
20 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Adaptive Reshaping of Web of Things and mobile software for the Fog Computing Era / Nocera, Francesco. -
ELETTRONICO. - (2019). [10.60576/poliba/iris/nocera-francesco_phd2019]

This is a PhD Thesis

Original Citation:

Adaptive Reshaping of Web of Things and mobile software for the Fog Computing Era

Published version
DOI:10.60576/poliba/iris/nocera-francesco_phd2019

Terms of use:
Altro tipo di accesso

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/161022 since: 2019-01-18

Politecnico di Bari

v

“Twenty years from now you will be more disappointed by the things that you didn’t
do than by the ones you did do. So throw off the bowlines. Sail away from the safe
harbor. Catch the trade winds in your sails. Explore. Dream. Discover.”

Mark Twain

“Le cose si fanno quando è il momento. Il mio è adesso.”

Laura Pausini

vii

POLYTECHNIC UNIVERSITY OF BARI

Abstract
Department of Electrical and Information Engineering
Electrical and Information Engineering Ph.D. Program

Doctor of Philosophy

Adaptive Reshaping of Web of Things and mobile software for the Fog
Computing Era

by Francesco NOCERA

The software has become an essential part of every aspect of the society
and our daily life. This is indicated by many recent trends in our society
– healthcare, smart homes, smart cities, (autonomous) robots, autonomous
connected vehicles and so on – all contain an ever-increasing amount of soft-
ware. These trends also indicate that the single device computing era is com-
ing to an end. However, the development and software architectures have
not changed much during past ten years. At the moment, Cloud-based ser-
vices are the de facto way how the software is constructed, and then pro-
vided for the end users in the form of Web and native apps. Moreover, from
a software architecture point of view, Internet of Things (IoT) poses many
interesting challenges due to its unpredictable yet adaptive requirements.
In this thesis, we investigate challenges related to Web of Things (WoT) and
mobile software in the Fog Computing era in order to improve their adaptive
behaviour.

ix

Contents

Declaration of Authorship iii

Abstract vii

1 Introduction 1
1.1 Structure of the Thesis . 3
1.2 Published Material . 4

I Web of Things (WoT) Software dimensional view 9

2 Architecting the Web of Things in the Fog Computing era 11
2.1 The Design Space: Towards Fog Computing 11

2.1.1 Dynamic and Decentralized Computation and Coordi-
nation Infrastructures 12
Container Technology 13
Serverless Computing 14
From Cloud Services to the Edge Devices 14

2.1.2 Connectivity and Communication 15
Infrastructure-based Communication 15
Device-to-Device Communication 15

2.2 Motivation . 16
2.3 Research Themes for Web of Things 17

2.3.1 Liquid User Experience 17
2.3.2 Complex Event Processing 17
2.3.3 Microservice Architectural Style 18

2.4 Discussion . 19
2.4.1 RQ1: How to use data and hardware resources for perception

and interaction? . 19
2.4.2 RQ2: What are the current building blocks for Web of Things,

and who is providing them? 21
2.4.3 RQ3: Is interoperability with other systems supported, and

how can this aspect be improved? 22
2.4.4 RQ4: What are the current security and privacy issues, and

can these threats be covered? 23
Perception Layer . 25
Middleware and Application Layers 26

2.4.5 Threats to Validity . 27
Threats to the Identification of Primary Studies 27
Threats to Selection and Data Extraction Consistency . 28

x

Threats to Data Synthesis and Results 28
2.5 Conclusions . 28

3 A Fuzzy Ontology-based Tool for Decision Making in Architectural
Design 29
3.1 Introduction and motivation . 29
3.2 Fuzzy Description Logics . 32

3.2.1 Recap of Fuzzy Description Logics Basics 32
Fuzzy Sets . 32
The Fuzzy DL ALCB(D) 33

3.3 Requirements, Design and Architectural patterns 36
3.4 Problem statement and approach 39

3.4.1 Representing and reasoning about NFRs via fuzzy DLs 40
3.4.2 Proposed reasoning task 42

3.5 Use Case Scenario n. 01: Cloud-Social- Adaptable System . . . 43
3.6 Use Case Scenario n. 02: IoT, in a Healthcare scenario 48
3.7 Implementation . 51
3.8 Discussion . 54
3.9 Related work . 57
3.10 Conclusion . 59

4 Context-aware Middleware for the Internet of Things based on fuzzy
rules and reflective model 61
4.1 Introduction and Motivation . 61
4.2 Background . 62
4.3 A Formal Model to Design a Reflective IoT Middleware 62
4.4 Use Case Scenario . 67

4.4.1 Implementation . 67
4.4.2 Reflective behavior . 68
4.4.3 Validation of the model and Experiments 70

Experimental field . 70
QoS Test . 74

4.5 Related work . 76
4.6 Conclusion and Future Work 78

II Mobile Software dimensional view 79

5 A formal model for user-centered adaptive mobile devices 81
5.1 Introduction and motivation . 81
5.2 Approach . 81

5.2.1 Action Repository . 81
5.2.2 Personalized Action Selection 85

5.3 Instantiation of the model . 86
5.3.1 Proximity environment 86
5.3.2 Adaptive Architectural MetaModel instantiation 87
5.3.3 A ‘smart smartphone’ 89
5.3.4 Adaptive Architectural MetaModel instantiation 89

xi

5.4 Experiments and validation . 92
5.5 Discussion . 93
5.6 Related work . 95
5.7 Conclusion . 96

6 A Navigation-aware Approach for Network Requests Prefetching of
Android Apps 99
6.1 Introduction . 99
6.2 Background . 101

6.2.1 User Navigation in Android Apps 101
6.2.2 Network Requests in Android Apps 103
6.2.3 The Prefetching Opportunity 103

6.3 Study Design . 104
6.3.1 Research Objectives . 104
6.3.2 Identification of Representative keywords of prefetching-

related commit messages 105
6.3.3 Online Questionnaire Survey 105

Identification of the Target Population 105
Design of the Questionnaire 106
Data Analysis and Results 106

6.3.4 Empirical Investigation on Android apps in GitHub . . 110
6.3.5 Reflection . 111

6.4 The Approach . 112
6.4.1 At development time . 112
6.4.2 At run-time . 113

6.5 Building the Extended Navigation Graph 115
6.5.1 App Instrumentation . 115

6.6 Network Requests Prefetching at Run-time 115
6.6.1 Identification of URLs to be prefetched 116
6.6.2 Prefetching spot . 116

6.7 Implementation . 117
6.8 Evaluation . 117
6.9 Related work . 119
6.10 Conclusion and future work . 120

7 Conclusion 121

Bibliography 123

xiii

List of Figures

2.1 Generic Cloud-based Web of Things system architecture. . . . 12
2.2 Web technologies support leveraging the full potential of the

Fog. 13
2.3 An illustration of open Web technology based computation

and coordination in the Fog. 16

3.1 (a) Trapezoidal function trz(a, b, c, d), (b) triangular function
tri(a, b, c), (c) left shoulder function ls(a, b), and (d) right shoul-
der function rs(a, b). 33

3.2 The fuzzy sets we use to deal with Non-Functional Require-
ments. 33

3.3 MoSAIC Architecture, and linked components. 52
3.4 MoSAIC Fuzzy Ontology classes hierarchy. 53
3.5 Screenshot of tool query definition. 53
3.6 (a) Individuals Tab, (b) Creation of a fuzzy datatype Fair with

the Fuzzy OWL plug-in. 54
3.7 General class axioms Tab. 55

4.1 Fuzzy Membership functions. (a) Left Shoulder function ls(x, y),
(b) Right Shoulder function rs(x, y), (c) Triangular function tri(x, y, z),
and (d) Trapezoidal function tra(x, y, z, t). 64

4.2 Architectural schema of the proposed model. 66
4.3 Implementation of the framework. 69
4.4 Network Architecture. 72
4.5 Results of Scalability test. 74
4.6 Results of QoS test. 75

5.1 The proposed Metamodel. 84
5.2 Architectural model obtained as an instantiation of the meta-

model. 89
5.3 Screenshot of AProM. 91
5.4 Architectural model obtained as an instantiation of the meta-

model. 92
5.5 Smartphone home pages. 93

6.1 Example of ENG for Listing 6.1 104
6.2 Overview of Exploratory study process. 105
6.3 Questionnaire flow. 106
6.4 Overview of the approach at development time. 112
6.5 Overview of the approach at run-time. 114

xiv

6.6 Reachable activities identified by the plugin, the ground truth,
and Gator . 119

xv

List of Tables

3.1 Some of the most relevant families of patterns. 37
3.2 Answer Sets Use Case I. 47
3.3 Answer Sets Use Case scenario. 51
3.4 Queries formulated by each team and corresponding answers

(best solution). 55
3.5 Cross Evaluation among teams. 56
3.6 Elapsed time to solve the problem. 56
3.7 Similarity values with respect to Q1 (best solution) and Q (the

top-3 ranked answers). 57

4.1 Weights of the Round Robin policy. 72
4.2 Comparison of existing middleware with respect to desired re-

quirements. 73
4.3 A table summary the result of scalability test with one, two or

three nodes. 73
4.4 Table summarized the number of data sent, stored and lost in

our middleware during the QoS test. 75
4.5 Comparison between our reflective middleware and ThingS-

peak middelware. 75

5.1 Research Questions (RQ) and Research Process (RP). 82
5.2 Instantiation of the elements in the tuple AAMM for Scenario 1. 87
5.3 Example of (Fuzzy) tuple for Scenario 1. 88
5.4 Instantiation of the elements in the tuple AAMM for Scenario 2. 90
5.5 Example of (Fuzzy) tuple for Scenario 2. 90
5.6 Designers evaluation of the metamodel. 94
5.7 Usability test with real users. 94

6.1 How often do prefetched resources change during the lifetime
of your Android app? . 108

6.2 Reasons about why to perform prefetching. 108
6.3 Reasons about when participants perform prefetching. 109
6.4 Rate occurrences for each keyword. 110
6.5 How important is to have control on the prefetching approach

in your Android apps? . 110
6.6 Subject apps for study 1 . 118

xvii

List of Abbreviations

AR Architectural Requirements
CEP Complex Event Processing
FR Functional Requirement
IoT Internet of Things
NFR Non-Functional Requirement
WoT Web of Things

1

Chapter 1

Introduction

The software has become an essential part of every aspect of the society and
our daily life. This is indicated by many recent trends in our society – smart
homes, smart traffic, smart cities, (autonomous) robots, autonomous con-
nected vehicles and so on – all contain an ever-increasing amount of software.
These trends also indicate that the single device computing era is coming
to an end. However, the development and software architectures have not
changed much during past ten years. At the moment, Cloud-based services
are the de facto way how the software is constructed, and then provided for
the end users in the form of Web and native apps. This approach, however,
cannot accommodate all the needs that come with the multi-device era where
programmable objects are everywhere and require efficient and real-time co-
ordination and distributed computations. This has lead to a situation where
computation and coordination require new types of software architectures
and programming models.

Internet of Things (IoT) has been one key research topics in computer
science for some time. IoT has no single definition, and hence it is often re-
ferred as an approach for connecting all the physical things to the Internet,
or, as an extension to mobile computing. Thus, IoT can be seen to have mul-
tiple research subfields, like the Internet of Industrial Things, the Internet
of Vehicles, or the Internet of People. Web of Things (WoT) is one of these
subfields and a general term used for describing all the approaches to con-
necting physical things to the World Wide Web (Stirbu, 2008; Guinard, 2009;
Guinard et al., 2011a; Tran et al., 2017). In the coming years, people use more
and more various types of Web-enabled client devices, and data is stored si-
multaneously on numerous devices and Cloud-based services. Hence it is
the devices together with people and services which form the modern com-
puting environment. The expectations towards interoperability will dramat-
ically raise, which will imply significant changes for software architecture as
well since the development is evolving from traditional client-server archi-
tectures to decentralized architectures. Thus, Cloud Computing is comple-
mented with two new computing paradigms: Edge Computing (computation
solely on the device-end) and Fog Computing (computation everywhere on
the network level).

Fog Computing is an emerging paradigm that was presented by Cisco in
2012. It promises to be an evolution of Cloud-based systems and is primarily
targeted for the Internet of Things (Bonomi et al., 2012). While Edge Com-
puting is solely about computations on the network edge devices, the goal

2 Chapter 1. Introduction

of Fog Computing is to enable exploiting computation and data resources
across Cloud services, edge devices, as well as intelligent network nodes. If
today the Cloud is the most used abstraction and environment to handle re-
mote applications, the Fog then offers the advantage of better supporting new
computer applications in our connected world. For example, autonomous
driving cars, remote monitoring systems for patients, drones for home de-
livery, the adaptive lighting of streets and homes can all benefit from Fog
Computing. All this by leveraging the pervasive computing infrastructure
that consists of ad hoc processors, smart routers, and personal devices such
as smartphones for computations. This approach allows reducing bandwidth
consumption in IoT environments, exploiting a distributed structure that is
quite similar to that used in P2P (Peer-to-Peer) communications. In some
cases, the Fog can also be seen as a parallel network to the public since it can
allow access to resources and computing power without passing through a
public Internet connection (Dastjerdi and Buyya, 2016).

Open standards and Web technologies provide tools and a platform for
implementing applications in more vendor-neutral ways – in contrast to na-
tive apps that can run only on one platform. However, even though the com-
munication is built-in to the Web, the interactions still happen in the same
way as with native apps. Also, the Web browser essentially is an app itself
and only offers a sandbox for interacting with other entities. Thus, pure Web
technology based software partly suffers from the same, and even more lim-
itations than native software do suffer. Despite these limitations, however,
Web technologies can still have advantages over native apps (Taivalsaari et
al., 2011), and be used for enabling co-operation and interactions between
the devices and users. Moreover, Web technologies can teach a lot about
standardization for enabling vendor-neutral interactions for the required ar-
chitectures.

Furthermore, the interest in mobile applications has widely increased in
the last years. Execution of these apps often depends on gestures, sensors
and location data and allows adaptive behaviors. A variety of techniques
and issues related to modeling, implementation and execution of such ap-
plications and to the well-known self-adaptive systems is summarized in (R.
de Lemos et al., 2013). Adaptation gained increasing attention to classify
issues of self-management (Huebscher and McCann, 2008), and of architec-
tural decision making at design and runtime (McKinley et al., 2004). Several
reference model have been also proposed (Kramer and Magee, 2007). Any-
way runtime adaptation of software components is still a challenging prob-
lem (Oreizy, Medvidovic, and Taylor, 1998; Kramer and Magee, 2007).

Usually, adaptation actions are employed at an architectural level to add
components, apps, services in a composite model. At behavioral level they
enable dynamic changes in an app’s behavior, deployment, and execution.

For this reason, the objective of this thesis is to study the future research
avenues for architecting WoT software and mobile apps in order to improve
adaptation.

1.1. Structure of the Thesis 3

1.1 Structure of the Thesis

In this paragraph we outline the structure of the subsequent chapters com-
posing the two Parts of this Thesis: the Web Of Things (WoT) software di-
mensional view (Part I) and the Mobile software dimensional view (Part II).

Part I

Chapter 2 give a review of the current technological space for architecting
Web technology-based IoT software in the coming era of fog computing.
They focus on fundamental research challenges and discuss the emerging
issues.

In Chapter 3 was proposed as main goal the development of a Decision
Support System for supporting designers and software architect in the pro-
cess of modeling a middleware-induced software system’s architecture. To
achieve the main goal of this research we propose a theoretical framework
based on Fuzzy Description Logics (FDLs) for modeling knowledge about NFRs,
FRs, ARs, middlewares, design patterns, and define a reasoning algorithm to
manipulate the modeled knowledge.

Chapter 4 presents a reflective model whose aim is to inject adaptation
into existing middleware. The reflective extension allows a software system
to dynamically change its logic without internal changes to the code. In our
approach, the awareness of the surrounding context is encoded by means of
a rule-based system which drives the dynamic behavior of the middleware.

Part II

Chapter 5 present an approach to complex adaptive mobile applications mod-
eling and implementation, able to dynamically change according to
changed behavioral properties, state and/or text variables and user’s prefer-
ence. To this aim, we design a metamodel made up of an Action Repository
to store triples composed by logical propositions to define criteria for select-
ing actions to be executed.

Chapter 6 discuss how user navigation patterns can be used for devel-
oping navigation-aware techniques for personalized prefetching of network
requests of Android apps. The proposed idea opens for a new family of
prefetching opportunities since it focusses at a higher level of abstraction
with respect to state of-the-art approaches for network requests prefetching.
The proposed idea allows the development of approaches which adapt their
prefetching behaviour according to the unique navigation patterns each user
exhibits while interacting with a mobile app.

4 Chapter 1. Introduction

1.2 Published Material

Editor of international journals and of proceedings of international con-
ferences

[[1]]Marina Mongiello, Eugenio Di Sciascio, Francesco Nocera, and Pietro De
Palma. Guest Editorial SPECIAL SECTION: Industry 4.0: the DIGITAl Trans-
formation in the Engineering Findings (DIGITATE), IET journal of Engineer-
ing. IET, 2018. To appear.

[[2]]Antonio Bucchiarone, Marina Mongiello, Francesco Nocera, Michael Sheng.
"Preface of the 1st International Workshop on Ensemble-based Software En-
gineering (EnSEmble 2018)", ESEC/FSE 2018- Proceedings of the 2018 12th
Joint Meeting on Foundations of Software Engineering, ACM Digital Library.

[[3]]Marina Mongiello, Francesco Nocera, Tommaso Di Noia, and Eugenio
Di Sciascio. "Guest Editorial: Software Architecture for the Web of Things
(SAWoT)", IET Software, 2018, 12, (5), p. 379-380.

[[4]]Marina Mongiello, Francesco Nocera, Niko Makitalo, and Diego Perez-
Palacin. "Preface of the 2nd International Workshop on Engineering the Web
of Things (EnWoT 2018)", Càceres, Spain, June 5, 2018. In ICWE International
Workshops 2018, LNCS Workshop PostProceedings. Springer, 2018.

[[5]]Marina Mongiello, Tommaso Di Noia, Eugenio Di Sciascio and Francesco
Nocera. "Preface of the 1st International Workshop on Engineering the Web
of Things (EnWoT 2017)", Rome, Italy, june 4, 2017. In ICWE International
Workshops 2017, ICWE International Workshops 2017, LNCS 10544. Springer,
2017.

International Journals

[[6]]Niko Mäkitalo, Francesco Nocera, Marina Mongiello, and Stefano Bistarelli.
"Architecting the Web of Things for the fog computing era." IET Software
(2018).

[[7]]Marina Mongiello, Francesco Nocera, Angelo Parchitelli, Luigi Patrono,
Piercosimo Rametta, Luca Riccardi, and Ilaria Sergi. "A Smart IoT-Aware
System For Crisis Scenario Management." Journal of Communications Soft-
ware and Systems 14, no. 1 (2018): 91-98.

[[8]]Tommaso Di Noia, Marina Mongiello, Francesco Nocera, and Umberto
Straccia. "A fuzzy ontology-based approach for tool-supported decision mak-
ing in architectural design." Knowledge and Information Systems (2017): 1-
30.

[[9]]Tommaso Di Noia, Eugenio Di Sciascio, Francesco Maria Donini, Marina

1.2. Published Material 5

Mongiello, and Francesco Nocera. "Formal model for user-centred adaptive
mobile devices." IET Software 11, no. 4 (2017): 156-164.

Book chapters and International series

[[10]]Ivano Malavolta, Francesco Nocera, Patricia Lago, Marina Mongiello.
“Navigation-aware and Personalized Prefetching of Network Requests in
Android Apps”, In Proceedings of the International Conference on Software
Engineering (ICSE-NIER 2019).

[[11]]Francesco Nocera. "Reshaping Distributed Agile and Adaptive Develop-
ment Environment: Student Research Abstract." In Proceedings of the 2018
12th Joint Meeting on Foundations of Software Engineering, ACM, 2018.

[[12]]Claudio De Meo, Nicola Siena, Luca Riccardi, Francesco Nocera, An-
gelo Parchitelli, Marina Mongiello, Eugenio Di Sciascio, Niko Makitalo. "Liq-
uiDADE: a Liquid-based Distributed Agile and Adaptive Development En-
vironment (DADE) Multi-Device tool." In Proceedings of the 2018 12th Joint
Meeting on Foundations of Software Engineering, ACM, 2018.

[[13]]Francesco Nocera, Marina Mongiello, Eugenio Di Sciascio, and Tom-
maso Di Noia. "MoSAIC: a middleware-induced software archIteCture de-
sign decision support system." In Proceedings of the 12th European Confer-
ence on Software Architecture (ECSA), p. 5. ACM, 2018.

[[14]]Marina Mongiello, Francesco Nocera, Angelo Parchitelli, Luca Riccardi,
Leonardo Avena, Luigi Patrono, Ilaria Sergi, and Piercosimo Rametta. "A
Microservices-based IoT Monitoring System to Improve the Safety in Pub-
lic Building." In 2018 3rd International Conference on Smart and Sustainable
Technologies (SpliTech), pp. 1-6. IEEE, 2018.

[[15]]Francesco Nocera. “A Liquid Software-driven Semantic Complex Event
Processing-based platform for health monitoring”, 33rd ACM/SIGAPP Sym-
posium on Applied Computing (SAC SRC 2018), April 2018, Pau (France).

[[16]]Vito Bellini, Tommaso Di Noia, Marina Mongiello, Francesco Nocera,
Angelo Parchitelli, and Eugenio Di Sciascio. "Reflective Internet of Things
Middleware -Enabled a Predictive Real-Time Waste Monitoring System." In
International Conference on Web Engineering, pp. 375-383. Springer, Cham,
2018.

[[17]]Stefano Bistarelli, Tommaso Di Noia, Marina Mongiello, and Francesco
Nocera. "PrOnto: an Ontology Driven Business Process Mining Tool." Proce-
dia Computer Science 112 (2017): 306-315.

[[18]]Angelo Parchitelli, Francesco Nocera, Giorgio Iacobellis, Marina Mongiello,
Tommaso Di Noia, Eugenio Di Sciascio. “A pre-process clustering methods

6 Chapter 1. Introduction

for the Waste Collection Problem”, IEEE International Conference on Ser-
vice Operations, Logistics, and Informatics (SOLI 2017), September 2017, Bari
(Italy).

[[19]]Marina Mongiello, Luigi Patrono, Tommaso Di Noia, Francesco Nocera,
Angelo Parchitelli, Ilaria Sergi, Piercosimo Rametta. “A Complex Event Pro-
cessing (CEP)-based aid system for fire and danger management”, The 7th
IEEE International Workshop on Advances in Sensors and Interfaces (IWASI
2017), June 2017, Vieste (Italy).

[[20]]Francesco Nocera, Angelo Parchitelli. “An adaptive Model for Semantic
Complex Event Processing- driven Social Internet of Things Network”, The
17th International Conference on Web Engineering (ICWE 2017), June 2017,
Rome (Italy).

[[21]]Francesco Nocera, Tommaso Di Noia, Marina Mongiello, and Eugenio
Di Sciascio. "Semantic IoT Middleware-enabled Mobile Complex Event Pro-
cessing for Integrated Pest Management." In CLOSER, pp. 610-617. 2017.

[[22]]Tommaso Di Noia, Marina Mongiello, Francesco Nocera, Eugenio Di
Sciascio. “Ontology-based reflective Iot middleware-enabled agriculture De-
cision Support System”, 9th International Semantic Web Applications and
tools for life sciences Conference (SWAT4LS 2016), December 2016, Amster-
dam (The Netherlands).

[[23]]Marina Mongiello, Tommaso Di Noia, Francesco Nocera, Eugenio Di Sci-
ascio. “Case-based reasoning and Knowledge-graph based metamodel for
runtime adaptive architectural modeling”, 31st ACM/SIGAPP Symposium
on Applied Computing (SAC 2016), April 2016, Pisa (Italy).

[[24]]Francesco Nocera. “Student Research Abstract: Fuzzy ontology-driven
web based framework for supporting architectural design”, 31st ACM/SI-
GAPP Symposium on Applied Computing (SAC 2016), April 2016, Pisa (Italy).

[[25]]Marina Mongiello, Tommaso Di Noia, Francesco Nocera, Eugenio Di Sci-
ascio, Angelo Parchitelli. “Context-aware design of reflective middleware in
the Internet of Everything”, 1st International Workshop on Formal to Prac-
tical Software Verification and Composition (VeryComp 2016) - Co-located
with Software Technologies: Applications and Foundations (STAF 2016), July
2016, Vienna (Austria).

National Conferences

[[26]]Francesco Nocera, Tommaso Di Noia, Marina Mongiello, Angelo Par-
chitelli, Eugenio Di Sciascio, Stefano Bistarelli. “An adaptive Complex Event
Processing-driven SIoT network formal metamodel”, 3rd Italian Conference
on ICT for Smart Cities & Communities (I-CiTies 2017), September 2017, Bari

1.2. Published Material 7

(Italy).

[[27]]Tommaso Di Noia, Marina Mongiello, Francesco Nocera, Eugenio Di Sci-
ascio. “Persistence on different databases via reflective IoT Middleware ”,
24th Italian Symposium on Advanced Database Systems (SEBD 2016), June
2016, Ugento (Italy).

Pending Review publication

The content of Chapter 4 is partially (extended version of paper [[25]]) pend-
ing review in:

[[28]]Francesco Nocera, Marina Mongiello, Tommaso Di Noia, Eugenio Di Sci-
ascio. “Context-aware Middleware for the Internet Of Things based on fuzzy
rules and reflective model”, Submitted to IEEE Internet of Things Journal.

9

Part I

Web of Things (WoT) Software
dimensional view

11

Chapter 2

Architecting the Web of Things in
the Fog Computing era

Fog Computing paradigm is emerging after a decade’s dominance of Cloud-
based system design and architecture. Now, instead of centralizing the com-
putation and coordination to remote services, these are deployed and dis-
tributed to all over physical surroundings and network nodes, including
cloud services, smart gateways, and network edge devices. At the moment,
the majority of the Internet of Things (IoT) systems and software has is build
on top of open Web-based technologies. We assume that with the ever-
growing number and heterogeneity of connected devices, it becomes ever-
more crucial to have open standards that support interoperability and en-
able interactions. In this chapter, we review the current technological space
for architecting Web technology based IoT software in the coming era of Fog
Computing. We focus on fundamental research challenges and discuss the
emerging issues.

The chapter is structured as follows. In Paragraph 2.1 we describe the key
enabling technologies for building Web of Things (WoT) software at the mo-
ment and in the near future. In Paragraph 2.2 we outline some motivation
and research questions for the WoT research. Paragraph 2.3 introduces some
research themes that are focused on WoT system and software research. In
Paragraph 2.4 we discuss how the current technologies and approaches can
respond to the research questions. We also discuss about the possible threats
to the validity of our research. Finally, Paragraph 2.5 draws some conclu-
sions.

2.1 The Design Space: Towards Fog Computing

WoT system architecture at the moment typically builds on a Cloud-based,
centralized approach where the physical objects are connected to an Inter-
net service, sending data there and possibly getting some actuation instruc-
tions back. (We have illustrated this kind of abstract-level example of tra-
ditional WoT architecture in Figure 2.1). It has been discussed, however,
that the network is becoming the bottleneck in Cloud Computing (Shi and
Dustdar, 2016), and relying on such solutions may not be fast enough for the
increasing number of mission-critical applications that employ the physical
objects (Dastjerdi and Buyya, 2016).

14 Chapter 2. Architecting the Web of Things in the Fog Computing era

Serverless Computing

Another alternative for the traditional server-based software is Serverless
Computing, which the central idea is to free the software developer from
maintaining a server. Instead, the developer implements functions that are
deployed and executed on a Cloud service, and the costs of using this service
are based on pay-per-execution. Presently the most used and well-known
examples of the serverless computing include AWS Lambda, Google Cloud
Functions, and Azure Functions, but others are continually emerging. As the
number of Serverless Computing service providers increases, it may become
challenging to decide which provider to use. Fortunately, the open source
Serverless Framework 1 helps in the task by providing a homogenized inter-
face to take benefit of these services.

From WoT development perspective, the serverless computing approaches
give a solution for decentralizing the computation easily. Think for example
if a physical object has the insufficient computing power, it could then invoke
a method remotely. Similarly, some computations can be offloaded from the
browser and performed remotely.

From Cloud Services to the Edge Devices

From WoT perspective, the development is often fostered by the emerging
APIs of modern browsers since these enable more sophisticated architec-
tures. The browser APIs may, for example, allow connecting the devices
directly to the browser. Such connectivity further supports tasks required
for coordinating the physical objects and performing computations close to
the data sources (Taivalsaari and Mikkonen, 2017).

From WoT point of view, it is also fortunate that now approaches al-
lowing dynamic computations have emerged. For instance, Apple provides
JavaScriptCore framework for iOS, macOS, tvOS 2 or Android LiquidCore
framework 3 allow the computation and coordination to be performed by
some of the edge devices (Mäkitalo, Aaltonen, and Mikkonen, 2016).

Moreover, although most of the Serverless Computing approaches (dis-
cussed above) are yet targeted to run in the Cloud, some evidence exists that
the Cloud providers have realized the potential of the edge devices, and now
offer their solutions for Fog Computing: Amazon’s Greengrass software 4

allows running AWS Lambda functions on the users’ devices.It appears that
the computation and coordination are again coming closer to network edges
and prevents dispatching loads of useless sensor data to the Cloud which
eats up bandwidth and can be costly.

1

2

3

4

2.1. The Design Space: Towards Fog Computing 15

2.1.2 Connectivity and Communication

Connectivity technologies can roughly be categorized into two groups: tech-
nologies that require infrastructure’s support for communication, and tech-
nologies which don’t require a separate intermediary technology. These both
have pros and cons, as we discuss next.

Infrastructure-based Communication

By communication requiring intermediary technology for enabling relaying
the messages between the communicating entities, we refer to infrastructure-
based communication. The concrete infrastructure typically is either wireless
or wired local area network (W/LAN), or wide area network (WAN), which
is more or less a synonym for the Internet. Currently, the Internet-based
communication is yet the most typical way to implement the communication
for a WoT system, and the protocol used for the task is often HTTP (Hyper-
text Transfer Protocol). In many cases, the WoT system architecture follows
REST design principles (Fielding, 2000) (although this indeed is not tied to
the used communication). Other much-used protocols at the moment are
MQTT (Message Queuing Telemetry Transport) and CoAP (Constrained Ap-
plication Protocol) which both enable lightweight communication for more
constrained devices and more direct messaging between the entities. Espe-
cially MQTT (in addition to REST) at the moment has gained particular pop-
ularity for the Internet of Things systems. However, using MQTT or CoAP
require a broker for relaying the messages. Moreover, although HTTP proto-
col may not be the best fit anymore, in the recent 2.0 version (HTTP/2) offers
support for two-way communication (M. Belshe, 2015). The downside yet is
that one entity acts as the server and the others as clients, which initialize the
connection.

Device-to-Device Communication

In the Fog Computing, there is a growing demand for more direct communi-
cation technologies with support for bi-directional communication between
the entities. The distinction between Edge and Fog Computing is often not
very clear (Bermbach et al., 2017), since the modern mobile devices offer ex-
cellent connectivity, and thus act as gateways for many peripheral devices.
At the moment, for example, Personal and Body Area Networks are formed
mainly with Bluetooth and Bluetooth Low Energy (Smart) technologies be-
tween the things and the mobile phone.In general, smart gateway technology
use ZigBee or Z-Wave to communicate with the smart home electronics, and
these gateways are then typically connected LAN and sometimes to WAN
for external access. Another device-to-device connectivity technology is WiFi
Direct, which allow using the existing WiFi technology to form connections
between the supported devices. In practice, WiFi Direct means that one of
the devices say a mobile phone, forms a group and acts as its leader, and
other devices then connect to this established group.

2.3. Research Themes for Web of Things 17

In the remainder of this chapter, we use these research question for dis-
cussing the current state of the WoT research, as well as outlining some fu-
ture research ideas. To answer the primary research question, we start by
outlining some of the current research themes in the next paragraph. Then,
we continue towards a comprehensive discussion on the other research ques-
tions (RQ1–RQ4).

2.3 Research Themes for Web of Things

WoT has been studied extensively since 2011 (Guinard et al., 2011a; Tran et
al., 2017). Because WoT is an umbrella term for multi-device IoT systems that
implemented with Web technologies, many research areas are closely related.
Here we outline some of the areas that we find to be the most important ones
in future research.

2.3.1 Liquid User Experience

Liquid Software refers to the approaches in which applications and data can
seamlessly flow from one device to another, allowing the users to roam freely
across all the computing devices that they have (Gallidabino et al., 2017).
The goal is that users of Liquid Software do not need to worry about data
copying, manual synchronization of device settings, application installation,
or other burdensome device management tasks. Instead, things should work
with minimal effort. From the software development perspective, Liquid
Software should dynamically adapt to the almost infinite set of devices that
are available to run it.

From the usability of WoT perspective, Liquid Software research studies
important paradigm: How the applications can roam from one device to an-
other, following the user from everywhere. The studies aspects include for
example state management and synchronization, and various types of user
interfaces (Gallidabino et al., 2017). While this paradigm is barely about be-
ginning to work with full-fledged computing devices there is much research
to be carried out in the context of constrained devices. (The most advanced
is Apple’s Continuity 5).

2.3.2 Complex Event Processing

Complex Event Processing (CEP) refers to real-time analysis and filtering of
large amounts of data as explained in (Luckham, 2002). The aim is at detect-
ing meaningful events to be used either directly by the end users, or more
commonly, by other systems. So-called event patterns are used for this task,
which are conditions to be met for detecting the interesting situations. The
data streams leveraged for the processing can, for example, come from logis-
tics, communication networks, social networks, health and wellness services
and so on. Many example CEP systems can be found from: (Cugola and

5

18 Chapter 2. Architecting the Web of Things in the Fog Computing era

Margara, 2012). Many issues yet must be solved to make CEP applicable to
commercial systems. These issues include for example fault tolerance and
scalability aspects (Dayarathna and Perera, 2018; Randika et al., 2010). Also,
query languages should be studied since these could help utilizing the pro-
cessed events (Zhang, Diao, and Immerman, 2014). Despite of these, many
new data management and optimization techniques for processing data has
emerged: (Cugola and Margara, 2013; Soto et al., 2016; Mayer, Tariq, and
Rothermel, 2017; Starks, Plagemann, and Kristiansen, 2017).

In the context of WoT and Fog Computing, complex events and process-
ing them becomes increasingly important as this has genuinely potential to
augment people in their lives. Using Web technologies bring both, oppor-
tunities and challenges. The opportunities include that the data can be pro-
cessed – or pre-processed – closer its origin, say on an intelligent network
node for instance. However, such support is limited, which brings us to the
challenges. While JavaScript adoption has been vast, there yet is plenty of
research to be carried on this area to process the data anywhere in the Fog
efficiently: Presently, JavaScript’s primary function is to enable data visual-
izations instead of the actual processing (e.g., with the popular D3.js library).

2.3.3 Microservice Architectural Style

The microservices architecture emphasizes dividing the system into small
and lightweight services. Whether considering Microservices as a new archi-
tectural style; as an implementation of Service-Oriented Architecture (SOA)
(Alshuqayran, Ali, and Evans, 2016; Francesco, Malavolta, and Lago, 2017);
or as an evolution of the traditional Service-Oriented Architectural style (Lewis
and Fowler., 2015), the approach is one of the most recent avenues towards
more flexible installations and executions. The motivation for this transi-
tion comes from the fact that continually maintaining a complex monolithic
architecture has resulted in difficulties in keeping up in pace with new devel-
opment approaches such as DevOps, calling for deployment several times a
day.

In (Dragoni et al., 2016) microservice architecture is defined as a dis-
tributed application where all modules are microservices. The microservices
that can be implemented, tested and executed individually, help to manage
the development. Some other benefits include increased agility and devel-
oper productivity, and also scalability, reliability, and maintainability of the
whole system. However, the benefits come with challenges. For instance, dis-
covering services over the network is often challenging and may introduce
new weak point to the system. Also, security and privacy management often
come more challenging when the architecture is highly decentralized. Other
challenges include optimizing communication and performance. So finally,
benchmarking and testing the system as a whole may become challenging
as well. Despite the many challenges, the system can often benefit from the
most advantages (Thönes, 2015; Pahl and Jamshidi, 2016).

2.4. Discussion 19

From WoT research perspective, this transition at the moment affects to
the backend of the system. However, as has been discussed, the physical ob-
jects in our surroundings are becoming more and more capable of perform-
ing computations. Thus, some of the physical objects may then run some
microservices. The benefit is that deployments can be automated and made
continuous. From the perspective of Fog Computing, the benefit of microser-
vices is that the data can stay close to its source, and as a result, the lag in the
communication reduces. Moreover, the privacy of the users may improve if
all the data does not need to be transferred over to a service provided by an
Internet company that benefits from the user-produced data.

2.4 Discussion

In this paragraph, we continue the discussion on the remaining four research
questions (RQ1–RQ4). In the end of this paragraph, we discuss about threats
to the validity of our study.

2.4.1 RQ1: How to use data and hardware resources for per-

ception and interaction?

Physical devices (ever-more often constrained and embedded devices) are
producing vast amounts of data with their sensing capabilities. Presently,
this data is typically dispatched further without processing its raw form. In
future, this data can be expected to act as one of the critical enablers for many
WoT scenarios, for instance helping people as well as other devices to make
more well-informed decisions (Mayer and Karam, 2012). However, the raw
data itself does not support making these decisions, and there are mainly
four reasons for this (Aggarwal, Ashish, and Sheth, 2013): First, the data is
distributed to various locations and must be acquired someway. Second, the
amount of data is very large (much steeper any human could ever interpret).
Third, the data is often noisy and contains false values. Fourth, the data in
its raw form (e.g., temperature values) is not very useful, but instead must
be processed to more abstract-level information (e.g., weather conditions).
Hence to leverage this data we need new tools for collecting, processing,
analyzing, describing, and then, finally, for using it in the decision-making
processes (Mayer and Karam, 2012).

The hardware resources can be used for interacting and giving "the out-
put" to the physical world. In essence, this means sending some actuation
instructions over the network. While now the network is typically the Inter-
net, in Fog Computing context heterogeneous networks play the ever-more
important role, giving specific benefits like reduced dependency on high-
quality connection, shorter communication lag, and some fault tolerance.
Like utilizing the data, also the actuation requires abstractions: For exam-
ple, commanding each servo motor with an appropriate amount of power
would not work. In the context of WoT, the most famous approaches come

20 Chapter 2. Architecting the Web of Things in the Fog Computing era

from Guinard and Trifa in their many publications and books (Guinard and
Trifa, 2016).

In essence, there are two kinds of programming models for the Fog Com-
puting: sense-process-actuate models, and stream processing models (Dastjerdi
and Buyya, 2016). Of these two, the stream processing model has been the
typical one and has previously been used in many IoT and Cloud Comput-
ing approaches. In the Fog Computing context, the stream processing is still
a popular model as it is more straight-forward to implement. The Complex
Event Processing approaches often belong to this category, although the pro-
cessing typically takes places on the edge devices (Cugola and Margara, 2013;
Soto et al., 2016; Mayer, Tariq, and Rothermel, 2017; Starks, Plagemann, and
Kristiansen, 2017). The sense-process-actuate model, on the other hand, of-
ten requires more high-level abstractions when used with heterogeneous de-
vices. Until now there only has been few such models in the context of Fog
Computing (Bermbach et al., 2017), and especially in the context WoT and
Fog Computing. For this reason, many have simply used APIs for the task,
which makes the programming less effective and affects to the maintainabil-
ity aspect as well.

We believe that higher abstraction models will start to emerge sooner than
later, which is indicated by the recent developments in Fog Computing. Mah-
mud et al. for example, discusses challenges regarding structural, service and
security-related issues (Mahmud, Kotagiri, and Buyya, 2018). Also, a taxon-
omy of Fog Computing classifies and analyses the existing works based on
their approaches towards addressing the challenges, proposing some promis-
ing research directions to pursue in the future. Also Wen et al. provide an
overview of the core issues, challenges and future research directions in Fog-
enabled orchestration for IoT services in (Wen et al., 2017). Additionally, they
also present experiences of an orchestration scenario as a workflow across all
layers of Fog architecture. The reported experiences are based on their own
Fog Orchestrator.

The work (Byers, 2017) discusses some of the more significant architec-
tural requirements for the critical IoT networks in the context of exemplary
use cases, and how Fog Computing techniques can help fulfill them. A
wide variety of potential IoT use cases, serving many critical vertical market
switch several selected use cases in each market that have requirements to
which Fog techniques are potentially applicable, such as agriculture, health,
transportation, smart cities/smart buildings, and so on. The work provides
useful guidelines to make more informed decisions in the architecture, parti-
tioning, design, and deployment of Fog Computing in IoT networks.

The work (Rahmani et al., 2018) present a Fog-assisted system architec-
ture capable of coping with many challenges in ubiquitous healthcare sys-
tems such as mobility, energy efficiency, scalability, and reliability issues. Ac-
cording to the Rahmani et al., successful implementation of Smart e-Health
Gateways can enable massive deployment of ubiquitous health monitoring
systems, especially in clinical environments. The work presents a prototype
of a Smart e-Health Gateway called UT-GATE and implements an IoT-based

2.4. Discussion 21

Early Warning Score (EWS) health monitoring to practically show the effi-
ciency and relevance of the system on addressing a medical case study.

An example from some of the authors of this paper for building con-
crete Fog Computing applications was released lately. (Mäkitalo et al., 2018)
presents Action-Oriented Programming model (AcOP) for developing and
coordinating interactions between entities operating in the Fog. In addition,
in the paper, the pain points of the traditional mobile app and Cloud Com-
puting development in contrast to Fog Computing are highlighted.

2.4.2 RQ2: What are the current building blocks for Web of

Things, and who is providing them?

At the moment, the world is full of closed and open APIs (Taivalsaari and
Mikkonen, 2017), and these are most basic building blocks of the Web of
Things development as well. Nearly all the new IoT devices have an API for
communicating and accessing it via cloud service. In some case also the gate-
ways offer an API that can be used directly communicating with the IoT de-
vices when operating inside the same local area network (LAN). These APIs
typically follow at least some of the REST design principles (Fielding, 2000).
Other building blocks are various protocols (e.g., HTTP and WebSocket) that
then enable the actual communication, as was described above. Moreover,
in addition to the things offering their APIs via Cloud services, some things
also embed Web servers in them (Guinard, Trifa, and Wilde, 2010; Fielding
and Taylor, 2002) and then provide APIs. However, this approach has been
changing after introducing new two-way communication protocols which
are typically more light-weight and work even when the topology of the net-
work changes or the device loses its IP address. For the user interface, the
current responsive HTML/CSS frameworks (Bootstrap and Foundation) to-
gether with the front-end JavaScript frameworks (e.g., React.js, Angular.js,
Vue.js) are great building blocks. For other more constrained devices, how-
ever, the building block for user interfaces are yet very limited, and for this
reason, we need new ways for implementing user interfaces.

From Fog Computing perspective, Docker technology is one of the most
critical building blocks. It allows building microservices that then can be de-
ployed and maintained in various locations, often in automated ways. Other
technologies that help to leverage the Fog Computing’s potential are the cur-
rent serverless computing frameworks (e.g., AWS Lambda, Google Cloud
Functions, etc.) that can be used in a homogenized way with the open source
Serverless Framework.

Despite these current building blocks, the development is at the moment
is yet forced to focus a lot on the connection and communication-related
aspects, rather than the actual application logic. The actual development
tools (e.g., Node-RED, Meshblu, etc.) poorly fit the Fog Computing or are
such research-oriented that their long-term support cannot be expected. For-
tunately, while looking at the numbers of published papers, the IoT and
WoT development are timely topics in the research community, and new ap-
proaches can be expected to emerge.

22 Chapter 2. Architecting the Web of Things in the Fog Computing era

At some point, it may even become possible to leverage the existing social
structures for sharing building blocks and open APIs, as some researchers
have been proposing (Guinard et al., 2011b). Also, posting one’s creations
to social networks (e.g., Facebook, Linkedin, Twitter, etc.) which share them
automatically with trusted or otherwise relevant people sounds promising
idea. This would also mean that we would not need to create the social net-
works for the sharing from scratch. Sharing could also enable advertising
one’s skills (e.g., a student seeking first job). In social media, however, some
things go viral in these networks, meaning they get an enormous amount of
popularity, in the good as well as in the bad sense.

Although sharing one’s creations or sensor data directly with friends sounds
like a great idea, we, however, think that yet we are pretty far from this, as
there barely is any programming models or tools (in the context of Fog Com-
puting and WoT). Moreover, the danger also is that this would introduce too
many new security and privacy threats, as this is the case already with the
things created by the industry as we discuss later.

2.4.3 RQ3: Is interoperability with other systems supported,

and how can this aspect be improved?

Often standardization is considered to be the key to interoperability. The
World Wide Web is one of the most successful technologies in interoperability-
wise, and now it is going towards harnessing physical objects to augment us
in our daily lives. For this reason, it is vital that the World Wide Web Con-
sortium (W3C) is drafting an abstract WoT architecture (Kajimoto, Kovatsch,
and Davuluru, 2017). In the draft, they mention the objective of this work to
be that the WoT is intended to enable interoperability across IoT Platforms
and application domains. The fundamental idea is to maximize using the
existing and emerging tools to be used on for building new IoT scenarios.

As part of the same work, W3C is also drafting some other standards:
WoT Thing Description (Kaebisch and Kamiya, 2017), WoT Binding Tem-
plates (Koster, 2017b), and WoT Scripting API (Kis et al., 2017). Of these,
the WoT Thing Description is the primary building block, which role is to
describe an interface of a thing (WoT Interface) so that other things can then
interact with other services and things. The role of WoT Binding Template
is to enable binding the interface with multiple protocols. A thing may use
WoT Scripting API internally, which means that the application logic can be
done using JavaScript. The above is supposed to simplify the development
significantly and enable moving the developed components fluidly. In Fog
Computing this would become very useful and could be used in various use
cases.

The work by W3C has a lot in common with Evrythng’s Web Thing Model
approach. While Evrythng’s approach has been developed already since
2014, the W3C member submission was submitted on 2017 (Martins, Maza-
yev, and Correia, 2017; Trifa, Guinard, and Carrera, 2017). The W3C ap-
proach can be considered as one of the leading approaches. However, there
are a number of other hypermedia API-level abstractions for constructing

2.4. Discussion 23

WoT applications and for improving the interoperability that come from con-
sortiums as well as from individual authors. These with include: JSON
Hypertext Application Language (JSON-HAL) (Kelly, 2016), Media Types
for Hypertext Sensor Markup (HSML) (Koster, 2017a), Constrained REST-
ful Application Language (CoRAL) (Hartke, 2017) and Web Thing API by
Mozilla Francis, 2018.

One of the main purposes of the all above approaches (except JSON HAL)
is to offer bindings for different protocols to support programming interac-
tions between the things. However, considering how intuitive it is to use the
approach by developer it is also important to offer high-level architecture
definitions. From the above approaches, Mozilla’s Web Thing API, Evry-
thng’s Web Thing Model, and W3C approach are the only ones that offer such
definitions. Mozilla’s Web Thing API is on of the most recent approaches and
has a lot in common with the Evrythng’s Web Thing Model approach. The
fact that this approach comes from a company, may however, be a downside
since other companies may not be willing to follow this approach. On the
other hand, it is also a positive thing that the approach comes from a big
company with with a long tradition of open-source publishing their works
is good thing since it supports continuity. For example, some of the the ap-
proaches coming from small groups or individual authors (JSON-HAL (Kelly,
2016) and HSML (Koster, 2017a) seem to have expired for now. Nevertheless,
all these attempts for standardization are important since these highlight the
importance of the standardization work for Web of Things. A more in-depth
comparison of these APIs has been conducted in (Martins, Mazayev, and Cor-
reia, 2017).

At present, the IoT has a strong focus on establishing connectivity be-
tween a variety of constrained devices and services. Therefore, the next log-
ical goal is to build on top of this connectivity and begin focusing on the
application layer. Thus, in contrast to the IoT approaches, it would be great
if the standardization work by W3C serves its purpose as this would enable
considering the devices as first-class citizens of the Web. If the developers
would have clear abstractions and they could consider that the connection
between the things established, this would allow the developers to focus on
building the applications.

We believe that at large, the WoT has all the potential to materialize into
an open ecosystem of digitally augmented physical objects and new experi-
ences which genuinely can help people in their lives. At this point, we are
not there yet, and plenty of research must be conducted on improving the
interoperability between the things, as well as between cloud services.

2.4.4 RQ4: What are the current security and privacy issues,

and can these threats be covered?

WoT involves numerous heterogeneous entities interacting with each other.
Given the enormous number of connected devices that are potentially vul-
nerable, security and privacy protection became extremely necessary (El Jaouhari,

24 Chapter 2. Architecting the Web of Things in the Fog Computing era

Bouabdallah, and Bonnin, 2017). In fact, poorly secured interconnected (ma-
licious) IoT devices could serve as entry points for cyber attacks towards
more critical targets. In this paragraph, we give some considerations on cur-
rent IoT technology and related security breach and solutions (if any). Source
of the following discussion comes from some recent state of the art survey in
the area (Mendez, Papapanagiotou, and Yang, 2017; Yang et al., 2017; Alaba
et al., 2017; Granjal, Monteiro, and Silva, 2015; Fremantle and Scott, 2017) as
well as security issues analysis of the Web of Things (El Jaouhari, Bouabdal-
lah, and Bonnin, 2017), where a more through discussion can be found.

The attacker model for IoT architecture is described in (Atamli and Mar-
tin, 2014) where the attacker can be a malicious user, a bad manufacturer, or
an external adversary:

• The malicious user is the owner of the IoT device with the potential to
perform attacks to learn the secrets of the manufacturer and gain access
to restricted functionality. By uncovering the flaws in the system, the
malicious user can obtain information, sell secrets to third parties, or
even attack similar systems.

• The bad manufacturer is the producer of the device with the ability to
exploit the technology to gain information about the users, or other IoT
devices. Such a manufacturer can deliberately introduce security holes
in its design to be exploited in the future for accessing the user’s data
and exposing it to third parties. Equally, the production of poorly se-
cured goods results in compromising the users’ privacy. Besides, in IoT
context, where different objects are connected to each other, a manufac-
turer can attack other competitors’ devices to harm their reputation.

• The external adversary is an outside entity that is not part of the system
and has no authorized access to it. An adversary would try to gain
information about the user of the system for malicious purposes such
as causing financial damage and undermining the user’s credibility.

Notice that this is indeed different from classic Dolev-Yaho model (Dolev
and Yao, 1983), where the adversary can overhear, intercept, and synthesize
any message and is only limited by the constraints of the cryptographic meth-
ods used. In other words: "the attacker carries the message" and has a sort
of "omnipotence" not easy to implement and verify, and usually considered
diminished.

The work (Dragoni, Giaretta, and Mazzara, 2017) reports an in-depth
study of possible weakness and their exploitation on IoT devices. In par-
ticular, a study of HP conducted some years ago (Internet of things research
study 2015), analyzed 10 of the most popular IoT devices on the market and
revealed a generalized poor security level of the majority of them: most of
the devices showed privacy and confidential information leakage; Two third
of them used too low authentication requirements, and not strong enough
password used; only some of them used encrypted network services, and
suffer from XSS weakness.

2.4. Discussion 25

The most common and easily addressable security issues of Internet of
Things devices reported by HP in 2015 include (Internet of things research study
2015; El Jaouhari, Bouabdallah, and Bonnin, 2017):

• Privacy concerns: The study reports that 80% of the devices were leak-
ing private information.

• Insufficient authorization: According to the study 80% of the tested de-
vices were not protected by a proper password.

• Lack of transport encryption: According to the study 70% of the tested
devices did not encrypt communication.

• Insecure Web interface: According to the study 60% of the tested de-
vices had security concerns in their Web-based user interfaces, and 70%
of the systems behind the devices allowed resolving the users’ accounts.

• Inadequate software protection: The study reports that 60% of the de-
vices were not securing their software updates with encryption.

In (Zhao and Ge, 2013) the IoT architecture is composed of three layers
(perception, network and application). We follow such view and we will
analyze security issue in each of the levels.

Perception Layer

The perception layer is strictly connected to the technology used for the com-
munication. Wireless Sensor Network (WSN) is the general term to classify
all such (mesh) connected devices, from centimeters to several meters of dis-
tances. When dealing with low distance technology and protocol (such as
Near Field Communication (NFC) or wireless network of wearable devices
(Body Area Network (BAN))) built following 802.15.6 standards, security is
inferior. Indeed, NFC suffers from many threats (Denial of Service, and in-
formation leakage) (Madlmayr et al., 2008). Moreover, since for backward
compatibility reason with RFID it is not encrypted, it suffers from many man-
in-the-middle attacks, using antennas or skimmers to intercept the signals.

WSN also refers to protocols connected to the 802.15.4 standard, whose
major implementation are ZigBee and 6LowPan (and maybe someway still
Bluetooth). Bluetooth is indeed the oldest of the three technologies. Despite
it is currently adopted for indoor application with iBeacons, and the particu-
lar care of energy consumption in the Low Energy (BLE) version (Zafari and
Papapanagiotou, 2015; Zafari et al., 2017), the technology will be probably
substituted for security reasons soon by the more advanced implementation
of Zigbee and 6LowPan. In fact, despite BLE uses AES-128 CCM for encryp-
tion and authentication purposes, it still suffers from many vulnerabilities,
and at today many of the countermeasures rely upon user security problem
awareness.

ZigBee represents a new protocol for WSN and the main used implemen-
tation of the IEEE standard 802.15.4. Differently, from Bluetooth, the ZigBee

26 Chapter 2. Architecting the Web of Things in the Fog Computing era

protocol came natively with security features and management of both long-
term and session keys. The long-term (Master Key) is part of the factory-
setting, while all the devices share the session (network) keys on the network.
ZigBee uses AES-128 encryption as the default, however, since often some
trade-offs between security and power consumption (Boyle and Newe, 2008)
and some threats such as traffic sniffing (eavesdropping), packet decoding,
and data manipulation/injection could be possible.

6LowPan (that stand for IPv6 Low Power Personal Area Networks) is the
newest WSN standard. Its main innovation is the use of an IPv6 address for
each sensor in the mesh. The use of IPv6 addressing gives to 6LowPan uni-
versality, extensibility and stability (Sheng et al., 2013), and wrt IPv6 small
packet size and low bandwidth. Unfortunately, devices that support 6Low-
Pan are still resource consuming and this is the primary challenge the solve
in the future for global adoption of 6lowPan. However, from the security
point of view, 6LowPan implements Elliptic Curve Cryptography (ECC) en-
cryption algorithm that has smaller-packet sizes w.r.t. RSA.

Middleware and Application Layers

The middleware layer in IoT contains a vast number of proposals, each of
them with their pros and cons. Indeed, no real standard is used in this layer
because all the vendors propose their solutions. Describing numerous solu-
tions and their security concerns would result in a not complete description,
and thus we suggest to the reader to start from the top survey (Razzaque et
al., 2016a).

The application layer, on the contrary, is today enough standardized and
the majority of the implementations use the Message Queue Telemetry Trans-
port (MQTT) protocol. The MQTT protocol was proposed in (OASIS Message
Queuing Telemetry Transport (MQTT) TC, 2014) as a light-weight protocol
designed for constrained devices and low-bandwidth. At today MQTT is an
OASIS and ISO/IEC JTC1 standard (technology, 2016). The OASIS MQTT TC
is producing a standard for the Message Queuing Telemetry Transport Pro-
tocol compatible with MQTT V3.1, together with requirements for enhance-
ments, documented usage examples, best practices, and guidance for the use
of MQTT topics with a commonly available registry and discovery mecha-
nisms. The standard supports bi-directional messaging to uniformly handle
both signals and commands, deterministic message delivery, necessary QoS
levels, always/sometimes-connected scenarios, loose coupling, and scala-
bility to support large numbers of devices. Candidates for enhancements
include message priority and expiry, message payload typing, request/re-
ply, and subscription expiry. As an IoT connectivity protocol, MQTT is de-
signed to support messaging transport from remote locations/devices in-
volving small code footprints (e.g., 8-bit, 256KB ram controllers), low power,
low bandwidth, high-cost connections, high latency, variable availability, and
negotiated delivery guarantees.

However, the present implementation of MQTT provides support for only
identity, authentication and authorization policies. Identity specifies the client

2.4. Discussion 27

that is being authorized. Authentication provides the identity of the client
and authorization is the management of rights given to the client.
The primary approaches used to support these policies are by using a user-
name/password pair, which is set by the client, for identification or by au-
thentication performed by the MQTT server via client certificate validation
through the SSL protocol. The MQTT server identifies itself with its IP ad-
dress and digital certificate. Its communication uses TCP as transport layer
protocol. By itself, the MQTT protocol does not provide encrypted communi-
cation. Authorization is also not part of MQTT protocol but can be provided
by the servers. MQTT authorization rules control which client can connect to
the server and what topics a client can subscribe to or publish.

In addition to investigating and discussing other security and privacy
challenges of introducing Fog Computing in IoT environments, (Alrawais
et al., 2017) necessitate that the Fog Computing research should be focused
on how to overcome the challenges related to authentication in the context
of Fog Computing in IoT applications since this is far from trivial in such
decentralized environment. Also Zhang et al. discuss about similar security
and privacy threats towards IoT applications and discuss the security and
privacy requirements in Fog Computing in (Ni et al., 2017). Further, they
demonstrate potential challenges to secure Fog Computing and review the
state-of-the-art solutions used to address security and privacy issues in Fog
Computing for IoT applications and define several open research issues. In a
recent paper, a possible solution in (Mäkitalo et al., 2018) by forming trusted
coalitions of devices (Ometov et al., 2016) is presented. The approach is con-
nectivity agnostic, but requires a library support for the leveraged device
which may limit its usage in WoT environment.

2.4.5 Threats to Validity

We discuss threats to the validity of this work in the different steps of our
study.

Threats to the Identification of Primary Studies

In this chapter, we assume that the emerging Fog Computing will eventu-
ally enclose Cloud Computing. Hence, we reviewed some of the most recent
Fog Computing articles and mapped the key enabling technologies that were
mentioned to foster the paradigm shift. The microservice architectural style
and communication-related aspects were then present in most articles, and
thus formed the core of our study and were used as search terms for find-
ing papers. The importance of data and its analysis was also a significant
theme among Fog Computing and Web of Things papers, and for this reason,
complex event processing was used as a search term. The IoT and WoT are
expected to increase privacy and security threats dramatically, and thus we
decided to focus primarily on this aspect while selecting the studies. While
this protocol helped us to focus on selecting the major themes for our study,
we naturally were not able to include all the minor themes.

28 Chapter 2. Architecting the Web of Things in the Fog Computing era

Threats to Selection and Data Extraction Consistency

We formulated the research questions RQ1–RQ4 which helped us to select
the relevant papers for our study. Naturally, new studies are being published
all the time, especially related to security and privacy issues, Fog Computing,
and microservices since these topics are very relevant at the moment. We also
intentionally excluded thesis as well as some older papers from our study.

Threats to Data Synthesis and Results

We tried to mitigate the threat with a standard protocol of several steps, by
piloting and by externally evaluating our process by professors that were not
participating in making our study.

2.5 Conclusions

In this chapter, we focused on describing the current technical design space
for WoT, focusing on the emerging Fog Computing paradigm. We went
through the critical enabling technologies that have gained particular pop-
ularity among the developers, and which form the basis of building WoT
systems and software. Afterwards, we defined research questions of WoT re-
search and outlined motivation for future research in this area. We described
some research areas trying to solve our outlined research challenges. Then,
we continued the discussion on the retrospective.

The outcome of this work is that WoT research should take a new path,
moving from centralized RESTful and Cloud service based approaches to-
wards more decentralized approaches, and aim at leveraging the full poten-
tial of the dynamic and modern computing environment, reaching from the
edge devices and network nodes to the Clouds. As the modern comput-
ing environment is heterogeneous, the Web-based technologies give a good
base and support the fluidity required by the Fog Computing. Like all tech-
nologies, also Web technologies have their flaws which mainly are related
to their limited support in some hardware platforms and some limitations
in accessing the hardware resources. Nevertheless, due to the openness and
support for heterogeneity, Web technologies in the context of the Internet of
Things have earned their place, and thus will continue growing their popu-
larity among the IoT development.

29

Chapter 3

A Fuzzy Ontology-based Tool for
Decision Making in Architectural
Design

3.1 Introduction and motivation

In software development the main goals to accomplish are customer and
quality requirements satisfaction, correct execution of the software systems,
and cost effective adaptation to future changes (Avgeriou et al., 2011). In or-
der to reach these challenging goals, tools and techniques may help to man-
age and retrieve the knowledge necessary for decision making processes. For
this reason, recent research trends are focused to strengthen the reasoning
and decision-making process to reach these goals (Avgeriou et al., 2011).

The development of a software system is in fact determined partly by its
functionality i.e., what the system does - and partly by requirements about
quality attributes or about development (Chung et al., 2012). Such require-
ments are known as Non-Functional Requirements (NFRs). During archi-
tectural design the selection of NFRs is a relevant task, since can be used as
selection criteria for choosing the proper design solution among several ones.
On the other hand, exploiting design decisions during development emerges
as a Software Architecture (Bass, Clements, and Kazman, 2005; Shaw and
Garlan, 1996; Garlan and Shaw, 1994; Di Noia, Mongiello, and Di Sciascio,
2014). The software architecture is the result of the work of an architect or of
a designers team (Bass, Clements, and Kazman, 2005). The architectural de-
sign of a software system is made up of a set of selected quality attributes; in
this sense, the architecture can be modeled by taking into account the needed
quality attributes. To reach this goal, an architect can use primitive design
techniques. These primitives are known as tactics. Generally a tactic can be
considered as a modeling solution and is related to satisfying a given quality
attribute. An architectural strategy is made up of several tactics. The archi-
tect takes design decision based on a strategy, hence selects a set of tactics,
and hence a set of patterns.

The design process requires a choice of the best combination of tactics to
achieve the system’s desired goals (Bass, Clements, and Kazman, 2005). For
this reason during the design of Middleware-induced Software Architecture
a challenging tasks are the selection of (i) best patterns and (ii) best existing

30
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

Middleware able to satisfy desired requirements (Egyed and Grunbacher,
2004; Mairiza, Zowghi, and Nurmuliani, 2009; Razzaque et al., 2016b). A
main difficult derives from the relationship between requirements and pat-
terns that can be complementary, can be composed, sometimes cooperate
to solve a larger problem or are exclusive in a modeling task (Buschmann,
Henney, and Schmidt, 2007a). Existing classifications or quality models have
been defined to categorize QAs and requirements, anyway a systematic clas-
sification of NFRs towards architectural design and a description of their use
during system modeling are missing (N.Harrison, 2007; Avgeriou and Zdun,
2005). Moreover, only little work has been done in using a knowledge-based
approach to support such activities (Li, Liang, and Avgeriou, 2013).

The main objective of this research is the implementation of a semi-automated
tool aimed at supporting decision makers to derive knowledge able to solve architec-
tural problems.

More precisely we develop a Decision Support System for supporting de-
signers and software architect – having greater or lesser experience – in the
architectural design of Middleware-induced Software Architecture. Specifi-
cally, we will show how the following task can be addressed: given a desired
set of FRs, NFRs and ARs perform the tasks of (i) retrieving the smallest subset
of patterns that best match them and (ii) recommending existing Middleware can
support all the necessary requirements.

To achieve this goal, we will define a theoretical framework to model and
reason on the knowledge about requirements and reusable schema for de-
sign in order to obtain a model of the system satisfying given requirements,
quality attributes optimized with reusable and composable design schema.

Toward this goal, the following research questions will be addressed:
Q1. What are the main categories of requirements a software may be

asked to fulfill? Q2. What are the main reusable solving schema for given
classes (or families) of design problems? Q3. How do categories of require-
ments, reusable schema and classes of problems are related? Q4. How to
facilitate the decision making process for middleware-induced software de-
sign modeling by using relations among these categories of elements? Q5.
How to use this knowledge to support modeling during software design?

To achieve the main objective of this research and answer the research
questions, the following research process has been taken: 1. Propose a the-
oretical framework for modeling knowledge about NFRs,FRs, ARs, middle-
wares, design patterns, and define a reasoning algorithm to manipulate the
modeled knowledge; 2. Build a prototype system to implement the theo-
retical framework; 3. Validate the prototype with use cases; 4. Compare
solutions provided by the decision support system with human proposed
solutions to software design problems.

The framework we propose to represent and reason about requirements
is based on Fuzzy Description Logics (FDLs) (we refer the reader to (Straccia,
2013) for a description about FDLs), which are the theoretical counterpart
of Fuzzy OWL 2 (Bobillo and Straccia, 2011), the main formalism to specify
fuzzy ontologies. We recall that FDLs are logical languages specifically tai-
lored to model structured information about vague concepts that naturally

3.1. Introduction and motivation 31

occur in NFRs. For instance, in our context, FDLs allow one to model that
“portability and adaptability are directly proportionate”, “stability and adaptability
are inversely proportionate” (ontological knowledge) or that “the Adapter pat-
tern has high portability” (factual knowledge). New knowledge about a pat-
tern is obtained by combining existing knowledge, for example ontological
or factual through a reasoning task. For instance it can be inferred that “the
Adapter pattern has high adaptability and low stability”. Another type of expres-
sion allowed in our framework is “high adaptability implies a medium main-
tainability". Let us note that in the previous statements, we can use fuzzy
sets (Zadeh, 1965)to characterize concepts like high, medium and low. We
would like to stress the point that a formal encoding of the knowledge about
patterns, requirements, family of patterns and so on is particularly useful
to automatize the task of selecting a set of patterns that encounters user’s
needs. Specifically, we will show how the following task can be addressed:
given a desired set of FRs, NFRs and ARs perform the tasks of (i) retrieving the
smallest subset of patterns that best match them and (ii) recommending existing
middleware can support all the necessary requirements. Eventually, in order to
make the approach feasible, we collected the knowledge about 109 design
patterns, 28 pattern families, 37 NFRs, 61 existing Middleware in literature
grouped based on their 7 design approaches and its 14 NFRs, 5 FRs, 8 ARs
together with their mutual relations and represented them as a Fuzzy OWL
2 ontology and show its application in a use case scenario.1

In summary, this chapter provides the following contributions:

• we provide a method to model and reason with mutual relations among
requirements in architectural software patterns by relying on fuzzy on-
tologies;

• the definition of a novel formal reasoning task being able to retrieve
a set of patterns/middlewares that maximally match a user query ex-
pressed in terms of desired requirements;

• the construction of a Fuzzy OWL 2 ontology;

• a use case scenario application to validate the method;

• an implementation of the theoretical framework in a decision support
system.

No other method similar to the proposed one was found. This chapter ex-
tend MD thesis where the approach by using Fuzzy DL is proposed and the
knowledge limited to NFRs and design pattern is collected. In the following,
we proceed as follows. We start by recalling basic definitions about ontolo-
gies and FDLs. Then, we proceed with main properties of design patterns
and quality models used to model NFRs. In Paragraph 3.4, we state the ad-
dressed problem and the proposed approach. In Paragraph 3.5 we describe a

1The ontology is available online at
.

32
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

case study. In Paragraph 3.7 the implemented decision support system is de-
scribed. In Paragraph 3.8 we validate the approach and in Paragraph 3.9 we
address related work about existing (ontological) approaches for Knowledge
representation in software engineering, design patterns and NFRs modelling.
Conclusions close the chapter.

3.2 Fuzzy Description Logics

Ontologies play a key role in the success of the Semantic Web (Berners-Lee,
Hendler, and Lassila, 2001) since they are the recognized knowledge repre-
sentation formalism for specifying domain knowledge and for sharing and
reusing this knowledge. Description Logics (DLs) (Baader et al., 2003) are at
the core of the Semantic Web ontology description language OWL 2 (Cuenca-
Grau et al., 2008). In fact, OWL 2 is based on a specific DL named SROIQ(D)
(Horrocks, Kutz, and Sattler, 2006). In recent times, it has been noted that
classical ontologies and its languages are not appropriate to deal with vague-
ness and imprecise knowledge, which is fundamental to several real world
domains (Sánchez and Tettamanzi, 2006). To handle this problem, the use
of fuzzy logics with ontology offers a solution. Fuzzy ontologies and its de-
scription logics for the semantic web can handle probabilistic or possibilistic
uncertainties and vagueness. Research on fuzzy ontologies began in the early
2000’s with the focus on simplistic models used for improve an Information
Retrieval System (Calegari and Sanchez, 2007). Fuzzy DLs (FDLs) are an ex-
tension of DLs to deal with fuzzy concepts (see (Straccia, 2013; Bobillo et al.,
2015) for an overview). In these logics, satisfactions of axioms is based on a
degree of truth that generally is a value in [0, 1].

3.2.1 Recap of Fuzzy Description Logics Basics

The fuzzy DL we are considering here is called ALCB(D), whose expressive-
ness is enough to illustrate our approach. Our framework extends to more
expressive fuzzy DLs easily. We recall that ALCB(D) is a ALC, in which
the letter B represents the individual value restrictions that are restricted kind
of nominals, and the letter D indicates the fuzzy concrete domains (Straccia,
2005).

For making the chapter self-contained, we recap here some basic defini-
tions about fuzzy sets and the fuzzy DL ALCB(D).

Fuzzy Sets

Let X be a countable crisp set, i.e. a set in which an element is a either mem-
ber of the set or not. A fuzzy set (Zadeh, 1965) A over X is characterized by a
function A : X ! [0, 1], called fuzzy membership function. Typical operations
on fuzzy sets are defined as: Intersection (A \ B)(x) = min(A(x), B(x)),
Union (A [B)(x) = max(A(x), B(x)) and Complement Ā(x) = 1� A(x).
Figure 3.1 illustrates some frequently used membership functions for speci-
fying fuzzy sets.

34
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

Now, let us consider the following notations: the set of atomic concepts
or concept names is denoted as A, the set of role names denoted as R, the set of
individual names denoted as I. We assume that a role can be a data type property
or an object property. Using DL constructors, concepts are built from concept
names A, object properties R and data type properties S. The syntactic rule
used for concept construction is the following:

C ! > | ? | A | C1 u C2 | C1 t C2 | ¬C | C1 ! C2

| 9R.C | 8R.C | 9S.d | 8S.d | 9R.{a} .

Concepts of the form {a}, with a 2 I, are called nominals. In ALCB(D), they
can only appear in concepts of the form 9R.{a}.

A Fuzzy Knowledge Base (or fuzzy Ontology) K = hA, T i contains a fuzzy
ABox A with axioms about individuals and a fuzzy TBox T with axioms
about concepts.

A fuzzy ABox contains a finite set of fuzzy assertions of the following types:
(i) Concept assertions of the form ha:C, αi, with α 2 (0, 1] and stating that indi-
vidual a is an instance of concept C with degree greater than or equal to α;
(ii) Role assertions of the form h(a, b):R, αi, α 2 (0, 1], meaning that the pair of
individuals (a, b) is an instance of role R with degree greater than or equal to
α. A fuzzy TBox consists of a finite set of fuzzy General Concept Inclusions (fuzzy
GCIs), which are expressions of the form hC1 v C2, αi, α 2 (0, 1], meaning
that the degree of concept C1 being subsumed by C2 is greater than or equal
to α.

For the rest of the chapter we also make the following assumptions:
(i) in fuzzy assertions and GCIs, we may omit the degree α and in that case
the value 1 is assumed;
(ii) we may write 9R in place of 9R.>;
(iii) we use the GCI C ⌘ D as a macro of both expressions C v D and D v C,
dictating that C and D are ‘equivalent’ concept expressions.

Concerning the semantics, let us fix a fuzzy logic. Unlike classical DLs, in
fuzzy DLs, an interpretation I maps a concept C into a function CI : ∆I !
[0, 1] and, thus, an individual belongs to the extension of C to some degree in
[0, 1], i.e. CI is a fuzzy set.

Specifically, a fuzzy interpretation is a pair I = (∆I , ·I) consisting of a
nonempty (crisp) set ∆I (the domain) and of a fuzzy interpretation function ·I

that assigns:
i to each atomic concept A a function AI : ∆I ! [0, 1];
ii to each object property R a function RI : ∆I ⇥ ∆I ! [0, 1];
iii to each data type property S a function SI : ∆I ⇥ ∆D ! [0, 1];
iv to each individual a an element aI 2 ∆I such that aI 6= bI if a 6= b (Unique
Name Assumption);
v to each data value v an element vI 2 ∆D. Now, a fuzzy interpretation

3.2. Fuzzy Description Logics 35

function is extended to concepts as specified below (where x 2 ∆I):

?I (x) = 0 , >I (x) = 1 ,

(C u D)I (x) = CI (x)⌦ DI (x) ,

(C t D)I (x) = CI (x)� DI (x) ,

(¬C)I (x) = CI (x) ,

(C ! D)I (x) = CI (x)) DI (x) ,

(8R.C)I (x) = infy2∆I{RI (x, y)) CI (y)} ,

(9R.C)I (x) = supy2∆I{RI (x, y)⌦ CI (y)} ,

(9R.{a})I (x) = RI (x, aI) ,

(8S.d)I (x) = infy2∆D{SI (x, y)) dD(y)} ,

(9S.d)I (x) = supy2∆D{SI (x, y)⌦ dD(y)} .

The satisfiability of axioms is then defined by the following conditions:
(i) I satisfies an axiom ha:C, αi if CI(aI) � α;
(ii) I satisfies an axiom h(a, b):R, αi if RI(aI , bI) � α;

(iii) I satisfies an axiom hC v D, αi if (C v D)I � α where2 (C v D)I =
infx2∆I{CI(x)) DI(x)}. I is a model of K = hA, T i iff I satisfies each
axiom in K.

The most common reasoning tasks on fuzzy DLs, which are usually inter-
definable (Straccia, 2013), are the following ones (K is a fuzzy KB):
(i) Consistency (or KB satisfiability). Check if K has a model;
(ii) Fuzzy concept satisfiability. A fuzzy concept C is α-satisfiable w.r.t. K iff

there is a model I of K such that C(x)I � α for some element x 2 ∆I ;
(iii) Entailment. A fuzzy axiom τ is a logical consequence of K (or K entails τ),
denoted K |= τ, iff every model of K is a model of τ;
(iv) Fuzzy concept subsumption. C2 α-subsumes C1 w.r.t. K iff every model I
of K satisfies 8x 2 ∆I , CI

1 (x)) CI
2 (x) � α;

(v) Best Entailment Degree (BED). The BED of an axiom φ 2 {a:C, (a, b):R,
C v D} w.r.t. K is defined as bed(K, φ) = sup {α | K |= hφ, αi};
(vi) Best Satisfiability Degree (BSD). The BSD of a concept C w.r.t. K is defined
as bsd(K, C) = supI|=K supx2∆I CI(x);

(vii) Answer Set. The answer set of a concept C w.r.t. K is the set ans(K, C) =
{ha, αi | α = bed(K, a:C)}. Each element in ans(K, C) is called an answer to
C w.r.t. K;
(viii) Top-k Answer Set. The top-k answer set of C w.r.t. K, denoted ansk(K, C),
is the set of top-k ranked answers of to C w.r.t. K. Formally, ansk(K, C) ✓
ans(K, C) is maximal un set inclusion, |ansk(K, C)| k, there is no ha, 0i 2
ansk(K, C), and there is no hb, βi 2 ans(K, C) \ ansk(K, C) with β > α for
some ha, αi 2 ansk(K, C). Each element in ansk(K, C) is called a top-k answer
to C w.r.t. K.

Eventually, fuzzy DL reasoners enable to manage fuzzy ontologies in
practice (see (Bobillo and Straccia, 2016) for an overview). fuzzyDL is an
expressive fuzzy ontology reasoner (the supported language is more expres-
sive that the one presented here) that supports the three main semantics of

2However, note that under standard logic v is interpreted as)z and not as)kd.

36
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

fuzzy logics: Zadeh, Łukasiewicz, and classical DLs, for ensuring compati-
bility with crisp ontologies.

3.3 Requirements, Design and Architectural pat-

terns

Design and Architectural Pattern. Reusable solutions of design models are
available mainly realized using patterns. These approaches are important
vehicles for constructing high-quality software architectures since provide
already tested solutions (Gamma et al., 1994; Buschmann et al., 1996b).

Design patterns were proposed during the last decades are reusable solu-
tions to modeling recurrent problems. They are mainly based on the expert’s
experience that use solution proposed for similar problems (Gamma et al.,
1994; Buschmann et al., 1996b).

Therefore, the use of patterns or tactics (N.Harrison, 2007; Bass, Klein,
and Bachmann, 2002; Gross and Yu, 2001) for architectural modeling con-
stitutes an effective solution for addressing design decisions (Harrison and
Avgeriou, 2010b). They also support the construction and documentation
of software architectures. In summary, patterns provide a set of predefined
design schemes for software systems organization, and provide an abstract
formalization of the design solution (Buschmann et al., 1996b; Henninger
and Corrêa, 2007; Taylor, Medvidovic, and Dashofy, 2009).

According to (Buschmann, Henney, and Schmidt, 2007a), design patterns
can be classified into families that identify a problem area addressing a spe-
cific topic. The pattern language proposed in (Buschmann, Henney, and
Schmidt, 2007a) includes 114 patterns, which are grouped into thirteen prob-
lem areas addressing a specific technical topic.

The main purpose of families and problem areas is to make the language
and its patterns more tangible and comprehensible.
In Table 3.1 we briefly describe and summarize some relevant families of
patterns as described in (Buschmann, Henney, and Schmidt, 2007a) to which
we also add the family of Cloud patterns (Fehling et al., 2014).

Non-Functional Requirements. A software system design is obtained as the
results of both functional requirements implementation i.e., what the sys-
tem does - and requirements about development specifications or quality at-
tributes. Such requirements concern development features, operational costs,
but also quality attributes (Chung et al., 2012). Non-Functional Requirements
(NFRs) are crucial in software design since help designers in selecting the
supposed best design solution among several alternatives. For this reason,
best practices in taking into account these requirements is the basis for en-
suring successful development. Also taking properly into account require-
ments can prevent errors which may have negative impact on management
and costs of the whole software project (FP Jr, 1987; Davis, 1993; Chung et al.,
2012). Non-Functional Requirements lend to a qualitative assessment more
than an objective definition, for this reason identifying a particular NFR is
a challenging task. Besides, identifying NFRs is a architectural task, so the

3.3. Requirements, Design and Architectural patterns 37

TABLE 3.1: Some of the most relevant families of patterns.

Family Description

Distribution Infrastructure Patterns concerning middleware’s issues, i.e. distribution infrastructure
software that help to simplify applications in distributed systems.

Interface Partitioning Patterns that specify usable and meaningful component interfaces. In-
terfaces inform clients about the component’s responsibilities and usage
protocols.

Object Interaction Patterns for make object interact in standalone programs.

Application Control These patterns separate interface from application’s main functionality.
Transforming user input for an application into concrete service requests,
executing these requests, and transforming results back into an output
that is meaningful for users.

Event Demultiplexing It concerns patterns that describe different approaches for managing
events in distributed and networked systems.

and Dispatching
Synchronization Patterns addressing the problem of synchronous access to shared compo-

nents, objects and resources.

Concurrency Patterns that deal with concurrency control.

Adaptation and Extension Patterns for making applications and components adaptive to specific
environments.

Modal Behavior Patterns that support the implementation of state-machines.

Resource Management These patterns for managing resource’s lifecycle and availability to
clients.

Database Access Patterns belonging to this family manage the access to relational
databases and the mapping with other data models.

Cloud Patterns belonging to this family describe different types of clouds, the
services they provide, how to build applications with them and the inter-
connections between patterns.

availability of reusable solutions that ensure satisfaction of a given NFR or of
a set of NFR gives a valid support to performing architectural modeling. De-
scription of knowledge about NFRs is proposed in NFR catalogues (López,
Cysneiros, and Astudillo, 2008; Cysneiros, 2007) those enabling reuse and
catalogation and a useful way of addressing the need for help on NFR elici-
tation. In literature, a plethora of definitions can be found of NFRs. A series
of such definitions is summarized in (Glinz, 2007):

a) “Describe the non-behavioral aspects of a system, capturing the prop-
erties and constraints under which a system must operate.”

b) “The required overall attributes of the system, including portability, re-
liability, efficiency, human engineering, testability, understandability,
and modifiability.”

c) “Requirements which are not specifically concerned with the function-
ality of a system. They place restrictions on the product being de-
veloped and the development process, and they specify external con-
straints that the product must meet.”

38
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

d) “...global requirements on its development or operational cost, perfor-
mance, reliability, maintainability, portability, robustness, and the like.
... There is not a formal definition or a complete list of nonfunctional
requirements.”

e) “The behavioral properties that the specified functions must have, such
as performance, usability.”

f) “A property, or quality, that the product must have, such as an appear-
ance, or a speed or accuracy property.”

g) “A description of a property or characteristic that a software system
must exhibit or a constraint that it must respect, other than an observ-
able system behavior.”

Middleware in Internet of Things (IoT) and its requirements. Middle-
ware is necessary to ease the development of the diverse applications and
services in IoT. Many solutions have been proposed and implemented, espe-
cially in the last couple of years. These solutions are highly diverse in their
design approaches, level of programming abstractions, and implementation
domains (e.g., WSNs, RFID, M2M, and SCADA) (Razzaque et al., 2016a). The
proposals are diverse and involve various middleware design approaches
and support different requirements. Based on the analysis in recent surveys
(Razzaque et al., 2016a; Zhou, 2012), the existing middleware solution are
grouped based on their design approaches, as below:

• Event-based (e.g. Hermes, EMMA, RUNES, PRISMA, SensorBus, Mires
and so on),

• Service-oriented (e.g. Hydra, SOCRADES, ubiSOAP, MOSDEN and so
on),

• Virtual Machine-based (e.g. VM, DVM, TinyVM, SwissQM, and so on),

• Agent-based (e.g. Ubiware, Impala, MASPOT, and so on),

• Tuple-spaces (e.g. LIME, TS-Mid, TeenyLIME, TinyLIME and so on),

• Database-oriented (e.g. SINA, COUGAR, IrisNet and so on),

• Application-specific (e.g. Milan, AutoSec, Adaptive Middleware and
so on)

Some middleware use a combination of different design approaches. In
the survey (Razzaque et al., 2016a), all existing middleware in literature are
described briefly. A middleware provides a software layer between applica-
tions, the operating system and the network communications layers, which
facilitates and coordinates some aspect of cooperative processing. From the
computing perspective, a middleware provides a layer between application
software and system software. Based on previously described characteris-
tics of the IoT’s infrastructure and the applications that depend on it, a set

3.4. Problem statement and approach 39

of requirements for a middleware to support the IoT is outlined. These re-
quirements are grouped into the following two sets: (i) Middleware Service
Requirements. Middleware Service Requirements for the IoT can be cate-
gorized as both Functional and Non-Functional. FR capture the services
or functions (e.g., resource discovery, resource management, data manage-
ment, event management, code management) a middleware provides and
NFRs (e.g., scalability, real-time o Timeliness, reliability, availability, secu-
rity & privacy, ease-of deployment and popularity) capture QoS support or
performance issue; (ii) Architectural Requirements. The Architectural Require-
ments support application developers: programming, abstraction, interoper-
able, service-based, adaptive, context-aware, autonomous and distributed.
For a detailed description of this requirements we refer to (Razzaque et al.,
2016a) and its related references.

3.4 Problem statement and approach

A typical software design problem can be stated as follows:

“Given a set of requirements define the software design that best matches
them".

Software design and software architecture design model, requirements
and specifications are composed of FRs, NFRs and ARs.

With respect to the general problem stated before, we can re formulate its
statement by restricting our attention to the relation among patterns, their
families and all categories of requirements. Specifically, with reference to the
design problem at the beginning of this paragraph, we address the following
problem:

““Given a Middleware-induced Software Architecture design to model,
a set of FRs, NFRs, ARs and the problem areas the software refers to,
which are the design patterns that best fit them? Which are existing
middleware that can support all the necessary requirements?”

The task poses some difficulties that we are going to highlight:

• some requirements cannot be satisfied together some others may be dis-
joint;

• patterns satisfying the required NFRs may not be contained in families;

• patterns can cooperate, are composable, are complementary or exclu-
sive;

• not all the patterns providing a given NFR or belonging to a family may
be known by the designer;

• IoT Middleware solutions are grouped based on their design approaches;

• not all existing middleware support all FRs, NFRs and ARs.

40
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

3.4.1 Representing and reasoning about NFRs via fuzzy DLs

We propose the use of fuzzy DLs and fuzzy reasoning services (i) to define
a formal model of the relations among problem areas, design patterns, mid-
dleware design aproaches and supported NFRs, FRs and ARs; and (ii) to
provide the designer a reasoning mechanism as a support for selecting a set
of patterns and existing middlewares that ensure the satisfaction of a set of
desired requirements. More specifically:

• we use fuzzy DL statements to model the domain of architectural mod-
eling at a high level and to model relations among NFRs, FRs and ARs;

• we propose a fuzzy DL reasoning service to deduce new knowledge
about mutual relation between requirements and to answer the retrieval
problem.

In the following, detail about addressing the two above mentioned steps are
provided.

The (upper) ontology (TBox) is used to formalize the knowledge about
the NFRs, FRs, ARs, middleware, about patterns and families that pattern
belong to.
The upper ontology is composed by six main classes SoftwareDesignPattern,
Families, Middleware, FunctionalRequirement, ArchitecturalRequirement
and NonFunctionalRequirement. Its formal definition can be encoded in
(classical) DLs as:

9isInFamily v SoftwareDesignPattern (3.1)

9nFR v SoftwareDesignPattern (3.2)

9FR v Middleware (3.3)

9AR v Middleware (3.4)

> v 8isInFamily.Families (3.5)

> v 8NFR.NonFunctionalRequirement (3.6)

> v 8FR.FunctionalRequirement (3.7)

> v 8AR.ArchitecturalRequirement (3.8)

In the first four statements are defined the Domain restrictions to check the
first four statements while range restrictions are defined in the last four state-
ment.
To better explain the meaning of restriction, let us consider that isInFamily
is a role that the concept SoftwareDesignPattern to the concept Families by
connecting their instances.
Instead, the role NFR relates the class SoftwareDesignPattern to the class
NonFunctionalRequirement through their instances, the role FR relates the
class Middleware to the class FunctionalRequirement and the role AR relates
the class Middleware to the class ArchitecturalRequirement.

In our ontology, we make statements about the description of a Middle-
ware, FR, AR, NFR, design pattern, related the pattern to the family it belongs
to and make statements about the NFRs it satisfies. Such statements make up

3.4. Problem statement and approach 41

the ABox of the knowledge base we defined. To better explain the knowledge
modeling in the ontology let us consider the following statements using the
classical DL syntax:

proxy:SoftwareDesignPattern (3.9)

resourceManagement:Families (3.10)

reliability:NonFunctionalRequirement (3.11)

loadBalancing:NonFunctionalRequirement (3.12)

reusability:NonFunctionalRequirement (3.13)

eventManagement:FunctionalRequirement (3.14)

contextAware:ArchitecturalRequirement (3.15)

(proxy, resourceManagement):isInFamily (3.16)

(Hermes, eventBased):isInFamily (3.17)

In the example, the pattern proxy is defined as an instance of the class
SoftwareDesignPattern; the family resourceManagement of the class Families,
the NFRs reliability, loadBalancing, reusability as individuals of the
class NonFunctionalRequirement, the FR eventManagement as individuals of
the class FunctionalRequirement and contextaware as istance of the class
ArchitecturalRequirement; definition are provided respectively in the state-
ments 3.9-3.15. Moreover, statement 3.16 asserts that proxy belongs to the
resourceManagement family, statement 3.17 asserts that Hermes belongs to
eventBased middleware design approach family.
Additionally, the pattern proxy has a level of NFRs Load Balancing and Re-
liability. To specify such properties we define new properties, that are re-
lated to NFRs. The fuzzy sets used by our framework are the ones repre-
sented in Figure 3.2. Such datatype properties are formally represented us-
ing R that stands for rating. The rating models a ordered set {verybad, bad,
medium, good, verygood}. We refer to the following axioms:

9nFR.{reliability} ⌘ 9reliabilityRate. 2R (3.18)

9nFR.{loadBalancing} ⌘ 9loadBalancingRate. 2R (3.19)

9nFR.{reusability} ⌘ 9reusabilityRate. 2R (3.20)

9nFR.{adaptability} ⌘ 9adaptabilityRate. 2R (3.21)

9nFR.{maintainability} ⌘ 9maintainabilityRate. 2R (3.22)

These axioms states that a pattern that has associated a NFR will have a
degree.So we can state for example:

proxy:9loadBalancingRate. =good (3.23)

proxy:9reliabilityRate. =good (3.24)

Besides the modeling of the ABox relations, we use FDLs also to explicitly
model relations among NFRs. Consider the NFRs reliability, load balancing,
reusability as previously defined (statement (3.11)-(3.13)). An example of mu-
tual relation between NFRs is the one between load balancing and reliability.
Indeed, they are directly proportionate, i.e., if the loadBalancing increases (de-
creases) the same happens for the reliability. Such a relation can be written in

42
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

fuzzy DLs as

9loadBalancingRate.High v 9reliabilityRate.High (3.25)

9loadBalancingRate.Fair v 9reliabilityRate.Fair (3.26)

9loadBalancingRate.Low v 9reliabilityRate.Low (3.27)

We also know that a system cannot be reliable and reusable at the same time.
That is, the two NFRs are inversely proportionate. Hence, if a pattern guar-
antees reliability it cannot guarantee also reusability. We may encode such
disjoint relations with the following statement:

9reusabilityRate.High v 9reliabilityRate.Low (3.28)

In the same manner, we may also represent statements like

9adaptabilityRate.High v 9maintainabilityRate.Fair (3.29)

stating that "a system with a high adaptability has a fair maintainability", in fact
if a system has an adaptable behavior to different requirements or to changes
in the context, it is poorly maintainable.

Note that from statements (3.25)-(3.28), it can be inferred that the pattern
proxy cannot guarantee a high degree of reusability, since it has a high degree
of load balancing. Of course, many other kind of implicit relations can be
automatically inferred that support the search for better results during the
design phase.

3.4.2 Proposed reasoning task

We conclude this paragraph by proposing a novel reasoning task called Cov-
ering Answer Set, which will result fundamental for our modelling method to
solve the defined problem statement.

Let C1, . . . , Cn be concepts and let @ be an aggregation operator (Torra and
Narukawa, 2007). We recall the Aggregation Operators (AOs). They are math-
ematical functions that combine real values. Specifically, an AO has a dimen-

sion n and is a mapping @ : [0, 1]n ! [0, 1] such that3 @(~0) = 0, @(~1) = 1.
Besides, the aggregation operator @ is monotone in its arguments. Typical
examples of Aggregation Operators are maximum (@MAX), weighted maximum

@wmax
W , minimum (@min), weighted minimum @wmin

W , median, arithmetic mean

(@AM), weighted sum @ws
W , strict weighted sum (@wsz

W).
Now, the covering answer set of C1, . . . , Cn w.r.t. @ and K,

ans(@,K, C1, . . . , Cn) ,

is defined as follows:

1. determine ans(K, C1), . . . , ans(K, Cn);

3With~0 and~1 we identify a vector whose elements are all 0 or 1 respectively.

3.5. Use Case Scenario n. 01: Cloud-Social- Adaptable System 43

2. consider the set of tuples

A@
C1,...,Cn ,K = {h{a1, . . . , an}, βi | ha1, α1i 2 ans(K, C1), . . . ,

han, αni 2 ans(K, Cn),

β = @(α1, . . . , αn)} .

That is, a tuple in A@
C1,...,Cn,K is built by picking up an element from

each answer set and then by aggregating the individual scores.

3. Eventually, ans(@,K, C1, . . . , Cn) is obtained from A@
C1,...,Cn,K by remov-

ing from A@
C1,...,Cn,K all non-maximal scores and non-minimal subsets,

i.e.,

ans(@,K, C1, . . . , Cn) = {hS, βi 2 A@
C1,...,Cn ,K | β > 0,

6 9hS0, β0i 2 A@
C1,...,Cn ,K s.t. β0 > β, S ✓ S0

and 6 9hS0, β0i 2 A@
C1,...,Cn ,K s.t. S0 ⇢ S} .

Each element in ans(@,K, C1, . . . , Cn) is a covering answer to C1, . . . , Cn

w.r.t. @ and K. Eventually, the top-k covering answer set of C1, . . . , Cn w.r.t.
@ and K, denoted ansk(@,K, C1, . . . , Cn), is the set top-k ranked covering an-
swers to C1, . . . , Cn w.r.t. @ and K.
We say that each element in ansk(@,K, C1, . . . , Cn) is a top-k covering answer
to C1, . . . , Cn w.r.t. @ and K.

3.5 Use Case Scenario n. 01: Cloud-Social- Adapt-

able System

In this paragraph we describe a Cloud-Social-Adaptable System use case to
illustrate how to apply the proposed modeling and solve the first task (re-
trieve best design patterns to implement).

We consider a social domain in which user’s data are stored on cloud plat-
forms and distributed on different clusters or data centers; data are managed
by interacting distributed applications. A similar context would require a
software architecture based on an extensible model consisting of loosely cou-
pled components. Let us think of web applications for mobile devices, client
applications for web-based systems and let us assume that there is a main
component – a sort of manager – that performs coordination activities, and
other two key components: a manager to gather and manage multimedia
data and a location-based application that records all movements made by
the user.

On the basis of variations in the user’s information needs or changes in
the external environment, the system is able to dynamically and extensively
change applications to be loaded.

Suppose a user is traveling on a weekend or holiday, the idea is that the
system automatically launches an app that organizes the archived multime-
dia material (photo, movies etc.) relating to the travel destination by creating
albums, photo collections with captions, stories etc.

44
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

In addition to user’s localization, other conditions dependent on the con-
text set in the application may allow the system to dynamically load different
applications. The dynamically loaded applications may compromise the sys-
tem properties, therefore runtime mechanisms to monitor and guarantee the
preservation of the properties of interest are needed.

This solution provides flexibility in the architecture as well as access to a
public service which is made possible by exploiting the resources available
and preserving costs.

Furthermore, virtual machines are loosely coupled, so a possible failure
in one of them does not impair the operation of the other guaranteeing an
acceptable level of fault tolerance. The virtual machines are located on the
middleware and are launched directly from it only if requested by the con-
sumer.

In case of failure the remaining virtual machines would not be affected
and the content is made available by the presence of a network.

In order to model the scenarios just described, we have to search for pat-
terns that belong to the family Cloud as regards the management of features
related to the cloud; but it also requires the solution of problems relating to
the communication of process and the middleware so belong to the family
Distribution Infrastructure. Furthermore the model also requires the use of
patterns able to make the system adaptable to changes in the context. So
another family to consider is that related to pattern ensuring adaptability.

So, given the application context of the system to be modeled, it is nec-
essary to ensure adaptability. Also, since the software must operate in the
cloud the model will have to contemplate elasticity requirements. Another
fundamental requirement to ensure fault tolerance, and hence reliability. A
low level of coupling is also needed since the system implements features of
a cloud environment the coupling should be low. Formally, the previously
described analysis can be posed as a query as follows:

• retrieve pattern belonging to the following families: Distribution Infras-
tructure, Application Control, Adaptation and Extension, Cloud Patterns;

• and satisfying the following NFRs: a low degree of coupling, a high level
of adaptability, a high fault tolerance, a high level of elasticity.

To show how requirements and families necessary to describe the pro-
posed scenario can be modelled using fuzzy DLs, we are going to define the
related knowledge base K. The Abox A contains the following statements.
We initially introduce families, patterns and their relations:

applicationControl:FamiliesadaptationAndExtension:Families distributionInfrastructure:Families
cloud:Families

observer:SoftwareDesignPattern
broker:SoftwareDesignPatternreflection:SoftwareDesignPattern
hypervisor:SoftwareDesignPattern
strictConsistency:SoftwareDesignPattern

(hypervisor, cloud):isInFamily
(broker, distributionInfrastructure):isInFamily .(strictConsistency, cloud):isInFamily
(observer, applicationControl):isInFamily
(reflection, adaptationAndExtension):isInFamily

3.5. Use Case Scenario n. 01: Cloud-Social- Adaptable System 45

We then define the NFRs and we state how the patterns previously intro-
duced satisfy them:

adaptability:NonFunctionalRequirement
dependability:NonFunctionalRequirement
reliability:NonFunctionalRequirement
elasticity:NonFunctionalRequirement
faultTolerance:NonFunctionalRequirement
loadBalancing:NonFunctionalRequirement
flexibility:NonFunctionalRequirement
coupling:NonFunctionalRequirement
robustness:NonFunctionalRequirement
reflection:9adaptabilityRate. =verygood

strictConsistency:9dependabilityRate. =verygood

strictConsistency:9reliabilityRate. =good

hypervisor:9elasticityRate. =verygood

hypervisor:9faultToleranceRate. =good

hypervisor:9loadBalancingRate. =good

observer:9flexibilityRate. =good observer:9adaptabilityRate. =medium

broker:9loadBalancingRate. =verygood broker:9robustnessRate. =medium

broker:9faultToleranceRate. =bad broker:9reliabilityRate. =good .

The TBox contains axioms defining inverse and direct relations between
pairs of NFRs. Namely:

9flexibilityRate.High v 9couplingRate.Low

9elasticityRate.High v 9adaptabilityRate.High
9elasticityRate.Fair v 9adaptabilityRate.Fair
9elasticityRate.Low v 9adaptabilityRate.Low

9robustnessRate.High v 9faultToleranceRate.High
9robustnessRate.Medium v 9faultToleranceRate.Medium
9robustnessRate.Low v 9faultToleranceRate.Low

9faultToleranceRate.High v 9reliabilityRate.High
9faultToleranceRate.Medium v 9reliabilityRate.Medium
9faultToleranceRate.Low v 9reliabilityRate.Low

9reliabilityRate.High v 9dependabilityRate.High
9reliabilityRate.Medium v 9dependabilityRate.Medium
9reliabilityRate.Low v 9dependabilityRate.Low

9loadBalancingRate.High v 9elasticityRate.High
9loadBalancingRate.Medium v 9elasticityRate.Medium
9loadBalancingRate.Low v 9elasticityRate.Low .

Retrieval of the set of patterns that best satisfies the needed requirements,
will be obtained using the novel covering answer set reasoning task we have
introduced in Paragraph 3.4.2. That is, we define a covering answer set query
of the form

Q = ans3(@
AM,K, C1, C2, C3, C4) , (3.30)

which we are going now to build incrementally. First of all let us now con-
sider the query:

• families to consider are the following: Adaptation and Extension;

• needed NFRs is adaptability with a high degree.

46
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

The requirements is modeled as:

C0 = 9isInFamily.{adaptationAndExtension} u 9adaptabilityRate.High.

Under standard fuzzy logic, it can be shown that ans(K, C0) contains the
following statements:

hreflection:9isInFamily.{adaptationAndExtension}, 1i
hreflection:9adaptability.High, 1i
hreflection:C0, 1i

hstrictConsistency:9isInFamily.{adaptationAndExtension}, 0i
hstrictConsistency:9adaptability.High, 0i
hstrictConsistency:C0, 0i

hhypervisor:9isInFamily.{adaptationAndExtension}, 0i
hhypervisor:9adaptability.High, 1i
hhypervisor:C0, 0i

hobserver:9isInFamily.{adaptationAndExtension}, 0i
hobserver:9adaptability.High, 0.66i
hobserver:C0, 0i

hbroker:9isInFamily.{adaptationAndExtension}, 0i
hbroker:9adaptability.High, 0.66i
hbroker:C0, 0i .

9couplingRate.Low v 9scalabilityRate.High

9adapatabilityRate.High v 9interoperabilityRate.High
9adapatabilityRate.Fair v 9interoperabilityRate.Faie
9adapatabilityRate.Low v 9interoperabilityRate.Low

9responseTimeRate.High v 9performanceRate.High
9responseTimeRate.Medium v 9performanceRate.Medium
9responseTimeRate.Low v 9performanceRate.Low .

C0 is satisfied by the list of pattern in:

ans(K, C0) = { hreflection, 1i, hstrictConsistency, 0i,

hhypervisor, 0i, hobserver, 0i, hbroker, 0i } .

Please note that, although there is no explicit statements about the adaptabil-
ity value of Hypervisor patterns, thanks to the interaction between
and stated in the TBox, we infer that Hypervisor has a high
level of adaptability.

We now add all the other families required to solve our task.
Therefore, we modify C0 in C1 as follows:

C1 = (9isInFamily.{adaptationAndExtension}
t9isInFamily.{cloud}
t9isInFamily.{applicationControl}
t9isInFamily.{distributionInfrastructure})

u9adaptabilityRate.High.

It can be shown that ans(K, C1) under standard fuzzy logic contains the
following statements:

hreflection:9isInFamily.{adaptationAndExtension}, 1i
hreflection:9isInFamily.{cloud}, 0i
hreflection:9isInFamily.{applicationControl}, 0i
hreflection:9isInFamily.{adaptationAndExtension}, 0i
hreflection:9adaptability.High, 1i
hreflection:C1, 1i

3.5. Use Case Scenario n. 01: Cloud-Social- Adaptable System 47

hstrictConsistency:9isInFamily.{adaptationAndExtension}, 0i
hstrictConsistency:9isInFamily.{cloud}, 1i
hstrictConsistency:9isInFamily.{applicationControl}, 0i
hstrictConsistency:9isInFamily.{distributionInfrastructure}, 0i
hstrictConsistency:9adaptability.High, 0i
hstrictConsistency:C1, 0i

hhypervisor:9isInFamily.{adaptationAndExtension}, 0i
hhypervisor:9isInFamily.{cloud}, 1i
hhypervisor:9isInFamily.{applicationControl}, 0i
hhypervisor:9isInFamily.{distributionInfrastructure}, 0i
hhypervisor:9adaptability.High, 1i
hhypervisor:C1, 1i

hobserver:9isInFamily.{adaptationAndExtension}, 0i
hobserver:9isInFamily.{cloud}, 0i
hobserver:9isInFamily.{applicationControl}, 1i
hobserver:9isInFamily.{distributionInfrastructure}, 0i
hobserver:9adaptability.High, 0.66i
hobserver:C1, 0.66i

hbroker:9isInFamily.{adaptationAndExtension}, 0i
hbroker:9isInFamily.{cloud}, 0i
hbroker:9isInFamily.{applicationControl}, 0i
hbroker:9isInFamily.{distributionInfrastructure}, 1i
hbroker:9adaptability.High, 0.66i
hbroker:C1, 0.66i .

Based on the previous results, it follows that

ans(K, C1) = { hreflection, 1i, hstrictConsistency, 0i,

hhypervisor, 1i, hobserver, 0.66i, hbroker, 0.66i } .

We are now ready to define also C2, C3 and C4 in Equation (3.30).

C2 = (9isInFamily.{adaptationAndExtension}
t9isInFamily.{cloud}
t9isInFamily.{applicationControl}
t9isInFamily.{distributionInfrastructure})

u9elasticityRate.High.

C3 = (9isInFamily.{adaptationAndExtension}
t9isInFamily.{cloud}
t9isInFamily.{applicationControl}
t9isInFamily.{distributionInfrastructure})

u9faultToleranceRate.High.

C4 = (9isInFamily.{adaptationAndExtension}
t9isInFamily.{cloud}
t9isInFamily.{applicationControl}
t9isInFamily.{distributionInfrastructure})

u9couplingRate.Low.

With reference to these concepts, the results for ans(K, Ci) with i = 2 . . . 4
are illustrated in Table 3.2.

TABLE 3.2: Answer Sets Use Case I.

ans(K, C2) ans(K, C3) ans(K, C4)
hreflection, 0i
hstrictConsistency, 0i
hhypervisor, 1i
hobserver, 0i
hbroker, 1i

hreflection, 0i
hstrictConsistency, 0i
hhypervisor, 1i
hobserver, 0i
hbroker, 0.33i

hreflection, 0i
hstrictConsistency, 0i
hhypervisor, 0i
hobserver, 0i
hbroker, 1i

48
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

We can finally compute the result for Equation (3.30):

Q = { h{hypervisor, broker}, 1i,

h{reflection, broker}, 0.8325i,

h{observer, broker}, 0.75i } .

The pair of pattern and is the best solution; the sec-
ond rank is the pair and ; the third is the pair and

.
Please note that e.g. h{broker}, 0.75i is ruled out from Q as there exists a

superset with strictly higher score (e.g., {hhypervisor, broker}, 1i).

3.6 Use Case Scenario n. 02: IoT, in a Healthcare

scenario

In this paragraph we describe a second use-case within the field of the IoT,
focusing on a scenario of Healthcare.
The new frontier of medicine is moving towards the improvement of the
quality of medical treatment and, at the same time, the reduction of the re-
lated costs. In this sense, the Internet of Things paradigm is helping to de-
velop a new generation of telemedicine applications that exploit the data col-
lected by sensors worn by the patients. The data collected from all sensors
are then transferred to the gateway, which is responsible for analyzing the
raw data and forward the processed information to a Cloud system. This in-
formation will be later refined and used by doctors to cure/treat the patient.
Moreover, in case critical situations are detected in the parameters, an alert
(emergency services) is forwarded to the nearest emergency center.

To model this use case scenario just described, we have to search for an ex-
isting IoT middleware solution belong to application-specific design approach
family and patterns that belong to the Cloud family as regards the manage-
ment of features related to the cloud and the eventHandling family for man-
aging events in the distributed and networked architecture and publish/sub-
scribe dissemination. But it also requires the solution of problems relating to
the communication of process and the middleware so belong to the family
Distribution Infrastructure and applicationControl family for separate interface
from application’s main functionality. Furthermore the model also requires
the use of patterns able to make the system adaptable to changes in the con-
text. So another family to consider is that related to pattern ensuring adapt-
ability to the family Adaptation and Extension.

So, given the application context of the system to be modeled, it is neces-
sary to ensure adaptability, performance, security, availability, scalability and so
on. Another fundamental requirement to ensure fault tolerance, and hence re-
liability. A low level of coupling is also needed since the system implements
features of a cloud environment the coupling should be low. Formally, the
previously described analysis can be posed as a query as follows:

3.6. Use Case Scenario n. 02: IoT, in a Healthcare scenario 49

• retrieve patterns belonging to the following families: Distribution In-
frastructure, Application Control, Adaptation and Extension, Cloud Patterns,
eventHandling;

• retrieve middleware belonging to the design approach family: applica-
tionSpecific;

and satisfying the following requirements:

• NFRs: a low degree of coupling, a high level of interoperability, a high
level of interoperability, a high fault tolerance, a high level of elasticity;

• FRs: Resource Discovery, Resource Management, Data Management, Event
Management;

• ARs: interoperable, Context-aware, autonomous, adaptive, service-based, ligh-
weight, distributed;

To show how requirements and families necessary to describe the proposed
scenario can be modelled using fuzzy DLs, we are going to define the related
knowledge base K. The Abox A contains the following statements. In or-
der to solve the first question of the problem statement (best set of design
patterns), we initially introduce families, patterns and their relations:

applicationControl:Families
adaptationAndExtension:Families
distributionInfrastructure:Families
cloud:Families
eventHandling:Families

observer:SoftwareDesignPattern
broker:SoftwareDesignPattern
proxy:SoftwareDesignPattern
bridge:SoftwareDesignPattern
hypervisor:SoftwareDesignPattern
strictConsistency:SoftwareDesignPattern
bridge:SoftwareDesignPattern
proxy:SoftwareDesignPattern
publishSubscribe:SoftwareDesignPattern
proactor:SoftwareDesignPattern
statelessComponent:SoftwareDesignPattern

(hypervisor, cloud):isInFamily
(broker, distributionInfrastructure):isInFamily
(strictConsistency, cloud):isInFamily
(observer, applicationControl):isInFamily
(reflection, adaptationAndExtension):isInFamily
(bridge, adaptationAndExtension):isInFamily
(proxy, adaptationAndExtension):isInFamily
(publishSubscribe, distributionInfrastructure):isInFamily
(proactor, eventHandling):isInFamily
(statelessComponent, cloud):isInFamily

50
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

We then define the NFRs and we state how the patterns previously intro-
duced satisfy them:

interoperability:NonFunctionalRequirement
scalability:NonFunctionalRequirement
availability:NonFunctionalRequirement
security:NonFunctionalRequirement
performance:NonFunctionalRequirement
responseTime:NonFunctionalRequirement
resilience:NonFunctionalRequirement
estensibility:NonFunctionalRequirement
adaptability:NonFunctionalRequirement

broker:9interoperabilityRate. =good

broker:9scalabilityRate. =good

broker:9faultToleranceRate. =bad

broker:9couplingRate. =good

broker:9performanceRate. =medium

proxy:9securityRate. =good

proxy:9scalabilityRate. =bad

proxy:9couplingRate. =bad

proxy:9availabilityRate. =good

publishSubscribe:9couplingRate. =medium

publishSubscribe:9interoperabilityRate. =good

publishSubscribe:9performanceRate. =bad

publishSubscribe:9scalabilityRate. =good

proactor:9couplingRate. =good

proactor:9performanceRate. =verygood

reflection:9adaptabilityRate. =verygood

reflection:9interoperabilityRate. =good

reflection:9robustnessRate. =medium

reflection:9availabilityRate. =medium

reflection:9performanceRate. =bad

bridge:9adaptabilityRate. =good

cloudStrictConsistency:9availabilityRate. =good

cloudStrictConsistency:9scalabilityRate. =medium

cloudStrictConsistency:9performanceRate. =good

statelessComponent:9availabilityRate. =verygood

statelessComponent:9robustnessRate. =verygood

statelessComponent:9securityRate. =medium .

The TBox contains axioms defining inverse and direct relations between pairs
of NFRs. Namely:

9flexibilityRate.High v 9couplingRate.Low

9elasticityRate.High v 9adaptabilityRate.High
9elasticityRate.Fair v 9adaptabilityRate.Fair
9elasticityRate.Low v 9adaptabilityRate.Low

9robustnessRate.High v 9faultToleranceRate.High
9robustnessRate.Medium v 9faultToleranceRate.Medium
9robustnessRate.Low v 9faultToleranceRate.Low

9faultToleranceRate.High v 9reliabilityRate.High
9faultToleranceRate.Medium v 9reliabilityRate.Medium
9faultToleranceRate.Low v 9reliabilityRate.Low

9reliabilityRate.High v 9dependabilityRate.High
9reliabilityRate.Medium v 9dependabilityRate.Medium
9reliabilityRate.Low v 9dependabilityRate.Low

9loadBalancingRate.High v 9elasticityRate.High
9loadBalancingRate.Medium v 9elasticityRate.Medium
9loadBalancingRate.Low v 9elasticityRate.Low .

3.7. Implementation 51

To retrieve the best set of design pattern that fulfill the necessary require-
ments as described at the beginning of this use case, we model the query
as:

Q = ans1(@
AM,K, C1, C2, C3, C4, C5, C6, C7) . (3.31)

Table 3.3 summarises the scores of each individual w.r.t. queries C1, . . . , C7. From
Table 3.3, using the @AM (average) aggregation operator, it can be shown that the
result to query Q in Equation (3.31) is:

TABLE 3.3: Answer Sets Use Case scenario.

broker proxy publ.Subs. proactor bridge reflection CloudStr.Cons. statelessComp.
C1 1 0 1 0 1 1 0 0
C2 1 0.33 1 1 1 0 0.66 0
C3 0 1 0 0 0 0.66 1 1
C4 0.33 1 0 0 0 0.66 1 1
C5 0 1 0 0 0 0 0 0.66
C6 1 0.33 1 1 1 0 0 0
C7 0.66 0 0.33 1 0 0.33 1 0

Q = { h{broker, proxy}, 0.951i,

h{proxy, publishSubscribe}, 0.904i,

h{broker, statelessComponent}, 0.904i}

h{publishSubscribe, statelessComponent}, 0.855i,

h{proxy, reflection}, 0.714i } .

Hence, the best solution to adopt is { , }.
Enriching the KB with the related fuzzy DL statement in order to retrieve the

middleware can support all the necessary requirements, by adopting the same ap-
proach, the first best solution to adopt is { }.

3.7 Implementation

In this paragraph we present the implemented ontology-driven web application
called MoSAIC. The overall architecture is depicted in Figure 3.3. MoSAIC 4 was de-
veloped using Eclipse as a Web development platform integrating Apache Tomcat 5

as application server. The business layer is consisting of a modules that implements
the functionalities of the tool. First of all enable (i) search of Middleware, design
patterns, NFRs, FRs, ARs and Pattern Families query the ontology showing their an-
notations; and (ii) solve the queries of retrieving the smallest subset of patterns that
best match the input requirements and recommending existing Middleware can sup-
port all the necessary requirements.
Ontology Administration provides for three main functionalities, that are, the inser-
tion of a new individual (NFR, FR, AR, Middleware or Design pattern), the insertion

4MoSAIC’s website at: http://sisinflab.poliba.it/tools/softarch/mosaic.
5Apache Tomcat software: https://tomcat.apache.org/

54
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

(a)

(b)

FIGURE 3.6: (a) Individuals Tab, (b) Creation of a fuzzy
datatype Fair with the Fuzzy OWL plug-in.

data properties assertions as shown in Figure 3.6 (a) - (b). Axioms as those in Equa-
tions (3.9) - (3.16) and Equations (3.25) - (3.29) can be modeled in the General class
axioms tab. Figure 3.7 reports their equivalent form with the Manchester syntax of
OWL 2.12 During the modeling we adopted the Linked Data principles13 and tried
to reuse URIs already available in the Web.
For instance, we associated the URI

to the class . The same principle has guided
the selection of the URIs for design patterns and NFRs. We referred to DBpedia14 as
it is a “de facto” standard in the representation of entities in the Web.15

3.8 Discussion

In order to evaluate the degree of usefulness for the tool, we designed a controlled
experiment. We sketched the Cloud-Social-Adaptable System example presented
in Paragraph 3.5 and we then proposed it to six different teams of students. The
teams were assembled so that each one would be composed by three second year

12

13

14

15See, e.g. the diagram available at .

3.8. Discussion 55

FIGURE 3.7: General class axioms Tab.
graduate students. All students were trained during the MSc course on software
design, architectural pattern, NFRs modelling, architectural design.

Three teams (T1, T2, T3) solved the problem supported by the tool while the other
three teams (T4, T5, T6) solved the problem using only their own experience. The
teams had no idea that other teams were working on the same use case and they
had been instructed not to comment the experiment with anyone else. The solution
to each design problem was provided as the design of an architecture considering
quality aspects and choosing the patterns that best model NFRs suitable for the given
context, domain and goals.

The teams T1, T2, T3 were provided with an abstract description in natural lan-
guage of the use case scenario and each team formulated the query to be submitted
to the tool. As shown in Table 3.4, all the three teams composed a query that slightly
differs from one another only for the NFR degree (high, medium, low).

The other three teams – T4, T5, T6 –, being provided with the entire query, solved
the problems using only their own experience.

TABLE 3.4: Queries formulated by each team and correspond-
ing answers (best solution).

Team
Query

Best Solution
Families NFRs

T1 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Hypervisor, Broker

T2 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

medium coupling, high adaptability,
high fault tolerance, high elasticity

Hypervisor, Broker

T3 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

low coupling, medium adaptability,
medium fault tolerance, high elasticity

Hypervisor, Broker

T4 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Hypervisor, Broker

T5 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Reflection, Broker

T6 Distribution Infrastructure, Application Con-
trol, Adaptation and Extension, Cloud Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Integration Provider Pattern, Ob-
server

The three solutions provided by the last teams are not expected to be the same,
since the answer derives from the experience, from their reasoning, and from creativ-
ity. Measuring the goodness of results is not immediate. We compared the solutions
provided by the three teams which were supported by the tool with those provided

56
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

by the teams not supported by the tool and with the human expert-provided solu-
tion. Based on the previously described analysis in Paragraph3.5 the best formulated
query is composed as follows:

• Families: Distribution Infrastructure, Application Control, Adaptation and Exten-
sion, Cloud Patterns;

• NFRs: a low degree of coupling, a high level of adaptability, a high fault tolerance,
a high level of elasticity.

The set of top-3 ranked answers Q for the provided query is the same as the one
reported at the end of Paragraph 3.5.

At the end of the modeling process, each team was supplied with the solution
proposed by the others. A qualitative evaluation of the approaches was asked to the
teams. Table 3.5 summarizes the results for this qualitative evaluation: the solutions
provided with the support of the tool where judged fully correct and complete by
the others teams; on the other hand, among the solutions provided by the teams not
using the tool, one was considered fully acceptable by all of the other teams while
the other two needed respectively minor/ major revisions.

TABLE 3.5: Cross Evaluation among teams.

full acceptance minor revision major revision

T1, T2, T3 Solutions 3 0 0
T4, T5, T6 Solutions 1 1 1

Note that the initial queries for the first three teams were slightly different since
each team faced the problem starting from a different point of view. Nevertheless,
the answers for these queries was the same, corresponding to the best solution.

Table 3.6 shows the time used by the teams to solve the problem. We measured
the efficiency of the process, in term of time elapsed between the starting point of
the work and the final solution provided by each team.

TABLE 3.6: Elapsed time to solve the problem.

Team Elapsed time

T1 2 days
T2 1 day and a half
T3 2 days
T4 4 days
T5 5 days
T6 4 days and a half

Subsequently, in order to measure the matching degree of retrieved patterns with
the three ones proposed by the human expert, we measured the similarity between
the proposed solutions by the six teams with respect to these three. To this end we

3.9. Related work 57

used a combination of Jaccard coefficients (Levandowsky and Winter, 1971). We
recap that the Jaccard similarity between two sets A and B is defined as:

J(A, B) =
| A \ B |

| A [B |

In detail, we compare the similarity of each solution with the ranking provided
by the covering answer set algorithm; w.r.t. the standard Jaccard Similarity coef-
ficient we introduce an exponential decay for each retrieved covering answer set.
Formally, being:

• k, the number of covering answer set to retrieve;

• ansTj the solution set provided by the j-th Team (Tj);

• Qi the i-th answer set composing the top-k covering answer set Q;

the similarity between the solutions set provided by each Team ansTj and the top-k
ranked answers Q is defined as in the following:

sim(ansTj, Q) =
∑

k
i=1 J(ansTj, Qi) · e�(i�1)

k
, with i = 1 . . . k (3.1)

Table 3.7 illustrates the similarity values obtained by using Equation (3.1).
In particular, the first column illustrates the similarity value with respect to the

best solution Q1. Note that the similarity analysis is in line with the qualitative
analysis carried out in the first step and that the teams using the tool performed
better than those without it.

TABLE 3.7: Similarity values with respect to Q1 (best solution)
and Q (the top-3 ranked answers).

Team J(ansTj ,Q1) J(ansTj ,Q)

T4 1.00 0.389
T5 0.333 0.249
T6 0.00 0.056

3.9 Related work

Existing approaches for knowledge representation in software engineering are listed
in this paragraph. An emphasis is posed on modeling of NFRs, modeling of design
pattern, relationships among NFRs and design patterns, approaches for supporting
decision making in software architecture design and existing tools.

A systematic mapping study about application of method based on knowledge
Representation to solve typical problems of software architecture is proposed in (Li,
Liang, and Avgeriou, 2013). The authors outline the most relevant research direc-
tions and the weaknesses in the two domains and in their combination. The study
witnesses an increased use of knowledge representation based methods to model-
ing software architectures, especially concerning the model of architectural essen-
tials and relationships among them. In particular, (1) the study calls for more deep

58
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

investigation on use of knowledge representation to study impact analysis of soft-
ware architectures. (2) also approaches of knowledge recovery needs to be further
explored; (3) the architectural implementation can benefit from knowledge sharing;
(4) automatic and semiautomatic reasoning should be improved; (5) the study shows
the need of deep studies about benefit of knowledge approach to software architec-
ture; (6) knowledge based approaches could be implied in several new domains.
Ontological approaches. Ontologies are frequently used in several contexts of soft-
ware engineering. (Pan et al., 2013) provides a complete analysis for using ontolo-
gies in Software Engineering, especially in the development process. In (Gašević,
Kaviani, and Milanović, 2009) the use of ontologies in software engineering is sur-
veyed, by considering all the phases of software development Kruchten (Kruchten,
2004a) models architectural design decision in software-intensive systems using an
ontology in which each architectural design decision belongs to one of the following
categories: existence decisions, behavior decisions, property decisions. The ontology
is supported by a tool able to list decision and relations, visualizing design struc-
ture and temporal view of design decisions. The works (Henninger and Ashokku-
mar, 2005; Henninger and Ashokkumar, 2006) propose the modeling of patterns by
means of ontologies, but only for a set of patterns, i.e. the usability design patterns.
A metamodel for design pattern language in proposed in (Henninger and Ashokku-
mar, 2006). In (Kampffmeyer and Zschaler, 2007) a Design Pattern Intent Ontology
(DPIO) to formalize relationships among Gang of Four’s (GoF) patterns is proposed,
the ontology is used to suggest a pattern to solve a given design problem. An Ex-
tended version of DPIO ontology to suggest patterns to solve integration problems
is in (Harb, Bouhours, and Leblanc, 2009). Formalization of web design pattern is
modeled in (Montero, Díaz, and Aedo, 2003) using ontologies. A pattern scanner
for the Java language based on a OWL design pattern ontology is proposed in (Di-
etrich and Elgar, 2005) for recognizing patterns in source code. In (Bakhshandeh et
al., 2013) an ontology for modeling the enterprise architecture domain is proposed,
while an ontology to model architectural design decisions is described in)(Kruchten,
2004b). More recently, in (Guizzardi et al., 2014) NFRs are defined from an ontolog-
ical point of view and a language is proposed to model them. Differently from our
approach in (Guizzardi et al., 2014) there is no relation with patterns and their fami-
lies. The authors identify the fuzziness of NFR specifications but their approach is to
a more conceptual level. Analogously, the authors of (Rashwan, Ormandjieva, and
Witte, 2013) define an annotated ontological vocabulary of NFRs with the main aim
of classifying natural language sentences with reference to software specifications.
Chi-Lun Liu proposes in (Liu, 2010) a modeling of NFRs that mixes ontologies with
rules with the goal of catching inconsistencies in information systems specifications.
Unfortunately, neither the overall modeling does not take into account the fuzzy na-
ture of NFRs nor considers relations with architectural patterns. The same issues can
be found in (Dobson, Hall, and Kotonya, 2007) where an ontology to model NFRs is
proposed.
Design patterns and NFRs modeling. In (Mikkonen, 1998) features of design pat-
tern are modeled using formal methods that capture temporal properties. In (Taibi
and Ngo, 2003) a language named Balanced Pattern Specification Language (BPSL) is
proposed for the specification of behavioral features and structural aspects of pat-
terns (Tichy, 1997). The language derives from Temporal Logics of Action and First
Order Logic. In (Harrison and Avgeriou, 2010a) the authors study relationships be-
tween design pattern: they consider application of pattern and tactics by using an
entity diagram for annotating information about used tactics. Use of NFRs is studied

3.10. Conclusion 59

in (Chung and Prado Leite, 2009) and in (Botella et al., 2001). In (Glinz, 2007; Franch,
1998) several definitions of NFRs are probed. The work (Mylopoulos, Chung, and
Nixon, 1992) describe the use of NFRs with process or product oriented approaches.
Several automated tools have been proposed for supporting the enterprise architect
in architectural modeling, such as (Jansen et al., 2007; Capilla et al., 2006; Tran and
Chung, 1999; Diaz-Pace et al., 2008).

Eventually, relationship between patterns and NFRs has been addressed in (Rosa,
Cunha, and Justo, 2002) that defines the policy to specify how an attribute affects the
quality of non-functional properties. (Gross and Yu, 2001) studies the relationships
between NFRs and design patterns. A framework to formalize relations between
patterns and tactics is proposed by Harrison et al. in (Harrison, Avgeriou, and Zdun,
2010) to study the impact at implementation level. The impact of a tactic on quality
attributes is described in (Harrison, Avgeriou, and Zdun, 2010).

3.10 Conclusion

In this chapter was proposed as main goal the development of a Decision Support
System for supporting designers and software architect – having greater or lesser ex-
perience – in the process of modeling a software system’s architecture. Achievement
of the proposed goal was supported by listing some useful research questions. We
describe hereby how the five research questions have been addressed throughout
the work. For the first two questions, Q1, and Q2 we studied state of the art con-
cerning main categories of requirements – functional and non-functional – by pos-
ing great interest in NFRs. Answer to question Q1 can be found in the Paragraph 3.3
and in a more extended study in the related work in Paragraph 3.9, where the use
of catalogues of NFRs was found as the more relevant approach. To answer ques-
tion Q2, we reviewed some state of the art approaches for pattern categorization or
classification. The results of this study is summarized in Paragraph 3.3, where pat-
tern, pattern languages, problem area and frameworks available are cited; a more
extended study is reported in the related work in Paragraph 3.9. The answer to
question Q3 was derived from studying all the approaches to relate NFRs and pat-
tern described in Paragraph 3.3: relationship between NFRs and reusable schema
are introduced as the starting point of the work we developed. This study allowed
us to build the theoretical framework of our approach that is the answer to question
Q4 by defining the fuzzy ontology in which we catalog the NFRs, the Families and
the Pattern according to catalogues and categorizations found in the state of the art
descriptions. By defining the Covering Answer Set algorithm for retrieval of pattern
from the fuzzy ontology we solved the problem of facilitating the decision making
problem in architectural design.

Question Q5 led us to implement and validate the decision support tool de-
scribed in this chapter through the use case scenario and preliminary performed
experiment on the method.

Main strengths of our approach is the use of fuzzy ontologies for modeling Knowl-
edge that relates NFRs with patterns and with the Families they belong to. The fuzzy
nature of the adopted language makes it possible to express and reason with con-
cepts like “the Proxy pattern has a good load balancing level” or that “the load balancing
level is directly proportional to the level of reliability”. The proposed formalism and the
reasoning service was implemented in a tool for supporting the human expert, the
architect or the designer to select a set of patterns that matched the desired require-
ments. To this end, we have also defined a novel reasoning task able to retrieve a

60
Chapter 3. A Fuzzy Ontology-based Tool for Decision Making in

Architectural Design

ranked set of patterns that match the user requirements expressed in terms of NFRs.
The use of a formal approach inherently guarantees the correctness and consistency
of the data entered and the trust of the approach. The reasoner used to build the
ontology is able to detect and prevent inconsistent data and incongruences. At last,
we have presented a use case and have developed a Fuzzy OWL 2 knowledge base
describing 28 pattern families, 37 Non-Functional Requirements, 109 design patterns
and their relations. The use case was experienced using the tool by an expert whose
solution is provided in the work and by a number of teams whose solution were
compared with those provided by the expert supported by the tool. Results proved
that solutions proposed by the tool-supported teams were more efficient in term of
elapsed time and similarity.

61

Chapter 4

Context-aware Middleware for the
Internet of Things based on fuzzy
rules and reflective model

4.1 Introduction and Motivation

One of the challenges in building an Internet of Things (and Services) Middleware
is the way software has to be developed and composed on the top of flexible infras-
tructures and integration architectures.

In this direction, the strongest challenges still regard the way a smart IoT-based
architecture is designed in order to make it robust with respect to the contextual
changes it continually undergoes. In fact, we all know that the physical world is not
a static environment and it changes according to sometimes unpredictable events.
Then, informative objects disseminated in the physical world should be able to adapt
and change their behavior by following the surrounding context. New software
composition paradigms and patterns that deal with heterogeneity, dynamicity, and
adaptation need to be introduced thus paving the way to adaptive architectures.
In order to be as effective as possible, the intelligent objects in IoT solutions are
usually coordinated by a middleware that acts as a facilitator for a smoother and
homogeneous communication among the various components.

The design of IoT middlewares has become a popular research area and refers
to three main problems in developing distributed applications: the complexity of
programming interprocess communication, the need to support services across het-
erogeneous platforms, and the need to adapt to changing conditions.

Traditional middleware (such as CORBA, DCOM, and Java RMI) addresses the
first two problems to some extent through the use of a “black-box” approach, such as
encapsulation in object-oriented programming. However, a traditional middleware
is limited in its ability to support adaptation. To address all the three problems, the
notion of adaptive middleware has been proposed.

In this chapter we propose a reflective model whose aim is to inject context-
awareness into an IoT middleware. The reflective extension allows a software sys-
tem to dynamically change its logic without internal changes to the code. In our
approach, the awareness of the surrounding context is encoded by means of a rule-
based system which drives the dynamic behavior of the middleware. Rules are in-
terpreted in a fuzzy manner in order to make the middleware adaptive and flexible
also to slight changes in sensor’s data. A use case scenario of a Smart Home has
been experimented to check the rule-based model on a real implementation of an
IoT middleware.

62
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

This chapter is structured as follows: in the next Paragraph we introduce back-
ground technologies concerning IoT. Then we formalize the model to build the re-
flective architecture and later we show a practical example in a use case scenario.
Experiments and results are discussed in Paragraph 4.4.3. After a related work Para-
graph, conclusion and future work close the paper.

4.2 Background

Supporting adaptation and evolution is the key to long-lived applications.
In this direction, a key solution is represented by the Reflection architectural pat-
tern (Buschmann et al., 1996c). It objectifies system’s details about structure and
behavior and enables applications to use or control functionalities of other applica-
tions without having a built-in knowledge of their behavior. Reflection, also known
as computational reflection, was originally introduced by B.C. Smith to access and
manipulate the LISP program as a set of data in execution (Smith, 1982). Starting
from this seminal idea, we see how a IoT middleware can surely benefit from the
use of a reflective approach. As an example, we have the possibility of designing a
completely configurable system which results adaptable to different operating envi-
ronments.

The main concept in the Reflection pattern is the distinction between the base-
level and the meta-level. A base-level includes the core application logic and its run-
time behavior is observed by a meta-level that maintains information about selected
system properties to make the software self-aware. Changes to information kept in
the meta-level thus affect the subsequent base-level behavior (Buschmann, Henney,
and Schmidt, 2007b). The adaptation of the meta level is performed indirectly with
the help of a specific interface, the Meta-Object Protocol (MOP) which allows users
to specify a change, check its correctness, and automatically integrate the change
into the meta-level (Buschmann et al., 1996c). MOP also makes possible the change
of connections between the base-level and the meta-objects. A meta-object is an object
that creates, manipulates, describes, or implements other objects (including itself).
Thus, a proper configuration of the base-level and meta-objects defines the behav-
ior of an application (Maes, 1987). In addition, using a programming language that
supports reflection, it is possible to change the structure of the objects themselves at
run-time and then make the software system much more flexible.

4.3 A Formal Model to Design a Reflective IoT Mid-

dleware

In this paragraph we provide a Formal model for a reflective middleware in a IoT set-
ting. Without loss of generality, we assume that objects sense contextual dimensions
and return the corresponding data. From now on, we will use S = {s1, s2, ..., sn}
to denote the set of objects/sensors in the network and with Di = {d1, d2, ..., dn}
the domain of the data returned by the i-th object. As an example, in case we
have s1 being a temperature sensor we may have the corresponding domain D1 =
{�25, . . . ,+40}. We do not impose that different objects must have different do-
mains. In our network we can have diverse temperature sensors whose domains
contain the same values.

4.3. A Formal Model to Design a Reflective IoT Middleware 63

The dynamic behavior of the middleware we present, relies on the definition and
usage of rules of the form given a condition evaluated as true perform an action.

Definition 1 (Condition – Syntax and Semantics). Given a set S = {s1, . . . , sk} ✓ S of
objects, an Atomic Condition is defined as the relation Ca ✓ D1 ⇥ . . .⇥ Dk.

Syntax. Conditions C1, . . . , Cm are defined recursively as in the following

C1, . . . , Cm ! Ca ATOMIC CONDITION

¬Ci NEGATION

Ci ^ Cj CONJUNCTION

Ci _ Cj DISJUNCTION

Semantics. Given a tuple t = hd1, . . . , dki we say that the Atomic Condition Ca ✓
D1 ⇥ . . .⇥ Dk is evaluated as true in t if t 2 Ca. A Condition is evaluated as true if

ATOMIC CONDITION Ca is evaluated as true
NEGATION Ci is not evaluated as true
CONJUNCTION both Ci and Cj are evaluated

as true
DISJUNCTION either Ci or Cj are evaluated

as true

Given a condition C ✓ D1 ⇥ . . .⇥ Dk and a tuple t 2 D1 ⇥ . . .⇥ Dk, we may introduce a
function f defined as

f (C, t) =

⇢

1 if C is evaluated as true in t
0 otherwise

The simplest Atomic Condition involves one sensor only. As an example, sup-
pose sensor si detects changes in concentration of pm10

1 in the air. A simple atomic
condition can be represented as pmi

10 > 40. Stating that the condition is evaluated
as true if the value of pm10 sensed by si is greater than 40. Analogously, having the
objects sj and sk designed to retrieve humidity values h we can define a condition
involving the three corresponding domains as in the case of

(pmi
10 > 40^ hj

< 15) _ hj � hk (4.1)

In our model, once a condition is evaluated as true, it triggers an action that
drives the reflective behavior of the middleware. Adaptation and evolution of the
system are then driven by a set of rules.

Definition 2 (Rule). Given a set of actions A = {a1, . . . , an}, a set of rules R is defined as
a function associating a Condition C 2 C = {C1, . . . , Cm} to an Action a 2 A.

R : C ! A

We use the notation C) a to denote the single rule r 2 R. Given a context t, the action a
is executed if and only if C is evaluated as true in 1.

1The abbreviation pm10 identifies one of several fractions in which it is ranked the partic-
ulate: solid and liquid particles dispersed in the air with relatively small dimensions. These
particles in the atmosphere are indicated by many common names: dust and soot for those
solid, mist and fog for liquids.

64
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

For example, we may want to model a rule where in case the condition in Equa-
tion (4.1) is evaluated as true in a given context then we send a notification email. In
this case, the action is send email and the corresponding rule is formulated as

(pmi
10 > 40^ hj

< 15) _ hj � hk) send email (4.2)

In order to be effective, an IoT middleware must also react as quick as possible
to contextual changes. Its behavior needs to mimic a real-time one. Unfortunately,
performing an action may require a preparation time thus preventing the system to
perform an action on time when a specific condition C results to be true with refer-
ence to the current context t. On the other side, before we reach t other contextual
values are sensed by the objects within the network and, usually, we do not have big
leaps while moving from a sensed context to the following one. Consider the simple
condition C = pmi

10 > 40 for the sensor si. Before si senses the context t = h40.5i
that makes C to be evaluated as true, the sensor also measures other values for pm10

which are reasonably close to 40.5. We may expect a series of pm10 samples like
(. . . , 36.3, 37.0, 39.9, 40.0, 40.5) for which C can be considered “almost true” to a cer-
tain degree. The best way to model degrees of truth for a condition is by means of
fuzzy logics Zadeh, 1965. Thanks to the introduction of membership functions like
the ones represented in Figure 4.1 we may assign a truth degree to a condition C. As

FIGURE 4.1: Fuzzy Membership functions. (a) Left Shoul-
der function ls(x, y), (b) Right Shoulder function rs(x, y), (c)
Triangular function tri(x, y, z), and (d) Trapezoidal function

tra(x, y, z, t).

an example, if we assign a right shoulder function to the domain pm10 with x = 35.0
and y = 40.0, once si senses a value equal to 37.0 we may say that C is evaluated
as true with a degree of 0.4 while for a value of 39.0 we have a degree of truth for
C equal to 0.8. Given the introduction of fuzzy membership functions we may de-
fine Fuzzy Conditions and Fuzzy Rules. As for the former we refer to the standard
semantics adopted to evaluate the truth if fuzzy logic formulas involving Boolean
operators.

4.3. A Formal Model to Design a Reflective IoT Middleware 65

Definition 3 (Fuzzy Condition - Syntax and Semantics). Given a set S = {s1, . . . , sk} ✓
S of objects, an Atomic Fuzzy Condition is defined as the relation Ca f ✓ D1 ⇥ . . .⇥ Dk

and a membership function

m f : D1 ⇥ . . .⇥ Dk ! [0, . . . , 1]

Syntax. The syntax of Fuzzy Conditions C1, . . . , Cm is the same as for Conditions intro-
duced in Definition 1.
Semantics. Given a tuple t = hd1, . . . , dki we say that the Atomic Fuzzy Condition
Ca ✓ D1 ⇥ . . . ⇥ Dk is evaluated as true with a degree of m f (t). A Fuzzy Condition is
evaluated as true with a degree computed as in the following

ATOMIC FUZZY CONDITION m f (t)
NEGATION 1�m f (t)
CONJUNCTION min(m f (Ci), m f (Cj))
DISJUNCTION max(m f (Ci), m f (Cj))

We use dt(C, t) to denote the degree of truth of the Fuzzy Condition C given the context t.

We may see that the degree of truth for fuzzy condition extends the function f
introduced in Definition 1.

Definition 4 (Fuzzy Rule). Given a set of actions A = {a1, . . . , an}, a set of Fuzzy Rules
FR is defined as a function associating a Fuzzy Condition C 2 C and an activation thresh-
old v 2 [0, . . . , 1] to an Action a 2 A.

FR : C ⇥ [0, . . . , 1]! A

We use the notation C[v]) a to denote the single fuzzy rule f r 2 FR. Given a context
t and a fuzzy rule, we say that the corresponding action is activated if v d f (C, t) < 1,
while we say that the action is executed if dt(C, t) = v.

A safe value for the activation threshold in a fuzzy rule is 0.5 but it can be set
according to the workload needed to prepare the execution of the action a.

For the activation and execution of a set of fuzzy rules, we built an architectural
model as shown in Figure 4.2 made up of software components described as follows.

Definition 5 (Message Broker). Let MP = {MP1, MP2, ..., MPk} be the set of message
producers and let MC = {MC1, MC2, .., MCn} be the set of message consumers. Given the
formal messaging protocol of the message producer MPi and the messaging protocol of the
message consumer MCi, the MB is a software module able to translate
and forward messages through a communication channel.

A Message Broker (MB) is an architectural pattern for message validation, trans-
formation and routing. Generally, MBs are components of a Message Oriented Mid-
dleware (MOM) (Curry, 2004) and provide content and topic-based message rout-
ing. As shown in Figure 4.2, the policy inside each Message Broker is based on a
First In First Out queuing mechanism. Each queue represents a channel to which
the message consumer can subscribe according to the Publish/Subscriber architec-
tural pattern. A Message Broker can be used to manage a workload queue or mes-
sage queue for multiple consumers. Generally, MBs are used to decouple end-points

66
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

FIGURE 4.2: Architectural schema of the proposed model.

and/or meet specific non-functional requirements. The Publish/Subscribe mecha-
nism is based on one-to-many and many-to-many policies and it allows a single pro-
ducer to send a message directly to one or more interested consumers (Buschmann
et al., 1996a).

Let MB be a Message Broker component that models the Publish/Subscribe
mechanism for defining the relationships between physical sensors and actions; let
us now give the following definition:

Definition 6 (Message and Message Bus). A Message m is defined as m = hs, t, Ai
where s is the sensor, t the context sensed by s, while a is the action to execute. The Message
Bus is the channel where the MESSAGE BROKER publishes messages from sensors while
consumers subscribe to receive notifications of a relevant message.

With reference to Figure 4.2, the RULE ENGINE models the reasoning algorithm
that fires the fuzzy rules FR. The ADAPTER component works as a driver and trans-
lates the received command in a real action. It is possible to have more ADAPTERS,
one for each desired application. The abstract architecture models the reflection by
means of the meta-level and the base-level as in the following. The meta-level is
composed by the MOM with MBs inside, the rule engine connected to the Rules
Repository and abstract Actions. The base-level is made up of the Adapters that
triggers the real Actions.
The implementation of reflection mechanism is based on the following steps:

• Step 1: A Producer publishes a message m on a given Message Bus;

• Step 2: A fuzzy rule f r is executed;

• Step 3: Interested Consumers subscribe to the some Message Bus;

• Step 4: The related MESSAGE BROKER passes the message m through the Mes-
sage Bus to the Consumers;

• Step 5: An action can be activated or executed.

4.4. Use Case Scenario 67

4.4 Use Case Scenario

The abstract architecture we have presented can be instantiated in several contexts
and scenarios. We now explain the formal model by instantiating it in a use case sce-
nario: a smart domestic environment made up of IoT components, with the purpose
of monitoring and automation. The use case has been implemented with a network
of sensors to monitor environmental variables of one or more rooms inside an apart-
ment. The devices have been placed along the entire home extension to monitor
environmental variables (for example, temperature and air humidity, brightness of
the room, CO2 concentration, etc..) and variables related to the use of services (e.g.
electricity consumption of the room, entertainment services, and so on).

4.4.1 Implementation

An implementation of the proposed architecture we used for our experimental eval-
uation is depicted in Figure 4.3.
Among the various IoT middleware available in the market, we choose DeviceHive
mainly for usability reasons: ease of installation, documentation and high integra-
tion with a wide range of programming languages and IoT protocols. By using De-
viceHive, the set up of a IoT system is made by the following three steps:

• Create: the user creates an instance of the Cloud by DeviceHive. There are in-
stances of Microsoft Azure, Juju, Docker and Cloud Playground. In our imple-
mentation, we used the shell instance Cloud Playground.

• Connect: using the specific IoT Toolkit, a dedicated gateway is installed. This
is the link between the devices and the cloud of DeviceHive. The gateway is
written in Go, and in our case it communicates with a Python script that is
responsible for receiving data from the sensors within the network.

• Visualize: sent data can be displayed via a Web page.

Redis as MOM. In our instantiation of the model we adopt Redis2 as MOM. Al-
though it uses the key-value paradigm, it exposes some characteristics that make it
different from other databases in this category: it completely works in RAM, pro-
vides support to the storage of the key-value pair, offers four data structures: lists,
sets, ordered sets and hash. Using Redis as MB allows the system to translate a
message from the messaging protocol of the producer to the recipient’s messaging
protocol. Through appropriate Publish/Subscribe directives, Redis implements the
mechanism of Publish/Subscribe, whereby producers do not send messages directly
to recipients; messages are published and sorted into channels, without knowing
who is really writing to the channel. Interested parties express their intention to sub-
scribe to notifications of one or more channels of interest. This decoupling between
publishers and subscribers guarantee a greater scalability and allows the system to
manage a dynamic network topology.

Being a message well know as a discrete unit of communication intended by the source
for consumption by some recipient or group of recipients, we give the following defini-
tion.
The instantiation for the Message Bus of our model is obtained by using the Redis

2http://redis.io/

68
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

Message channel. To implement the Publish/Subscribe mechanism, publishers pub-
lish messages on the Redis channel, recipients subscribe to the channel and read
information about the available services.

The OBSERVER component in Figure 4.3 observes rules extracted from the Rules
Repository. It notifies the MESSAGE BROKER (Redis) about the arrival of new data
as well as of the active rule and its status (activation or execution).

We use Node JS as Event-driven component. It receives data about the sensor
and the domain value of the sensor through a RESTful interface. The Observer and
the Event-driven component instantiate the Rule Engine of our Formal Model.

Follows the formal definition of the rule.

In the instantiation, it contains a simple call to a generic function with the string
identifying the methods and the classes of the base level. According to this mecha-
nism, the logic of the program can be dynamically changed depending on the data
got from the sensors and changes are transparent to the internal structure of the soft-
ware. Within the message JSON received by Redis the class name and the name of
the function to call are specified in special strings. The data to be written is contained
in a separate object, which will be the argument of the function.

In order to determine which are the Actions available at runtime, a system for
loading dynamic components within the same Meta level has been implemented.
Two files for each Action Levels are available: a JSON file containing configuration
data and a JavaScript file containing the class itself. Objects instantiated with the
data in the JSON file will then be stored in an array, and referenced by the name of
the same class, specified within each rule.

4.4.2 Reflective behavior

In this paragraph we analyze the control flow of the implementation in our use case
scenario. The system automatically performs actions according to the values re-
ceived by the sensors through the activation of a formal rule.

A configuration file contains the definition of the rules on the data and the actions
to take if the rule is fired. The OBSERVER (of the data flow) notifies the NODE JS
COMPONENT that forwards the extracted active rule to the MESSAGE BROKER. The
active rule and its status together with the information about sensors and domain
value is published on the Message Bus. On the message channel information about
the arrival of new data is published. The MESSAGE BROKER works as a through
for data flow and the active rule that are forwarded to the Reflective part of our
component.

4.4. Use Case Scenario 69

FIGURE 4.3: Implementation of the framework.

We may analyze the exchange of information between the various components
involved in which the home environmental monitoring unit sends a message to the
middleware with the following form:

Let us now consider the case in which there is a decrease of domestic temper-
ature due to a sharp decrease in external temperatures: the continuous-monitoring
control unit sends the data to the middleware which in turn activates the necessary
countermeasures for the resolution of the problem (sending an email or a notifica-
tion on your mobile device). We can analyze the exchange of information between
the various components involved. The monitoring unit sends a message to the mid-
dleware:

The message reaches the middleware where it is published on the Message Bus:

The consumers subscribed to the MESSAGE BROKER are then notified about the
message. The MESSAGE BROKER forwards the whole message made up of sensor,
domain value and the rule (extracted from the config file) to the Rule Engine that

70
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

executes it. Reflection is applied thanks to the signing of the consumer component
of the Redis channel. This component reads the published messages that contain
specific information on the method to be called, the class of which the function is a
member and the topics. The Meta Level enables the actions of the reflective compo-
nent. The Base level contains, among other specifications, a simple call to the generic
function (employed only by identifying strings function and class) whose aim is, in
this case, to store in a MySQL database the detected data since it exceeds the thresh-
old more than the value contained in the rules repository. In this case, the rule is as
follows:

In this case the system checks if the temperature value is included in a cold range
of temperature defined by a trapezoidal function according to fuzzy logic. In this ex-
ample the condition relates to one single sensor, but it can group multiple conditions
from different sensors using Boolean operators. In our current implementation, the
activations are managed via a plugin system.

4.4.3 Validation of the model and Experiments

We validate our implementation in a controlled environment. Two stations were
placed in two different houses, each one with three sensors: humidity, temperature
and brightness. To validate the middleware in a distributed environment, the entire
core of the middleware including the DBMS was placed on a cloud architecture. Ex-
periments were performed using a Linux virtual machine with Ubuntu 16.04 (single
core, 2 GB of RAM, 25GB HD space) hosted on the Microsoft Azure Cloud infras-
tructure. A web panel allowed an external user to control and monitor of data sent
to the middleware. We tested all the software components of the middleware on a
continuous flow of data from sensors. The activation of the boards and continuous
detection of environmental parameters lasted 10 days. The flow of information went
from the cards that produced data placed in the two different houses to the middle-
ware then towards the Cloud of DeviceHive. The core of the entire model is the
stream of data that starts from the IoT board, passes through our middleware and
reaches the DeviceHive Cloud. We monitored and evaluated the data flow from the
sensor units to the middleware, according to rules encoded in the rule manager of
the formal model which has been instantiated.

Experimental field

We performed intensive tests on the IoT middleware with a focus on the evaluation
of the following NFRs: scalability and quality of service (QoS). From the evaluation
of these two NFRs we indirectly derived evaluations about other requirements, i.e.
accuracy, reliability, context-awareness and strength of the proposed method.

4.4. Use Case Scenario 71

The tool can be subject to any type of working load increase: as an example
let us consider the simultaneous forwarding to the middleware of a large amount
of data collected from several board physically located in different environments.
Hence, scalability issues need to be taken into account. Scalability refers to the abil-
ity of a system to increase or reduce its performance depending on its requirements
and availability. Two types of scalability are known in literature: vertical and hor-
izontal ones. Vertical scalability concerns with changes in the hardware with more
powerful components (e.g. replacement of a processor with a more powerful one,
increase in the amount of RAM, etc.). Horizontal scalability allows the user to in-
sert into the system other components similar to those already instantiated with the
aim of distributing the workload 3. Vertical scaling has been excluded because the
most delicate component is the Load Balancer. We considered workload scalability,
i.e. the ability of a system to increase its performance depending on the load it is
subject to when the system is provided with new resources to scale on, for example
entire virtual machines. To this purpose, we consider workload as the quantity of
simultaneous requests to the system for exploiting services: e.g. the workload is
measured as the quantity Q of objects that simultaneously make a HTTP GET re-
quest to display a Web page to a given web-server. The number of allowed requests
is computed based on the hardware capacity of the server: useful parameters to de-
termine this parameter is the number of available CPUs, the amount of RAM that
can be allocated and the available output bandwidth. Generally, computer systems
are designed to support a specified quantity of simultaneous connections; once this
load has been overcome, it is necessary to allocate new resources. In our implemen-
tation, for the two stations we used we performed experiments to test both quanti-
tatively and qualitatively the performance of the middleware. First of all, we aim to
state whether the implemented middleware can scale workload without reducing its
performance. Generally, under ideal conditions this means that an additional load
requires only additional resources rather than an extensive modification of the entire
middleware.

Test of Scalability

To address the NFR of Scalability, the middleware was appropriately modified by in-
troducing new components. The main component we introduced is the load balancer.
This is modeled as software component that allows to distribute the load between
several available nodes thus facilitating not only the addition of new nodes to sup-
port the increase of the work load, but also introducing a higher reliability. Indeed,
the crash of one node or its temporary unavailability does not compromise the data
ingestion service but hijacks the workflow to other free nodes of the network.

The implemented load balancer acts at the application layer of the ISO/OSI
model, and verifies with a predefined frequency the effectiveness of the target nodes;
it also redirects the incoming request to the destination node according to a predeter-
mined routing policy. Among the various routing policies available in the literature
we choose the Weighted Round Robin which differs from the classic Round Robin
algorithm for the introduction of a system of weights on the connecting edges be-
tween the load balancer and the node of interest. It is well- known that in situation
where different resources are available between servers connected in a cluster it is
recommended a weighted round robin that rebalances the weaknesses of the clas-
sical round robin. The Weighted Round Robin policy makes it possible to channel

3Performed tests allowed us to evaluate horizontal scalability.

4.4. Use Case Scenario 73

TABLE 4.2: Comparison of existing middleware with respect to
desired requirements.

Middleware Scalability QoS Cloud API
DeviceHive (https://devicehive.com) X X X
ThingSPeak (http://thingspeak.com) X X X

Zetta (http://www.zettajs.org) X X
Kaa (http://www.kaaproject.org) X X

TABLE 4.3: A table summary the result of scalability test with
one, two or three nodes.

] of nodes 10 Simultaneous Data 20 Simultaneous Data 40 Simultaneous Data 80 Simultaneous Data 100 Simultaneous Data 500 Simultaneous Data
1 Node 14 seconds 27 seconds 51 seconds 108 seconds 132 seconds 631 seconds
2 Nodes 12 seconds 20 seconds 38 seconds 61 seconds 81 seconds 490 seconds
3 Nodes 11 seconds 17 seconds 29 seconds 42 seconds 60 seconds 385 seconds

with the input fuzzy rule and its activation. To develop a qualitative and quantita-
tive evaluation of the performance of the developed middleware we compared its
performance with those another commercial tool: ThingSpeak, a platform for the In-
ternet of Things that allows the collection, storage and analysis of data from sensors
to the Cloud.
Table 4.2 lists some of the available IoT middleware. Some of the characteristics that
have been identified as priorities in the application under consideration have been
evaluated: scalability, QoS and availability of Cloud API useful for the pass-through
functionality of our middleware. The choice obviously falls in our case on the choice
between DeviceHive and ThingSpeak for all the parameters evaluated but above all
for the availability of a RESTfull endpoint and of a dashboarding system. The data
is sent directly from the board to the Cloud of ThingSpeak using RESTful methods
accessible and usable thanks to a token access to the API. The simulation, of the
duration of 12 hours, allowed to send data from 3 sensors (temperature, humidity
and brightness) at frequency intervals of 30 seconds. The license used (Free) posed
restrictions on sending of data: we could not send below 15 seconds interval for
sending continuously data with a computational interval of 20 seconds (Table 4.5
shows the comparison result). Anyway all the data has been correctly stored in the
predetermined time.

Figure 4.5 shows the trend of the time-scale test (y-axis). On the horizontal axis
it is possible to see the increase in the number of data sent and the corresponding
complete transit time inside the middleware until the storage within the database.
The series 1 (use of a single node) provides the time of ingestion of data without
applying scalability. The second and third series show the use respectively of 2 and 3
input nodes and allow to better exploit the load balancer as a mean of coordination in
the data injection. Table 4.3 summarizes the results of scalability test. Furthermore,
in Figure 4.5 we can observe that by increasing the number of nodes on which we
perform load balancing, for a fixed amount of sent data, we improve the throughput
of the entire system: if consider for example 500 simultaneous deliveries – the last
column in the picture– we see a 30% decrease of the time of ingestion.

This result was expected, in fact by spreading the workload across multiple
servers it is possible to get a more performance-related balance of the load of the
entire system. It is likely to think that translating the performed experience within
a Cloud architecture having a powerful CPU, a more powerful network, more per-
forming drives and a greater amount of RAM it should be possible to improve the
obtained results. In fact, the experimental hardware has slowed down the system
since the instances of Virtual Machines share the same CPU and the same hard disk.

74
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

FIGURE 4.5: Results of Scalability test.

From the system’s point of view, the bottlenecks are further represented by the Mes-
sage Broker and by the DBMS. The bottlenecks could be overcame by introducing
cluster instances with additional nodes to support the normal stand-alone instances
of components. Besides, the use fuzzy-logic based rules has allowed a reduction in
the size of the files (10 %) with the consequent reduction of RAM.

To sum up, the test on the scalability has shown that the implemented middle-
ware provides excellent performance related to load distribution on multiple nodes
in load situations.

QoS Test

In this paragraph we experimented the implemented middleware from the stand-
point of the QoS requirement. First of all, let us dwell on some fundamental aspects
relevant for the evaluation of the provided quality of service. We refer to the assess-
ment of QoS at the application layer of the ISO/OSI stack. In fact, the experiment
aims to validate properties of input data management and the trigger of actions as a
consequence of the application of the rules. The architectural setting for this trial has
changed w.r.t. the setting of the scalability evaluation. In fact, in this case we refer
to the Cloud architecture. The entire middleware was embedded within a Docker
instance on a cloud machine, thus instantiating the entire formal model. We con-
ducted a two-phases evaluation: the first one was performed by varying the time of
sending data to the middleware from 1 minute to 5 seconds for a period of 12 hours.
The second phase of experiment was performed by introducing competition within
the middleware.

In detail the experiment carried out: (i) an evaluation of data flow and operations
coming from a board on which two sensors for the monitoring of three environmen-
tal variables (temperature, humidity and brightness) were installed; (ii) an evalua-
tion of the data flow and operations arriving from two boards, each one monitoring
three environmental variables (temperature, humidity brightness).

The first evaluation provided positive results on all the tests. Specifically, all the
produced data were analyzed and stored within the database. The experimentation

76
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

besides it allows to receive and storage information with a high transmission rate.

Discussion

We discuss hereby about results of the experiments performed in a smart home en-
vironment by the instantiation of our proposed approach to reflective middleware
in IoT environment.

The formal model was thought starting from the taxonomy of requirements we
found in (Razzaque et al., 2016a), more precisely, also as outcome of the performed
state of the art study, we selected some relevant architectural requirements, namely
Adaptiveness, Context-awareness and Program abstraction. These emerged as pow-
erful requirements to address the features of an IoT middleware, the interaction with
physical objects which are becoming smarter and smarter with the ability to commu-
nicate with each other as well as with different information systems, the need of a
new generation of objects able to adapt to external inputs coming from the environ-
ment they are dipped in.

We addressed the formal model towards satisfaction of program abstraction, for-
mally and practically ensured by the reflection mechanism, the adaptiveness has
been implicitly realized through the rules-based approach and the context-awareness
guaranteed by the fuzzy rules to select and determine actions to be executed. It
emerged that new modeling techniques, patterns, and paradigms for composing
and developing software and services are needed to deal with changing context and
requirements to give more flexibility and adaptability to the network behavior.

To validate the approach we considered the category of NFRs that an IoT mid-
dleware should ensure. Moreover, we selected in the category essential qualities that
an IoT middleware should posses. More precisely, we identified Scalability and Reli-
ability ensured also as a result of a desired Qos. The performed experiments proved
desirable properties of the model in term of these two parameters. Experiments
have been performed in a smart domain environment by setting an experimental
field with stations monitoring sensors of temperature, humidity and brightness with
variable requests coming from objects.

4.5 Related work

Different approaches are available in the literature of reflective middlewares. Hereby
we recap some relevant approaches in chronological order: starting from the earliest
to the most modern ones. One of the first approaches is in (Blair et al., 1999) that
presents an architecture for reflective middleware based on a multi-model approach.
Through a number of working examples, they demonstrate that the approach can
support introspection, as well as fine- and coarse- grained adaptation of the resource
management framework. In particular, the implemented reflective architecture is
supported by a component framework, offering a re-usable set of services for the
configuration and re-configuration of meta-spaces. In general, re-configuration is
achieved through reification and adaptation of object graph structures.

In (Cazzola et al., 1999) the authors present an aspect of Architectural Reflec-
tion called Strategic Reflection, which is an extension of classic reflection to the soft-
ware architecture level. The basic application of this extension allows the designer
a systematic and conceptually clean approach to the development of systems with
self-management functionality which also supports such functionality to be added
to an existing system without modifying the system itself. The system’s strategy is

4.5. Related work 77

described by a set of rules.
DART, a Reflective Middleware for Adaptive Applications is presented in (Raverdy,
Gong, and Lea, 1998). The project clearly separates each aspect of the application in
a distinct entity. Application behavior, properties and needs, environment features,
and adaptation policies are designed independently. Interoperability is achieved by
using adaptive events and the DART manager. Our framework is compatible with
this idea, anyway we use adaptiveness and the more relevant aspect we introduce is
fuzziness in modeling rule of reflective behavior. As previously stated, w.r.t. to these
early works, our approach is based on a combination of novel reflective technique
with adaptive mechanisms.

More recent relevant approaches of reflective middleware are in SOAR (SOA
with Reflection)(Huang, Liu, and Mei, 2007). The authors define a two-level meta
model which describes the basic characteristics of a SOA system, captures the threats
to dependability and identifies the adaptations for preventing or recovering service
failures. Based on the meta model, they empirically evaluated the features of de-
pendability mechanisms for service consumers, service brokers, service providers
and message passing and then define a set of equations to precisely calculate the
factors for making a correct tradeoff. SOAR is implemented in PKUAS, a reflective
J2EE application server with support to web services. The work in (Blair, Coulson,
and Grace, 2004) surveys and evaluates three generations of reflective middleware
research at Lancaster University. In the “depth”dimension, they believe that there
is great potential in developing future systems that are “vertically integrated”and
can be seamlessly inspected and adapted as a unified “pool”of component-based
functionality. Once again, our reflective approach is compatible with this idea, any-
way the work is limited to three distinct generations of middleware developed at
Lancaster, while we introduce an innovative approach in our model definition.

In (Ikram et al., 2013) the authors present a chemical reaction-inspired computa-
tional model, using the concepts of graphs and reflection, which attempts to address
the complexities associated with the visualization, modelling, interaction, analysis
and abstraction of information in the IoT. At the same time, the work also high-
lights the fact that there are not many higher-level languages and middleware tools
for chemical computing. The authors simulated and observed that the linear time-
lines can be inefficient and time consuming in complex scenarios, suggesting that
an alternative can be to explore peer-to-peer architectures to realise the collection,
generation and propagation of Social Smart Spaces (SSss).
W.r.t. these approaches, we start from the related perspective, define a high level
and abstract meta model than hence can be tailored on different platform, mainly
IoT-based, easily extensible with different IoT middleware. So our approach is more
recent as far as the supported technologies is concerned; it also is flexible and can be
easily extended being supported by an abstract model driven by a fuzzy rule engine.

A more recent stream of research is focusing on leveraging reflective and adap-
tive middleware for the IoT domain. A survey of reflective middleware for Iot is
in (Perera et al., 2014). The survey addresses a broad range of techniques, methods,
models, functionalities, systems, applications, and middleware solutions related to
context awareness and IoT. The paper analyzes, compares and consolidates past re-
search work by adopting the following objectives: (i) learn how context-aware com-
puting techniques helped to develop solutions in the past, (ii) how we will be able
to apply those techniques to solve problems in the future in different environments
such as the IoT, and (iii) highlight open challenges and discuss future research di-
rections. With respect to the idea of adaptive and reflective middleware for IoT we

78
Chapter 4. Context-aware Middleware for the Internet of Things based on

fuzzy rules and reflective model

introduce a fuzzy rule based abstract model to describe the sensor’s data and their
management depending on these rules. In (Vasconcelos, Vasconcelos, and Endler,
2014) the authors present a middleware that supports distributed dynamic software
adaptation, in transactional and non- transactional fashion, among devices. They
are focused in providing scalable management of coordinated and distributed dy-
namic adaptation, and facilitating the development of adaptation plans. The pro-
posed idea is an adaptive framework, but is focused on mobile embedded systems.
Our approach is compatible with this idea, anyway, we overcome the mobile per-
spective by proposing an approach that can be tailored on different platform; in fact
it is focused on an IoT domain and can be easily extended to comply with different
middleware. The awareness of the surrounding context is encoded by means of a
rule-based system which drives the dynamic behavior of the middleware. Rules in
our framework are encoded by means of a fuzzy interpretation that enables more
flexibility and adaptability of the middleware and improves its context-awareness.

4.6 Conclusion and Future Work

In the recent years, there has been a huge effort to provide an immediate access to
information about the physical world through Internet technologies. IoT vision aims
to integrating the virtual world of information to the real world of things. The role of
a IoT middleware is twofold. On the one hand, it aims to providing the connectivity
between the virtual world and the physical one. On the other hand, it provides an
interface between heterogeneous physical devices and applications. In this chapter
a reflective extension of an IoT middleware which makes possible the design of a
software resulting completely configurable and adaptable to different operating en-
vironments is presented. The proposed framework enables to automatically perform
actions according to the sensor values received by triggering a set of fuzzy rules able
to better describe environmental data w.r.t. to actions to be performed.

We validated the proposed model on a real IoT middleware in a smart home
scenario performing intensive tests to evaluate non-functional requirements more
specifically scalability and Quality of Service (QoS).

Improvements on the software side can be performed by expanding the range of
external cloud services for making data flow from sensors to middleware in order to
enhance the scalability of the system to other services. The scalability and the QoS
tests has shown that the implemented middleware provides excellent performance.

We are currently working to extend the proposed framework with the addition
of new Plug and Play actions; and to extend the framework for enabling it to the
integration of several middleware. The idea is to build an “adaptive wrapper”of
middleware able to adapt the reflective middleware to different Clouds.

79

Part II

Mobile Software dimensional view

81

Chapter 5

A formal model for user-centered
adaptive mobile devices

5.1 Introduction and motivation

This study was carried out starting from key research concepts within the self-adaptive
systems and focused on some Research Questions(RQs) about the same class of ap-
plications as far as modeling and implementation are concerned. First of all we
identified as key concepts the following factors emerging as the more responsible
of changes at run-time: 1. changes in state/context/environment; 2. changes in
requirements; 3. user’s habits and needs. The key concepts were analyzed by high-
lighting their role in runtime design and implementation. Table 5.1 presents the RQs
that will be addressed and the Research Process(RP) that has been taken.

In this chapter we propose an approach to comprise relevant aspects of adapta-
tion: knowledge about environment, context and user’s habits and information ex-
tracted from external sources and sensors. A formal metamodel that uses an Action
Repository with stored triples of actions and related pre and postcondition about
state and context is proposed to model properties of a device. The metamodel is
instantiated in real scenarios, by contextualizing the main elements, thus obtaining
an adaptive mobile software.

The rest of the paper is organized as follows. Paragraph 2 introduces the pro-
posed approach. Paragraph 3 instantiates the approach in two real scenarios: i.e.,
a proximity environment application, and an applications to dynamically modify
the home screen of a smartphone. Paragraph 4 validates the approach on empirical
setting experiments. Paragraph 5 discusses advantages of the proposed framework
according to RQs. Paragraph 6 compares our approach with existing state of the art
works. The last paragraph concludes the chapter and outlines future work.

5.2 Approach

5.2.1 Action Repository

We propose a formal approach to build runtime mobile applications based on a
metamodel to support runtime modeling of adaptive applications. Modeling de-
pends on behavioral/contextual changes and observable properties of the user’s
habits and profiles. The metamodel is made up of a control level where data ex-
tracted from sensors are transmitted to effectors. Sensors and Effectors are inter-
preted in the sense of the definition of the MAPE-K model (Huebscher and McCann,

82 Chapter 5. A formal model for user-centered adaptive mobile devices

TABLE 5.1: Research Questions (RQ) and Research Process
(RP).

ID RQ

RQ1 What are the main challenges in design and implementation and
use of self-adaptive systems?

RQ2 How could changes in the state, in the context and in the en-
vironment involve the changeability of applications and which
constraints on this factors can be significant?

RQ3 How could the user’s behavior involve the changeability of ap-
plications?

RQ4 How could a formal framework improve the runtime approach to
such application with respect to existing approaches (even formal
or theoretical)?

ID RP

RP1 Propose a theoretical framework for modeling key concepts
about changes in environment requirements and user’s habit and
needs and defining a reasoning mechanism to manipulate the
modeled knowledge.

RP2 Explore use case scenarios to implement applications from the
theoretical framework.

RP3 Validate the approach through use cases and experiments with
real users.

RP4 Compare solutions provided by the metamodel supported imple-
mentation with human proposed solutions to given domain use
cases to assessing the usability of the proposed adaptation and
prove how the proposed framework is relevant.

5.2. Approach 83

2008). Actions and tasks to be performed are derived from high-level properties,
preconditions about the state and context.

Knowledge about the adaptive software and its environment is modelled using
requirements such as: if the user is near a restaurant, it’s lunchtime, usually she eats
Japanese food, then she will be informed about a Japanese restaurant nearby.

The metamodel allows one to express runtime adaptation at behavioral level:
apps, services or components may be runtime loaded, deployed and executed.

Definition 7 (States). Given a set of State Variables SVars = {v1, . . . , vn}, and a set of
corresponding domain values {V1, . . . , Vn}, a State is an assignment s : vi 7! d 2 Vi that
for each i = 1, . . . , n maps each state variable vi to its current value s(vi) 2 Vi.

An Action can change a state s to a state s0, by changing the value of any number of
state variables.

For example, a state variable gps of a mobile device may record in a boolean
value whether the GPS is ON or OFF, another may record whether or not the icon of
an app appears in the Home screen, another may contain the present brightness of
the screen, etc. Actions model the adaptations of the device, e.g.turn OFF the GPS
and reduce the brightness of the screen (see below). State variables not affected by
an action keep their values.

Contexts are defined in the same way as states, but with the crucial difference
that context variables cannot be changed by actions; the device environment changes
them exogenously.

Definition 8 (Contexts). Given a set of Context Variables CVars = {w1, . . . , wm}, and
a set of corresponding domain values {W1, . . . , Wm}, a Context c is an assignment c :
wi 7! d 2 Wi that for each i = 1, . . . , m maps each context variable wi to its current value
c(wi) 2Wi.

No action can change a context variable.

Intuitively, contexts model every condition of the device adaptation can have no
effect on, e.g.instance, signal strength, battery level, geographical location, nearest
street address, date/time, etc.

Actions are defined by their pre-conditions (conditions of application, that are
verified before the action can start) and post-conditions (which change the values of
one or more state variables).

Definition 9 (Pre- and post-conditions). We call P the language containing all possible
preconditions. For every action a:

1. the pre-condition of a is a formula Pa 2 P which is a Boolean combination of

• comparisons of state variables (viop d), where vi 2 SVars, d 2 Di, and op 2
{=, 6=,<,>,�,} is a comparison operator;

• comparisons of context variables (ciop d), where ci 2 CVars, d 2 Wi, and op
is as above.

2. the post-condition of a is a formula Qa which is a conjunction of assignments (vi =
d), where vi 2 SVars, d 2 Di.

We require that Qa |= ¬Pa, so that once an action has been performed, its effects prevent the
immediate re-application of the action.

An action a can be performed when the state s of the device in the context c makes its
pre-condition true. After the action is performed, we denote the resulting state as s0 =

84 Chapter 5. A formal model for user-centered adaptive mobile devices

FIGURE 5.1: The proposed Metamodel.

s/Qa, meaning that variables not in Qa keep their value, while every variable in Qa changes
accordingly.

For example, a pre-condition could be ((gps = true) _ (brightness � 0.7)) ^
(batteryLevel 1v)—denoting some high-consumption state in the context of a low
battery level—while a post-condition could be (gps = f alse) ^ (brightness = 0.2)—
which changes the state to a low-consumption one. Intuitively, pre-conditions model
a boolean check on sensors, while post-conditions model the activation of effectors.
Clearly, while sensors can be checked for a wide range of possible values at once
with operators like <, 6=,�, effectors are modeled as deterministic actions with the
only operator =, setting a definite value for a state variable.

We stress that pre-conditions are not triggers, that is, the satisfaction of Pa does
not force a to be necessarily performed. In fact, when several such pre-conditions
are true at the same moment, the adaptation will choose the most preferable action
according to the user model, which will be discussed later on.

Definition 10 (Action Repository (AR)). An Action Repository (AR) is a set of triples
of the form ha, Pa, Qai where a is a (unique) name of an action, Pa is its pre-condition and
Qa is its post-condition.

The Action Repository is the core knowledge of our knowledge-based runtime
adaptive system, which comprises other parts as listed below.

Definition 11 (Adaptive Architectural MetaModel). An Adaptive Architectural Meta-
Model is a tuple AAMM =< S, AR, f ind, U, E > where S and E are respectively the
sensors and effectors, AR is an Action Repository, f ind is an algorithm that finds a set of
actions that might be applied in a given state and context, and U is the user’s model.

Figure 5.1 shows the metamodel of the proposed approach.

5.2. Approach 85

5.2.2 Personalized Action Selection

In most cases, a perfect match between the actual state and context and the ones re-
quired in the pre-condition is not to be expected. Given a state-context P̃ we need
to evaluate if it is “similar enough" to the one specified in the precondition Pa of
an action a. Given an Action Repository, we want to execute the action whose pre-
conditions are more similar to P̃. Moreover, it would be advisable that the selection
procedure behaves in a personalized way. That is, given P̃, the selection of the action
to be executed may change depending on the user. Hence, when evaluating the pre-
condition Pa of an action a, most comparisons in Pa are evaluated as fuzzy conditions
in Fuzzy Logic (Zadeh, 1965). Indeed, due to their inner nature, it may result hard
to evaluate a comparison of state variables in a Boolean setting. In such a setting,
the comparison (time = 12 : 30) would be infrequent considered to have truth value
1 only in the case in which the device time is exactly 12:30, even if around 12:30, say
12:25, the comparison still yields a degree of truth which is nearly 1—say, 0.8. Fuzzy
logics may surely help in modeling such graded values of truth. They are based on
the notion of fuzzy sets which are defined, simply put, as functions f : D ! {0, 1}
assigning a grade (value) of truth f (d) 2 {0, 1} to a certain value d 2 D. With ref-
erence to the previous example, D is the domain of time and d is a possible hour.
In Chapter 2 have been recalled the most common and used membership functions
3.1. The choice of the right function to be associated to a fuzzy set depends on D.
Going back to our example, in some scenarios, it may result quite natural to select a
triangular function with y = 12 : 30.

Given a precondition Pa 2 P represented as a Boolean combination of state/con-
text variables comparisons we now define how to evaluate its truth value.

Definition 12 (Interpretation). An interpretation I for P is a function ·I that maps each
comparison of state variables (viop d) occurring in Pa to a truth value (viop d)I = f (d)
and, analogously, each comparison of context variables (ciop d) to a truth value (ciop d)I =
f (d) with f being a fuzzy membership function. Given Pa, P0a 2 P we recursively define the
interpretation of a formula as:

• (¬Pa)I = 1� PI
a

• (Pa ^ P0a)
I = min(PI

a , P0a
I)

• (Pa _ P0a)
I = max(PI

a , P0a
I)

With reference to the above definition, given a set of preconditions P̂ ✓ P we can
compute a total order among its elements by means of the interpretation functions.
Indeed, given Pa, Pb 2 P̂ we can always evaluate whether PI

a � PI
b or PI

b � PI
a .

Actually, an order among preconditions can be easily reverted to a ranking among
the corresponding actions. In other words, if PI

a � PI
b we assume a is more likely to

be executed than b.

Definition 13 (Executable Action). Let AR = {ha, Pa, Qai, hb, Pb, Qbi, . . .} be an Action
Repository, and t 2 (0, 1) be a threshold value. We say a is an executable action iff both
there is no action b such that PI

b > PI
a and PI

a � t.

Since we deal with a total order ,we may have more than one executable action
a, a0, a00, Indeed, it may occur that PI

a = PI
a0 = PI

a00 = We see that as we do
not have any order among a, a0, a00, . . . we may execute any of them randomly. The

86 Chapter 5. A formal model for user-centered adaptive mobile devices

reason why we introduce the threshold t is to avoid situations where the executed
action has a low truth value (which corresponds to a high untruth value). Given a
state-context P̃, in case there is no executable action, the system does nothing until
the next change in P̃.

At the end of Paragraph 5.2.1 we argued that, given a state-context P̃, the com-
putation of the executable action should adapt to the user. With respect to the model
presented in this paragraph, we can encode user preferences within the fuzzy mem-
bership functions. In fact, looking at Figure 3.1, we see they are defined in terms of
a set of parameters x, y, z, t. By changing these values, we modify the shape of the
functions. Let us go back to our example (time = 12 : 30) and suppose we define
the fuzzy set associated to time by means of a triangular function with y = 12 : 30.
We may distinguish between an “always on time” user and a “more relaxed” one by
setting, for instance, in the former case x = 12 : 25 and z = 12 : 35 while in the latter
case x = 12 : 00 and z = 13 : 00. Hence, depending on the user, the truth value asso-
ciated to Pa may change and then the possible selection of a as executable action. It
is noteworthy that x, y, z, t can be either be set manually or be automatically learned
by collecting information about the user’s behavior.

The history of the user’s behavior is stored in a repository through the values
of the context and state variables describing the actions generally performed by the
user and her preferences. A triangular function elicits the variables values to de-
scribe the user’s behavior: for example, the history of the places she usually visits
(the state variable is position), or the times he usually visits that places. The super-
visor will choose among the pool of actions identified in the Action Repository the
action that verifies the constraint with the threshold t with respect to the triangular
function of variable in the precondition. In case of multiple properties in the pre-
condition expressed with a fuzzy variables the minimum or maximum operator as
specified in the corresponding fuzzy interpretation.

To make the formulas fuzzy, we can express the preconditions using intervals,
that is, the precondition is not true for only one value of the formula, but for the val-
ues in these ranges. For example, the choice of points to be displayed on a map will
not be shown only for an exact value of the radius of the area, but depending on user
habits, this value can be included in a interval. For example, y is the current position,
while the interval [x, z] defines the length of the circumference of the diameter to be
displayed (centered at y). In this case the triple is: PRECONDITION: (gps = true)
and (radius > x) and (radius < zx) and (location = y) and (now > 24 : 20) and
(Time < 12 : 40) and (number of high interest points) ACTION: Displays restaurants
in the area of interest POSTCONDITION: at least one point is displayed.

5.3 Instantiation of the model

5.3.1 Proximity environment

The metamodel proposed in Paragraph 2 was instantiated in the domain of proxim-
ity environments. Nowadays, proximity is being considered as an added value of
most applications, especially in social environments.

This phenomenon is widely observed spreading in the social sphere, thanks to
the enormous spread of smartphones with GPS. Using the GPS connection, users
of social networks can inform in every moment in which attraction, or local shop
they are. When the user is in a certain place she launches the application from her
smartphone, after the connection with the GPS has been made, she looks at the list

5.3. Instantiation of the model 87

TABLE 5.2: Instantiation of the elements in the tuple AAMM for
Scenario 1.

Element Instantiation

Sensors GPS device.
Action Repository Codes of features to add / delete / edit points of interest dis-

played on the map tuples in the action repository contains propo-
sitionas as shown in the subsequent examples using state vari-
ables and context variables that are: (i) State variables: points of
interest shown on the map, radius area on the map; (ii) Context
variables: location, time.

Effectors Implementation of the operations on the map (simple display or
recommendation).

User Model User habits (time lunch, sleep), the places already visited, how
many times they were visited, preferences hotel / restaurant
costs, type of medium supply, etc.

Algorithm to find
selected points of
interest to display

The first time the radius has a default value. From a history of
visited sites, it is possible to trace how the user generally moves
away and determine the radius of the area to display. The cate-
gory is chosen based on the time and time zone.

of places in the neighborhood and the so-called check-in to tell users on her list of
contacts where she exactly is.

In the field of proximity marketing, we developed AProM (Adaptable Proxim-
ity Marketing tool) a mobile app to enable spreading advertisements to end users
according to their needs. The application starts and shows the map. Depending on
the context (location, time) points can be displayed in different categories of interest.
For example, restaurants at lunch time, hotels in the evening, etc. are displayed. The
time ranges are decided depending on user’s habits (the time usually she has lunch,
goes to sleep, etc.). Besides, the area taken into account on the map and the points
shown inside have a radius that varies according to the places already visited by the
user.

5.3.2 Adaptive Architectural MetaModel instantiation

The instantiated metamodel exploits the goals, the objective that the user expects.
Table 5.2 summarizes how the elements in the tuple AAMM are instantiated.

Effectors are instantiated as actions extracted from the Action Repository based
on the “find” selection algorithm; they are mainly implementation of the operations
on the map (simple display or recommendation).

The repository is conceptually separated, and can virtually be always on the de-
vice. Table 5.3 presents an example of the instantiated tuples of actions, precondition
and postcondition of the Action Repository.

State and context variables are sensors in the external environments, context
variables available on the user mobile device, events extracted from the sensors.

The architectural model derived from the instantiation of the metamodel defined
in Paragraph 5.3.1 is shown in Figure 5.2.

AProM was developed on the Android platform and requires, as minimum sup-
ported version, Android Ice Cream Sandwich 4.0.3 (API Level 15), GPS Sensor, In-
ternet Connection. The device on which the application is deployed is an LG Nexus

88 Chapter 5. A formal model for user-centered adaptive mobile devices

TABLE 5.3: Example of (Fuzzy) tuple for Scenario 1.

PRECONDITION: (gps = true) and (radius > 0) and (time = 12 :
00) and (low number of points of interest)
ACTION: Displays restaurants in the area of interest and suggest
new points
POSTCONDITION: at least one point is displayed

PRECONDITION: (gps = true) and (radius > 0) and (time = 21 :
00) and (high number of points of interest)
ACTION: Displays hotels in the interest
POSTCONDITION: at least one point is displayed

PRECONDITION: (gps = true) and (frequent changes of position)
and (radius > 0) and (time = 21 : 00)
ACTION: suggest new hotels
POSTCONDITION: (at least one point is displayed) and (position
change)

Example of PRECONDITION with fuzzy variables:

PRECONDITION: (gps = true) and (gps.precision < x1) and
(radius > x2) and (radius < z2 � x2) and (location = y2) and
(time > 12 : 20) and (time < 12 : 20) and (low number of points
of interest)
ACTION:Displays restaurants in the area of interest and suggest
new points
POSTCONDITION: at least one point is displayed

PRECONDITION: (gps = true) and (gps.precision < x1) and
(radius > x2) and (radius < z2 � x2) and (location = y2) and
(time > 21 : 20) and (time < 21 : 40) and (low number of points
of interest)
ACTION: Displays hotels in the interest
POSTCONDITION: at least one point is displayed

5.3. Instantiation of the model 89

FIGURE 5.2: Architectural model obtained as an instantiation
of the metamodel.

5 Android updated to version 5.1, which meets all the required specifications. The
development environment is Android Studio, an open source tool for developing
Android applications. We chose the Android platform to be able to develop the app
without cost and to take advantage of some features of the operating system. AProM
presents the typical structure of an application for Android; it is written in Java and
XML, respectively, for dynamic and static parts.

Figure 5.3 shows a screenshot of AProM: the area where the user is localized is
the circle in which points of interest are shown belonging to the category of food; the
right side of the figure shows the list of categories that can be accessed by user for
manual search or for inserting advertisements.

5.3.3 A ‘smart smartphone’

The second instantiation refers to the implementation of a mobile application that
manages dynamic characteristics of the homescreen of a smartphone, depending on
the user’s habits, by the position detected by GPS in which the user is currently
located using the device, by the external context and by user’s current behavior.
The app, SmartSmartphone, monitors the user’s context and shows a list of recom-
mended applications depending on it.

5.3.4 Adaptive Architectural MetaModel instantiation

The instantiated metamodel exploits the goals, the objective that the user expects.
Table 5.4 summarizes how the elements in the tuple AAMM are instantiated.

The repository is conceptually separated, and can virtually be always on the
device. Table 5.5 presents example of the instantiated tuples of actions, precondition
and postcondition of the Action Repository.

State and context variables are the apps installed on the device and time/position
respectively.

90 Chapter 5. A formal model for user-centered adaptive mobile devices

TABLE 5.4: Instantiation of the elements in the tuple AAMM for
Scenario 2.

Element Instantiation

Sensors GPS device.
Action Repository Codes of functions to add / remove to display in your

smartphone’s home (conceptually separated, can virtually
always be on the device).

Effectors Apps displayed in the home of the device.
User Model Usually visited sites, most used applications, time of use.
Algorithm to find
selected points of
interest to display

Depending on the place where the user is located, the time
and most used installed apps, applications to display on the
home device are selected.

TABLE 5.5: Example of (Fuzzy) tuple for Scenario 2.

PRECONDITION: (gps = true) and (position = home) and (time = 12 : 00)
and (most popular home app = f acebook, youtube, net f lix, weather) and
(most used apps at 12 a.m. = Net f lix)
ACTION: Netflix displays in home
POSTCONDITION: At least one app is displayed

PRECONDITION: (gps = true) and (position = home) and (time = 7 : 30)
and (most popular home app = f acebook, youtube, net f lix, weather) and
(most used app at 7.30 a.m. = weather, f acebook)
ACTION: Displays weather and facebook at home
POSTCONDITION: At least one app is displayed

PRECONDITION: (gps = true) and (position = o f f ice) and (time = 18 : 30)
and (most used app in the o f f ice = spoti f y, chrome, email, Trenitalia) and
(most used app at 18.30 = Trenitalia, email, Facebook)
ACTION: Displays Trenitalia and emails in home
POSTCONDITION: At least one app is displayed

Example of PRECONDITION with fuzzy variables:

PRECONDITION: (gps = true) and (gps.precision < x1) and (radius > x2)
and (radius < z2 � x2) and (location = y2) and (time > 12 : 20) and (time <
12 : 20) and (most used app at home= facebook, youtube, netflix, meteo) and
(most used app at 12.00 = Net f lix)
ACTION: Displays Netflix in home
POSTCONDITION: at least one app is displayed

PRECONDITION: (gps = true) and (gps.precision < x1) and (radius > x2)
and (radius < z2 � x2) and (time > 07 : 10) and (time < 07 : 50) and (most
used app at home= facebook, youtube, netflix, meteo) and (most used app at
12.00 = Net f lix)
ACTION: Displays weather and facebook at home
POSTCONDITION: at least one app is displayed

5.3. Instantiation of the model 91

FIGURE 5.3: Screenshot of AProM.

The architectural model derived from the instantiation of the metamodel defined
in Paragraph 5.3.1 is shown in Figure 5.4.

To develop this application we chose Android as guest operating system. We
chose a native approach to model the architecture, which allows to exploit the sys-
tem, but also the entire ecosystem associated with it. In fact, thanks to the choice of
the Android operating system, it was possible to make use of Google Play Services,
a Google proprietary system that runs in the background on devices and that pro-
vides developers a set of Application Programming Interface (APIs) that use on the
one hand Google services and other hardware on the smartphone in a way transpar-
ent, to the developer.

The programming language used is Java. The Integrated Development Environ-
ment (IDE) used is Android Studio (version 2.0). This tool is released directly from
Google and allows excellent integration with the Android ecosystem.

Figure 5.5 shows three examples of the smartphone home screens related to three
different contexts: home, travel and work.

In the home context, apps providing functionalities related to the home living are
directly available to the user, such as Skygo, Facebook; in the travel contexts apps
such as Tripadvisor, Google Maps are more frequently used by the user and hence
are available; in the work context the user needs apps such as Dropbox, email, Skype
and Chrome.

92 Chapter 5. A formal model for user-centered adaptive mobile devices

FIGURE 5.4: Architectural model obtained as an instantiation
of the metamodel.

5.4 Experiments and validation

In this paragraph we describe a controlled experiment designed to perform a val-
idation of the proposed approach. We aim to prove how the contribution of the
proposed framework is relevant.

Two teams of students were assembled, each one composed of three second year
graduate students. All students were trained on software design, architectural mod-
eling, mobile and adaptive applications implementation.

The teams had to model and develop two adaptive mobile applications accord-
ing to scenarios described in Paragraph 3 using only their own experience. After-
ward the same teams had to solve the same problem supported by the metamodel,
by mapping the main elements of the metamodel to the main elements of an archi-
tecture.

The solution to each problem was provided as an adaptive mobile application.
A set of NFRs was formerly identified based on general purpose goals of an adap-
tive software. From the end user perspective we fixed usability, functionality, cor-
rectness; from the developer/designer perspective we considered maintainability,
correctness, data access, adaptability. Anyway, the two solutions are not expected
to be the same, because of details that derive from creativity, experience and from
reasoning approaches. Hence, the measure of the goodness of the method was very
complex to quantify.

We performed two different experiments: in the first one we compared the solu-
tions provided by the two teams supported by the metamodel with these obtained
using only the human experience. In the second experiment, real users evaluated
their degree of satisfaction about adaptive functionalities of the applications ob-
tained with/without support of the metamodel. Besides, we aimed to evaluate the
impact of user’s behavior on the system operation modeling.

5.5. Discussion 93

FIGURE 5.5: Smartphone home pages.

We measured the advantage of using the metamodel according to designer/de-
velopers opinion in terms of: (a) level of difficulty in development for the develop-
ers; (b) assessment of requirements satisfaction – in percentage; (c) efficiency: time
elapsed between the starting point and the solution.

Hence, a questionnaire was administered to each member of each team to com-
pute the degree of satisfaction of developers for the metamodel supported develop-
ment procedure that stands at a level of 96%. Table 5.6 summarizes results for the
first experiment. The test was conducted as an usability test by considering devel-
opers/designers as final users.

In the second experiment a set of end-users was provided with the two applica-
tions developed without support of the metamodel, for a fixed period of time. Af-
terward the same experimenters were provided with the same application obtained
by applying the metamodel during its development. At the end of the time period, a
qualitative evaluation of the applications was required to the experimenters. Six stu-
dents were chosen for testing the application. To conduct this experiment we used a
slightly modified kind of think-aloud usability test (Lewis, 1982), and administered
two questionnaires. The first questionnaire was about the degree of satisfaction ex-
pressed through a rating scale ranging from 1, strongly unsatisfied to 10 strongly
satisfied.

The degree of satisfaction for metmodel-based applications stands at a level of
97%.

The second questionnaire was made on a System Usability Scale(SUS)-like schema.
The questions were not statements about features related to expected non-functional
requirements, and the answers had to be expressed through a rating scale from 1,
strongly disagree to 5, strongly agree with the proposed statements.

Table 5.7 summarizes results.

5.5 Discussion

We describe hereby how the four research questions defined in the first paragraph
of this chapter have been addressed throughout the work.

94 Chapter 5. A formal model for user-centered adaptive mobile devices

TABLE 5.6: Designers evaluation of the metamodel.

elapsed time % difficulty level % requirements met with expected rate
metamodelsupported 2 weeks 73% 95%

1 week and a half 97%
experience-based 2weeks and a half 87% 89%

2 weeks and a half 80% 87%

TABLE 5.7: Usability test with real users.

with metamodel without metamodel
appropriateness of functionalities w.r.t. the domain 90% 80%
compliance with the user’s habits and preferences 86% 49%
correctness of the adaptive actions w.r.t. state and context 96% 50%
speed of response 60% 61%

To take into account the first two key concepts — changes in state/context/envi-
ronment and changes in requirements — we posed the first two RQs in Table 5.1. To
achieve a complete answer to these questions, we studied state of the art concerning
main challenges in modeling and implementing self adaptive systems and selected
two main categories of related work: “Formal methods in modeling adaptive architec-
ture”, “Composition and interaction between applications in adaptive software.”
By considering the key concept 3 — user’s habits and needs — we posed RQ3 in Ta-
ble 5.1. To answer this question we reviewed the state of the art for user-centered ap-
proaches in modeling mobile and adaptive applications. The answer to RQ3 was de-
rived from studying the previously cited related work and devising a formal method
to relate the first two key concepts to the third one — state/context/environment
changes, requirement changes to user’s habits and needs. This issue was very chal-
lenging since none of the approach in the state of the art related the key concepts
in a single model. This study allowed us to build the theoretical framework of our
approach that is the answer to RQ4. We answered this RQ by defining a metamodel,
a tuple that comprised all the elements and the relative relations. Each element of
the metamodel can be instantiated in real application scenarios thus realizing an
adaptive architecture on the fly.

The approach intrinsically satisfies some relevant general purpose requirements
of an adaptive application. One of the granted requirement is correctness that is
wired in the pre/post condition pairs whose definition is submitted to the constraint
that once an action is performed, its effects prevent the immediate re-application of
the action. Also, an action can be performed when the state of the device in the con-
text satisfies its precondition. A second requirement is functionality that is elicited
by the third element of the tuple, that is the action to be executed when the state
and context requirements formalized in the precondition/postcondition are satis-
fied. The centralized control and management of the framework ensures maintain-
ability, in fact the resulting application when instantiating the metamodel will have
an application manager to coordinate the remaining elements of the tuple for the
event based flow of action. As external qualities we identified a high level of usabil-
ity due to the strong weight the metamodel gives to the user profiling.

5.6. Related work 95

5.6 Related work

Modeling and analysis of self-adaptive systems has gained increasing attention in
the last years. Several approaches intend to face the main challenges of modeling
such systems, hence there is a wealth of literature about studying, modeling and
implementing this category of systems.

This study was carried out starting from key research concepts within the self-
adaptive systems and focused on some research questions about the same class of
applications as far as modeling and be concerned. We identified three main cate-
gories of state of the art approaches. With respect to these categories we studied
shortages or possible ideas for improvement.

Formal methods in modeling adaptive architecture. Formal approaches remain
the more powerful ones in order to ensure correctness and guarantee of quality prop-
erties. A complete study is proposed in (Weyns et al., 2012), while a survey of ar-
chitectural modeling in self-management is proposed in (Kramer and Magee, 2007).
Formal methods have been used in (Arcaini, Riccobene, and Scandurra, 2015) to
model MAPE-K loops through a conceptual and methodological framework based
on Abstract State Machines. Scandurra et al. (Riccobene and Scandurra, 2015) define
a lightweight formal framework to express adaptive behavior of service components
able to monitor and react to environmental changes (context-awareness) and to in-
ternal changes (self-awareness). Anyway these approaches are defined at abstract
and conceptual level.

On the other hand, approaches that provide an architectural dimension are in (Pel-
liccione et al., 2008). The authors propose a Software Architecture based approach
to perform code synthesis as an assembly of actual components which respect the
architectural component behavior. The architectural framework Rainbow (Garlan
et al., 2004) uses external mechanisms and a model to carry out adaptation actions
at explicit customization points. The Genie approach ()Bencomo and Blair, 2009)
manages structural variability of adaptive systems at architectural level and do not
provide a way to guarantee desired properties of the systems after each adaptation
execution. With respect to the previously described methods, we proposed a frame-
work that is applicable at different levels of abstractions, both conceptual and archi-
tectural. A similar advantage is found in (Bucchiarone et al., 2015). The approach
uses attributed graph grammars and define consistency and operational properties
that are maintained despite adaptation. With respect to this graph based adaptation
logic, we introduce a semantic elicitation of knowledge about environment, user’s
habit and behaviors.

Differently from all the previously described methods, in our framework we
comprise both architectural and conceptual issues together with user’s behavior and
a semantic approach.

Modeling of user’s behavior and requirements. User-centric approach for adap-
tive applications was proposed in Autili, Inverardi, and Tivoli, 2014 to model adap-
tation for Future Internet Application. Mobile user-aware root planner is proposed
in (Chung and Schmandt, 2009). The method collects everyday locations elicited by
the user’s usual travel patterns.

A data-oriented, context-aware architecture is proposed in (Bolchini et al., 2011).
The context is validated at run time. W.r.t. this model we introduce state variables
to model changes in the system or in the device.

Besides modeling of user’s properties in these approaches is related to a specific

96 Chapter 5. A formal model for user-centered adaptive mobile devices

context or environment or behavior, while we model user’s behavior that is gen-
eral purpose. The meta information is split into various categories of context-aware
information modeled in the state and context variables.

Context-awareness modeling techniques are summarized in (Bettini et al., 2010).
We point out that none of the existing techniques mixes up context, user’s behavior
and requirements.

A more recent stream of research is focusing on leveraging the new sources of
information becoming available through ubiquity of systems, (Serbedzija and Fair-
clough, 2009). Our approach is compatible with this idea, anyway, we overcome a
user’s perspective, by considering a formal approach based on pre and postcondi-
tions.

To specify requirements, great interest is focused on goal modeling (Cheng et al.,
2009).

Among the goal modeling languages, KAOS supports an LTL-based formalism
and goals and requirements can be specified by pre- and post-conditions (Fickas and
Feather, 1995).

Instead Non-functional requirements may be represented as soft goals or prob-
abilistic patterns (Grunske, 2008). Fuzzy expression of requirements is adopted
in (Frigeri, Pasquale, and Spoletini, 2014). Modeling and requirement-based adapta-
tion has been proposed in (Pimentel et al., 2013). Compared with these approaches
our method takes into account variation in requirements and variables that may in-
fluence the adaptation logic of application.

In (Zhang et al., 2011) the authors proposed an approach to monitoring non-
functional requirements.

Adaptation is based only on requirements. Instead we use fuzzy properties to
model user’s behavior in conjunction with requirements specifications.

Compositional approaches in adaptive applications. Models of service chore-
ography and composition is proposed in (Autili, Benedetto, and Inverardi, 2009).
The deployed application is tailored w.r.t. the context at binding time. Composi-
tion of self-adaptive systems for dependability is proposed by Cubo et al. (Cubo et
al., 2014). Compositional adaptation based on technological dimension is in (Philip,
Eric, and Betty, 2004) without a semantic modeling and reasoning. Semantic ap-
proaches are proposed in Mongiello et al., 2015 to model self-adaptive architectural
model in IoT and (Mongiello, Pelliccione, and Siancalepore, 2015) for runtime verifi-
cation. We focused our model on the tuples of an action repository where precondi-
tions and postconditions are linked to the actions to be performed, so we guarantee
the adaptability also including the tuples to perform the action. If more actions are
selected, the user’s behavior discriminates on the actions to be performed.

Summarizing, we introduced a formal framework that is innovative with respect
to existing approaches since it merges all the relevant changes in state or context,
changes in requirements, user’s behavior and user’s habit and preferences, formal-
ized in a fuzzy logical perspective.

Moreover it wires the correctness requirement in the structure of the metamodel
by defining the tern precondition, postcondition, action.

5.7 Conclusion

In the Future Internet era, the way software will be produced and used will depend
on the new challenges deriving from the huge number of software apps, component
and services that can be composed to build new applications. To face the problem of

5.7. Conclusion 97

dynamic architectural modeling and of runtime composition of distributed complex
applications, we proposed a semantic approach to define a metamodel for taking
into account relevant aspects adaptation: context, user’s habits and profiles, infor-
mation detached from external sources and sensors. The use of a knowledge-based
approach allows modeling and reasoning on complex adaptive software architec-
ture according to changed behavioral properties or context variables. A research
questions-based analysis of the state of the art demonstrates the improvements of
the metamodel w.r.t. existing approaches. A controlled experiment was conducted
with designers and developers. The developed applications was tested by real users.
Experimental results proved a high level of satisfaction for designers and developers
that used the metamodel, and a high level of satisfaction for end users that used the
application in real environments.

99

Chapter 6

A Navigation-aware Approach for
Network Requests Prefetching of
Android Apps

6.1 Introduction

Mobile apps dominate our world today. For example, as end users, we are spending
more than 2 hours a day on mobile apps (Ben Martin, 2018). Android is accounting
for more than 85.9% of global smartphone sales worldwide in the first quarter of 2018
(Global mobile OS market share in sales to end users from 1st quarter 2009 to 1st quarter
2018 2018) and more than 3.3 million Android apps are available in the Google Play,
the official Android app store (Number of available applications in the Google Play Store
from December 2009 to June 2018 2018), with more than one thousand apps being
published everyday (Adam Lella, Andrew Lipsman, 2017). Android apps are not
only being published in large numbers, they are also being consumed by users in
large numbers. The Google Play store exceeded more than 20 billion downloads in
the second quarter of 2018, with an increase of more than 20% w.r.t. 2017 (Sydow,
2018). For surviving in such a highly competitive market, it is fundamental for app
developers to deliver apps with extremely high quality in terms of, e.g.performance,
energy consumption, user experience.

The fact that mobile apps rely on wireless connectivity (e.g.3G, WiFi) is posing
an additional challenge for developers, who must take into account the fact that
the network underlying their apps may perform unpredictably in terms of latency
or bandwidth (Joorabchi, Mesbah, and Kruchten, 2013). For developers, failing to
properly consider network transfers may negatively affect the user experience, and
in some cases hinder an effective usage of the app itself (Ravindranath et al., 2012).
In turn, this can impact the app user ratings and reviews, which, unless properly
addressed, can negatively impact the app’s success (Palomba et al., 2018).

In this context, prefetching network requests has been advocated as a highly
effective way of reducing network latency experienced by the user since it allows
network responses to be generated immediately from a local cache (Zhao et al., 2018b;
Zhao et al., 2018a). However, despite their promising results, existing approaches
for prefetching network requests of mobile apps (e.g.(Zhao et al., 2018b)) can still be
improved in many ways: (i) they neglect the recurrent interaction patterns of each indi-
vidual user (e.g.how she navigates within the app), by either prefetching resources
that will not be used, or limiting their prefetching algorithms to a set of “safe” sit-
uations (hence limiting their potential), (ii) they do not change as users’ interaction
patterns change, thus leading to the same problems mentioned before, and (iii) they

100
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

rely on approximated static analysis techniques for identifying when and which net-
work resources can be prefetched, thus potentially leading to unhandled control or
data flow paths (e.g.in case of reflection or implicit intents) or to the identification of
paths that are infeasible at run-time (i.e., false positives) (Li et al., 2017; Yang et al.,
2015; Yang et al., 2018).

With the aim of addressing the above mentioned limitations, in this chapter we
present a navigation-aware approach for personalized prefetching of network requests of
Android apps. The approach is fully automated (with the possibility of custom be-
haviour provided by the developer, if needed), transparent w.r.t. the back-end of
the app (i.e., it is independent from the data types provided by the back-end and
it does not require any modifications in the business logic of the back-end), and
adapts its prefetching behaviour according to the navigation patterns of the user
interacting with the app. In order to elicit the design goals of the proposed so-
lution, we firstly carry out an explorative study in order to characterize the state
of the practice and developers’ needs about network prefetching in Android apps.
Given the exploratory nature of the study, we use a mixed-method empirical re-
search design, combining a quantitative analysis of 8,431 real-world open-source
Android apps and an online-questionnaire filled in by 56 developers involved in
real Android projects. The approach revolves around the concept of Extended Navi-
gation Graph (ENG), where nodes represent the Android activities in the app, edges
represent navigations of the user among activities, and each edge is annotated with
information about the intent used for the navigation and the probability of being
performed by the user. The intuition is to build and keep updated the ENG of the
app at run-time and to prefetch network requests according to the paths that will
be most likely travelled by the user according to the current status of the ENG. As
such, our prefetching mechanism is personalized since every app installation has its
own ENG with different transitions and weights according to the user’s unique nav-
igation patterns. Given the source code of an Android app, the approach acts in
two phases: (i) at development time X automatically extracts all activities of the app
and instruments it in order to continuously probe user navigation events (and re-
lated intents) and to inject the business logic for performing network prefetching,
and (ii) at run-time the approach builds and keeps the ENG up to date according
to the user navigation within the app, prefetches network requests according to the
current status of the ENG, and intercepts the app’s network requests for serving
prefetched resources, instead of using the network. We opted for building the ENG
at run-time in order to ensure that its edges represent valid navigation transitions
within the app, as opposed to building it via static analysis techniques, which may
lead to incomplete ENGs due to the well-known challenges such as the manage-
ment of the implicit control/data flow among Android components, user-generated
events, reflection, and multi-threading (Li et al., 2017). We evaluated the approach
by conducting two independent studies aimed at empirically assessing the accu-
racy in identifying reachable activities within the ENG and the latency reduction
achieved by its prefetching mechanism.
The main contributions of this chapter are:

1. a quantitative and qualitative characterization of the state of the practice on prefetch-
ing of network requests of Android apps (explorative study);

2. the definition of a navigation-aware approach for personalized pretetching of
network requests of Android apps;

3. an implementation of the approach as an Android Studio plugin;

6.2. Background 101

4. the results of an empirical evaluation of the approach;

The target audience of this paper includes both Android developers and re-
searchers. Developers can directly use the implemented plugin for prefetching the
network requests of their Android apps, thus reducing the user-perceived latency
and loading time of their products. We support researchers by proposing the first
quantitative and qualitative characterization of the state of the practice of network
prefetching in Android apps. Also, to the best of our knowledge, we are the first
to propose an approach for prefetching network requests of Android apps that (i)
works at a higher level of abstraction (i.e., the navigation of the user within the app),
(ii) adapts to each individual user navigation patterns, and (iii) does not inherit the
limitations of current static analysis techniques.
Paper structure. Paragraph 6.2 provides background information. Paragraph 6.3
discusses the design, conduction, and results of our explorative study. Paragraph
6.4 presents the approach, whereas Paragraph 6.5 and 6.6 detail its mechanisms at
development and run-time, respectively. Paragraph 6.7 describes the implementa-
tion of X and Paragraph 6.8 reports on the experiments we conducted for evaluating
it. Paragraph 2.4 discusses their implications. Paragraph 3.9 presents related works
and Paragraph 2.5 closes the paper.

6.2 Background

6.2.1 User Navigation in Android Apps

Android is a Linux-based open-source operating system developed by Google. Cur-
rently, it is one of the most popular and widely used mobile platforms(androidshareandroidshare1).
Mobile apps running on the Android platform are mostly developed using the Java
programming language and are built via the Android Studio development environ-
ment1. In some cases, developers use the so-called Android Native Development
Kit2 (NDK) for implementing parts of their apps using native code, mostly C and
C++; NDK is often used when developers need to reuse libraries written in C or
C++ (e.g., the OpenCV vision library3) or for processor-intensive tasks. An Android
app is always built into a so-called Android PacKage (APK) which contains the com-
piled code, its used libraries and resources, and a mandatory XML-based manifest
file providing essential metadata about the app (e.g.its main components, required
permissions, supported Android APIs).

Android apps are composed of four types of components: Activities, Services,
Broadcast Receivers, and Content Providers. According to the Android programming
model (Android Application Fundamentals 2018), Android activities are the main build-
ing blocks of the app and represent single screens of the user interface. Activities are
in charge of (i) reacting to user events (e.g.a touch on the screen), (ii) executing some
specific functionality (possibly with the help of other app’s components like services
or content providers), and (iii) updating the user interface of the app for providing
information to the user. An Android app comprises multiple activities to provide a
cohesive user experience. Listing 6.1 shows excerpts of 3 activities in the context of
an example social networking app. (lines 2-17) represents the screen

1

2

3

102
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

where the user can see her contacts’ updates, (lines 19-42) repre-
sents the profile screen of a user, and (lines 44-60) shows all the
contacts of a user.

1 /** HomeActivity.java **/
2 public class HomeActivity extends Activity {
3 // ...
4 protected void onCreate(Bundle savedInstanceState) {
5 // ...
6 ListView homeListView = (ListView) findViewById(R.id.homelistview);
7 homeListView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
8 public void onItemClick(AdapterView<?> av, View v, int pos, long id) {
9 if (this . isUser(v)) {

10 Intent i = new Intent(HomeActivity.this, ProfileActivity. class) ;
11 i .putExtra("Item", v.getItemId()) ; // extra field with URL fragment
12 this . startActivity (i) ; // navigate to Timeline activity
13 }
14 }
15 }) ;
16 }
17 }
18 /** ProfileActivity . java **/
19 public class ProfileActivity extends Activity {
20 private User user;
21 private Button friendsButton;
22 private Button photosButton;
23 // ...
24 protected void onCreate(Bundle savedInstanceState) {
25 friendsButton = findViewById(R.id.button1);
26 photosButton = findViewById(R.id.button2);
27 // ...
28 View.OnClickListener buttonsManager = new View.OnClickListener() {
29 public void onClick(View view) {
30 switch(view.getId()) {
31 case R.id.button1:
32 Intent i = new Intent(MainActivity.this, FriendsListActivity. class) ;
33 i .putExtra("uId",user.getId()) ; // set again extra field
34 this . startActivity (i) ; // navigate to FriendsList activity
35 break;
36 case R.id.button2:
37 // ...
38 }
39 }
40 };
41 }
42 }
43 /** FriendsListActivity. java **/
44 public class FriendsActivity extends Activity {
45 protected void onCreate(Bundle savedInstanceState) {
46 // ...
47 getFriends() ;
48 }
49 private void getFriends() {
50 Intent i = this . getIntent () ;
51 String userId = i .getStringExtra("userId") ; // get extra field by key
52 OkHttpClient client = OkHttpProvider.getInstance().getOkHttpClient();
53 Request request = new Request.Builder().url("https://api.sn.com/" + userId + "/friends").build() ; // build

target URL
54 client .newCall(request).enqueue(new Callback() { // issue network request
55 public void onResponse(Call call, final Response response) throws IOException {
56 this .addToView(response.body().string()); // usage of remote data
57 }
58 }) ;
59 }
60 }

LISTING 6.1: Example of inter-activity prefetchable network
request

6.2. Background 103

When a user navigates within an app, the source activity starts a new instance
of the target activity by creating an intent and passing it to the
method Android Intents and Intent Filters 2018. In this context, an Android intent
is composed of two main parts Android Intents and Intent Filters 2018: (i) the activ-
ity to start and (ii) the extras representing the additional information required to
perform the action, defined as a set of key-value pairs. For example, when a user
clicks on an item in (lines 6-8), if the clicked item represents another
user of the platform (line 9), then an explicit intent is created pointing to the target

activity (line 10), an extra field is created with as key and the
unique identifier of the clicked user as value (line 11); finally, the target activity is
launched in line 12. Similarly, when the user is in the activity, she may click
on (line 29) in order to further navigate to (lines
31-25) and see the list of all friends of the currently visualized user. Also in this case
the intent contains another extra field called containing the unique identifier of
the user being visualized.

6.2.2 Network Requests in Android Apps

Being it for loading images, requesting data from a server, or getting resources from
the web, most Android apps heavily rely on network requests to work as expected
(Liu et al., 2017). The majority of network-connected Android apps request and re-
ceive data from their remote backends in a RESTful fashion via the HTTP protocol
(Android connectivity 2018; Ma et al., 2018). Android developers can choose among
a plethora of HTTP client libraries for their apps, such as OkHttp4, Volley5, Retrofit6.
Android HTTP clients provide features such as connection pooling, concurrent re-
quests, socket sharing, etc. In this study we focus on OkHttp since it is the HTTP
client providing the official implementation of the HttpUrlConnection interface from
Android 4.4 and it is at the basis of the most widely used networking libraries for
Android, such as Volley, Picasso, and Retrofit (Vovk, 2018). As an example, in List-
ing 6.1 we show the network request for getting the list of all friends of a user of the
platform. Specifically, the unique identifier of the user is firstly retrieved from the
intent received by the calling activity (lines 50-51), then an instance of HTTP client
is retrieved (line 52) and a new network request is created (line 53). In this case, the
network request is targeting a dynamically-built URL, which will be called in line 54.
The callback is called by the OkHttp library as soon a response is pro-
duced by the backend; finally, method parses the body of the response
for populating the screen with the list of all friends of the visualized user (line 56).

6.2.3 The Prefetching Opportunity

If we consider activities as nodes and explicit intent launches as transitions among
nodes, we can obtain the navigation graph of an Android app. As shown in Figure
(6.1), the navigation graph of our example is composed of 3 activities and 2 naviga-
tion transitions.

If we enrich this graph with (i) weight of the arches, (ii) the URLs requested
by every activity, and (iii) how intent extras can map to dynamic fragments of the

4

5

6

6.3. Study Design 107

a row for each participant). For each question (i.e., for each column of the spread-
sheet) we applied basic descriptive statistics for better understanding the data about
the occurrences of each given response and we extracted key findings. Then, we per-
formed a series of brainstorming meetings to discuss the results presented below.

Among the 56 participants, 36 have an experience under five years, whereas the
experience of the remaining participants is between 5 and 10 years.
When asked about how many Android apps they have developed, the majority of
participants (about 52%) declare to have developed between two and five apps.
Other participants declare that they have developed between six and ten apps (about
23%) and only one app (about 14%); the remaining 11% have developed more than
10 mobile apps. The majority of participants (about 59%) develop Android apps as
a hobby while the rest work in a company. In reference to their current job, 71%
of the participants declares to be developers, 18% are (PhD) Students, about 7% are
Managers and the remaining 4% indicates a higher-level professional profile.

Starting with the first branch question (BQ1) shown in Figure 6.3 of our ques-
tionnaire – based on the provided prefetching definition shown in the frame below
– about 61% of the participants say they have never implemented a prefetching ap-
proach in any of their Android apps. The remaining 39% implemented it at least
once.

Prefetching refers to the approach in which the app requests and downloads data (e.g., raw
data, images) from the back-end before the user actually needs it. Prefetching is different from
caching since the former does not require a previous access to the needed data for saving requests.

Furthermore, among the participants who explicitly stated that they have never
implemented a prefetching approach, about 79% declared that they have never even
considered to implement a prefetching approach in their apps. The main reasons
brought by respondents for not considering prefetching are equally distributed be-
tween: (i) no need perceived in implementing a prefetching approach, and (ii) lack
of knowledge about these approaches. These reasons show lack of awareness of
the problem and of possible existing solutions. The reasons brought by respon-
dents who instead just considered the prefetching approach without implementing
it (about 21%) are equally distributed between, (i) no need perceived, and (ii) hard
task for approaches not officially published, no presence of libraries, and high risk if
not well-enforced.

The following analyzes the answers from participants who have explicitly imple-
mented a prefetching approach, in terms of ‘what’, ‘where’, ‘when’ and ‘why’ to data
prefetch. It is important to note that in these questions (section c) we ask the respon-
dents to focus on the last Android app where they have implemented a prefetching
approach.

Regarding the Google Play category of the Android app considered by the partic-
ipants, the categories reported most frequently are: Social, Music & Audio, Food &
Drink, Sport, and Finance. However, the apps considered by the participants cover
each category at least ones, hence making our survey representative of all Google
Play categories.

Regarding the prefetched type of resources, the answers fall into the follow-
ing categories: images (about 47%), raw data (about 38%), and audio/video streams
(about 15 %). This result highlight that images are the most prefetched resource

108
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

thanks to the existence of libraries (e.g.Glide, Picasso) that support developers to
implement functions for image pre-load.

We then ask participants to rate, for each type of resource, the frequency with
which the prefetched resources are modified during the lifetime of the considered
app. Table 6.1 shows the occurrences of the provided answers by participants. By the
majority of the participants it is perceived that raw data resources change between
sometimes and always; images change between sometimes and very often. Finally, au-
dio/video stream resources that are the least-frequently prefetched resources tend
not to change.

TABLE 6.1: How often do prefetched resources change during
the lifetime of your Android app?

Resources category Rates occurrences
Always Very often Sometimes Rarely Never Don’t Know Not prefetched

Raw data 5 2 6 2 1 0 6
Images 3 5 6 4 2 0 1

Audio/video stream 2 2 2 1 3 2 9

By investigating where the prefetched resources are stored, the answers are al-
most equally distributed between In-memory (about 68%), Local database (about 64 %),
and Files in the file system (about 50%). We suppose that the diversity of the answers
derives from the absence of official documentation and guidelines.

The participants were also asked why they perform prefetching. As shown in Ta-
ble 6.2, respondents identified as the most relevant reasons: Decrease user-perceived
latency (20/22) and improve app performance (12/22). Moreover, when asked when

TABLE 6.2: Reasons about why to perform prefetching.

Answers Occurrences

Decrease user-perceived latency 20
Improve app performance 12
Reduce network requests 8
Optimize energy consumption 5
Other 3

they performed prefetching – as shown in Table 6.3 – participants indicated that
they typically perform prefetching when the app is in foreground AND being used
(about 36%) and when the app is launched the first time after installation (about
27%). For what concerns how participants consider different users when they per-
form prefetching, about 77% declare that users are all the same – one data prefetching
pattern for all users. Only for 3 participants users are grouped into meaningful groups
– one customized data prefetching pattern for each group of users. Moreover, when
we asked in detail how these participants distinguish the specific users, basically
they group the users by type of accounts.

In the remaining of this section (c) of the questionnaire, we ask participants if
they consider previous interactions of the user; in other words if they implement a
history-based approach. Only 5 participants (about 23%) states that they consider
previous interactions of the user with the app. Instead, the informations considered

6.3. Study Design 109

TABLE 6.3: Reasons about when participants perform prefetch-
ing.

Answers Occurrences

When the app is in foreground AND being used 12
When the app is launched the first time after instal-
lation

9

When the app is in background 7
As soon as the app comes to foreground 5

by participants in order to build the history are: previous actions performed by the
users (2/5), previous navigations among screens of the app (2/5) and Previously
requested URLs (1/5).

Existing libraries for data prefetching

In this section of the questionnaire (d) we ask participants to suggest, based on their
experience, potential libraries that allow developers to implement a prefetching ap-
proach. Among the respondents to this question (22), 5 participants stated that they
do not know existing libraries, while the remaining participants (17) indicates ex-
isting libraries (i.e. OKHttp, Glide, Picasso, Retrofit, Dbflow, SyncAdapter, Smack,
rxjava, room and ExoPlayer) that do not allow to directly implement prefetching ap-
proaches. In fact, no library that implements prefetching – in any way– has been
found. The developers, who know the formal existence of these approaches, use the
very capable networking libraries before reporting, in order to customize the pro-
vided functions to implement personal possible solutions of prefetching approach.

Representative data prefetching-related Keyworks

In this section of the questionnaire (e) we ask participants two questions in order to
identify and evaluate representative keywords of prefetching-related commit mes-
sages in Android apps. The answers to these questions will be important in order the
complete the overall exploratory study with the commit message analysis in GitHub
(Phase 5). Firstly, we ask participants to provide some keywords they think may be
representative of prefetching-related commit messages in GitHub. Participants have
reported different keywords, similar to each other. The latter indicated with the
most occurrences are preload, prefetch and predict. After we ask participants to rate
the Keywords identified in the second phase of our Exploratory study. Based on the
results reported in Table 6.4 and in the previous question we can affirm and confirm
that the most representative keywords of prefetching-related commit messages to
be used in the empirical study are all the keywords reported in Table 6.4 (excluding
hit-rat*) plus the additional keyword preload indicated by participants.

Participants needs about data prefetching approaches

Finally, in this last section of the questionnaire (f), we asked all participants involved
four questions in order to get more details about their ideal prefetching approach
for Android apps. Firstly, we asked participant to rate the control they would like
to have on the prefetching approach. As shown in Table 6.5, the majority of re-
spondents (about 41 %) declare that it is “very important” to have control on the

110
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

TABLE 6.4: Rate occurrences for each keyword.

Keywords Rates occurrences
Excellent Somewhat Poor

fetch* 15 5 2
cach* 10 9 3

retriev* 7 10 5
anticipat* 7 7 8
proactive 6 7 9
predict* 6 6 10
hit-rat* 3 4 15

prefetching approach. When asking to motivate their answers, the main reasons
regarding the possibility to customize their prefetching approach in reference to re-
sources type, usage of the app, storage size, optimize the use of the bandwidth and
probability to get unused data. Moreover, we have asked to indicate if they like an

TABLE 6.5: How important is to have control on the prefetching
approach in your Android apps?

Answers Occurrences

Absolutely essential 4
Of average importance 17
Very important 23
Of little importance 4
Not important at all 2
I don’t know 6

“optimistic” or a more “conservative” prefetching approach according to the following
definitions:

• Conservative prefetching- potentially high precision (high number of hits) but
low benefits (less requests/time saved when having a hit);

• Optimistic prefetching - potentially poor precision (low number of hits) but high
benefits (high number of requests/time saved when having a hit)

About 55% of participants (31/56) state to have tradeoff between optimistic and

conservative prefetching (good precision but potentially less requests saved), and
about 23% and 21% declare that they prefer a conservative (13/56) and optimistic
prefetching (12/56), respectively. Finally we have asked participants to suggest the
top-three features about their ideal prefetching approach. Most of the answers fall
into the following features: easy to develop, configure, extend, deploy and debug.

6.3.4 Empirical Investigation on Android apps in GitHub

In this paragraph we present the last phase of our exploratory study. This phase
aims at addressing RQ1 from the quantitative and qualitative prefetching-related
commits in Android Apps dimensional view. The study context consists of a dataset
of 8,431 real-world open-source Android apps (about 240 GB) obtained as a result
of AndroidTimeMachine project 8. It combines source and commit history informa-
tion available on GitHub with the metadata from Google Play store. First of all

8https://androidtimemachine.github.io/

6.3. Study Design 111

we reduced the dataset about 80 GB, deleting text, audio and video files. In or-
der to identify performed prefetching approaches, a string analysis was performed.
In particular we identify all the occurrences of HTTP keyword with at least one of
the prefetching-related keywords identified in the previous phase: cach, fetch, pred-
itc, retriev, anticipat, hit-rate and proactive. As results we obtain in two different files
the frequency values of the keywords and the flag that certifies the presence of the
HTTP keyword related to the individual files(Out1 file), and the information regard-
ing each project(Out2 file). Both the two functions have been implemented with the
use of a Thread Pool in order to reduce the execution time of the script.The Out1 and
Out2 files contain respectively 3833141 and 7942 occurrences. In order to consider
only the projects and files in whose source code at least one of the seven keywords
is present, two further scripts have been developed. The ReaderOutputProject script,
whose output is a CSV file named ProjectSelected created from the Out2 file. The
script, starting from the complete list of projects, considers only projects containing
at least one JAVA file containing in turn one of the seven keywords identified previ-
ously. From this selection, the number of projects has decreased from 7942 projects
to a number equal to 3738. For the list of individual JAVA files, the ReaderOutput-
File script was used instead. This script creates, starting from the Out1 file, a file
containing the list of all files in which at least one of the keywords is present. The
selection led to a reduction of files from 383141 to 38170, whose list was saved in
the FileSelected file in CSV format. At the same time, the research was carried out
considering only the commits, given the possibility of displaying all the information
as description and files affected by the same commit. As previously mentioned, we
will go to select the commit only, in whose description there is one of the keywords.
The number of projects involved in at least one of these commits is 1173, while the
number of JAVA files involved is 8159. The names of the files created by the script
for saving the lists are ProjectListWithFlagCommit and FileListWithFlagCommit. Hav-
ing these two parallel searches available, an intersection was made between the two
data sets, in order to obtain files or projects that are involved in at least one "special"
commit and a "special" type source. Given the possibility that some special defined
commits may involve files not in JAVA format, from this point on, we will consider
only the list of JAVA files, leaving out the list of projects. Next, simply group the
files by projects to get the final number. To perform the operations described above,
the AddFlagCommit and WriterFileFinal scripts were used. Following the intersection
of the two datasets, the JAVA files obtained were 3675 grouped then successively in
673 projects. We manually analyzed the source codes of this projects. Only 9 project
implement a prefetching approach without exhibiting any specific patter. The re-
sults in terms of "what", "where" and "when" to prefetch are the following: What-
raw data, images; Where- app component that trigger prefetching (in order of occur-
rences): Activity, service, application, fragment and Broadcast receiver; When- at the
launch of the app. Also this last phase confirm OkHttp as the most used library.

6.3.5 Reflection

The overall exploratory study presented in this paper has been centered around the
three research questions introduced at the beginning of this paragraph. The findings
are summarized in the following. First of all, the results of this exploratory study re-
veal that developing prefetching approaches in mobile apps is a very emerging area.

6.4. The Approach 113

app in its manifest file9, the produced ENG is complete with respect to the coverage
of all activities of the app being analysed.

Then, the plugin injects a navigation probe in the Java class corresponding to
each extracted activity. The navigation probe notifies the plugin when a navigation
occurs from/to every activity of the app at run-time. This step is realized by injecting
notification statements (i.e., probes) in the body of the and methods
of each previously extracted activity. Since those methods are called by the Android
OS every time it needs to make the current activity visible or not visible to the user10,
the plugin is able to correctly and timely detect any transition within the ENG of the
app.

The next step consists in the injection of extra probes, which will be in charge
of notifying the plugin every time an intent’s extra is set by the app. This step is
realized by injecting notification statements immediately after a call to either the

or methods in each activity (they are the only methods in the
class where its extra fields can be changed).

Finally, the plugin instantiates a network interceptor in order to log all HTTP
requests issued by the app and serve prefetched resources. At run-time the activities
performed by the network interceptor are totally transparent to the developer, who
can implement the business logic of the app.

Summarizing, at the end of the steps described above, the plugin has (i) extracted
the ENG of the app containing all activities of the app, (ii) instrumented the app with
probes for notifying about navigation and intents’ extra update events at run-time,
and (iii) added a transparent network interceptor for logging all outgoing HTTP
requests of the app at run-time and serving prefetched resources. All those steps are
performed automatically without requiring any intervention by the developer.

6.4.2 At run-time

Figure 6.5 shows the main components of the plugin at run-time. All together they
are responsible for (i) keeping the ENG always up-to-date according to the naviga-
tions and actions performed by the user, (ii) identifying which network resources
can be prefetched, (iii) prefetching network resources, and (iv) making prefetched
resources available to the app via a lightweight URL map. In the following the be-
haviour and main responsibilities of these components of the plugin are presented.

The Navigation monitor is a passive component, which is triggered every time
a navigation probe in the app raises a navigation event (i.e., every time the user is
moving between two screens of the app). The main responsibilities of the navigation
monitor are: (i) to keep track of the current activity within the ENG, (ii) to add a
transition in the ENG if a raised navigation event is involving a target activity that
has never been visited before, (iii) to update the weight on the transitions of the ENG
for every received navigation event, and (iv) to trigger the Prefetcher component at
every navigation event.

The Extras monitor is also a passive component and it is triggered whenever a
previously-injected extra probe raises an event related to the setting of one of the
intent’s extra fields. The main responsibilities of the extra monitor are: (i) to update
the ENG with the newly set extra field, and (ii) to trigger the Prefetcher component
for every received event.

9

10

6.5. Building the Extended Navigation Graph 115

6.5 Building the Extended Navigation Graph

As described in the previous paragraph we design an Extended Navigation Graph to
abstract the activity transitions. Here we give the formal definitions of an activity
transition t(γ) and an Extended Navigation Graph ENG in order to describe the
automated app instrumentation.

Definition 14 (Activity Transition). An activity transition t(γ) is triggered by an intent,
where γ is the list of 2-tuple γ < K, V >, where K is the set of keys identifing an intent
extra and V is the set of string values associates to each key.

Definition 15 (Extended Navigation Graph). An Extended Navigation Graph ENG is
a directed Graph with a start vertex ν. It is denoted as a 3-tuple, ENG < A, E, ν >, where
a is the set of all activity nodes of an app; E is the set of directed edges, and e < a1, a2 >

represents an activity transition t(γ).

6.5.1 App Instrumentation

The IntelliJ plugin instruments an app automatically by taking into account the in-
formation extracted from the Android Manifest file and from the source code. After
the execution of the plugin, the source code will contain the instructions needed by
the library to interact with it, will enable the graph building and the intent extras
identification at run-time and will allow the library to have access to the Http client.

The automated instrumentation is split in the following three main actions.
Action 1):the plugin extracts all the activity class names from the Android Mani-

fest and uses the associated metadata to identify wether the activity is the Launcher
Activity (the one that is shown on the Android app launcher); after this identification
the plugin thanks to the defined API PrefetchingLib::init and PrefetchingLib::setCurrentActivity,
adds into the Launcher Activity the lines code needed to initialize the library and to
all the activities the code needed to notify to the library that is happening an activity
transition t(γ).
The init method is inserted only in the app’s launcher activity and enables the ini-
tialization of the library, composed by the initialization of the database, the loading
of the ENG and the loading of all the past url candidates for each node of the graph.
The setCurrentActivity method allows the library to be notified when an activity
transition happen. This method updates the reference to the current activity and
adds the edge to the graph if it does not already contains this transition.

Action 2): the plugin looks in each class if there’s an Intent that will be enriched
with extra information at run-time and adds the code lines needed to notify the li-
brary that an Activity after that point will contain a 2-tuple key-value that may be
used to fill a candidate URL.

Action 3): the plugin looks in each class where the http client is instantiated
in order to notify the library that a http client is available and ready to be used to
intercept the network requests.

6.6 Network Requests Prefetching at Run-time

After the app instrumentation phase the library acts at runtime. Also the runtime
phase in divided in two subparts: the creation of the navigation graph and the

116
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

identification of the URLs to be prefetched. Both parts acts in a parallel way and
shares their information to identify the correct parameters needed to fill a URL. At
the first launch, the engine has no idea on how the activities are connected to each
other; when the user navigates through the activities, the library keeps track of this
movements that are notified by the instructions inserted in the app instrumentation
phase. During this phase each time a user moves from an activity to another the
library records a new transition; this information will be used later to calculate the
probability that a user in a future navigation will move from the source activity to
the target activity.

6.6.1 Identification of URLs to be prefetched

As for the graph, also the candidate URLs table is empty at the first launch. So the
library intercepts every network request as soon as the developers connects the app’s
http client. When a URL is requested from the app, the graph is traversed backward
from the current node to the root node and all the extra fields of the intent generated
that edges are evaluated in order to find a substring of the URL that is equal to a
value of the extra field. If a match is found, the URL part that matches the value of
this extra is marked as parameter and it’s value is replaced with the key of this extra
intent.

6.6.2 Prefetching spot

When a user is navigating through Activities, as soon as he generates an Intent with
some extras, the library checks all the edges starting from the current Activity Node
and looks for the nodes that has a probability to be visited higher than a given thresh-
old. Than it expands the selected nodes and checks again if the probability of the
next nodes is higher than a threshold and so on. Once it has the complete list of the
most probable nodes that will be selected by the user, starts looking for each candi-
date URL that each node contains if, with the current set of extras, is able to fully
resolve the candidate URL. If all the parameters are filled with the current extras 2-
tuple key-value, the URL is added to a list that will be used to perform the network
request.

Data: Current activity node ac, Extended Navigation Graph G
Result: Candidates URLs string
candidates newemptylist successors getallsuccessors(ac, G)
foreach succ 2 successors do

foreach parameteredURL 2 s.getparameteredURLlist() do
if s.keys.containsAll(parameteredURL.getParamKeys()) then

candidates.add(parameteredURL. f illParamKeys(s));
end

end
return candidates

Algorithm 1: Computing prefetching candidates URLs

6.7. Implementation 117

Data: Current activity node ac, Extended Navigation Graph G
Result: List of URL prefetch
listURLtopre f etch newemptylist countlist newemptylist
successors getallsuccessors(ac, G)

foreach succ 2 successors do
ae succ.getdestination() countlist.add(countedge(ac, ae), ae)

end
sizesuccessor getTotalEdges(countList)

probabilityList newemptylist
foreach count 2 countList do

probabilityList.add((count/sizesuccessors), ae)
end

Algorithm 2: Computing URL to prefetch

6.7 Implementation

The library has been implemented by extending Android libraries for the runtime
execution and IntelliJ plugins for the source code instrumentation phase. The chosen
http client is OkHttpClient because it is the default Http client in Android and it is
easy to integrate with a lot of existing libraries. To store information has been used
the Room Persistence Library 12 which enables the full power of the SQLite Android
native driver giving a high level of abstraction.

The source code instrumentation is achieved through an IntelliJ plugin, devel-
oped with the IntelliJ Platform Plugin SDK; this SDK enables the interaction with
the API of any of the IntelliJ IDEs, in this particular case with Android Studio. This
SDK provides off-the-shelf tools to analyze and modify the source code and through
these APIs it has been possible to develop a powerful plugin that simplifies the inte-
gration of the library from the developer perspective.

6.8 Evaluation

In this paragraph we report the design and the results of first experiment we car-
ried out to evaluate the approach. The goal of this study is to assess the accuracy of
the plugin in identifying reachable activities within the dynamically-built ENG. We
chose to evaluate the reachable activities in the ENG since the ENG is the core of the
whole approach and failing to build an accurate ENG at run-time may potentially
result in a high number of unused prefetched resources (false positives) or missed
prefetching opportunities (false negatives). This study is designed as a multi-test
within object study Wohlin et al., 2012, because it is conducted on a single object (i.e.,
the current implementation of the library) across a set of subjects (i.e., a set of apps
to be executed). More specifically, we firstly consider all the 20 apps included in
the replication package of the study proposing Gator Yang et al., 2018, the state-of-
the-art approach for building models of Android apps similar to our ENGs called
window transition graphs. The initial set of 20 apps is reduced to 6 apps since we
had to filter out (i) the apps with less than 3 activities as their navigation graph is
trivial and (ii) the apps whose source code in GitHub is not compilable into an exe-
cutable APK, due to e.g.missing resources, missing Gradle build files, etc. In order to

12https://developer.android.com/topic/libraries/architecture/room

118
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

extend the current set of 6 apps, we consider the dataset of 8,431 real apps proposed
in Geiger et al., 2018 and we randomly select a pool of 50 potential subjects. Then,
we manually compile each of the 50 apps and we include all the apps for which the
compilation step is successful13. Table 6.6 presents the subjects of this experiment,
together with their category, number of activities declared in their Manifest file, and
source.

TABLE 6.6: Subject apps for study 1

ID Name Category Activities Source

A1 BarCodeScanner Tools 9 Yang et al., 2018
A2 Beem Comm. 14 Yang et al., 2018
A3 Hillffair Entert. 26 Geiger et al., 2018
A4 Mileage Finance 50 Yang et al., 2018
A5 OpenManager Product. 6 Yang et al., 2018
A6 OpenSudoku Games 10 Yang et al., 2018
A7 Phonograph Music 14 Geiger et al., 2018
A8 Privacy-Friendly-Weather Weather 12 Geiger et al., 2018
A9 Radiomenenepro Music 3 Geiger et al., 2018
A10 TippyTipper Finance 5 Yang et al., 2018

The apps are quite heterogeneous in terms of store category and number of ac-
tivities (min = 3, max = 50, mean = 14.9, SD = 13.9). For each app, we (i) extract
the ENG built by the plugin while one of the researchers systematically executes all
possible interactions provided by the app, (ii) run Gator for producing its window
transition graph, and (iii) build its ground-truth navigation graph by manually in-
specting its source code. The latter activity has been performed by two researchers
and implied 1 week of full-time effort. Finally, we collect and compare the number
of reachable activities in the two navigation graphs (i.e., the manually-constructed
ones and those produced by the plugin).
Results – As shown in Figure 6.6, for 8 apps the number of reachable activities iden-
tified by the plugin is the same as the ones reachable in both the ground truth models
and the graphs produced by Gator. In two cases (A2 and A4), the plugin is missing
two potentially-reachable activities w.r.t. the ground truth and Gator. We manually
inspected the source code of the involved activities in order to understand why the
plugin missed the transitions to those 4 Android activities. In all 4 cases, the activ-
ities incorrectly marked as unreachable represent corner cases for our experiment,
e.g.accessing a management dashboard reserved to administrators, receiving real-
time messages from other users of the app, etc. Overall, those 4 activities are mainly
due to specific situations that could not be straightforwardly reproduced in our ex-
periment; nevertheless, they will be considered by the plugin as soon as the user will
actually navigate to those ”less common“ activities at run-time.

Overall, the obtained results are promising and indicate that detecting naviga-
tion traces among activities at run-time leads to the accurate identification of reach-
able activities. Interestingly, by looking at Table 6.6, we can observe that the number
of activities declared in the Android manifest is often higher than those executed at

13This step has been performed fully manually in order to raise the probability of having
compilable Android apps by manually adjusting their project configuration (where possi-
ble). This step involved two researchers and took about 1 person-month

120
Chapter 6. A Navigation-aware Approach for Network Requests

Prefetching of Android Apps

6.10 Conclusion and future work

In this chapter we presented a new technique for navigation-aware and personal-
ized prefetching of network requests in Android apps. The proposed technique
works at a higher level of abstraction with respect to state-of-the-art approaches
(e.g., callback-based prefetching) and focusses on the so-called navigation graph of
the app. Focusing on the navigation graph opens for a new family of prefetching
opportunities. Firstly, the navigation graph can act as internal model for run-time
prefetching algorithms, which now can look ahead several steps into the future net-
work resources which will be requested by the app. Secondly, it allows us and other
researchers to develop prefetching algorithms which take into account the unique
and user-specific navigation patterns exhibited by each user, potentially reaching
better results in terms of hit rate w.r.t. the one-size-fits-all prefetching approaches
existing today.

In the long term we are planning to design and develop different variations of
the prefetching algorithms, each of them following different strategies. For example,
we will formulate prefetching as a variation of state reachability analysis with prob-
abilities and exploit model checking at run-time for its resolution; we will map the
ENG to different variations of Markov chains with probabilities; we will formulate
prefetching as a graph-based combinatorial optimization problem and solve it ana-
lytically, etc. We will design and conduct larges-scale experiments on the accuracy
of each of the above mentioned variations involving real apps from the Google Play
store and (possibly) reusing already existing benchmarks.

121

Chapter 7

Conclusion

In this thesis, we investigate challenges in design, implementation and use of self-
adaptive systems from the Web of Things (WoT) to mobile software perspective.
Starting by a state of the art study of the current technological space for architecting
Web technology-based IoT software, the main contributions of this thesis are:

• providing a complete, comprehensive and replicable picture of the state of the
art on the current technical design space for WoT, focusing on the emerging
Fog Computing paradigm;

• designing a modeling framework and implementing a Decision Support Sys-
tem for supporting designers and software architect in the process of modeling
a middleware-induced software system’s architecture;

• proposing a reflective model whose aim is to inject adaptation into existing
middleware allowing a software system to dynamically change its logic with-
out internal changes to the code;

• presenting an approach to complex adaptive mobile applications modeling
and implementation, able to dynamically change according to changed be-
havioral properties, state and/or text variables and user’s preference;

• presenting a new technique for navigation-aware and personalized prefetch-
ing of network requests in Android apps . The proposed idea allows the de-
velopment of approaches which adapt their prefetching behaviour according
to the unique navigation patterns each user exhibits while interacting with a
mobile app.

123

Bibliography

Adam Lella, Andrew Lipsman (2017). The 2017 U.S. Mobile App Report. com-
sCore white paper.

Aggarwal, Charu C, Naveen Ashish, and Amit Sheth (2013). “The internet
of things: A survey from the data-centric perspective”. In: Managing and
mining sensor data. Springer, pp. 383–428.

Alaba, Fadele Ayotunde et al. (2017). “Internet of Things security: A survey”.
In: J. Network and Computer Applications 88, pp. 10–28. DOI:

. URL:
.

Alrawais, Arwa et al. (2017). “Fog computing for the internet of things: Secu-
rity and privacy issues”. In: IEEE Internet Computing 21.2, pp. 34–42.

Alshuqayran, N., N. Ali, and R. Evans (2016). “A Systematic Mapping Study
in Microservice Architecture”. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 44–51. DOI:

.
Android Application Fundamentals (2018). URL:

.
Android connectivity (2018). URL:

.
Android Intents and Intent Filters (2018). URL:

.
Arcaini, Paolo, Elvinia Riccobene, and Patrizia Scandurra (2015). “Modeling

and Analyzing MAPE-K Feedback Loops for Self-Adaptation”. In: 10th
IEEE/ACM International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18-19, 2015,
pp. 13–23.

Atamli, Ahmad and Andrew P. Martin (2014). “Threat-Based Security Anal-
ysis for the Internet of Things”. In: 2014 International Workshop on Secure
Internet of Things, SIoT 2014, Wroclaw, Poland, September 10, 2014. Ed. by
Gabriel Ghinita, Razvan Rughinis, and Ahmad-Reza Sadeghi. IEEE Com-
puter Society, pp. 35–43. ISBN: 978-1-4799-7907-3. DOI:

. URL: .
Autili, Marco, Paolo Di Benedetto, and Paola Inverardi (2009). “Context-Aware

Adaptive Services: The PLASTIC Approach”. In: Fundamental Approaches
to Software Engineering, 12th International Conference, FASE 2009, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings, pp. 124–139.

Autili, Marco, Paola Inverardi, and Massimo Tivoli (2014). “CHOREOS: Large
scale choreographies for the future internet”. In: 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse

124 Bibliography

Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014, pp. 391–
394.

Avgeriou, Paris and Uwe Zdun (2005). “Architectural patterns revisited–a
pattern language”. In: Proc. 10th European Conf. Pattern Languages of Pro-
grams (EuroPLoP), pp. 431–478.

Avgeriou, Paris et al. (2011). Relating software requirements and architectures.
Springer Science & Business Media.

Baader, Franz et al., eds. (2003). The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press.

Bakhshandeh, Marzieh et al. (2013). “A Modular Ontology for the Enterprise
Architecture Domain”. In: Enterprise Distributed Object Computing Confer-
ence Workshops (EDOCW), 2013 17th IEEE International. IEEE, pp. 5–12.

Bass, L., M. Klein, and F. Bachmann (2002). “Quality attribute design primi-
tives and the attribute driven design method.” In: Revised Papers from 4th
Int.Workshop on Software Product-Family Engineering. Vol. 2290. Springer,
pp. 169–186.

Bass, Len, Paul Clements, and Rick Kazman (2005). Software architecture in
practice. Boston ; Munich [u.a.]: Addison-Wesley. ISBN: 0-321-15495-9.

Ben Martin (2018). Global Digital Future in Focus - 2018 International Edition.
comsCore white paper.

Bencomo, Nelly and Gordon Blair (2009). “Using architecture models to sup-
port the generation and operation of component-based adaptive systems”.
In: SEAMS’09. Springer, pp. 183–200.

Bermbach, David et al. (2017). “A Research Perspective on Fog Computing”.
In: Proceedings of the 2nd Workshop on IoT Systems Provisioning & Manage-
ment for Context-Aware Smart Cities. Springer.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). “The Semantic Web”. In:
The Scientific American 284.5, pp. 34–43.

Bettini, Claudio et al. (2010). “A survey of context modelling and reasoning
techniques”. In: Pervasive and Mobile Computing 6.2, pp. 161–180.

Blair, Gordon S, Geoff Coulson, and Paul Grace (2004). “Research directions
in reflective middleware: the Lancaster experience”. In: Proceedings of the
3rd workshop on Adaptive and reflective middleware. ACM, pp. 262–267.

Blair, Gordon S et al. (1999). “The design of a resource-aware reflective mid-
dleware architecture”. In: Meta-Level Architectures and Reflection. Springer,
pp. 115–134.

Bobillo, Fernando and Umberto Straccia (2011). “Fuzzy Ontology Represen-
tation using OWL 2”. In: International Journal of Approximate Reasoning 52
(7), pp. 1073–1094.

— (2016). “The Fuzzy Ontology Reasoner fuzzyDL”. In: Knowledge-Based Sys-
tems 95, pp. 12 –34. DOI: . URL:

.
Bobillo, Fernando et al. (2015). “Fuzzy Description Logics in the framework

of Mathematical Fuzzy Logic”. In: Handbook of Mathematical Fuzzy Logic,
Volume 3. Ed. by Carles Noguera Petr Cintula Christian Fermüller. Vol. 58.
Studies in Logic, Mathematical Logic and Foundations. College Publica-
tions. Chap. 16, pp. 1105–1181. ISBN: 978-1848901933.

Bibliography 125

Bolchini, Cristiana et al. (2011). “Context Modeling and Context Awareness:
steps forward in the Context-ADDICT project.” In: IEEE Data Eng. Bull.
34.2, pp. 47–54.

Bonomi, Flavio et al. (2012). “Fog computing and its role in the internet of
things”. In: Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, pp. 13–16.

Botella, Pere et al. (2001). “Modeling non-functional requirements”. In: Pro-
ceedings of Jornadas de Ingenieria de Requisitos Aplicada JIRA 2001.

Boyle, David and Thomas Newe (2008). “Securing Wireless Sensor Networks:
Security Architectures”. In: JNW 3.1, pp. 65–77. DOI:

. URL: .
Bucchiarone, Antonio et al. (2015). “Rule-Based Modeling and Static Analysis

of Self-adaptive Systems by Graph Transformation”. In: Software, Services,
and Systems, pp. 582–601.

Buschmann, F. et al. (1996a). Pattern-oriented Software Architecture: A System of
Patterns. New York, NY, USA: John Wiley & Sons, Inc. ISBN: 0-471-95869-7.

Buschmann, Frank, Kevlin Henney, and Douglas C Schmidt (2007a). Pattern-
Oriented Software Architecture, Volume 4, A Pattern Language for Distributed
Computing. Wiley.

— (2007b). Pattern-Oriented Software Architecture, Volume 4, A Pattern Lan-
guage for Distributed Computing.

Buschmann, Frank et al. (1996b). Pattern-oriented software architecture: a system
of patterns. New York, NY, USA: John Wiley & Sons, Inc. ISBN: 0-471-95869-
7.

— (1996c). Pattern-oriented software architecture: a system of patterns. New York,
NY, USA: John Wiley & Sons, Inc. ISBN: 0-471-95869-7.

Byers, Charles C (2017). “Architectural imperatives for fog computing: Use
cases, requirements, and architectural techniques for FOG-enabled IoT
networks”. In: IEEE Communications Magazine 55.8, pp. 14–20.

Calegari, Silvia and Elie Sanchez (2007). “A fuzzy ontology-approach to im-
prove semantic information retrieval”. In: Proceedings of the Third Interna-
tional Conference on Uncertainty Reasoning for the Semantic Web-Volume 327.
CEUR-WS. org, pp. 117–122.

Capilla, Rafael et al. (2006). “A web-based tool for managing architectural
design decisions”. In: ACM SIGSOFT software engineering notes 31.5, p. 4.

Cazzola, Walter et al. (1999). “Rule-based strategic reflection: Observing and
modifying behaviour at the architectural level”. In: Automated Software
Engineering, 1999. 14th IEEE International Conference on. IEEE, pp. 263–266.

Cheng, Betty H C et al. (2009). “A goal-based modeling approach to develop
requirements of an adaptive system with environmental uncertainty”. In:
LNCS. Vol. 5795. LNCS. Springer, pp. 468–483.

Chung, Jaewoo and Chris Schmandt (2009). “Going my way: a user-aware
route planner”. In: Proceedings of the ACM Conference on Human Factors in
Computing Systems, pp. 1899–1902.

Chung, Lawrence and Julio Cesar Sampaio do Prado Leite (2009). “On non-
functional requirements in software engineering”. In: Conceptual modeling:
Foundations and applications. Springer, pp. 363–379.

126 Bibliography

Chung, Lawrence et al. (2012). Non-functional requirements in software engineer-
ing. Vol. 5. Springer Science & Business Media.

Cubo, Javier et al. (2014). “Adaptive Services for the Future Internet”. In: J.
UCS 20.8, pp. 1046–1048.

Cuenca-Grau, B. et al. (2008). “OWL 2: The next step for OWL”. In: Journal of
Web Semantics 6.4, pp. 309–322.

Cugola, Gianpaolo and Alessandro Margara (2012). “Processing flows of in-
formation: From data stream to complex event processing”. In: ACM Com-
puting Surveys (CSUR) 44.3, p. 15.

— (2013). “Deployment strategies for distributed complex event process-
ing”. In: Computing 95.2, pp. 129–156.

Curry, Edward (2004). “Message-oriented middleware”. In: Middleware for
communications, pp. 1–28.

Cysneiros, Luiz Marcio (2007). “Evaluating the Effectiveness of Using Cata-
logues to Elicit Non-Functional Requirements.” In: WER, pp. 107–115.

Dastjerdi, A. V. and R. Buyya (2016). “Fog Computing: Helping the Internet
of Things Realize Its Potential”. In: Computer 49.8, pp. 112–116. ISSN: 0018-
9162. DOI: .

Davis, Alan M (1993). Software requirements: objects, functions, and states. Prentice-
Hall, Inc.

Dayarathna, Miyuru and Srinath Perera (Feb. 2018). “Recent Advancements
in Event Processing”. In: ACM Comput. Surv. 51.2, 33:1–33:36. ISSN: 0360-
0300. DOI: . URL:

.
Di Noia, Tommaso, Marina Mongiello, and Eugenio Di Sciascio (2014). “Ontology-

driven pattern selection and matching in software design”. In: European
Conference on Software Architecture. Springer, pp. 82–89. ISBN: 978-331909969-
9. DOI: .

Diaz-Pace, Andres et al. (2008). “Integrating quality-attribute reasoning frame-
works in the ArchE design assistant”. In: Quality of Software Architectures.
Models and Architectures. Springer, pp. 171–188.

Dietrich, Jens and Chris Elgar (2005). “A formal description of design pat-
terns using OWL”. In: Software Engineering Conference, 2005. Proceedings.
2005 Australian. IEEE, pp. 243–250.

Dobson, Glen, Stephen Hall, and Gerald Kotonya (2007). “A Domain-Independent
Ontology for Non-Functional Requirements”. In: Proceedings of ICEBE 2007,
IEEE International Conference on e-Business Engineering and the Workshops
SOAIC 2007, SOSE 2007, SOKM 2007, 24-26 October, 2007, Hong Kong,
China, pp. 563–566.

Dolev, Danny and Andrew Chi-Chih Yao (1983). “On the security of public
key protocols”. In: IEEE Trans. Information Theory 29.2, pp. 198–207. DOI:

. URL:
.

Dragoni, Nicola, Alberto Giaretta, and Manuel Mazzara (2017). “The Internet
of Hackable Things”. In: CoRR abs/1707.08380. arXiv: . URL:

.

Bibliography 127

Dragoni, Nicola et al. (2016). “Microservices: yesterday, today, and tomor-
row”. In: CoRR abs/1606.04036. arXiv: . URL:

.
Egyed, Alexander and Paul Grunbacher (2004). “Identifying requirements

conflicts and cooperation: How quality attributes and automated trace-
ability can help”. In: Software, IEEE 21.6, pp. 50–58.

El Jaouhari, Saad, Ahmed Bouabdallah, and Jean-Marie Bonnin (2017). “Se-
curity Issues of the Web of Things”. In: Managing the Web of Things. Else-
vier, pp. 389–424.

Fehling, C. et al. (2014). Cloud Computing Patterns: Fundamentals to Design,
Build, and Manage Cloud Applications. Springer Vienna. ISBN: 9783709115671.

Fickas, Stephen and Martin S Feather (1995). “Requirements monitoring in
dynamic environments”. In: Proc. of RE’95. IEEE, pp. 140–147.

Fielding, Roy T and Richard N Taylor (2002). “Principled design of the mod-
ern Web architecture”. In: ACM Transactions on Internet Technology (TOIT)
2.2, pp. 115–150.

Fielding, Roy Thomas (2000). “REST: Architectural Styles and the Design of
Network-based Software Architectures”. Doctoral dissertation. Univer-
sity of California, Irvine. URL:

.
FP Jr, Brooks (1987). “No Silver Bullet Essence and Accidents of Software

Engineering”. In: 4. IEEE, pp. 10–19.
Francesco, P. D., I. Malavolta, and P. Lago (2017). “Research on Architecting

Microservices: Trends, Focus, and Potential for Industrial Adoption”. In:
2017 IEEE International Conference on Software Architecture (ICSA), pp. 21–
30. DOI: .

Franch, Xavier (1998). “Systematic formulation of non-functional character-
istics of software”. In: Requirements Engineering, 1998. Proceedings. 1998
Third International Conference on. IEEE, pp. 174–181.

Francis, B. (Mar. 2018). Web Thing API (Unofficial Draft). Tech. rep. World Wide
Web Concortium (W3C). URL: .

Fremantle, Paul and Philip Scott (2017). “A survey of secure middleware for
the Internet of Things”. In: PeerJ Computer Science 3, e114. DOI:

. URL: .
Frigeri, Achille, Liliana Pasquale, and Paola Spoletini (Aug. 2014). “Fuzzy

Time in Linear Temporal Logic”. In: ACM Trans. Comput. Logic 15.4, 30:1–
30:22.

Gallidabino, ANDREA et al. (2017). “Architecting liquid software”. In: Jour-
nal of Web Engineering 16.5&6, pp. 433–470.

Gamma, Erich et al. (1994). Design patterns: elements of reusable object-oriented
software. Pearson Education.

Garlan, David and Mary Shaw (1994). “An introduction to software architec-
ture”. In: technical report.

Garlan, David et al. (2004). “Rainbow: Architecture-based self-adaptation with
reusable infrastructure”. In: Computer 37.10, pp. 46–54.

128 Bibliography

Gašević, Dragan, Nima Kaviani, and Milan Milanović (2009). “Ontologies
and software engineering”. In: Handbook on Ontologies. Springer, pp. 593–
615.

Geiger, Franz-Xaver et al. (2018). “A Graph-based Dataset of Commit History
of Real-World Android apps”. In: Proceedings of the 15th International Con-
ference on Mining Software Repositories, MSR. New York, NY: ACM, pp. 30–
33. URL:

.
Glinz, Martin (2007). “On non-functional requirements”. In: Requirements En-

gineering Conference, 2007. RE’07. 15th IEEE International. IEEE, pp. 21–26.
Global mobile OS market share in sales to end users from 1st quarter 2009 to 1st

quarter 2018 (2018). URL:

.
Granjal, Jorge, Edmundo Monteiro, and Jorge Sá Silva (2015). “Security for

the Internet of Things: A Survey of Existing Protocols and Open Research
Issues”. In: IEEE Communications Surveys and Tutorials 17.3, pp. 1294–1312.
DOI: . URL:

.
Gross, Daniel and Eric Yu (2001). “From non-functional requirements to de-

sign through patterns”. In: Requirements Engineering 6.1, pp. 18–36.
Grunske, Lars (2008). “Specification patterns for probabilistic quality proper-

ties”. In: Proc. of ICSE’08. IEEE, pp. 31–40.
Guinard, Dominique (2009). “Towards the web of things: Web mashups for

embedded devices”. In: In MEM 2009 in Proceedings of WWW 2009. ACM.
Guinard, Dominique and Vlad Trifa (2016). Building the web of things: with

examples in node. js and raspberry pi. Manning Publications Co.
Guinard, Dominique, Vlad Trifa, and Erik Wilde (2010). “A resource oriented

architecture for the web of things”. In: Internet of Things (IOT), 2010. IEEE,
pp. 1–8.

Guinard, Dominique et al. (2011a). “From the internet of things to the web of
things: Resource-oriented architecture and best practices”. In: Architecting
the Internet of things, pp. 97–129.

— (2011b). “From the Internet of Things to the Web of Things: Resource-
oriented Architecture and Best Practices”. In: Architecting the Internet of
Things. Ed. by Dieter Uckelmann, Mark Harrison, and Florian Micha-
helles. Springer, pp. 97–129. ISBN: 978-3-642-19156-5.

Guizzardi, Renata S. S. et al. (2014). “An Ontological Interpretation of Non-
Functional Requirements”. In: Formal Ontology in Information Systems -
Proceedings of the Eighth International Conference, FOIS 2014, September, 22-
25, 2014, Rio de Janeiro, Brazil, pp. 344–357.

Harb, Dania, Cédric Bouhours, and Hervé Leblanc (2009). “Using an ontol-
ogy to suggest software design patterns integration”. In: Models in Soft-
ware Engineering. Springer, pp. 318–331.

Harrison, Neil B and Paris Avgeriou (2010a). “How do architecture patterns
and tactics interact? A model and annotation”. In: Journal of Systems and
Software 83.10, pp. 1735–1758.

Bibliography 129

— (2010b). “Implementing reliability: the interaction of requirements, tactics
and architecture patterns”. In: Architecting dependable systems VII. Springer,
pp. 97–122.

Harrison, Neil B, Paris Avgeriou, and Uwe Zdun (2010). “On the impact of
fault tolerance tactics on architecture patterns”. In: Proceedings of the 2nd
International Workshop on Software Engineering for Resilient Systems. ACM,
pp. 12–21.

Hartke, K. (Oct. 2017). The Constrained RESTful Application Language (CoRAL).
Tech. rep. IETF. URL:

.
Henninger, Scott and Padmapriya Ashokkumar (2005). “An Ontology-Based

Infrastructure for Usability Design Patterns”. In: Proc. Semantic Web En-
abled Software Engineering (SWESE), Galway, Ireland, pp. 41–55.

— (2006). “An ontology-based metamodel for software patterns”. In: 8th Intl.
Conf. on Software Engineering and Knowledge Engineering (SEKE2006).

Henninger, Scott and Victor Corrêa (2007). “Software pattern communities:
Current practices and challenges”. In: Proceedings of the 14th Conference on
Pattern Languages of Programs. ACM, p. 14.

Hopcroft, John E, Rajeev Motwani, and Jeffrey D Ullman (2001). “Introduc-
tion to automata theory, languages, and computation”. In: ACM SIGACT
News 32.1, pp. 60–65.

Horrocks, Ian, Oliver Kutz, and Ulrike Sattler (2006). “The Even More Ir-
resistible SROIQ”. In: Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR-06). AAAI Press,
pp. 57–67. ISBN: 978-1-57735-271-6.

Huang, Gang, Xuanzhe Liu, and Hong Mei (2007). “SOAR: towards depend-
able Service-Oriented Architecture via reflective middleware”. In: Inter-
national Journal of Simulation and Process Modelling 3.1-2, pp. 55–65.

Huebscher, Markus C and Julie A McCann (2008). “A survey of autonomic
computing-degrees, models, and applications”. In: ACM Computing Sur-
veys (CSUR) 40.3, p. 7.

Ikram, Ahsan et al. (2013). “Approaching the Internet of things (IoT): a mod-
elling, analysis and abstraction framework”. In: Concurrency and Compu-
tation: Practice and Experience.

Internet of things research study (2015). http://www8.hp.com/us/en/hp-news/press-
release.html?id=1744676. [online, visited 30.11.2017].

Jansen, Anton et al. (2007). “Tool support for architectural decisions”. In: Soft-
ware Architecture, 2007. WICSA’07. The Working IEEE/IFIP Conference on,
pp. 4–4.

Joorabchi, Mona Erfani, Ali Mesbah, and Philippe Kruchten (2013). “Real
challenges in mobile app development”. In: Empirical Software Engineer-
ing and Measurement, 2013 ACM/IEEE International Symposium on. IEEE,
pp. 15–24.

Kaebisch, Sebastian and Takuki Kamiya (Sept. 2017). Web of Things (WoT)
Thing Description. Tech. rep. World Wide Web Concortium (W3C).

Kajimoto, Kazuo, Matthias Kovatsch, and Uday Davuluru (Sept. 2017). Web of
Things (WoT) Architecture. Tech. rep. World Wide Web Concortium (W3C).

130 Bibliography

Kampffmeyer, Holger and Steffen Zschaler (2007). “Finding the pattern you
need: The design pattern intent ontology”. In: Model Driven Engineering
Languages and Systems. Springer, pp. 211–225.

Kelly, M. (Nov. 2016). JSON Hypertext Application Language (JSON-HAL). Tech.
rep. IETF. URL:

.
Kis, Zoltan et al. (Oct. 2017). Web of Things (WoT) Scripting API. Tech. rep.

World Wide Web Concortium (W3C).
Koster, M. (Sept. 2017a). Media Types for Hypertext Sensor Markup (HSML).

Tech. rep. IETF. URL:
.

Koster, Michael (Oct. 2017b). Web of Things (WoT) Protocol Binding Templates.
Tech. rep. World Wide Web Concortium (W3C).

Kramer, Jeff and Jeff Magee (2007). “Self-managed systems: an architectural
challenge”. In: Future of Software Engineering, 2007. FOSE’07. IEEE, pp. 259–
268.

Kruchten, Philippe (2004a). “An ontology of architectural design decisions
in software intensive systems”. In: 2nd Groningen Workshop on Software
Variability. Groningen, The Netherlands, pp. 54–61.

— (2004b). “An ontology of architectural design decisions in software inten-
sive systems”. In: 2nd Groningen Workshop on Software Variability, pp. 54–
61.

Levandowsky, Michael and David Winter (1971). “Distance between sets”.
In: Nature 234.5323, pp. 34–35.

Lewis, Clayton (1982). Using the" thinking-aloud" method in cognitive interface
design. IBM TJ Watson Research Center.

Lewis, James and Martin Fowler. (2015). Microservices. https://martinfowler.com/articles/micr
Li, Ding et al. (2016). “Automated energy optimization of http requests for

mobile applications”. In: Proceedings of the 38th international conference on
software engineering. ACM, pp. 249–260.

Li, Li et al. (2017). “Static analysis of android apps: A systematic literature
review”. In: Information and Software Technology 88, pp. 67–95.

Li, Zengyang, Peng Liang, and Paris Avgeriou (2013). “Application of knowledge-
based approaches in software architecture: a systematic mapping study”.
In: Information and Software technology 55, pp. 777–794.

Liu, Chi-Lun (2010). “Ontology-Based Conflict Analysis Method in Non-functional
Requirements”. In: 9th IEEE/ACIS International Conference on Computer and
Information Science, IEEE/ACIS ICIS 2010, 18-20 August 2010, Yamagata,
Japan, pp. 491–496.

Liu, Xuanzhe et al. (2017). “Understanding diverse usage patterns from large-
scale appstore-service profiles”. In: IEEE Transactions on Software Engineer-
ing.

López, Claudia, Luiz Marcio Cysneiros, and Hernán Astudillo (2008). “NDR
ontology: sharing and reusing NFR and design rationale knowledge”.
In: Managing Requirements Knowledge, 2008. MARK’08. First International
Workshop on. IEEE, pp. 1–10.

Bibliography 131

Luckham, David (2002). The power of events. Vol. 204. Addison-Wesley Read-
ing.

M. Belshe R. Peon, M. Thomson, ed. (2015). RFC 7540 - Hypertext Transfer
Protocol Version 2 (HTTP/2). Internet Engineering Task Force (IETF).

Ma, Yun et al. (2018). “A Tale of Two Fashions: An Empirical Study on the
Performance of Native Apps and Web Apps on Android”. In: IEEE Trans-
actions on Mobile Computing 17.5, pp. 990–1003.

Madlmayr, Gerald et al. (2008). “NFC Devices: Security and Privacy”. In: Pro-
ceedings of the The Third International Conference on Availability, Reliability
and Security, ARES 2008, March 4-7, 2008, Technical University of Catalonia,
Barcelona , Spain. IEEE Computer Society, pp. 642–647. ISBN: 978-0-7695-
3102-1. DOI: . URL:

.
Maes, Pattie (1987). “Concepts and experiments in computational reflection”.

In: ACM Sigplan Notices 22.12, pp. 147–155.
Mahmud, Redowan, Ramamohanarao Kotagiri, and Rajkumar Buyya (2018).

“Fog computing: A taxonomy, survey and future directions”. In: Internet
of Everything. Springer, pp. 103–130.

Mairiza, Dewi, Didar Zowghi, and Nurie Nurmuliani (2009). “Managing con-
flicts among non-functional requirements”. In: 12th Australian Workshop
on Requirements Engineering. University of Technology, Sydney, pp. 11–19.

Mäkitalo, Aaltonen, and Mikkonen (2016). “Coordinating Proactive Social
Devices in a Mobile Cloud: Lessons Learned and a Way Forward”. In:
Proceedings of the International Conference on Mobile Software Engineering and
Systems. MOBILESoft ’16. Austin, Texas: ACM, pp. 179–188. ISBN: 978-1-
4503-4178-3. DOI: . URL:

.
Mäkitalo, Niko et al. (2018). “Safe and Secure Execution at the Network Edge:

A Framework for Coordinating Cloud, Fog, and Edge”. In: IEEE Software.
Martins, Jaime A, Andriy Mazayev, and Noélia Correia (2017). “Hypermedia

APIs for the Web of Things”. In: IEEE Access 5, pp. 20058–20067.
Mayer, Ruben, Muhammad Adnan Tariq, and Kurt Rothermel (2017). “Min-

imizing Communication Overhead in Window-Based Parallel Complex
Event Processing”. In: Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems. ACM, pp. 54–65.

Mayer, Simon and David S Karam (2012). “A computational space for the
web of things”. In: Proceedings of the Third International Workshop on the
Web of Things. ACM, p. 8.

McKinley, Philip K et al. (2004). “Composing adaptive software”. In: Com-
puter, pp. 56–64.

Mendez, Diego M., Ioannis Papapanagiotou, and Baijian Yang (2017). “Inter-
net of Things: Survey on Security and Privacy”. In: CoRR abs/1707.01879.
arXiv: . URL: .

Mikkonen, Tommi (1998). “Formalizing design patterns”. In: Proceedings of
the 20th international conference on Software engineering. IEEE Computer So-
ciety, pp. 115–124.

132 Bibliography

Mongiello, Marina, Patrizio Pelliccione, and Massimo Siancalepore (2015).
“Ac-Contract: run-time verification of context-aware systems”. In: SEAMS
’15. ICSE Workshop, pp. 106–115.

Mongiello, Marina et al. (2015). “Adaptive architectural model for Future in-
ternet applications”. In: Proc. of the 5th International Workshop on Adaptive
services for future internet.

Montero, Susana, Paloma Díaz, and Ignacio Aedo (2003). “Formalization of
web design patterns using ontologies”. In: Advances in Web Intelligence.
Springer, pp. 179–188.

Moser, Thomas et al. (2009). “Semantic event correlation using ontologies”.
In: On the Move to Meaningful Internet Systems: OTM 2009. Springer, pp. 1087–
1094.

Mylopoulos, John, Lawrence Chung, and Brian Nixon (1992). “Representing
and using nonfunctional requirements: A process-oriented approach”. In:
Software Engineering, IEEE Transactions on 18.6, pp. 483–497.

N.Harrison, P. Avgeriou (2007). “Pattern-driven architectural partitioning:
Balancing functional and non-functional requirements”. In: Second Inter-
national Conference on Digital Telecommunications 2007. ICDT ’07. IEEE. IEEE,
pp. 21–26.

Ni, Jianbing et al. (2017). “Securing fog computing for internet of things ap-
plications: Challenges and solutions”. In: IEEE Communications Surveys &
Tutorials.

Number of available applications in the Google Play Store from December 2009 to
June 2018 (2018). URL:

.
OASIS Message Queuing Telemetry Transport (MQTT) TC (2014). MQTT Ver-

sion 3.1.1. standard. Edited by Andrew Banks and Rahul Gupta. 29 Octo-
ber 2014. OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-
v3.1.1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.html. Oasis.

Ometov, A. et al. (2016). “Implementing secure network-assisted D2D frame-
work in live 3GPP LTE deployment”. In: 2016 IEEE International Confer-
ence on Communications Workshops (ICC), pp. 749–754. DOI:

.
Oreizy, Peyman, Nenad Medvidovic, and Richard N Taylor (1998). “Architecture-

based runtime software evolution”. In: Proceedings of the 20th international
conference on Software engineering. IEEE Computer Society, pp. 177–186.

Pahl, Claus and Pooyan Jamshidi (2016). “Microservices: A Systematic Map-
ping Study.” In: CLOSER (1), pp. 137–146.

Palomba, Fabio et al. (2018). “Crowdsourcing user reviews to support the
evolution of mobile apps”. In: Journal of Systems and Software 137, pp. 143–
162.

Pan, Jeff Z et al. (2013). Ontology-Driven Software Development. Springer.
Pelliccione, Patrizio et al. (2008). “An architectural approach to the correct

and automatic assembly of evolving component-based systems”. In: Jour-
nal of Systems and Software 81.12, pp. 2237–2251.

Bibliography 133

Perera, Charith et al. (2014). “Context aware computing for the internet of
things: A survey”. In: Communications Surveys & Tutorials, IEEE 16.1, pp. 414–
454.

Philip, K, P Eric, and HC Betty (2004). “Composing adaptive software”. In:
IEEE Computer.

Pimentel, João et al. (2013). “From Requirements to Architectures for Bet-
ter Adaptive Software Systems”. In: Proceedings of the 6th International i*
Workshop 2013, Valencia, Spain, June 17-18, 2013. Ed. by Jaelson Castro et
al. Vol. 978. CEUR Workshop Proceedings. CEUR-WS.org, pp. 91–96. URL:

.
R. de Lemos et al. (2013). “Software Engineering for Self-Adaptive Systems:

A Second Research Roadmap”. In: Software Engineering for Self-Adaptive
Systems II. Vol. 7475. LNCS. Springer Berlin Heidelberg, pp. 1–32.

Rahmani, Amir M et al. (2018). “Exploiting smart e-health gateways at the
edge of healthcare internet-of-things: a fog computing approach”. In: Fu-
ture Generation Computer Systems 78, pp. 641–658.

Randika, HC et al. (2010). “Scalable fault tolerant architecture for complex
event processing systems”. In: Advances in ICT for Emerging Regions (ICTer),
2010 International Conference on. IEEE, pp. 86–96.

Rashwan, Abderahman, Olga Ormandjieva, and René Witte (2013). “Ontology-
Based Classification of Non-functional Requirements in Software Spec-
ifications: A New Corpus and SVM-Based Classifier”. In: 37th Annual
IEEE Computer Software and Applications Conference, COMPSAC 2013, Ky-
oto, Japan, July 22-26, 2013, pp. 381–386.

Raverdy, Pierre-Guillaume, HLV Gong, and Rodger Lea (1998). “DART: a re-
flective middleware for adaptive applications”. In: OOPSLA’98 Workshop#
13: Reflective programming in C++ and Java.

Ravindranath, Lenin et al. (2012). “AppInsight: Mobile App Performance
Monitoring in the Wild.” In: OSDI. Vol. 12, pp. 107–120.

Razzaque, Mohammad Abdur et al. (2016a). “Middleware for Internet of
Things: A Survey”. In: IEEE Internet of Things Journal 3.1, pp. 70–95. DOI:

. URL:
.

Razzaque, Mohammad Abdur et al. (2016b). “Middleware for internet of
things: a survey”. In: IEEE Internet of Things Journal 3.1, pp. 70–95.

Riccobene, Elvinia and Patrizia Scandurra (2015). “Formal modeling self-
adaptive service-oriented applications”. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015,
pp. 1704–1710.

Rosa, Nelson S, Paulo RF Cunha, and George RR Justo (2002). “Process NFL:
A language for describing non-functional properties”. In: System Sciences,
2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference
on. IEEE, pp. 3676–3685.

Rupnik, Rok (2009). “Decision support system to support the solving of clas-
sification problems in telecommunications”. In: Informacije Midem - Journal
of microelectronic electronic component and materials 39.3, pp. 168–177.

134 Bibliography

Sánchez, Daniel and Andrea GB Tettamanzi (2006). “Fuzzy quantification in
fuzzy description logics”. In: Capturing intelligence 1, pp. 135–159.

Schulte, Roy W and Yefim V Natis (2003). “Event-driven architecture com-
plements SOA”. In: Gartner Research Note, July 8.

Scoccia, Gian Luca et al. (2018). “An Investigation into Android Run-time
Permissions from the End Users’ Perspective”. In: Proceedings of the 5th In-
ternational Conference on Mobile Software Engineering and Systems. MOBILE-
Soft ’18. Gothenburg, Sweden: ACM, pp. 45–55. ISBN: 978-1-4503-5712-8.
DOI: . URL:

.
Serbedzija, Nikola B and Stephen H Fairclough (2009). “Biocybernetic loop:

from awareness to evolution”. In: IEEE Congress on Evolutionary Computa-
tion. IEEE, pp. 2063–2069.

Shaw, Mary and David Garlan (1996). Software architecture: perspectives on an
emerging discipline. Vol. 1. Prentice Hall Englewood Cliffs.

Sheng, Z. et al. (2013). “A survey on the ietf protocol suite for the internet of
things: standards, challenges, and opportunities”. In: IEEE Wireless Com-
munications 20.6, pp. 91–98. ISSN: 1536-1284. DOI:

.
Shi, W. and S. Dustdar (2016). “The Promise of Edge Computing”. In: Com-

puter 49.5, pp. 78–81. ISSN: 0018-9162. DOI: .
Smith, Brian Cantwell (1982). “Procedural reflection in programming lan-

guages”. PhD thesis. Massachusetts Institute of Technology.
Soto, José Angel Carvajal et al. (2016). “CEML: Mixing and Moving Complex

Event Processing and Machine Learning to the Edge of the Network for
IoT Applications”. In: Proceedings of the 6th International Conference on the
Internet of Things. IoT’16. Stuttgart, Germany: ACM, pp. 103–110. ISBN:
978-1-4503-4814-0. DOI: . URL:

.
Starks, Fabrice, Thomas Peter Plagemann, and Stein Kristiansen (2017). “DCEP-

Sim: An Open Simulation Framework for Distributed CEP”. In: Proceed-
ings of the 11th ACM International Conference on Distributed and Event-based
Systems. ACM, pp. 180–190.

Stirbu, V. (2008). “Towards a RESTful Plug and Play Experience in the Web
of Things”. In: 2008 IEEE International Conference on Semantic Computing,
pp. 512–517. DOI: .

Straccia, Umberto (2005). “Description Logics with Fuzzy Concrete Domains”.
In: 21st Conference on Uncertainty in Artificial Intelligence (UAI-05). Ed. by
Fahiem Bachus and Tommi Jaakkola. Edinburgh, Scotland: AUAI Press,
pp. 559–567.

— (2013). Foundations of Fuzzy Logic and Semantic Web Languages. CRC Stud-
ies in Informatics Series. Chapman & Hall.

Sydow, Lexi (2018). Global App Downloads Grew 15% and Consumer Spend 20%
in Q2 2018 Versus a Year Ago. App Annie white paper. URL:

.

Bibliography 135

Taibi, Toufik and David Chek Ling Ngo (2003). “Formal Specification of De-
sign Patterns - A Balanced Approach”. In: Journal of Object Technology 2.4,
pp. 127–140.

Taivalsaari, A. and T. Mikkonen (2017). “A Roadmap to the Programmable
World: Software Challenges in the IoT Era”. In: IEEE Software 34.1, pp. 72–
80. ISSN: 0740-7459. DOI: .

Taivalsaari, A. et al. (2011). “The Death of Binary Software: End User Soft-
ware Moves to the Web”. In: Creating, Connecting and Collaborating through
Computing (C5), 2011 Ninth International Conference on, pp. 17–23. DOI:

.
Taylor, R. N., N. Medvidovic, and E. M. Dashofy (2009). Software Architec-

ture: Foundations, Theory, and Practice. Wiley Publishing. ISBN: 0470167742,
9780470167748.

technology, ISO/IEC JTC 1 Information (2016). ISO/IEC 20922:2016. standard.
International Organization for Standardization (ISO).

Thönes, J. (2015). “Microservices”. In: IEEE Software 32.1, pp. 116–116. ISSN:
0740-7459. DOI: .

Tichy, Walter F (1997). “A catalogue of general-purpose software design pat-
terns”. In: Technology of Object-Oriented Languages and Systems, 1997. TOOLS
23. Proceedings. IEEE, pp. 330–339.

Torra, Vicenç and Yasuo Narukawa (2007). Information Fusion and Aggregation
Operators. Cognitive Technologies. Springer Verlag.

Tran, Nguyen Khoi et al. (Aug. 2017). “Searching the Web of Things: State
of the Art, Challenges, and Solutions”. In: ACM Computing Surveys 50.4,
55:1–55:34. ISSN: 0360-0300. DOI: . URL:

.
Tran, Quan and Lawrence Chung (1999). “NFR-Assistant: Tool support for

achieving quality”. In: Application-Specific Systems and Software Engineer-
ing and Technology, 1999. ASSET’99. Proceedings. 1999 IEEE Symposium on.
IEEE, pp. 284–289.

Trifa, Vlad, Dominique Guinard, and David Carrera (Apr. 2017). Web thing
model W3C Member Submission. Tech. rep. World Wide Web Concortium
(W3C). URL: .

Vasconcelos, Rafael Oliveira, Igor Vasconcelos, and Markus Endler (2014). “A
middleware for managing dynamic software adaptation”. In: Proceedings
of the 13th Workshop on Adaptive and Reflective Middleware. ACM, p. 5.

Vovk, Leanid (2018). How to choose an Android HTTP Library. URL:

.
Wen, Zhenyu et al. (2017). “Fog Orchestration for IoT Services: Issues, Chal-

lenges and Directions”. In: IEEE Internet Computing 21.2, pp. 16–24.
Weyns, Danny et al. (2012). “A survey of formal methods in self-adaptive

systems”. In: Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering. ACM, pp. 67–79.

Wohlin, C. et al. (2012). Experimentation in Software Engineering. Computer
Science. Springer.

136 Bibliography

Yang, Shengqian et al. (2015). “Static window transition graphs for android
(t)”. In: Automated Software Engineering (ASE), 2015 30th IEEE/ACM Inter-
national Conference on. IEEE, pp. 658–668.

Yang, Shengqian et al. (2018). “Static window transition graphs for Android”.
In: Automated Software Engineering. ISSN: 1573-7535. DOI:

. URL: .
Yang, Yuchen et al. (2017). “A Survey on Security and Privacy Issues in Internet-

of-Things”. In: IEEE Internet of Things Journal 4.5, pp. 1250–1258. DOI:
. URL:

.
Zadeh, L. A. (1965). “Fuzzy Sets”. In: Information and Control 8.3, pp. 338–353.
Zafari, Faheem and Ioannis Papapanagiotou (2015). “Enhancing iBeacon Based

Micro-Location with Particle Filtering”. In: 2015 IEEE Global Communica-
tions Conference, GLOBECOM 2015, San Diego, CA, USA, December 6-10,
2015. IEEE, pp. 1–7. ISBN: 978-1-4799-5952-5. DOI:

. URL: .
Zafari, Faheem et al. (2017). “Enhancing the accuracy of iBeacons for indoor

proximity-based services”. In: IEEE International Conference on Communi-
cations, ICC 2017, Paris, France, May 21-25, 2017. IEEE, pp. 1–7. ISBN: 978-
1-4673-8999-0. DOI: . URL:

.
Zhang, Haopeng, Yanlei Diao, and Neil Immerman (2014). “On complexity

and optimization of expensive queries in complex event processing”. In:
Proceedings of the 2014 ACM SIGMOD international conference on Manage-
ment of data. ACM, pp. 217–228.

Zhang, Pengcheng et al. (2011). “Monitoring of probabilistic timed property
sequence charts”. In: Software: Practice and Experience 41.7, pp. 841–866.

Zhao, Kai and Lina Ge (2013). “A Survey on the Internet of Things Secu-
rity”. In: Ninth International Conference on Computational Intelligence and
Security, CIS 2013, Emei Mountain, Sichan Province, China, December 14-15,
2013. IEEE Computer Society, pp. 663–667. ISBN: 978-1-4799-2548-3. DOI:

. URL: .
Zhao, Yixue et al. (2018a). “Empirically Assessing Opportunities for Prefetch-

ing and Caching in Mobile Apps”. In:
Zhao, Yixue et al. (2018b). “Leveraging Program Analysis to Reduce User-

Perceived Latency in Mobile Applications”. In: International Conference on
Software Engineering.

Zhou, Honbo (2012). “The internet of things in the cloud: A middleware per-
spective”. In:

	Declaration of Authorship
	Abstract
	Introduction
	Structure of the Thesis
	Published Material

	I Web of Things (WoT) Software dimensional view
	Architecting the Web of Things in the Fog Computing era
	The Design Space: Towards Fog Computing
	Dynamic and Decentralized Computation and Coordination Infrastructures
	Container Technology
	Serverless Computing
	From Cloud Services to the Edge Devices

	Connectivity and Communication
	Infrastructure-based Communication
	Device-to-Device Communication

	Motivation
	Research Themes for Web of Things
	Liquid User Experience
	Complex Event Processing
	Microservice Architectural Style

	Discussion
	RQ1: How to use data and hardware resources for perception and interaction?
	RQ2: What are the current building blocks for Web of Things, and who is providing them?
	RQ3: Is interoperability with other systems supported, and how can this aspect be improved?
	RQ4: What are the current security and privacy issues, and can these threats be covered?
	Perception Layer
	Middleware and Application Layers

	Threats to Validity
	Threats to the Identification of Primary Studies
	Threats to Selection and Data Extraction Consistency
	Threats to Data Synthesis and Results

	Conclusions

	A Fuzzy Ontology-based Tool for Decision Making in Architectural Design
	Introduction and motivation
	Fuzzy Description Logics
	Recap of Fuzzy Description Logics Basics
	Fuzzy Sets
	The Fuzzy DL ALCB(D)

	Requirements, Design and Architectural patterns
	Problem statement and approach
	Representing and reasoning about NFRs via fuzzy DLs
	Proposed reasoning task

	Use Case Scenario n. 01: Cloud-Social- Adaptable System
	Use Case Scenario n. 02: IoT, in a Healthcare scenario
	Implementation
	Discussion
	Related work
	Conclusion

	Context-aware Middleware for the Internet of Things based on fuzzy rules and reflective model
	Introduction and Motivation
	Background
	A Formal Model to Design a Reflective IoT Middleware
	Use Case Scenario
	Implementation
	Reflective behavior
	Validation of the model and Experiments
	Experimental field
	QoS Test

	Related work
	Conclusion and Future Work

	II Mobile Software dimensional view
	A formal model for user-centered adaptive mobile devices
	Introduction and motivation
	Approach
	Action Repository
	Personalized Action Selection

	Instantiation of the model
	Proximity environment
	Adaptive Architectural MetaModel instantiation
	A `smart smartphone'
	Adaptive Architectural MetaModel instantiation

	Experiments and validation
	Discussion
	Related work
	Conclusion

	A Navigation-aware Approach for Network Requests Prefetching of Android Apps
	Introduction
	Background
	User Navigation in Android Apps
	Network Requests in Android Apps
	The Prefetching Opportunity

	Study Design
	Research Objectives
	Identification of Representative keywords of prefetching-related commit messages
	Online Questionnaire Survey
	Identification of the Target Population
	Design of the Questionnaire
	Data Analysis and Results

	Empirical Investigation on Android apps in GitHub
	Reflection

	The Approach
	At development time
	At run-time

	Building the Extended Navigation Graph
	App Instrumentation

	Network Requests Prefetching at Run-time
	Identification of URLs to be prefetched
	Prefetching spot

	Implementation
	Evaluation
	Related work
	Conclusion and future work

	Conclusion
	Bibliography

