the
square modulus of the aforementioned electric field Ey and a masking function M being

unitary inside the bead volume and zero outside:
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U(r)=—%°aﬂﬂEo () M(r—s)dV, = *M)(r) (1.2)

where u represents the energy density function. It has been considered a polystyrene
bead (n=1.59) having radii of 50, 100, 245 nm, when an injected power of 10 mW is
considered.

Results below reported are calculated considering the center of the cavity defect and a
distance from the top of the structure equal to the bead diameter [93].

Figure 2.16 shows the optomechanical potential, normalized to the thermal energy
(U/kyT), corresponding to the spectral peak A =1484 nm (having higher Q-factor), when
the bead radius is r = 50 nm (Fig. 2.16 a-b), r = 100 nm (Fig. 2.16 c-d), r = 245 nm (Fig.
2.16 e-f). As we can infer from the figure, by increasing the bead radius the trapping
potential increases. At its minima, the potential well is deeper than -38 for the case r =
245 nm (Fig. 2.16 e-f), while for r = 100 nm (Fig. 2.16 c-d) its depth is beyond -10. For
the third case (higher radius), trapping potential is considerably deep, about 4 times
bigger than the minimum (equal to -10) required for trapping by the criterion proposed
by Ashkin et al. in [78].

Figure 2.17 shows the optomechanical potential, normalized to the thermal energy
(U/kyT), corresponding to the spectral peak (a) A =1484 nm and (b) A =1554 nm,
respectively, when the bead radius is 245 nm. Figure 2.17 (a) clearly shows that the
trapping potential is very deep over an area of about 10x10 pm® around the cavity
defect. This may be also suitable for multiple object trapping.

Finally, in Figure 2.18 we show a map of the optomechanical potential, normalized to
the thermal energy (U/k,T), corresponding to the spectral peak A =1484 nm when the
bead radius is 245 nm, as a function of the input power Pi, [mW] and the temperature T
[K]. The dashed white line represents the “threshold” of the minimum trapping potential
(equal to - 10) while the dashed black line corresponds to the room temperature.
Halving the input power value, the optomechanical potential decreases while

maintaining still interesting values for trapping. This map clearly shows that trapping
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potential exceeds the “threshold” over a large range of both input power and

temperature.
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Fig. 2.16. Optomechanical potential at room temperature along (a-c-e) the x-axis, for y=0, and (b-d-f) y-
axis, for x=-8.27um, respectively, normalized to the thermal energy (U/k,T), corresponding to the
spectral peak A =1484 nm, when the bead radius is (a-b) r = 50 nm, for z=100nm, (c-d) r = 100 nm, for
7z=200nm, (e-f) r = 245 nm, for z=320nm, respectively, and w, = 20 xa/2.
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Fig. 2.17. Optomechanical potential at room temperature, normalized to the thermal energy (U/k,T),
corresponding to the spectral peak (a) A =1484 nm and (b) A =1554 nm, respectively, when the bead

radius is 245 nm, for z=320nm, and wy = 20 xa/2.
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Fig. 2.18. Optomechanical potential, normalized to the thermal energy (U/k,T), corresponding to the
spectral peak A =1484 nm when the bead radius is 245 nm, for x= -8.27um, y=0 and z=320nm, and w, =
20 xa/2, as a function of the input power P;, and the temperature T.

Further optical trapping evaluation regards the calculation of total optomechanical force
by means of Maxwell stress tensor-based method in presence of the bead to be trapped
[93]. The total force is constituted by both the gradient force and the scattering force,
which takes into account the non-conservative interactions such as the momentum
transfer due to field scattering and the radiation pressure. It has been always considered

a polystyrene bead (n=1.59), that has radii of 250, 500 nm, placed at a distance from the
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top of the structure equal to 2 nm and localized in the center of the cavity defect. In the
numerical analysis the Maxwell stress tensor-based calculation computes the Maxwell
Stress Tensors over the faces of a closed box, that surrounds only the bead, and then
integrates them over the closed surface. The graph of the total force as a function of
wavelength by means of LUMERICAL confirms the trapping: at the spectral peak A
=1484 nm the bead undergoes a strong pulling force (directed toward the membrane
surface) with values equal to 1233 pN/W (r=250 nm) and 2874 pN/W (=500 nm)

which are comparable to those observed in plasmonic tweezers [71].
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2.5 Mesoscopic Photonic Crystal 3D wide cavity devoted to optical trapping in water

As for the case of optical trapping in air of the previous paragraph 2.4, an optical
trapping device in water based on a MPhC 3D wide microcavity has been designed and
analysed. In this case it has been possible to obtain very high trapping potential for
polystyrene particles having radii as small as 200 nm. The obtained results are
extremely encouraging since it is possible to obtain extremely deep optomechanical
potential well (about 5 times bigger than the minimum requirement for trapping)
allowing for stable bio-trapping, and opening the way for novel configurations for
optical bio-trapping of nano- and micro-particles, over areas of ~10x10 pm® in water,
that could be linearly repositioned exploiting the translational invariance of the MPhC
microcavity along the transverse direction.

The design of the geometry of the single MPhC multilayer is performed by means of the
3D plane wave expansion method (3D-MPB), described in Fig. 1.14.

The MPhC 3D wide microcavity has the same geometrical and physical parameters of
the structure described in Fig. 2.13 and has a thickness equal to 250 nm and it is fully
surrounded by water (the MPhC holes are filled by water) that has refractive index
n=1.33, a bulk refractive index equal to ng.4s = 3.355, a bulk width d}, = 16.9992xq, the
central wavelength of the gaussian source is equal to 1421 nm and the source band is
equal to 1271nm <A < 1571nm.

For this structure, considering the gaussian source waist radius wo = 20xa/2, I have
obtained the transmission (normalized to the input power) (Fig. 2.19). A long-lived
mode showing a spectral peak around 1431 nm is observed with a Q-factor of about
2385. Another peak, with a higher Q-factor, is also observed around 1492 nm (Q-factor
equal to about 2486).
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Fig. 2.19. 3D-FDTD transmittance spectra: the two peaks, suggesting the formation of an optical mode

inside the cavity, are: the former at 1431 nm and the latter at 1492 nm. Source waist radius w, = 20xa/2.

In order to investigate the nature of the higher Q-factor mode, the in-plane total electric
field on the top of the membrane and at resonant peak 1492 nm, considering the
gaussian source waist radius wo = 20xa/2 has been evaluated. Fig. 2.20 shows the self-
normalized magnitude image of the electric field (linear scale). The spectral peak

corresponds to a mode that is fully localized in xy-plane by the MSC cavity.
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Fig. 2.20. Close-up of the self-normalised magnitude of the total in-plane electric field at 1492 nm,

considering the source waist radius wy = 20xa/2.

Moreover I have performed the analysis, finalized to the optical trapping evaluation, of

the MPhC 3D wide microcavity, evaluating the total electric field in the water volume
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at the top of the structure at resonant peak 1492 nm (having higher Q-factor) in absence
of the bead to be trapped, considering the gaussian source waist radius wy = 20xa/2. The
3D region, where I have retrieved the field, has dimensions equal to 81 pm along the x
direction, 18 pm along the y direction and 0.5 pm along the z direction.

Considering the waist radius wo = 20xa/2, the optical trapping has been evaluated
computing the optomechanical trapping potential by means of the gradient force density
convolution method (Matlab), described in Eq. (6.2) and in Eq. (7.2). It has been
considered a polystyrene bead (n=1.59) having radii of 50, 100, 200, 245 nm, when an
injected power of 10, 50, 100 mW is considered.

Results below reported are calculated considering the center of the cavity defect and a
distance from the top of the structure equal to the bead diameter.

Figure 2.21 shows the optomechanical potential, normalized to the thermal energy
(U/kpT), corresponding to the spectral peak A =1492 nm (having higher Q-factor) and to
an injected power of 50 mW, when the bead radius is r = 50 nm (Fig. 2.21 a-b), r = 100
nm (Fig. 2.21 c-d), r = 200 nm (Fig. 2.21 e-f). As we can infer from the figure, by
increasing the bead radius the trapping potential increases. At its minima, the potential
well is deeper than -50 for the case r = 200 nm (Fig. 2.21 e-f), while for r = 100 nm
(Fig. 2.21 c-d) its depth 1s beyond -10. For the third case (higher radius), trapping
potential is considerably deep, about 5 times bigger than the minimum (equal to -10)
required for trapping by the criterion proposed by Ashkin et al. in [78]. Compared to the
previous paragraph 2.4 to obtain a very deep potential, that is 5 times bigger than the
minimum (equal to -10) required for trapping, it has to be always considered the higher

radius and moreover it has to be supposed a higher injected power that is 50 mW.
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Fig. 2.21. Optomechanical potential at room temperature along (a-c-¢) the x-axis, for y=0, and (b-d-f) y-
axis, for x=-23.4um, respectively, normalized to the thermal energy (U/k,T), corresponding to the
spectral peak A =1492 nm and to an injected power of 50 mW, when the bead radius is (a-b) r = 50 nm,
for z=100nm, (c-d) r = 100 nm, for z=200nm, (e-f) r = 200 nm, for z=280nm, respectively, and wy = 20
xa/2.

Figure 2.22 shows the optomechanical potential, normalized to the thermal energy
(U/kpT), corresponding to the spectral peak A =1492 nm, when the bead radius is 200
nm and an injected power of 50 mW is considered (that is higher than that of the
previous paragraph 2.4). Figure 2.22 clearly shows that the trapping potential is very
deep over an area of about 10x10 pm’ around the cavity defect. This may be also

suitable for multiple object trapping.
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Fig. 2.22. Optomechanical potential at room temperature, normalized to the thermal energy (U/k,T),
corresponding to the spectral peak A =1492 nm, when the bead radius is 200 nm, for z=280nm, and an

injected power of 50 mW is considered and wy = 20 xa/2.
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Finally, in Figure 2.23 we show a map of the optomechanical potential, normalized to
the thermal energy (U/k,T), corresponding to the spectral peak A =1492 nm when the
bead radius is 200 nm and an injected power of 50 mW is considered (that is higher
than that of the previous paragraph 2.4), as a function of the input power P;, [mMW] and
the temperature T [K]. The dashed white line represents the “threshold” of the minimum
trapping potential (equal to - 10) while the dashed black line corresponds to the room
temperature. Halving the input power value, the optomechanical potential decreases
while maintaining still interesting values for trapping. This map clearly shows that
trapping potential exceeds the “threshold” over a large range of both input power and

temperature.
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Fig. 2.23. Optomechanical potential, normalized to the thermal energy (U/k,T), corresponding to the
spectral peak A =1492 nm when the bead radius is 200 nm, for x= -23.4pum, y=0 and z=280nm, and an
injected power of 50 mW is considered and w, = 20 xa/2, as a function of the input power P;, and the

temperature T.

Following, for this structure I have carried out a numerical study on the influence of the
cavity defect characteristics, evaluating the transmission spectrum (normalized to the
input power). I considered different values of the cavity defect length in the x-direction
(Lg = 5.266 xa, 5.373xa), lower and higher than the current cavity defect length (L4 =
5.32 xa), respectively. It has been observed that the spectral position of the two peaks
remains almost unchanged, while the Q-factors of both spectral peaks increase or
remain almost unchanged. In particular, by decreasing the cavity defect length Ly down
to 5.266 xa a long-lived mode showing a high-Q spectral peak around 1430 nm is
observed with a Q-factor of about 3576. Another peak, with a lower Q-factor, is also
observed around 1490 nm (Q-factor equal to about 2484). By increasing the cavity
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defect length L up to 5.373 xa, the Q-factor reaches the values 2386 and 3733 for the
peaks at A= 1432 and 1493 nm, respectively. Therefore, this last case (L4 = 5.373xa)
allows to obtain the higher Q-factor (Q=3733 at A=1493 nm), and then it will allow to
obtain the aforementioned very deep optomechanical potential exploiting an injected
power lower than 50 mW.

Figure 2.24 shows the simulated transmission spectrum, normalized to the input power,

when the cavity defect length Lq is fixed equal to 5.373 xa.
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Fig. 2.24. 3D-FDTD transmittance spectrum: the two peaks, suggesting the formation of an optical mode
inside the cavity, are: the former at 1432 nm and the latter at 1493 nm. Source waist radius w, = 20xa/2

and cavity defect length L4=5.373 Xa.

In order to investigate the nature of the higher Q-factor mode, the in-plane total electric
field on the top of the membrane and at resonant peak 1493 nm, considering the cavity
defect length Lq = 5.373%a has been evaluated. Fig. 2.25 shows the self-normalized
magnitude image of the electric field (linear scale). The spectral peak corresponds to a

mode that is fully localized in xy-plane by the MSC cavity.

Self-normalized Electric field at A=1493nm 1
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Fig. 2.25. Close-up of the self-normalised magnitude of the total in-plane electric field at 1493 nm,

y [pm]

considering the source waist radius wy = 20xa/2 and the cavity defect length L4=5.373 xa.
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Moreover I have performed the analysis, finalized to the optical trapping evaluation, of
the MPhC 3D wide microcavity, evaluating the total electric field in the water volume
at the top of the structure at resonant peak 1493 nm (having higher Q-factor) in absence
of the bead to be trapped, considering the cavity defect length Lq = 5.373xa.

Considering the cavity defect length Lqy = 5.373xa, the optical trapping will be
evaluated, as for the aforementioned structure having L4 = 5.32xa, computing the
optomechanical trapping potential by means of the gradient force density convolution
method (Matlab). The aforementioned very deep optomechanical potential will be

obtained exploiting an injected power lower than 50 mW.

53



3. MESOSCOPIC PHOTONIC CRYSTAL WAVEGUIDES

3.1 Mesoscopic Photonic Crystal 3D strip and 3D wide waveguides devoted to

routing element

High performance MPhC 3D strip and 3D wide waveguides have been designed and
analysed, exhibiting high transmission, strong mesoscopic self-collimation, translational
invariance, and the unwanted reflections at PhC input interfaces are minimal, without
either affecting the feasibility or the complexity of the structure [96].

In first approximation, the design of the geometry of the single MPhC multilayer was
performed by means of the 2D plane wave expansion method (2D-MPB), described in
Fig. 1.13.

Fig. 3.1 shows the MPhC 3D waveguide that is 13-mesoperiod-long along the x-
direction. The whole device is etched on a 270 nm-thick membrane of GaAs (nGa4s =
3.4), fully surrounded by air. Each mesoperiod is obtained by interleaving focusing
slabs constituted by 5 hole rows of a 45°-tilted hole-type square-lattice PhC (having
lattice constant a = 360 nm, hole radius » = 0.28xa and an overall width d,. = 3.536%a),
and defocusing slabs constituted by bulk material having a refractive index ng.4s and a

width d;, = 0.747xa.

The periodic structure, showing a period V2xa, has a length along the y-direction: a) in
the 3D strip waveguide configuration, 0.51 pm (equivalent to 3 PhC hole rows) and b)
in the 3D wide waveguide configuration, 40 um (equivalent to 172 PhC hole rows).
Perfectly matched layers (PMLs) were imposed at the boundaries of the 3D
computational cell along the three directions, but, in the 3D strip waveguide, periodic
boundary conditions (PBCs) were imposed at the 3D computational cell boundaries
perpendicular to y-direction.

The structure was excited by injecting a gaussian source (1400 nm < A < 1700 nm)
having a spatial distribution matching that of the fundamental TE mode (with the x-
component of the electric field Ex = 0) of the membrane (at A = 1550 nm).
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Fig. 3.1. (Top) Sketch of the MPhC waveguide simulated by means of the 3D-FDTD method. The orange
region represents the PML boundary conditions. (Bottom) The highlighted area represents the elementary
cell of the MPhC.

For the MPhC 3D wide waveguide, considering a gaussian source along the y-direction
with waist radius wy = 10xa/2, the transmission, reflection, out-of-plane loss and lateral
loss spectra (normalized to the input power) have been obtained. These spectra have
been compared with the respective spectra of the MPhC 3D strip waveguide obtained
considering a constant source along the y-direction (Fig. 3.2).

The transmittance spectrum exhibits several peaks with almost 80 % transmission near
the central source wavelength Ao=1550 nm. However, the optimal performance is
achieved for a wavelength A;=1591 nm in the MPhC 3D wide waveguide and A,=1500
nm in the MPhC 3D strip waveguide (black dashed lines), slightly above and under Ao,

respectively, with almost 83 % and 85 % transmission, respectively.
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A mini bandgap opens around A=1508 nm, corresponding to the dip appearing in Fig.

3.2. This is due to the overall mesoscopic-periodicity and shows a low transmission of

about 60 % with a slight refocusing of the beam.
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Fig. 3.2. Transmittance (T), reflectance (R), out-of-plane loss (Up) and lateral loss (Lateral) spectra,
considering the MPhC 3D wide waveguide (solid lines) and the MPhC 3D strip waveguide (dot lines).

In order to investigate the mesoscopic self-collimation and the out-of-plane loss,
another set of 3D-FDTD simulations has been carried out where the total Poynting
vector has been recorded in the xy-plane and in the xz-plane and at the optimised
wavelength 1591 nm, considering the MPhC 3D wide waveguide.

Fig. 3.3 shows the self-normalized magnitude of the Poynting vector at the optimised
wavelength 1591 nm (linear scale) in xy-plane, considering the MPhC 3D wide
waveguide. The MPhC 3D wide waveguide shows a negligible reflection at the input

interface (x=-9.84 pm) and a collimated beam over the whole structure.
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Fig. 3.3. Self-normalized magnitude of the Poynting vector at 1591 nm (linear scale), considering the
MPHC 3D wide waveguide.
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Fig. 3.4 shows the self-normalized magnitude of the Poynting vector at 1591 nm in
logarithmic scale in the xz-plane, considering the MPhC 3D wide waveguide, and puts

in evidence the out-of-plane losses (17%).
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Fig. 3.4. Self-normalized magnitude of the Poynting vector at 1591 nm (logarithmic scale), considering

the MPhC 3D wide waveguide.

These results open the way for developing a full class of routing elements that can be
combined together, a cascadable circuitry out of these building blocks, and a circuitry
taking advantage of the spatial and spectral reconfigurability that this MSC offers. Fig.
3.5 shows that the routing elements (spatial reconfigurability) and the wavelength
splitters (spectral reconfigurability) could be obtained by interleaving different

mesoperiods, that have different PhC slabs widths and different bulk slabs widths.

— .
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Fig. 3.5. Operation of the mesoscopic routing element.



3.2 Mesoscopic Photonic Crystal 3D wide waveguide: the influence of the gaussian

source waist on the collimation phenomenon

The influence of the characteristics of the gaussian source on the collimation
phenomenon in a MPhC 3D wide waveguide has been explored by considering different
values of the waist radius [97]. The optimum value of the source waist radius w, has to
guarantee that the MPhC 3D wide waveguide exhibits: 1) minimal unwanted reflections
at PhC input interfaces without either affecting the feasibility or the complexity of the
structure, ii) high transmission, iii) strong mesoscopic self-collimation and iv)
translational invariance.

In this case the 3D geometrical parameters of the single MPhC multilayer have been
fixed by considering the map in Fig. 1.15.

The MPhC 3D wide waveguide has the same geometrical and physical parameters of
the structure described in Fig. 3.1 and has a bulk width d;, = 3.1048%a, the central
wavelength of the gaussian source is equal to 1520 nm and the source band is equal to

1370nm < A < 1670nm (Fig. 3.6).

i
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Fig. 3.6. Sketch of the mesoscopic photonic crystal 3D wide waveguide.

For this structure, the transmission, reflection, out-of-plane loss and lateral loss spectra
(normalized to the input power) have been evaluated. Different values of the gaussian

source waist radius have been considered.
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For example for the source waist radius w, equal to 15a/2, Fig. 3.7 shows that the
transmittance spectrum exhibits several peaks with almost 66% transmission near the
central source wavelength A (=1520nm (black dashed line). However, the optimal
performance is achieved for a wavelength A | =1567nm with almost 85% transmission

(black dashed line), slightly above A .

A mini bandgap opens around A =1545nm, corresponding to the dip appearing in Fig.

3.7. This is due to the overall mesoscopic-periodicity and shows a low transmission of

about 5% with a slight refocusing of the beam.

When the source waist radius w, is assumed equal to 10a/2, the transmittance spectrum
exhibits several peaks with almost 62% transmission near the A, and the optimal
performance is achieved for a wavelength A 1=1587nm with almost 83% transmission.
As for the case w,=15a/2, also in this last case a mini bandgap opens around

A =1545nm showing a transmission of about 5% with a slight refocusing of the beam.
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Fig. 3.7. Transmittance (T), reflectance (R), out-of-plane loss (Up) and lateral loss (Lateral) spectra,

considering the value of the source waist radius w,=15a/2.

Figures 3.8-3.10 show the mesoscopic self-collimation and the out-of-plane losses
evaluated considering the values of the gaussian source waist radius equal to wo = 10
xa/2, 15%a/2. In particular, the total Poynting vector has been recorded in the xy-plane

and in the xz-plane and at the optimised wavelength 1567 nm, considering the
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optimised source waist radius w, equal to 15a/2, and at the optimised wavelength 1587
nm, considering the source waist radius w, equal to 10a/2.

Fig. 3.8 depicts the self-normalized magnitude of the Poynting vector at the optimised
wavelength 1567nm (linear scale) in xy-plane, when the optimised source waist radius
1s w,=15a/2. The MPhC 3D wide waveguide shows a negligible reflection at the input

interface (x=-15.78um) and a collimated beam over the whole structure.
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Fig. 3.8. Self-normalized magnitude of the Poynting vector at 1567nm (linear scale), considering the

value of the source waist radius w,=15a/2.

Fig. 3.9 shows the self-normalized magnitude of the Poynting vector at the optimised
wavelength 1587nm (logarithmic scale) in xy-plane, when the source waist radius w, is

decreased down to 10a/2. The MPhC 3D wide waveguide does not show a good
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Fig. 3.9. Self-normalized magnitude of the Poynting vector at 1587nm (logarithmic scale), considering

the value of the source waist radius w,=10a/2.

The self-normalized magnitude of the Poynting vector at the optimised wavelength

1567nm in logarithmic scale in the xz-plane, when the optimised source waist radius is
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wo=15a/2, is shown in Fig. 3.10. It puts in evidence the out-of-plane losses (12%).
When the source waist radius w, is equal to 10a/2, the out-of-plane loss (evaluated at

the optimised wavelength 1587nm) is slightly up to about 14%.
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Fig. 3.10. Self-normalized magnitude of the Poynting vector at 1567nm (logarithmic scale), considering

the value of the source waist radius w,=15a/2.
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3.3 Mesoscopic Photonic Crystal 3D wide waveguide with tilted source devoted to

obtain Mesoscopic Self-Collimation along tilted direction

To obtain Mesoscopic Self-Collimation along tilted direction in a MPhC wide
waveguide, it is necessary to detect a MSC point in the IFC-diagram where the IFC and
the zero-curvature locus have the same tangent, as it was demonstrated in [54]. This
point allows to fix the source inclination and the value of the central source wavelength
with reference to the isofrequential curves (IFCs) (Fig. 3.11) of the 2D unitary cell of
MPhC described in Fig. 1.13. Fig. 3.11 shows a point, where a IFC is maximally flat.
To this point corresponds the pair of values of the source inclination (18.72°) and of the

central source wavelength (1927 nm) that allow to obtain the mesoscopic self-

collimation.
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Fig. 3.11. The IFC of the 2D unitary cell of MPhC (dashed thick black curve) and the bulk IFC (dot-

dashed thin black curve) are represented, calculated by means of the 2D plane wave expansion method
(2D-MPB). The self-normalised absolute value of the spatially Fourier transformed z-component of the
magnetic field (logarithmic scale) is represented. The wavevectors of the MPhC (blue arrow) and of the
bulk (violet arrow), the group velocity vectors of the MPhC (dark red arrow) and of the bulk (the green

arrow) are represented [54].

The MPhC 3D wide waveguide has the same geometrical and physical parameters of
the structure described in Fig. 3.6 and on the left of the MPhC region the gaussian
source with waist radius we=15a/2 is tilted of 18.72° compared to the x-direction, has
the central wavelength equal to 1927 nm and has a band equal to 1777nm <A <2077nm
(Fig. 3.12).
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Fig. 3.12. Sketch of the mesoscopic photonic crystal 3D wide waveguide.

For this MPhC 3D wide waveguide, the transmission spectrum (normalized to the input
power) has been obtained. This spectrum exhibits several peaks with almost 70 %
transmission near the central source wavelength 1927 nm. However, the optimal
performance is achieved for a wavelength 1954 nm with almost 77% transmission,
slightly above the central source wavelength (Fig. 3.13). A mini bandgap opens around
2000 nm, corresponding to the dip appearing in Fig. 3.13, and shows a low transmission

of about 20%.
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Fig. 3.13. Transmittance (T) spectrum, considering the gaussian source tilted of 18.72° compared to the

x-direction and the central source wavelength equal to 1927 nm.

In order to investigate the mesoscopic self-collimation of the MPhC 3D wide

waveguide, another set of 3D-FDTD simulations has been carried out. In particular, the
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total Poynting vector has been recorded in the xy-plane and at the optimised wavelength
1954 nm.

Fig. 3.14 depicts the self-normalized magnitude of the Poynting vector at the optimised
wavelength 1954 nm (linear scale) in xy-plane. The beam keeps the same inclination
from the left of the MPhC region up to right of the MPhC region. The MPhC 3D wide
waveguide shows a negligible reflection at the input PhC interface (x=-15.78um) and a

collimated beam over the whole structure.
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Fig. 3.14. Self-normalized magnitude of the Poynting vector at 1954 nm (linear scale), considering the
gaussian source tilted of 18.72° compared to the x-direction and the central source wavelength equal to

1927 nm.
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4. CONCLUSION

In this Ph.D. thesis I analyzed the significant properties of Mesoscopic Photonic
Crystals (MPhCs) for applications as refractive index sensors, optical trapping in air and
in water, and routing element.

In particular the design and the analysis of high performance MPhC 3D waveguides and
cavities have been carried out by means of 3D-FDTD calculation (Lumerical).

The 3D design of the single MPhC multilayers required the analysis of the
properties of the 3D unitary cells of PhCs in terms of their isofrequential curves (IFCs)
obtained by means of the 3D Plane Wave Expansion Method (3D-Mit Photonic-Bands
software).

Particular attention has been given to the solutions of the “single Anti-Reflection (AR)
and High-Reflection (HR) MPhC multilayers geometries searching algorithm”, i.e. to
the triplets - the length of the PhC slab, the length of the bulk material slab, the central
source normalized frequency - that satisfy both the Mesoscopic Self-Collimation (MSC)
condition and the single AR or HR multilayer condition at the same time.

The considered MPhC mesoperiod is obtained by interleaving focusing slab, constituted
by hole rows of a 45°-tilted hole-type square-lattice PhC, and defocusing slab,
constituted by bulk material, etched on a membrane.

As example of applications in the three years of my Ph.D. program, I have
designed and analysed MPhC 2D and 3D strip cavities devoted to refractive index
sensor. The best result was obtained with a geometry having two 5-mesoperiod-long
mesoscopic mirrors (MM), PhC slab hole radius » = 0.28xa, PhC slab overall width d,
= 9.192x%q, PhC lattice constant @ = 360 nm, bulk slab width d;, = 2.612xa, cavity
defect width W=5.32xg. The membrane has thickness equal to 270 nm and bulk
refractive index ng.us = 3.4, and is fully surrounded by a dielectric analyte having
refractive index n equal to 1, 1.3, 1.4 and 1.5. The central wavelength of the gaussian
source is equal to 1550 nm. A Q-factor equal to 7888 and a sensitivity equal to 112

nm/RIU have been obtained. This structure can be exploited to tweeze-and-sense micro-

65



and nano-object systems thanks to the translation invariance property.

The optical trapping in air and in water has been evaluated with two approaches:
the former is based on computing the optomechanical trapping potential by means of
the gradient force density convolution method (Matlab) and the latter is based on the
calculation of the total optomechanical force by means of Maxwell stress tensor-based
method (Lumerical). The best result was obtained with a MPhC 3D wide cavity having
two 5-mesoperiod-long mesoscopic mirrors (MM), PhC slab hole radius » = 0.25xa,
PhC slab overall width d. = 9.192%q, PhC lattice constant @ = 350 nm, bulk slab width
dp = 2.612xa, cavity defect width W=5.32xa. The structure has thickness equal to 276
nm and bulk refractive index ng.4s = 3.31, is fully surrounded by air and has a width
equal to 18 um. The central wavelength of the gaussian source is equal to 1550 nm. A
Q-factor equal to 3709, an optomechanical trapping potential equal to - 40 (about 4
times bigger than the minimum requirement for trapping) and a total optomechanical
force equal to 2874 pN/W have been obtained.

Moreover a MPhC 3D strip cavity has been experimentally demonstrated.

I have also designed and analysed MPhC 3D strip and 3D wide waveguides,
effecting the evaluation of the influence of the gaussian source waist on the collimation
phenomenon. The best result was obtained with a MPhC 3D wide waveguide having 13
mesoperiods, thickness equal to 270 nm, bulk refractive index ng,4s = 3.4, PhC lattice
constant @ = 360 nm, PhC hole radius » = 0.28xa, PhC slab overall width d,. = 3.536xaq,
bulk slab width d;, = 3.1048xa. The structure is fully surrounded by air and has a width
equal to 40 um. The central wavelength of the gaussian source is equal to 1520 nm. A
transmission equal to 85% and minimal unwanted reflections at PhC input interfaces,
without either affecting the feasibility or the complexity of the structure, have been
obtained. These results opens the way for developing a full class of routing elements
that can be combined together taking advantage of the spatial and spectral
reconfigurability that MSC offers. The routing elements could be obtained by
interleaving different mesoperiods, that have different PhC slabs widths and different

bulk slabs widths.
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Finally the condition, for which the MSC along tilted direction happens in a
MPhHC 3D wide waveguide, has been investigated.
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