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Abstract: Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used
tool to model many important processes, particularly for multirate systems. Their numerical solution
is then a compelling subject that deserves great attention, not least because of the difficulties to
apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper,
we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford;
in this way, the solution can be expressed in terms of Mittag–Leffler (ML) functions evaluated at
matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by
Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix
approach is very accurate and fast, also in comparison with other numerical methods.

Keywords: fractional differential equations; multiterm differential equations; Mittag–Leffler function;
matrix function; fractional calculus

1. Introduction

The use of fractional order derivatives is nowadays widespread in many fields. Indeed, the
possibility to use any real order improves the modeling of several phenomena in physics, engineering
and many application areas. The available literature on fractional calculus is very rich, and we cite
only, among the others, [1–5]. It is a fact that the theoretical analysis of fractional differential equations
(FDEs) is much more advanced than finding their numerical solution. This topic is indeed very delicate
and much more difficult than finding the numerical solution of differential equations of integer order
(ODEs). The introduction of effective numerical methods is recent (see, e.g., [6–13] and the books [4,14]
together with the references therein). Several numerical methods for FDEs are generalizations of
well-established methods for ODEs with appropriate changes. A common problem when dealing with
FDEs is the loss of order with respect to the ODE case. This is mainly due to the fact that solutions of
FDEs (and their fractional derivatives) are usually not smooth.

In this paper, we address the numerical solution of multiterm fractional differential equations
(MTFDEs), that is, FDEs in which multiple fractional derivatives are involved. These turn out to be very
helpful in many fields, particularly to model complex multirate physical processes. However, even
if many numerical methods for FDEs can be extended to MTFDEs, delicate issues such as numerical
stability, convergence or accuracy cannot be easily predicted in this case. Many authors have worked
thoroughly on their numerical solution [15–22]. We restrict our attention to the linear case that includes
important models, such as the Bagley–Torvik equation [23], the fractional oscillation equation [24] and
many others.

Crucial contributions to the numerical solution of MTFDEs came from Diethelm and
coauthors [4,16,17,25]. An important result therein is the equivalence between a MTFDE and a
single-order system of FDEs [16]. In this paper, we propose a numerical approach that is grounded
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on this equivalent formulation; indeed, its solution can be expressed in terms of the Mittag–Leffler
(ML) function evaluated in the coefficient matrix. The ML function is fundamental in the analysis of
fractional calculus, not least because the exact solution of many FDEs can be expressed in terms of
this function. However, for a long time, this has been considered only as a theoretical tool because
of the lack of effective methods to numerically approximate this function. Only recently have many
advances been made for the numerical evaluation of the scalar ML function [26–29]; the case of matrix
arguments has since been analyzed [30,31], and finally a numerical algorithm has been accomplished,
which reaches very high accuracies [32]. In this paper, we show the effectiveness of the matrix
approach when solving MTFDEs, both in terms of execution time and in terms of accuracy, and also
in comparison with some well-established numerical methods. The test equations we consider are
well known in literature, and their exact solution is at our disposal. This is fundamental to test the
reliability. However, the tests we present show an excellent accuracy, and thus the approach can be
favorably applied to solve more general multiterm FDEs.

In particular, among the available numerical methods for MTFDEs, we consider the product
integration (PI) rules. These nowadays represent a valuable numerical method for FDEs, although
they were originally proposed for the numerical solution of Volterra integral formulas (see, e.g., [33]).
Indeed, as a result of the possibility of rewriting any linear FDE as a weakly singular Volterra integral
equation of second-type, a generalization of PI rules has been applied to FDEs [12,19,21,34–36]. In our
numerical tests, we compare the approach we propose to the results given by methods belonging to
this class.

The paper is organized as follows: In Section 2, we briefly review the main definitions of fractional
calculus, and we linger on the multiterm case. We present the main theoretical tool, given by Diethelm
and Ford [16,25], to transform the MTFDE into an equivalent system of FDEs. In Section 3, we address
the numerical solution of this equivalent system. This essentially grounds on ML functions with matrix
arguments, and we introduce the numerical method proposed by Garrappa and Popolizio [32] to
compute matrix ML functions. The performance is tested in Section 4, where we give a comparison
with PI methods for several tests; in the same section, a brief description of these methods is presented.

2. Fractional Differential Equations

Fractional derivatives can be introduced by means of the Riemann–Liouville (RL) definition
or the Caputo definition [3]. These coincide when equipped with homogeneous initial conditions,
while in the more general case, important peculiar features separate them. Both of these have been
extensively analyzed and are commonly used. However, in the context of the multiterm case we
discuss, the definition by Caputo is generally preferred (see the discussion in [16,17,25]). Thus for any
α ∈ R, the fractional derivative Dα is defined as

Dαy(t) ≡ 1
Γ(m− α)

∫ t

0

y(m)(u)
(t− u)α+1−m du

with Γ(·) denoting Euler’s gamma function and m = dαe being the smallest integer greater than
or equal to α. The use of this definition allows us to use as initial conditions the values of y and
its derivatives of integer order; that is, we augment the differential equation of order α with initial
conditions of the form

y(k)(0) = y(k)0 , k = 0, 1, . . . , m− 1

We are interested in the numerical solution of linear MTFDEs of the form given by the equation

n

∑
k=0

ak Dαk y(t) = f (t) (1)

with ak ∈ R, an 6= 0 and 0 ≤ α0 < . . . < αn. The associated initial conditions are
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y(j)(0) = y(j)
0 , j = 0, 1, . . . , dαne − 1

The MTFDE (Equation (1)) is defined as commensurate if the numbers α0, . . . , αn are commensurate,
that is, if the quotients αi/αj are rational numbers for all i, j ∈ {0, . . . , n}.

One of the main differences is that for MTFDEs, the RL definition would require initial conditions
corresponding to each fractional derivative order that appears in the equations, while the Caputo
definition merely requires the initial conditions for integer-order derivatives. Moreover, only the
Caputo derivative operator has, under suitable hypotheses on continuity, the semigroup property,
which is a fundamental tool to treat the multiterm case (see Theorem 1 in the following).

The analytical solution of the problem (Equation (1)) was thoroughly addressed by Gorenflo
and Luchko [15], who gave its explicit expression, through ML-type functions, by using operational
calculus for the Caputo fractional derivative.

The analysis of commensurate MTFDEs becomes simpler by applying an approach commonly
used for ODEs. Indeed, given an ODE of order 2 or above, it can be converted to a system of first-order
ODEs. Analogously, we can rewrite a commensurate MTFDE as a single-order system of FDEs,
according to well-known theoretical results [16,25]. We report here the main theorem stating this
equivalence (as given in [4]).

Theorem 1. Consider the equation

Dαk y(t) = f (t, y(t), Dα1 y(t), Dα2 y(t), . . . , Dαk−1 y(t)) (2)

subject to the initial condition
y(j)(0) = y(j)

0 , j = 0, 1, . . . , dαke − 1

where αk > αk−1 > . . . > α1 > 0, αj − αj−1 ≤ 1 for all j = 2, 3, . . . , k and 0 < α1 ≤ 1. Assuming that
αj ∈ Q for all j = 1, 2, . . . , k, define M to be the least common multiple of the denominators of α1, α2, . . . , αk,
and set γ = 1/M and N = Mαk. Then this initial value problem is equivalent to the system of equations

Dγy0(t) = y1(t)

Dγy1(t) = y2(t) (3)
...

DγyN−2(t) = yN−1(t)

DγyN−1(t) = f (t, y0(t), yα1/γ(t), . . . , yαk−1/γ(t))

together with the initial conditions

yj(0) =

{
y(j/M)

0 if j/M ∈ N0

0 else

in the following sense:

1. Whenever Y := (y0, . . . , yN−1)
T with y0 ∈ Cdαke[0, b] for some b > 0 is the solution of the system given

by Equation (3), the function y := y0 solves the multiterm initial value problem of Equation (2).
2. Whenever y ∈ Cdαke[0, b] is a solution of the multiterm initial value problem Equation (2), the vector

function Y := (y0, . . . , yN−1)
T := (y, Dγy, D2γy, . . . , D(N−1)γy)T solves the multidimensional initial

value problem of Equation (3).

The equivalence stated above can in fact also be applied to any multiterm equation. Indeed,
Diethelm and Ford [16] showed that when the orders of the fractional derivatives are approximated
by commensurate ones, the errors between the solutions of the two systems are comparable to the
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errors between the orders, to thus ensure the structural stability. In practice, because any real number
can be approximated arbitrarily closely by a rational number, any MTFDE can be approximated
arbitrarily closely by a commensurate one; this remark allows us to restrict our attention to the
commensurate case.

3. Matrix Approach for the Solution of Linear MTFDEs

As a result of Theorem 1, the linear MTFDE (Equation (1)) can be reformulated in terms of a linear
system of FDEs of the form

DαY(t) = AY(t) + en f (t), Y(0) = Y0 (4)

where en =
(
0, 0, . . . , 0, 1

)T ∈ Rn, Y0 is composed in a suitable way on the basis of the initial values,
and the coefficient matrix A ∈ Rn×n is the companion matrix:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
− a0

an
− a1

an
− a2

an
. . . − an−1

an


Once the solution Y(t) of Equation (4) has been computed, we keep only its first component, which,
as stated in Theorem 1, corresponds to the (scalar) solution of the MTFDE (Equation (1)).

It is well known that the exact solution Y(t) of Equation (4) is

Y(t) = Eα,1(tα A)Y0 +
∫ t

0
(t− τ)α−1Eα,α((t− τ)α A)en f (τ)dτ (5)

with Eα,β denoting the ML function that, for complex parameters α and β, with <(α) > 0, is defined by
means of the series

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, z ∈ C (6)

Eα,β(z) is clearly a generalization of the exponential function to which it reduces when α = β = 1,
as for j ∈ N, it is Γ(j + 1) = j!.

The solution is even simpler when f (t) can be expressed in terms of powers (possibly of
non-integer order) of t, as no integral is required. Namely, if

f (t) = ∑
ν∈G

cνtν

with G ⊂ {ν ∈ R, ν > −1} being an index set and cν being some real coefficients, then, as a result of
well-known theoretical results (see, e.g., [3]), the true solution can be written as

Y(t) = Eα,1(tα A)Y0 + ∑
ν∈G

cνΓ(ν + 1)tα+νEα,α+ν+1(tα A)en (7)

Source terms of this kind are common in applications, often resulting from the approximation of
given signals. We thus present the numerical solutions of test cases of this form. The more general
situation described in Equation (5) requires exactly the same matrix approach we describe, combined
with some quadrature methods.

It is decisive that the solution Y(t) written as Equation (7) essentially relies on t and not on [0, t];
instead, any numerical method for FDEs has to work on the whole interval. This is a fundamental
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difference and a great strength of the matrix approach, particularly when integration is required for
large values of t.

The solution as given in Equation (7) essentially requires the computation of the ML function with
the matrix argument tα A. The numerical computation of matrix functions is an extensively studied
topic that has deserved great attention during the last decades (we refer to Higham [37] for a complete
treatise and a full list of references). Only recent studies have considered matrix arguments for the
ML function (see, e.g., [30–32,38,39]). To be precise, even the numerical scalar case has received poor
attention, and only recently has Garrappa [29] developed a powerful Matlab routine (ml.m, available on
Matlab website) that gives very accurate results for arguments all over the complex plane. Thereafter,
an effective numerical procedure for the matrix case has been proposed [32], and we apply this for
our computations. Interestingly, the computation of the matrix ML function turns out to be very
accurate, practically close to the machine precision. The resulting matrix approach to approximate
Equation (7) thus proves to be very accurate and favorable also for its computational costs; indeed,
once the matrices Eα,β(tα A) have been computed, only few additional matrix–vector products and
vector sums are needed to obtain the solution.

4. Numerical Solution of FDEs

In this section, we present several numerical tests in order to show the effectiveness of the matrix
approach discussed in Section 3. Moreover we compare it with PI rules. We briefly recall here the main
features of these methods, while we refer to the related references listed in the introduction and to [21]
for a complete treatise on their use for the numerical solution of MTFDEs.

4.1. Product Integration Rules

To introduce PI rules, we first need to recall some basics of fractional calculus (we refer to [4] for
details). The RL integral is defined as

Jαy(t) =
1

Γ(α)

∫ t

0
(t− u)α−1y(u)du (8)

We let Tj[y; 0] denote the Taylor polynomial of degree j for the function y(t) centered at the point
0; then the following relation holds [4]:

JαDα
0 y(t) = y(t)− Tm−1[y; 0](t) for m = dαe (9)

Thus, if we compute the RL integral Jαn for both terms in Equation (1), after some manipulations,
we obtain

y(t) = Tmn−1[y; 0](t)−
n−1

∑
i=1

ai
an

Jαn−αi [y(t)− Tmi−1[y; 0](t)] +
1
an

Jαn f (t)

PI rules approximate the expression above by applying suitable quadrature formulas to the
involved RL integrals. More precisely, they use, on a grid with a constant step-size h > 0, piecewise
interpolant polynomials of fixed order, and the resulting integrals are evaluated exactly. For our
numerical tests, we deal with PI rules using polynomials of first and second order.

4.2. Numerical Tests

The focus of our numerical tests is on both the accuracy and the computation time. For the
former task, we consider MTFDEs whose exact solution is known. Moreover, as stated in Section 3,
the key strength of the matrix approach arises when integration on long time intervals [0, T] is required.
Indeed, PI rules need to work on the whole interval, while the matrix approach computes directly at
T. For this reason, we consider fairly large values of T, namely, T = 10, 50, 100; we stress that these
values are fair, particularly when the interest is on the qualitative description of physical models.
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For the matrix approach, the routine by Garrappa is used (https://www.dm.uniba.it/Members/
garrappa/ml matrix), while for PI rules, we follow the codes as described in [21].

All the experiments have been carried out in Matlab version 8.3.0.532 (R2014a) on a Intel(R)
Core(TM) running at 2.50 GHz under Windows 10. The execution time results from an average of
20 runs.

The step-size h for PI methods was selected to obtain good accuracies and a reasonable execution
time. The labels PI1 and PI2 in the following denote the first- and second-order PI methods, respectively.

4.2.1. Bagley–Torvik Equation

Fractional calculus is a common theoretical tool in the field of rheology. Here, an important model
is given by Bagley and Torvik [23], who introduced the equation

a1D2y(t) + a2D3/2y(t) + a3y(t) = f (t) (10)

to describe the motion of a rigid plate immersed in a Newtonian fluid. The coefficients ai, i = 1, 2, 3 are
real, a1 6= 0, and homogeneous initial conditions are considered to ensure the unicity of the solution.
Diethelm and Ford [25] deeply analyzed the numerical solution of Equation (10); the approach they
propose starts by rewriting it as a system of four FDEs of order 1/2 by following Theorem 1. Thus our
matrix approach works with 4× 4 matrices. For PI methods, we use h = 2−3.

We consider ai = 1, i = 1, 2, 3 and f (t) = t + 1 to let the exact solution be y(t) = t + 1.
From Figure 1, we may appreciate the great accuracy of the matrix approach. PI2 is also very

accurate, particularly for small values of t, while PI1 improves as t becomes larger but never reaches
accuracies comparable to other methods. In terms of execution time, Table 1 shows that PI1 and the
matrix approach are similar for T = 10, while the latter is more than 10 times faster for T = 50, 100.
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Figure 1. Error for the matrix approach and the product integration (PI) methods compared with the
exact solution of the Bagley–Torvik equation. h = 2−3 for PI.
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Table 1. Comparison of execution time for the matrix approach and the product integration (PI)
methods for computing the approximate solution at T.

T Matrix PI1 PI2

10 5.4× 10−3 3.0× 10−3 6.5× 10−3

50 4.9× 10−3 1.6× 10−2 3.1× 10−2

100 4.0× 10−3 3.2× 10−2 6.2× 10−2

4.2.2. The Basset Problem

The Basset equation is a classical model for the dynamics of a sphere immersed in an
incompressible viscous fluid and subject to an elastic force. It was first considered by Basset in
1888, who interpreted the particle velocity relative to the fluid in terms of a fractional derivative of
order 1/2; this term is now called the Basset force. There are many studies on the Basset equation
(see, e.g., [1,2,40–42]). Moreover, a generalization of the Basset force with fractional derivatives of
order 0 < α < 1 is given by Mainardi [2].

The general equation is[ d
dt

+ δ1−α dα

dtα
+ 1
]
V(t) = 1, V(0+) = 0, 0 < α < 1 (11)

The true solution of this problem is

V(t) = 1−M(t; α)

with M(t; α) to be determined by some inversion method. In particular, when α = p/q, with p, q being
integer numbers and p < q, then

M(t; p/q) =
q

∑
k=1

CkE1/q(akt1/q)

where a1, a2, . . . , aq are the zeros of the polynomial P(x) = xq + δ(1−p/q)xp + 1, A−1
k = ∏

q
j=1(ak − aj),

j 6= k and Ck = −Ak/ak [40,41].
For our numerical tests, we considered α = 1/2, which results in the equivalent system of

dimension 2× 2. We considered δ = 9/(1 + 2χ) with χ = 10, as in [2], and h = 2−4 for PI. For α = 0.25
and for other values of χ, the results were very similar, and thus we omit their presentation.

Figure 2 reveals the excellent accuracy reached by the matrix approach. For this test, the method
PI2 was more accurate than PI1, but it never caught the matrix approach. Moreover, the execution time
was much longer, even 100 times greater than that of the matrix approach, as Table 2 reports.

Table 2. Comparison of execution time for the matrix approach and the product integration (PI)
methods for computing the approximate solution at T for α = 0.5.

T Matrix PI1 PI2

10 1.6× 10−3 6.3× 10−3 1.2× 10−2

50 1.6× 10−3 3.2× 10−2 6.2× 10−2

100 1.1× 10−3 6.1× 10−2 1.3× 10−1

4.2.3. Fractional Oscillation Equation

The fractional oscillation equation is one of the basic examples to show the generalization of
standard differential equations to fractional equations [2]. Its general form is

Dαy(t) + ωαy(t) = 0 (12)
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for 1 < α ≤ 2 and t ≥ 0. Two initial conditions are needed to uniquely solve this equation, namely,
y(0) and y′(0). If we assume that the latter is zero, the exact solution can be expressed in terms of the
ML function:

y(t) = y(0)Eα,1(−(ωt)α)

As in [43], we consider α = 1.95, ω = 1, y(0) = 1, and y′(0) = 0. With this choice, the system
corresponding to Equation (12) has dimension N = 39. The step-size for PI is h = 2−7.
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Figure 2. Error for the matrix approach and the product integration (PI) methods compared with the
exact solution for α = 0.5 for the Basset equation.

Figure 3 shows the error between the exact solution and the approximations given by the matrix
approach and the PI methods. As for the previous examples, the matrix approach was definitely the
most accurate and the fastest, as shown in Table 3. Indeed, for the largest T value, the execution time
for the PI2 method was more than 30 times longer than that for the matrix approach.

Table 3. Comparison of execution time for the matrix approach and the product integration (PI)
methods for computing the approximate solution at T.

T Matrix PI1 PI2

10 2.5× 10−2 4.4× 10−2 8.9× 10−2

50 2.7× 10−2 2.2× 10−1 4.5× 10−1

100 2.7× 10−2 4.4× 10−1 9.0× 10−1
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Figure 3. Error for the matrix approach and the product integration (PI) methods compared with the
exact solution for the fractional oscillation equation.

4.2.4. Academic Examples

Example 1
We consider the MTFDE proposed in [44]:

D2y(t) + D1/2y(t) + y(t) = t3 + 6t +
3.2t2.5

Γ(0.5)
, y(0) = 0, y′(0) = 0 (13)

whose exact solution is y(t) = t3.
The resulting matrix has dimension 2× 2. We use h = 2−3 for PI methods.
Figure 4 shows that the matrix approach was the most accurate for this test, even if PI2 reached very

high accuracies. However the former was the cheapest in terms of execution time, as Table 4 reports.

Table 4. Comparison of execution time for the matrix approach and the product integration (PI)
methods for computing the approximate solution at T of Equation (13).

T Matrix PI1 PI2

10 8.4× 10−3 4.1× 10−3 7.3× 10−3

50 9.5× 10−3 2.4× 10−2 5.1× 10−2

100 5.9× 10−3 3.7× 10−2 7.3× 10−2
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Figure 4. Relative error for the matrix approach and the product integration (PI) methods compared
with the exact solution for Equation (13).

Example 2
We consider a test problem proposed in [19]. The FDE to solve is

Dαy(t) + y(t) = tm +
m!

Γ(m + 1− α)
tm−α, y(0) = 0, 0 < α < 1, m ∈ N (14)

whose exact solution is y(t) = tm.
We use, as in [19], the values m = 4 and α = 0.4. For the matrix approach, matrices of dimension

2× 2 come into play, while for the PI methods, we use h = 2−7.
The comments for the previous tests apply also for this case: from Figure 5 we may appreciate

the excellent accuracy of the matrix approach while Table 5 reveals an even greater gap in terms of
execution time, with a difference of 3 orders of magnitude between the matrix approach and PI2.
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Figure 5. Relative error for the matrix approach and the product integration (PI) methods compared
with the exact solution for α = 0.4 for Equation (14).
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Table 5. Comparison of execution time for the matrix approach and the product integration (PI)
methods for computing the approximate solution at T for α = 0.4.

T Matrix PI1 PI2

10 5.2× 10−3 8.1× 10−2 1.6× 10−1

50 4.7× 10−3 4.0× 10−1 8.0× 10−1

100 3.2× 10−3 7.9× 10−1 1.6× 100
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