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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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A schematic of the TEA-C burner is shown in figure 1. The TEA-C geometry is characterized by three air 
registers designed to stage the fuel/oxidizer chemical interaction.  The primary air transports the pulverized coal 
from the coal mill to a multi-port split flame nozzle. The secondary swirled air encloses the primary flow hampering 
its radial spreading. Tertiary swirled air is then staged for combustion completion purposes. Both secondary and 
tertiary air flows are swirled clockwise (45° and 15°, respectively).  

Along with the fully characterized coal model, an important improvement with respect to the previous study 
regards the modelling of the secondary and tertiary air registers and their addition in the computational domain. As 
such, assumptions on the secondary and tertiary air flow patterns entering the combustion chamber are also avoided. 
The computational domain also considers the exact inner volume of the combustion chamber geometry along with 
the actual extension of the heat exchanging and refractory surfaces. Renderings of the primary air duct, the air 
registers and combustion chamber are shown in Fig. 1. 

In order to have a clear picture of the NOx formation within the burner, a simplified chemical kinetics is used 
with a post-processing approach: a reduced number of global reactions are considered coupled with the velocity, 
temperature and species concentration fields a priori computed. 

2.  TEA-C CFD model 

The computational domain has been discretized by means of a hybrid multi-block mesh (about 16.5 million of 
cells). According to 2008 experimental tests, the boundary/inlet conditions have been set as follows: coal particle 
mass flow rate, GPV = 1.276 at TPV = 356 K (LHVDAF = 32M J/kg for a total thermal input of 34.2 MW); primary air 
mass flow inlet, Ga,1 = 2.64 kg/s at T1 = 356K; windbox air mass flow rate, Gwb = 10 kg/s at Twb = 564 K (resulting 
in a combustion excess air of 15%). Concerning the heat transfer boundary conditions, different materials are 
employed throughout the combustion chamber surfaces modeled with an overall heat transfer coefficient ranging 
from 3.8 to 28.3 W/(m2K) and internal emissivity 0.4, whereas the overall heat transfer coefficient is 5000 W/(m2K) 
for evaporator walls, considering a 485 K free stream temperature and a 0.5 internal emissivity. 

The continuous phase flow is computed by solving the Reynolds Averaged Navier Stokes (RANS) equations, 
with a 2-equations realizable k-ε model for turbulence closure, discretized according to a finite volume approach. 
Non equilibrium wall functions have been used for the near-wall treatment of turbulence. 

Combustion in continuous phase has been modeled by the non-premixed combustion approach employing a 
single fuel stream and an oxidizer stream with a single mixture fraction Z describing the mixture composition and a 
probability density function (PDF) to take into account reactions and turbulence-chemistry interaction. PDF look-up 
tables have been computed for a fifty-species mixture, from which, given the enthalpy, the mixture-fraction and its 
variance, all the gas-mixture thermodynamic and transport properties (density, constant pressure specific heat 
capacity, molecular viscosity) can be evaluated. Sutherland’s viscosity law has been considered in order to deal with 
the molecular viscosity dependency on temperature, while for the continuous phase density an ideal gas state 
equation has been assumed such that it depends on temperature while it is independent of the local pressure 
(incompressible model with constant bulk pressure). 

The pulverized coal has been treated as a discrete phase and modeled by means of a two-way coupling 
Lagrangian approach. The collisions of the coal particles with the burner walls and internals have been treated as 
elastic while an inelastic (no-bounce) condition has been assumed for collisions with the combustion chamber walls. 
The particle distribution at the domain inlet and the coal characteristics are based on the pulverized coal actually 
used in the experimental test. The pulverized coal was milled and then classified by means of a rotating sieve at 200 
rpm (99.90% with d < 300 µm, 99.45%with d < 150 µm, 90.00% with d < 75 µm), obtaining a diameter distribution 
well approximated by a Rosin–Rammler distribution with the following parameters: minimum diameter of 5 µm, 
maximum diameter of 300 µm, mean diameter of 40 µm and spread parameter of 1.31. The discrete solid phase 
enters the domain by a uniformly distributed injection from the primary air inlet, divided into 268’800 parcels 
obtained as the number of faces (5376) multiplied by the number of diameters considered in the Rosin-Rammler 
distribution (10) multiplied by the number of turbulent tries (5) for each stream. 

Radiative heat transfer has been accounted for by means of the DO (Discrete Ordinate) model, solving the 
Radiation Transfer Equation with a Finite Volume discretization on a discrete number of directions. A domain-based 
Weighted-Sum-of-Gray-Gases Model (WSGGM) approach has been used to derive the absorption coefficient in the 
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A schematic of the TEA-C burner is shown in figure 1. The TEA-C geometry is characterized by three air 
registers designed to stage the fuel/oxidizer chemical interaction.  The primary air transports the pulverized coal 
from the coal mill to a multi-port split flame nozzle. The secondary swirled air encloses the primary flow hampering 
its radial spreading. Tertiary swirled air is then staged for combustion completion purposes. Both secondary and 
tertiary air flows are swirled clockwise (45° and 15°, respectively).  

Along with the fully characterized coal model, an important improvement with respect to the previous study 
regards the modelling of the secondary and tertiary air registers and their addition in the computational domain. As 
such, assumptions on the secondary and tertiary air flow patterns entering the combustion chamber are also avoided. 
The computational domain also considers the exact inner volume of the combustion chamber geometry along with 
the actual extension of the heat exchanging and refractory surfaces. Renderings of the primary air duct, the air 
registers and combustion chamber are shown in Fig. 1. 

In order to have a clear picture of the NOx formation within the burner, a simplified chemical kinetics is used 
with a post-processing approach: a reduced number of global reactions are considered coupled with the velocity, 
temperature and species concentration fields a priori computed. 

2.  TEA-C CFD model 

The computational domain has been discretized by means of a hybrid multi-block mesh (about 16.5 million of 
cells). According to 2008 experimental tests, the boundary/inlet conditions have been set as follows: coal particle 
mass flow rate, GPV = 1.276 at TPV = 356 K (LHVDAF = 32M J/kg for a total thermal input of 34.2 MW); primary air 
mass flow inlet, Ga,1 = 2.64 kg/s at T1 = 356K; windbox air mass flow rate, Gwb = 10 kg/s at Twb = 564 K (resulting 
in a combustion excess air of 15%). Concerning the heat transfer boundary conditions, different materials are 
employed throughout the combustion chamber surfaces modeled with an overall heat transfer coefficient ranging 
from 3.8 to 28.3 W/(m2K) and internal emissivity 0.4, whereas the overall heat transfer coefficient is 5000 W/(m2K) 
for evaporator walls, considering a 485 K free stream temperature and a 0.5 internal emissivity. 

The continuous phase flow is computed by solving the Reynolds Averaged Navier Stokes (RANS) equations, 
with a 2-equations realizable k-ε model for turbulence closure, discretized according to a finite volume approach. 
Non equilibrium wall functions have been used for the near-wall treatment of turbulence. 

Combustion in continuous phase has been modeled by the non-premixed combustion approach employing a 
single fuel stream and an oxidizer stream with a single mixture fraction Z describing the mixture composition and a 
probability density function (PDF) to take into account reactions and turbulence-chemistry interaction. PDF look-up 
tables have been computed for a fifty-species mixture, from which, given the enthalpy, the mixture-fraction and its 
variance, all the gas-mixture thermodynamic and transport properties (density, constant pressure specific heat 
capacity, molecular viscosity) can be evaluated. Sutherland’s viscosity law has been considered in order to deal with 
the molecular viscosity dependency on temperature, while for the continuous phase density an ideal gas state 
equation has been assumed such that it depends on temperature while it is independent of the local pressure 
(incompressible model with constant bulk pressure). 

The pulverized coal has been treated as a discrete phase and modeled by means of a two-way coupling 
Lagrangian approach. The collisions of the coal particles with the burner walls and internals have been treated as 
elastic while an inelastic (no-bounce) condition has been assumed for collisions with the combustion chamber walls. 
The particle distribution at the domain inlet and the coal characteristics are based on the pulverized coal actually 
used in the experimental test. The pulverized coal was milled and then classified by means of a rotating sieve at 200 
rpm (99.90% with d < 300 µm, 99.45%with d < 150 µm, 90.00% with d < 75 µm), obtaining a diameter distribution 
well approximated by a Rosin–Rammler distribution with the following parameters: minimum diameter of 5 µm, 
maximum diameter of 300 µm, mean diameter of 40 µm and spread parameter of 1.31. The discrete solid phase 
enters the domain by a uniformly distributed injection from the primary air inlet, divided into 268’800 parcels 
obtained as the number of faces (5376) multiplied by the number of diameters considered in the Rosin-Rammler 
distribution (10) multiplied by the number of turbulent tries (5) for each stream. 

Radiative heat transfer has been accounted for by means of the DO (Discrete Ordinate) model, solving the 
Radiation Transfer Equation with a Finite Volume discretization on a discrete number of directions. A domain-based 
Weighted-Sum-of-Gray-Gases Model (WSGGM) approach has been used to derive the absorption coefficient in the 
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continuous phase. Particle-gas radiation interaction has been taken into account, assuming particle emissivity of 0.9 
and scattering coefficient equal to 0.6 [4]. 

The pulverized coal combustion process has been subdivided into the following steps: (i) inert heating; (ii) 
devolatilization; (iii) volatile matter combustion (homogeneous combustion in the continuous phase); (iv) char 
burnout (heterogeneous combustion on the particle surface releasing CO2 in the gas phase). The inert heating laws 
are applied when the particle temperature is lower than the assigned devolatilization temperature. The 
devolatilization law is applied when the temperature of the particle reaches a temperature of 623 K, until the mass of 
the particle, exceeds the mass of the non-volatiles in the particle. The moisture content of coal particles and the 
particle swelling during the devolatilization process have been neglected. 

The Chemical Percolation Devolatilization (CPD) model has been employed to describe the devolatilization 
process under rapid heating conditions. It considers the thermo-chemical transformations of the coal structure rather 
than using empirical relationships [10]. As such, input data required by the CPD model (5) are coal-specific, 
obtainable by means of solid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The CPD parameters (see 
Table 1) have been supplied by the CNR of Naples, as a result of NMR analysis on a South African coal very 
similar to the Kleinkopje’s coal, burned during the experimental tests at CCA. For the sake of completeness, the 
proximate and ultimate analyses are reported in Table 2.  The thermal annealing effect was taken into account 
reducing the Kinetic-Limited Rate Pre-Exponential value by a factor 10. Char porosity has been also experimentally 
evaluated by CNR. 

Table 1 – Coal-specific CPD parameters for KleinKopje and South African coal (CNR analysis) 

Parameter Symbol Kleinkopje SA coal Unit 

Initial fraction of bridges in the coal lattice p0 0.83 0.667 - 

Initial fraction of char bridges C0 0 0.003 - 

Lattice coordination number σ+1 5.2 5.17 - 

Cluster Molecular Weight MW1 308 302.2 kg/kmole 

Side Chain Molecular Weight MWδ 30 30.1 kg/kmole 

Table 2 – Proximate and Ultimate analysis for KleinKopje and South African coal (CNR analysis) 

 Proximate Analysis (weight % dry basis) Ultimate Analysis (weight % dry ash free basis) 

Ash Volatile Char C H O N S 

Kleinkopje 13.97 24.46 61.57 83.77 4.49 9.31 1.89 0.53 

SA coal  15.66 23.13 61.21 80.63 4.51 12.69 1.42 0.76 

Table 3 – Kinetic/diffusion limited surface reaction rate parameters for KleinKopje  and South African coal (CNR analysis) 

Parameter Symbol Kleinkopje SA coal Unit 

Mass Diffusion-Limited Rate Constant C1 5·10-12 5·10-12 - 

Kinetic-Limited Rate Pre-Exponential Factor Ai 0.0302 0.00011 - 

Kinetic-Limited Rate Activation Energy Ei 1.794·108 1.2·108 Joule/kmole 

Char Porosity θ 0.67 0.18 - 

Mean Pore Radius rp 6·10-8 6·10-7 m 

Specific Internal Surface Area Ag 300’000 300’000 m2/kg 

Tortuosity τ 1.4142 2 - 

Burning Mode α 0.25 0.25 - 
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Char burnout process has been modeled by means of the Intrinsic Model that computes the heterogeneous 
reaction rate considering both kinetics and diffusion phenomena. The major Intrinsic model parameters are 
summarized in Tables 3, where both KleinKopje coal data [7] and South African coal data (from CNR) are 
compared. 

In order to predict NOx emissions, a transport equation for nitric oxide (NO) concentrations has been solved. The 
NOx formation has been evaluated according to the thermal and fuel-NO mechanisms; hence, two additional 
transport equations for intermediate species (HCN and NH3) have been considered. The NOx transport equations are 
solved in post-processing based on frozen flow fields and combustion solutions. 

The formation of thermal NOx is determined according to the extended Zeldovich mechanism, and the rate 
constants have been selected based on the evaluation of Hanson and Salimian [12]. The needed concentrations of O, 
H and OH are derived by temperature and O2 and H2O concentrations by means of an heuristic relation.  

Organic compounds present in coal and containing nitrogen can significantly contribute to the total NOx formed 
during the combustion process. Fuel nitrogen is split between volatiles and char during coal devolatilization and in 
the nitrogen conversion can originate hydrogen cyanide (HCN) and/or ammonia (NH3). Local NH3 and HCN 
concentrations derive from the solution of the respective transport equations solved in post-processing according to 
the kinetics developed by De Soete [13]. With bituminous coal, better NOx predictions are obtained when using an 
HCN/NH3 partition ratio of 9:1. The nitrogen contained in the char is then heterogeneously oxidized to NO via an 
overall reaction. 

3. 2018 TEAC Numerical Study – CFD results. 

The three air fluxes enter the combustion chamber with different velocity magnitudes (Primary Air (PA): 
~ 35m/s; Secondary Air (SA): ~ 40m/s; Tertiary Air (TA): ~ 33m/s). 

Those values have been computed as mass weighted averages along the TA, SA and each coal nozzle surface. 
The SA/TA air split is 0.7, which correspond to partition fractions of SA=41% and TA=59%. The secondary and 
tertiary air registers swirl the SA and TA flows with angles equal to 45° and 15° degree respectively.  

The temperature contour along the YZ plane, Fig. 2, shows an average temperature of approximately 1500K 
within the combustion chamber and a temperature of approximately 1700K in the near-burner region.  

The flame core presents a not completely symmetrical structure with respect to the burner axis. The turbulent 
flow observed within the burner is clearly unsteady, with effects accentuated by the swirl and by the presence of 
bluff bodies, which create recirculating and high vorticity zones. At numerical and simulation levels, this aspect is 
highlighted by the pseudo-periodic behavior of both local and integral variables. However, this unsteadiness is 
limited (<5%) and lower than the commonly accepted approximation for this type of investigation and therefore do 
not affect the results obtained. Moreover, in regard to the asymmetries, which are correctly captured as highlighted 
in the figures contained in the article, these are substantially attributable to the following effects (in order of 
relevance): 1) non symmetrical injection of the pulverized coal into the combustion chamber (see Fig. 3) geometric 
asymmetry of the combustion chamber with gas outlet on one side; 3) heat exchange asymmetry in the combustion 
chamber, due to the non-symmetrical distribution of evaporating tubes and refractory surfaces. The coal particle 
tracks along the same plane show a similar trend, shedding light on a non-uniform coal distribution in the CC. This 
trend is explained by the coal distribution along the burner. Downstream the nozzles it is possible to observe a 
higher particle concentration in the lower openings with respect to the upper ones. A non-uniform coal concentration 
is also observed downstream each coal nozzle: this is due to a high coal concentration in the upper part of the 
primary duct, which the swirler homogenizes only partially. 

The velocity vectors in Fig. 2 highlight more recirculation zones within the combustion chamber. This was 
expected since the fully turbulent nature of the flows under investigation. Particularly interesting is the small 
recirculation zone identifiable in the near burner zone, where a significant coal particle recirculation is desirable in 
order to reduce the NOx. The fully turbulent flow behavior is reflected by the paths followed by the coal, which 
show a significant recirculation area, particularly in the far end of the combustion chamber. The averaged particle 
residence time results to be about 4 s, with about 2 s needed to reach the near burner area from the burner inlet. 

In Fig. 5, the most interesting variables are shown as contour plots on the YZ plane and on 3 cross-sections 
passing through three experimental windows (W2, W3 and W5, for which measured quantities are available). Two 
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continuous phase. Particle-gas radiation interaction has been taken into account, assuming particle emissivity of 0.9 
and scattering coefficient equal to 0.6 [4]. 

The pulverized coal combustion process has been subdivided into the following steps: (i) inert heating; (ii) 
devolatilization; (iii) volatile matter combustion (homogeneous combustion in the continuous phase); (iv) char 
burnout (heterogeneous combustion on the particle surface releasing CO2 in the gas phase). The inert heating laws 
are applied when the particle temperature is lower than the assigned devolatilization temperature. The 
devolatilization law is applied when the temperature of the particle reaches a temperature of 623 K, until the mass of 
the particle, exceeds the mass of the non-volatiles in the particle. The moisture content of coal particles and the 
particle swelling during the devolatilization process have been neglected. 

The Chemical Percolation Devolatilization (CPD) model has been employed to describe the devolatilization 
process under rapid heating conditions. It considers the thermo-chemical transformations of the coal structure rather 
than using empirical relationships [10]. As such, input data required by the CPD model (5) are coal-specific, 
obtainable by means of solid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The CPD parameters (see 
Table 1) have been supplied by the CNR of Naples, as a result of NMR analysis on a South African coal very 
similar to the Kleinkopje’s coal, burned during the experimental tests at CCA. For the sake of completeness, the 
proximate and ultimate analyses are reported in Table 2.  The thermal annealing effect was taken into account 
reducing the Kinetic-Limited Rate Pre-Exponential value by a factor 10. Char porosity has been also experimentally 
evaluated by CNR. 

Table 1 – Coal-specific CPD parameters for KleinKopje and South African coal (CNR analysis) 

Parameter Symbol Kleinkopje SA coal Unit 

Initial fraction of bridges in the coal lattice p0 0.83 0.667 - 

Initial fraction of char bridges C0 0 0.003 - 

Lattice coordination number σ+1 5.2 5.17 - 

Cluster Molecular Weight MW1 308 302.2 kg/kmole 

Side Chain Molecular Weight MWδ 30 30.1 kg/kmole 

Table 2 – Proximate and Ultimate analysis for KleinKopje and South African coal (CNR analysis) 

 Proximate Analysis (weight % dry basis) Ultimate Analysis (weight % dry ash free basis) 

Ash Volatile Char C H O N S 

Kleinkopje 13.97 24.46 61.57 83.77 4.49 9.31 1.89 0.53 

SA coal  15.66 23.13 61.21 80.63 4.51 12.69 1.42 0.76 

Table 3 – Kinetic/diffusion limited surface reaction rate parameters for KleinKopje  and South African coal (CNR analysis) 

Parameter Symbol Kleinkopje SA coal Unit 

Mass Diffusion-Limited Rate Constant C1 5·10-12 5·10-12 - 

Kinetic-Limited Rate Pre-Exponential Factor Ai 0.0302 0.00011 - 

Kinetic-Limited Rate Activation Energy Ei 1.794·108 1.2·108 Joule/kmole 

Char Porosity θ 0.67 0.18 - 

Mean Pore Radius rp 6·10-8 6·10-7 m 

Specific Internal Surface Area Ag 300’000 300’000 m2/kg 

Tortuosity τ 1.4142 2 - 

Burning Mode α 0.25 0.25 - 
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Char burnout process has been modeled by means of the Intrinsic Model that computes the heterogeneous 
reaction rate considering both kinetics and diffusion phenomena. The major Intrinsic model parameters are 
summarized in Tables 3, where both KleinKopje coal data [7] and South African coal data (from CNR) are 
compared. 

In order to predict NOx emissions, a transport equation for nitric oxide (NO) concentrations has been solved. The 
NOx formation has been evaluated according to the thermal and fuel-NO mechanisms; hence, two additional 
transport equations for intermediate species (HCN and NH3) have been considered. The NOx transport equations are 
solved in post-processing based on frozen flow fields and combustion solutions. 

The formation of thermal NOx is determined according to the extended Zeldovich mechanism, and the rate 
constants have been selected based on the evaluation of Hanson and Salimian [12]. The needed concentrations of O, 
H and OH are derived by temperature and O2 and H2O concentrations by means of an heuristic relation.  

Organic compounds present in coal and containing nitrogen can significantly contribute to the total NOx formed 
during the combustion process. Fuel nitrogen is split between volatiles and char during coal devolatilization and in 
the nitrogen conversion can originate hydrogen cyanide (HCN) and/or ammonia (NH3). Local NH3 and HCN 
concentrations derive from the solution of the respective transport equations solved in post-processing according to 
the kinetics developed by De Soete [13]. With bituminous coal, better NOx predictions are obtained when using an 
HCN/NH3 partition ratio of 9:1. The nitrogen contained in the char is then heterogeneously oxidized to NO via an 
overall reaction. 

3. 2018 TEAC Numerical Study – CFD results. 

The three air fluxes enter the combustion chamber with different velocity magnitudes (Primary Air (PA): 
~ 35m/s; Secondary Air (SA): ~ 40m/s; Tertiary Air (TA): ~ 33m/s). 

Those values have been computed as mass weighted averages along the TA, SA and each coal nozzle surface. 
The SA/TA air split is 0.7, which correspond to partition fractions of SA=41% and TA=59%. The secondary and 
tertiary air registers swirl the SA and TA flows with angles equal to 45° and 15° degree respectively.  

The temperature contour along the YZ plane, Fig. 2, shows an average temperature of approximately 1500K 
within the combustion chamber and a temperature of approximately 1700K in the near-burner region.  

The flame core presents a not completely symmetrical structure with respect to the burner axis. The turbulent 
flow observed within the burner is clearly unsteady, with effects accentuated by the swirl and by the presence of 
bluff bodies, which create recirculating and high vorticity zones. At numerical and simulation levels, this aspect is 
highlighted by the pseudo-periodic behavior of both local and integral variables. However, this unsteadiness is 
limited (<5%) and lower than the commonly accepted approximation for this type of investigation and therefore do 
not affect the results obtained. Moreover, in regard to the asymmetries, which are correctly captured as highlighted 
in the figures contained in the article, these are substantially attributable to the following effects (in order of 
relevance): 1) non symmetrical injection of the pulverized coal into the combustion chamber (see Fig. 3) geometric 
asymmetry of the combustion chamber with gas outlet on one side; 3) heat exchange asymmetry in the combustion 
chamber, due to the non-symmetrical distribution of evaporating tubes and refractory surfaces. The coal particle 
tracks along the same plane show a similar trend, shedding light on a non-uniform coal distribution in the CC. This 
trend is explained by the coal distribution along the burner. Downstream the nozzles it is possible to observe a 
higher particle concentration in the lower openings with respect to the upper ones. A non-uniform coal concentration 
is also observed downstream each coal nozzle: this is due to a high coal concentration in the upper part of the 
primary duct, which the swirler homogenizes only partially. 

The velocity vectors in Fig. 2 highlight more recirculation zones within the combustion chamber. This was 
expected since the fully turbulent nature of the flows under investigation. Particularly interesting is the small 
recirculation zone identifiable in the near burner zone, where a significant coal particle recirculation is desirable in 
order to reduce the NOx. The fully turbulent flow behavior is reflected by the paths followed by the coal, which 
show a significant recirculation area, particularly in the far end of the combustion chamber. The averaged particle 
residence time results to be about 4 s, with about 2 s needed to reach the near burner area from the burner inlet. 

In Fig. 5, the most interesting variables are shown as contour plots on the YZ plane and on 3 cross-sections 
passing through three experimental windows (W2, W3 and W5, for which measured quantities are available). Two 
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4. Numerical model validation 

The TEA-C numerical model has been validated against experimental data gathered along three different 
traversing close to the burner head (marked as W2, W3 and W5). In addition, numerical data from the CC outflow 
surface are compared with experimental data recorded during the 2008 test campaign. Values recorded at the 
outflow are integrated along the CC surface and mass-weighted averaged with the only exception of the flue gas 
temperature values, which are recorded at the Middle (M) and Bottom (B) point of the CC exit only. The values of 
Temperature, CO2, O2, NO, SO2 and UBC (Unburnt Carbon) are compared in Fig. 6. It is worth noting that UBC 
values numerically evaluated are referred to the coal mass flow rate (dry) injected at the burner inlet. It follows that 
the experimental UBC measure (Carbon left in ashes) is evaluated according to a different procedure. 

The good match between experimental and numerical data highlights the quality of the developed model. Better 
predictions are observed along W2 and W3 while a more significant data mismatch is spotted along W5. The flame 
core width is correctly estimated, as demonstrated by the Temperature and O2 profiles peaks showing a fairly good 
agreement with the experimental data. Also the NO profiles, usually difficult to be predicted, show a good 
agreement with the experimental data, especially in proximity of the burner axis (-1 m < X < 1 m). 

 

 

Fig. 6 CFD results vs experimental data: exit temperature (M=middle probe, B=bottom probe), O2 and NO (first row) and CO2, UBC, SO2 
(second row) recorded at the combustion chamber exit surface. 

5. Conclusions 

In this work, the previously investigated TEA-C burner is reconsidered in the light of some improvements both in 
the CFD modeling and in the definition of the computational domain. Actually, the exact inner volume geometry of 
the experimental combustion chamber has been taken into account along with the actual extension of the heat 
exchanging and refractory surfaces. Finally, the windbox, feeding secondary and tertiary air, has been integrated in 
the computational domain. The major changes have regarded the application of coal specific data for both the 
devolatilization and the char burnout models, which have been computed from coal data being experimentally 
calculated by the CNR of Naples rather than estimated based on data retrieved in the literature. The radiation model 
was changed using the DO radiation model. The outcome from the CFD analysis has been validated against 
experimental data. Thermal, fuel and prompt NOx formation analysis has also been provided. 
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Fig. 7 CFD vs experimental data: Temperature (first row), O2 (second row) and NO (third row) profiles along W2, W3 and W5. 

References 

[1] Intergovernmental Panel on Climate Change 2015. Climate Change 2014 – Mitigation of Climate Change. ISBN 978-92-9169-142-5.  
[2] Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling DJ, Hearty PJ, Hoegh-Guldberg O, Hsu SL, Parmesan C, 

Rockstrom EJ, Sachs J, […], Zachos JC, (2013). Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to 
Protect Young People, Future Generations and Nature. PLOS ONE 8(12). 

[3] Torresi M, Panebianco V, Fortunato B, Camporeale SM, Saponaro A (2010). CFD analysis of a pulverized coal combustion burner. In: 
Proceedings of the 65th ATI National Congress. Domus de Maria (CA), 13-17 Settembre 2010. 

[4] Milanese M, Torresi M, Colangelo G, Saponaro A, de Risi, A (2018). Numerical Analysis of a Solar Air Preheating Coal Combustion 
System for Power Generation, Journal of Energy Engineering, 144 (4), art. no. 04018038. 

[5] Ranade VV, Gupta DF, (2015). Computational Modeling of Pulverized Coal Fired Boiler, CRC Pres, ISBN: 13: 978-1-4822-1535-9 
[6] Torresi M, Fornarelli F, Fortunato B, Camporeale SM, and Saponaro A, (2017). Assessment against Experiments of Devolatilization and 

Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner. Energies 66(10). 
[7] Torresi M, Fortunato B, Camporeale SM, and Saponaro A, (2012). A CFD modeling of pulverized coal combustion in an industrial burner. 

In Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. 
[8] Bireswar P, and Datta A, (2008). Burner development for the reduction of NOx emissions from coal fired electric utilities. Recent Pat. 

Mech. Eng. 1: 175–189, doi: 10.2174/2212797610801030175. 
[9] FLUENT: User’s Guide 6.3; Fluent Inc.: Lebanon, NH, USA, (2006). 
[10] Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, and Grant DM, (1992). Chemical percolation model for devolatilization. Direct use of 

13C NMR data to predict effects of coal type. Energy Fuels 6(4): 414–431, doi: 10.1021/ef00034a011. 
[11] Haas J, Masato T, Weber MR, (2001). Characterization of coal blends for pulverized coal combustion. Fuel 80(9): 1317–1323, doi: 

10.1016/S0016-2361(00)00216-7. 
[12] Hanson RK and Siamak S, (1984). Survey of Rate Constants in the N/H/O System. In: Gardiner W.C. (eds) Combustion Chemistry. 

Springer, New York, NY. Online ISBN 978-1-4684-0186-8. 
[13] De Soete GG, (1975). Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. In Proceedings of the 15th International 

Symposium on Combustion, Tokyo, Japan, 25–31 August 1975; pp. 1093–1102. 



 G.D. Rago  et al. / Energy Procedia 148 (2018) 703–711 711
8 Author name / Energy Procedia 00 (2018) 000–000 

4. Numerical model validation 

The TEA-C numerical model has been validated against experimental data gathered along three different 
traversing close to the burner head (marked as W2, W3 and W5). In addition, numerical data from the CC outflow 
surface are compared with experimental data recorded during the 2008 test campaign. Values recorded at the 
outflow are integrated along the CC surface and mass-weighted averaged with the only exception of the flue gas 
temperature values, which are recorded at the Middle (M) and Bottom (B) point of the CC exit only. The values of 
Temperature, CO2, O2, NO, SO2 and UBC (Unburnt Carbon) are compared in Fig. 6. It is worth noting that UBC 
values numerically evaluated are referred to the coal mass flow rate (dry) injected at the burner inlet. It follows that 
the experimental UBC measure (Carbon left in ashes) is evaluated according to a different procedure. 

The good match between experimental and numerical data highlights the quality of the developed model. Better 
predictions are observed along W2 and W3 while a more significant data mismatch is spotted along W5. The flame 
core width is correctly estimated, as demonstrated by the Temperature and O2 profiles peaks showing a fairly good 
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Fig. 6 CFD results vs experimental data: exit temperature (M=middle probe, B=bottom probe), O2 and NO (first row) and CO2, UBC, SO2 
(second row) recorded at the combustion chamber exit surface. 
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Fig. 7 CFD vs experimental data: Temperature (first row), O2 (second row) and NO (third row) profiles along W2, W3 and W5. 
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