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ABSTRACT

The biomembrane is a critical biological structure essential for cell’s function and

survival. It enables separation between the cell’s interior from its extracellular en-

vironment controlling the exchange of molecules and nutrients. When biomem-

branes are exposed to sufficiently intense pulsed electric fields (PEFs), structural

changes resulting in formation of transient aqueous pores increase the membrane

conductance enhacing the molecular exchange between the cell and its environ-

ment [1]. This non-thermal electromagnetic phenomenon, knows as electropora-

tion (EP), is used in medical diseases treatment to deliver drugs, vaccine, genes

and other molecules to mammalian cells [2]. Since the basic mechanisms of this

process have not yet been fully clarified, different mathematical models of elec-

troporation have been proposed in literature to study pore formation in biological

membranes [3–5]. Major limitations of such models are due to the various approx-

imations which they rely on, such as stationary dielectric properties and simple

cell shapes. As a result, errors in estimating electroporation process can occur. In

this PhD dissertation, the electroporation phenomenon induced by pulsed electric

field on different biological cells and on multiple irregular cells systems is studied

in detail. A nonlinear, non-local, dispersive and space-time multiphysic model

based on Maxwells and asymptotic Smoluchowskis equations has been developed

to calculate the transmembrane voltage and pore density along both plasma and

nuclear membranes. The irregular cell shape has been modelled by incorporating

in the numerical algorithm the Gielis superformula. The dielectric dispersion of

the cell media has been modelled considering the multi-relaxation Debye-based

relationship. In particular, the influence of electric pulse parameters, cell shape,

cytoplasm and nuclear dielectric properties on the transmembrane voltage, pore

density and electroporation relative length have been investigated.
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Chapter 1

CELL BIOLOGY AND

ELECTROPORATION PROCESS

1.1 PROKARYOTIC AND EUKARIOTIC CELLS

The cell is the basic unit of living organisms. All cells are made from the same

major classes of organic molecules: nucleic acids, proteins, carbohydrates and

lipids. Depending how their genetic material is packaged, the cells are categorized

in prokaryotes and eukaryotes (Fig. 1.1). The genetic material of a cell can be a

gene, a part of a gene, a group of genes, a deoxyribonucleic acid (DNA) molecule,

a fragment of DNA, a group of DNA molecules, or the entire genome of an or-

ganism. Prokaryotic cells do not have any membrane that encloses their genetic

material. All known prokaryotes, such as bacteria, are single cells. They are also

small, with a length of 1−2 µm. In contrast, eukaryotic cells have a membrane

that encloses their genetic material, which forms a structure called nucleus. A typ-

ical eukaryotic cell has additional membrane-bound organelles of different shapes

and sizes. Most eukaryotic cells have size in the range between 5 µm and 100 µm,

although some eukaryotic cells are large enough to be seen with the naked eye,

i.e. frog egg size of 1 mm. Some eukaryotes, like amoebae exist as single cells.

Other eukaryotic cells are part of multicellular organisms. For instance, all plants

and animals are made of eukaryotic cells, that are organized into collectives of

trillions of them called tissues [6].
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Figure 1.1: Prokaryotic and eukaryotic cells.

1.2 EUKARYOTIC ANIMAL CELL STRUCTURE

The fundamental constituents of a eukaryotic animal cell are the plasma mem-

brane, the cytoplasm and the nucleus (Fig. 1.2) [6]. Plasma membrane defines

the boundary of the cell dividing its internal living part from the nonliving extra-

cellular medium. It is based on a framework of fat consisting molecules called

phospholipids, which constitute a lipid bilayer having a hydrophilic head and a

hydrophobic tail (Fig. 1.3). This structure prevents substances from entering or

escaping the cell and it is typical also for the other membranes that define the

boundaries of the internal organelles, such as nuclear membrane. Plasma mem-

brane regulates the movement of materials into and out of the cell and facilitates

electrical signaling between cells. Molecules of oxygen, carbon dioxide, nitro-

gen gas and water pass across the membranes by simple diffusion. In contrast,

charged ions and glucose cannot dissolve in hydrophobic regions and therefore

cannot cross membranes by simple diffusion (Fig.1.4).
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Figure 1.2: Eukaryotic animal cell structure.

Figure 1.3: Plasma membrane lipid bilayer.
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Figure 1.4: Permeability of plasma membrane to specific molecules.

All the membranes of the cell, including the plasma membrane, are also stud-

ded with proteins that serve various functions (Fig. 1.5). Receptor proteins serve

as communicators, sending and receiving chemical signals from neighboring cells

and the environment. Glycoproteins have many functions such as collagen or cell-

to-cell adhesion. Channel and transport proteins act as gatekeepers, determining

what substances can and cannot cross the membrane. Channel protein allow for fa-

cilitated diffusion by certain materials down the concentration gradient. Transport

proteins are the main component of active transport and they allow for selective

passage of specific molecules from the external environment. They move more

molecules into and out of the cell, typically acting as a sort of pump. This process

requires energy. The cytoplasm is constituted by a fluid part, called cytosol, and

different organelles, such as mitochondria and Golgi bodies (Fig. 1.2). Cytoplasm

executes the genetic instruction from the nucleus and it is the place where glycoly-

sis and protein synthesis are performed to provide energy to the cell. The nucleus

(Fig. 1.6) is bounded by a nuclear envelope composed of two membranes sep-

arated by an intermembrane space. A proteins network within the inner nuclear

membrane, called nuclear lamina, adds rigidity to the nucleus.
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Nuclear pores regulate the nuclear transport of molecules across the nuclear

membranes. The nuclear membranes envelop the nucleoplasm of the cell, that

includes the DNA genetic material (chromatin) and the nucleolus.

Figure 1.5: Proteins studded in the cell membranes.

Figure 1.6: Nucleus structure.
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1.3 OVERVIEW OF ELECTROPORATION

Acoustic, electrical, magnetic or optical forces are often used for the physical

manipulation of biological cells. AC, DC or pulsed electric fields are adopted

for the electromanipulation of biological cells for various applications, such as

dielectrophoresis, electrorotation, electrodeformation, electrodisruption and elec-

troporation [7]. For the transport of molecules through the cell membrane several

methods have been developed, including: mechanical (microinjection), chemical

(lipofection reagents), biological (viral vectors) and physical (sonoporation, mag-

netofection, electroporation) [8]. During the past four decades electroporation

have gained increasing importance in biology and in medicine [9]. Electroporation

(EP) is a non-thermal electromagnetic phenomenon in which an external pulsed

electric field (PEF) triggers the creation of pores on cellular membranes increasing

the membranes permeability [1]. Although electroporation is commonly used in

biotechnology and medical applications, the molecular and cellular mechanisms

of pores formation and stabilization during the electropermeabilization of mem-

branes are still not fully understood and there are often discrepancies between ex-

perimental data and theoretical descriptions of pores creation [10]. Furthermore,

the effect of electroporation depends on the cell type and the cell population in

which it is located [11]. In fact, electroporation phenomenon is influenced by

cell’s dimension, its shape, its relative position to the direction of the electric field

and the specific structure of the considered biological membrane [12, 13]. The

electroporation’s effectiveness is associated to the parameters defining the applied

electric pulses such as the number, duration, frequency and intensity [14]. De-

pending on the intensity and duration of the applied electric field, the electropora-

tion process could be reversible or irreversible. In the first case, when the electric

field is removed, pores disappears, and the intact bilayer structure is reobtained. In

the irreversible case the pores expansion leads to the mechanical rupture of the cell

membrane [15]. Based on the type of electroporation, reversible or irreversible,

the EP applications could be classified as functional or destructive. After the ap-

plication of reversible EP the functionality of the cells or tissues is maintained

inalterated.
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Instead the application of irreversible EP produces the destruction of the plasma

membranes of cells or microorganisms [16]. Electroporation technique has been

used in biotechnology to incorporate various molecules, such as genes [17], DNA

[9], RNA [18], proteins [19], drugs [20], antibodies [21] and fluorescent probes

[22] into many different types of cells, like bacteria [23], yeasts [24], plant[25]

and mammalian cells [26]. Moreover, electroporation can be used for achieving

selective killing of cancer cells, tissue ablation and for nonthermal food and water

preservation, mainly causing permanent destruction of microorganisms [7,27–29].

1.3.1 INDUCED TRANSMEMBRANE VOLTAGE

In a living cell the intrinsic membrane resting potential difference, ∆Vi is the elec-

tric voltage between the inside and outside the cell membrane in its unstimulated

state. The sodium and potassium pumps, that are embedded in the cell membrane,

generate across the membrane an electrical potential difference in the range of

−90 mV up to −40 mV[6]. When a biological cell is exposed to an external elec-

tric field, a transmembrane voltage (TMV) is induced on the cell membranes. For

an isolated spherical cell, exposed to a DC homogeneous electric field, the induced

TMV membrane is given by the Schwan’s equation [30]:

T MV = fsERcos(θ)−∆Vi (1.1)

where E is the applied external electric field, R is the radius of the cell, θ is the

angle between the direction of the field and the normal to the cell surface and ∆Vi

is the membrane intrinsic resting potential difference and fs is obtained using the

following equation [31]:

fs =
3σEx

[

3R2hmσCp +
(

3Rh2 −h3
)

+
(

σ0
m −σCp

)]

R3 (2σEx +σ0
m)+

(

2σ0
m +σCp

)

+2(R−hm)
3
(

σCp +σ0
m

)

(σ0
m +σEx)

(1.2)

where σEx is the conductivity of extracellular medium, σ0
m the passive conduc-

tivity of membrane, σCp the conductivity of cytoplasm and hm the thickness of

membrane. As σCp,σEx ≫σ0
m and R ≫ hm, fs ≈ 1.5.
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Schwan’s equation implies that the transmembrane potential varies propor-

tionally to the cosine of the angle and the maximum potential is induced at the

points where the electric field is perpendicular to the membrane. The critical

TMV built up for electroporation to occur is about ±1 V [32].

Figure 1.7: Isolated spherical cell exposed to a DC homogeneous electric field.

1.3.2 EQUIVALENT CIRCUIT MODEL OF CELL

In order to describe the electroporation effect of electrical pulses on cells over a

wide range of pulse duration, in this work the following equivalent circuit model

of cell has been taken into account [33]:

Figure 1.8: Equivalent circuit model of cell.
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with:

R1
Ex =

h1
Ex

SσEx
(1.3)

C1
Ex =

SεEx

h1
Ex

(1.4)

Rm =
hm

Sσ0
m

(1.5)

Cm =
Sε0m

hm
(1.6)

RCp =
hCp

SσCp

(1.7)

CCp =
SεCp

hCp

(1.8)

R2
Ex =

h2
Ex

SσEx
(1.9)

C2
Ex =

SεEx

h2
Ex

(1.10)

where R1
Ex, C1

Ex and h1
Ex are, respectively, the resistance, the capacitance and the

thickness of extracellular medium between electrode and cell membrane, εEx the

permittivity of extracellular medium, Rm the resistance of membrane, Cm the ca-

pacitance of membrane, ε0m the static permittivity of membrane, RCp the resis-

tance of cytoplasm, CCp the capacitance of cytoplasm, εCp the permittivity of

cytoplasm, hCp the thickness of cytoplasm, R2
Ex, C2

Ex and h2
Ex, respectively, the

resistance, the capacitance and the thickness of extracellular medium between

electrodes, S the effective cross-sectional area and Vs the applied voltage signal.

1.3.3 THEORETICAL MODEL OF PLANAR LIPID

BILAYERS ELECTROPORATION

A number of theoretical models have been proposed for the explanation of elec-

troporation. The hydrodynamic, the elastic, the viscoelastic, and the viscohydroe-

lastic models consider electroporation as a large scale phenomenon, in which the

molecular structure of the membrane plays no direct role [10].
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The phase transition model and the domain-interface breakdown models ex-

plain the electroporation by the properties of individual lipid molecules and the

interactions between them [10]. The aqueous pore formation offers a compro-

mise between these two approaches considering the electropermeabilization as a

result of the formation of transient aqueous pores in the lipid bilayer [10, 34].

When the intact phospholipid bilayer (Fig. 1.9a) is exposed to an external electric

field transient unstable pores are created in the membrane. These pores, called

pre-pores, are hydrophobic since their walls are formed by the hydrophobic tails

of the phospholipid molecules (Fig. 1.9b). The pre-pores expansion leads from

a hydrophobic state to a hydrophilic structure, where the lipids adjacent to the

aqueous inside of the pore are reoriented in a manner that their hydrophilic heads

are facing the pore, while their hydrophobic tails are hidden inside the membrane

(Fig. 1.9c). In case of reversible electroporation, when the electric field is re-

moved, the metastable pores reseal and the intact bilayer structure is reobtained.

After electric field removal pores have lifetimes ranging from milliseconds up to

minutes. When pores radius exceeds a critical value, pores convert into unstable

self-expanding hydrophilic pores (Fig. 1.9d). In this case the electroporation is

irreversible and the pores expansion leads to the mechanical rupture of the cell

membrane[10, 15, 35].

Figure 1.9: (a) Intact bilayer; (b) hydrophobic pre-pore; (c) metastable hydrophilic

pore; (d) unstable self-expanding hydrophilic pore.
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1.4 EP MATHEMATICAL MODELS

Different mathematical models of electroporation have been proposed in litera-

ture to study pore formation in plasma and nuclear membranes. Those models

can be classified as nonlinear with cell compartments treated as nondispersive

media[3, 13, 36–41] or linear with cell compartments treated as dispersive media

[5,11,42]. However, in nanosecond pulses regime the frequency dependent dielec-

tric properties of membranes, intracellular and extracellular media have to be con-

sidered to obtain an accurate and predictive model of electroporation [11, 43, 44].

Moreover, to model the pores creation process inside the membranes the dielectric

dispersion relationships pertaining the cell media should be used in conjunction

with the electroporation nonlinear model. Nonlinear dispersive model of elec-

troporation for a spherical single-shell cell were discussed in literature [4, 36].

Different papers also illustrate the influence of the irregular shape of the mem-

brane on the electroporation process [11, 13, 36, 42]. Furthermore in [45] a dy-

namic model of electroporation is presented. The model is based on the chemical-

kinetics model and trapezium barrier model. In the calculation two types of pores

are taken into account, prepores (P1)and final pores (P2). The model evaluates the

pore distribution on the membrane solving equations with field-dependent rate

coefficients. The conductivity of pores is computed using the trapezium barrier

model for the image forces. Thus the membrane conductivity is obtained solving

the following equation:

σm(r, t) = σ0
m +σp,1P1(r, t)+σp,2P2(r, t) (1.11)

where t is the time, r the radius vector, σ0
m the initial conductivity of the mem-

brane, σp,1 and σp,2 the intrinsic pore conductivities of pores P1 and P2, P1(r, t)

and P1(r, t) the states of the considered pores. Finally, the model is integrated with

a molecular transport model for a single cell to calculate the molecular uptake of

cells. In my PhD work, a nonlinear dispersive model of electroporation for irreg-

ular cells is presented. The nonlinear effect due to the pore creation is modelled

in accordance to the asymptotic electroporation model based on Smolouchouski

partial differential equation [28, 46, 47].
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The dielectric properties of the biological cell media are described using the

multi-relaxation Debye-based equation. Using a finite element based technique,

the quasi-static Maxwell equations, the Smolouchouski partial differential equa-

tion and the differential equation relating the electric and polarization fields are

simultaneously solved in the 4D space-time domain. Moreover, the irregular cell

shape has been modelled by the Gielis superformula [48–50].

1.4.1 CONVENTIONAL EP AND NANO-EP

Conventional methods of electroporation use pulses of micro-millisecond duration

to electroporate the cells. In this case, since the cytoplasm and the extracellular

medium act like good conductors, only the plasma membrane is electroporated.

The biomembranes electroporation obtained using high intensities nanosecond

pulsed electric filed (nsPEF) is termed Nanoelectroporation. Nano-EP is used

to disturb the internal cellular structures such as nucleus, mitochondria and endo-

plasmic reticulum. Based on the duration and magnitude of applied pulses, Nano-

EP may cover both the plasma and nuclear membranes, or it could affect only the

nuclear membrane leaving intact the plasma one[51]. According to the theoretical

modeling, the pulses of nanosecond-duration should create smaller pores than the

pulses of micro-millisecond duration. At the same time, the number of pores cre-

ated by nanosecond-duration pulses should be by 2-3 orders of magnitude larger

than in the case of longer pulses [52]. Moreover, nsPEF induces different phys-

iological changes in mammalians cells leading to apoptosis in cancer cells [53],

release of calcium from endoplasmic reticulum and calcium uptake from the mem-

branes outside [54], caspase activation[55], externalization of phosphatidylserine

(PS)[56], calcium bursts [57], cytochrome C release [58] and DNA fragmentation

[59].
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1.5 EP MEDICAL APPLICATIONS

1.5.1 ELECTROCHEMOTHERAPY

Electrochemotherapy (ECT) is an antitumor treatment that combines the electro-

poration of membranes and the transport of cytotoxic drugs such as bleomycin

and cisplatin. Pulsed Electric Fields (PEF) are locally delivered at the tumor site,

allowing nonpermeant cytotoxic drugs to enter the transiently permeabilized can-

cer cells and to kill them [9, 60]. Cell electropermeabilization allows the drug to

be highly cytotoxic at concentrations several orders of magnitude lower than those

necessary to kill unpermeabilized cells [61]. Furthermore, the application of elec-

tric pulses to tissues generates an interruption of the blood flow, named vascular

lock. In tumors vascular lock is of a longer duration than in normal tissues and

results in a vascular disruption effect in tumor site [9]. Electrochemotherapy is

used in clinics for treatment of solid tumours. For small tumours electric pulses

are delivered to the tissue usually via two metal plate electrodes. Instead, for elec-

trochemotherapy of larger tumours multiple needle electrodes were used to cover

the whole tumour with sufficiently high electric field [62]. In treatments, a train of

eight electric pulses with intensity of 400-900 V/cm and repetition frequency of

1 Hz is usually applied to the tumors [63]. Each pulse in the train excites under-

lying nerves and provokes muscle contractions. To reduce the number of muscle

contractions and the pain associated with electrochemotherapy, the use of pulses

with repetition frequency exceeding the frequency of tetanic contraction have been

proposed [64]. Clinical studies demonstrate the effectiveness of ECT with an ob-

jective response rate of more than 80 % [65]. Electrochemotherapy is used for the

treatment of cutaneous and subcutaneous tumours and several reports demonstrate

its effectiveness in tumour nodules of different histologies: melanoma [66], breast

carcinoma [67], head and neck tumours [68], squamous cell carcinoma [69], basal

cell carcinoma [70]. Electrochemotherapy is easy and quick (25 min) to perform

and can be applied in general or local anaesthesia. In the case of large tumour

nodules several applications of electric pulses are required and as demonstrated in

different clinical cases, electrochemotherapy is very effective in repetitive treat-

ments [65].
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1.5.2 NONTHERMAL IRREVERSIBLE EP FOR TISSUE

ABLATION

Over the years, a number of minimally invasive surgical technique for tissue ab-

lation have been developed to selectively destroy specific areas of undesirable

tissues, such as: cryosurgery, nonselective chemical ablation, focused ultrasound,

radiofrequency ablation, interstitial laser coagulation, electrochemotherapy. Non-

thermal irreversible electroporation (NTIRE) is an emerging minimally invasive

surgical procedure to ablate tissue. NTIRE applies high voltage electrical pulses

on the microsecond timescale with inserted needle-like electrodes inducing irre-

versible permeabilization of the cells membrane and the consequent cells death.

This technique has the advantages that it is easy to apply, can be monitored and

controlled with electrical impedance tomography, is not affected by local blood

flow, does not require the use of adjunctive drugs, does not produce any collateral

damage to anatomical borders and does not cause protein denaturation [71, 72].

In contrast, the strong electric fields used in NTIRE induce muscle contractions

and thus special anesthesia are required during the treatment. Futhermore, sev-

eral patients have been managed by electrocardiographically to control cardiac

arrhythmias developed during NTIRE. Several studies demonstrate the NTIRE

successful effectiveness in tumor ablation in pancreatic and prostate cancer [9].

1.5.3 TRANSDERMAL DRUG DELIVERY AND GENE

ELECTROTRANSFER

The transdermal drug delivery system (TDDS) is an alternative to intravenous or

oral drug introduction, that avoid the livers first-pass effect and the serious effects

on the gastrointestinal tract of oral dosage forms. However, the effectiveness of

TDDS is limited by the formidable barrier of the stratum corneum. To promote

the skin permeation of drugs several methods have been evaluated. Among these

methods, electroporation has shown to be an effective TDDS. EP involves the

creation of tiny and transient aqueous pathways in the transcellular lipid region in

the stratum corneum barrier, thus enhancing transdermal drug delivery.
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The application of high-voltage electric pulses with time duration of mil-

lisecond order results in the enhanced permeation of high molecular compounds

through the skin [20]. The molecules pass through electroporated skin mainly

by diffusion during and after the application of the electrical pulses and by elec-

trophoresis with a slight electroosmosis during the application of the pulses. In

general, the increase in amplitude, duration and number of pulses generates an

increase in the permeability of the stratum corneum, allowing a better transport

of the drug. The treatment has been shown to successfully enhance the delivery

through the skin of many drugs and molecules with differing lipophilicity and size.

In contrast, the main obstacle in the use of TDDS by electroporation is represented

by the poor control of the dose administered during the treatment. Furthermore,

the choice of electric pulses and electrodes must be accurate in order to avoid to

the skin [9, 73]. Gene electrotransfer (GET) employs electroporation technique

to transfer genetic material into biological cells. GET has been successfully used

for gene transfection of bacteria, DNA vaccination, regenerative medicine appli-

cations and cancer treatment. In particular, DNA vaccination is a technique in

which genetically engineered DNA is delivered to biological organism to produce

an immunological response[9, 17].
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Chapter 2

MATHEMATICAL MODELING

OF ELECTROPORATION

2.1 EP MATHEMATICAL FORMULATION

The modeling of the EP effects on intracellular electric field is a subject of increas-

ing research activities since it is the key issue in electric field-mediated molecular

delivering. Qualitatively, external PEF field application can strongly change the

dimension and spatial distribution of the membrane pores modifying the cell elec-

tric parameters and increasing the intra-cellular electric field. As a consequence,

to evaluate the PEF distribution inside the cell during EP process it is necessary

to consider suitable theoretical models and computational techniques based on

both the Maxwell and poration equations. Such approaches are essential to gain

insights into the mechanism of membrane permeabilization, to identify the funda-

mental parameters involved in noninvasive diagnosis and medical sensors as well

as to provide guidance for computational dosimetry and for the development of

specific therapeutic approaches. In fact, the efficiency of EP-based therapies and

treatments strongly depends on the magnitude, shape and duration of the applied

PEF, polarity, number of pulses and repetition frequency.

A number of theoretical and numerical models of cell EP are available in the sci-

entific literature [4,13,36,74–79]. Major limitations of such models are due to the

various approximations which they rely on, such as spatial uniform distribution
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of electric conductivity, stationary dielectric properties, simple cell shapes. As

a result, errors in estimating the angular width of the electroporated membrane,

TMV and pore density dynamics, threshold amplitude of external electric field

can occur. In order to provide a realistic description of the electric phenomena in-

volved during EP process, the computational approach has to be able to deal with

geometry, physical properties and broadband response of the exposed cell as well

as to be numerically robust and appropriate for the current computer technology.

Moreover, a numerical code should be able to correctly model, especially in the

nanosecond time scale, the effects of dielectric dispersion of external medium,

plasma membrane and cytoplasm media. Because of these demands and consider-

ing that EP simulations and optimization require significant computational burden,

the development of numerical models for predicting the effects of PEF on cells is

still needed. As a result, we present here a numerical model describing the EP on

irregularly shaped cells [80]. The 3-D quasi-static formulation of the Maxwell’s

equations is used in conjunction with the nonlinear Smoluchowski equation de-

scribing the pore dynamics [13, 36, 40]. Moreover, the dielectric dispersion laws

of each cell compartment have been suitably formulated to be correctly incor-

porated inside the kernel of the numerical code. In proposed study, a non-local

mathematical model was employed since the pore density across a given point of

the plasma membrane depends on the TMV of the whole cell membrane domain.

In other words, in addition to the temporal evolution, the spatial distribution of

the membrane conductivity is modeled, too. Finally, the irregular geometry of

the cells has been described by Gielis’ superformula [48–50]. The unified geo-

metrical description provided by such formula makes possible the generation of

a countless and sophisticated 2-D and 3-D shapes in a simple and analytical way

by changing a reduced number of parameters. In particular, the superformula is

able to cover a wide variety of cell morphologies, e.g. different types of red blood

cells, box-shaped tissue cells, oval cells, muscular cells as well as simple spheres

or ellipsoids. In this way, the calculation of the spatial distribution of the TMV

on the irregular plasma membrane is carried out allowing a reliable estimation of

both time and spatial dependence of the pore density.
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2.2 GIELIS’ SUPERFORMULA

The Gielis’ superformula is a generalization of the superellipse curves or also

known as Lamé curves (see Fig. 2.1). In the Cartesian coordinate system the

superellipse curves are described by the following equation [48]:

∣

∣

∣

x

a

∣

∣

∣

n

+
∣

∣

∣

y

b

∣

∣

∣

n

= 1 (2.1)

where n, a and b are positive real numbers. The Lamé equation (2.1) makes

possible the modelling of the classical circle and square shapes as well as the

intermediate ones. The costants a, b and n define the height, width and shape of

the resulting curve, respectively. As n approaches zero the curve degenerates to

two straight crossed lines along the axes. When n = 1 a diamond with vertices

on the axes is obtained. For n = 2 , it is generated an ellipse that degenerate in

a circle when a = b. If the value of n is increased beyond two superellipses are

created. As n approaches infinity the shape becomes a rectangle.

Figure 2.1: Examples of superellipses for a = 1 and b = 0.75.

Reformulating the Lamé equation in polar coordinates, the following equation

is obtained [48]:

R(θ) =
r

n
√

|cosθ |n + |sinθ |n
(2.2)

where r and θ are the radial azimuthal coordinates, respectively.
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By introducing the parameter m/4 the polar plane is separated into a number

of sectors and the following equation can be written:

R(θ) =
r

n

√

∣

∣cosmθ
4

∣

∣

n
+
∣

∣sinmθ
4

∣

∣

n
(2.3)

Further elaborating Eq. (1.3) the Gielis’ superfomula is obtained:

R(θ) = f (θ)
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(2.4)

where f(θ ) is a generic function and in particular it can be constant, expo-

nential, spiral, or a trigonometric function. If f(θ ) is a constant, the circle can

be modified in various shapes. Supershaped spirals are obtained when f(θ ) =

exp(αθ ). While supershaped Archimedean spirals are obtained when f(θ ) = θ

(Fig. 2.2 [81]).

Figure 2.2: a-d: cross sections of plant stems; e-f: starfish; g-h: spirals; i:

Archimedean spirals; j-l: transformations of cosines.
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The origin of the Gielis transformations can be assessed in the context of

botany. In fact, when f(θ ) is a cosine function, many natural flowers shapes re-

sult (see Fig. 2.3 [81]). By changing the paramenters of the superformula many

shape can be obtained (Fig. 2.4 and Fig. 2.5 [82]). In the case of m1 = m2 = m

(m is a positive integer) eq. (2.5) generates a certain variety of symmetric shapes

and m represents the number of symmetry axis or the number of sectors in which

the plane is folded. In particular, zerogons (m = 0), monogons (m = 1), and di-

agons (m = 2), as well as triangles, squares, and polygons with higher rotational

symmetries can be defined. The parameters a1,a2 control the relative scale of the

supershape over each sector. Coefficients n1, n2, and b1 control the shape. In

particular, for n1 = n2 < 2 the shape is inscribed, while for n1 = n2 > 2 the shape

circumscribes the circle. Moreover, changing the coefficient b1 the corners can be

sharpened or flattened and the sides can be straight or bent. The trios (a,n1,b1) and

(b,n2,b1) determine the pseudo-vertices sharpness (or roundness) and the pseudo-

sides convexity (or concavity) together with the span of the pseudo-polygon. More

complex shapes can be produced using real-valued m1 6= m2 and combining eq.

(2.5) with other functions [48].

Figure 2.3: Choripetalous five-petalled flowers.
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Figure 2.4: Example of 2D shapes obtained using different values of Gielis’ para-

menter m1 = m2 = m, b1, n1, n2 and a1 = a2 = 1.

Figure 2.5: Example of 3D shapes obtained using Gielis superformula.
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Furthermore, the Gielis superformula can be generalized by considering the

arguments of cosine and sine to be functions [83]:

R(θ) = f (θ)

(∣

∣

∣

∣

∣

cos
m1g1(θ)

4

a1

∣

∣

∣

∣

∣

n1

+

∣

∣

∣

∣

∣

sin
m2g2(θ)

4

a2

∣

∣

∣

∣

∣

n2
)− 1

b1

(2.5)

where g1(θ ) and g2(θ ) are continuous functions. This generalized form of the

Gielis formula allows the creation of asymmetric and nested structures (Fig. 2.6

[84]). The Gielis transfomation has been employed in different fields of applica-

tion. In engineering it has been used to optimize the shapes of wind turbines or

the shape of non-planar wings in aircraft [81]. In the field of telecommunications

it has been used to design waveguides and antennas and to optimize lasers [81]. In

biology, it has been used to model the annual rings in trees or to model the back-

bone of RNA [81]. In this work Gielis’ formula is used to describe the irregular

shape of biological cells.

Figure 2.6: Example of more complex shapes obtained using Gielis superformula.
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2.3 CELL GEOMETRY MODEL

Most of the studies available in the scientific literature regarding to the calculation

of TMV are based on models relying on a simple geometrical description of the

cells in terms of canonical shapes (e.g., circular or elliptical) or a combination

of those. Such approach can result in inaccurate results because of the rough

approximation of the actual cells shape. In order to overcome this drawback, in

this study , the irregular cells shape is described by using the Gielis’ superformula.

This allows the analytical description of the cells geometry, as well as a more

versatile framework to investigate the sensitivity of TMV to the variation of the

geometrical parameters. In particular, by using the model illustrated in Fig. 2.7

the radius vector describing the cell perimeter is given by:

ri,j = r̂i,j

√

xi,j
2 + yi,j

2 (2.6)

xi,j = Ai,jRi,j

(

θ i,j

)

cosθ i,j (2.7)

yi,j = Bi,jR
(

θ i,j

)

sinθ i,j (2.8)

Ri,j

(

θ i,j

)

=

(∣

∣

∣

∣

∣

cos
(

mi,2j-1θ i,j/4
)

ai,2j-1

∣

∣

∣

∣

∣

ni,2j-1

+

∣

∣

∣

∣

∣

sin
(

mi,2jθ i,j/4
)

ai,2j

∣

∣

∣

∣

∣

ni,2j
)− 1

bi,j

(2.9)

with i = 1, ..,CN and j = 1, ..,MN , where CN is the cells number, MN the mem-

branes number, θ i,j ∈ [0,2π] is a convenient angle parameters, bi,j ∈ R
+(positive

real numbers), ai,2j-1 ∈ R
+
0 and ai,2j ∈ R

+
0 (strictly positive real numbers), Ai,j and

Bi,j are the scaling factors.

2.4 ELECTROMAGNETIC MODEL

As illustrated in Fig. 2.7, a pulsed electric field is generated by using two parallel–

plate electrodes placed at the top and bottom surfaces of the cylinder bounding

the computational domain. Since the cell dimension is negligible in comparison

to the field wavelength, and the wave propagation time across the cell is much

smaller than the rise time of the applied pulse, the electromagnetic problem can

be considered as quasi–static and modeled by using the Laplace equation subject
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to the appropriate boundary conditions. In particular, for each cell compartment

the following partial differential equation is solved numerically:

∇ ·∇

(

σ + ε0
∂φ

∂ t

)

−
∂

∂ t
∇ ·P = 0 (2.10)

in conjunction with the equations (2.13)–(2.27) and the equation:

E =−∇φ (2.11)

where σ is the static ionic conductivity, φ the electric scalar potential and P the

polarization vector. The TMV is calculated as the difference between the electric

potential on the interior (I) and outer (O) sides of each cells membranes:

TMVi,j(x,y, t) = φ I
i,j(x,y, t)−φ O

i,j(x,y, t) (2.12)

Figure 2.7: Schematic picture of the 2-D arbitrarily shaped cells exposed to uni-

form pulsed electric field.
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2.5 COMPLEX PERMITTIVITY MODEL

The dielectric properties of the cell compartments are due to the interaction of

the electromagnetic field with the material constituents, and they depend on the

working frequency as well as the dynamic processes involving the reorientation

of bipolar molecules or displacement of charged particles. The interfacial polar-

ization in heterogeneous media can, also, contribute to the frequency dispersion

of the material properties. As a result, the complex relative permittivity, εr, of the

cell media exhibits multi–relaxation characteristics and can be modeled by using

the following Debye–based relationship [85]:

ε(ω) = ε ′(ω)− jε ′′(ω) = ε∞ +
M

∑
k=1

∆εk

1+ jωτk

, (2.13)

where τk and ∆εk denote the relaxation time and strength relevant to the k–th

relaxation process, respectively, M is the number of dielectric relaxation processes

occurring in the considered dielectric material, ω = 2π f is the angular frequency,

ε∞ is the asymptotic relative permittivity value at high frequency (ω → ∞).

In linear dispersive materials, the frequency domain equation relating the electric

and polarization fields is [4]:

P(ω) = [ε(ω)− ε0]E(ω) (2.14)

where ε0 denotes the permittivity of free space. By substituting (2.13) in (2.14)

and taking the inverse Fourier transform of the resulting equation the following

relation is obtained:

M+1

∑
k=1

AM+1,k
∂ k−1P

∂ tk−1
=

M+1

∑
k=1

BM+1,k
∂ k−1E

∂ tk−1
, (2.15)

where the coefficients AM+1,k,BM+1,k are the elements of the following matrix:
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A =



















1 0 0 . . . 0

1 A22 0 . . . 0

1 A32 A33 . . . 0
...

...
... . . .

...

1 AM+1,2 AM+1,3 . . . AM+1,M+1



















B =



















1 0 0 . . . 0

B21 B22 0 . . . 0

B31 B32 B33 . . . 0
...

...
... . . .

...

BM+1,1 BM+1,2 BM+1,3 . . . BM+1,M+1



















and

Aq,2=
q

∑
l=2

τl−1 q = 3, . . . ,M+1 (2.16)

Aq,q=
q

∏
l=2

τl−1 q = 2, . . . ,M+1 (2.17)

Aq,p=Aq−1,p + τq−1Aq−1,p−1 p = 3, . . . ,M+1 (2.18)

q = p+1

Bq,1=
q

∑
l=2

∆εl−1 + ε∞ − ε0 q = 2, . . . ,M+1 (2.19)

Bq,q=
q

∏
l=2

τl−1 (ε∞ − ε0) q = 2, . . . ,M+1 (2.20)

Bq,p=Bq−1,p + τq−1Bq−1,p−1 +∆εq−1cq,p p = 2, . . . ,M (2.21)

q = 1, . . .M+1
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where

cq,2 =
M−1

∑
l=1

τl q = 3, . . . ,M+1 (2.22)

cM+1,p = cM,p + τM−1cM,p−1 p = 3, . . . ,M−1 (2.23)

cM+1,M = τM−1cM,M−1 M > 2 (2.24)

By using expression (2.13), it is possible to model accurately the measured

permittivity characteristics of a wide variety of biological media upon the proper

selection of the multi-relaxation order M and the Debye parameters ε∞, ∆εk, τk.

2.6 PORE MODEL

According to the EP theory of biological membranes, the main cellular response

to an externally applied PEF involves the formation of pores in the lipid bilayer

membrane [76]. The resulting observable effect is the rapid dynamic increasing

of electric conductivity. Moreover, the PEF–induced pores are not distributed uni-

formly over the membrane surface since they are localized over area experiment-

ing higher TMV. Pore formation is calculated on the basis of the Smoluchowski’s

equation [76]. Such equation cannot be solved analytically and several parame-

ters, most of which characterized by uncertain values, are involved. Since for short

pulse duration (µs - ns), the pore creation process dominates pore expansion, it is

possible to assume that pores are created with constant radius of 0.8 nm and the

asymptotic model can be employed [4]. Within this framework the dynamic of

pore formation and resealing is described by the partial differential equation:

∂Ni,j

∂ t
= αe

(

TMVi,j

Vep

)2
[

1−
Ni,j

N0
e
−q
(

TMVi,j

Vep

)2
]

(2.25)

where Ni,j is the membrane pore density, α and q are EP parameters, Vep is the

characteristic voltage of EP, N0 is the equilibrium pore density in the nonelectro-

porated membrane. The membrane conductivity due to EP was evaluated at each

time step and spatial coordinate as follows [4, 39]:
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σmi,j(x,y, t) = σ0
m +K Ni,j(x,y, t)σpπr2

p (2.26)

where σ0
m is the passive membrane conductivity before EP, σp and rp are the

internal conductivity and radius of a single pore, respectively, and

K =
e

νmi,j −1

w0e
w0−ηνmi,j −ηνmi,j

w0 −ηνmi,j

e
νmi,j −

w0e
w0+ηνmi,j +ηνmi,j

w0 +ηνmi,j

(2.27)

where w0 is the energy barrier inside the pore, η is the relative length of pore

entrance area, νmi,j = (qe/kT )TMVi,j is the non–dimensional TMV, where qe is

the electron electric charge and k the Boltzmann constant. First of all, the devel-

oped model has been validated by comparing the results concerning the spherical

cell simulations with the literature ones [4]. As shown in Fig. 2.8, the tempo-

ral responses for the dispersive and non-dispersive membrane models are in good

agreement with the corresponding curves reported in [4]. As further validation,

the results concerning the nucleated spherical cell simulations have been com-

pared with the literature ones [28]. In particular, by an inspection of Fig. 2.9

it is worthwhile to note that the temporal evolution of plasma membrane TMV

and pore density are in good agreement with the corresponding ones reported in

[28]. The relative discrepancy with the literature results is essentially due to the

different adopted electromagnetic model. In the comparison analysis a pore ra-

dius rp = 3.5 nm have been considered. Figure 2.9a shows the plasma membrane

TMV temporal evolution at the top of the cell (θ = 90◦) when a voltage signal

having amplitude E = 2.5 MV/m, pulse duration T = 50 ns, rise time tr = 30 ns

and fall time t f = 30 ns is applied to the external electrodes. In figure 2.9b the time

behavior of the plasma membrane pore density at the top of the cell is reported

when: E = 15 kV/cm, pulse duration T = 50 ns, rise time tr = 18 ns and fall time

t f = 18 ns; E = 10 kV/cm, pulse duration T = 50 ns, rise time tr = 12 ns and fall

time t f = 12 ns.
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Figure 2.8: Temporal evolution of (a) TMV and (b) pore density at the top of

the cell (θ = 90◦) for the dispersive (full curve) and non-dispersive membrane

models. Pulse amplitude and duration equal to 50 kV/cm and 5 ns, respectively.
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Figure 2.9: Temporal evolution of (a) plasma membrane TMV at the top of the

nucleated spherical cell (θ = 90◦) for rp = 3.5 nm. Applied voltage signal having

amplitude E = 25 kV/cm, pulse duration T = 50 ns, rise time tr = 30 ns and fall

time t f = 30 ns. Temporal evolution of (b) plasma membrane pore density at the

top of the of the nucleated spherical cell (θ = 90◦) for rp = 3.5 nm, when three

different voltage signals are applied: E = 25 kV/cm, pulse duration T = 50 ns,

rise time tr = 30 ns and fall time t f = 30 ns; E = 15 kV/cm, pulse duration T =
50 ns, rise time tr = 18 ns and fall time t f = 18 ns; E = 10 kV/cm, pulse duration

T = 50 ns, rise time tr = 12 ns and fall time t f = 12 ns.
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EP IN 2-D IRREGULARLY

SHAPED CELLS

3.1 NON-NUCLEATED CELLS MATHEMATICAL

MODEL

3.1.1 CELL GEOMETRY MODEL

In this first part of the chapter, a 2-D nonlinear, non-local, dispersive and space-

time numerical algorithm has been developed and adopted to evaluate the TMV

and pore density along the perimeter of realistic irregular non-nucleated cells [80].

The presented model is based on the Maxwells equations and the asymptotic

Smoluchowskis equation describing the pore dynamics. The dielectric disper-

sion of the media forming the cell has been modeled by using a general multi-

relaxation Debye-based formulation. The irregular shape of the cell is described

by using the Gielis superformula. Different test cases pertaining to red blood cells,

muscular cells, cell in mitosis phase, and cancer-like cell have been investigated.

For each type of cell, the influence of the relevant shape, the dielectric properties,

and the external electric pulse characteristics on the electroporation process has

been analyzed. The numerical results demonstrate that the proposed model is an

efficient numerical tool to study the electroporation problem in arbitrary shaped

cells.
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Figure 3.1: Schematic picture of the 2-D axisymmetric arbitrarily shaped cell

exposed to uniform pulsed electric field.

As illustrated in Fig. 3.1, the exposure system consists of a cylindrical lossy

and dispersive medium, having length L and radius D, containing an arbitrary

shaped cell in the middle. The cylinder surface is an electric insulator, and the

external PEF source is fixed by using the two parallel–plate electrodes placed at

the top and bottom surfaces of the cylinder. The two electrodes are excited in

such a way as to generate unipolar and bipolar single or train of pulses. For all

the internal boundaries, continuity conditions were set. The duration, rise and fall

times, amplitude of the pulse, as well as the number of pulses and their repetition

rate have been considered as free parameters. As reported in the previous chapter,

the irregular cell shape is described by using the Gielis’ formula. In particular,

with reference to the 2-D axisymmetric model illustrated in Fig.3.1 the radius

vector describing the cell profile is given by:

r = r̂
√

x2 + y2 (3.1)

x = kxR(θ)cosθ (3.2)

y = kyR(θ)sinθ (3.3)
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R(θ) =

(∣

∣

∣

∣

cos(m1θ/4)

a1

∣

∣

∣

∣

n1

+

∣

∣

∣

∣

sin(m2θ/4)

a2

∣

∣

∣

∣

n2
)− 1

b1

(3.4)

where θ ∈ [−π/2,π/2] is a convenient angle parameters, np,mp,b1 ∈ R
+ (pos-

itive real numbers), p = 1,2 and ap ∈ R
+
0 (strictly positive real numbers), kx,ky

are the sizing factors. By adjusting the coefficients, many different cell shapes

can be generated. Moreover, considering that eq. (3.4) describes the cell shape in

parametric form, it is straightforward to generate an additional equidistant offset

surface, thus modeling the cell membrane. In particular, to ensure that the offset

surface does not intersect the original one the shifting is done along the radial

direction.

3.1.2 ELECTROMAGNETIC AND PORE MODEL

For each cell compartment the equation (2.10) is solved numerically using a quasi-

static approximations of Maxwell equations, in conjunction with the equations

of complex permittivity model and pore model (2.13)–(2.27) and the equation

(2.11). In the implemented numerical method, the equations of dielectric relax-

ation model are specified through a setting of individual coefficients in a system of

partial differential equations and associated boundary conditions. The pore den-

sity equation has been turned from a differential equation into an integral equation,

with a test function as a localized sampling function within the integrand to eval-

uate the solution. The TMV depends on both space and time coordinates, and it

is calculated as the difference between the electric potentials across the boundary

surface separating the inside (i) and outside (o) of the cell:

TMV(x,y, t) = φi(x,y, t)−φo(x,y, t) (3.5)

In the numerical computation the cell membrane has been directly incorporated

in the model and the specific geometrical operator has been used to evaluate the

TMV. In general, it allows the computation of a electric potential defined in a

point of the destination domain as a function of the electric potential calculated in

a point of the source domain. In other words, this operator identifies which point

in the source domain corresponds to the point in the destination domain and copies
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the electric potential from the source point in the destination point. In the specific

case, the operator maps the electric potential from the inner side to the outer side

of the membrane and from the outer side to the inner side of the membrane. The

used geometrical transformations are described by the following equations:

xo =
xi

1+
h

√

xi
2 + yi

2

(3.6)

yo =
yi

1+
h

√

xi
2 + yi

2

(3.7)

xi = xo

(

1+
h

√

xo
2 + yo

2

)

(3.8)

yi = yo

(

1+
h

√

xo
2 + yo

2

)

(3.9)

where h is the membrane thickness, xi and yi the point coordinates on the inner

side of the membrane and xo and yo the point coordinates on the outer side of

the membrane. However, it can be noticed that the axial symmetry of the system

allows for the starting 3–D electromagnetic problem to be addressed by means of

a 2-D model, this leading to a significant reduction of the computational burden.

3.1.3 COMPLEX PERMITTIVITY MODEL

The cell membrane and cytoplasmic domains are modeled as lossy and dispersive

media. The effect of the dielectric relaxation of the water molecules and dissolved

ions forming both cytoplasm and external media is noticeable in the GHz region.

For this reason, a first–order Debye equation has been used to model the relevant

dielectric response. On the other hand, because of the limited rotational mobility

of head-groups of membrane lipids, the dielectric relaxation of the cell membrane

occurs in the range of tens to hundreds of MHz. In this case, a second-order

Debye equation is more appropriate for describing the material dispersion. In

particular, the polarization coefficients given in Table 3.1 have been used in the

numerical procedure developed in this study.
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Table 3.1: Polarization Vector Coefficients of Cell Membrane, Cytoplasm and

External Medium.

Coefficient Expression

Dielectric relaxation of cell membrane

A31 1

A32 τ1 + τ2

A33 τ1τ2

B31 ∆ε1 +∆ε2 + ε∞ − ε0

B32 τ1(∆ε2 + ε∞ − ε0)+ τ2(∆ε1 + ε∞ − ε0)

B33 τ1τ2(ε∞ − ε0)

Dielectric relaxation of cytoplasm and external medium

A21 1

A22 τ

B21 ∆ε + ε∞ − ε0

B22 τ(ε∞ − ε0)

3.2 NUMERICAL RESULTS

Using the numerical model previously described, the EP phenomenon has been

studied for different types of cells. In our study, each cell is inserted in a cylin-

der having length L = 100 µm and diameter D = 100 µm. In particular, the ge-

ometric, electric and EP parameters reported in Table3.2have been used in the

numerical procedure developed in this study. Our computations and plots have

been performed using MATLAB R2012b. The further model complexity due to

the first-order Debye equation for both cytoplasm and external media needs to

be taken into account for a valid treatment of EP processes when subnanosecond

electric pulses are applied. In fact, by shorting the pulse duration the associated

spectral energy becomes significant at frequencies where dispersive effects due to

the cytoplasm and external media become important.

46



CHAPTER 3. EP IN 2-D IRREGULARLY SHAPED CELLS

Table 3.2: Electric, Geometrical and EP Parameters

Symbol Value Description

τ1 3×10−9 s First relaxation time of membrane [4]

τ2 4.6×10−10 s Second relaxation time of membrane [4]

τ 6.2×10−12 s Relaxation time of extracellular medium [86]

and cytoplasm

∆ε1 2.3×10−11 F/m First relaxation amplitude of membrane [4]

∆ε2 7.4×10−12 F/m Second relaxation amplitude of membrane [4]

∆ε 5.9×10−10 F/m Relaxation amplitude of extracellular medium [86]

and cytoplasm

ε∞ 13.9×10−12 F/m High frequency permittivity [4]

ε0 8.85×10−12 F/m Dielectric permittivity of vacuum

εer 72 Relative permittivity of extracellular medium [4]

ε0m 5 Static relative permittivity of membrane [4]

εcr 72 Relative permittivity of cytoplasm [4]

σe 1.2 S/m Conductivity of the extracellular medium [4]

σ0
m 9.5×10−9 S/m Passive conductivity of the membrane [4]

σc 0.3 S/m Conductivity of cytoplasm [4]

σp 1.2 S/m Conductivity of the solution inside the pore

rp 0.8 nm Pore radius [4]

α 109 m−2s−1 Pore creation rate density [4]

Vep 224 mV Characteristic voltage of electroporation [4]

N0 3.3×106 m−2 Equilibrium pore density [4]

q 1 Electroporation constant [4]

w0 3.2 Energy barrier inside the pore [4]

η 0.15 Relative length of pore entrance area [4]

qe 1.65×10−19 C Electron electric charge

k 1.38×10−23 J/K Boltzmann constant

T 295 K Temperature

In order to demonstrate such statement some simulations using subnanosecond

pulses have been carried out. In particular, fig. 3.2 and 3.3 shows both the TMV

and pore density calculated considering the dispersive behavior of the cytoplasm

and external media (full curve) and without considering this modification (dotted

curve) when the pulse duration is T = 0.5 ns. The pulse starts at the time instant

tstart = 0.2 ns and a time window 2 ns long has been used in the computation. The

noticeable discordance is a compelling argument for necessarily including more

complexity in the model.

47



CHAPTER 3. EP IN 2-D IRREGULARLY SHAPED CELLS

0 4 8 12 16 20
0

0.5

1

1.5

2

t (ns)

T
M

V
 (

V
)

 

 

Membrane dispersive
Non−dispersive

(a)

Figure 3.2: Temporal evolution of TMV at the top of the cell (θ = 90◦) for the

full dispersive (full curve) and dispersive membrane (dotted curve) models. Pulse

amplitude and duration equal to 100 kV/cm and 0.5 ns, respectively.
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Figure 3.3: Temporal evolution of pore density at the top of the cell (θ = 90◦) for

the full dispersive (full curve) and dispersive membrane (dotted curve) models.

Pulse amplitude and duration equal to 100 kV/cm and 0.5 ns, respectively.
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3.2.1 DISCOCYTE RED BLOOD CELLS

The first test case is relevant to a discocyte red blood cells (RBCs). As illustrated

in Fig. 3.4, the Gielis formulation allows for an analytical description of the proper

discocyte RGB shape that meets size constraints, roundness, aspect ratio, or any

sort of shape-related requirement [87]. In particular, the adoption of the Gielis’

formula results in an enhanced accuracy of the prediction model, while providing

useful flexibility in terms of the underlying numerical procedure especially when

parametric investigations have to be carried out. Fig. 3.5(a) and 3.5(b) show the

time response of the TMV and pore density at the top of the discocyte RBCs

(θ = 90◦), respectively, for different values of Gielis parameters n1 and n2, when

a 100 kV/cm PEF having a pulse duration T = 10 ns, rise time tr = 0.9 ns, fall

time t f = 0.9 ns is applied to the external electrodes. The applied voltage signal

is a rectangular pulse, which starts at time instant tstart = 5 ns and finishes at time

instant tend = 15 ns. In Fig. 3.5(a) it is worth noticing that the TMV increases

with a fast rate. As illustrated in Fig. 3.5(b), the creation of pores generates a

rapid increase of the membrane conductivity leading to a decrease of the TMV.

Furthermore, an increase of the pore density as the coefficients n1 and n2 became

larger can be inferred by visual inspection of the same figure. Fig. 3.5(a) shows

that at the end of the pulse, the TMV decreases faster when n1 = n2 = 2. This

is mainly due to the fact that for n1 = n2 = 2 the conductivity of the membrane

increases faster than that observed in the other test cases [4]. Fig.3.5(c) shows that

the EP opening angle expands for larger values of n1 and n2 parameters. Fig.3.6

refers to the RBC characterized by Gielis parameters n1 = n2 = 11. It can be ob-

served that one nanosecond after the application of the excitation pulse (t1 = 6 ns)

a consistent EP emerges, while the EP opening angle increases with the pulse ap-

plication time, peaking at the end of the voltage pulse (t2 = 20 ns).The influence

of the electric field intensity on EP process has been studied, as well. As reported

in Fig. 3.7(a) and 3.7(b), the slope of the TMV and the corresponding activation

speed of the EP process increase as the electric field amplitude becomes larger.
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Figure 3.4: Supershaped geometric modeling of discocyte RBCs for different val-

ues of n1 and n2. Other parameters are kx = 3.9 µm, ky = 2.398 µm, m1 = m2 = 2,

a1 = a2 = 1 and b1 =−2. Membrane thickness h = 8 nm.
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Figure 3.5: Temporal evolution of (a) TMV and (b) pore density at the top of the

cell (θ = 90◦),(c) pore density versus the polar angle at t = 20 ns for different

values of n1 and n2. Pulse amplitude and duration equal to 100 kV/cm and 10 ns,

respectively.
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Figure 3.6: Pore density around the cell circumference at different time instants

for n1 = n2 = 11. Pulse amplitude and duration equal to 100 kV/cm and 10 ns,

respectively.

Fig. 3.7(a) shows that for E = 70 kV/cm and ti ≈ 15 ns the TMV faster de-

creases quickly by reaching a negative peak value. This occurrence can be ex-

plained by considering that an enhancement of the electric field intensity induces

a lowering of the membrane time constant. As a consequence, a membrane con-

ductivity improvement and a fast reduction of the TMV occur. At the same time,

as shown in Fig. 3.7(b) and Fig. 3.7(c), both the stationary value of the pore den-

sity and the EP opening angle grow significantly by increasing the electric field

intensity. The EP process depends on the pulse duration, T , and number of ap-

plied pulses, Np. In order to investigate this dependence, an extensive parameter

study has been carried out on the RBC with n1 = n2 = 11.

Fig.3.8 shows the obtained results pertaining the EPRL versus the pulse dura-

tion for different value of PE. The EPRL is defined as the ratio between the length

of the electroporated area and the total length. When PE is lower than 0.5 mJ, for

pulse durations of a few nanoseconds, the EPRL decreases as T becomes larger,

and exhibits a deep minimum for T = 5 ns. For higher values of T , the EPRL

starts to increase reaching a constant value between about 40 and 60 ns and then

begins to decrease. This behavior is due to the fact that for T > 5 ns, the charging

time of the cell membrane, which is of about 10 ns [4], is comparable or smaller

than the pulse duration, this leading to a stronger electric field–cell membrane

interaction.
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Figure 3.7: Temporal evolution of (a) TMV and (b) pore density at the top of

the cell (θ = 90◦),(c) pore density versus the polar angle at t = 5 ns for different

values of electric field intensity. Pulse duration equal to 5 ns, n1 = n2 = 6.
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The saturation and the subsequent decrease of the EPRL can be easily under-

stood by noticing that, for a fixed pulse energy level, the electric field intensity has

to be decreased when the pulse duration grows. In contrast to this, at nanosecond

and sub–nanosecond regimes, a weaker interaction occurs when the pulse dura-

tion decreases. As a result, the EPRL tends to decrease since the applied electric

field intensity level falls down. For PE greater than 0.5 mJ, as the applied PEF

intensity is high, the cell is strongly electroporated and the minimum at T = 5 ns

disappears. Fig.3.9, illustrates the minimal electric field intensity versus pulse

number that is needed to obtain a pore density of 1014 m−2, that is the value of

pore density for which the cell membrane is considered to be significantly elec-

troporated [39]. It can be noticed that, moving from an individual pulse to a train

of five pulses, the electric field intensity drops from about 9.7 kV/cm to about

5.9 kV/cm. In fact, as shown in Fig. 3.10, by applying a sequence of several

consecutive pulses, the TMV gradually increases with a consequent augmentation

of the pore density. However, an effective reduction of the pulse intensity can be

obtained, also, by using a larger number of pulses and/or by extending the pulse

duration.
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Figure 3.8: EP opening angle versus pulse duration for discocyte RBC with n1 =
n2 = 11.
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Figure 3.9: Electric field intensity threshold versus pulses number to obtain a pore

density of 1014 m−2. Pulse duration T = 10 ns, discocyte RBC with n1 = n2 = 11.
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Figure 3.10: Time evolution of TMV and pore density at the top of the disco-

cyte RBC cell (θ = π/2,n1 = n2 = 11) when a regular sequence of five pulses is

applied. Duty cycle 50%, electric field intensity 5.9 kV/cm, repetition time 20 ns.
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3.2.2 MUSCULAR–LIKE CELL

The second test case regards the muscular–like cell illustrated in Fig. 3.11. Such

kind of cell shape can be well approximated by using the superformula parameters

kx = 4 µm, ky = 7.5 µm, m1 = m2 = 2, n1 = n2 = 0.8, a1 = a2 = 1 and b1 = 0.6

[88].
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Figure 3.11: Geometric shape of muscular–like cell. Superformula parameters

kx = 4 µm, ky = 7.5 µm, m1 = m2 = 2, n1 = n2 = 0.8, a1 = a2 = 1 and b1 = 0.6.

Membrane thickness h = 5 nm.

Fig. 3.12 shows both the TMV and pore density distributions along the muscle

cell perimeter at different time instants, as well as the time–domain behavior of

the TMV at different locations on the cell membrane. Because of the complex

geometry of the considered cells, the TMV distribution deviates from the cosine

law which characterizes spherically shaped cells. As a matter of fact, the electric

field minima and maxima along the membrane of the cell strongly depend on its

shape. This point can be easily inferred by inspection of Fig. 3.12(a). In partic-

ular, for muscle–like cell the TMV reaches its minimum and maximum values at

points completely different from the classical −90◦ and 90◦ typical of spherical

cell models. Furthermore, contrary to what observed in spherical cell models, the

EP intensity is negligible at the points along the cell membrane where the PEF

electrodes are applied. However, once the EP process starts, the conductivity of

the cell membrane rapidly increases and the TMV decreases accordingly. This

phenomenon leads to a different angular dependence of the TMV as compared to

the one which is observed when the EP is not triggered.
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As highlighted in both Fig.3.12(a) and Fig.3.12(b) the EP phenomenon origi-

nates within of the flat region of the cell membrane, and gets extinguished at the

equatorial (θ ≈ 0◦) and sharp (θ ≈±90◦) zones. Finally, as it appears both in fig-

ures 3.12(a) and 3.12(b), the impact of the EP on the TMV distribution becomes

particularly noticeable for t > 14 ns. The effect of bipolar rectangular pulses on

the EP process has been investigated as well. The main numerical results pertain-

ing to TMV and pore density distributions are illustrated in Fig. 3.13. It can be

noticed that both the temporal and angular dependence of TMV strongly change

as compared to the unipolar excitation (see Fig. 3.12), with a more stable time

dependence of the EP opening angle being observed.
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Figure 3.12: (a) TMV and (b) pore density around the cell perimeter for muscular–

like cell at different time instants, (c) TMV temporal evolution at different cell

membrane placement. Electric field intensity 100 kV/cm, pulse duration T =
10 ns.

56



CHAPTER 3. EP IN 2-D IRREGULARLY SHAPED CELLS

−90 −45 0 45 90
−1.5

−0.5

0.5

1.5

Angle (deg)

T
M

V
 (

V
)

 

 

t
1
=6 ns

t
2
=10 ns

t
3
=14 ns

t
4
=20 ns

(a)

−90 −45 0 45 90
6

8

10

12

14

16

Angle (deg)

P
o
re

 D
en

si
ty

 (
1
/m

2
) 

L
o
g
 S

ca
le

 

 

t
1
=6 ns

t
2
=20 ns

(b)

0 4 8 12 16 20
−1

−0.5

0

0.5

1

1.5

t (ns)

T
M

V
 (

V
)

 

 

θ=60°

θ=65°

θ=70°

θ=75°

(c)

Figure 3.13: (a) TMV and (b) pore density around the cell circumference for

muscular–like cell at different time instants, (c) TMV temporal evolution at dif-

ferent cell membrane placement. Rectangular bipolar pulse type, electric field

intensity 150 kV/cm, pulse duration T = 10 ns.
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3.2.3 CELL IN MITOSIS PHASE

The third test case regards the cell in mitosis phase [4], illustrated in Fig. 3.14,

which can be well approximated by using the superformula parameters kx = ky =

10 µm, m1 = m2 = 2, n1 = n2 = 1, a1 = a2 = 1.4 and b1 =−0.2. For this specific

type of cell, the time-domain behavior of the TMV and pore density along the cell

perimeter have been calculated (see Fig. 3.15). As shown in the Fig. 3.15(a) and

Fig. 3.15(b) the EP does not occur in very limited areas around the angles θ = 0◦

and θ =±45◦. However, just outside the spot at θ = 0◦, the mitosis phenomenon

induces a sudden EP. Similarly to what observed in spherical cell models, a no-

ticeable EP process occurs near the cell region next to the electrodes (θ =±90◦).

Even in the considered case, the irregular cell geometry results in a deviation of

the space distribution of the TMV from the cosine law which is observed in spher-

ically shaped cells. In addition to that, one can notice a significant change in the

TMV level with respect to the canonical model.
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Figure 3.14: Geometric shape of the cell in mitosis phase. Superformula param-

eters kx = ky = 10 µm,m1 = m2 = 2, n1 = n2 = 1, a1 = a2 = 1.4 and b1 = −0.2.

Membrane thickness h = 5 nm.
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Figure 3.15: (a) TMV and (b) pore density around the cell perimeter for cell in

mitosis phase at different time instants, (c) TMV temporal evolution at different

cell membrane placement. Rectangular unipolar pulse type, electric field intensity

100 kV/cm, pulse duration T = 10 ns.
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3.2.4 CANCER CELL

A further test case pertains to a cancer cell [89], approximated by using the super-

formula parameters kx = ky = 16.8 µm, m1 = m2 = 6, n1 = n2 = 1, d1 = d2 = 1

and b1 =−2 (see Fig.3.16). This analysis is relevant as the variation of the dielec-

tric properties of malignant cells with respect to the normal ones has a dramatic

impact on the EP characteristics. In particular, an extensive parameter study has

been conducted in order to investigate the effect of the cytoplasm conductivity,

which is known to become smaller in cancer cells [90]. Fig. 3.17 shows the pore

density and the EPRL as a function of the cytoplasm conductivity. It is worth

noticing that, for cancer cells (conductivity smaller than 1.2 S/m), both the pore

density and EPRL are smaller than those typically observed in normal cells. The

decrease of the cytoplasmic conductivity results in the increase of the cytoplasm

impedance and, consequently, an increase of the cytoplasm voltage. Since the

voltage levels on the extracellular medium and across the cell are constant, the in-

crease of the cytoplasm voltage causes a TMV fall, this leading to a reduced pore

density and EP opening angle. Fig. 3.18(a) shows the time response of TMV at

the top of cancer cell. As a matter of fact, the increase of the cytoplasm conduc-

tivity is driven by an increase of the pore density and membrane conductivity, this

causing a reduction of the time constant of the membrane, as well as a subsequent

quick drop of the TMV at the end of the PEF signal, when σc = 0.3 S/m. Fig.

3.18(b) illustrates the pore density around the cell perimeter for different values of

the cytoplasm conductivity. As expected, the pore density and the EPRL increase

for larger cytoplasm conductivity values.
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Figure 3.16: Geometric shape of the cancer cell. Superformula parameters kx =
ky = 16.8 µm, m1 = m2 = 6, n1 = n2 = 1, a1 = a2 = 1 and b1 = −2. Membrane

thickness h = 5 nm.
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Figure 3.17: (a) Pore density calculated at the top of the cell (θ = 90◦) and (b)

EP opening angle versus the cytoplasm conductivity. Rectangular unipolar pulse

type, electric field intensity 100 kV/cm, pulse duration T = 10 ns.
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Figure 3.18: (a) Time evolution of TMV at the top of the cell (θ = 90◦) and (b)

pore density around the cell perimeter for different values of cytoplasm conduc-

tivity. Rectangular unipolar pulse type, electric field intensity 100 kV/cm, pulse

duration T = 10 ns.

3.2.5 STOMATOCYTE RED BLOOD CELLS

The last test case is relevant to a stomatocyte red blood cells (RBCs), approxi-

mated by using the superformula parameters kx = 5.31 µm, ky = 0.73 µm, m1 =

8.5, m2 = 1.5, n1 = 143, n2 = 8, d1 = 1, d2 = 0.3 and b1 = 9 (see Fig. 3.19).

In our simulations, the biological cell is exposed to a pulsed electric field hav-

ing pulse duration, rise and fall time equal to 7 ns, 2 ns and 2 ns, respectively.

Moreover, a time delay of 4 ns and a time computational windows of 20 ns are

considered. Fig. 3.20 shows the pore density along the cell perimeter at different

time instants, considered with respect to t0 = 0 ns. It can be observed that two

nanoseconds after the pulse application a consistent electroporation emerges. A

significant electroporation can be observed at the bottom and the top of the cell

and the non electropored zone is mainly localized around the cell sides.
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Figure 3.19: Geometric shape of of stomatocyte red blood cell. Superformula

parameters kx = 5.31 µm, ky = 0.73 µm, m1 = 8.5, m2 = 1.5, n1 = 143, n2 = 8,

d1 = 1, d2 = 0.3 and b1 = 9.
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Figure 3.20: Pore density along the cell perimeter at different time, considered

with respect to t0 = 0 ns. Applied pulsed electric field having amplitude of

50 kV/cm, duration of 7 ns, rise time tr = 2 ns and fall time t f = 2 ns.
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3.3 MATHEMATICAL FORMULATION FOR NU-

CLEATED CELLS

3.3.1 CELL GEOMETRY MODEL

As illustrated in Fig.3.21, the biological system considered in the proposed stud-

ies is an axisymmetric cell constituted by the extracellular electrolyte (Ex), the

cytoplasm (Cp), the nucleoplasm (Np), the plasma (Pm) and nuclear (Nm) mem-

branes. The applied pulsed electric field is generated by a couple of ideal planar

electrodes placed on the top and lower ends of the computational domain. The

irregular cell geometry is modelled by using the Gielis superformula. In particu-

lar, the radius vectors describing the nuclear (r1) and plasma (r2) membranes are

given by:

r1,2 = r̂1,2

√

x2 + y2 (3.10)

x1,2 = A1,2R1,2 (θ)cosθ (3.11)

y1,2 = B1,2R1,2 (θ)sinθ (3.12)

R1 (θ) =

(∣

∣

∣

∣

cos(m1θ/4)

a1

∣

∣

∣

∣

n1

+

∣

∣

∣

∣

sin(m2θ/4)

a2

∣

∣

∣

∣

n2
)− 1

b1

(3.13)

R2 (θ) =

(∣

∣

∣

∣

cos(m3θ/4)

a3

∣

∣

∣

∣

n3

+

∣

∣

∣

∣

sin(m4θ/4)

a4

∣

∣

∣

∣

n4
)− 1

b2

(3.14)

where θ ∈ [−π/2,π/2], mi,ni, i = 1, ...,4 and b j, j = 1,2 are positive real num-

bers, ap, p = 1, ...,4 are strictly positive real numbers, A1,2,B1,2 are suitable scale

factors.

64



CHAPTER 3. EP IN 2-D IRREGULARLY SHAPED CELLS

Figure 3.21: Sketch of irregular nucleated biological cell exposed to uniform elec-

tric field.

3.3.2 ELECTROMAGNETIC MODEL

The electric potential φ and electric field E are computed under the quasi-static

approximation solving in each cell subdomain the Laplace equation:

∇ ·∇

(

σ + ε0
∂φ

∂ t

)

−
∂

∂ t
∇ ·P = 0 (3.15)

in conjunction with the equations of complex permittivity model and pore model,

and the equation:

E =−∇φ (3.16)

Moreover, the transmembrane voltage is calculated as the difference between

the electric potential on the interior (i) and outer (o) sides of the plasma and nu-

clear membranes:

TMVPm(x,y, t) = φi,Pm(x,y, t)−φo,Pm(x,y, t) (3.17)

TMVNm(x,y, t) = φi,Nm(x,y, t)−φo,Nm(x,y, t) (3.18)

where T MVPm and T MVNm are the transmembrane voltage for the plasma and

nuclear membranes, respectively. In the numerical calculations the plasma and
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nuclear membranes have been directly incorporated in the model and the extrusion

operator has been used to evaluate the TMV. The extrusion transformation from

the interior side to the outer side of the plasma membrane and from the outer

side to the inner side of the plasma membrane are described by the following

equations:

xo =
xi

1+
hPm

√

xi
2 + yi

2

(3.19)

yo =
yi

1+
hPm

√

xi
2 + yi

2

(3.20)

xi = xo

(

1+
hPm

√

xo
2 + yo

2

)

(3.21)

yi = yo

(

1+
hPm

√

xo
2 + yo

2

)

(3.22)

where hPm is the plasma membrane thickness. While the equations for the extru-

sion transformations related to the nuclear membrane are:

xo =
xi

1+
hNm

√

xi
2 +(yi − s)2

(3.23)

yo =
(yi − s)

1+
hNm

√

xi
2 +(yi − s)2

+ s (3.24)

xi = xo



1+
hNm

√

xo
2 +(yo − s)2



 (3.25)

yi = (yo − s)



1+
hNm

√

xo
2 +(yo − s)2



+ s (3.26)

where hNm is the nuclear membrane thickness and s is the nucleus shift respect to

the origin along the y direction.
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The electrical boundary conditions pertaining to the source and sink electrodes

were set to φ = V (t) and φ = 0, respectively, V (t) being the PEF signal con-

structed using smoothed piecewise function consisting of unipolar pulse. The

study was performed using a direct solver managing a large sparse linear system

of equations with good memory efficiency. The solver uses the LU decomposi-

tion to compute the system solution and a pre-ordering algorithm that permutes

the columns of the system matrix to minimize the number of non-zeros in the L

and U factors. A free time-stepping algorithm was utilized to allow the solver to

freely select the time steps during the computation.

3.3.3 COMPLEX PERMITTIVITY MODEL

Considering that for several PEF applications the pulse spectral energy becomes

significant at frequencies where dispersive effects occur, the developed numerical

model takes into account the dielectric relaxation due to the time-dependent re-

sponse of the dielectric media. In particular, the dielectric properties of cell media

are modelled by the Debye dispersion equation:

ε(ω) = ε∞ +
M

∑
k=1

∆εk

1+ jωτk

, (3.27)

where ε∞ is the high frequency permittivity, M is the order of Debye dispersion

process, ∆εk is the k-th relaxation amplitude and τk is the k-th relaxation time. In

detail, a second order Debye equation is used to model the plasma and nuclear

membranes and a first order Debye equation to model the extracellular medium,

the cytoplasm and the nucleoplasm. Under the assumption that the coupling be-

tween the PEF and the dielectric medium is weak, the linear response approxi-

mation will suffice to describe the dielectric polarization. For the homogeneous

media characterizing the cell compartments, the linear response of the polarization

vectors P1 and P2, corresponding to the first and second order Debye dispersion

model, to a time-varying electric field can be expressed as:

P1,Ex + τEx

∂P1,Ex

∂ t
= (∆εEx + ε∞ − ε0)E+(ε∞ − ε0)τEx

∂E

∂ t
(3.28)
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P1,Cp + τCp

∂P1,Cp

∂ t
= (∆εCp + ε∞ − ε0)E+(ε∞ − ε0)τCp

∂E

∂ t
(3.29)

P1,N p + τN p

∂P1,N p

∂ t
= (∆εN p + ε∞ − ε0)E+(ε∞ − ε0)τN p

∂E

∂ t
(3.30)

a2,Pm

∂ 2P2,Pm

∂ t2
+a1,Pm

∂P2,Pm

∂ t
+P2,Pm = b2,Pm

∂ 2E

∂ t2
+b1,Pm

∂E

∂ t
+b0,PmE (3.31)

a2,Nm

∂ 2P2,Nm

∂ t2
+a1,Nm

∂P2,Nm

∂ t
+P2,Nm = b2,Nm

∂ 2E

∂ t2
+b1,Nm

∂E

∂ t
+b0,NmE (3.32)

where

a1,Pm = τ1,Pm + τ2,Pm (3.33)

a2,Pm = τ1,Pm + τ2,Pm (3.34)

b0,Pm = ∆ε1,Pm +∆ε2,Pm + ε∞ − ε0 (3.35)

b1,Pm = (∆ε2,Pm + ε∞ − ε0)τ1,Pm +(∆ε1,Pm + ε∞ − ε0)τ2,Pm (3.36)

b2,Pm = (ε∞ − ε0)τ1,Pmτ2,Pm (3.37)

and

a1,Nm = τ1,Nm + τ2,Nm (3.38)

a2,Nm = τ1,Nm + τ2,Nm (3.39)

b0,Nm = ∆ε1,Nm +∆ε2,Nm + ε∞ − ε0 (3.40)

b1,Nm = (∆ε2,Nm + ε∞ − ε0)τ1,Nm +(∆ε1,Nm + ε∞ − ε0)τ2,Nm (3.41)

b2,Nm = (ε∞ − ε0)τ1,Nmτ2,Nm (3.42)
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3.4 PORE MODEL

The pore density number for the plasma, NPm, nuclear, NNm, membranes is cal-

culated by using the asymptotic Smoluchowski equation [76]. In particular, the

temporal evolutions are described by the following first-order partial differential

equations:

∂NPm

∂ t
= α

[

exp
(

TMVPm/Vep

)2
−

NPm

Neq

]

(3.43)

∂NNm

∂ t
= α

[

exp
(

TMVNm/Vep

)2
−

NNm

Neq

]

(3.44)

Whenever the electroporation occurs, the formation of the pores in the cell mem-

branes increases their conductivity. In particular, the average membrane conduc-

tivity is given by the sum of static membrane conductivity and the contribution

due to the electroporated part:

σPm(x,y, t) = σ0,Pm +KPmNPm(x,y, t)σPmπr2
p (3.45)

σNm(x,y, t) = σ0,Nm +KNmNNm(x,y, t)σNmπr2
p (3.46)

with

KPm =
eνPm −1

w0ew0−ηνPm −ηνPm

w0 −ηνPm
eνPm −

w0ew0+ηνPm +ηνPm

w0 +ηνPm

(3.47)

KNm =
eνNm −1

w0ew0−ηνNm −ηνNm

w0 −ηνNm
eνNm −

w0ew0+ηνNm +ηνNm

w0 +ηνNm

(3.48)

where σ0,Pm and σ0,Nm are the static plasma and nuclear membrane conduc-

tivity, σp,Pm and σp,Nm are the conductivity of the solution inside the pore for

the plasma and nuclear membranes,νPm and νNm are the non-dimensional trans-

membrane voltage for the plasma and the nuclear membranes calculated using the

following equations:

νPm = (qe/kT )T MVPm (3.49)

νNm = (qe/kT )T MVNm (3.50)
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3.5 NUMERICAL RESULTS

Using the numerical model previously described, the electroporation process has

been studied for two types of cells: prolate spheroid and muscular-like. The cells

are inserted in a cylindrical computational domain having radius and height equal

to 100 µm. Table 3.3 summarizes the polarization, geometric, electric and elec-

troporation parameters used in numerical simulations. Our computations and data

plots have been performed using MATLAB suite software.

3.5.1 NUCLEATED PROLATE SPHEROID CELL

The first type of cell has a prolate spheroid shape (see Fig. 3.22a), having semi-

axis a1 = 2 µm and b1 = 7.5 µm, for the plasma membrane, and semi-axis a2 =

0.75 µm and b2 = 1.5 µm, for the nuclear membrane. The thickness of plasma and

nuclear membranes are hPm = 5 µm and hNm = 10 µm, respectively. In our sim-

ulations, the biological cells are exposed to a PEF having rectangular shape with

amplitude 100 kV/cm, duration T = 10 ns, rise time tr = 0.9 ns, and fall time

t f = 0.9 ns. All results refer to both plasma dispersive (DPm) and nuclear dis-

persive (DNm) membranes as well as plasma non-dispersive (nDPm) and nuclear

non-dispersive (nDNm) membrane models. Figures 3.22b-3.22c show the time re-

sponse of the transmembrane voltage and pore density at the top of the spheroidal

cell. In the calculations, we have taken into account that the nuclear envelope con-

sists of two lipid membranes, that we suppose having same electrical properties.

Thus, assuming as in [41] that the transmembrane voltage is equally distributed

between the two lipid membranes, the TMV across the single membrane is cal-

culated as half of the voltage across the entire nuclear envelope. As shown in

figure 3.22b-3.22c, in accordance with results reported in [4] , the increase of the

transmembrane voltage and the resulting activation of electroporation occur faster

in the dispersive model. The reason is that the membrane time constants of the

dispersive model are significantly smaller than that of the non-dispersive one.
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Table 3.3: Polarization, Electric, Geometrical and EP Parameters

Symbol Value Description

τPm
1 3×10−9 s First relaxation time of plasma membrane [4]

τNm
1 3×10−9 s First relaxation time of nuclear membrane [4]

τPm
2 4.6×10−10 s Second relaxation time of plasma membrane [4]

τNm
2 4.6×10−10 s Second relaxation time of plasma membrane [4]

τEx 6.2×10−12 s Relaxation time of extracellular medium [86]

τCp 6.2×10−12 s Relaxation time of cytoplasm [86]

τN p 6.2×10−12 s Relaxation time of nucleoplasm [86]

∆εPm
1 2.3×10−11 F/m First relaxation amplitude of plasma membrane [4]

∆εNm
1 2.3×10−11 F/m First relaxation amplitude of nuclear membrane [4]

∆εPm
2 7.4×10−12 F/m Second relaxation amplitude of plasma membrane [4]

∆εNm
2 7.4×10−12 F/m Second relaxation amplitude of nuclear membrane [4]

∆εEx 5.9×10−10 F/m Relaxation amplitude of extracellular medium [86]

∆εCp 5.9×10−10 F/m Relaxation amplitude of cytoplasm [86]

∆εN p 5.9×10−10 F/m Relaxation amplitude of nucleoplasm [86]

ε∞ 13.9×10−12 F/m High frequency permittivity [4]

ε0 8.85×10−12 F/m Dielectric permittivity of vacuum

εEx
e 72 Relative permittivity of extracellular medium [4]

εPm
0 5 Static relative permittivity of plasma membrane [4]

ε
Cp
e 72 Relative permittivity of cytoplasm [4]

εNm
0 7 Static relative permittivity of nuclear membrane [4]

ε
N p
e 72 Relative permittivity of nucleoplasm [4]

σEx 1.2 S/m Conductivity of the extracellular medium [4]

σPm
0 9.5×10−9 S/m Passive Conductivity of the plasma membrane [4]

σCp 0.3 S/m Conductivity of cytoplasm [4]

σNm
0 1×10−4 S/m Passive Conductivity of the nuclear membrane[41]

σN p 0.6 S/m Conductivity of nucleoplasm[41]

σPm
p 0.6492 S/m Conductivity of solution inside the pore for plasma membrane [41]

σNm
p 0.4328 S/m Conductivity of solution inside the pore for nuclear membrane [41]

rp 0.8 nm Pore radius [4]

α 109 m−2s−1 Pore creation rate density [4]

Vep 224 mV Characteristic voltage of electroporation [4]

Neq 3.3×106 m−2 Equilibrium pore density [4]

w0 3.2 Energy barrier inside the pore [4]

η 0.15 Relative length of pore entrance area [4]

qe 1.65×10−19 C Electron electric charge

k 1.38×10−23 J/K Boltzmann constant

T 295 K Temperature

hPm 5 nm Plasma membrane thickness[41]

hNm 10 nm Nuclear membrane thickness[41]
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Figure 3.22: Nucleated biological cell with prolate spheroidal shape (a), results for

plasma (Pm) and nuclear (Nm) membranes obtained using the dispersive (D) and

non-dispersive (nD) model: (b) Temporal evolution of TMV and (c) pore density

at the top of the cell (θ = 90◦), (d) pore density versus the polar angle at t = 20 ns.

Pulse amplitude and duration equal to 100 kV/cm and 10 ns, respectively.

However, the increase of pore density in the plasma and nuclear membranes,

generates a fast increase of membranes conductivity leading to a decrease of the

transmembrane voltage. In contrast to non-dispersive model, in dispersive one

the nuclear membrane is electroporated before the plasma membrane. For both

the dispersive and non-dispersive models, the nuclear membrane is electroporated

before the plasma membrane. The explanation of this phenomenon is related to

the fact that the charging time constant of nuclear membrane is less than that of

the plasma membrane [91] . This effect is more evident when shorter pulses are

used, as in our case. Figure 3.22d reports the pore density around the cell circum-

ference at time instant t = 20 ns and a relevant difference is evaluated between the

dispersive and non-dispersive model.
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In particular, the electroporation relative length (EPRL), i.e. the ratio between

the length of the electroporated area and the total length of the cell membrane, per-

taining the plasma membrane and calculated using the dispersive model is about

2.5 % higher than that calculated using non-dispersive one. Moreover, the EPRL

of the nuclear membrane calculated using the dispersive model is about 7.3 %

higher than that calculated using non-dispersive one. To evaluate the EPRL, the

cell membranes are considered to be significantly electroporated when the pore

density reaches a value of 1014 m−2 [39] .

3.5.2 NUCLEATED MUSCULAR-LIKE CELL

The second analyzed nucleated cell is the muscular-like reported in Fig.3.23a. For

this type of cell, the shape of the plasma membrane has been modelled using the

Gielis superformula parameter m1 = m2, n1 = n2 = 0.8, d1 = d2 = 1, b1 = 0.6

[80] . The spatial scale factors are A1 = 4 µm and B1 = 7.5 µm. The nucleus

has prolate spheroid shape with semi-axis a2 = 0.75 µm and b2 = 1.5 µm and

center shifted of s = 1 µm respect to the origin. Figures 3.23b and 3.23c show

the time response of the TMV and pore density at the angular place θ = 75◦

for both plasma and nuclear membranes, obtained using the dispersive and non-

dispersive model. Also in this case, the activation of electroporation occurs faster

in the dispersive model. In contrast to the nucleated prolate spheroidal cell, for

nucleated muscular-like cell the nuclear membrane is electroporated before the

plasma membrane for both the dispersive and non-dispersive model. In agreement

with the nucleated prolate spheroidal cell, also for nucleated muscular-like cell

the nuclear membrane is electroporated before the plasma membrane for both the

dispersive and non-dispersive model. As reported in Figures 3.23c and 3.23d,

a significant difference is evaluated between the two analyzed models. For this

type of cell, the difference between the two used models is accentuated by the

irregular geometrical shape of the plasma membrane. At θ = 75◦, considering

the dispersive model, both plasma and nuclear membranes are electroporated. In

contrast, in the non-dispersive model, only the nuclear membrane is significantly

electroporated. At θ = 75◦, considering the dispersive and non-dispersive models,

only the nuclear membrane is significantly electroporated.
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From figure 3.23d it can be inferred a significant absolute difference between

the dispersive and non-dispersive EPRL for both the membranes. In particular,

the EPRL difference is about 26.7 %, for the plasma membrane, and about 7.1 %,

for the nuclear membrane.
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Figure 3.23: Smooth muscular cell with decentralized nucleus (a), results for

plasma (Pm) and nuclear (Nm) membranes obtained using the dispersive (D) and

non-dispersive (nD) model: (b) Temporal evolution of TMV and (c) pore density

for θ = 75◦, (d) pore density versus the polar angle at t = 20 ns. Pulse amplitude

and duration equal to 100 kV/cm and 10 ns, respectively.
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3.5.3 NUCLEUS DECENTRALIZATION STUDY

To investigate the influence of the nucleus shift on the EP process, a parametric

study has been carried out. Also in this case, the analysis has been performed

for plasma and nuclear membranes, using both the dispersive and non-dispersive

model. Figures 3.24a and 3.24b illustrate, respectively, the EPRL for plasma and

nuclear membranes as functions of the nucleus shift s, calculated using the dis-

persive (D) and non-dispersive (nD) model. The plasma EPRL calculated using

the dispersive model changes within a limited values ranging from 25 % to 27 %.

Instead the plasma EPRL evaluated using the non-dispersive model is zero for s

ranging from −1.5 µm to 1.5 µm and it increases to about 8 % moving the nucleus

towards the electrodes. For the nuclear membranes the EPRL calculated using the

dispersive and non-dispersive model is quite constant and equal to about 58 % and

51 %, respectively. As showed in figure 3.24c, the absolute difference between

EPRL of plasma membrane calculated using the dispersive and non-dispersive

models has a minimum of about 17.2 % at s = ±3 µm reaching the maximum

value of about 27.2 % close to s = ±1.5 µm. A local minimum of about 25.8 %

is evident at s = 0 µm. Figure 3.24d shows that for the nuclear membrane, the ab-

solute difference between the dispersive and non-dispersive EPRL change in the

range 7 % - 7.3 %.
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Figure 3.24: Nucleus decentralization parametric study: (a) EPRL for plasma

membrane (Pm) and (b) EPRL for nuclear membrane (Nm) versus the nucleus

decentralization parameter s, obtained using the dispersive (D) and non-dispersive

(nD) model. Absolute difference between the dispersive and non-dispersive EPRL

versus the nucleus decentralization parameter s for (c) plasma membrane and for

(d) nuclear membrane.
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Chapter 4

EP IN MULTIPLE IRREGULAR

CELLS SYSTEMS

4.1 2-D EP MULTIPLE CELLS MODEL

Most of the electroporation process studies are based on models using a single

isolated cell with a circular or elliptical shape. In order to provide a predictive

description of in vitro experiments, a nonlinear dispersive numerical model de-

scribing the irregularly cells shape and the effects of each cell on the neighbors

has been developed. In this paragraph, the EP process induced by PEFs in mul-

tiple irregularly shaped cells systems has been analyzed. Using the numerical

model described in Chapter 2, the electroporation process has been studied for

two types of multiple irregularly shaped cells systems: packed system (Fig. 4.1)

and sparse system (Fig. 4.2). Each multiple irregularly shaped cells system is

constituted by 7 nucleated muscular-like cells. For this kind of cell, the geometric

shape of the plasma membrane is modelled by using the Gielis’ superformula pa-

rameters A1 = 4 µm, B1 = 7.5 µm, m1 = m2 = 2, n1 = n2 = 0.8, a1 = a2 = 1 and

b1 = 0.6. The nucleus has a prolate spheroid shape with semi-axis A2 = 0.75 µm

and B2 = 1.5 µm and it is centered in the middle of each cell. Table 4.1 and 4.2

report the space position of each cell with respect to the origin for the packed and

the sparse system, respectively.
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Figure 4.1: Multiple irregularly shaped cells packed system.
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Figure 4.2: Multiple irregularly shaped cells sparse system.
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Table 4.1: Packed System Cells Space Position

CELL x (µm) y (µm)

1 0 16.5

2 -4 9

3 4 9

4 0 0

5 -4 -9

6 4 -9

7 0 -16.5

Table 4.2: Sparse System Cells Space Position

CELL x (µm) y (µm)

1 0 22.5

2 -8 12

3 8 12

4 0 0

5 -8 -12

6 8 -12

7 0 -22.5

4.1.1 NUMERICAL RESULTS

In our study, each cells system is inserted in a cylinder domain having radius and

height equal to 100 µm. The polarization, geometric, electric and electroporation

parameters used in the numerical procedure are summarized in table 3.3. In the

simulations, the biological systems are exposed to a PEF having rectangular shape

with amplitude E = 100 kV/cm, duration T = 10 ns, rise time tr = 0.9 ns and fall

time t f = 0.9 ns. Figure 4.3 shows the time response of the TMV and pore density

at the angular place θ = 75◦ for both plasma and nuclear membranes, obtained

for the packed system. As consequence of the external pulse application, the

transmembrane voltage on plasma and nuclear membranes on each cell increase

approximately to 1.4 V. As shown in Fig. 4.3, the increase of transmembrane

voltage and the resulting activation of electroporation occurs faster in the nuclear

membranes. This effect is more evident when shorter pulses are used, as in our

case.
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In the present discussion, the cells membranes are considered to be signifi-

cantly electroporated when the pore density reaches a value of 1014 m−2 [39]. As

reported in Fig. 4.3b, the plasma membrane of each cell is electroporate with ex-

ception of the plasma membrane of cell 5, that in the point of evaluation is affected

by the shielding effect of the other cells. Furthermore, the activation of electro-

poration for the plasma membranes of each cell occurs in different time instants,

resulting in the following sequence of EP activation: cell 7 and cell 6, cell 2, cell

3, cell 4, cell 1, cell 5 (no EP). Instead, from Fig. 4.3d it can be inferred that the

nuclear membranes are all significantly electroporated at the same time instant.
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Figure 4.3: Packed System - Temporal evolution for plasma membranes (Pm)

of (a) TMV and (b) pore density for θ = 75◦. Temporal evolution for nuclear

membranes (Nm) of (c) TMV and (d) pore density for θ = 75◦. Pulse amplitude

and duration equal to 100 kV/cm and 10 ns.
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Fig. 4.4 and 4.5 report the pore density versus the polar angle at time instant

t = 20 ns for the plasma and the nuclear membranes of each cell, respectively. As

reported in Fig. 4.4, the EP process originates within of the smoothed region of

the plasma membrane of each cell, and gets estinguished at the equatorial (θ = 0◦

and θ = ±180◦) and sharp (θ = ±90◦) zones. In particular, the electroporation

relative length (EPRL) of the plasma membranes of cell 1, cell 2, cell 3, cell 5,

cell 6 and cell 7 is about 37 % (Tab. 4.3). As show in Fig. 4.4, for these cells

the pore density around the plasma perimeter has an asymmetric distribution due

to the electric interaction of each cell with the neighboring ones. Differently, as

reported in Fig. 4.4d the plasma membrane pore density versus the polar angle

for cell 4 has a symmetric distribution due to its centric placement in the whole

system. For this cell the plasma EPRL is equal to 24.22 %. As reported in Fig.

4.5, the EP phenomenon is maximum at the top and the bottom of the nuclear

membranes (θ =±90◦) of each cell, and estinguishes at the equatorial (θ = 0◦ and

θ =±180◦). The nuclear EPRL of cell 1 and cell 7 is about 56.5 %. Furthermore

the nuclear EPRL of cell 2, cell 3, cell 5 and cell 6 is about 58 %. As shown in

Fig. 4.5, the distribution around the nuclear membrane pore density is symmetric

only for cell 4, having a nuclear EPRL of 53.56 %.

Table 4.3: Packed System EPRL

CELL PLASMA EPRL % NUCLEAR EPRL %

1 37.42 56.50

2 37.46 58.24

3 37.34 58.25

4 24.22 53.56

5 37.51 58.24

6 37.46 58.24

7 37.61 56.55
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Figure 4.4: Packed System - Plasma membranes (Pm) pore density versus the

polar angle at time instant t = 20 ns for cell 1 (a), cell 2 (b), cell 3 (c), cell 4 (d),

cell 5 (e), cell 6 (f), cell 7 (g). Pulse amplitude and duration equal to 100 kV/cm

and 10 ns. 82
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Figure 4.5: Packed System - Nuclear membranes (Nm) pore density versus the

polar angle at time instant t = 20 ns for cell 1 (a), cell 2 (b), cell 3 (c), cell 4 (d),

cell 5 (e), cell 6 (f), cell 7 (g). Pulse amplitude and duration equal to 100 kV/cm

and 10 ns. 83
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Fig. 4.6 shows the temporal evolution for plasma and nuclear membranes of

TMV and pore density for (θ = 75◦), obtained for the sparse system. Also in this

case, the increase of TMV and the resulting activation of EP occurs faster in the

nuclear membranes. As shown in Fig. 4.6b, the plasma membrane of each cell is

electroporated in different time instants, resulting in the following new sequence

of EP activation: cell 6, cell 3, cell 7, cell 4, cell 2, cell 1, cell 5. Also in these case,

the nuclear membranes are significantly electroporated at the same EP activation

time instant. Fig. 4.7 and Fig. 4.8 report the plasma and the nuclear membrane

pore density versus the polar angle at time instant t = 20 ns. In particular, the

EPRL (Tab. 4.4) of the plasma membranes of cell 1 and cell 7 is about 47 %. The

EPRL of plasma membranes of cell 2, cell 3, cell 5 and cell 6 is about 48.7 %, and

the EPRL of cell 4 is 44.78 %. Furthermore, the nuclear EPRL of cell 1 and cell 7

is about 58 %, the nuclear EPRL of cell 2, cell 3, cell 5 and cell 6 is about 58.8 %,

and the nuclear EPRL of cell 4 is 57.57 %. Also in this case, cell 4 is the only cell

to have a symmetric distribution of plasma and nuclear membrane pore density

along the membranes circumference. In conclusion, the electroporation process

is more evident in the sparse system than in the packed one. This occurrence is

essentially due to the shielding effect of each cell on the others.

Table 4.4: Sparse System EPRL

CELL PLASMA EPRL % NUCLEAR EPRL %

1 47.22 58.14

2 48.72 58.82

3 48.67 58.82

4 47.78 57.57

5 48.73 58.82

6 48.72 58.82

7 47.40 58.14
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Figure 4.6: Sparse System - Temporal evolution for plasma membranes (Pm) of

(a) TMV and (b) pore density for θ = 75◦. Temporal evolution for nuclear mem-

branes (Nm) of (c) TMV and (d) pore density for θ = 75◦. Pulse amplitude and

duration equal to 100 kV/cm and 10 ns.
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Figure 4.7: Sparse System - Plasma membranes (Pm) pore density versus the polar

angle at time instant t = 20 ns for cell 1 (a), cell 2 (b), cell 3 (c), cell 4 (d), cell

5 (e), cell 6 (f), cell 7 (g). Pulse amplitude and duration equal to 100 kV/cm and

10 ns. 86
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Figure 4.8: Sparse System - Nuclear membranes (Nm) pore density versus the

polar angle at time instant t = 20 ns for cell 1 (a), cell 2 (b), cell 3 (c), cell 4 (d),

cell 5 (e), cell 6 (f), cell 7 (g). Pulse amplitude and duration equal to 100 kV/cm

and 10 ns. 87
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To better analyze the shielding effect of each cell on the others the current

density and the electric field at time instant t = 10 ns have been evaluated for the

packed and the sparse system, respectively. As reported in Fig. 4.9, the current

flow between the cells as the electric field interaction are more pronounced in the

packed system. In particular, as shown in Fig. 4.9a-b, for the packed system an

electrical interaction is evident between cells 1,2,3 and 4 as well as between cells

4,5,6 and 7. Furthermore, a good electrical mutual influence is present between

the cells on the right side (cells 2 and 5) and on the left side (cells 3 and 6) of

the packed system. On the contrary, as shown in Fig. 4.9c-d, the increase of the

distance between the cells reduces the cells interaction on each other. Thus, in the

sparse system the electrical interaction is pronounced between cells 1,2,and 3 as

well as between cells 5,6 and 7.

(a) (b)

(c) (d)

Figure 4.9: Packed System - (a) Current density log scale; (b) Electric Field log

scale; Sparse System - (c) Current density log scale; (d) Electric Field log scale.

Computational time instant t = 10 ns.

88



CHAPTER 4. EP IN MULTIPLE IRREGULAR CELLS SYSTEMS

4.2 ELECTROPORATION IN 3-D IRREGULARLY

SHAPED CELLS

4.2.1 ELECTRODES AND VOLTAGE DROP MEASURE

In this second part of the chapter, the research activity performed inside the lab-

oratory of Biocybernetics of Faculty of Electrical Engineering of University of

Ljubljana is described. The experimental system used for the electroporation is

constituted by the signal generator BetaTech B10, the electrodes and a chamber

containing the biological cells. Figure 4.10 shows the electrodes system designed

to electroporate the biological cells. Three groups of 8 electrodes have been used

in the experiments having a distance D between the electrodes named 1 and 5

equal to 350 µm, 250 µm and 150 µm, respectively (Fig. 4.11). The thickness of

each electrode is 100 nm. Figure 4.12 shows the equivalent circuit of the system

used in the experiments, where Rm = 10 kΩ is the measurement resistance, Re the

electrodes resistance and Zc the impedance of the chamber (Fig. 4.13) filled with a

sample of NaCl having a conductivity σNaCl = 1.622 S/m. A rectangular voltage

pulse with amplitude of 60 V and duration of 100 µs, has been applied to channel

1, VCH1, and the voltage on channel 2, VCH2, has been measured (Fig. 4.14a).

Using the following equation the voltage on the chamber, Vc, has been calculated

(Fig. 4.14b):

Vc =VCH1 − I(Rm +Re) (4.1)

where I is the current that flows in the circuit, calculated as follow:

I =
VCH1

Rm
(4.2)

The mean value of Vc used in Comsol Multiphysics simulation has been evaluated

equal to 59.9192 V. Figure 4.14c reports the comparison between the measured

current and the simulated current.
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Figure 4.10: Electrodes used in the experiments.

Figure 4.11: Picture enlargement of the electrodes used in the experiments in cor-

respondence of the positioning zone of the chamber holding the biological cells.

Distance D between the electrodes named 1 and 5 equal to 350 µm, 250 µm and

150 µm, respectively.
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Figure 4.12: Equivalent circuit of the system used in the experiments.

Figure 4.13: Chamber used in the experiments.

91



CHAPTER 4. EP IN MULTIPLE IRREGULAR CELLS SYSTEMS

−20 20 60 100 140
−20

0

20

40

60

80

100

t (µs)

V
o
lt

ag
e 

(V
)

 

 

V
CH1

V
CH2

(a)

−20 20 60 100 140
−20

0

20

40

60

80

100

t (µs)

V
A

 (
V

)

(b)

−20 20 60 100 140
−200

−100

0

100

200

300

400

t (µs)

I 
(µ

A
)

 

 

Measured Current

Simulated Current

(c)

Figure 4.14: VCH1, rectangular voltage pulse with amplitude of 60 V and duration

of 100 µs applied to channel 1; VCH2, voltage measured on channel 2.
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4.2.2 3D CELLS GEOMETRY RECONSTRUCTION

Mouse melanoma cell line B16-F10 stably transfected with fluorescent protein

tdTomato has been used during the experiments. The images of the real cells (Fig.

4.15) have been obtained using the confocal laser scanning microscope ZEISS

LSM 800. Each cell cross-section (Fig. 4.16 and 4.17) has been acquired by

shifting the focus of the microscope vertically in constant steps of 0.5 µm from

the bottom to the top of the cells. The RGB images of the cells cross-section have

been elaborated using an extraction algorithm based on the edge detection Sobel

method. In the 3D numerical model reconstruction the cross-sections of the cells

have been considered in a vertical increments of 4 µm from the bottom to the up

of the cells. The extraction process generates the vector image of the contour of

each cell for the different z sections (Fig. 4.18, 4.19 and 4.20). The numerical

computations have been performed using MATLAB software suite. The obtained

vector images for each z stack have been imported in Comsol Multiphysics and

the 3D geometry of each cell have been reconstructed using the Loft operator. The

generated tridimensional cell shapes have been validated comparing it with their

tridimensional structure reported in ZEN software suite (Fig. 4.21, 4.22 and 4.23).

Figure 4.15: Cells 3D view obtained using ZEN software suite.
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Figure 4.16: Top view of the cells using ZEN software suite.

Figure 4.17: Cross-section example of the reconstructed cells.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.18: Cross-sections of cell 1 and relative contours, from the bottom to the

top of the cell.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.19: Cross-sections of cell 2 and relative contours, from the bottom to the

top of the cell.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.20: Cross-sections of cell 3 and relative contours, from the bottom to the

top of the cell.
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(a) (b)

Figure 4.21: (a) 3D view of cell 1 using ZEN software; (b) 3D model of cell 1.

(a) (b)

Figure 4.22: (a) 3D view of cell 2 using ZEN software; (b) 3D model of cell 2.

(a) (b)

Figure 4.23: (a) 3D view of cell 3 using ZEN software; (b) 3D model of cell 3.
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4.3 NUMERICAL RESULTS

Figures 4.24 and 4.25 show the reconstructed 3D cells and the simulated geome-

try with electrodes, respectively. The group of electrodes used in the simulation

and experiments has a distance between the electrodes named 1 and 5 equal to

250 µm. In the previous section the voltage drop on the electrodes has been cal-

culated and validated. Thus to reduce the computational complexity, the model

considers only the terminal parts of electrodes. In the computations, a nonlinear

mathematical model of electroporation has been employed. The model solves the

Maxwell’s equations in conjunction with Smolouchouski partial differential equa-

tion, which describes the nonlinear pore dynamics creation. To reduce the com-

putational complexity, each cells compartment are considered as non-dispersive

media. To avoid the problems related to building the very thin cells plasma mem-

branes, the membranes have been modeled as boundary condition [12, 92]. The

geometric, electric and electroporation parameters used in the numerical proce-

dure are summarized in table 3.2. The simulations have been performed using

Comsol Multiphics. In the numerical computations and experiments the voltage

signal is applied between electrodes 1 and 5. A preliminary simulation has been

carried out exposing the biological cells to a rectangular voltage pulse with am-

plitude of 60 V, duration of 100 µs ad rise time and fall time of 40 µs. Figure

4.26 shows the obtained maximum surface pore density versus the time. In the

simulation a time window of 1 s has been considered. In Fig. 4.27 and 4.28 the

electric field distribution at time instant t0 = 100 µs has been reported. Figure

4.29, 4.30 and 4.31 illustrate the pore density surface distribution for the three

cells at time instant t0 = 100 µs. In the experiments 8 pulses of 100 µs with a

repetion frequency of 1 Hz have been applied to the biological system. By inspec-

tion of figure 4.26 can be inferred that the pore density reaches the equilibrium

value N0 before the starting of the next pulse. Thus the final simulation has been

carried out using a single rectangular pulse. Furthermore, in the final simulation

the rise time and the fall time of the rectangular voltage pulse have been reduced

to 10 µs and also the voltage drop on the electrodes has been taken into account.
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Figure 4.24: 3D cells model.

(a) (b)

Figure 4.25: (a) 3D cells model with electrodes; (b) Top view of the 3D cells

model with electrodes.
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Figure 4.26: Temporal evolution of Maximum Surface Pore Density for three

different cells when a time window of 1 s is considered; Rectangular unipolar

pulse type, voltage amplitude 60 V, duration T = 100 µs, rise time tr = 40 µs, fall

time t f = 40 µs.

Figure 4.27: 3D view of Electric Field (V/m) distribution at time instant t0 =
100 µs.

Figure 4.28: Electric Field (V/m) distribution for z= 0 at time instant t0 = 100 µs.
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Figure 4.29: Pore Density surface distribution for cell 1 at time instant t0 = 100 µs.

Figure 4.30: Pore Density surface distribution for cell 2 at time instant t0 = 100 µs.

Figure 4.31: Pore Density surface distribution for cell 3 at time instant t0 = 100 µs.
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Fig. 4.32a and 4.32b show the temporal evolution of maximum surface TMV

and pore density when the biological cells are exposed to a rectangular unipo-

lar pulse type having voltage amplitude 60 V (voltage used in the simulation

59.9192 V), duration of 100 µs, rise time and fall time of 10 µs. The obtained

numerical results have been compared with experimental ones reported in Fig.

4.32c. Electroporation was detected using the calcium sensitive dye Fluo-4 AM

(ThermoFischer Scientific, USA). Stably transfected cells with fluorescent protein

tdTomato emitted fluorescence in red range and in green range from Fluo-4 AM

when the intracellular calcium concentration increased due to electroporation. By

inspection of Fig. 4.32b and 4.32c, it is inferred that cell 1 and cell 2 are both elec-

troporated and cell 3 is not electroporated. As result a good agreement between

the numerical and experimental results has been obtained.
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Figure 4.32: (a) Temporal evolution of Maximum Surface TMV for three dif-

ferent cells; (b) Temporal evolution of Maximum Surface Pore Density for three

different cells. (c) Experimental results. Rectangular unipolar pulse type, voltage

amplitude 60 V (voltage used in the simulation 59.9192 V), duration T = 100 µs,

rise time tr = 10 µs, fall time t f = 10 µs.
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CONCLUSIONS

In this PhD dissertation, the electroporation process induced by pulsed electric

field on different biological cells and on multiple irregular cells systems has been

analyzed. A non-local and space-time numerical model based on the asymp-

totic Smoluchowskis equation and the Maxwells equations has been developed

to study the EP process induced by PEFs in irregularly shaped cells. The shape

of the general cell has been modeled by using a unified geometrical approach

based on Gielis superformula. Furthermore, in order to enable an accurate pre-

diction of both the spatial distribution and the time response of TMV and pore

density under nanosecond pulsed regime, the dielectric relaxation of the extracel-

lular, plasma membrane, cytoplasm and nuclear media have been modeled using a

general multi-relaxation Debye based formulation. In the first part of third chapter

the EP induced by PEF has been studied for different types of non-nucleated cells.

An unconventional behavior has been observed in the considered class of irregu-

larly shaped cells, contrary to canonical spherical cell based models. In particular,

the typical cosine law of TMV is lost, while inhomogeneous EP phenomena occur.

The muscular-like cell exhibits a negligible pore density within the sharp region

facing the PEF electrodes. The cell in mitosis phase, on the contrary, shows a

very high pore density within the same membrane sector. For the cell in mitosis

phase the EP does not occur in the very limited areas around the angles θ = 0◦

and θ = ±45◦. In contrast, the muscular-like cell has a negligible pore density

within the wide membrane area ranging from θ =−45◦ to θ = 45◦. In the second

part of the third chapter, considering the nucleated prolate spheroidal cell and the

smooth muscular cell with decentralized nucleus, various simulations have been

done to investigate the differences between the nonlinear dispersive model and the

nonlinear nondispersive model.
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CHAPTER 4. CONCLUSIONS

Starting from the prolate spheroidal cell, an absolute difference between the

dispersive and non-dispersive EPRL of 2.5 % for the plasma membrane and 7.3 %

for the nuclear membrane are obtained. This difference increases with the irreg-

ular geometrical shape of the plasma membrane. In particular, for the muscular-

like cell with the nucleus decentralized along the Y axes of s = 1 µm, EPRL is,

respectively, 26.7 % for the plasma membrane and 7.1 % for the nuclear mem-

brane. Finally, a parametric analysis has been conducted, to evaluate the absolute

difference between the dispersive and non-dispersive EP opening angles as func-

tions of the nucleus decentralization parameter s. A ∆EPRL ranging, respectively,

between 17.2 % and 27.2 % for the plasma membrane and between 7 % and 7.3 %

for the nuclear membrane is obtained. From the results analyzed it is possible to

conclude that for real like cells a relevant difference is evaluated between the non-

linear dispersive model and the nonlinear nondispersive model. In the first part

of the last chapter, the EP process induced by PEFs in 2-D multiple irregularly

shaped cells systems has been analyzed. Using the numerical model described in

Chapter 2, the electroporation process has been studied for two types of multi-

ple irregularly shaped cells systems: packed system and sparse system. For each

multiple irregularly shaped cells system 7 nucleated muscular-like cells have been

considered. By the computational analysis it is concluded that the electroporation

process is more evident in the sparse system than in the packed system. This re-

sult is essentially due to the shielding effect of each cell on the others. In the

last part of the PhD thesis the research activity performed inside the laboratory

of Biocybernetics of Faculty of Electrical Engineering of University of Ljubljana

has been described. The cells cross-section RGB images have been elaborated

using an extraction algorithm based on the edge detection Sobel method and the

3D geometry of each cell have been reconstructed in Comsol Multiphysics. The

biological cells have been exposed to a rectangular unipolar pulse type having

voltage amplitude 60 V, duration of 100 µs, rise time and fall time of 10 µs. As

result a good agreement between the numerical and experimental results has been

obtained.
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FUTURE WORK

As previosly highlighted in the present work, the mathematical model developed

for the study of the electroporation process calculates the temporal evolution of

pore creation and resealing using the Smoluchowskis equation. Such equation

involves several parameters and cannot be solved analytically. To overcome this

drawback, it has been assumed that pores have a constant radius of 0.8 nm and

thus the asymptotic Smoluchowskis equation has been employed. However, in

the literature there are models of the phenomenon of electroporation, which in-

clude in the numerical analysis the temporal variation of the pores size [76, 93].

These models calculate transmembrane potential, number of pores, and distribu-

tion of pore radii as functions of time and position on the cell surface. Both the

models presented in [76] and [93] evaluate the pores size spatial and time evolu-

tion by using a set of differential equations. Therefore, in order to improve the

numerical analysis of the electroporation process presented in this thesis disser-

tation, it is proposed in a future work the insertion in the mathematical model of

the differential equations that describe the dynamics of the pore radii. Further-

more the developed computational model has introduced the polarization vector

in the electroquasistatic equation, describing the dispersive properties of cell’s

media. In particular, a first-order Debye equation has been used to model the cy-

toplasm and external media and a second-order Debye equation to describe the

cell’s membrane dispersion. A further improvement of the model can be obtained

by describing the dispersive properties of the materials in a more specific way. For

this purpose, in a future work in the model the dispersive properties of the mate-

rials will be described by using multi-relaxation Debye equations higher than the

second order.
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