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Abstract

This thesis focuses on modeling the dynamic behavior of piezoelectric

energy harvester devices. Nonlinearities arising from different aspects,

such as material and geometrical effects, are taken into account. Classi-

cal reduced-order modeling approaches have been enhanced by includ-

ing effects of ferroelastic and ferroelectric hysteresis and large defor-

mations, yielding to effective circuit representations that allow for an

intuitive insight in the energy transduction processes characterizing the

considered class of devices. Nonlinearity sources have been assessed in

a separate way. A physics-based model has been employed in order to

reproduce hysteretic dynamics of PZT crystal domains. This provides

an insight on how, through an engineered crystal design, material non-

linearities can be exploited in order to improve generation performances

of piezoceramic-based harvesters. Moreover, an effective hybrid compu-

tational framework is proposed for modeling geometric nonlinear effects

on the response of flexible PVDF-based harvesters under large deforma-

tions. The procedure, experimentally validated, significantly reduce the

computational effort for nonlinear dynamic multiscale analysis, while

preserving a satisfactory accuracy.
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1

Introduction

1.1 Motivation

In the last decades, miniaturization and increase of device density according to

Moore law (2) has driven to a significant reduction of electronics energy consump-

tion. At the same time, energy harvesting from environmental sources has attracted

growing attention, leading to technologies and fabrication methods characterized by

high energy efficiency (3). Nowadays, the combination of electronics miniaturiza-

tion and the increase of energy conversion factors make perpetual devices a real

perspective, with a huge impact on IoT applications and smart monitoring grids

(4). Innovative devices can be fabricated by coupling piezoelectric and semicon-

ducting properties: nanogenerators (5, 6, 7), piezoelectric field effect transistors (5),

piezoelectric diodes (8), piezoelectric chemical sensors (9), and piezo-phototronic de-

vices (10, 11). Furthermore, the integration of the mechanical actuation in flexible

electronic systems, through micro and nano piezoelectric devices, is a challenging

aspect of interfacing human and electronic components, with important applications

in bioengineering (12). Beside technical improvements in device performances and

fabrication processes, modeling represent a crucial aspect in developing and optimiz-

ing the overall system (13). Energy Harvesters (EHs), in fact, must be designed as

elements interacting with the ambient energy source. In this perspective, advanced

modeling of each component of an EH (input/energy source, generator, processing

unit, energy storage, output/DC power) is of major importance (14). Often, Gen-

eralized Kirchhoffian Network (GKN) models are employed to assess the dynamical

response of this kind of devices (15). However, this approaches ignore most of the

effects mechanically driven at the micro and macro scale. In this framework, the in-

tegration of multiphysics and multiscale simulations (16, 17, 18) into GKN system

1



1. INTRODUCTION

simulators can fill the gap between different disciplines: solid mechanics, control

theory, electrotechnics and electronics. This thesis is an attempt in this direction,

where the focus is on EHs based on piezoceramics and piezopolymers. Nonlinearities

arising from different aspects, such as material and geometrical effects, are taken

into account in the simulations through the identification of nonlinear circuit com-

ponents. Moreover, computational time for nonlinear dynamic multiscale analyses

is reduced, gaining a big picture about energy performances driven by micro and

macro scale features and variables.

1.2 Thesis outlines

This thesis is divided into five chapters, as follows:

Chapter 1 motivates the necessity of the research, outlining objectives and struc-

ture of this document.

Chapter 2 provides a detailed overview of linear piezoelectricity theory, as an es-

sential background for nonlinear methods and models discussed in the follow-

ing chapters. Fundamental laws describing the electrostatic and linear elastic

problem are first assessed separately. Moreover, the thermodynamic frame-

work in which smart materials modeling techniques have been developed is

presented, through a short summary of thermodynamic potentials. This gives

the basis for the subsequent inclusion of hysteretic behaviors in the constitu-

tive relations of the material. The derivation of the constitutive equations for

a piezoelectric material is then reported, along with a rigorous reduction to

the unidirectional case. Finally, equations governing the piezoelectric prob-

lem, in both strong and weak forms, are reported as a preliminary step toward

the extension to the nonlinear formulation.

Chapter 3 presents the derivation of a multi-scale electromechanically coupled

model for piezoceramics EHs. It is able to reproduce effects of hysteresis on

the overall device dynamic performances. A physics-based free energy model

has been employed for reproducing the switching of crystal domains (mate-

rial mesoscopic scale) under applied electric and strain fields. The multiscale

feature allows for including crystal mesoscopic dynamics in the evolution of

macroscopic variables describing the behavior of the considered devices. A

2
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circuit representation of the resulting model is also provided, as a tool for ef-

fectively visualizing and interpreting the role of the material mesoscopic evo-

lution on the energy transduction process. Results of numerical analyses are

reported for two case studies, highlighting the role of material nonlinearities

by activating or suppressing mesoscopic dynamics in the model.

Chapter 4 presents an effective hybrid computational framework aimed at model-

ing the role of geometric nonlinearities (due to large deformations) on the re-

sponse of flexible PDVF based EHs. The proposed approach employs reduced-

order modeling techniques enhanced by the inclusion of lumped parameters

taking into account the evolution of macroscopic quantities in the physical

domain, which is provided by static nonlinear FE analyses. A circuit repre-

sentation of the resulting reduced-order model is also presented. A large para-

metric investigation is reported, showing the role of material and geometrical

parameters in the nonlinear response of two type of devices. Experimental

validation is also provided.

Chapter 5 reports concluding remarks and comments on the future work.
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Modeling piezoelectric solids:

governing equations and

theoretical aspects

As a preliminary step to the inclusion of nonlinear features into modeling piezoelec-

tric material behaviors, equations governing the responses of EH devices under the

assumption of linear elastic behavior are here recalled, in a general thermodynamic

setting. In the first part of this chapter, a short review of the electromagnetism

fundamental laws is reported. The final aim is to show the governing equations of

the electrostatic problem, which is of interest for the applications reported in this

thesis. In the second part, a detailed derivation of general equations governing the

mechanical equilibrium is given. It is here noticed that provided equations are of

general validity in both small and large strain problems. Since the piezoelectric

constitutive equations are derived from the definition of suitable thermodynamic

potentials - which quantify energies determining the material equilibrium state -

a short summary of thermodynamic potentials is reported in the third part of the

chapter. This results in a general framework that allows for including, in a natural

way, hysteretic behaviors in the constitutive relations of the material. In the final

part of the chapter, after introducing the assumption of linear elastic constitutive

equations for the piezoelectric material, both the strong and weak forms of the cou-

pled differential equations governing the electromechanical problem are presented.
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2. MODELING PIEZOELECTRIC SOLIDS: GOVERNING EQUATIONS
AND THEORETICAL ASPECTS

2.1 Electromagnetism fundamental laws

2.1.1 Maxwell’s equations

As an essential support in the comprehension and modeling of electromagnetic phe-

nomena, a brief review of the well known Maxwell’s Equations (MEs) is hereafter

reported. MEs unify results previously achieved by Gauss, Ampere and Faraday

in the description of electrostatic and electromagnetic phenomena. They consists

in four Partial Derivative Equations (PDEs) that, along with the definition of the

dielectric displacement vector D and the magnetic induction H, describe the static

and the dynamic behavior of both the electric and the magnetic field (E and B

respectively) in the most general possible conditions (i.e. presence of moving charge

distributions in polarized or magnetizable media).

The Maxwell’s equations consists of the following laws:

• the Gauss’s law;

• the Faraday’s law;

• the Gauss’s law for the magnetic field;

• the Ampere-Maxwell law.

2.1.1.1 The Gauss’s law in the vacuum space

Let us consider a continuous charge distribution in the vacuum space characterized

by a volumetric density ρe = ρe(x, y, z). Let S be a closed surface (gaussian surface)

in the tree-dimensional space. The Gauss’s law states that the flux of the electric

field E through S is given by the ratio of the electrical charge inside the considered

surface to the vacuum permittivity ε0:

∮
S
E · dS =

1

ε0

∫
V ol

ρedV ol , (2.1)

where the integral in the right-hand side represents the total charge (qe) within S

and dS is a vector normal to the infinitesimal area dS (having magnitude dS).

Equation 2.1 can be written in a differential form, expressing the relationship

between the electric field gradient and charge density ρe in local terms:

∇ · E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρe
ε0

, (2.2)

6



2.1 Electromagnetism fundamental laws

where it has been denoted by ∇ the gradient vector :

∇ =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]T
. (2.3)

PDE 2.2 expresses a property of the electric field that must be satisfied in any

point of the space. The electric field components cannot change in an arbitrary

way: their derivatives with respect to spatial coordinates are interrelated in a way

that depends on the charge density in the considered point. Moreover, equation 2.2

states that in any point of the space where no charge exists (ρe = 0), the divergence

of E must be equal to zero.

2.1.1.2 The Faraday’s law of induction

The Faraday’s law of induction makes use of the magnetic flux (ΦB) through a

generic surface SΓ having the wire loop Γ as a boundary:

ΦB =

∫
SΓ

B · dSΓ , (2.4)

where we denoted as B the magnetic field.

The law expresses the electromotive force (εf ) induced on Γ as a function of the

rate of change of the magnetic flux through SΓ:

εf = − d

dt
ΦB . (2.5)

Since the Electromotive Force (EMF) can be defined as the circular integral of the

electric field along Γ:

εf =

∮
Γ
E · dl , (2.6)

through 2.4 and 2.6, it is possible to recast 2.5 in the following integral form:

∮
Γ
E · dl = − d

dt

∫
SΓ

B · dSΓ . (2.7)

The differential form of the Faraday’s law is expressed by the following PDE:

∇× E = −∂B

∂t
, (2.8)

which states that the curl of E, evaluated in a generic point, is equal to the time

derivative of B evaluated in the same point, with opposite sign.
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2.1.1.3 The Gauss’s law for the magnetic field

The Gauss’s law for the magnetic field states that the flux of a magnetic field B

through a closed surface S is always equal to zero:

∮
S
B · dS = 0 . (2.9)

The integral relation 2.9 has the following differential expression:

∇ ·B = 0 . (2.10)

The null divergence condition (2.10) for the magnetic field, implies that B is an

incompressible (solenoidal) vector field. Condition (2.10) rules out the existence of

magnetic monopoles.

2.1.1.4 The Ampere-Maxwell law

The Ampere-Maxwell law represents the extension of the Ampere’s law to regimes

characterized by non-stationary currents (∂ρe/∂t �= 0). Let us consider, in the

vacuum space, a loop wire γ and an arbitrary surface Sγ having γ as a boundary.

According to the Ampere’s law, the circular integral of the magnetic field B

along γ is given by the product of the vacuum permeability (μ0) to the current i

enclosed by the loop wire γ:

∮
γ
B · dl = μ0i = μ0

∫
Sγ

j · dS , (2.11)

where current i is defined as the flux of the current density j through Sγ .

Equation 2.11 can be expressed in the differential form as follows:

∇×B = μ0j . (2.12)

The Ampere law, as expressed in 2.11 and 2.12, is in agreement with the charge

conservation principle only in the case of static conditions. If, in fact, we apply the

divergence operator to both sides of (2.12), it results:

∇ · ∇ ×B = μ0∇ · j , (2.13)

where the left-hand side term is always equal to zero (∇·∇×B ≡ 0) but, in general,

the right-hand side is not.

8
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The charge continuity equation, in fact, states that:

∇ · j = −∂ρe
∂t

, (2.14)

from which results that j is solenoidal (i.e., ∇· j = 0) only in static conditions (i.e.,

ρe = const.).

If we express - through the Gauss’s law (2.2) - the charge density ρe as a function

of the electric field, it results that:

∂ρe
∂t

= ε0
∂

∂t
∇ · E = ε0∇ · ∂E

∂t
. (2.15)

By substituting 2.15 in 2.12, we obtain:

∇ ·
(
j + ε0

∂E

∂t

)
= 0 , (2.16)

which introduces a new charge density vector jtot = j + ε0
∂E
∂t whose divergence is

always equal to zero (i.e., jtot is solenoidal) and, therefore, can be introduced in

(2.12) in order to extend its validity to the non-stationary case.

The flux of vector jtot through Sγ gives a current that consists in two terms:

itot =

∫
Sγ

jtot · dS =

∫
Sγ

(
j + ε0

∂E

∂t

)
· dS = i+ is , (2.17)

where is denotes the displacement current.

By considering jtot, in place of j, in equation 2.12, the differential form of the

Ampere-Maxwell law in the vacuum space can be written as follows:

∇×B = μ0

(
j + ε0

∂E

∂t

)
. (2.18)

2.1.2 Polarization density vector

Differently from the case of conductors, dielectrics present no loosely bound, or free,

electrons that may drift through the material. Therefore, an externally applied

electric field produces practically no current flows within the material. However,

other interactions with the atomic structure occurs, generating dipole moments.

With reference to Fig. 2.1-a, let us consider a neutral system of two point

charges (±qe) immersed in an electric field (E). Under the effect of the coulombian

force exerted by E, charges tends to separate, reaching an equilibrium configuration

characterized by a relative distance d. The dipole moment (po) associated to the

9
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system in this new equilibrium configuration can be evaluated by the following

expression:

po = qed , (2.19)

where vector d represents the position of the positive charge with respect to the

negative one.

Figure 2.1: Dipole moment po due to the applied electric field E. a) case of a two

point charge system; b) effect of E on an atomic structure.

The concept of dipole moment, introduced for the case of two point charges, can

be extended to the atomic structure: with reference to Fig. 2.1-b, under the effect

of E the deformation of the electron cloud around the nucleus results in a relative

distance d between the barycenters of negative and positive charges.

The reasoning is similar for the molecular structure of a generic dielectric mate-

rial. A single molecule, in fact, can be considered as a system defined by a globally

neutral spatial distribution of charges. If we denote by qt the total charge of such a

system, it must result:

qt =

∫
ρe(x, y, z) dV ol =

∫
ρ+e dV ol +

∫
ρ−e dV ol = qe + (−qe) = 0 . (2.20)

Molecules can be grouped in two categories: non-polar and polar molecules. The

former present a symmetric distribution of positive and negative charges, resulting

in a null dipole moment; the latter are characterized by a non-symmetric structure

that produces an inherent non-zero dipole moment.

10
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Therefore, two different polarization mechanisms can be distinguished for a di-

electric material:

• deformation polarization: it occurs when the electric field E acts on a non-

polar molecule. In this case, the positive charges of the molecule tends to move

in the same direction of the electric field, while negative charge move in the

opposite direction. This results in a deformed charge distribution producing

the separation of positive and negative charge barycenters.

• orientation polarization: it occurs when the electric field E acts on a molecule

presenting an inherent dipole moment. In this case the molecule is subjected

to a torque that aims at aligning its dipole moment according to E. It is

worth to highlight that in a specimen of matter consisting in polar molecules,

single dipole moments are randomly oriented unless an external electric field

is applied.

Regardless of the mechanism involved in the polarization process, by denoting

as db the distance separating the barycenters of positive and negative ions of a single

molecule under the effect of E, the relative dipole moment can be evaluated as:

1 p̄ = qed̄b . (2.21)

The polarization density vector P takes into account this phenomenon by aver-

aging it on the volume of the material:

P = Np , (2.22)

where N is the number of molecules per unit volume.

With reference to normal (19) and isotropic dielectric material, fields P and E

are in the following relationship:

P = ε0(εr − 1)E = ε0χE , (2.23)

where constants εr and χ represent the relative permittivity and the o electric sus-

ceptibility, respectively. Relation 2.23 describes the dependence of the polarization

1Note that expression 2.21 is no more valid for distributions resulting in a global charge different

from zero (19).
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density vector on the electric field for isotropic dielectrics. The following matrix

equation stands for anisotropic dielectric materials:

⎡⎣Px

Py

Pz

⎤⎦ = ε0

⎡⎣χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

⎤⎦⎡⎣Ex

Ey

Ez

⎤⎦ , (2.24)

which clarifies that χ is no more a scalar quantity but a second order tensor.

Since linear modeling is the primary focus of this chapter, the case of ferroelectric

materials, which present a complex nonlinear relationship between E and P , is not

addressed here.

2.1.3 Polarization charges

Polarization P induces charge distributions on the surface of a dielectric material

characterized by a density σeb defined, in any point, as:

σeb = P · n , (2.25)

where n is the unit vector normal to the surface in the considered point.

In case of non-uniform polarization, a charge distribution in the volume of the

material also appears, which is characterized by a density ρeb :

ρeb = −∇ · P . (2.26)

From 2.26 it can be inferred that volumetric charge density ρeb resulting for the

case of uniform polarization is equal to zero. Therefore, if ∇ · P = 0, polarization

charges are distributed only on the surface of the dielectric material. Charges rel-

ative to distributions 2.25 and 2.26 are referred to as bonded charges, in contrast

with free charges present in conductors.

2.1.4 Electric displacement vector

The electric displacement (or electric induction) vector is defined as follows:

D = ε0E + P . (2.27)

Similarly to what has been reported for the polarization vector in the previous

subsection, expressions ofD for the case of linear, isotropic and anisotropic dielectric

material are hereafter reported:
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• isotropic dielectric material : by substituting 2.23 in 2.27, it results

D = ε0E + ε0χE = ε0(1 + χ)E = ε0εrE = εE , (2.28)

where it has been denoted by ε = ε0εr the absolute dielectric constant of the

considered material.

• anisotropic dielectric: by considering 2.24 it results

⎡⎣Dx

Dy

Dz

⎤⎦ = ε0

⎡⎣1 + χ11 χ12 χ13

χ21 1 + χ22 χ23

χ31 χ32 1 + χ33

⎤⎦⎡⎣Ex

Ey

Ez

⎤⎦ . (2.29)

2.1.5 Gauss’s law for a dielectric medium

The Gauss’s law, which has been previously introduced for the vacuum space, can

be extended to the case of dielectric medium by considering both free charges (qe)

and bonded charges (qeb) as sources for the total electric field E:

∮
S
E · dS =

qe + qeb
ε0

. (2.30)

Equation 2.30 can be expressed, in differential form, as follows:

∇ · E =
ρe + ρeb

ε0
. (2.31)

By substituting 2.26 in 2.31, it results:

ε0∇ · E = ρe −∇ · P ⇒ ∇ · (ε0E + P ) = ρe , (2.32)

which represents the differential form of the Gauss’s law in presence of dielectric

medium:

∇ ·D = ρe . (2.33)

The integral form of 2.33 is given by the following:

∮
S
D · dS = qe . (2.34)

From equation 2.34 it can be inferred that the flux of vector D through the

arbitrary closed surface S is only function of the free charge enclosed by the surface

and do not depends on bonded charges qeb .
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2.1.6 Magnetic polarization vector

A qualitative interpretation of physical phenomena related to the magnetization of

matter is provided by Bohr’s atomic model. According to this simplified model,

electrons travel around the nucleus in circular orbits. These orbits can be assumed

as infinitesimal loop wires in which a current ie flows:

ie =
dqe
dt

= −eω

2π
, (2.35)

where e is the electron charge and ω is the electron angular velocity.

Through the Ampere’s equivalence principle (19) an electron circular orbits can

be assumed as a magnetic dipole characterized by a magnetic moment equal to:

dm = iedS , (2.36)

where dS is the normal vector to the loop wire planar surface, whose direction

depends on ie (through the right-hand rule).

Generally, the overall effect of the electrons orbit is such that a null magnetic

dipole is observed. When an external magnetic field is applied, perturbations in

the electron motion occur, determining a magnetic moment for the atom, which

counteract to the external perturbation. The process is similar to the deformation

polarization for dielectrics1. Concluding, atoms or molecules subjected to a mag-

netic field B react by assuming a magnetic moment m oriented accordingly with

B. Similarly to the case of dielectric polarization, the magnetization vector can be

introduced as:

M = Nm , (2.37)

where N represents the number of molecules per unit volume.

2.1.7 Magnetization currents

The following current densities can be associated to the magnetic dipole moment

density M :

jmsup
= M × n , (2.38)

1Asymmetries in the molecular structure of certain materials can result in an inherit magnetic

moment. In these cases, the application of an external magnetic field produces a partial orientation

of magnetic dipoles, according to the external magnetic field.
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jmvol
= ∇×M . (2.39)

Equation (2.38) refers to a surface current density (n represents the outward point-

ing unit normal vector with respect to the specimen surface). Current density

defined by (2.39) refers to currents located in the volume of the considered mate-

rial.

Magnetization currents allow for considering the magnetic field generated by

the magnetized material as the field produced by a surface current distribution

with density jmsup
and a volumetric current distribution with density jmvol

.

2.1.8 Magnetic field strength

According to reasonings similar to the ones leading to the introduction of the electric

displacement vector D, the following auxiliary vector field can be introduced for

describing magnetization phenomena:

H =
B

μ0
−M . (2.40)

For an isotropic, homogeneous, linear material the relationship between M and H

is given by the following:

M = χmH , (2.41)

where the magnetic susceptibility (χm) is a constant. With reference to materials

for which (2.41) is true, the following linear relationship between B and H can be

derived from (2.40):

B = μ0

(
H +M

)
= μ0 (1 + χm)H = μ0μrH = μH , (2.42)

where μr and μ are the material relative magnetic permittivity and magnetic per-

mittivity, respectively.

As previously highlighted for dielectrics, parameter μ is a scalar quantity for

isotropic materials, otherwise it is defined as a second order tensor1.

1A discussion on ferromagnetics, which are materials characterized by a nonlinear, hysteretic

B-H characteristics, is out of the scope of this thesis.

15



2. MODELING PIEZOELECTRIC SOLIDS: GOVERNING EQUATIONS
AND THEORETICAL ASPECTS

2.1.9 Generalized Ampere-Maxwell law

It is now possible to provide a formulation of the Ampere-Maxwell theorem that

accounts for all possible sources of magnetic effects. Three different kind of sources

are involved:

• conduction currents, distributed with density j;

• magnetization currents, distributed with density jmvol
;

• polarization currents, distributed with density jP = ∂P
∂t ,

therefore, the total charge density jtot can be written as follows:

jtot = j + jmvol
+ jP = j +∇×M +

∂P

∂t
. (2.43)

According to the charge continuity equation, it must be:

∇ · jtot +
∂ρtot
∂t

= 0 , (2.44)

where the total charge density ρtot = ρe + ρeb consists of a term related to the free

charge qe and a term related to the polarization charge qeb . Equation (2.44) can be

recast as follows:

∇ ·
(
j +∇×M +

∂P

∂t

)
+

∂ (ρe + ρeb)

∂t
= 0 , (2.45)

By substituting (2.31) in (2.45), it results:

∇ ·
(
j +∇×M +

∂

∂t

(
ε0E + P

))
= 0 . (2.46)

The argument of the divergence operator in (2.46) is a solenoidal current density j
′

that, by taking into account (2.27), is defined by:

j
′
= j +∇×M + jD , (2.47)

where quantity jD denotes the the displacement current density:

jD =
∂D

∂t
. (2.48)
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By rewriting the Ampere-Maxwell law (2.12) considering current density j
′
, it

results that:

∇×
(
B

μ0
−M

)
= j +

∂D

∂t
, (2.49)

which, taking into account (2.40), provides the generalized Ampere-Maxwell theo-

rem:

∇×H = j +
∂D

∂t
. (2.50)

2.1.10 Formulation of the electrostatic problem

In previous subsections we reported the fundamental law of electromagnetism, which

allows for describing electromagnetic phenomena in the most general conditions.

From an engineering point of view, it is useful to distinguish two main domains of

interest (20):

• high frequency domain, it involves the study of electromagnetic radiations.

The high rate of change characterizing these phenomena makes particularly

relevant the contribution due to the displacement currents, which cannot be

neglected;

• low frequency domain, it comprises all applications for which the contribution

of displacement currents can be neglected.

For the low frequency domain (jD ≈ 0), Maxwell equations can be recast, along

with the definition of auxiliary vectors D and H, as follows:

∇ ·D = ρ ,

∇× E = −∂B

∂t
,

∇ ·B = 0 ,

∇×H = j ,

D = ε0E + P ,

B = μ0H +M .

(2.51)

17



2. MODELING PIEZOELECTRIC SOLIDS: GOVERNING EQUATIONS
AND THEORETICAL ASPECTS

Moreover, in quasi-static conditions can be further simplified and subdivided

into two independent set of equations, describing separately electrostatic and mag-

netostatic phenomena. For the electrostatic domain it results:

∇ ·D = ρ ,

∇× E = 0 ,

D = ε0E + P .

(2.52)

The second of (2.52), states the conservative nature of the electric filed E. As a

consequence, the electric field can be expressed as the gradient of a scalar potential

ϕ:

E = −∇ϕ . (2.53)

The following boundary conditions must be reported for E and D, which must

be considered on separation surfaces between different materials (19):

(
D2 −D1

) · n = σe ,(
E2 − E1

)× n = 0 ,
(2.54)

where n is the unit normal vector of the separation surface, pointing from medium

1 to medium 2.

2.2 The mechanical problem

2.2.1 Navier’s equations

Let us consider a continuum body having volume V ol and surface S, which is

subjected to volume forces F V and surface forces pm.

Assuming the body in an equilibrium condition, following equations must be

satisfied:

∫
V ol

F V dV ol +

∫
S
pmdS = 0 , (2.55)

∫
V ol

r × F V dV ol +

∫
S
r × pmdS = 0 , (2.56)

where r represent the position vector of the infinitesimal volume dV ol.

Let us now focus on an infinitesimal cubic volume of the considered body, having

sides parallel to the axes of the cartesian reference system.
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In order to be in equilibrium, this infinitesimal portion of the material must be

under the effect of forces preventing translational and rotational motions: tension

vector tx acts on the face of the cube that is normal to X axis and, in a similar way,

vectors ty and tz act on faces normal to Y axis and Z axis respectively. Therefore

the tensional state in a specific spatial point P is given by:

tx = σxxı̂+ σxy ĵ+ σxzk̂ ,

ty = σyxı̂+ σyy ĵ+ σyzk̂ ,

tz = σzxı̂+ σzy ĵ+ σzzk̂ .

(2.57)

Let us consider a tetrahedral volume surrounding point P having tree sides that

are parallel to axes X, Y and Z and only one oblique face with a normal versor

defined by:

nα = nxı̂+ ny ĵ+ nzk̂ . (2.58)

This infinitesimal tetrahedral volume is under the effect of tensions −tx, −ty,

−tz and −tα, therefore, by assuming as negligible the effect of volume forces, the

translational equilibrium states that:

dΓαtα − dΓxtx − dΓyty − dΓztz = 0 , (2.59)

where dΓα, dΓx, dΓy and dΓz are the areas related to faces normal to the nα vector

and the X, Y , Z axes respectively. By considering the following geometric relations:

dΓx = nxdΓα , dΓy = nydΓα , dΓz = nzdΓα , (2.60)

equation 2.59 can be recast as:

tα = txnx + tyny + tznz . (2.61)

By introducing 2.57 in 2.61, it results:

tα =
(
σxxnx + σyxny + σzxnz

)
ı̂+

(
σxynx + σyyny + σzynz

)
ĵ

+
(
σxznx + σyzny + σzznz

)
k̂.

(2.62)

If it is denoted by [σ ] the Cauchy tensor (21):

[σ ] =

⎡⎢⎢⎢⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎥⎥⎥⎦ , (2.63)
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equation 2.62 can be rewritten, in compact form, as follows:

tα = [σ ]T nα . (2.64)

From equation (2.64) it can be inferred how the Cauchy tensor is a transformation

that applied to the generic unit vector nα, by using just the components of vectors

tx, ty and tz, gives as a result the vector tα.

Let us now consider an arbitrary portion V ol′ of the volume V ol, which has a

closed, regular surface Ω as a boundary. The translational and rotational equilib-

rium relations on this new domain can be written as follows:

∫
V ol′

F V dV ol +

∫
Ω
[σ ]T ndΩ = 0 , (2.65)

∫
V ol′

r × F V dV ol +

∫
Ω
r × [

σ
]T

ndΩ = 0 , (2.66)

where n represents the unit vector normal to the surface Ω. Vectorial equation

(2.65) is equivalent to the following tree scalar relations:

∫
V ol′

FVxdV ol +

∫
Ω
(σxxnx + σyxny + σzxnz) dΩ = 0 ,∫

V ol′
FVydV ol +

∫
Ω
(σxynx + σyyny + σzynz) dΩ = 0 ,∫

V ol′
FVzdV ol +

∫
Ω
(σxznx + σyzny + σzznz) dΩ = 0 .

(2.67)

It is possible to convert surface integrals in (2.67) into volume integrals by

applying the divergence theorem. Therefore, it results what follows:

∫
V ol′

(
FVx +

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

)
dV ol = 0,∫

V ol′

(
FVy +

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

)
dV ol = 0,∫

V ol′

(
FVz +

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
dV ol = 0.

(2.68)

Since volume V ol′ has been arbitrarily chosen, arguments of integrals reported

in equations (2.68) must be equal to zero. Therefore, the following equilibrium
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equations can be obtained:

FVx +
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

= 0 ,

FVy +
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

= 0 ,

FVz +
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

= 0 .

(2.69)

From rotational equilibrium equation (2.66) and (2.69) the symmetry of the

Cauchy tensor can be proved by achieving the following equalities:

σxy = σyx ,

σxz = σzx ,

σyz = σzy .

(2.70)

Symmetry properties of tensor [σ ] allows for representing the tensional state of

the considered material sample through a vector of six components:

[σ ] =

⎡⎢⎢⎢⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤⎥⎥⎥⎦ , (2.71)

which, according to the Vogit’s notation, is equivalent to the following vector:

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σxz

σxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.72)

Equilibrium equations (2.69) can be recast in a compact form (20):

[ ∂ ]T σ + F V = 0 , (2.73)
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where the differential operator [ ∂ ] has been introduced:

[ ∂ ]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.74)

Navier’s equations extend the static equilibrium condition expressed by (2.73)

to the dynamic case, through the inclusion of inertial effects:

[ ∂ ]T σ + F V = ρa , (2.75)

where ρ is the density of the considered body and a denotes its acceleration.

2.2.2 Strain-displacement relations

Let us denote by B a continuum, characterized by an initial undeformed configura-

tion C0. With reference to C0, the position in space of each point of B is represented

through a vector r, defined in a cartesian reference system O;X,Y, Z.

If a deformation of B occurs, transforming the body from C0 to a new de-

formed configuration C , each point undergo to a displacement η that is given by

the following expression:

η = u(x, y, z) ı̂+ v(x, y, z) ĵ+ w(x, y, z) k̂ . (2.76)

It is assumed that functions u, v and w - defining the displacement vector

components - along with their first order derivatives are continuous and sufficiently

regular in the considered domain. This amounts to assuming that transformation

C0C do not involve compenetration or fracture phenomena.

Let denote by A and B two generic points of B. Displacements they undergo

due to C0C transformation are given by:

ηA = uA(x, y, z) ı̂+ vA(x, y, z) ĵ+ wA(x, y, z) k̂ ,

ηB = uB(x, y, z) ı̂+ vB(x, y, z) ĵ+ wB(x, y, z) k̂ .
(2.77)

Therefore, if we denote by A′ and B′ the final positions of the considered points,

it results that:

rA′ = rA + ηA ,

rB′ = rB + ηB .
(2.78)

22



2.2 The mechanical problem

The relative distance of the two points in the deformed configuration is than

given by:

rB′ − rA′ = (rB − rA) + (ηB − ηA) . (2.79)

By assuming points A and B infinitesimally close, in case of infinitesimal dis-

placements, Equation (2.79) assumes the following form:

dr′ = dr + dη , (2.80)

resulting in the following scalar equations:

dx′ = dx+ du ,

dy′ = dy + dv ,

dz′ = dz + dw .

(2.81)

Infinitesimal displacement components can be written has follows:

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz ,

dv =
∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz ,

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz .

(2.82)

By substituting (2.82) in (2.81), the following expressions can be obtained:

dx′ =
(
1 +

∂u

∂x

)
dx+

∂u

∂y
dy +

∂u

∂z
dz ,

dy′ =
∂v

∂x
dx+

(
1 +

∂v

∂y

)
dy +

∂v

∂z
dz ,

dz′ =
∂w

∂x
dx+

∂w

∂y
dy +

(
1 +

∂w

∂z

)
dz ,

(2.83)

which lead to the definition of the deformation gradient as the following matrix:

[Fd ] = [ I ] + [Hη ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
1 +

∂u

∂x

)
∂u

∂y

∂u

∂z

∂v

∂x

(
1 +

∂v

∂y

)
∂v

∂z

∂w

∂x

∂w

∂y

(
1 +

∂w

∂z

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.84)

Matrix
[
Hη

]
in (2.84) is called displacement gradient.

23



2. MODELING PIEZOELECTRIC SOLIDS: GOVERNING EQUATIONS
AND THEORETICAL ASPECTS

Through the deformation gradient, equations (2.83) can be recast in the follow-

ing compact notation:

dr′ = [Fd ] dr . (2.85)

If vector η describes, for each point of the considered body, the transformation

from the initial configuration C0 to the final one C , informations about the deforma-

tive state of the body can be also deduced from the change in the relative distance

between points A and B before and after the transformation.

In C0 the initial infinitesimal distance between A and B can be written as follows:

dl20 = (xB − xA)
2 + (yB − yA)

2 + (zB − zA)
2 = dr

T
dr , (2.86)

whereas, in C it results:

dl2 =
(
x′B − x′A

)2
+

(
y′B − y′A

)2
+

(
z′B − z′A

)2
= dr′Tdr′ . (2.87)

By considering (2.85), the change in the distance of the two considered point

can be expressed as follows:

dl2 − dl20 = dr′Tdr′ − dr
T
dr

=
([

Fd

]
dr

)T [
Fd

]
dr − dr

T
dr

= [dr]T F
T
d [Fd ] dr − dr

T
dr

= dr
T
(
[Fd ]

T [Fd ]− [ I ]
)
dr

= 2dr
T
[E ] dr ,

(2.88)

where tensor [E ] defines the Green-Lagrange deformation tensor (20):

[E ] =
1

2

(
[Fd ]

T [Fd ]− [ I ]
)

(2.89)

By considering (2.84), the Green-Lagrange tensor can be rewritten as follows:

[E ] =
1

2

(
([ I ] + [Hη ])

T ([ I ] + [Hη ])− [ I ]
)

=
1

2

(
[Hη ] + [Hη ]

T
)
+

1

2
[Hη ]

T [Hη ] .

(2.90)

With reference to the right-hand side of equation (2.90), it can be seen that

tensor [E ] consists in two terms: the first one accounts for small deformations

(case 1); the second one accounts for large deformations (case 2).
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Now, it is observed that for case 1 a further simplification is possible, leading to

the definition of the small strain tensor [ ε ]:

[E ] ≈ 1

2

(
[Hη ] +

(
[Hη ]

T
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

1

2

(
∂v

∂x
+

∂u

∂y

)
1

2

(
∂w

∂x
+

∂u

∂z

)
1

2

(
∂u

∂y
+

∂v

∂x

)
∂v

∂y

1

2

(
∂w

∂y
+

∂v

∂z

)
1

2

(
∂u

∂z
+

∂w

∂x

)
1

2

(
∂v

∂z
+

∂w

∂y

)
∂w

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [ ε ] .

(2.91)

By introducing the Vogit’s notation and employing symmetry properties, the

deformation tensor [ ε ]:

[ ε ] =

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

1

2
εxy

1

2
εxz

1

2
εyx εyy

1

2
εyz

1

2
εzx

1

2
εzy εzz

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
ε11

1

2
ε12

1

2
ε13

1

2
ε21 ε22

1

2
ε23

1

2
ε31

1

2
ε32 ε33

⎤⎥⎥⎥⎥⎥⎥⎦ (2.92)

can be expressed in a vectorial form:

ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εxz

εxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε13

ε12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.93)

The relationship between linear strains and relative displacements can be derived

from (2.91):

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
,

εyz =
∂w

∂y
+
∂v

∂z
, εxz =

∂w

∂x
+

∂u

∂z
, εxy =

∂v

∂x
+

∂u

∂y
.

(2.94)

which, in a compact form can be recast as follows:

ε = [ ∂ ] η . (2.95)
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2.3 Thermodynamic framework

2.3.1 Internal energy

The first and second laws of thermodynamics for closed systems are summarized in

the following:

dU = δW + δQ , (2.96)

dS =
δQ

T
+ δSi , δSi ≥ 0 . (2.97)

Quantities U and S represent system internal energy and entropy, respectively,

and are state functions (i.e., they depend only on the current system state, and

not on previous history). This is denoted by the fact that their changes are exact

integrals, denoted as dU and dS. Quantities δW and δQ are incremental work

and heat exchanged between system and environment, with the convention that

they are positive when entering the system and negative when being extracted by

the system. Term δSi represents the incremental irreversible entropy production,

which is always nonnegative, and accounts for all dissipative phenomena occurring

in the system, i.e., friction or electrical resistances which convert work into heat in

an irreversible way. Macroscopic increment in work, heat, and irreversible entropy

production between two generic states x0 and x1 can be computed as follows:

W (x1)−W (x0) =

∫ x1

x0

δW ,

Q(x1)−Q(x0) =

∫ x1

x0

δQ ,

Si(x1)− Si(x0) =

∫ x1

x0

δSi ,

(2.98)

for any x0(t0) and x1(t1) such that t1 ≥ t0. Differently from U and S, W , Q, and

Si are not state functions, and depend on the particular trajectory of the system

between x0 and x1. Finally, T is the system temperature, which is always a positive

number.

By substituting (2.97) in (2.96), the following expression is obtained:

dU = δW + TdS − TδSi ≤ δW + TdS , δSi ≥ 0 , (2.99)
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and, for the ideal case in which no dissipations occur (δSi = 0):

dU = δW + TdS , δSi = 0 . (2.100)

Based in the nature of the work done on the system, general equations (2.99)

and (2.100) can be better characterized. As an example, for the case of an electro-

mechanical system two work contributions must be accounted: the mechanical work

done by a force F causing a change in deformation δη, and the electrostatic work

done by voltage v causing a change in the charge qe. Therefore:

δW = F
T
δη + vδqe . (2.101)

Generally, the incremental work can be written as follows:

δW = eT δq , (2.102)

where e and q represent vectors of effort and generalized displacement variables,

respectively. Efforts are normally intensive variables (i.e., they do not depend on

the system size), whereas generalized displacements are extensive variables (i.e.,

they increase as the system size increases).

By replacing general expression (2.102) in (2.99) and (2.100), it is possible to

recast the incremental internal energy as follows:

dU = eT δq + TdS − TδSi ≤ eT δq + TdS , δSi ≥ 0 , (2.103)

dU = eT δq + TdS , δSi = 0 , (2.104)

for the irreversible and reversible case, respectively.

As a state function, U can be written as a function of state variables. With

reference to the right-hand sides of both (2.103) and (2.104), these state variables are

the ones appearing in the differentials terms. In order to highlight this dependence,

we can rewrite U as follows:

U = U (q, S) . (2.105)

The differential of (2.105) is given by the following expression:

dU (q, S) =

(
∂U

∂q

)T

δq +
∂U

∂S
dS . (2.106)
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By substituting (2.106) in (2.103) and (2.104) and collecting terms relative to

the same state variable differential, the following relations can be obtained:

(
∂U

∂q
− e

)T

δq +

(
∂U

∂S
− T

)
dS = −TδSi ≤ 0 , δSi ≥ 0 , (2.107)

(
∂U

∂q
− e

)T

δq +

(
∂U

∂S
− T

)
dS = 0 , δSi = 0 . (2.108)

Once a function U(q, S) has been chosen, it is possible to compute e and T as

a function of q and S in such a way that relationships (2.107) and (2.108) hold for

the irreversible and reversible cases, respectively. For the reversible case, a common

choice consists of choosing e and T so that terms multiplying the differentials are

canceled. Therefore, by choosing the following relations:{
e = ∂U(q, S)

∂q

T = ∂U(q, S)
∂S

, (2.109)

equation (2.108) is immediately satisfied. For the irreversible case (2.107), the left-

hand side must be a non-positive, rather than zero. To let this be consistent, a

typical choice is the following:

{
e = ∂U(q, S)

∂qj
+ ζ

T = ∂U(q, S)
∂S

, (2.110)

for some functions ζ = (ζ1, ..., ζN )T to be defined. By replacing (2.110) in (2.107),

it results:

ζ
T
δq = TδSi ≥ 0 . (2.111)

Functions ζ are then chosen in such a way the left-hand side of (2.111) al-

ways holds. A conventional choice, although not general, consists in selecting these

functions as damping terms depending on the time derivatives of generalized dis-

placements, as follows:

ζ = [ b ]q̇ , (2.112)

where it as been denoted as [ b ] a diagonal square matrix of positive constant co-

efficients. This is motivated by the fact that ζ describes additional friction terms,

which normally are proportional to time derivatives of generalized displacements
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(e.g., generalized displacement is position, damping is proportional to velocity; gen-

eralized displacement is charge, damping is proportional to current). Choice (2.112),

results in the following statement:

(
[ b ]q̇

)T
δq = TδSi ≥ 0 . (2.113)

Finally, by dividing both terms of (2.113) by dt, it results:

(
[ b ]q̇

)T
q̇ = q̇

T
[ b ]T q̇ = T Ṡi ≥ 0 , (2.114)

which always holds, since q̇
T
[ b ]T q̇ is a quadratic form. This is in agreement

with physics, in which irreversible entropy production, related to dissipation, is

often proportional to the square of derivatives of generalized displacements (e.g.,

mechanical viscous dissipations are proportional to the square of velocity, electrical

Joule dissipations are proportional to the square of the current). Finally, note that

at equilibrium conditions all time derivatives are zero, including also q̇ . There-

fore, at equilibrium, the irreversible model (2.110)coincides with the reversible one

(2.109). In general, every choice of functions ζ must satisfy the fact that ζ = 0 at

equilibrium. This implies that no irreversible entropy is produced at equilibrium,

thus no dissipations occurs.

2.3.2 Helmholtz free energy

One limitation of the above theory is that it relies on a thermodynamic potential

U that is expressed as a function of S. This might be a limitation, since S is not a

measurable quantity. The employed derivative rule would be way more effective on

a different energy function, depending on T - which is easily measurable, instead of

S. In order to address this issue, the following thermodynamical potential, denoted

as Helmholtz free energy, has been introduced:

Ψ = U − TS . (2.115)

Mathematically, (2.115) is called a Legendre transformation. Note that Ψ is a

state function, since it is obtained as a combination of state functions. By differen-

tiating (2.115), we obtain:

Ψ = dU − SdT − TdS . (2.116)
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By substituting (2.116) in (2.99) and (2.100), it results:

dΨ = eT δq − SdT − TδSi ≤ eT δq − SdT , δSi ≥ 0 , (2.117)

dΨ = eT δq − SdT , δSi = 0 . (2.118)

Note that, if we work with Ψ rather than U , the term proportional to dS has

now become proportional to dT . This fact suggest that the Helmholtz free energy

can be chosen as a function of q and T :

Ψ = Ψ (q, T ) . (2.119)

As a consequence:

dΨ =

(
∂Ψ

∂q

)T

δq +
∂Ψ

∂T
dT . (2.120)

By replacing (2.120) in (2.117) and (2.118), it can be obtained:

(
∂Ψ

∂q
− e

)T

δq +

(
∂Ψ

∂T
+ S

)
dT = −TδSi ≤ 0 , δSi ≥ 0 , (2.121)

(
∂Ψ

∂q
− e

)T

δq +

(
∂Ψ

∂T
+ S

)
dT = 0 , δSi = 0 . (2.122)

Therefore, it results that a possible choice to let (2.122) hold is:{
e = ∂Ψ(q, T )

∂q

S = −∂Ψ(q, T )
∂T

, (2.123)

whereas for the irreversible case (2.121) it can be chosen what follows:{
e = ∂Ψ(q, T )

∂q + ζ

S = −∂Ψ(q, T )
∂T

, (2.124)

provided that ζ are chosen so that the following inequality holds:

ζ
T
δq = TδSi ≥ 0 . (2.125)

It is worth to stress that the major advantages of (2.123)-(2.124) is that Ψ de-

pends on q and T , which are all measurable variables, therefore it can be constructed

from experiments. Once Ψ is known, S and e can be computed, and eventually U

can be reconstructed by inverting equation (2.115).
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It must be noted that equations (2.117)-(2.118)become particularly relevant for

isothermal processes, in which T is constant. This case commonly occurs in elec-

tromechanical systems in which thermal dynamics can be neglected. Under this

assumption, dT = 0, therefore (2.117)-(2.118) can be rewritten as:

dΨ = eT δq − TδSi ≤ eT δq , δSi ≥ 0 , (2.126)

dΨ = eT δq , δSi = 0 . (2.127)

Equations (2.126)-(2.127) have a very interesting interpretation. In particular,

in the reversible case (2.127), it can be seen that the change in Helmholtz free energy

equals the work done on the system. As a consequence, all the work is stored as

Helmholtz free energy. This means that the maximum amount of work that can

be extracted from the system coincides exactly with the Helmholtz free energy

previously stored. In the irreversible case (2.126), on the other hand, the energy is

non-larger than the work done on the system. This means that part of the work

performed on the system is stored as Helmholtz free-energy, and part is dissipated

through heat, resulting in an irreversible entropy production. Therefore, in the

attempt to extract some work from the system, only part of it can be recovered as

a useful work, while some of it will be irreversibly lost due to friction phenomena.

The Helmholtz free energy represents then a means to quantify the useful energy in

a system, i.e., the maximum amount that can be extracted in the form of work, in

the isothermal case.

2.3.3 Gibbs free energy

By using a reasoning similar to the one which led to Helmholtz free energy density, it

is also possible to define other thermodynamic potentials via more involved Legendre

transformations. One example is the following one:

G = U − TS − eT q = Ψ− eT q , (2.128)

which is clearly a state function. The differential of the Gibbs free energy is given

by the following expression:

dG = dU − TdS − SdT − eTdq − qTde = dΨ− eTdq − qTde . (2.129)
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By replacing (2.129) in (2.103)-(2.104), it results:

dG = −qT δe− SdT − TδS ≤ −qT δe− SdT , δSi ≥ 0 , (2.130)

dG = −qT δe− SdT , δSi = 0 . (2.131)

Equations (2.130)-(2.131) suggest that G can be written as a function of e and

T , as follows:

G = G (e, T ) , (2.132)

Therefore:

dG =

(
∂G

∂e

)T

δe+
∂G

∂T
dT . (2.133)

By replacing (2.133) in (2.130)-(2.131), it results:

(
∂G

∂e
− q

)T

δe+

(
∂G

∂T
+ S

)
dT = −TδSi ≤ 0 , δSi ≥ 0 , (2.134)

(
∂G

∂e
− q

)T

δe+

(
∂G

∂T
+ S

)
dT = 0 , δSi = 0 . (2.135)

A possible choice to let (2.134) hold is:{
q = −∂G(e, T )

∂e

S = −∂G(e, T )
∂T

, (2.136)

whereas for (2.135) it is possible to choose:{
q = −∂G(e, T )

∂e − ζ

S = −∂G(e, T )
∂T

, (2.137)

provided that functions ζ are chosen in such a way that the following inequality

holds:

ζ
T
δe = TδSi ≥ 0 . (2.138)

Potential G appears as a convenient choice for the cases in which the energy

is more conveniently expressed as a function of efforts, rather than generalized

displacements. This might be the case, for instance, for an elastic energy expressed

as a function of a force rather than a deformation or an electrostatic energy expressed
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as a function of a voltage rather than a charge. Potential G appears as useful for

systems in which we can control the efforts and keep them constant, e.g., constant

force, constant voltage, etc. This is in general easier than keeping the generalized

displacements constant. In fact, in this case, it results de = 0. If, in addition, also

the temperature is kept as constant, dT = 0. This implies that (2.130)-(2.131) can

be written as follows:

dG = −TδSi ≤ 0 , δSi ≥ 0 , (2.139)

dG = 0 , δSi = 0 . (2.140)

Therefore, if the efforts and the temperature are constant, potential G decreases

for irreversible systems, and remains constant for reversible systems. In general,

since dSi is zero at equilibrium, G decreases until an equilibrium state is reached,

and then remains constant. Since in general it is easier to keep efforts constant

than generalized displacements, G appears as more suitable to study convergence

to equilibrium of systems with fixed boundary conditions, since in this case an

equilibrium state can be simply stated as a minimum of G.

2.3.4 From free energy to free energy density

Let now consider equation (2.127) - valid for isothermal and reversible systems -

and specialize it for an electro-mechanical system like the one depicted in Fig. 2.2.

System consists of a block of an electro-active material with initial geometry L1, L2,

L3. In order to simplify the discussion, we assume the elastic and electric behavior

of the system as unidirectional, in the range of small deformations. A vertical force

F = [0, 0, F3]
T acts on the system, as depicted in Fig. 2.2, producing a strain ε3

along the same direction. Moreover, it is assumed that the only non-null component

of the electric field in the space occupied by the material block is directed along axis

3 (E = [0, 0, E3]
T ). Voltage v is measured between the electrodes. A free charge qe

is distributed on the electrodes with density σe = D3.

With reference to the considered system, the Helmholtz free energy differential

can be written as follows:

dΨ = F3δl3 + vδqe . (2.141)
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Figure 2.2: Electromechanical system consisting of an active material with electrodes

applied. Initial block geometry is characterized by sides L1, L2, L3. Voltage v is

applied between he electrodes. Free charge qe is distributed on the electrodes, with

density σe = D3.

By dividing the Helmholtz free energy by the volume (V ol), it is possible to

obtain the Helmholtz free energy density ψ:

ψ =
Ψ

V ol
. (2.142)

Under the assumption of small deformations, by dividing both sides of (2.141)

by volume L1L2L3, and by defining the following quantities:

ε3 =
l3 − L3

L3
,

σ3 =
F3

L1L2
,

σe =
qe

L1L2
,

E3 =
v

L3
,

(2.143)

it is possible to write the differential of ψ as follows:

dψ = σ3δε3 + E3δσe . (2.144)

Therefore, if ψ is parametrized as a function of strain and charge density:

ψ = ψ (ε3, σe) , (2.145)
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by differentiating ψ it results:

dψ =
∂ψ

∂ε3
δε3 +

∂ψ

∂σe
δσe . (2.146)

By substituting (2.146) in (2.144), it resutls:

(
∂ψ

∂ε3
− σ3

)
δε3 +

(
∂ψ

∂σe
− E3

)
δσe = 0 . (2.147)

Therefore, mechanical stress and electric field can be evaluated as follows:

{
σ3 =

∂ψ
∂ε3

E3 =
∂ψ
∂σe

. (2.148)

Working with quantities normalized with respect to geometry, such as free energy

density, strain, stress, electrical displacement, and electric field is commonly done

when working with smart material applications. This requires that the Helmholtz

free energy density is explicitly reparametrized as a function of the normalized

intensive variables. The same reasoning can be applied to any thermodynamic

potential, depending on the most convenient choice of coordinates to describe a

system. Of course, the same holds true for any other thermodynamic potential,

which can be normalized with respect to volume to obtain the corresponding energy

density. The work and heat terms on the right-hand side of the equations are

normalized accordingly.

The generalization form of (2.144) to the non-isothermal, multi-directional case

assumes the following expression:

dψ = σT δε+ E
T
δD − sdT , (2.149)

where it as been employed the Vogit vectorial form for both stress and strain tensors

and s = S
V ol .

2.3.5 Electric enthalpy density

In previous subsections, a summary on thermodynamic state functions as been

reported, with the aim of presenting the general framework in which modeling

techniques for systems based on smart materials have been developed. We have

seen how constitutive relations can be derived starting from the choice of an op-

portunely parametrized thermodynamic potential, in case of both conservative and

non-conservative systems.
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In order to describe the thermo-electric evolution of a system based on piezoelec-

tric materials, a useful choice in terms of thermodynamic potential is represented

by the following state function density:

g′ = ψ − E
T
D . (2.150)

The differential of g′ can be evaluated as follows:

dg′ = dψ − E
T
δD −D

T
δE . (2.151)

By substituting (2.149) in (2.151), it results:

dg′ = σT δε−DδE − sdT , (2.152)

from which results that g′ has been parametrized with respect to strain, electric field

and temperature. Under the assumption of isothermal systems (dT = 0), equation

(2.152) assumes the following form:

dg′ = dh = σT δε−DδE , (2.153)

which defines the differential of another thermodynamic potential, known as electric

enthalpy density h:

h = u− E
T
D . (2.154)

In (2.154), quantity u denotes the internal energy density of the system.

Since h has been parametrized with respect to the stress tensor and the electric

field, it results that:

dh =

(
∂h

∂ε

)T

δε+

(
∂h

∂E

)T

δE , (2.155)

which, considering the Vogit vectorial form of the stress tensor, can be written in

the extended form as follows:

dh =
∂h

∂ε11
δε11 +

∂h

∂ε22
δε22 +

∂h

∂ε33
δε33

+
∂h

∂ε23
δε23 +

∂h

∂ε13
δε13 +

∂h

∂ε12
δε12

+
∂h

∂E1
δE1 +

∂h

∂E2
δE2 +

∂h

∂E3
δE3 .

(2.156)
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By comparing (2.155) with (2.153), it results that:

⎧⎪⎪⎨⎪⎪⎩
σij =

∂h

∂εij
,

Dr = − ∂h

∂Er
.

(2.157)

Equations (2.157) can be recast, in a more compact form, as follows:

⎧⎪⎨⎪⎩
σ =

∂h

∂ε
,

D = − ∂h

∂E
.

(2.158)

Equations (2.158) suggest for h the role of thermodynamic potential from which

obtain, through the derivative rule, the stress tensor and the electric displacement

vector.

2.4 Linear Piezoelasticity

2.4.1 Series development for the electric enthalpy density

In the previous subsection we introduced the electric enthalpy density function (h)

for an electromechanical system. Function h has been parametrized with reference

to the stress tensor (ε) and the electric field vector (E):

h = h (ε11, ε22, ε33, ε23, ε13, ε12, E1, E2, E3) . (2.159)

The Maclaurin series development of h about the origin, i.e. about the initial

undeformed configuration of the considered system, with null electric field:

ε0 = [0, 0, 0, 0, 0, 0]T ,

E0 = [0, 0, 0]T ,
(2.160)
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takes the form reported in the following:

h = h(0, 0) +
∂h

∂ε11

∣∣∣∣
(0,0)

ε11 +
∂h

∂ε22

∣∣∣∣
(0,0)

ε22 +
∂h

∂ε33

∣∣∣∣
(0,0)

ε33

+
∂h

∂ε23

∣∣∣∣
(0,0)

ε23 +
∂h

∂ε13

∣∣∣∣
(0,0)

ε13 +
∂h

∂ε12

∣∣∣∣
(0,0)

ε12

+
∂h

∂E1

∣∣∣∣
(0,0)

E1 +
∂h

∂E2

∣∣∣∣
(0,0)

E2 +
∂h

∂E3

∣∣∣∣
(0,0)

E3

+
1

2

(
∂h

∂ε11

∣∣∣∣
(0,0)

ε11 +
∂H

∂ε22

∣∣∣∣
(0,0)

ε22 +
∂H

∂ε33

∣∣∣∣
(0,0)

ε33

+
∂H

∂ε23

∣∣∣∣
(0,0)

ε23 +
∂H

∂ε13

∣∣∣∣
(0,0)

ε13 +
∂H

∂ε12

∣∣∣∣
(0,0)

ε12

+
∂H

∂E1

∣∣∣∣
(0,0)

E1 +
∂H

∂E2

∣∣∣∣
(0,0)

E2 +
∂H

∂E3

∣∣∣∣
(0,0)

E3

)(2)

+ . . .

, (2.161)

where the symbolic power represents the second order derivative operator. Under

the assumption of sufficiently small deformations and low electric field, it is possi-

ble to neglect terms of order higher than two in (2.161), without this resulting in

significant errors.

Since, as clarified in previous sections, components of both stress tensor and

electric field can be deduced by derivatives of h, we can safely assume a constant

null value for h in the origin. Therefore:

h (0, 0) = 0 . (2.162)

Moreover, first order terms in (2.161) represent stress tensor components and

electric displacement components, which can be considered equal to zero in the
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origin:

∂h

∂ε11

∣∣∣∣
(0,0)

= σm11(0, 0) = 0 ,

∂h

∂ε22

∣∣∣∣
(0,0)

= σm22(0, 0) = 0 ,

∂h

∂ε33

∣∣∣∣
(0,0)

= σm33(0, 0) = 0 ,

∂h

∂ε23

∣∣∣∣
(0,0)

= σm23(0, 0) = 0 ,

∂h

∂ε13

∣∣∣∣
(0,0)

= σm13(0, 0) = 0 ,

∂h

∂ε12

∣∣∣∣
(0,0)

= σm12(0, 0) = 0 ,

− ∂h

∂E1

∣∣∣∣
(0,0)

= D1(0, 0) = 0 ,

− ∂h

∂E2

∣∣∣∣
(0,0)

= D2(0, 0) = 0 ,

− ∂h

∂E3

∣∣∣∣
(0,0)

= D3(0, 0) = 0 .

(2.163)

By considering (2.162) and (2.163), ignoring terms of order higher than two and

developing the symbolic power, equation (2.161) reduces to:

h =
1

2

(
∂2h

∂ε211

∣∣∣∣
(0,0)

ε211 +
∂2h

∂ε222

∣∣∣∣
(0,0)

ε222 + · · ·+ ∂2h

∂E2
3

∣∣∣∣
(0,0)

E2
3

+ 2
∂2h

∂ε11∂ε22

∣∣∣∣
(0,0)

ε11ε22 + 2
∂2H

∂ε11∂ε33

∣∣∣∣
(0,0)

ε11ε33 + . . .

+ 2
∂2h

∂ε12∂E1

∣∣∣∣
(0,0)

ε12E1 + 2
∂2h

∂ε12∂E2

∣∣∣∣
(0,0)

ε12E2 + 2
∂2H

∂ε12∂E3

∣∣∣∣
(0,0)

ε12E3

+ 2
∂2H

∂E1∂E2

∣∣∣∣
(0,0)

E1E2 + 2
∂2H

∂E1∂E3

∣∣∣∣
(0,0)

E1E3 + 2
∂2h

∂E2∂E3

∣∣∣∣
(0,0)

E2E3

)
. (2.164)

Equation (2.164) consists of:

• six terms in the following form:

∂2h

∂Ei∂Ej

∣∣∣∣
(0,0)

EiEj . (2.165)
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Mixed partial derivatives in (2.165) are given by:

∂2h

∂Ei∂Ej
=

∂

∂Ei

(
∂h

∂Ej

)
= −∂Dj

∂Ei
= εij , (2.166)

where coefficients εij has the dimension of an electrical permittivity. They can

be collected in a tensor that, in compact notation1, can be written as follows:

[
ε
]
=

⎡⎢⎢⎢⎢⎢⎢⎣
h
(2)
,1 h

(2)
,1,2 h

(2)
,1,3

h
(2)
,2,1 h

(2)
,2 h

(2)
,2,3

h
(2)
,3,1 h

(2)
,3,2 h

(2)
,3

⎤⎥⎥⎥⎥⎥⎥⎦
(0,0)

. (2.168)

Equation (2.168) identifies the tensor of permittivity at constant strain. Since

for a generic function f , with second order partial derivatives continuous in a

point x0, the following statement is true:

∂2f

∂xi∂xj

∣∣∣∣
x0

=
∂2f

∂xj∂xi

∣∣∣∣
x0

, (2.169)

tensor
[
ε
]
results to be symmetric, therefore only six components are needed

to fully define it.

• eighteen terms in the form:

2
∂2h

∂εij∂Ek

∣∣∣∣
(0,0)

εijEk , (2.170)

where mixed derivative can be expressed as follows:

∂2h

∂εij∂Ek
=

∂

∂εij

(
∂h

∂Ek

)
= −∂Dk

∂εij
= −dkij . (2.171)

Coefficients dijk defines a (3× 6) tensor denoted as piezoelectric coupling ten-

sor :

[
d
]
= −

⎡⎢⎢⎢⎢⎢⎢⎣
h
(2)
,11,1 h

(2)
,22,1 h

(2)
,33,1 h

(2)
,23,1 h

(2)
,13,1 h

(2)
,12,1

h
(2)
,11,2 h

(2)
,22,2 h

(2)
,33,2 h

(2)
,23,2 h

(2)
,13,2 h

(2)
,12,2

h
(2)
,11,3 h

(2)
,22,3 h

(2)
,33,3 h

(2)
,23,3 h

(2)
,13,3 h

(2)
,12,3

⎤⎥⎥⎥⎥⎥⎥⎦
(0,0)

(2.172)

1In compact notation, the second derivative of a generic function f , with respect to generic

variables xi and xj , is denoted by:

f
(2)
,i,j =

∂2f

∂xi∂xj
. (2.167)
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• twenty one terms in the form:

cijkl =
∂2h

∂εij∂εkl
εijεkl , (2.173)

which defines the stiffness tensor at constant electric field :

[
c
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(2)
,11 h

(2)
,22,11 h

(2)
,33,11 h

(2)
,23,11 h

(2)
,13,11 h

(2)
,12,11

h
(2)
,11,22 h

(2)
,22 h

(2)
,33,22 h

(2)
,23,22 h

(2)
,13,22 h

(2)
,12,22

h
(2)
,11,33 h

(2)
,22,33 h

(2)
,33 h

(2)
,23,33 h

(2)
,13,33 h

(2)
,12,33

h
(2)
,11,23 h

(2)
,22,23 h

(2)
,33,23 h

(2)
,23 h

(2)
,13,23 h

(2)
,12,23

h
(2)
,11,13 h

(2)
,22,13 h

(2)
,33,13 h

(2)
,23,13 h

(2)
,13 h

(2)
,12,13

h
(2)
,11,12 h

(2)
,22,12 h

(2)
,33,12 h

(2)
,23,12 h

(2)
,13,12 h

(2)
,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.174)

Equation (2.164) reduces to a quadratic form consisting of forty five coefficients:

h = εijεkl
1

2

∂2h

∂εij∂εkl

∣∣∣∣
(0,0)

+EiEj
1

2

∂2h

∂Ei∂Ej

∣∣∣∣
(0,0)

+εijEk
∂2h

∂εij∂Ek

∣∣∣∣
(0,0)

. (2.175)

By taking into account (2.166), (2.171), and (2.173), it is possible to recast

(2.175) in the following form:

h =
1

2
εijεklcijkl − 1

2
EiEjεij − εijEkdkij , (2.176)

which, in compact form, results:

h =
1

2
εT [ c ] ε− 1

2
E

T
[ ε ]E − E

T
[ d ] ε . (2.177)

Equation (2.177) states that the electric enthalpy density h, for a linear piezoe-

lastic system, consists in a term that accounts for elastic deformation at constant

electric field; in a term accounting for electrostatic effects at constant strain; finally,

in a third term representative of the electromechanical coupling within the material.

2.4.2 Linear constitutive equations

In the previous subsection we derived a compact form of the electric enthalpy density

function for a linear piezoelastic system. Constitutive equations define stress σ and

electric displacement D as a function of strain ε and electric E fields. Since relations
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(2.158) holds, through the derivation of (2.177), the following constitutive equations

are obtained:

{
σ = [ c ] ε− [ d ]TE

D = [ d ]ε+ [ ε ]E
, (2.178)

in which the coupling between fields describing the elastic and the electrostatic

behavior of the considered system is made evident through the tensor [ d ].

It is useful to report here the constitutive equations (2.178) expressed adopting

the indicial notation. They result as follows:

{
σij = cijklεkl − Ekdkij

Dr = Erεir + εijdrij
. (2.179)

Equation set (2.178), which expresses both the stress tensor and the electric

displacement vector as function of the independent variables ε and E, represent the

stress-charge form of the constitutive equations. Depending on applications, it is

useful to express constitutive equations as a function of other independent variables.

By pre-multiplying the second of (2.178) by [ ε ]−1, it results:

E = [ ε ]−1D − [ ε ]−1[ d ]ε , (2.180)

which can be substituted in the first of (2.178) in order to obtain:

σ =
(
[ c ]− [ d ]T [ ε ]−1[ d ]

)
ε− [

d
]T [

ε
]−1

D . (2.181)

By denoting as:

[ c ]|σE| =
[
c
]− [

d
]T [

ε
]−1 [

d
]
, (2.182)

[ d ]|σE| = [ ε ]−1 [ d ] , (2.183)

[ ε ]|σE| = [ ε ]−1 , (2.184)

the following stress-field form of the constitutive equations is obtained:

{
σ = [ c ]|σE| ε− [ d ]T|σE|D

E = −[ d ]|σE|ε+ [ ε ]|σE|D
. (2.185)

Through similar mathematical manipulations it is possible to obtain the other

two forms of the constitutive equations. They are:
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• the strain-charge form:

{
ε = [ s ]|εD| σ + [ d ]T|εD|E

D = [ d ]|εD|σ + [ ε ]|εD|E
, (2.186)

where:

[ s ]|εD| =
[
c
]−1

, (2.187)

[ d ]|εD| = [ d ] [ c ]−1 , (2.188)

[ ε ]|εD| = [ ε ] + [ d ][ c ]−1[ d ]T . (2.189)

• the strain-field form:

{
ε = [ s ]|εE| σ − [ d ]T|εE|D

E = −[ d ]|εE|σ + [ ε ]|εE|D
, (2.190)

where:

[ s ]|εE| =
(
I − [

c
]−1

[ d ]T [ ε ]−1[ d ]
)−1

, (2.191)

[ d ]|εE| = [ ε ]−1[ d ] [ s ]|εE| , (2.192)

[ ε ]|εE| = [ ε ]−1 + [ ε ]−1[ d ][ s ]εE [ d ]
T [ ε ]−1 . (2.193)

2.4.3 Compact matrix notation

It is useful to introduce hereafter a different notation allowing to recast (2.179)

in a more readable form. The compact notation, defined in (22), consists in sub-

stituting double indexes ij and kl with single indexes p and q, respectively. The

correspondence between the two notations is reported in Table 2.1.

ij or kl: 11 22 33 23 or 32 13 or 31 12 or 21

p or q: 1 2 3 4 5 6

Table 2.1: Compact notation

In compact notation, the vectorial form of stress and strain tensors (equations

(2.72) and (2.93), respectively) can be rewritten as follows:

σ = [σ11, σ22, σ33, σ23, σ13, σ12]
T = [σ1, σ2, σ3, σ4, σ5, σ6]

T ,

ε = [ε11, ε22, ε33, ε23, ε13, ε12]
T = [ε1, ε2, ε3, ε4, ε5, ε6]

T .
(2.194)
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Therefore, constitutive equations (2.179) reduces in the following:

{
σp = cpqεq − dkpEk,

Di = diqεq + εikEk .
(2.195)

Double subscripts, introduced in (2.195) for the components of the material

constitutive tensors, can be interpreted as follows: the first subscript refers to the

direction of the excitation; the second subscript identifies the direction of the system

response. As examples: d33 correlates the electric field component along direction

3 to the mechanical stress component along the same direction; d31 correlates the

electric field component along direction 3 to the mechanical stress component along

direction 1. For this reason, systems for which an electric field is applied along

direction 3 in order to obtain a strain along the same axis (and vice versa) are

said operating in the d33 mode. Following a similar reasoning, system designed to

produce a strain along direction 1 when an electric field is applied along axis 3 (and

vice versa) are said working in d31 mode.

2.4.4 Constitutive matrices specialized for PZT and PDVF mate-

rials

In section 2.4.1, tensors describing the characteristic of a piezoelectric solid have

been introduced. Moreover, it has been concluded that the behavior of a piezoelastic

solid is fully characterized by 45 parameters, consisting of:

• 21 independent parameters of the stiffness tensor [ c ];

• 6 independent parameters of the permittivity tensor [ ε ];

• 18 independent parameters of the piezoelectric coupling tensor [ d ].

In many cases, however, it is possible to reduce the number of independent pa-

rameters needed for the characterization of the material by exploit crystallographic

symmetry. With reference to Fig. 2.3, it can be seen that independent parameters

reduces to 17 for a Polyvinylidene Fluoride (PVDF) material, and to 10 for a PZT

crystal (22).
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Figure 2.3: Visual representation of symmetry properties for PVDF and PZT mate-

rials. Independent parameters needed to fully characterize the solid reduces to 17 and

to 10, respectively.

Therefore, if we assume a solid consisting of a linear piezoceramic, relative con-

stitutive matrices have the following form:

[ c ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 (c11−c12)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.196)

[ d ] =

⎡⎢⎢⎢⎣
0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎤⎥⎥⎥⎦ , [ ε ] =

⎡⎢⎢⎢⎣
ε11 0 0

0 ε11 0

0 0 ε33

⎤⎥⎥⎥⎦ , (2.197)

where all independent parameters are constant.

Linear constitutive equations (2.178) can be expanded in the following set of
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scalar equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 = c11ε1 + c12ε2 + c13ε3 − d31E3

σ2 = c12ε1 + c11ε2 + c13ε3 − d31E3

σ3 = c13ε1 + c13ε2 + c33ε3 − d33E3

σ4 = c44ε4 − d15E2

σ5 = c44ε5 − d15E1

σ6 = (c11−c12)
2 ε6

D1 = ε11E1 + d15ε5

D2 = ε11E2 + d15ε4

D3 = ε33E3 + d31ε1 + d31ε2 + d33ε3

. (2.198)

By taking into account relations (2.95) and (2.53), equation set (2.198) can

be recast so that components of σm and D are expressed as a function of the

components of vector η and the scalar potential ϕ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 = c11η1,1 + c12η2,2 + c13η3,3 + d31ϕ,3

σ2 = c12η1,1 + c11η2,2 + c13η3,3 + d31ϕ,3

σ3 = c13η1,1 + c13η2,2 + c33η3,3 + d33ϕ,3

σ4 = c44(η2,3 + η3,2) + d15ϕ,2

σ5 = c44(η1,3 + η3,1) + d15ϕ,1

σ6 = (c11−c12)
2 (η1,2 + η2,1)

D1 = d15(η1,3 + η3,1)− ε11ϕ,1

D2 = d15(η2,3 + η3,2)− ε11ϕ,2

D3 = d31η1,1 + d31η2,2 + d33η3,3 − ε33ϕ,3

. (2.199)

2.4.5 Unidirectional piezoelectric constitutive equations

2.4.5.1 Problem formulation

With reference to Fig. 2.4, let us consider a rod of a linear piezoceramic1 material -

characterized by a uniform cross sectional area - having electrodes attached at the

extremities (23).

Let denote by:

• L, the length of the considered solid;

• S0
b , the bottom section of the solid (S0

b = f(x1, x2, 0));

• SL
b , the upper section of the solid (SL

b = f(x1, x2, L));

1The discussion is similar for the case of PVDF materials.
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Figure 2.4: Piezoceramic rod subjected to a normal load pm. It has been denoted

by: S0
b the surface of the bottom extremity of the rod; SL

b the surface of the upper

extremity; Sl the lateral surface of the rod. P is the resulting polarization vector.

• Sl, the lateral surface of the solid;

• V ol, the volume of the solid.

The rod is subjected to a normal load pm along its principal intertia axis x3.

Electrodes thickness is considered negligible.

The following assumptions and boundary conditions are considered:

• Volume forces are equal to zero:

F V = 0 , ∀P ∈ V ol . (2.200)

As a consequence, the static equilibrium condition (2.73) becomes:

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

= 0 ,

∂σ21
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

= 0 , ∀P ∈ V ol

∂σ31
∂x1

+
∂σ32
∂x2

+
∂σ33
∂x3

= 0 .

(2.201)

• Surface forces on Sl are equal to zero:

pm = 0 ∀P ∈ Sl . (2.202)
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With reference to Fig. 2.4, the normal vector of lateral surface Sl can be

defined as n = n1ı̂ + n2ĵ. Therefore, (2.202) results in the following scalar

equations:

σ11n1 + σ12n2 = 0 ,

σ21n1 + σ22n2 = 0 , ∀P ∈ Sl

σ31n1 + σ32n2 = 0 .

(2.203)

• Surface forces, on S0
b and SL

b , are given as follows:

p0(x1, x2) = p01ı̂+ p02ĵ+ p03k̂ = 0ı̂+ 0ĵ+ p03k̂ ∀P ∈ S0
b ,

pL(x1, x2) = pL1 ı̂+ pL2 ĵ+ pL3 k̂ = 0ı̂+ 0ĵ+ pL3 k̂ ∀P ∈ SL
b .

(2.204)

As a consequence of the solid equilibrium condition, the following equations

must be verified:

∫
S0
b

p0dS +

∫
SL
b

pLdS = 0 ,∫
S0
b

r × p0dS +

∫
SL
b

r × pLdS = 0 .

(2.205)

From the equivalence conditions on surfaces S0
b and SL

b , it results:

σ13 = 0 ,

σ23 = 0 , ∀P ∈ S0
b ∪ SL

b

σ33 = p3 .

(2.206)

• The free charge density ρe, in the volume of the rod, is equal to zero:

ρe = 0 , ∀P ∈ V ol , (2.207)

as the rod consists of a dielectric material. From the Gauss’s law (2.33), the

null divergence condition for vector D results verified:

∂D1

∂x1
+

∂D2

∂x2
+

∂D3

∂x3
= 0 , ∀P ∈ V ol . (2.208)

• The free charge density (σe) on Sl is equal to zero:

σe = 0 ∀P ∈ Sl , (2.209)
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therefore, from the last of (2.240), it results:

D1n1 +D2n2 = 0 ∀P ∈ Sl . (2.210)

• Points on surfaces where electrodes are applied (S0
b and SL

b ), present the same

electric potential. As a consequence, it must result:

E1 = E2 = 0 , ∀P ∈ S0
b ∪ SL

b . (2.211)

• The zero curl condition is considered for the electric field:

∂E3

∂x2
− ∂E2

∂x3
= 0 ,

∂E1

∂x3
− ∂E3

∂x1
= 0 ,

∂E2

∂x1
− ∂E1

∂x2
= 0 ,

(2.212)

as we are considering a static problem.

2.4.5.2 Solution through the semi-inverse method

The static problem formalized in the previous subsection, can be solved through

the semi inverse method.

With reference to constitutive equations 2.186, it can be proved that tensors

[ s ]|εD|, [ d ]|εD|, and [ ε ]|εD| presents the same structure of tensors
[
c
]
,
[
d
]
, and

[ ε ]. Therefore, the extended form of (2.186) results, for the case of a PZT material,

in the following set of scalar equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 = s
|εD|
11 σ11 + s

|εD|
12 σ22 + s

|εD|
13 σ33 + d

|εD|
31 E33 ,

ε22 = s
|εD|
21 σ11 + s

|εD|
11 σ22 + s

|εD|
13 σ33 + d

|εD|
31 E33 ,

ε33 = s
|εD|
31 σ11 + s

|εD|
31 σ22 + s

|εD|
33 σ33 + d

|εD|
33 E33 ,

ε23 = s
|εD|
44 σ23 + d

|εD|
15 E2 ,

ε13 = s
|εD|
44 σ13 + d

|εD|
15 E1 ,

ε12 = s
|εD|
66 σ12 ,

D1 = ε
|εD|
11 E1 + d

|εD|
15 σ13 ,

D2 = ε
|εD|
11 E2 + d

|εD|
15 σ23 ,

D3 = ε
|εD|
33 E3 + d

|εD|
31 σ11 + d

|εD|
31 σ22 + d

|εD|
33 σ33 .

(2.213)
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Boundary conditions on the lateral surface of the rod, expressed by (2.203) and

(2.210), are verified by setting:

σ11 = σ22 = σ23 = σ13 = σ12 = 0 ,

D1 = D2 = 0 .
(2.214)

By taking into account (2.214), equations (2.203) and (2.208) becomes:

∂σ33
∂x3

= 0 , (2.215a)

∂D3

∂x3
= 0 , (2.215b)

from which results:

σ33 = const. = pm3 ,

D3 = const. .
(2.216)

Therefore, the possible solution derived from: the boundary conditions on Sl;

the equilibrium equation; and the zero condition for ρe; can be summarized as

follows (23):

σ11 = σ22 = σ23 = σ13 = σ12 = 0 , σ33 = pm3 ,

D1 = D2 = 0 , D3 = const. .
(2.217)

Solution (2.217) satisfies condition (2.206) and allows, through the constitutive

equations (2.213), for obtaining the following solution for the electric field:

E1 = E2 = 0 , E3 = const., ∀P ∈ V ol , (2.218)

which satisfies both boundary condition (2.211) and (2.212).

Since the proposed solution verifies all the equations and the boundary condi-

tions describing the problem, it can be considered as valid.

By substituting it in (2.213), the unidirectional piezoelectric constitutive equa-

tions are obtained:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε23 = ε13 = ε12 = 0

ε11 = ε22 = s
|εD|
13 pm3 + d

|εD|
31 E3

E1 = E2 = 0

ε
|εD|
33 = s

|εD|
33 pm3 + d

|εD|
33 E3

D3 = d
|εD|
33 pm3 + ε

|εD|
33 E3

. (2.219)
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In (2.219) we state that the electric field and the displacement vector are con-

stants along direction 3. By considering the electrical boundary conditions for the

short-circuit and open-circuit cases, it directly derives what follows:

• for the short-circuit case: E3 = 0; D3 = d
|εD|
33 pm3 ;

• for the open-circuit case: E3 = −d
|εD|
33

ε
|εD|
33

pm3 ; D3 = 0.

Last two expressions in (2.219) suffice to describe the behavior of a linear PZT

material working in d33 mode. For such a material, the stress-charge form of the

constitutive equations is: {
σ3 = c33ε3 − d33E3

D3 = d33ε3 + ε33E3

. (2.220)

2.4.6 Strong form

In this section, the derivation of mathematical expressions describing the behavior of

a linear piezoelectric system is discussed. The problem is formulated in terms of two

unknown variables: the displacement vector η, and the scalar electric potential ϕ.

For ease of reading, involved fundamental relations are hereafter reported. Briefly,

they are:

• The strain-displacement relation (2.95):

ε = [ ∂ ] η . (2.221)

• The differential equation stating the relationship between the electric field and

the electric potential:

E = −∇ϕ , (2.222)

• The constitutive equations (2.178):

{
σ = [ c ] ε− [ d ]TE

D = [ d ]ε+ [ ε ]E
. (2.223)

• The Gauss’s law for a dielectric medium (2.33), which can be recast in the

following form:

∇T
D = ρe . (2.224)
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• The Navier’s equations (2.75), describing dynamics of mechanical systems:

[ ∂ ]T σ + F V = ρη̈ , (2.225)

where we denoted by η̈ the second derivative, in time domain, of the displace-

ment vector.

By substituting (2.222) and (2.221) in the constitutive equations (2.223), it

results:

{
σ = [ c ] [ ∂ ] η + [ d ]T ∇ϕ

D = [ d ] [ ∂ ] η − [ ε ]∇ϕ
, (2.226)

which can be respectively included in (2.225) and (2.224), in order to obtain:

⎧⎨⎩
(
[ ∂ ]T [ c ] [ ∂ ]

)
η +

(
[ ∂ ]T [ d ]T ∇

)
ϕ+ F V = ρη̈(

∇T
[ d ] [ ∂ ]

)
η −

(
∇T

[ ε ]∇
)
ϕ = ρe

. (2.227)

Equation set (2.227) consist of four Partial Derivative Equations (PDEs) de-

scribing the dynamics of the displacement field and the electric potential in every

point of the volume occupied by the considered system.

In order to fully formalize the problem, boundary condition must be taken into

account. With this aim, let us consider the surface (S) delimiting the volume

occupied by the piezoelectric material (V ol). By denoting as:

Sη the portion of S where a known displacement field η
 is applied;

Spm the portion of S where boundary forces pm are applied;

Sϕ the portion of S where the distribution ϕ
 of the electric potential is given;

Sqe the portion of S where free charges (qe) are collected, with density σe;

the overall boundary (S) can be partitioned as reported in the following sets rela-

tions:

Sη ∪ Spm = Sϕ ∪ Sqe = S (2.228)

Sη ∩ Spm = Sϕ ∩ Sqe = ∅ (2.229)
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More in detail, the following relation holds for any point P on boundary Sη:

η = η
 ∀P ∈ Sη . (2.230)

On boundary Spm , stress field must coincide with boundary forces pm. Therefore:

[σm ]n = p ∀P ∈ Spm , (2.231)

where it has been denoted by n = [nx, ny, nz]
T the outward pointing, unit normal

vector of S at any point P . By defining the following tensor:

[
N

]T
=

⎡⎢⎢⎢⎣
nx 0 0 ny nz 0

0 ny 0 nx 0 nz

0 0 nz 0 nx ny

⎤⎥⎥⎥⎦ , (2.232)

equation (2.231) can be recast as follows:

[N ]T σm = pm ∀P ∈ Spm . (2.233)

By pre-multiplying both sides of the first of (2.226) by [N ]T , it results:

(
[N ]T [ c ] [ ∂ ]

)
η +

(
[N ]T [ d ]T ∇

)
ϕ = pm . (2.234)

If we assume that boundary Sϕ represents the surface of the piezoelectric mate-

rial on which electrodes are applied, it is reasonable to consider the distribution of

the electric potential on Sϕ as constant with respect to spatial coordinates, there-

fore:

ϕ = ϕ
(t) ∀P ∈ Sϕ . (2.235)

Finally, on boundary Sqe the following relation must hold:

nTD = −σe ∀P ∈ Sqe , (2.236)

stating that the projection of the electric displacement vector on the unit normal

vector of Sqe is equal to the opposite of the free charge surface density σe. By

pre-multiplying both sides of the second equation in set (2.226) by nT , it results:

(
nT [ d ] [ ∂ ]

)
η − (

nT [ ε ]∇)
ϕ = −σe ∀P ∈ Sqe . (2.237)
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Based on the analysis above reported, the linear piezoleastic problem is fully

described by the following set of equation:

(
[ ∂ ]T [ c ] [ ∂ ]

)
η +

(
[ ∂ ]T [ d ]T ∇)

ϕ+ F V = ρη̈, ∀P ∈ V ol,(∇T
[ d ] [ ∂ ]

)
η − (∇T

[ ε ]∇)
ϕ = ρe , ∀P ∈ V ol,(

[N ]T [ c ] [ ∂ ]
)
η +

(
[N ]T [ d ]T ∇)

ϕ = pm , ∀P ∈ Spm ,(
nT [ d ] [ ∂ ]

)
η − (

nT [ ε ]∇)
ϕ = −σe , ∀P ∈ Sqe ,

η = η
 , ∀P ∈ Sη,

ϕ = ϕ
, ∀P ∈ Sϕ.

(2.238)

Equations (2.225), (2.224), (2.223), (2.221), and (2.222) can be rewritten by

using the indicial notation as follows:

σij,jρ+ Fi = ρη̈i , ∀P ∈ V ol ,

Di,i = ρe, ∀P ∈ V ol ,

σij = cijklεkl − dkijEk , ∀P ∈ V ol ∪ S ,

Di = εikEk + diklεkl , ∀P ∈ V ol ∪ S ,

εij =
1

2

(
ui,j + uj,i

)
, ∀P ∈ V ∪ S ,

Ei = −ϕ,i , ∀P ∈ V ol ∪ S .

(2.239)

Mechanical and electrical boundary conditions, in indicial notation, are written as:

ηi = η
i , ∀P ∈ Sη ,

σijnj = pmi , ∀P ∈ Spm ,

ϕ = ϕ
, ∀P ∈ Sϕ,

Dini = −σe, ∀P ∈ Sqe .

(2.240)

2.4.7 Weak form

The piezoelastic problem can be formulated starting from conservation principle of

the following hamiltonian functional (24):

Ξ(ηi, ϕ) =

∫ t1

t0

(
L +W

)
dt , (2.241)

where L is the lagrangian function of the considered system and W represents

virtual work related to external mechanical and electrical forces. According to the

Hamilton’s principle, infinitesimal variations of quantities describing the state of
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the considered system (i.e., ηi and ϕ) must occur in such a way that potential Ξ

remains constant:

δΞ(ηi, ϕ) = δ

∫ t1

t0

(
L +W

)
dt = 0 . (2.242)

From (2.242) it results:

∫ t1

t0

δ
(
L +W

)
dt = 0 ⇒ δL + δW = 0 . (2.243)

With reference to the case of a piezoelastic system, the work done from external

forces comprises two contribution: mechanical virtual work (Wm), and electrical

virtual work (We).

By denoting as:

FVi , i = 1, 2, 3, the components of the volume force acting on the piezoelectric

body;

pmi , i = 1, 2, 3, the components of boundary loads acting on Spm ;

Fi, i = 1, 2, 3, the components of possible point loads acting on the body;

the mechanical external work related to an infinitesimal virtual displacement ηi, is

given by the following:

δWm =

∫
V ol

FViδηidV ol +

∫
Spm

pmiδηidS +

m∑
k=1

F k
i δη

k
i , (2.244)

where m point loads have been assumed acting on the piezoelectric solid.

By denoting as Qk (k = 1, ..., w) possible point charges distributed on the

boundary S, the virtual electric work related to an infinitesimal variation δϕ of the

electric potential, can be written as:

δWe = −
∫
Sqe

σeδϕdS −
w∑

k=1

Qkδϕk. (2.245)

Therefore, it results:

δW = δWm + δWe =

∫
V ol

FViδηidV ol +

∫
Spm

pmiδηidS

−
∫
Sqe

σeδϕdS +
m∑
k=1

F k
i δη

k
i −

w∑
k=1

Qkδϕk .

(2.246)
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Generally, function L is defined by the sum of the kinetic and the potential

energies associated to the considered system. With reference to the case of a piezo-

electric system, potential energy consists of an elastic and an electrostatic contri-

bution. They can be taken into account by considering the opposite of the electric

enthalpy thermodynamic potential. Therefore:

L =

∫
V ol

(
κ− h

)
dV ol , (2.247)

where we denoted by κ the kinetic energy density and by h the electric enthalpy

density. They can be evaluated as follows(24):

κ =
1

2
ρη̇2i ,

h =
1

2
(σijεij − ErDr) .

(2.248)

Therefore, the lagrangian function related to the considered system, can be

written in the form:

L =
1

2

∫
V ol

(
ρη̇2i − σijεij + ErDr

)
dV ol . (2.249)

We are interested in infinitesimal variations of L (see (2.243)):

δL =

∫
V ol

(
δκ− δh

)
dV ol , (2.250)

which is related to variations in the system kinetic and potential energies. The

evaluation of δκ is straightforward:

δκ =
1

2
ρδ

(
η̇2i

)
=

1

2
ρ
(
2η̈iδηi

)
= ρη̈iδηi . (2.251)

With reference to the electric enthalpy infinitesimal variation, by considering

the second of (2.248) it results:

δh =
1

2

(
σijδεij + εijδσij −DrδEr − ErδDr

)
=

1

2

(
σijδεij +

∂σij
∂εkl

εijδεkl +
∂σij
∂Ek

εijδEk

−DrδEr − ∂Dr

∂εkl
Erδεkl − ∂Dr

∂Ek
ErδEk

)
.

(2.252)

By taking into account constitutive equations (2.179), and definitions of piezo-

electric constants (2.166) and (2.171), equation (2.252) can be recast as follows:

δh =
1

2

(
2cijklεklδεij − 2dkijEkδεij − 2εrkEkδEr − 2drklεklδEr

)
. (2.253)
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Therefore, it is possible to write δL as:

δL =

∫
V ol

(
ρη̈iδηi−cijklεklδεij+dkijEkδεij+εrkEkδEr+drklεklδEr

)
dV ol . (2.254)

From (2.242), it results that the following condition must be satisfied:

δΞ =

∫ t1

t0

(
δL + δW

)
dt =

∫ t1

t0

dt

∫
V ol

(
ρη̈iδηi − cijklεklδεij +

+ dkijEkδεij + εrkEkδEm + drklεklδEr

)
dV ol +

∫ t1

t0

dt

m∑
k=1

F k
i δη

k
i +

+

∫ t1

t0

dt

∫
Sη

pmiδηidS −
∫ t1

t0

dt

∫
Sqe

σeδϕdS −
∫ t1

t0

dt

w∑
k=1

Qkδϕk = 0 ,

(2.255)

from which the weak form formulation of the piezolastic problem can be obtained:

∫
V ol

(
ρη̈iδηi − cijklεklδεij + dkijEkδεij + εrkEkδEr + drklεklδEr

)
dV ol +

+

∫
V ol

FViδηidV ol +

∫
Spm

pmiδηidS −
∫
Sqe

σeδϕdS +

+

m∑
k=1

F k
i δη

k
i −

w∑
k=1

Qkδϕk = 0 .

(2.256)
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2. MODELING PIEZOELECTRIC SOLIDS: GOVERNING EQUATIONS
AND THEORETICAL ASPECTS
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3

A nonlinear circuit for modeling

piezoelectric material effects on

multiple scales

3.1 Introduction

This chapter focuses on investigating the role of material nonlinearities on the dy-

namic performances of devices designed for Energy Harvesting (EH) applications.

The study is here limited to the case of piezoceramic materials (PZT).

As a preliminary step to the introduction of the physics-based model employed in

this work, physical properties and constitutive nonlinearities of piezoceramic mate-

rials are discussed in details. Moreover, a review on hysteresis modeling techniques

is reported.

A rate-dependent, physics-based free energy model for a PZT single crystal is

then presented in detail. The model is able to reproduce, through a probabilistic

thermodynamic approach, what can be considered as the source of hysteresis: the

switching of dipoles in crystal domains. Numerical investigations aimed at under-

standing the influence of crystal parameters on the material hysteretic response are

also reported.

Finally, a multiscale approach is adopted in order to comprise crystal domain

mesoscopic evolution in the dynamic response of two energy harvester devices that,

on a macroscopic scale, are modeled as Single Degree of Freedom (SDOF) systems.

Numerical simulations of the resulting models allow for investigating effects of PZT

nonlinearities on the harvested power (in contrast with generating performances

predicted by the relative non-hysteretic models).
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In order to provide an effective visualization of the role that the material meso-

scopic evolution has on the energy transduction process, lumped circuit representa-

tions of the models are also derived. Implementation issue are discussed in detail.

3.2 Physical properties of piezoceramic materials

Piezoelectric materials exhibit a domain structure and spontaneous strain and po-

larization that can be varied by applying electric and stress fields. The arrangement

(orientation) of dipoles within domains aims at minimizing electrostatic and elastic

energy.

An important group of piezoelectric materials are the piezoelectric ceramics,

of which PZT is an example. Piezoceramics are polycrystalline ferroelectric ma-

terials isostructural with the mineral Perovskite (CaTiO3). Perovskite materials

exhibit a cubic (isotropic) structure for temperatures above the Curie point (Tc),

and tetragonal (anisotropic) structure for temperatures from below Tc. The for-

mer corresponds to the paraelectric phase of the material (Fig. 3.1-a); the latter

identifies the ferroelectric phase (Fig. 3.1-b,c,d).

Figure 3.1: Unit cell configurations for a PbT iO3 crystal in: a) the paraelectric phase

(T > TC); b) the ferroelectric phase (T < TC).

With reference to Fig. 3.1, the symmetric ionic configuration corresponding to

the paraelectric phase makes the barycenters of both positive and negative charges

to be located at the center of the unit cell. As a consequence, a net polarization

equal to zero corresponds to this state.

In the ferroelectric phase, unit cells can exists in one of six tetragonal structures

characterized by having the tetravalent metal ion (T i4
+
, for the case depicted in Fig.

3.1 ) biased along one of the three mutually orthogonal crystallographic directions.

This non-symmetric configuration produces a net polarization different from zero.
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3.2 Physical properties of piezoceramic materials

All the variants identified in the ferroelectric phase correspond to minimum energy

configurations, at the considered temperature T .

The position of T i4
+
, in unit cells existing in the ferroelectric phase, can change

under the effects of electric and mechanical loads. Moreover, strong enough loads

might trigger unit cells switching from a variant to another. The process is sketched

in Fig. 3.2 for the one-dimensional case of a PZT crystal working in d33 mode.

Figure 3.2: Unit cell switching process for a PZT crystal under electrical loading.

With reference to Fig. 3.2, it is possible to distinguish three variants for the

unit cells of the considered material:

• (−) variant, characterized by having a −180◦ orientation with respect to axis

3 (configurations (a), (b));

• (90) variant, characterized by having a 90◦ orientation with respect to axis 3

(configuration (c));

• (+) variant, characterized by having the same orientation of axis 3 (configu-

rations (d), (e)).

Let assume that configuration (a) is an initial equilibrium condition for the unit

cell (when no electric field and mechanical stress are applied). A positive electric

field E along direction 3, will result in a movement of the T i4
+
ion such that the

distance between the barycenters of positive and negative charges decreases. As

a consequence, both the dipole moment (|pb3 | < |pa3 |) and the geometry of the
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unit cell will change (lb < la
1). The unit cell has moved from configuration (a) to

configuration (b).

A further increase of the electric field (over the coercive value), will cause the

T i4
+

ion to jump out the (−) orientation and into (90) orientation, which is an

unstable position in the absence of any mechanical loads (1), thus causing the ion

to continue towards the (+) orientation. In configuration (d), the unit cell presents

a polarization reversed with respect to (b), but same geometrical characteristics.

With a stronger positive electric field, the ion will move towards configuration (e),

increasing both the polarization (pe > pd) and the size of the unit cell along direction

3. Note that (e) is symmetric with respect to the initial equilibrium configuration

(a). Therefore, if now the electric field is removed, unit cell remains in this new

equilibrium position: the process has caused the crystal repoling. Note that (+)

and (−) configurations depicted in Fig. 3.2 present the same strain, as the relative

polarization forms are symmetric.

A description of the switching process has been provided for the case of purely

electrical loading. However, since the material is electromechanically coupled, the

process can be triggered also by sufficiently large mechanical loads. Generally, there

exist two different types of switchings in ferroelectric materials: 180◦- and 90◦-

switchings. 180◦-switchings occur between variants having opposite polarization

vectors, whereas 90◦-switchings involve variants whose polarization are 90◦ apart.

Electric fields can induce both 180◦- and 90◦-switchings, while mechanical stresses

produce only non-180◦-switchings (25, 26). It is believed that the domain switching

process in piezoceramics results from two successive 90◦ switches rather than a

single 180◦ switch even for electrically induced switching (27).

Figure 3.3, provided by (1), shows experimental major hysteresis loops for an

electrically loaded PZT actuator, in quasi-static conditions. The evolution in time

domain of polarization and strain is also reported, showing different relaxation times

that can be related to different switching mechanisms.

Concluding, the microscopic transitions from a variant to another occurring

within domains, determines the highly nonlinear electromechanical behavior ob-

served in PZT materials and is the source of the rate-dependent hysteresis.

1The slight variation of unit cell size along axis 1 and axis 2 is not represented in Fig. 3.2.
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Figure 3.3: Experimental full major hysteresis loops of a PZT actuator electrically

loaded: a) driving electric field; b) polarization vs time; c) polarization vs electric field;

d) strain vs time; e) strain vs electric field (1).

3.3 Modeling of PZT crystal nonlinearities

3.3.1 Introduction

Rate-dependent hysteresis modeling is a complex and computationally onerous task

(28). Techniques developed so far can be classified in two main categories: physics-

based and phenomenological techniques. Phenomenological models are considered

advantageous when the underlying physics of the system is poorly understood or

difficult to characterize (29, 30). Therefore, starting from experimental curves,

a certain set of macroscopic variables are chosen in order to mathematically de-

scribe the observed behavior. Based on the different mathematical explanation

type adopted, these models can be distinguished into two main categories: differ-

ential equation-based model (Duhem model, Backlash-like model, BoucWen model)

and operator-based model (Preisach model, PrandtlIshlinskii model, Krasnosel’skii-

Pokrovskii model) (31, 32, 33, 34).

The Preisach model is one of the most popular operator-based model and is

widely used in the smart material control applications (35, 36). It is defined by

an integral operator which maps an input time series to an output time series by

superimposing (through density functions) weighted outputs of indefinitely many

elementary hysteresis loop. It allows a good hysteresis characterization at narrow-
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band frequency as well as at no-load condition (37). To increase its accuracy, which

gradually deteriorates as the input frequency increases, many modified Preisach

models have been developed by researchers so far, in different fields of application.

In some approaches, hybrid models proved to effectively enhance Preisach model

performances (38, 39). The Krasnoselski-Pokrovskii (KP) model, derived from the

Preisach, provides more information about the nonlinearity compared to its pre-

decessor, thanks to its ability to record all previous extremes of hysteresis input

output behaviors (37). KP model enabled some researchers to characterize the

hysteresis nonlinearity in magnetically shaped memory alloys (40). The Prandtl-

Ishlinskii (PI) model is another operator-based model which can be considered as

a subset of Preisach one. It is defined in terms of an integral of play or stop oper-

ators, with a density function determining the shape of hysteresis. It has a simple

mathematical structure and is attractive for real-time applications (due to its an-

alytically evaluable inverse) (41). Preisach models and its subclass PI variant are,

by far, the most well-known and widely used phenomenological models. They were

originally developed to describe rate-independent hysteresis, which refers to a static

memory effect. However, as previously mentioned, piezoelectric materials exhibit

rate-dependent hysteresis. For such materials, Preisach and PI models could yield

considerable errors under inputs applied at varying rates (42).

It has been reported in literature that hysteretic effects can be modeled in series

with the dynamics of the considered device. That is to say, the output of the

rateindependent hysteresis model is the input of the dynamic model (43). Instead

of separately modeling the two interacting dynamic effects, some solutions were

evaluated to treat their combined effects phenomenologically and formulate modified

rate-dependent models able to take into account hysteresis non linearity at varying

excitation frequencies (44, 45). Most of the above mentioned modifications are

focused on the Preisach model. They are based on including input rate of change in

the density functions. PI model offers a further benefit, since not only the density

functions but also the play and stop operators are allowed to be redefined (42).

However, these highly specialized operators work only for limited cases (1, 46, 47).

As previously clarified, phenomenological models are inherently based on ob-

served phenomena and cannot predict physical behavior resulting from material

microscopic dynamics.

Physics-based techniques, on the other hand, are derived from the material

underlying physics and are combined with empirical factors to describe observed
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nonlinear behaviors (48).

With reference to ferroelectric materials, this second approach is based on de-

scribing the switching process at the crystal lattice scale.

In (49, 50, 51, 52, 53, 54, 55), a free energy model, addressing the ferroelectric

switching as a process based on thermal activation, is presented. The approach,

motivated by the shape memory alloy model developed in (56, 57, 58, 59), is based on

a one-dimensional Helmholtz free energy potential Ψ presenting two convex energy

wells and a concave energy barrier between the wells. Potential Ψ is expressed as

a sole function of the polarization. Depending on the applied electric field, unit

cells jump from a well to another as a results of a competition between thermal

activation and energy barriers.

In this Thesis, an extended version of this pure polarization model is employed

(1, 60, 61). Developed for single crystal piezoceramics, the model includes a 1-

D strain component and a corresponding 90◦-variant. Moreover, it is capable of

predicting the rate-dependent hysteretic behavior.

A description of the adopted model is provided in the following subsection.

3.3.2 Physics-based one-dimensional model of a PZT crystal

Figure 3.4 reports a scan image of a PZT polycrystalline specimen at the mesoscale.

It can be seen that the structure of each crystal is organized in layers, called domains.

We will focus our interest on mono-crystalline PZT materials.

Figure 3.4: Structure of a PZT material specimen at the mesoscale.

Let us consider a macroscopic piezoceramic material volume according to Fig.

3.5-a, where w, l, t are respectively the width, the length and the thickness of the

considered block.
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Figure 3.5: a) PZT monocrystalline block with electrodes applied. ε3 and σm3
are

the strain and the mechanical stress along axis 3, respectively ; b) mesoscopic structure

of the PZT crystal; c) microscopic structure of the PZT crystal. P3 is the polarization

along axis 3.

The 1-D nonlinear model adopted in this work relies on the assumption that each

domain (ref. Fig. 3.5-b) consists in a number of equally poled (i.e. oriented) unit

cells. Unit cells (and by extension domains) can exist in three differently oriented

variants: namely (+), (−), and (90), depending on whether the T i4+ ion is displaced

upward, downward or perpendicularly with respect to the center of symmetry (ref.

Fig. 3.5-c). Domain switching is triggered by the applied stress and electric field

along direction 3.

Starting from the definition of the Gibbs free energy density (g) for the system

depicted in Fig. 3.5-a, domain switching probabilities can be determined through

statistical thermodynamic arguments.

The model assumes the following paraboloid representation for the Gibbs free

energy density associated to the jth variant:

gj =
ηj
2
(σe − σej,0)

2 + μj(σe − σej,0)(ε3 − εj,0) +
Yj
2
(ε3 − εj,0)

2 − E3σe − σm3ε3 ,

for j = (+), (−), (90) ,
(3.1)

where ηj , μj , Yj , σej,0 , and εj,0 are, respectively, the electric permittivity reciprocal,

the coupling coefficient, the Young’s modulus, the remnant charge, and the remnant

strain associated to the jth variant. Moreover, σe is the charge density related to

the electrical current entering the system (q̇e = σ̇ewl) and ε3 is the crystal strain

along direction 3.
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As it can be inferred from (3.1), the energy content associated to each variant

depends on the applied electric field (E3) and the mechanical stress (σm3) along

direction 3. The expected average strain and charge density associated to a domain

in the jth variant can be evaluated by searching for the minimum point of the

relative energy density paraboloid:

{
∂gj
∂σe

= 0
∂gj
∂ε3

= 0
=⇒

{〈
σej

〉
=

YjE3−μjσm3
ηjYj−μj

2 + σej ,0〈
ε3j

〉
=

ηjσm3−μjE3

ηjYj−μj
2 + εj,0

. (3.2)

Quantities
〈
ε3j

〉
and

〈
σej

〉
represent the contribution due to a single domain to

the overall crystal strain (ε3) and to the overall charge density (σe), respectively.

In order to reproduce the global electromechanical response of the material, the

model must be able to predict not only how many domains exist in the jth variant

when a given input excitation (E3, σm3) is applied, but also how many domains

switch from a variant to another if a change in the input excitation occurs.

The crystal mesoscopic configuration can be mapped by the following three

variables, called Phase Fractions (PFs):

xj =
Nj

N
∈ [0, 1], for j = (+), (−), (90) (3.3)

where N is the total number of domains in the crystal and Nj is the number of

domains in the jth variant.

Since the following consistency equation holds:∑
j

xj(t) = 1, ∀t (3.4)

only two independent PFs are needed for reconstructing the crystal mesoscopic

structure in time.

PFs kinetics is then expressed by the following set of Ordinary Differential Equa-

tions (ODEs): {
ẋ+ = −x+p[+,90] + x90p[90,+]

ẋ− = −x−p[−,90] + x90p[90,−]

, (3.5)

where x90 = (1− x+ − x−).

The generic quantity p[j,k] represents the probability that a domain switches

from the jth to the kth variant. Transition probabilities can be evaluated as (60):

p[j,k] =
1

τx[j,k]

exp

(
−vlΔg[j,k]

kBT

)
, (3.6)

67



3. A NONLINEAR CIRCUIT FOR MODELING PIEZOELECTRIC
MATERIAL EFFECTS ON MULTIPLE SCALES

where Δg[j,k] is the energy barrier that a domain has to overcome in order to

switch from the jth to the kth variant. To improve computational efficiency, en-

ergy barrier can be expressed as a function of a driving force F (E3, σm3)[j,k] =

min{gj} −min{gk} and a material parameter Δg0, which has to be appropriately

chosen (see (26, 60) for further details). Moreover, parameter 1/τx[j,k]
in (3.6) repre-

sents the frequency at which, due to thermal activation, lattice domains attempt to

cross the relative barrier; T is the constant crystal temperature; kB is the Boltzmann

constant; and vl is the volume of a domain.

By knowing the evolution in time of PFs as a function of the input excitation

(through (3.5)), it is possible to write the crystal constitutive equations as follows:

{
σe(E3, σm3) = x+

〈
σe+

〉
+ x−

〈
σe−

〉
+ x90 〈σe90〉

ε3(E3, σm3) = x+
〈
ε3+

〉
+ x−

〈
ε3−

〉
+ x90 〈ε390〉

. (3.7)

Equation set (3.7), along with (3.5), expresses the strain-charge form of the PZT

crystal nonlinear model. By substituting (3.2) into (3.7), a more common form can

be achieved through appropriate manipulations.

The complete PZT material hysteretic model, expressed in the strain-charge

form, is than given by the following set of Differential and Algebraic Equations

(DAEs): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ+ = −x+p(E3, σm3)[+,90] + x90p(E3, σm3)[90,+]

ẋ− = −x−p(E3, σm3)[−,90] + x90p(E3, σm3)[90,−]

σe = a(x+, x−)E3 + b(x+, x−)σm3 + c(x+, x−)
ε3 = b(x+, x−)E3 + d(x+, x−)σm3 + f(x+, x−)

, (3.8)

where quantities a, b, c, d, and f are nonlinear functions of the PFs.

It results that:

• a(x+, x−) has the dimension of the electrical permittivity;

• b(x+, x−) has the dimension of the coupling coefficient reciprocal;

• c(x+, x−) is a charge density depending on the remnant charge densities as-

sociated to each variant;

• d(x+, x−) has the dimension of a flexibility term;

• f(x+, x−) is a non-dimensional quantity depending on the remnant strains

associated to each variant.
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Note that (3.8) coincide with the linear eq. set (2.219) if: PFs dynamic is

suppressed (i.e., [ẋ+, ẋ−] = 0T ), and residual terms c and f are set equal to zero.

With reference to DAE (3.8), it is worth to highlight that there is no dependence

of the differential variables (x+, x−) on the algebraic ones (σe, ε3).

Therefore, in order to obtain other forms of the nonlinear constitutive model, it

is possible to manipulate the algebraic equations in (3.8) without this resulting in

any change of the material internal dynamics (as it will be shown in the following

subsection).

Other forms of the nonlinear material model are hereafter reported:

• strain-field form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ+ = −x+p(σm3 , σe)[+,90] + x90p(σm3 , σe)[90,+]

ẋ− = −x−p(σm3 , σe)[−,90] + x90p(σm3 , σe)[90,−]

ε3 =
ad−b2

a σm3 +
b
aσe +

af−bc
a

E3 = − b
aσm3 +

1
aσe − c

a

; (3.9)

• stress-charge form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ+ = −x+p(ε3, E3)[+,90] + x90p(ε3, E3)[90,+]

ẋ− = −x−p(ε3, E3)[−,90] + x90p(ε3, E3)[90,−]

σm3 = 1
dε3 − b

dE3 − f
d

σe =
b
dε3 +

ad−b2

d E3 +
cd−bf

d

; (3.10)

• stress-field form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ+ = −x+p(ε3, σe)[+,90] + x90p(ε3, σe)[90,+]

ẋ− = −x−p(ε3, σe)[−,90] + x90p(ε3, σe)[90,−]

σm3 = a
ad−b2

ε3 − b
ad−b2

σe − af−bc
ad−b2

E3 = − b
ad−b2

ε3 +
d

ad−b2
σe +

bf−cd
ad−b2

. (3.11)

With reference to EH devices, to which an input mechanical stress is provided

in order to produce an electric field or a charge output, stress-charge and stress-field

forms turn out to be the most suitable modeling choices.

3.3.3 Simulation results

In order to show the model capability of catching rate-dependent hysteretic behav-

iors, quasi-static simulations are reported in this Section.

Table 3.1 summarizes crystal parameters, which has been chosen as in (1). The

identification of such parameters is based on experimental tests performed on a

stack actuator made of soft PZT (PIC-151).
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Table 3.1: PZT Crystal Parameters(1)

Parameter Value Dim. Parameter Value Dim.

η±; η90 4.7e07; 6.5e07
[
m
F

]
σe±,0 ; σe90,0 ±0.23; 0.0

[
C
m2

]
μ±; μ90 ∓7.5e08; 0.0

[
N
C

]
ε±,0; ε90,0 1.5e-3; -0.5e-3 [−]

Y±; Y90 60; 65 [GPa] τx[±,90]
; τx[90,±]

4.3e-3; 3.1e-3 [s]

vl 4e-24
[
m3

]
T 293 [K]

Δg0 33.5e3 [Pa] ρ 7500
[
kg
m3

]

Fig. 3.6 reports simulations of model (3.8) carried out driving the PZT crystal

with the following input quantities: sinusoidal electric field (E3) having 0.5 MV/m

amplitude and 0.01 Hz frequency; null stress (σ̄m3 = 0 Pa).

It can be noticed the role of the material parameter Δg0 in the resulting shape

of the hysteresis loop. With reference to the left-handed side of Fig. 3.6, a decrease

in Δg0 results in a decrease of the hysteresis loop area. This means that the electric

field amplitude required to trigger crystal switching between its two linear operating

regions (i.e. x+ = 1 and x− = 1 regions in Fig. 3.6) is lower for lower Δg0. As a

consequence of that, a crystal characterized by smaller hysteresis areas will exhibit

nonlinear behavior for input varying in ranges where crystals with wider hysteresis

(i.e. higher Δg0) operate linearly.
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Figure 3.6: Crystal hysteresis under purely electrical load: role of the parameter Δg0.

Sinusoidal input excitation frequency: 0.01 Hz.
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With reference to the red curves reported in Fig. 3.6 (hysteretic loops for Δg0 =

22 kPa), evolutions in time of crystal PFs, charge density and strain are reported in

Fig. 3.7-b, Fig. 3.7-c, and Fig. 3.7-d, respectively. It can be seen how ranges where

the crystal operates linearly are characterized by constant mesoscopic configurations

([ẋ+, ẋ−] = 0̄T ).

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
x
+

x
-

0 10 20 30 40 50 60 70 80 90 100
-0.4

0

0.4

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2
10-3

Figure 3.7: Evolution in time of: a) the electric field E3; b) crystal PFs; c) the surface

charge density; d) the crystal strain; relative to the red hysteretic loop (Δg0 = 22 kPa)

reported in Fig. 3.6.

Figure 3.8 reports a comparison between predictions of the nonlinear model

considered in two different forms: namely, strain-charge (3.8) and strain-field (3.9)

forms. Blue solid curves show hysteretic loops obtained through the simulation

of model (3.8) under a slow sinusoidal electrical load (signal in Fig. 3.7-a) and

a null mechanical stress. Red dashed curves refers to simulations of model (3.9),

carried out providing the charge density reported in Fig. 3.7-c and a null stress as

inputs. The perfect overlapping of the reported curves confirms the equivalence of

the strain-charge and the strain-field forms of the presented nonlinear model. The

above mentioned equivalence can be assumed for all the other forms, by extension.

Finally, Fig. 3.9 reports the hysteretic response of the crystal for different rates

of the input electric field: namely 0.01 Hz and 5.00 Hz. Simulation results show

that the model is able to predict the dependence of the hysteresis loop on the input

excitation frequency (26).
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Figure 3.8: Crystal hysteresis loops. Blue solid curves and red dashed curves refer

to the simulation of the material model in the strain-charge and the strain-field forms

respectively, under the same operative conditions.
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Figure 3.9: Crystal hysteresis loop for different frequencies of the input electric field.
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3.4 Effects of PZT crystal nonlinearities on the dynam-

ics of EH devices

With the aim of investigating the role of material nonlinearities on performances of

vibrating harvester devices, a multi-scale approach is adopted to comprise hysteretic

effects in the dynamic response of two different type of piezoelectric devices. Cases

taken into account are: EH device working in d33 mode (62, 63), EH device working

in d31 mode (64). Both devices are modeled as a SDOF systems.

For the d33 case, the classical linear model is first presented, along with its equiv-

alent lumped circuit representation. This is done with the major aim of providing

an effective comparison with the following nonlinear approach .

3.4.1 EH device working in d33 mode

A schematic representation of the considered device is reported in Fig. 3.10-a. It

consists in a PZT volume that is fixed on a moving base and presents a tip mass

MT ip on top. The electrodes, which have a negligible thickness te, are placed as

depicted in Fig. 3.10-a.

Figure 3.10-b shows a sketch of the device SDOF model. A base acceleration (z̈b)

puts the system equivalent mass (m) into an oscillatory motion along z direction.

Mass oscillations result in a mechanical stress (σm3) for the PZT crystal, which

consequently injects an electric current (iRL
) in the resistive load (RL) connected

to the electrodes.

Figure 3.10: a) schematic representation of the PZT harvester device; b) sketch of

the device SDOF model.

The electro-mechanical dynamics of the system is described by a set of two
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ODEs. The first one is given by the second Newton’s Law for the mass m:

mz̈m = −FD − FPZT , (3.12)

where FD, and FPZT are the reaction forces generated by the the damper, and the

piezoceramic element respectively. If l0 is the PZT wire initial length, by considering

the following relations:

l = zm − zb; η = l − l0; FD = cD l̇ = cDη̇ ; (3.13)

where cD is a damping coefficient, equation (3.12) can be recast as follows:

mη̈ + cDη̇ + FPZT = −mz̈b = Fb . (3.14)

The second ODE can be obtained by determining the current provided to the

resistive load:

iRL
(t) =

v(t)

RL
, (3.15)

where v(t) is the device ouput voltage (Fig. 3.10-b).

In the following Subsections, the derivation of the complete device model -

through the coupling of the PZT material model with dynamic equations (3.14)

and (3.15) - is presented for both the linear and nonlinear case. An equivalent

lumped circuit representation is also reported. Moreover, some implementation

issues are discussed.

3.4.1.1 Linear model

Assuming small deformations, the expressions of FPZT and iRL
, in (3.14) and (3.15)

respectively, can be obtained by multiplying both sides of the crystal linear con-

stitutive equations (2.220) by the electrodes surface (A = wt) and considering the

following relations between intensive and extensive quantities:

ε3 =
η

l0
; E3 =

v

l0
; iRL

= −AḊ3 . (3.16)

Finally, the overall system model is given by the following set of linear time-

invariant ODEs: {
mη̈ + cDη̇ + Ac33

l0
η − Ad33

l0
v = Fb

Aε33
l0

v̇ + Ad33
l0

η̇ + 1
RL

v = 0
, (3.17)

which will be hereafter referred to as Linear Time-Invariant Model (LTIM).
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Figure 3.11 reports the equivalent lumped circuit representation of the LTIM.

It consists of a two-port electrical circuit where the provided mechanical power

(pm = Fbη̇) is converted into the electrical power absorbed by the resistive load

(pe = viRL
). The coupling between the mechanical and the electrical ports, which

represents the energy conversion process (from the mechanical form to the electrical

one), has been taken into account through a voltage-controlled voltage source and

a current-controlled current source, both having the same constant gain1:

αLTIM =
Ad33
l0

. (3.18)

Figure 3.11: Lumped circuit representation for the LTIM of the system.

All the circuit components in Fig. 3.11 are characterized by constant values.

As a consequence, under the assumption of sinusoidal input excitation, it can be

inferred (just by visual inspection of the circuit) that the energy entering the me-

chanical port of the device is allocated as follows:

• a part is dissipated by viscous effects (relative to the resistor Rm);

• a part is stored in the system as kinetic and elastic energy (relative to the

inductor Lm and the capacitor CLTIM
m respectively);

• part of the energy converted into the electrical form is stored in the system

as electrostatic energy (absorbed by the capacitor CLTIM
PZT );

• the remaining part is made available at the electrical port.

1Note that this representation of the coupling between the two ports coincides with an ideal

transformer having a voltage ratio equal to αLTIM .
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3.4.1.2 Nonlinear Multi-scale Model

By analogy with the linear case, we present the derivation of the device nonlinear

model through the coupling of the crystal constitutive equations (3.10) - expressed

in the stress-charge form - with the device dynamics. This is mostly aimed at

achieving an equivalent lumped circuit representation allowing for an immediate

comparison with the linear one (depicted in Fig. 3.11), which has been widely

reported in literature.

As it will emerge from the discussion, the implementation of the resultin Multi-

scale Model (MsM) presents a critical aspect, due to the anticausal nature of the

coupling between the material internal dynamics and the device dynamics. The

derivation of a model based on a causal coupling is then presented.

Anticausal coupling based MsM : As for the linear case, by multiplying both

sides of (3.10) by A and taking into account (3.16) - where now IRL
= −Aσ̇e

- the complete system model results in the following set of nonlinear time-

variant ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mη̈ + cDη̇ + A
l0d(x+,x−)η − Ar(x+,x−)

l0
v − Af(x+,x−)

d(x+,x−) = Fb

A
l0
h(x+, x−)v̇ +

[
1
RL

+ A
l0
ḣ(x+, x−)

]
v + Ar(x+,x−)

l0
η̇ + ...

... + A
l0
ṙ(x+, x−)η +Aġ(x+, x−) = 0

ẋ+ + x+p(η, v)[+,90] − (1− x+ − x−)p(η, v)[90,+] = 0

ẋ− + x−p(η, v)[−,90] − (1− x+ − x−)p(η, v)[90,−] = 0

, (3.19)

where: h = (ad− b2)/d; g = (cd− bf)/d; r = b/d.

Equation set (3.19) represents a multi-scale model, as variables defined at the

material scale (x+, x−) and variables defined at the device scale (η, v) are

mutually influenced.

It is worth to highlight how the LTIM results from MsM if:

• the kinetic of PFs (i.e. the source of the crystal nonlinear behavior) is

suppressed. With reference to (3.19), this implies that:{
ẋ+ = 0

ẋ− = 0
=⇒

[
ḋ, ḟ , ġ, ḣ, ṙ

]T
= 0̄T ; (3.20)

• the crystal is characterized by null remnant strain along direction 3:

f(x+, x−) = 0.
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Figure 3.12 depicts the equivalent lumped circuit representation of the MsM.

Differently from LTIM, all the circuit components change in time as nonlinear

functions of the PFs - except for the ones related to the constant mechanical

parameters (Rm and Lm) and the constant resistive load RL. The coupling

between the two ports is taken into account by means of three controlled

generators. Two of them, are characterized by the same time variant gain

(αMsM ), which is now a nonlinear function of both crystal coupling coefficient

and Young’s modulus (with reference to (3.8), quantities YPZT = d−1 and b−1

respectively):

αMsM (t) =
Ar

l0
=

Ab

l0d
. (3.21)

Figure 3.12: Lumped circuit representation of the anticausal coupling based MsM.

Due to the domain switching process, a third controlled current generator

results connected to the electrical port. It is driven by the elastic term of the

PZT reaction force:

FElast
PZT (t) =

A

l0d
η , (3.22)

and its transconductance depends on the rate of change of both the material

Young’s modulus and coupling coefficient.

The capacitor connected to the electrical port is now a nonlinear function of

three crystal properties: the permittivity (i.e. parameter a in eq. set (3.8)),

the coupling coefficient and the Young’s modulus. The analytical expression

of the capacitance CMsM
PZT is given by the following:

CMsM
PZT (t) =

A

l0
h =

A

l0

(
a− b2

d

)
. (3.23)
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Due to the changing mesoscopic structure of the crystal, a time variant ohmic

component (RHyst) appears in the side of the circuit connected to the electrical

port. Resistance RHyst is a function of the PFs’ rate of change and accounts

for a portion of the losses related to mechanical and dielectric hysteresis:

RHyst(t) =
l0

Aḣ
. (3.24)

Finally, two independent generators appear in the equivalent circuit of the

MsM. The first one, related to the mechanical port, represents the residual

term of the PZT reaction force (FRes
PZT ). The second one, connected to the

electrical port, is a current generator related to the rate of change of the PZT

material residual charge density and residual stress (with reference to (3.8),

quantities c and f respectively).

It is worth to highlight that the variable nature of circuital components ac-

counting for the elastic and the electrostatic energy stored in the system

(CMsM
m and CMsM

PZT respectively), results in the relative absorption of instan-

taneous powers having mean values different from zero1. Depending on the

operative condition of the device (i.e. waveform and harmonic content of the

input acceleration), these mean powers can assume positive or negative val-

ues. As a consequence, dissipative phenomena (related to mechanical and

dielectric hysteresis) or active power injection might be associated with ca-

pacitances CMsM
m and CMsM

PZT . In both cases, the power balance is ensured by

the complementary role of the independent and controlled generators present

in the circuit.

As previously mentioned, MsM (3.19) allows for an immediate comparison

with the classical model (3.17), derived from the PZT linear constitutive equa-

tions. Moreover, it easily leads to an equivalent lumped circuit that provides

an effective visualization of the role that the material mesoscopic evolution

has on the transduction process.

Its implementation, however, presents a critical aspect. This can be inferred

from Fig. 3.13, where the coupling between the scales involved in the model

is depicted in the form of a block diagram. With reference to the red feedback

1Note that in nonlinear regimes even the instantaneous power related to time-invariant circuital

components (as is the case for the inductor in Fig. (3.12)) is characterized by a non-null mean

value.
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loop in Fig. 3.13, it can be seen that the implementation of equation set (3.19)

requires the numerical computation of σe time-derivative, in order to evaluate

the device output current iRL
and, finally, the electric field applied to the PZT

material (E3 = iRL
RL/l0 = −Aσ̇eRL/l0).

Figure 3.13: Implementation block diagram of the anticausal coupling based MsM.

The above mentioned difficulty can be overcome by recasting the PZT consti-

tutive equation in a form that allows for a causal coupling between the models

at the two scales: the stress-field form (3.11).

Causal coupling based MsM : Starting from the PZT stress-field constitutive

equation, by the same procedure previously adopted for the anticausal cou-

pling based MsM, the following nonlinear time-variant model can be obtained:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mη̈ + cDη̇ + A

l0
pSF η −AhSFσe −AgSF = Fb

Aσ̇e +
l0
RL

rSFσe − hSF

RL
η + l0

RL
wSF = 0

ẋ+ + x+p(η, σe)[+,90] − (1− x+ − x−)p(η, σe)[90,+] = 0

ẋ− + x−p(η, σe)[−,90] − (1− x+ − x−)p(η, σe)[90,−] = 0

(3.25)

where superscripts ”SF” refers to quantities derived from the stress-field PZT

constitutive equations and:

gSF =
af − bc

ad− b2
; hSF =

b

ad− b2
; pSF =

a

ad− b2
;

rSF =
d

ad− b2
=

1

h
; wSF =

bf − cd

ad− b2
.

(3.26)

Figure 3.14 reports the equivalent lumped circuit representation of the model

(3.25).
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Figure 3.14: Lumped circuit representation of the causal coupling based MsM.

In this representation of the device, the coupling between the ports is taken

into account by two voltage-controlled voltage generators. In analogy with

the previous case, the controlled generator connected to the mechanical port

presents a gain expressed by (3.21) and is driven by the voltage 1 on the PZT

variable capacitor defined by (3.23).

The controlled generator accounting for the energy transferred to the elec-

trical port is characterized by a gain (βMsM
SF ) depending on crystal coupling

coefficient and permittivity:

βMsM
SF (t) =

l0
A

hSF

pSF
=

l0b

Aa
. (3.27)

Moreover, it is driven by the elastic component of the PZT crystal reaction

force, which is now given by:

FElast
PZT =

A

l0
pSF η . (3.28)

The implementation of model (3.25) does not involve the computation of nu-

merical time derivatives, since it allows for evaluating the PZT input charge

density through the time-integration of the applied electric field: σe = − l0
ARL

∫
E3 dt

(see the blue feedback loop in Fig. 3.14).

Despite the significant difference in the topology of circuits reported in Fig.

3.12 and Fig. 3.14, MsMs (3.19) and (3.25) - which describe the same device

1Note that, in this representation of the system, the voltage on CMsM
PZT differs from the device

output voltage (see Fig. 3.14).
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- are equivalent in terms of external (i.e. input/output) behavior. In fact,

provided the same input quantities (Fb, η̇) to the mechanical port, both models

predict the same outputs (iRL
, v) at the electrical port (see Appendix A).

Therefore, simulations reported in this work have been performed through the

numerical integration of the MsM (3.25).

In order to show the effect of hysteretic nonlinearities on the device dynamic

response, the numerical integration of the following ODE set has also been

preformed:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mη̈ + cDη̇ + A

l0
pSF η −AhSFσe −AgSF = Fb

Aσ̇e +
l0
RL

rSFσe − hSF

RL
η + l0

RL
wSF = 0

ẋ+ = 0

ẋ− = 0

. (3.29)

Model (3.29), which will be hereafter referred to as Time-Invariant Model

(TIM), results from (3.25) when PFs’ kinetics are suppressed.

3.4.1.3 Simulation results

Table 3.2 reports the parameters of the device adopted as case study in this work.

It consists on a PZT volume, which has dimensions comparable with the elementary

cell of a piezoceramic nanogenerator (65).

Table 3.2: Harvester Device Parameters

PZT Volume Geometrical Parameters Value Dim.

Originary Length (l0); Width (w) 5; 0.5 [μm]

Cross sectional area (A = w2) 0.25
[
μm2

]
SDOF Model Parameters Value Dim.

Tip Mass (MT ip) 0.255 [μg]

Damping Coeff. (cD) 1.05e-4
[
Ns
m

]

It is assumed that the crystal factory polarization is such that no domains are

present in the (−) variant. Therefore, since the mechanical stress applied on the

PZT volume can only produce (+) ↔ (90) phase transitions, the (−) variant has

been suppressed in the models.

The initial mesoscopic configuration of the PZT material is reported in Table

3.3, along with all the considered initial conditions.
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Table 3.3: Initial Conditions of the Device

Symbol Value Dim.

Mesoscopic Conf. x+(0); x−(0) 0.59; 0.0 [−]

Displacement η(0) 3.3 [nm]

Velocity η̇(0) 0.0 [m/s]

Charge Density σe(0) 0.135
[
C/m2

]

The short-circuit natural frequency of the device (ωSC
n ) corresponding to the

initial mesoscopic configuration can be approximately evaluated as follows:

ωSC
n =

√
AYPZT (0)

ml0
≈ 103 [krad/s] . (3.30)

Assuming the PFs as constants - which is the case of both the LTIM and the

TIM - an approximated value of the resistive load allowing for the maximum power

extraction in near-resonance conditions can be evaluated (through the maximum

power transfer theorem in case of pure resistive load) as follows:

ROpt
L =

1

ωSC
n CTIM

PZT

=
l0

ωSC
n A

rSF ≈ 65 [GΩ] . (3.31)

Figure 3.15 reports a comparison among the MsM and TIM (blue and red lines

respectively) to a chirp input base acceleration of amplitude gacc = 9.81 m/s2.

Magnitude spectra of the displacement and the output voltage are provided in

case of matched and unmatched resistive load. Simulation results confirm that the

device resonance frequency (ωr) depends on the resistive load (66). For the case of

matched RL (right-hand side of Fig. 3.15), the TIM reveals a 5% increase of ωr

with respect to ωSC
n . Considering (3.29), this means that the electric term of the

PZT reaction force:

FElect
PZT = AhSFσe , (3.32)

results into a stiffening of the device.

The comparison between the TIM and the MsM always shows a further slight

increase of the resonance frequency for the hysteretic system.

Moreover, plots relative to the matched RL case show that, in some ranges of the

input excitation frequency, the output voltage of the hysteretic system can exceed

the one provided by the non-hysteretic one. The widening of the output voltage
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Figure 3.15: Simulation results for a chirp input base acceleration (|z̈b| = 1gacc):

a)-b) case with non-matched resistive load; c)-d) case with matched resistive load.

frequency bandwidth is a consequence of the domain switching process, which affects

the material polarization and, therefore, the charge collected on the electrodes.

This is clearly shown in Figure 3.16, where the transient evolution of some quan-

tities of interest is reported. In this case a harmonic input excitation of frequency

6% ωSC
n (corresponding to ω̂b in Fig. 3.15) and amplitude 1 gacc has been applied

to the device.

With respect to the hysteretic model (blue line), it can be seen how the meso-

scopic configuration of the material (Fig. 3.16-a) rapidly evolves in a steady state

condition characterized by periodic slight deviations from a condition where all do-

mains are in the (+) variant. As a consequence, the average value of the charge

density (Fig. 3.16-b) increases with respect to the TIM case (red line).

This results in an increased peak-to-peak value of the steady state output voltage

of the hysteretic model, as can be observed in Fig. 3.17-c.

Figure 3.17 reports, for the same test case of Fig. 3.16, the evolution of some

quantities of interest in a representative period (τ) of the system steady-state re-

sponse. The relative percentage error between the TIM and the MsM predictions of

the output voltage root-mean-square value is abut 16% (about 43% for the electric
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Figure 3.16: Evolution in time of: a) PF relative to the (+) variant; b) charge density

on the electrode surface. Harmonic input excitation of amplitude 1gacc and frequency

ω̂b ≈ 6% ωSC
n (see Fig. 3.15). Matched resistive load case.

Figure 3.17: Evolution of some quantities of interest in a representative period of

the system steady-state response: a) PF relative to the (+) variant; b) displacement

of the device; c) output voltage; d) instantaneous electrical power. Harmonic input

excitation of amplitude 1 · gacc and frequency ω̂b ≈ 6% ωSC
n (see Fig. 3.15). Matched

resistive load case.

power mean value). It can be seen how the domain switching process within the

PZT material results in a slightly distorted waveform for the electrical quantities.

With the aim of further investigating the role of material nonlinearities in the

dynamic response of the device, two more simulations have been carried out, as-
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Figure 3.18: Random input acceleration (z̈b): colored noise signal characterized by a

null mean value and a standard deviation equal to 3.4 m/s2. a) signal in time domain;

b) signal magnitude in frequency domain.

suming a random acceleration signal as input for the system.

With reference to Fig. 3.18-a, the considered input excitation (z̈b) is character-

ized by a null mean value and a standard deviation equal to 3.4 m/s2. The relative

frequency bandwidth, which has been chosen in a small range around the device

resonance frequency, is depicted in Fig. 3.18-b.

Figures 3.19 and 3.20 reports, respectively, a comparison between displacements

and output voltages predicted by TIM and MsM. For this analysis, the crystal

corresponding to red hysteretic curves reported in Fig. 3.7 (hereafter referred to

as C1) has been considered. It is characterized by a Δg0 = 20 kPa, while the

remaining parametric set has been chosen as in Table 3.1. The initial conditions

reported in Table 3.3 have been assumed for both the models.

With reference to Fig. 3.20-b, simulation results confirm the slightly wider

frequency bandwidth of the MsM voltage response with respect to TIM (accordingly

with Fig. 3.15-d). However, this does not result in a higher active power prediction

of the MsM with respect to TIM. The Root Mean Square (RMS) value of the voltage

signal relative to the hysteretic model, in fact, results about 8% lower than the TIM

output.
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Figure 3.19: d33-mode device: displacement (η) under a random input excitation.

PZT crystal C1. a) signal in time domain; b) signal magnitude in frequency domain.

Figure 3.20: d33-mode device:output voltage (v) under a random input excitation.

PZT crystal C1. a) signal in time domain; b) signal magnitude in frequency domain.
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Figure 3.21: d33-mode device: displacement (η) under a random input excitation.

PZT crystal C2. a) signal in time domain; b) signal magnitude in frequency domain.

The diametrically opposite situation can be observed for a different PZT crystal.

Figures 3.21 and 3.22 reports simulation results obtained assuming the device made

of a crystal (hereafter referred to as C2) that, differently from C1, presents a four

time larger value of the permittivity related to the (+) variant. The same random

acceleration z̈b has been considered as input (Fig. 3.18).

By comparing Fig. 3.22-b and Fig. 3.20-b, it can be seen that the MsM response

is now characterized by a significantly larger frequency bandwidth with respect to

TIM. This results in a RMS of the hysteretic model output voltage that, in the

considered case, is about 8% larger that the one provided by TIM. Simulations car-

ried out assuming a random input acceleration provide an example of how, through

an engineered crystal design (which is made possible by the physic based nature of

the proposed model), material nonlinearities can be exploited in order to improve

generation performances.

3.4.2 EH device working in d31 mode

The 1-D physics-based model, introduced in section 3.3.2, is now employed for mod-

eling an harvester device working in the d31 mode. With reference to a single crystal

domain (see Fig. 3.5), the basic assumption is that strains along the polarization
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Figure 3.22: d33-mode device: output voltage (v) under a random input excitation.

PZT crystal C2. a) signal in time domain; b) signal magnitude in frequency domain.

axis (3-axis) can be related to strains along 1-axis, through the Poisson’s coefficient.

A sketch of the device investigated in this section is shown in Fig. 3.23. It

is a unimorph cantilever beam subjected to a direct excitation (i.e., with a base

acceleration transverse to the axis of the cantilever) (67).

Thicknesses and Young’s moduli of the PZT layer and the supporting substrate

are in such a ratio that the neutral axis of the beam is located outside the PZT

volume. As a consequence of that, an upward (positive) bending of the cantilever

results in an overall axial compression of PZT domains, with a consequent average

elongation of unit cells along the 3-axis (ε̃3 > 0). On the other hand, a downward

(negative) tip deflection results in an overall axial elongation of domains, producing

a compression of the unit cells along the transverse axis (ε̃3 < 0). Electric charge

is collected on electrodes attached on the upper and the lower faces of the PZT

layer, perpendicularly to the 3-axis. Electrodes extend all over the available surface.

Moreover, a resistive load RL is assumed to be connected to the electrodes.

The structure of the device consists of thin layers with different geometry and

mechanical properties. All layers have the same length L and width W but different

thicknesses ti and Young’s moduli Ỹi.

The following assumptions are also taken into account: interfaces among layers
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Figure 3.23: Sketch of the considered cantilever unimorph. Following quantities are

related to the PZT material layer: average axial strain (ε̃1); average transverse strain

(ε̃3); Poisson’s coefficient (ν).

are smooth and continuous; layers do not slip with respect to each other. Moreover,

the contribution of the electrodes to the system overall stiffness can be considered

negligible. Therefore, from a mechanical point of view, the device will be modeled

as a bi-layered cantilever (see Fig. 3.24) consisting in a linear isotropic elastic

supporting substrate (thickness t1, Young’s modulus Ỹ1 = const.) and a top layer

made of PZT crystal (thickness t2, Young’s modulus Ỹ2).

Figure 3.24: Bi-layered cantilever homogenization. Generic quantity ỸiIi represent

the flexural rigidity of the ith layer, while KH is the stiffness of the homogenized

cantilever.

Based on the model expressed by (3.8), it results that the PZT crystal Young’s

modulus is a nonlinear function of crystal phase fractions:

Ỹ2 =
1

d (x+, x−)
, (3.33)

therefore, it is an implicit function of time t, strain ε̃3 and charge density σe, affecting

the mechanical response of the cantilever.

As for the previous case, a simple SDOF model is employed to assess the time

history of the unimorph tip displacement under the direct base excitation (z̈b). The
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SDOF model is expressed by the following ODE:

z̈tip = −z̈b − cD
m

żtip − KH

m
ztip , (3.34)

where: ztip = zFE − zCE (see Fig. 3.23) is the relative vertical displacement of the

cantilever free end with respect to the clamped end; m is the cantilever equivalent

mass; cD is the viscous damping coefficient.

In (3.34), parameter KH is the cantilever equivalent stiffness and can be evalu-

ated as follows:

KH =
3[Y I]H

L3
, (3.35)

where [Y I]H is the homogenized flexural rigidity about the neutral axis.

According to (68), for an arbitrary n-layered cantilever, the following equation

holds:

[Y I]H =

n∑
i=1

{
AiỸi

[
(zi − zN )2 +

ti
2

12

]}
, (3.36)

where Ai = tiW is the cross sectional area of the ith layer and zi is the symmetry

axis coordinate, for the ith layer, along direction 3 (see Fig. 3.24).

Neutral axis coordinate zN can be evaluated using the following relation (68):

zN =

n∑
i=1

Ỹitizi

/ n∑
i=1

Ỹiti . (3.37)

It is worth stressing that, given (3.33), (3.35)-(3.37), KH is a nonlinear param-

eter depending on the PZT crystal electromechanical response.

In order to couple system (3.34) with the crystal model, a relation between the

cantilever tip deflection (ztip) and the crystal average transverse strain (ε̃3) must be

provided. Under the assumption of small deflections, the average axial strain (ε̃1)

in the PZT volume can be evaluated through the following expression:

ε̃1 = −κ̃(ztip)Δz , (3.38)

where Δz = z2 − zN , is the distance of the piezoelectric film layer symmetry axis

from the neutral axis (see Fig. 3.24) and κ̃ is the average beam curvature:

κ̃ =
1

L

∫ L

0
z
′′
(x, ztip) dx . (3.39)
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3.4 Effects of PZT crystal nonlinearities on the dynamics of EH devices

In (3.39), z
′′
is the second derivative in space domain of the beam neutral axis

deflection.

According to the classical SDOF representation of a cantilever beam with mass

per length λ, the equivalent mass has been computed as m = 0.2235λL, while a

quarter cosine wave form has been used for z:

z =
[
1− cos

(πx
2L

)]
ztip(t) . (3.40)

Finally, the PZT crystal average transverse strain (ε̃3) can be computed through

the Poisson’s ratio (ν):

ε̃3 = −νε̃1(ztip) . (3.41)

Concerning the coupling of the PZT crystal model with the characteristic of an

external resistive load (RL) connected to the device electrodes, if pe(t) = viRL
is

the instantaneous power absorbed by the load, the following expression holds:

qe = −
∫

q̇RL
dt = −

∫
v

RL
dt = −

∫
E3t2
RL

dt , (3.42)

where qe is the free charge on the electrodes. Free charge density σe can be evaluated

dividing qe by the electrodes surface area A = LW .

Equations (3.41) and (3.42) allow for coupling the crystal mesoscopic evolu-

tion with the SDOF dynamics of the cantilever beam (3.34) and the electric load

characteristic (3.42).

By substituting (3.11) in (3.42), taking into account (3.37)-(3.40) and definitions

(3.26), the resulting nonlinear MsM can be written as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mz̈tip + cDżtip +KH(x+, x−)ztip = −mz̈b = Fb

Aσ̇e + γ(x+, x−)ztip + t2
RL

rSFσe +
t2
RL

wSF = 0

ẋ+ + x+p(ztip, σe)[+,90] − (1− x+ − x−)p(ztip, σe)[90,+] = 0

ẋ− + x−p(ztip, σe)[−,90] − (1− x+ − x−)p(ztip, σe)[90,−] = 0

, (3.43)

where it has been denoted by γ the following quantity: γ = νπt2hSF (x+,x−)Δz(x+,x−)
2RLL2 .

Figure 3.25 reports the lumped circuit representation of model (3.43). The elec-

trical port is coupled with the mechanical one through a voltage-controlled generator

that is a nonlinear function of crystal permittivity, coupling coefficient and Young’s

modulus. It is driven by the elastic reaction force:

F elast = KH(x+, x−)ztip . (3.44)
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Differently from the case of the d33-device mode (see Fig. 3.14), no controlled

generators appear in the loop connected to the electrical port. Nevertheless, the

dynamics of the left-handed side circuit loop in Fig. 3.25 is influenced by the

electromechanical behavior of the crystal through the parameter KH .

Figure 3.26 reports the block diagram representation of model (3.43), respec-

tively.

Figure 3.25: Lumped circuit representation of the PZT unimorph MsM.

Figure 3.26: Implementation block diagram of the PZT unimorph MsM.

3.4.2.1 Simulation results

Numerical analyses have been performed exciting the device with a sinusoidal base

acceleration, in near-resonance conditions (fz̈b = 26 Hz ≈ fn = 1
2π

√
κH
m ). As-

suming that the factory polarization of the crystal such that all its domains are
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3.4 Effects of PZT crystal nonlinearities on the dynamics of EH devices

in the (+) variant, the cantilever bending motion can only produce (+) ↔ (90)

domain transitions. Therefore, for the numerical analyses reported hereafter, the

(−) variant has been suppressed in the MsM. In order to make a comparison, the

same numerical analyses have been carried out by employing the TIM of the PZT

crystal. As clarified in the previous section, TIM results from MsM by suppress-

ing domain phase transitions. Crystal C2 has been considered as constituting the

device. Parameters of the cantilever are summarized in Table 3.4.

Table 3.4: Parameters of the PZT Unimorph Device

Cantilever Geometrical Parameters Value Dim.

Length (L); Width (W ) 83.2; L/4 [mm]

Substrate Thickness (t1); PZT Thickness (t2) 0.15; 0.15 [mm]

Substrate Material Parameters Value Dim.

Young’s Modulus (Ỹ1) 190 [GPa]

Density (ρ1) 8000
[
kg
m3

]
PZT Crystal Parameters 1 Value Dim.

Δg0 22.0 [kPa]

Poisson Coeff. (ν) 0.35 [−]

SDOF Model Parameters Value Dim.

Equivalent Mass (m) 0.92 [g]

Damping Coeff. (cD)
2 5e-3

[
Ns
m

]
Resistive Load. Value Dim.

RL 10 [kΩ]

Left-handed side of Fig. 3.27 shows, for increasing base acceleration amplitudes,

the cantilever maximum tip deflection in percentage of the total device length (L).

It can be seen that, for the highest amplitude of the input excitation (z̈b = 1.9 gacc),

the tip deflection does not exceed 0.25 L. This is in agreement with the modeling as-

sumption of negligible geometric nonlinearities (small deflections) for the cantilever

(69). Moreover, TIM and MsM predictions of the cantilever tip deflection coincide.

This means that crystal nonlinearities, in the considered z̈b range, do not affect the

mechanical behavior of the device in a significant way.

1Other crystal parameters are reported in Table 3.1.
2The value adopted for cD corresponds to a damping ratio δ = b/(4πmfn) ≈ 1.7%, which is a

common choice for systems like the one under investigation. An average value of the undamped

natural frequency (fn) can be deduced from Fig. 3.29-c.
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Figure 3.27: d31-mode device: simulation results for different base acceleration am-

plitudes in near-resonance conditions (gacc = 9.81 m/s2).

On the other hand, their influence on the device output voltage (vrms) and, as

a consequence, on the average electric power (Pe) absorbed by the resistive load

(RL) is more relevant. For excitation amplitudes larger than 0.6 gacc, TIM starts

to significantly underpredict vrms values provided by MsM. The maximum relative

percentage error, corresponding to 1.9 gacc, is about 36% for the voltage and 59%

for the electric power.

Fig. 3.28 shows the evolution of some quantities of interest in a representative

period (τ = 1/fz̈b) of the device steady-state response. The input excitation ampli-

tude is equal to 1.9 gacc. It can be seen how, differently from TIM, MsM predicts

domain switching for tip deflection values outside the green highlighted zones (Fig.

3.28-b). The different maximum and minimum values reached by x+ in the MsM

case are responsible for the larger peak to peak output voltage (Fig. 3.28-c). It can

be also seen how PTs produce slightly distorted voltage and power waveforms.

Fig. 3.29 reports, for the same case, the evolution in time domain of the PZT

crystal Young’s modulus Ỹ2 (Fig. 3.28-b). It can be seen how, for the MsM, Ỹ2

slightly deviates from the constant value predicted by the TIM, thus resulting in a

negligible variation of the cantilever undamped natural frequency fn (Fig. 3.28-c).
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Figure 3.28: d31-mode device (case |z̈b| = 1.9 gacc): evolution of quantities of interest

in a representative period of the device steady-state response. a) tip displacement; b)

PF relative to the (+) variant; c) output voltage; d) instantaneous electric power.

The evolution in time of the crystal permittivity, which from (3.8) results equal to:

ε = ε0εr = a(x+, x−) , (3.45)

is also reported (Fig. 3.28-c).

3.5 Conclusion

In this chapter, the effect of material nonlinearities on the response of piezoceramic

energy harvesters has been investigated.

A physics-based, nonlinear formulation has been adopted for deriving consti-

tutive equations of piezoceramic mono-crystalline material. The proposed model

is able to reproduce domain switching dynamics, which determines the mesoscopic

configuration of the material. Reported quasi-static numerical analyses have shown

that hysteresis strongly depends on parameter Δg0, which can be essentially re-

lated to the switching inertia of crystal domains. Moreover, proposed approach

reproduces the rate-dependent hysteretic behavior.

Through a multi-scale approach, the mesoscopic dynamics of crystal domains

has been coupled with the dynamics of two different type of devices, both modeled
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Figure 3.29: d31-mode device (case |z̈b| = 1.9 gacc): evolution of quantities of interest

in a representative period of the device steady-state response. a) tip displacement;

b) PZT crystal Young’s modulus; c) device undamped natural frequency; d) crystal

permittivity.

as SDOF systems. Implementation issues have been also discussed, in details.

Equivalent lumped circuit representations have been derived for the proposed

models. In contrast with the classical linear circuit representation - widely adopted

in literature for representing piezoelectric transducers - circuits reported in this

chapter are enriched with nonlinear, time-varying components. This allows for both

an effective visualization of the role that the material mesoscopic evolution has on

the energy transduction process and an immediate comparison with the linear case.

Dynamic numerical analyses have been reported for two case studies: a nano-

generator elementary cell (working in d33-mode) and a piezoceramic unimorph (d31-

mode).

Results show that, even for low amplitudes of the input excitation, signifi-

cant misprediction can result from ignoring material hysteresis. Moreover, the

physics-based feature of the proposed modeling approach provides an insight on

how, through an engineered crystal design, material nonlinearities can be poten-

tially exploited in order to improve energy efficiencies.
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4

A nonlinear circuit for modeling

large deformation effects in

piezoelectric system dynamics

4.1 Introduction

In the previous chapter, the behavior of devices based on piezoceramic materials has

been investigated. Most of the piezoelectric energy harvesters studied to date consist

of a bending member made of stiff ceramics (such as PZT) acting as a mechanical

resonator. Even if designed to be tuned to the dominant frequency of the environ-

ment vibration, deformations of the beam must be typically small in order to avoid

material failure under resonance conditions (69). This justifies the wide adoption of

linear models in the past literature (70, 71, 72, 73, 74). The interest in nonlinear en-

ergy harvesting comes from the insight of exploiting nonlinear phenomena in order

to overcome what is referred to as the main limitation of energy harvesting devices

(75). As resonant electromechanical systems, in fact, their effectiveness is limited

to a very narrow bandwidth around resonance frequencies. Recent literature re-

ports various devices for energy harvesting applications with intentionally designed

nonlinearities (76, 77, 78, 79). Moreover, several review papers (80, 81, 82) report

examples of nonlinear and other methods of inproved broadband energy harvesting.

Causes of nonlinear responses can be traced to several mechanisms, such as insta-

bility phenomena (83, 84, 85, 86), nonlinear material constitutive law (as discussed

in the previous chapter), impacts (87, 88, 89, 90), etc.. Additionally, nonlinearities

can arise from geometric effects (91, 92, 93). The advantage offered by piezoelectric

polymers, such as PVDF (94), of sustaining large displacement without failure or
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drastic reduction of the piezoelectric efficiency (95, 96, 97), provides the opportunity

of exploiting geometric nonlinearities - which are significant when large deflections

occur - as a way of improving the frequency bandwidth of this type of devices.

In a modeling perspective, the electromechanical response of flexible piezoelectric

devices can be assessed through different numerical and analytical techniques, e.g.

reduced-order models, Finite Element (FE) models and circuit analogy methods

(13, 98, 99, 100, 101, 102, 103, 104). While FE simulations can be a viable com-

putational strategy for nonlinear static analyses, reduced-order models are more

attractive for nonlinear dynamic analyses because they allow to save elaboration

time. Aside few exceptions (99), however, most reduced-order models assumes a

linear electromechanical response and the modal superposition principle is exten-

sively adopted to derive the state-space representation of the system. The solution of

nonlinear dynamic equilibrium equations using mode superposition techniques was

first studied in (105) and implemented successfully in (106) for mechanical prob-

lems. A review of reduced order model techniques is reported in (107), including

a description of the modal coordinate reduction. The use of modal derivatives for

nonlinear model order reduction has been recently proposed in (108) in the context

of isogeometric FE analysis. Few studies describe efficient numerical procedures for

reduced order model techniques and coupled domains (such as in electromechanical

systems). The most important contributions are provided in (109) and (110), the

proposed strategy is implemented in (111).

In this chapter, an efficient hybrid approach is proposed for accurately modeling

the nonlinear dynamic response of PVDF energy harvesters. The approach employs

reduced-order nonlinear modeling techniques for estimating the Frequency Response

Functions (FRFs) of the device. With the aim of accurately predict nonlinear geo-

metric effects, lumped coefficients of the reduced-order model (related to nonlinear

terms) are identified by fitting global curves providing the tip displacement of the

device for increasing values of a static external load (i.e., the pushover curves). In

order to obtain pushover curves, the FE method is employed to solve the equations

governing the device response under static loading. The global FE-based solutions

are used in place of experimental data to identify the values of linear and nonlinear

lumped coefficients of the reduced-order model.
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4.2 Nonlinear circuit reduced-order model

Forced vibrations of a cantilever-type generator, in the linear elastic case, can be

defined through modal coordinates ηr (102, 112):

{
η̈r + 2ζrωrη̇r + ω2

rηr − θrυ = fr ,

Ceq
p υ̇ + υ

RL
+

∑∞
r=1 τrη̇r = 0

, (4.1)

for each mode r.

In (4.1), ζr is the modal mechanical damping ratio, ωr is the undamped natural

frequency, θr and τr are modal electromechanical coupling terms, fr is the modal

mechanical forcing function, Ceq
p is the capacitance, RL is the load resistance and

υ is the voltage response across the external resistive load.

Provided modal coordinates ηr(t), the transverse displacement of the neutral

axis u(ξ, t) relative to the moving base at position ξ = x/L and time t, is equal to:

u(ξ, t) =
∞∑
r=1

φr(ξ)ηr(t) (4.2)

where φr(ξ) is a mass normalized eigenfunction (mode shape). Using Hamilton’s

principle and Galerkin method, Stanton et al. (113) extended the formulation in

(102) to the case of nonlinear piezoelectricity:

⎧⎨⎩η̈r + 2ζrωrη̇r + ω2
rηr +

∑N
j,k,l αrjklηjηkηl −

(
θr +

∑N
j,k=1 θ

′
rjkηjηk

)
v = Γrz̈b ,

Ceq
q v̇ + 1

RL
v +

(
τr +

∑N
j,k=1 τ

′
rjkηjηk

)
η̇r = 0 ,

(4.3)

where αrjkl, θr, θ
′
rjk, τr and τ

′
rjk are coefficients that can be determined based on

the orthogonal basis functions used to represent in the modal space the transverse

deflection of the device. Coefficient Γr is the modal mechanical forcing function

coefficient that multiplies the base acceleration z̈b.

In (4.3) it can be seen that elastic nonlinearities results from cubic terms and

the nonlinear coupling is third order as well.

Following (113) and assuming a linear damping, the single-mode approximation

of (4.3) can be written as follows:

⎧⎨⎩η̈ + 2ζωη̇ + ω2η + αη3 −
(
θ + θ

′
η2

)
υ = Tnz̈b

Ceq
p υ̇ +

υ

RL
+

(
τ + τ

′
η2

)
η̇ = 0

. (4.4)
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Figure 4.1 reports the lumped circuit representation of model (4.4), where

the independent voltage source connected to the mechanical port is defined by

Fb = mTnz̈b, the constant inductance Lm represents the system equivalent mass m

(accounting for the kinetic energy stored by the system), and the constant resistor

Rm ≡ cD = 2mζω represents dissipative effects related to viscous damping.

Figure 4.1: PVDF unimorph generator: lumped circuit representation of the relative

reduced-order model.

The coupling between the mechanical and the electrical port is taken into ac-

count through controlled generators. The controlled voltage generator connected to

the mechanical port, which is driven by the device outpu voltage v, is characterized

by a gain γ depending on the device tip displacement square:

γ = m(θ + θ′η2) . (4.5)

The controlled current generator connected to the electrical port, driven by the

device tip displacement rate of change η̇, is characterized by a nonlinear gain γ
′
:

γ
′
= (τ + τ ′η2) . (4.6)

The circuital component accounting for the electrostatic energy stored by the

system is characterized by a constant capacitance Ceq
p , whereas the elastic energy

stored by the system is taken into account through the series of a linear capacitor

C l
m = 1/mω2 and a nonlinear capacitor Cnl

m = 1/(mαη2). Voltage across the overall

series capacitance represents the reaction force of a nonlinear Duffing’s spring:

FElast = FElast
l + FElast

nl =
(
κD + αDη

2
)
η , (4.7)

where κD = mω2, and αD = mα.
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In order to accurately modeling the nonlinear dynamic response of the system

under investigation, equation set (4.4) must be provided with proper values of the

following parameters: κD, αD, θD = mθ, θ
′
D = mθ

′
, τ , and τ

′
. According to the

approach proposed in (114), they can be estimated by fitting analytical approxi-

mations of push-over curves determined through quasi-static FE analyses. In the

following subsections, a short review on nonlinear elasticity is reported, along with

a description of the FE discretization.

4.3 Methods

4.3.1 Nonlinear elasticity theory

For the sake of completeness, we briefly review hereafter the equations for the con-

tinuum mechanical description of a piezoelectric solid under large strains. The

interested reader can refer to (115) for a more complete discussion. The refer-

ence and deformed configurations are denoted by B and S, respectively, where

B, S ⊂ R
3. When the electromechanical body deforms, the nonlinear mapping

function ϕ : B → S at time instant t maps the material point X ∈ B onto x ∈ S:

x = ϕ(X, t). The displacement vector u is obtained as the difference between the

positions vectors of the current and initial configuration: u(X, t) = ϕ(X, t) − X,

whereas the deformation gradient F can be defined as function of the displacement

gradient H: F = 1 + H, where: H = gradu. According to the Faraday’s law in

quasi-static conditions: curl
⇀
e = 0, where

⇀
e is the electric field vector in the cur-

rent configuration. Consequently,
⇀
e is the gradient of a scalar electric potential φ:

⇀
e = −∂φ

∂x . In the current configuration, the balance of momentum and the Gauss’s

law state that:

divσσσ + ρm,vb̄v = ρm,vA, div
⇀
d = �e,v, (4.8)

where σσσ represents the mechanical Cauchy stress tensor,
⇀
d denotes the electric

displacement, ρm,v is the mechanical density, �e,v is free electric charge density

and ρm,vb̄v indicates the volume force (in the current configuration). In the initial

configuration, the local balance of momentum given by Eq. (4.8) can be recast with

respect to different stress and strain measures:

divP+ ρm,V b̄V = ρm,V A, divFS+ ρm,V b̄V = ρm,V A, (4.9)

where P and S are the total first and second Piola-Kirchoff stress tensors, respec-

tively. Moreover, ρm,V b̄V represents the body force in the initial configuration.
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Furthermore, it is assumed that a strain energy density function ψ exists for the

electromechanical body that, in general, can be defined with respect to different

kinematics tensors, namely F,E,C and the electric field vector �E. All the quanti-

ties refer to the initial configuration. Here, E indicates the Green-Lagrange strain

tensor that is obtained as: E = 1
2

(
FFT − I

)
= C−I

2 , where C = FTF is the right

Cauchy-Green tensor. A compressible Neo-Hookean type material model with a

total energy density ψ
(
C, �E

)
is used in this work to model the piezoelectric layer:

ψ
(
C, �E

)
= μ

{
1

2
[I1 − 3]− ln (JF )

}
+

λ

2
ln (JF )

2 + C1I4 + C2I5, (4.10)

where λ and μ are the Lame constants, C1 and C2 are further material constants

to be calibrated and I1, I4, I5 are computed for a transversely isotropic material

according to (116, 117). Given ψ it is obtained respectively that S = ∂ψ
∂E and

⇀
D = − ∂ψ

∂
⇀
E
, where

⇀
D is the dielectric displacement vector in the initial configuration.

Further transformations from the material to the current configuration is possible

by means of the following relationships:

⇀
e = F−T

⇀
E,

⇀
d =

F
⇀
D

JF
, σσσ =

FSFT

JF
. (4.11)

Classical Dirichlet and Neumann boundary conditions for the mechanical and elec-

trical fields are considered (see Chapter 2). Finally, it is remarked as for the non

piezoelectric layer, a compressible Neo-Hookean type material model is employed

where the total energy density is ψ (F):

ψ(F) =
1

2
λ (JF − 1) 2 + μ

(
1

2
(Tr [C]− 3)− ln(JF )

)
. (4.12)

4.3.2 Finite element discretization for static problems

The standard nodal FE discretization is employed following (117, 118). In doing

so, the advanced symbolic computational tools for FE analysis available in the

AceGen/AceFEM are useful to facilitate the full automation of the linearization

process. Therefore, let u =
∑

Niûi and φ =
∑

Niφ̂i be the discretized displacement

and electric potential fields, respectively, where ûi are the nodal displacements and

φ̂i the nodal electric potentials (Ni are the shape functions). According to (118),

since all quantities in Eq. (4.10) and Eq. (4.12) depend on the displacement field

and the electric potential, the resulting set of nonlinear equations has the general

form R(p) = 0, where the unknown variables p ∈ �ntp have to be determined (ntp

is the total number of global unknowns of the problem). If pe ⊂ p is a subset of the
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global vector of unknowns p from which the eth element depends explicitly, then

the element Re and the Gauss point Rg contributions to the global residuals R are

explicit functions of pe, i.e. Re(pe) and Rg(pe). In particular, at the element level,

the internal residuals Re are obtained using AceGen as follows (118):

Re =
∂

∂pe

(∫
V
ψ(pe)dV

)
= 0, (4.13)

where pe is the unknown vector related to the element that collects all nodal dis-

placements ûi and/or nodal electrical potentials φ̂i. Within the FE procedure, the

global residuals R are approximated as:

R ≈
ne∧
e=1

Re =

ne∧
e=1

ng∑
g=1

wgJgRg = 0, (4.14)

where
∧

is the standard FE assembly operator, ne indicates the number of elements,

ng is the number of Gauss points and g indicates a generic Gauss point (wg and

Jg are the Gauss point weight and Jacobian determinant, respectively). The Gauss

point contribution to the residuals isRg = δ̂ψ(pe)

δ̂pe

. Finally, within the FE procedure,

the tangent operator K ≈ ∧ne
e=1Ke =

∧ne
e=1

∑ng

g=1wgKg is formed from the Gauss

point tangent operator Kg:

Kg =

(
δ̂Rg

δ̂pe

)
. (4.15)

4.4 Hybrid computational strategy

A hybrid computational approach is here employed for modeling the dynamical

behavior of EH devices. (see Fig. 4.2). It is based on two steps. First, Eq.

(4.14) is solved discretizing the physical domain of the piezoelectric cantilever. In

particular, a pattern of forces (Fz) is statically applied to the structural model

(including nonlinear effects) and the z-component of the total reaction at the base

(Rz) is plotted as a function of the tip displacement (η). This provides the capacity

curve of the device (usually referred to as pushover curve). Through the second step

of the proposed procedure, pushover curves allows for reducing the nonlinear static

problem to an equivalent SDOF system. Hence, a lumped nonlinear spring element,

representing the elastic reaction force (FElast = Rz) in the reduced-order model (see

Fig. 4.1), is calibrated based on the estimated capacity curve. This result is used

to solve the equation set (4.4), which represents the ordinary differential equations
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Figure 4.2: Nonlinear PVDF unimorph generator: implemented hybrid computa-
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describing the full dynamics of the piezoelectric energy harvester. In this way,

the nonlinear state-space model equation is integrated using a time discretization

algorithm. The overall numerical strategy has been implemented in Mathematica

(using the advanced symbolic computational tools available in AceGen/AceFEM

(118)) and Matlab.

Analytical expressions can be also derived for the case of harmonic input base

vibrations. With reference to system (4.4), let assume a sinusoidal input acceleration

with amplitude Fb, frequency ωF and phase φF . Based on experimental evidence

(69, 114), the electrical contribution to the mechanical equation can be considered

negligible. Therefore, for the single-mode approximation, (4.4) reduces to:⎧⎨⎩η̈(t) = −2ζωη̇(t)− ω2η(t)− αη(t)3 + Fbcos(ωF t+ φF )

Ceq
p υ̇ +

υ

RL
+ θη̇ = 0

. (4.16)

The solution of the first equation is well established (119) and allows for corre-

lating the amplitude of the tip oscillation Atip with the amplitude of the external

acceleration Fb as function of ω and ωF :{[(
ω2 − ω2

F

)
Atip +

3

4
αA3

tip

]2
+ [2ζωFAtip]

2

}1/2

= Fb. (4.17)

According to (119), provided that the following inequality is verified:

αAtip
2

36ωF
2
� 1, (4.18)

the tip oscillation can be well approximated by a harmonic signal in the form η(t) ≈
Atipcos(ωF t). It is worth stressing that Atip(ωF ) is a nonlinear function of the input

excitation frequency ωF . Therefore, the second equation can be recast in the form:

υ̇ +
1

RLC
eq
p
υ = −θAtip

Ceq
p

d

dt

[
cos (ωF t)

]
. (4.19)

The steady-state solution of Eq. (4.19) is given by:

υ(t) = Re{V̄ eιωF t} = |V̄ |cos(ωF t+ ∠V̄ ) (4.20)

where V̄ is a complex quantity expressed as follows:

V̄ = − ωF θAtip

Ceq
p

[
ωF

2 + 1
(RLC

eq
p )2

] (
ωF + ι

1

RLC
eq
p

)
. (4.21)

Therefore, the steady-state amplitude Av of the output voltage can be computed

as:

Av(ωF ) = |V̄ | = ωF θAtip(ωF )

Ceq
p

√
ω2
F + 1

(RLC
eq
p )2

. (4.22)
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Table 4.1: Material and geometrical data used in the numerical study

Property Symbol Value

Elastic modulus of the piezoelectric film YPV DF 3.0 GPa

Elastic modulus of the substrate Ymylar 3.79 GPa

Poisson ratio of the piezoelectric film νPV DF 0.3

Poisson ratio of the substrate νmylar 0.35

Damping ratio ζ 4.0 %

Density of the piezoelectric film ρPV DF 1780 kg/m3

Density of the substrate ρmylar 1390 kg/m3

Lumped tip mass Mlump 0.032 g

Piezoelectric coupling coefficient d31 23·10−12 pC/N

Electrical permittivity ε33 106e−12 F/m

Unimorph length L 31.7 mm

Unimorph PVDF width W 16.0 mm

Unimorph Mylar width - R W 16.0 mm

Unimorph Mylar width - T W1 1.0 mm

Circuit resistance RL 10 MΩ

Thickness of the piezoelectric film TPV DF 28 μm

Homogenized stiffness Y I 37.7 Nmm2

Equivalent mylar layer thickness T eq
mylar 172 μm

4.5 Case studies

The capabilities of the proposed hybrid approach are now assessed based on two

device configurations. The first corresponds to the EH characterized experimentally

by Elvin et al. in (69, 120), the second is inspired by the work of Kwon (121),

where T-shaped piezoelectric cantilevers are employed for fluid energy harvesting

applications. The considered configurations are depicted in Fig. 4.3, along with

details of the relative cross sectional views. Both structures consist of a PVDF film

with electrodes applied on the upper and bottom faces. Electrodes are provided

with wires in order to connect electrical loads. Moreover, coatings are applied to

protect the device from damage. Densities and Young’s moduli of PVDF and mylar

are provided in Table 4.1, along with the other main material and geometrical data

adopted in this numerical study.

The thickness of the PVDF layer is 28 μm and the piezoelectric strain constant

is d31 = 23 · 10−12 pC/N. According to Fig. 4.3, five layers are considered in the

real configuration of both the devices, namely: a) an acrylic protection layer with
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thickness equal to 6 μm, b) a silver layer with thickness equal to 8 μm, c) a central

layer of PVDF with thickness equal to 28 μm, d) another silver layer with thickness

equal to 8 μm, and e) a final layer of mylar, with thickness equal to 140 μm and

widths equal to 10 mm for the rectangular cross section and 1 mm for the T-Shape

section. It is observed as for the T-shaped energy harvester, the piezoelectric layer

(made of PVDF) corresponds to the flange whereas the web is assumed made of

mylar.

Figure 4.3: Sketch of the PVDF-based unimorph generators considered as case stud-

ies. a) rectangular cross section; b) T-shaped cross section.

FE analyses are first performed in order to derive the pushover curves of the two

devices, with the assumption of open-circuit conditions for the electrical boundary.

Then, a phenomenological law is derived for the nonlinear stiffness, based on the

capacity curves. This involves the calibration of the spring-type elements of the

reduced-order model (corresponding to the reciprocal of the series capacitance in

the green box of Fig. 4.1). In practice, the capacity curve is approximated by means

of the following relationship:

FElast = κDη + αDη
3 , (4.23)

where κD and αD characterize the constitutive law of the nonlinear spring.

4.6 Results

In this section, numerical results obtained by employing the proposed procedure are

reported, for both the devices considered as case studies (see Fig. 4.3). In order to

investigate the influence of material and geometrical parameters on their frequency
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responses, a parametric analysis has been performed. Four different values are con-

sidered for the Young’s moduli and layer thicknesses of involved materials (YPV DF ,

Ymylar and TPV DF , Tmylar, respectively). Analyses have been carried out by chang-

ing one parameter per time, keeping constant all the others at their reference values

(i.e., values relative to the original configurations). Reference parametric set is re-

ported in Table 4.1. Corresponding quantities will be referred to as E0
PV DF , E

0
mylar,

T 0
PV DF , T

0
mylar throughout the parametric analysis. Frequency Response Functions

(FRFs) of tip displacements and output voltages, computed assuming a resistive

electrical load of RL = 10MΩ, are reported for each case.

With reference to the rectangular cross section device, Figure 4.4 and Fig. 4.5

show the role of the piezoelectric elastic modulus YPV DF on the dynamic response

for increasing values of the base acceleration amplitude. The influence of the sub-

strate Young’s modulus (Ymylar) can be inferred from Fig. 4.6 and Fig. 4.7. More-

over, results of the parametric analyses relative to layer thicknesses are illustrated

in Figures 4.8 -4.11.

Generally, it can be observed the occurrence of geometric stiffening effects, which

induce a significant variation of the frequency at which the device exhibits the

maximum tip displacement and output voltage. As an example, Fig. 4.4 shows

for the original device configuration (case a), a peak displacement at 316 rad/s for

small deformations (amplitude of the base excitation equal to or less than 1ag, with

ag = 9.8 m/s2).

For very large deformations (amplitude of the base excitation equal to 10ag),

the peak displacement is achieved at 350 rad/s. In such a case, an increment of the

elastic modulus up to 60% shifts this frequency to 420 rad/s. With reference to the

T-shaped device, Figure 4.12 and Fig. 4.13 illustrate the role of the piezoelectric

elastic modulus YPV DF whereas Fig. 4.14 and Fig. 4.15 highlight the influence

of the substrate thickness Tmylar. Qualitatively similar considerations can be done

with respect to behaviors observed in the previous case.
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Figure 4.4: Device with rectangular cross-section: FRFs of the maximum tip

displacement for base acceleration amplitudes ranging from 1ag to 10ag, where a)

YPV DF = Y 0
PV DF b) YPV DF = 1.2Y 0

PV DF , c) YPV DF = 1.4E0
PV DF , d) YPV DF =

1.6Y 0
PV DF .

Figure 4.6: Device with rectangular cross-section: FRFs of the maximum tip

displacement for base acceleration amplitudes ranging from 1ag to 10ag, where a)

Ymylar = Y 0
mylar, b) Ymylar = 0.5Y 0

mylar, c) Ymylar = 1.5Y 0
mylar, d) Ymylar = 2.0Y 0

mylar.
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Figure 4.5: Device with rectangular cross-section: FRFs of the maximum voltage for

base acceleration amplitudes ranging from 1ag to 10ag, where a) YPV DF = Y 0
PV DF , b)

YPV DF = 1.2Y 0
PV DF , c) YPV DF = 1.4Y 0

PV DF , d) YPV DF = 1.6Y 0
PV DF .

4.7 Validation

The experimental validation of the proposed procedure is discussed in this section,

with reference to the case study characterized by the rectangular cross section. The

considered configuration (see Fig. 4.3-a), whose relative parameters are summarized

in Table 4.1, corresponds to the device under investigation in (69). Experimental

evidences provided in (69) has proven that the device nonlinear response mainly

depends on mechanical stiffening/softening effects. Therefore, parameters θ
′
and τ

′

in eq.set (4.4) can be considered negligible. The equivalent capacitance connected

to the electrical port can be evaluated as follows:

Ceq
p =

ε33WL

TPV DF
, (4.24)

where W,L, TPV DF are width, length and the thickness of the piezoelectric layer

respectively, and ε33 is the permittivity constant. Moreover, the generic electrome-

chanical coupling term θr can be expressed, as a function of the rth shape mode,

as follows (112):

θr =
YPV DFd31W (2hb + TPV DF )φ

′
r(L)

2
, (4.25)
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Figure 4.7: Device with rectangular cross-section: FRFs of the maximum voltage

for base acceleration amplitudes ranging from 1ag to 10ag, where a) Ymylar = Y 0
mylar,

b) Ymylar = 0.5Y 0
mylar, c) Ymylar = 1.5Y 0

mylar, d) Ymylar = 2.0Y 0
mylar.

Figure 4.8: Device with rectangular cross-section: FRFs of the maximum tip

displacement for base acceleration amplitudes ranging from 1ag to 10ag, where a)

TPV DF = T 0
PV DF , b) TPV DF = 0.5T 0

PV DF , c) TPV DF = 1.2T 0
PV DF , d) TPV DF =

1.4T 0
PV DF .
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Figure 4.9: Device with rectangular cross-section: FRFs of the maximum voltage for

base acceleration amplitudes ranging from 1ag to 10ag, where a) TPV DF = T 0
PV DF , b)

TPV DF = 0.5T 0
PV DF , c) TPV DF = 1.2T 0

PV DF , d) TPV DF = 1.4T 0
PV DF .

Figure 4.10: Device with rectangular cross-section: FRFs of the maximum tip

displacement for base acceleration amplitudes ranging from 1ag to 10ag, where a)

Tmylar = T 0
mylar, b) Tmylar = 0.8T 0

mylar, c) Tmylar = 0.9T 0
mylar, d) Tmylar = 1.2T 0

mylar.
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Figure 4.11: Device with rectangular cross-section: FRFs of the maximum voltage

for base acceleration amplitudes ranging from 1ag to 10ag, where a) Tmylar = T 0
mylar,

b) Tmylar = 0.8T 0
mylar, c) Tmylar = 0.9T 0

mylar, d) Tmylar = 1.2T 0
mylar.

Figure 4.12: Device with T-shaped cross-section: FRFs of the maximum tip displace-

ment for base acceleration amplitudes ranging from 1ag to 10ag, where a) YPV DF =

Y 0
PV DF , b) YPV DF = 1.2Y 0

PV DF , c) YPV DF = 1.4Y 0
PV DF , d) YPV DF = 1.6Y 0

PV DF .
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Figure 4.13: Device with T-shaped cross-section: FRFs of the maximum voltage for

base acceleration amplitudes ranging from 1.ag to 10ag, where a) YPV DF = Y 0
PV DF ,

b) YPV DF = 1.2Y 0
PV DF , c) YPV DF = 1.4Y 0

PV DF , d) YPV DF = 1.6Y 0
PV DF .

Figure 4.14: Device with T-shaped cross-section: FRFs of the maximum tip

displacement for base acceleration amplitudes ranging from 1ag to 10ag, where a)

Tmylar = T 0
mylar, b) Tmylar = 1.1T 0

mylar, c) Tmylar = 1.2T 0
mylar, d) Tmylar = 1.3T 0

mylar.
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Figure 4.15: Device with T-shaped cross-section: FRFs of the maximum voltage for

base acceleration amplitudes ranging from 1ag to 10ag, where a) Tmylar = T 0
mylar, b)

Tmylar = 1.1T 0
mylar, c) Tmylar = 1.2T 0

mylar, d) Tmylar = 1.3T 0
mylar.

where d31 is the piezoelectric coupling constant and hb is the position of the bottom

PVDF layer from the neutral axis. In (4.4), it results that θr=1 = θ. Distance hb is

defined as hb = hpa − TPV DF , where hpa is the distance from the top of the PVDF

layer to the neutral axis (112):

hpa =
T 2
PV DF + 2YRTmylarTPV DF + YRT

2
PV DF

2 (Tmylar + YRTPV DF )
, (4.26)

where YR = Ymylar/YPV DF is the ratio of the substrate Young’s modulus (here

assumed as made of mylar) to the Young’s modulus of the PVDF material. Tmylar

is the thickness of the supporting substrate.

Moreover, for a rectangular cross section, it results: θ = τ . As a consequence,

the circuital component accounting for the coupling between mechanical and elec-

trical ports in circuit 4.1 is equivalent to an ideal transformer with voltage ratio

γl = mθ. According to (72), the multi-morph structure concept has been used to

physically and mathematically describe the equivalent stiffness of the piezoelectric

energy harvester. A fixed-free cantilever configuration is assumed. Moreover, each

multiple thin material film layer has length L width W and a thickness Ts. The

same assumptions adopted for the PZT unimorph in section 3.4.2 are considered
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Figure 4.16: Device with rectangular cross-section: equivalent bi-layered configura-

tion.

here: a) layer interfaces are smooth and continuous and do not slip with respect to

each other; b) each layer is considered uniform with Youngs modulus Ys, rotational

inertial Is and cross-sectional areas As=WTs (where subscript s denotes the sth

layer). The homogenized flexural rigidity about the neutral axis (Y I) is given by

(72): Y I =
∑Nlayer

s=1

{
AsYs

[
(zs − zN )2 + Ts

2

12

]}
, where Nlayer is the number of lay-

ers considered (5 for the considered device), and zN =
∑Nlayer

s=1 YsTszs/
∑Nlayer

s=1 YsTs

is the neutral axis position. zs is the location of the axis of the sth layer with respect

to an arbitrary reference. It is not necessary to use a FE discretization for each

material layer. In fact, an equivalent mylar layer thickness (T eq
mylar) is determined

in such a way that the first resonance frequency, provided by experimental data

(ω1 ≈ 316 rad/sec), is close to the one obtained by means of the homogenized stiff-

ness. Even if each layer of the device can be explicitly accounted in the FE model,

the use of an equivalent layer can result useful in order to reduce computational time

in nonlinear analyses. Modeling thin layers, in fact, requires more refined meshes

and might cause distortion phenomena of the elements at the interfaces between

layers with different thicknesses. Fig. 4.16 and Fig. 4.17 report the equivalent

device configuration considered for the FE model and a detail of the adopted mesh

discretization, respectively.

Figure 4.18 reports the first four modal shapes and modal frequencies of the

devices evaluated by FE analysis. The good agreement with experimental data

reported in Fig. 4.23 confirms the validity of the simplifying approach.

Figure 4.19 compares the results of the large displacement analysis (performed

by means of AceFEM and Comsol Multiphysics) with the experimental evidences

provided in (69). The vertical tip displacements are normalized with respect to the
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Figure 4.17: Device with rectangular cross-section: detail of the FE mesh discretiza-

tion.

Figure 4.18: Device with rectangular cross-section: first four modal shapes and modal

frequencies of the considered piezoelectric device.

beam length L while the load Fz is normalized with respect to the homogenized

stiffness coefficient. Figure 4.19 shows a very good agreement between numerical

predictions and experimental outcomes. Contour levels of the stress components σyy

and deformed shape are shown in Fig. 4.20. Figure 4.21 shows the good agreement

between the FE analysis and the approximation obtained by means of the analytical

Duffing spring model.

The proposed approach has been further validated against new experimental

data resulting from tests carried out on the considered device. The experimental

testing equipment (which is sketched in Fig. 4.22) consists of a signal generator pro-

viding a controlled input voltage to the piezoelectric device and an analysis system

with tools for signal processing and modal characterization. Modal data (i.e., natu-

ral frequencies and damping ratios) are extracted based on the SDOF curve-fitting

of the FRF. The frequency response analysis is performed by evaluating the out-of-

plane displacements of the piezoelectric cantilevers by a non-contact measurement

system. An AC voltage signal, provided by the signal generator embedded into the

vibrometer system, has been applied to the cantilever, thus resulting in the actua-

tion and deflection of the tip. The cantilever is tested assuming a frequency sweep

at a given voltage in order to measure the peak of the tip deflection. The measured

first resonance frequency and damping ratio are 324 rad/sec (see Fig. 4.23) and
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Figure 4.19: PVDF unimorph generator: normalized tip deflection δtip under a static

loads. Comparison among FE solutions and experimental data.

(mm) 

 
N/mm2 

syy 

Figure 4.20: PVDF unimorph generator: contour levels of vertical displacement

components and Cauchy stresses (color bars refer to the final load step).
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Figure 4.21: PVDF unimorph generator: FE-based capacity curves and analytical

approximation.

Figure 4.22: Block diagram of the experimental setup.
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Figure 4.23: PVDF unimorph generator: experimental characterization of device

natural frequencies for chirp signals of 3 V and 10 V.

4%, respectively. Moreover, two base acceleration time histories are considered for

the experimental characterization of the device response under large strains. In

particular, direct input accelerations - provided at the clamped end of the device by

a shaker unit - are measured through a Laser Doppler Velocimeter (LDV) system

by pointing the laser beam on the device clamped base. The harmonic dynamic

inputs have amplitude equal to 3.7ag and 10.5ag while the frequency is 330 rad/sec.

Magnitude spectra of exciting accelerations are provided in Fig. 4.24-a,b, along

with magnitude spectra (Fig. 4.24-c,d) and time hystories (Fig. 4.24-e,f) of the

measured output voltage. A 1MΩ resistive load has been connected to the device

electrodes for the considered test.

Time history plots reported in Fig. 4.24 show a comparison between the nu-

merically predicted (red dashed curves) and experimental (blue solid curves) output

voltages. After estimating parameters of the nonlinear spring through the compari-

son between the reduced-order model and the static FE problem solutions, equation

set (4.4) is solved using a Runge–Kutta algorithm, providing numerical predictions

of the tip displacement and/or velocity and the voltage on the electric load.

A good agreement between experimental evidences and numerical simulations

can be observed, as confirmed by the results in Table 4.2.

Moreover, based on experimental evidences it is thus confirmed that for PVDF

EHs a harmonic form can be assumed for tip displacement and output voltage

waveforms in case of harmonic base accelerations. The corresponding amplitudes,

whose analytical approximation is given by (4.17) and (4.22), have a nonlinear

dependence with respect to the frequency of the input signal.
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Table 4.2: Experimental vs numerical results

Experimental voltage peak [V] Numerical voltage peak [V]

3.7ag 5.2 5.2

10.5ag 10.3 10.1

4.8 Conclusion

In this chapter an innovative hybrid approach has been proposed for modeling the

nonlinear dynamic response of piezoelectric cantilever beams.

Once the tip displacements are obtained as function of the load increments by

means of a static nonlinear FE analyses, linear and nonlinear lumped coefficients of

the spring element into the analytical Duffing model are calibrated in order to fit

the reference nonlinear pushover curve. Finally, the nonlinear dynamic differential

equations governing the response of the piezoelectric cantilever beam can be solved

in order to estimate the frequency response functions of tip displacement and output

voltage.

The attractive features of this computational procedure are twofold. From a

numerical standpoint, the FE analysis is performed to solve a static problem, which

is less time consuming than a dynamic problem.

Since the nonlinear behavior is reflected into the reduced-order model adopted

for the dynamic analyses, through the comparison with FE-based capacity curves,

devices with a larger bandwidth and better performances in the frequency range

of interest can be fabricated. The experimental work needed for characterizing

the device has been limited to the estimation of damping and natural frequencies

of the device without nonlinear effects. It is not particularly time consuming and

require ordinary laboratory facilities. A large parametric investigation has been also

performed in order to assess the role of material and geometrical parameters on the

nonlinear response of piezoelectric unimorphs for energy harvesting applications.

Reported results show that the proposed hybrid approach leads to satisfactory

results while reducing the overall numerical and experimental efforts.
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5

Conclusion

In this thesis, recent results on modeling the dynamic behavior of piezoelectric EHs

are presented, with a major focus on two of the nonlinearity sources that can be

identified for this kind of devices: hysteresis and geometric nonlinearities. Clas-

sical reduced-order modeling approaches have been enhanced by including effects

of ferroelastic/ferroelectric hysteresis and large deformations, yielding to effective

circuit representations that allow for an intuitive insight in the energy transduction

process characterizing this kind of devices. Nonlinearity sources have been assessed

in a separate way.

A physics based model has been employed in order to reproduce hysteretic dy-

namics of piezceramic single crystals. Through a multiscale approach, crystal meso-

scopic evolution has been coupled to the dynamics of devices modeled as SDOF

systems. Reported numerical investigations show that, even for low amplitudes of

the input excitation, significant misprediction can result from ignoring material hys-

teresis. The physics-based feature of the proposed approach, allows for evaluating

the role of crystal parameters on the device performances, providing an insight on

how, through an engineered crystal design, material nonlinearities can be potentially

exploited in order to improve generation performances.

Moreover, an effective hybrid computational framework is proposed with the aim

of modeling geometric nonlinear effects on the response of flexible PVDF-based EHs

under large deformations. The innovative strategy basically consists on performing

a fully coupled multiphysics finite element (FE) analysis to evaluate the nonlinear

static response of the device, so that an enhanced reduced-order model can be de-

rived. Hence, the global dynamic response is formulated in the state-space using

lumped coefficients enriched with the information derived from the FE simulations.

Simulation results show that geometric nonlinearities results in a stiffening of the
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5. CONCLUSION

devices considered as case studies, highlighting how the response bandwidth is a

function of the input excitation amplitude. From a numerical standpoint, the pro-

posed procedure - which has been validated against experimental evidences provided

by other Researchers and new measures - is particularly attractive: even preserv-

ing a satisfactory accuracy, computational efforts are significantly reduced as FE

analyses are performed for static problems while dynamic analyses are carried out

through reduce-order models.

Future activities will be developed within two parallel work streams:

• improve multiscale models developed for PZT material nonlinearities by in-

cluding polycrystalline behaviors;

• further validating the proposed approaches against experimental data.
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Appendix A

Equivalence of proposed MsMs

Figure A.0.1 reports simulation results obtained assuming a 1gacc sinusoidal base

acceleration, in near-resonance condition, as input for the device.

Blue solid lines refer to the numerical integration of MsM (3.25). Red dashed

line in Fig. A.0.1-c refers to the device output voltage determined by indirect

calculation based on the application of the Kirchhoff’s Voltage Law (KVL) to the

equivalent lumped circuit in Fig. 3.12 (which is relative to the MsM (3.19)).

With reference to Fig. 3.12, by writing the KVL for the circuit loop connected

to the mechanical port, the following expression of the device output voltage can

be obtained:

v(t) =
1

αMsM

(
−Fb + cDη̇ +mη̈ +

A

l0d
η − Af

d

)
, (A.1)

where the evolution in time of quantities αMsM , d, and f can be assumed the same

as that provided by the numerical integration of MsM (3.25).

The same input quantities (Fb, η̇) are considered applied to the mechanical port

of both the models.

The perfect coincidence of curves reported in Fig. A.0.1-c confirms MsMs (3.19)

and (3.25) equivalence in terms of input/output behavior.
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A. EQUIVALENCE OF PROPOSED MSMS
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Figure A.0.1: Comparison between MsMs (3.19) and (3.25) responses: 1 gacc input

acceleration in near-resonance condition. Blue solid lines refer to numerical simula-

tion of MsM (3.25). a) input force; b) rate of change of the system displacement; c)

comparison between the output voltages provided by the two MsMs.
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