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Abstract: The integration of electric vehicles (EVs) in power systems can be encouraged by charging
station diffusion. These stations can perform smart charging processes, and can take advantage of
the involvement of distributed generation sources in a microgrid framework. Furthermore, since
photovoltaic batteries and EVs are sources based on direct current (DC), the realization of a DC
microgrid structure is promising, though challenging. In this paper, a mixed-integer linear procedure
for determining optimal operation planning of a DC-based electric vehicle supply infrastructure is
proposed. The procedure aims at optimizing daily operational costs, based on forecast of photovoltaic
production and EV exploitation. Peculiar aspects of energy storage devices and of the DC microgrid
framework are accounted for through a non-linear iterative procedure. The proposed approach
is applied to a test DC microgrid on different operation days and its effectiveness is compared to
non-linear formulation solved by means of a genetic algorithm.

Keywords: electric vehicle integration; energy management; DC microgrid features; mixed integer
linear programming

1. Introduction

The diffusion of electric vehicles (EVs) is likely to experience a sharp increase, as predicted by
several studies and scenario evaluations of transport and energy stakeholders. In particular, power
system operators are guided by several policies aimed at reducing the environmental impact of
transport [1].

A remarkable support to EV diffusion is given by technological improvements. The newest
battery technologies ensure pocket-size units and the ability to provide a longer duration of travel and
for wider distances to be covered. For charging stations, the interchangeability has been improved
thanks to connector standardization [2], while the realization of more powerful plug systems helps
reduce waiting times. Although EV intelligence controls the charging process to preserve battery
life, the electric grid operator is rather interested in controlling the EV charge in order to reduce the
counter-effects caused by massive requests at limited intervals and concentrated in specific locations.
Thus, the concept of smart charging has gained significant ground [3,4], and the communication ability
between EVs and the power system has remarkably improved. In this sense, for EV smart charge to
have effects on the power system, the figure of the EV aggregator is introduced [5].

In order to improve the positive interactions with the power system, the integration of EV charging
stations with distributed generation (DG) facilities based on renewables is a field of interest for industry
and research [6]. In fact, the combined operation with DG can ensure renewable energy supply to
EVs, reducing grid power purchases. Moreover, the addition of energy storage devices can improve
the exploitation of local sources by EVs, even in the absence of temporal synchronization [7]. This

Appl. Sci. 2019, 9, 2687; doi:10.3390/app9132687 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0863-9274
http://www.mdpi.com/2076-3417/9/13/2687?type=check_update&version=1
http://dx.doi.org/10.3390/app9132687
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2687 2 0f 20

coordinated control of different sources is one of the most promising uses for the development of smart
microgrids for EV needs.

Furthermore, since photovoltaic systems, batteries for EVs, and local storage are based on direct
current (DC), they can easily constitute DC microgrids [8,9]. DC microgrids represent an interesting
development of the power industry, since they ensure high controllability and cause less problems
with respect to alternating-current power system integration (e.g., inertia and frequency, reactive
power), although the development of DC systems with increasing sizes and voltage levels is still
challenging. Moreover, EV connection to DC microgrids opens the field to efficient vehicle-to-grid (V2G)
applications, enabling EV bidirectional energy exchanges analogous to storage devices when parked.

One of the functions of a DC microgrid controller is the operational programming, which is
called upon to elaborate, with suitable advance notice (generally on daily basis), the optimal power
setpoints of all controllable devices, according to inputs (renewable source and load forecast, EV
usage for mobility, economic parameters) and taking into account device technical limitations. After
this stage, the real time operation control is aimed at verifying the correct DC microgrid function
that is able to sustain possible the variation of inputs or other unplanned events (e.g., unintentional
islanding) [10,11]. In the framework of day-ahead operation programming of microgrids, including
EVs, different approaches are found in the literature.

In some works, EV charging duration and intensity are considered as known inputs in
programming procedures. In particular, in one previous study [12] a stochastic generation of plug-in
hybrid EV usage is exploited in an optimal management model solved with the modified symbiotic
organism search (MSOS) algorithm and compared with the genetic algorithm (GA) on two test systems.
Another study [13] includes charging station features in the determination of EV charging scenarios in
mixed-integer linear programming (MILP) microgrid optimization. Moreover, in another study [14]
network theory for managing EVs is embedded in a complex energy hub (involving AC and DC,
as well as thermal and cooling parts) aimed at determining optimal bidding through risk measures.
In another study [15], EV charging is a random variable in a robust optimization approach based
on MILP.

Other papers focus on EV controllable charge. In one study [16], the operation of microgrid
components, including EVs, is determined by solving a non-linear programming problem with the
objectives of minimum cost, emissions, and load variation, comparing a standard particle swarm
optimization algorithm with advanced ones. In another study [17], maximum revenue and maximum
EV requirement satisfaction are compared as objectives for EV management in a smart city environment.
In another study [18], a model based on Poisson distribution of EV arrivals is embedded in a robust
optimization approach. Finally, a sequential energy management strategy procedure involving either
smart charging or immediate charge in a DC microgrid, including only EV stations, is described in a
previous study [19].

A performance comparison of EV charge and V2G in day-ahead operation planning for minimum
grid exchange in a microgrid is proposed in a previous study [20], considering different EV models
and drawing suitable indicators. In another study [21], the effects of an EV management strategy
exploiting load variation in a microgrid for placing charge and discharge actions is investigated. In
another study [22], the optimization of a microgrid with or without EVs able to perform V2G and
demand response is carried out considering operational costs and EV battery degradation costs.

With regard to V2G approaches, in a previous study [23] a minimum-cost objective is posed,
considering reserve constraints in a MILP environment with EV priority according to forecast use,
whereas in another study [24] a function including costs, battery degradation, and energy (not supplied
estimation) is considered, involving a transformation of AC load flow relations and a solution with
a modified bat algorithm. In another study [25], the influence of V2G in a multi-energy microgrid
with different EV users is considered by accounting for EV aggregators. In another study [26] the
effect of uncertainty is shown by stochastic scenarios of EV and load in a microgrid optimization
procedure with AC load flow decoupling, reporting sensibilities on parameter variation. In one
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study [27] a Monte-Carlo selection of best results of optimal operation is carried out by means of
proper fitness functions, exploiting a GA solution. In another study [28], two different approaches
are exploited in the presence of accurate or inaccurate EV usage forecasting, involving optimization
versus multi-agent auctions. In one study [29] a multi-objective procedure, including cost and power
fluctuations, is proposed, accounting for different EV operation modes and drawing V2G incentives
using a multi-stage memetic algorithm to find a solution. The energy management for EV integration
in a workplace microgrid with a multi-agent optimization scheme is described in a previous study [30].

Photovoltaic (PV) powered EV station programming is dealt with in a previous study [31],
modeling different attitudes to smart charging of EVs. In another study [32], a DC microgrid with PV
and EV charging stations is proposed, including cost and energy circulation of batteries, and solved
with non-dominated sorting genetic algorithm (NSGA-II). In another study [33], an optimization
model, including cost and an EV preference indicator, is considered for a system including PV, storage,
and EVs with V2G. In another study [34], optimized control of an EV station integrated with PV and
storage is proposed, involving contracts with EVs, battery degradation, and unsupplied demand costs
with AC load flow. Stochastic dynamic programming for an EV station, including PV, storage, and fuel
cells, is reported in one study [35], comparing this with deterministic programming. Authors of a
previous study [36] account for stochastic estimation of PV and EV parking in the day-ahead method,
adding a real time model for predictive control.

Energy management of a DC microgrid presents peculiar aspects and functions, as reported by
previous authors [37-39]. In-line with this framework, a general control structure is illustrated in a
previous study [40]. In another study [41], an optimization model with voltage network constraints
is depicted, whereas semidefinite programming is exploited in a previous study [42] to deal with
non-linear features. A simplified linear model of DC microgrid for integration in optimal bidding
procedure with risk measures is proposed in another study [43]. In one study [44], a procedure based
on fuzzy logic is embedded in real-time power control of a DC microgrid, whereas real time optimal
power management of a DC microgrid is adopted in another study [45]. Real-time control of a DC
microgrid based on dynamic models is proposed in other studies [46,47].

Among various approaches investigated in the literature, a limited focus is devoted to specific
aspects of DC microgrids when V2G is enabled. In particular, in operation programming, few details
are given on economic relations with EVs and on actual operational features of converters.

In this paper, a mixed-integer linear procedure for determining optimal operation planning of
an electric vehicle supply infrastructure structured as a DC microgrid is proposed. The procedure
aims at optimizing daily operational cost, including the viewpoint of a microgrid operator and EV
owners, according to predictions of PV production and EV utilization for mobility needs. A set of
indicators of EV usage is drawn. The proposed approach is applied to a test DC microgrid on different
days of operation and its effectiveness is compared to non-linear formulation solved by means of a
genetic algorithm.

The main contributions of the proposed approach can be synthesized as follows:

- A model of degradation costs and capacity for energy storage devices is included;

- Specific features of active power losses in DC microgrids and in converters are taken into account;

- The economic objective involves a microgrid and an EV aggregator;

- An iterative procedure is exploited in order to consider non-linear realistic models and keep
linear programming properties;

- Performance indicators related to EV exploitation for electric system integration are adopted to
prove procedure validity.

The paper is organized as follows. In Section 2 the proposed methodology is illustrated, according
to the nomenclature reported in the appendix, along with a reference non-linear approach. In Section 3
the test system is described, while the performed tests and remarkable indices are discussed in Section 4.
Conclusions are presented in Section 5.
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2. Methodology

2.1. General Assumptions

The optimization procedure for DC microgrid day-ahead programming is based on Mixed-Integer
Linear Programming (MILP) and it is aimed at determining the power exchange plan for each device
at each timestep. The state variable vector x can be defined as follows:

X = [XreT/ xintT]T/ @

where X includes all real variables and x;n all integer ones; the superscript T stands for transpose.

As for the sizing method described in a previous study [48], the model is supposed to be applied
to a DC microgrid, including a photovoltaic plant, N; storage systems, and N, electric vehicles,
usually operated in grid connected mode. In this framework, power exchange levels pertaining to
each component in each timestep represent the real state variables, encompassed in the vector x;e with
dimensions ((3+Np + 3+ Ny +2) - N¢) X 1, as follows:

e = [(0i) ()" () () (50, P () (500" @

where Pg‘ and Pg“t are N; X 1 vectors of Pé”(t) and P‘jg“t(t), respectively, whereas P, Pg, and Sy, are
(Np - Nt) X 1 vectors of P(t), P?(t), and S,(t), respectively, and P, P, and Sey are (N, - Nj) x 1
vectors of P;(t), P;.i(t), and S;(t), respectively.

The vector x;nt includes binary variables aimed at defining the direction of power exchanges in
each timestep, and has a total dimension of ((N, + Nep + 1) - N;) x 1:

T
Xint = [VgTr VbT/ VevT] . 3)

where vy is the Ny X 1 vector of vg(t), vy, is the (N}, - Ny) X 1 vector of v;(t), and vey is the (Ney - Nf) X 1
vector of v;(t), respectively.

2.2. Mixed Integer Linear Problem Formulation

The general formulation of the MILP problem is reported in Equation (4), where f(x) is the linear
objective function, A and b are the coefficient matrix and the known term vector of the inequality
constraints, respectively; Aeq and beq are the coefficient matrix and the known term vector of the
equality constraints, respectively; x and X, respectively, are the lower and upper boundary vectors of
the state variables:

minf(x)
X
A-x<b 4)
S.t{ Aeq X = beq
x<x<X

In order to determine the optimal power value for each component, the proposed methodology
aims at minimizing net cost of microgrid operation in a combined viewpoint, including the microgrid
operator and the EV owners [25]. Therefore, the objective function is defined as follows:

©)
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where the first two terms represent the cost for energy purchase and the revenue for power delivery at
the grid connection point, whereas the third term accounts for the wearing cost of storage systems
associated with both charge and discharge. The last term in Equation (5) is linked to EVs, and takes into
account proper wearing costs, the revenue for EV discharge, and the cost for EV charge, considering
the presence of an intermediate entity between EVs and the microgrid.

Many of the unitary costs in Equation (5) are defined by proper tariff schemes. The wearing cost
of storage system wj is defined as a function of the maximum number of cycles ®; at the desired level
of depth-of-discharge DOD; [49], as per the following expression:

1 1
w; = (‘D_zo - 31) -Ki, (6)

where K; is the purchasing and installation cost of the i-th storage system and ®; g is the maximum
number of cycles at the full discharge rate. The degradation cost of EV batteries w; is defined in the
same way.

The following constraints hold:

PR (t) Svg(t)-Py Vi, ?)
Pt (t) < (1-0vg(t))- Py V1, (8)
PE(t) <ui(t) - P; Vit )
Pi(t) < (1-0i(1)- P} Vi, (10)
P(t) <oj(t) - Py Vit (11)
PA(1) < (1-(0) P Vit (12)
0<PR(t) <P, W, (13)
0<PYU(t) <P, Vt, (14)
0<PS(t) <P; Vit (15)
0<Pi(t) <P Vi, (16)
S;(t) < Silt) < Si(t) Vit 17)
0<P5(t) < P Vit (18)
0Pt <P Vit (19)

S(t) < st <Si(t) Vit (20)

N,,).
+i§1[[hl(t) (1-a,(0)]- Pi() - hi%.(l+a(t))] pC(t)]+ o
+j_i[[h](t) (l—oz].(t))] Pi(r) - h}_lﬁ-(ua](t))] p;(t)]+
+hpv(t) - (1 —apv(t))]-Ppv(t) =0 ¥t
si(t):si(t—1)+n§(t)~P§(t)-AT—L-p‘?(t)-AT—pi.AT Vi, £[0,1], (22)
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Si(0) = S Vi, (23)
Si(Nt) = Si(0) Vi, (24)
c C 1 ;
Sj(t) = Sj(t=1) +15(t) - PS(t) - AT - % -p;?(t) "AT—p;-AT=AS(t) Vjt, (25)
5;(0) = sj."i Vj, (26)
Sj(Nt) = 5;(0) Vj. (27)

In particular, Equations (7) and (8) are inequality constraints imposing the unidirectional power
flow at the grid connection (either withdrawal or injection) for each timestep. Analogous formulations
are assumed for charge and discharge power of storage devices in Equations (9) and (10) and of EVs in
Equations (11) and (12). Moreover, Equations (13) and (14) represent the operating limits of power
exchange at point of common coupling, and Equations (15)—(17) impose boundaries on charge power,
discharge power, and state-of-charge (SOC) of storage. In Equation (17), battery SOC limits are a
function of time, due to a proper model of capacity reduction depending on battery aging. Residual
capacity of the i-th battery at time t E;(t) can be determined from nominal capacity E!" as a function
of the total number of cycles experienced by the battery in its operation lifetime until the selected
interval @;(t), as follows [50]:

Ei(t) = Ef" -a;-exp(=b; - ¢i(t)), (28)

where coefficients a; and b; depend on the selected battery type. The number of cycles @;(t), which is
kept lower than ®; to avoid replacement, is related to battery charge and discharge, depending on the
imposed depth-of-discharge DOD;. Therefore, in Equation (17), S;(t) = E;(t) and S,(t) = E;(t) - DOD;.

Analogously to batteries, EV exploitation limits are imposed by Equations (18)—(20), accounting
for aging as well, although the upper limits of charge and discharge power are null for the expected
EV driving intervals.

The equality constraint in Equation (21) ensures the power balance at common DC bus described
in Equation (21). In this equation, parameters h and a represent inverter efficiency and cable losses
coefficient, respectively, for the connection of devices indicated by the subscripts. Moreover, the update
of SOC is imposed, respecting initial and final values, written for batteries in Equations (22)-(24) and
for EVs in Equations (25)-(27). In particular, AS;(t) represents the amount of energy exploited for
mobility by the j-th EV at the ¢-th time step, determined according to proper forecast. The value of
AS(t) is generally not null, only in EV driving intervals.

Some parameters, such as the converter efficiency, storage efficiency, storage capacity, and cable
losses, show a non-linear dependence on the operating point of the device, which can be defined by
the exchanged active power. In order to account for these features in the proposed MILP formulation,
an iterative methodology is proposed, as sketched in Figure 1. In particular, the methodology starts from
the vector u” of initial values of parameters (e.g., nominal efficiency, battery capacity of the previous
day), and by solving the MILP problem in Equation (4) the initial solution x’ is obtained. Therefore,
the methodology includes, for each iteration k, the update of parameter vector u (e.g., through proper
efficiency curves) and a new solution of the MILP problem in Equation (4), obtaining the state variable
vector at k-th iteration x* using u*. A convergence criterion is placed on the difference of the problem
solution, determined as the sum of absolute values of differences of each component of the solution
vector between two iteration steps, which does not have to overcome a specified threshold «.

At the end of the analysis, the number of cycles experienced throughout the day by storage devices
®i(N) and EVs @;(N;), along with relevant values of residual capacity S;(N;) and S;(N;), respectively,
are determined in order to serve as the starting point for the analysis of the next day.
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k=0
Initial vector of Determination of
parameters u® uk from xk1
v
Solution of (4) Solution of (4)
X0

I

Figure 1. Flowchart of the iterative methodology to account for non-linear parameters in the mixed
integer linear programming (MILP) algorithm.

2.3. Reference Non-Linear Approach

In order to prove the validity of the proposed MILP-based approach, the solutions and algorithm
performance will be compared with a non-linear formulation. In this case, the state variables vector
x includes only real state variables xre, and integer variables are discarded. However, constraints
involving the integer variables in the MILP problem are reformulated in a non-linear way, so that
blocks in Equations (7) and (8), Equations (9) and (10), and Equations (11) and (12) are replaced by the
following expressions in Equations (29), (30), and (31), respectively.

PR(t)-PY(t) =0 Vt, (29)
PE(t)-PH(t) =0 Vit (30)
P;(t)-P?(t)zo Vi, t. (31)

Moreover, the microgrid balance in Equation (21) and SOC update relations in Equations (22)
and (25) become non-linear equality constraints, since the non-linearity of parameters—the inverter
efficiency, storage efficiency, and cable loss coefficient—is dealt with through proper polynomial convex
functions of the operating condition of each device.

3. System under Study

The proposed MILP-based algorithm and the reference non-linear formulation are applied to
evaluate the optimal scheduling of the DC microgrid proposed as the backbone of the Electric Vehicle
Supply Infrastructure (EVSI). The EVSI is a modular solution integrating renewable sources and storage
for intelligent charging processes of EVs [51]. As introduced in a previous study [52], its structure
includes a common DC bus, where all devices are interfaced with proper converters.
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In particular, the DC microgrid under study comprises a PV plant, including polycrystalline
modules, an energy storage system (ESS) based on Li-lon batteries, a connection with the AC utility grid,
and five charging stations for vehicles, according to the scheme reported in Figure 2. A bidirectional
AC/DC converter is exploited to connect the utility grid and the EVSI, while six different bidirectional
DC/DC converters connect the ESS and the EVs to the DC bus. Additionally, a unidirectional DC/DC
converter interfaces the PV system.

Charging Charging Charging
| station 3 station 4 station 5
w Utility grid A ’a“j .\ - =
# a—e j a—=

y AN AN B N

~ DC-Bus

N N AN N AN AN |

R [
| J—]
Energy storage Charging Charging Photovoltaic
system station 1 station 2 system

Figure 2. Grid scheme of the test direct-current (DC) microgrid.

The DC microgrid test case is aimed to reproduce the conditions to be realized in the framework of
Bari Port Authority, Italy. Table 1 shows the installed sized for the DC microgrid devices, determined
according to a proper sizing procedure as developed in a previous study [48], with a further increase
in PV and ESS size to improve the reliability of the system.

Table 1. Test system. Sizes of installed devices.

Device Installed Size Installed Size State of Charge Converter Size
(kW) (kWh) Max/Min (p.u.) (kW)
Photovoltaic (PV) 40 — — 40
Energy storage system (ESS) 30 60 0.95/0.25 30
Charging station (CS) — — — 10
Utility grid — — — 50
Electric vehicle (EV) — 24 1.0/0.2 —

With regard to the operating range of the devices, a variation between maximum capacity and
20% of capacity is assumed for EVs, whereas the limits are more stringent for the ESS (95% maximum,
25% minimum) in order to take into account an energy reserve that can be used for further regulation
services in real time.

4. Tests and Results

The proposed procedure is implemented in MatL.AB2015b® environment, considering 96 time
steps of 15-minutes duration within each day. In particular, the optimization tool intlinprog is exploited
to solve the proposed iterative MILP. Simulations are carried out on a workstation HP Z440 equipped
with an Intel Xeon 3.50 GHz processor with 16 GB RAM.

The MILP problem-solving starts from the solution of the linear relaxed problem (without integer
constraints on variables) according to the interior-point method. Then, a cut generation is used to
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restrict the linear solution, and finally, the branch-and-bound technique is adopted to generate two
subproblems using proper heuristics and to evaluate the most suitable solution according to the best
projection on improving lower or upper bounds [53]. As for the settings, the relative tolerances of the
integer and non-integer variables are set to 0.0001 and 0.001, respectively.

Regarding non-linear problems, classical solution techniques are highly dependent on initial
condition, since local solutions can be found instead of global ones. To overcome this issue,
a metaheuristic approach, such as the genetic algorithm, can be exploited to generate and compare
multiple solutions. In the following, the reference non-linear problem is, therefore, solved by means of
the optimization tool gn in MatLAB framework.

The solution starts from the initial population in the first run of the linearized problem and further
feasible populations up to 100 individuals are created in the feasible space. The fitness of individuals
is, therefore, evaluated according to the Augmented Lagrangian function to account for non-linear
constraints [54], and exploiting square root of rank as a fitness measure. Therefore, the next generation
is given for 80% by crossover, where the selection of parents is based on Roulette heuristic, whereas
20% of individuals comes from mutation. Each process is governed by a Gaussian distribution with
feasibility region adaption. The feasibility tolerance with respect to non-linear constraints is set to
0.001, and the maximum objective function tolerance is set to 0.001.

4.1. Test Cases: Different Operation Days

The proposed approach is tested for three typical days: a sunny day, a cloudy day, and a rainy day.
These conditions are estimated according to historical data of a weather station close to the envisaged
microgrid location [55]. Each day is affected by different availability of solar radiation, determined
on the horizontal plane according to a proper forecast procedure, therefore power production level
Ppy (t) is estimated according to the Liu-Jordan model of solar radiation [56] and PV panel efficiency.
The resulting trends are reported in Figure 3.

45
—Sunny
= Cloudy
40 —Rainy ||

35
30
25/

20

Py, [kW]

15

10

. L e UL e

-5
00:00 04:00 08:00 12:00 16:00 20:00 24:00
Time [hh:mm]

Figure 3. Forecasted output of the photovoltaic system for the three different days.

Parameters used in the study are further reported in Table 2, including nominal efficiencies of
converters and loss coefficients of connections, depending on different cable lengths. For the sake of
simplicity, step-wise approximations of non-linear characteristics for bidirectional DC/DC converter
(in charge and discharge) and AC/DC converter efficiency with respect to flowing power, exploited in
the iterative solution methodology sketched in Figure 1, are depicted in Figure 4.
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Table 2. Test system. Nominal Parameters.

Parameter Symbol Nominal Value

EV charge efficiency TI; 0.95

EV discharge efficiency 11‘; 0.95
Grid converter efficiency he 0.93

DC/DC converter efficiency hi, hj, hpy 0.965
Storage charge efficiency s 0.9
Storage discharge efficiency q’j 0.9

Connection losses coefficient a 0.035+0.055

100 T

98

96

94 |

92|

90

Efficiency [%]

——Charge Efficiency Curve ||
— Discharge Efficiency Curve
— Converter Efficiency Curve
80

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Power [p.u.]

Figure 4. Converter efficiency curves.

Moreover, starting from the data collection of current exploitation of fuel-based service cars
within Bari Port Authority, the pattern of EV usage is derived for the specified model. In particular,
the traveling intervals and the mobility needs for each journey are estimated through a stochastic
procedure from the collected data for each vehicle, depending on seasonality, on the day of the week,
and accounting for the possibility of different numbers of journeys during the day. This process
leads to the EV usage patterns reported in Figure 5. It can be seen that the service use of EVs is
usually concentrated between 10:00 and 19:00. In order to obtain EV power consumption for mobility,
an average of 0.12 kWh/km is considered for a 24-kWh size EV battery.

Finally, trends of cost coefficient over the considered days are reported in Figure 6. It can be
observed that costs of power purchase from the grid c¢ (t) vary in the range 0.12-0.2 €/kWh. Additionally,
r¢(t) is in the range 0.02-0.08 €/kWh. As for EV utilization, the charge cost c;(t) is between 0.18 and
0.25 €/kWh and the premium for discharge r;(t) is higher, in the range of 0.32-0.4 €/kWh. In any case,
the cost coefficients are higher on rainy days and lower on cloudy days, and they follow analogous
trends, with peaks in the morning (10:00-12:00) and evening (19:00-22:00).



Appl. Sci. 2019, 9, 2687 11 0f 20

—EV1—EV2—EV3 EV 4 EV 5
T T

37;5 km ‘

= sk | |
< 225k 225km
@ sk [Taokm |
[22.5 km] 22.5 k)
‘ , !
30 km 22.5 km ‘
*~— >~—
z |
3 22.5 km m
© [ 1125 km ]
[22.5 km] [T30km ]
r . x + —
| |
67.5 km
g
g 30 km
[22.5 km] [30km ]
08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time [hh:mm]
Figure 5. Forecasted EV exploitation patterns on the three different days.
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Figure 6. Unitary cost trends on the three different days.

4.2. Results, Indicators, and Discussion

The amount of power exchange at the utility grid interface is shown in Figure 7, before application
of loss coefficients. In particular, the represented quantity is Py'(t) — P3*(t). It is noted that on the
sunny day, the DC microgrid exports power between 08:00 and 14:00 due to high PV production,
and export is observed also in the intervals 16:00-20:00 and 00:00-02:00, in order to take advantage of
the lower price differences, even in the absence of renewable internal production. The behavior on the
cloudy day is similar, except for the late afternoon, where power purchase from the utility is observed.
On the rainy day, no power delivery is observed, and energy is withdrawn from the grid in the period
15:00-18:00 due to lower internal production. In any case, the power exchange level does not exceed
30 kW, although the maximum level is fixed at 50 kW.
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Figure 7. Power exchanged with the utility grid in the three days.

For the sake of comparison, in Figures 8 and 9 the behaviors of EV1 and EV2 are reported for the
three considered days in terms of exchanged power before losses, assuming positive values for charge
and negative for discharge (i.e., PS(t) — P4(t)), and of state of charge. In the considered conditions,
all EVs should attain a SOC of 95% at the end of the day. From the figures it can be noted that the
EVs perform early discharge in the first hours of sunny and cloudy days (reaching 5 kW) due to high
initial SOC. Therefore, they take advantage of PV availability in short parking intervals to perform
intense though not continuous charge. In fact, in the charge stage, they can reach the maximum rate
of 10 kW in many intervals, although some alternating behavior is seen in order to efficiently exploit
PV production. At the end of the afternoon, SOC is maximum, and a slight discharge is performed.
On rainy days, the early discharge is not present and EVs perform only the necessary charge to cover
their mobility needs. This is evident for EV2, which is not supposed to be driven on the rainy day;,
whose battery is kept almost unexploited in order to prevent wearing.
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Figure 8. Power exchange between the test microgrid and EV 1 and the related SOC on the three days.
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Figure 9. Power exchange between the test microgrid and EV 2 and the related SOC on the three days.

Figure 10 represents the power balance at each time interval for the case of the sunny day. It can
be noted that the high PV energy production is mainly delivered to the external grid during the
peak price interval (08:00-14:00) and it is used to charge the EVs in the afternoon. During the night,
the EVs inject some of their stored energy into the main grid, yielding a revenue. The energy storage
system has negligible influence on the algorithm results, because it involves only cost terms (due to the
degradation cost of the batteries), and the procedure does not select it, since it is not convenient at
current costs. On the cloudy day, as can be derived from Figure 7, the lower PV production causes
a lower injection in the main grid, while on the rainy day the PV production is fully used to charge
the EVs.
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Figure 10. Microgrid power balance on the sunny day.

In order to compare the performances of the proposed algorithm with the reference non-linear
approach, a set of techno-economic indices is defined and evaluated. In particular, with the aim of
analyzing EV behavior, total daily revenue from EV discharge R? and total daily cost for EV charge C¢
are determined using the terms contained in the objective function in Equation (5), as follows:
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Nt

R;?: rj(t).P;?(t).AT Vj, (32)
t=1
Nt

c;_zfcj(t)-p;(t).ﬂ vi. (33)
t=

Two further indicators are defined. The daily discharge-to-charge ratio y; indicates the performed
EV discharge energy with respect to the total daily charge energy, as described in Equation (34), and is
equal to 0 if the EV does not discharge. The average rate of discharge f; relates the EV discharge with
the maximum possible rate across the whole day, as reported in Equation (34). Due to the assumption
of keeping the same SOC at the beginning and at the end of the day, ; can reach at most 0.5 in the
presence of continuous and full discharge, which is the most stressful condition for an EV battery.
Finally, the number of cycles performed over the day by each EV, ¢;, is drawn.

N

Y P‘]’.l(t) AT
V= (34)
Y, PE(t) - AT
=1/
Nt pé(t)
Bi=—-Y ——-100. (35)
TN Z{ 2

In Table 3, these values are reported for the five EVs and the two algorithms. It can be observed
that the contribution of the EVs on the rainy day is lower than in the other two scenarios, since in the
absence of excess renewable production, the procedure prefers to limit grid power withdrawal and to
use the energy stored in the on-board batteries only for travel, reducing cost and battery wear. In all
cases, EV utilization costs exceed relevant revenues, even though on the sunny day this difference is
lower. An intense charging/discharging activity is observed on both sunny and cloudy days, where y;
assumes average values between 0.3 and 0.5, with peaks of 0.9 for EV4 when it is not called to travel;
however, the average discharge intensity ; is usually below 10% of maximum.

Table 3. Techno-economic performances of EVs for the three typical days.

Proposed Iterative MILP Reference Non-Linear with GA
EV1 Ev2 EV3 Ev4 EV5 EV1 Ev2 EV3 Ev4 EV5
Sunny 4.14 4.14 3.93 4.14 4.85 4.15 4.15 3.84 4.2 4.48

d
Ri Cloudy 317 045 362 345 317 319 05 327 346 317
€1 Rainy 0 0.13 0 0 0.3 0 015 006 002 031
cc Sunny 504 538 5 474 483 52 552 507 485 474
i Cloudy 456 327 454 201 458 466 336 443 207 469
€] Rainy 319 01 178 35 022 33 011 18 355 022
y,  Suny 045 042 044 048 055 044 041 042 047 052
[pw] Cloudy 037 007 043 092 037 037 008 04 09 036
Rainy 0 0.74 0 0 0.82 0 077 0.02 0 0.83
~ Sumnny 9 9 8.57 9 1057 903 903 835 913 976
[{f/] Cloudy 729 103 833 795 729 733 116 753 795 73
°l " Rainy 0 0.28 0 0 0.64 0 032 014 004 065

Sunny 0.64 0.64 0.60 0.64 0.76 0.64 0.64 0.59 0.65 0.70
Pj Cloudy 0.50 0.08 0.58 0.55 0.50 0.50 0.09 0.52 0.55 0.50
Rainy 0.00 0.02 0.00 0.00 0.05 0.00 0.03 0.01 0.05 0.05
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Occasional differences between the proposed procedure and the reference non-linear solution
are observed, due to the ability of the stochastic solution process in the GA algorithm to inspect a
wider range of the solution space. However, these differences seldom reach 10% on single quantities.
It can be noted as well that no EV experiences more than 1 cycle per day. Moreover, the number of
cycles in the GA is slightly lower on sunny and cloudy days, thus yielding a less stressful operation of
EV batteries than in the MILP case, whereas on rainy days the number is very limited due to lower
availability of the PV source.

From a more general point of view, it can be remarked that the proposed indicators give synthetic,
immediate, and effective information on EV performances. Therefore, they can be usefully exploited
for different subjects (microgrid operator, EV aggregator, and owners) in order to improve the
awareness of EVs contributions to energy management tasks, of their exploitation levels, and of
relevant economic effects.

In addition to the previous comparison, global microgrid performances are compared by means
of overall economic figures, such as total objective function value, as well as total cost Cfg? and total
revenue R;”t for energy exchange with the external network, defined as follows:

Nt

Clit =Y cg(t) - P(t) - AT, (36)
t=1
N

R =Y ro(t) - PY(t) - AT. (37)

t=1
Results are reported in Table 4, where it can be noted that the operation of the microgrid always
involves global costs, that are reduced on the sunny day due to energy delivery to the network, whereas
cloudy and rainy days show similar global economic efforts, since the wearing cost due to intense EV
exploitation counterbalances the reduction of costs for energy purchase. The difference of reported
indices between the two procedures is usually below 2% and reaches 9% on the sunny day due to
different optimal EV usage values.

Table 4. Techno-economic performances of the microgrid for the three typical days.

Proposed Iterative MILP Reference Non-Linear with GA
Rout Sunny 6.77 6.66
[é ! Cloudy 1.95 1.92
Rainy 0.00 0.00
cin Sunny 0.00 0.00
g Cloudy 420 4.28
L€l Rainy 482 4.90
Sunny 8.66 9.53
f[g) Cloudy 16.40 17.06
Rainy 15.88 16.08

As for computational performances, total simulation time and iteration number are reported in
Table 5. It can be noted that the reference non-linear problem takes roughly 2 hours to reach the solution,
whereas the proposed iterative MILP approach takes less than 1 minute in each case. Therefore, it can
be remarked that the proposed MILP iterative procedure allows one to obtain affordable optimal
solutions with reduced computational effort and in a reasonable time. Moreover, the number of
iterations increases with the worsening of the weather, because only more expensive energy sources
are available in this situation. Finally, it can also be noted that the number of generations (in the GA
approach) is higher than the iterations in the MILP approach.
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Table 5. Computational performances of solution algorithms for the three typical days.

Proposed Iterative MILP Reference Non-Linear with GA

Sunny 26.06 7216.76

Simulation time [s] Cloudy 28.94 7222.93

Rainy 44.11 7217.23
. Sunny 4 12

Iteration number

G i b Cloudy 5 13
or Generation number Rainy 10 16

5. Conclusions

In this paper, a procedure for optimal operation planning of a DC microgrid for supplying EVs has
been proposed. Forecast of PV production and EV mobility needs are used to pursue minimum daily
operation cost, including the economic perspective of the microgrid operator and EV owners. For this
purpose, a mixed-integer linear programming approach has been exploited, and proper non-linear
models of energy storage devices and of DC microgrid peculiarities have been accounted for through
an iterative procedure. The proposed approach has been applied to a test DC microgrid, and compared
to non-linear formulation. has been solved by means of a genetic algorithm. Different days of operation
have been considered, with varying levels of PV production and EV usage, and performances are
evaluated in terms of economic results, computational efforts, and EV utilization indices. Simulations
have proved that the proposed approach yields comparable solutions with respect to non-linear
formulation, with remarkably low computational time. Therefore, the proposed MILP approach has
been found to be affordable and fast enough to cope with the time requirements of system operation
programming. The approach has also proved to account for DC microgrid peculiarities in an efficient
way, demonstrating its applicability in a realistic environment, pointing out limited exploitation of
energy storage due to current wear cost. Moreover, the individualization of proper indices for EV
exploitation can foster their integration into energy management processes, as well as the application
of bidirectional energy exchange through V2G. Future evolutions of the work could include the
formulation of several objectives, for instance including load demand peak shaving or the provision of
network ancillary services, as well as further security constraints in the procedure in order to efficiently
prepare for possible islanding. Moreover, this procedure is aims to be the starting point to develop
real-time operation strategies in the presence of variations from day-ahead forecasts.

Author Contributions: M.D., S.B., and G.F. provided the research framework and literature analysis. B.A., L.D.B.,
and M.T. developed the model. B.A., M.D., and S.B. cared for data collection. B.A., S.B., and G.F. set up the
solution procedure. B.A. and L.D.B. performed the simulations. G.F. and M.T. formalized the nomenclature. L.D.B.
and G.F. wrote the paper. M.D. and M.T. edited the paper. M.D. and M.T. cared for the funding of the project.

Funding: This document has been created in the context of the CONNECT project. The CONNECT project has
received funding from the ECSEL Joint Undertaking under Grant Agreement no. 737434-2 and from the national
programs and funding authorities of Germany, Italy, Slovakia, Spain, and The Netherlands. The ECSEL JU has no
liability in respect to this document, which merely represents the authors’ views.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Nomenclature

Indices and auxiliaries

Ny Number of storage systems
Ny Number of electric vehicles
N; Number of time steps

i Storage index

j Electric vehicle index

t Time step index

f(x) Objective function [€]
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AT Time step duration [h]

k Iteration index

Kinax Maximum number of iterations
€ Solution convergence threshold

Input parameters

re(t) Unitary revenue for the energy injected into the utility grid at time step ¢ [€/kWh]

ri(t) Unitary revenue for the discharge energy of the j-th EV at time step ¢ [€/kWh]

ce(t) Unitary cost for the energy withdrawal from the grid at time step ¢ [€/kWh]

ci(t) Unitary cost for the charge energy of the j-th EV at time step ¢ [€/kWh]

w;(t) Degradation cost of the i-th storage [€/kWh]

wj(t) Degradation cost of the j-th EV [€/kWh]

P Maximum power exchange with utility grid [kW]

1_316,, 1_3‘11 Maximum charge/discharge power for the i-th storage [kW]

1_3§, 1_?‘]1 Maximum charge/discharge power for the j-th EV [kW]

g,' .S Max/min SOC of the i-th storage [kWh]

S, S ; Max/min SOC of the j-th EV [kWh]

Ppy(t) Photovoltaic production power at time step ¢ [kW]

ni(t), n?(t) Charge/discharge efficiency of the i-th storage at time step ¢

n?(f) / fl?(f) Charge/discharge efficiency of the j-th EV at time step ¢

pi Self-discharge of the i-th storage [kW]

S;:m Initial SOC of the i-th storage [kWh]

pj Self-discharge of the j-th EV [kW]

S Initial SOC of the j-th EV [kWh]

AS j(t) SOC reduction of the j-th EV for mobility needs in the time step  [kWh]

State variables

Pg“ €3] Power withdrawn from AC grid at time step ¢ [kW]

PY(t) Power injected into the AC grid at time step # [kW]

Pi(t) Charge power of the i-th storage at time step ¢ [kW]

P;i(t) Discharge power of the i-th storage at time step ¢ [kW]

P?(t) Charge power of the j-th EV at time step ¢ [kW]

P?(t) Discharge power of the j-th EV at time step ¢ [kW]

S,(t) SOC of the i-th storage at time step ¢ [kWh]

Si(t) SOC of the j-th EV at time step f [kWh]

o, (t) Binary variable of the grid power exchange state (1 if the microgrid is draining power from
8 the external grid, 0 if the microgrid is injecting power)

v;(t) Binary variable of the i-th storage charging state (1 charging, 0 discharging)

v;i(t) Binary variable of the j-th EV charging state (1 charging, 0 discharging)
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