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Elastic Response of an Optimal
Tensegrity-Type Metamaterial
Domenico De Tommasi, Giuseppe Puglisi and Francesco Trentadue*

Dipartimento Scienze Ingegneria Civile e Architettura, Politecnico di Bari, Bari, Italy

We study the elastic response of a class of optimal planar metamaterials designed as

periodic patterns of tensegrity cells. Specifically, we consider an infinite slab constituted

by prismatic cells whose sections on the middle plane are regular hexagons, squares or

equilateral triangles subjected to a uniform normal stress. An attracting property of the

proposed metamaterial is a very small tangential stiffness compared with the normal one.

This property suggests the design of innovative isolation devices with extreme properties.
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1. INTRODUCTION

Metamaterials represent an innovative approach to the problem of obtaining unusual or extreme
physical responses for advanced applications. Since their extreme macroscopic responses depend
primarily on the internal low scale pattern, the understanding of how the microstructure
topology influences the macroscopic properties is the key-point in the design of new
advanced metamaterials.

The growing scientific and technological interest on these new designed materials is due to
the possibility of getting electromagnetic and optical properties (Chen et al., 2010) or mechanical
responses unreached by standard materials. Metamaterials can exhibit extreme static or dynamical
behaviors, such as negative effective dynamic modulus (Fang et al., 2006), vanishing macroscopic
shear modulus (Schittny et al., 2013) or selective buckling under external stresses (Paulose et al.,
2015). Recently, the possibility of harnessing the postbuckling response of cellular materials for
auxetic and dissipative properties has been analyzed by Bertoldi (2017). Based on these specific
mechanical properties also the design of tensegrity-based metamaterials has been oriented to
produce extreme or controllable behaviors. In particular, extreme behaviors in the propagation
of mechanical waves have been considered by Amendola et al. (2018) and Fraternali et al. (2012,
2014), whereas elastic responses controllable by adjusting the level of self-equilibrated forces
have been studied by Sabouni-Zawadzka and Gilewski (2019). Further, it has been recognized
that the transmission and the control of forces in biological systems is diffusely achieved by
means of systems based on tensegrity schemes (see e.g., Volokh et al., 2000; Ingber et al., 2014;
Fraldi et al., 2019).

Metamaterials are usually classified into three-dimensional and surface (planar) materials and
are frequently based on elementary geometric patterns (see e.g., Koohestani, 2017; Salahshoor
et al., 2018; Zhang et al., 2018). Many studies approaching these periodic materials by means
of lattice theory have been carried out. Within this research line, Hutchinson and Fleck (2006)
studied the structural performance of periodic planar trusses. Buckling of a planar periodic
frame was considered by Triantafyllidis and Schnaidt (1993). More recently, Thomsen et al.
(2018) performed a topological optimization of 2D periodic materials undergoing buckling type
instabilities. Moreover, the non-linear response of planar periodic materials has been analyzed by
Vigliotti et al. (2014).
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This paper is focused on the elastic response of a planar
metamaterial made up of a pattern of equal tensegrity units,
where each unit cell is a three dimensional T-bar (Skelton et al.,
2017). In particular, we consider an infinite slab undergoing a
uniform compressive macro stress. Based on a well-known result
on planar tessellation, we consider systems with three different
periodic patterns of identical prismatic cells filling the space,
whose sections on the middle plane of the slab are equilateral
triangles, squares, and regular hexagons (see Figures 1, 2). The
mass optimization of this metamaterial was discussed in a
previous paper (DeTommasi et al., 2017b). Here we determine
the overall (macro) elastic properties of these optimal slabs as
functions of both design and actual applied loads. Interestingly,
the proposed metamaterial exhibits a low shear stiffness coupled
with a high extensional stiffness. This property suggests the
possibility of obtaining isolation devices with extreme properties.

2. MORPHOLOGICAL OPTIMIZATION

As already stated, in our optimization problem we consider only
slabs made up of periodic sequences of tensegrity cells having
equilateral triangular, square, or regular hexagonal shapes, which
are the unique shapes allowing us to tessellate the plane into
identical regular polygons. On the external plane surfaces of the
slab a normal compression macro stress 6 is applied, so that

P = Acell6. (1)

is the load applied to the single tensegrity cell (see Figure 1).
Here, the cross section area Acell for a cross section having p sides

FIGURE 1 | The three tensegrity-type unit cells (equilateral triangles, squares,

regular hexagons).

(p = 3, 4, 6) is given by

Acell =
pH2

8
sin

(

2π

p

)

tan2 α, p = 3, 4, 6, (2)

where H is the height of a cell and α is the angle formed
by the principal struts and the principal cables (see Figure 1).
Once the cell shape is defined, α represents the optimization
geometrical parameter of the described metamaterial. The
following assumptions are introduced:

(i) A prestress must be assigned such that both in the
loaded and unloaded states only traction forces are exerted
on cables;

(ii) Both in the loaded and unloaded states, cables respect
material failure condition and struts both material failure
and local Euler buckling conditions;

(iii) Equilibrium is globally stable.

For a fixed 6, we aim to minimize the metamaterial
volume density

ρ : =
tensegrity volume

AcellH
, (3)

FIGURE 2 | Scheme of the slab composed of hexagonal cells.

Frontiers in Materials | www.frontiersin.org 2 February 2019 | Volume 6 | Article 24

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


De Tommasi et al. Elastic Response of an Optimal Tensegrity-Type Metamaterial

where tensegrity volume is the global volume of all members of a
tensegrity cell and Acell is given by (2). We remark that, since we
assume that all tensegrity units are made of the samematerial, the
minimum value of ρ corresponds to the slab of minimal mass.
Furthermore we observe that neighboring tensegrity units (see
Figure 2) share the same transversal cables. Thus the areas of
these cables considered for a singular unit are the half of the total
ones. The above statements lead to the constrained minimum
problem already discussed in DeTommasi et al. (2017b).

2.1. Elastic Equilibrium of Tensegrity Cells
Due to periodicity and symmetry properties of the
metamaterial introduced above, any cell is two-degrees statically
indeterminate. In the loaded state (P = 6Acell) two parameters
β and τ are introduced to describe the internal forces















β =
N

P
> 1

τ =
Tt

P
> 0

. (4)

Here N is the compression force in the struts orthogonal to the
middle plane and Tt is the traction force in the cables laying in
themiddle plane. Then the internal axial forces in the loaded state
can be written as







































N = βP

Nt =
2

p
(β − 1)P tanα + 2τP sin

π

p

T =
(β − 1)P

p sinα

Tt = τP

, (5)

where T denotes the traction force in the cables out of the middle
plane and Nt the compression force in the transversal struts
laying on the middle plane.

Similarly, in the unloaded state (P = 0) we can describe the
distribution of the internal forces by the parameters β̄ and τ̄ ,
defined as β and τ and given by

{

β = β̄ + N[1]

τ = τ̄ + Tt[1]
. (6)

HereN[1] is the compression force induced in the principal struts
by a unitary compression force (P = 1) and Tt[1] is the traction
force induced in the tranversal cables by the same external force.
In the unloaded state we have



































N̄ = β̄P

N̄t =
2

p
β̄P tanα + 2τ̄P sin

π

p

T̄ =
β̄P

p cosα

T̄t = τ̄P

. (7)

Though, as already discussed in DeTommasi et al. (2017b),
a complete stability analysis should be carried out in the

context of lattice theory (Triantafyllidis and Schnaidt, 1993),
here, for sake of simplicity we assume that all cells undergo
identical critical displacements. We deem that this assumption
is satisfactory within the present analysis. Moreover, precritical
displacements are assumed to be small with the deformed lengths
of the members identified with the natural ones. Under these
hypotheses the total potential energy (set equal to zero in the
unloaded state) of the system can be written as

V(u, P) =

2+3p
∑

j=1





EA(j)

2

(

1l(j)

l(j)

)2

l(j) + N(j)1l(j)



− 2Pu1, (8)

where

1l(j) = ||1x
(j) + T

(j)
u|| − l(j).

Here u is the vector of generalized incremental displacements
(see Figure 3); 2u1 is the contraction orthogonal to the middle
plane; l(j), 1l(j), and A(j) are the length, the elongation and the
area of the (j)-th member, respectively; 1x

(j) is the length vector
and T(j)

u is the relative incremental displacement vector between
the end joints of the (j)-th member. Furthermore, the Young
modulus E has a unique value for all the bars and cables, made
up of the same material. In particular, we have

A(j) =















A, j = 1, 2
At , j = 3, 4, ..., p+ 2
Ac, j = p+ 3, p+ 4, ..., 2p+ 2
Act , j = 2p+ 3, 2p+ 4, ..., 3p+ 2

, (9)

where A and At are the areas of the cross sections of the principal
and transversal struts, respectively, and Ac and Act the cross
section areas of the principal and traversal cables, respectively.

The lengths l(j) of the members are given by

l(j) =



















































H

2
, j = 1, 2

H tanα

2
, j = 3, 4, .., p+ 2

H

2 cosα
, j = p+ 3, p+ 4, ..., 2p+ 2

H sin
π

p
tanα, j = 2p+ 3, 2p+ 4, ..., 3p+ 2

. (10)

The axial forces N(j) (numbered with the same index of the
lengths and the areas of the correspondingmembers) are given by
(5). The tangent stiffness matrix K is the 10× 10 Hessian matrix
of the total potential energy in the loaded configuration:

K =
∂2V

∂u∂u
|

u = 0
, (11)

that, for stable or critical equilibrium states, must be
semidefinite positive

K � 0. (12)
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FIGURE 3 | Generalized displacements considered in the stability analysis for

the three tensegrity cells. (A) Triangular cell. (B) Quadrangular cell.

(C) Hexagonal cell.

Based on the symmetry properties of the tensegrity cell, in
our numerical analysis we choose the generalized displacements
shown in Figure 3. Thanks to this approach, the Hessian matrix
K is a block diagonal matrix, with maximum dimension of the
submatrices equal to 2 × 2. This choice significantly simplifies
the numerical analysis of positiveness in the following described
optimization procedure. In particular, the above positivity
condition is imposed by requiring that its leading principal
minors are all non-negative.

3. MACRO ELASTIC CONSTANTS

In this section the elastic constants of the slabs are evaluated. The
tangent Young modulus Em in the direction orthogonal to the

middle plane is determined as

Em =
6̇

ǫ̇1
= H

6̇

2u̇1
(13)

where ǫ̇1 = 2u̇1/H is the normal strain of the slab and 2u̇1
is the incremental contraction of the thickness H of the slab
(see Figure 3). In order to determine Em, we determine the
incremental contraction induced by a unitary incremental value
of the compressive macrostress 2u̇1 = 2Acell{K

−11E}1, where the
column vector 1E has all components equal to zero, except the
first one, set equal to 1. Then (13) becomes

Em =
H

2Acell

{

K−11E
}

1

. (14)

Analogously, the effective shear modulus of the slab is
determined as

Gm =
Ṫ

γ̇
= H

Ṫ

2u̇9
(15)

where γ̇ = 2u̇9/H is the incremental shear strain, 2u̇9 is the
incremental tangential relative displacement between the two end
faces of the slab (see Figure 3) and Ṫ is the incremental effective
shear stress applied to the two end faces. As in the previous case,
Gm is evaluated by determining the incremental displacement
vector induced by a unitary incremental shear stress AcellK

−11G,
where the column vector 1G has all components are equal to zero,
except the ninth one, set equal to 1. Then (15) becomes

G =
H

2Acell

{

K−11G
}

9

. (16)

It must be noted that for the three cells here considered the two
last diagonal blocks of K are equal scalars. In other words, the
only non-zero elements of the two last rows and columns are
always the diagonal elements K9,9 and K10,10, which are identical.
Then (16) can be also written as

G = H
K9,9

2Acell
= H

K10,10

2Acell
. (17)

The two last expressions (17) show that the elastic modulus G is
independent from the direction of incremental shearmacro stress
Ṫ, so that the slabs exhibits a transversely isotropic type behavior.

4. NUMERICAL RESULTS

To discuss previous results, consider a slab with thickness H =

100 mm and struts with thin annular sections, whose ratio
between the average radius and the thickness is equal to 10. The
Young modulus is fixed to E = 200 GPa and the yield stress
to σy = 200 MPa. The minimum volume density (3) has been
determined for values of the design monoaxial macrostress 6d in
the range [10−5, 10−1] MPa.

In Figure 4, the optimal density is shown vs. 6d for the
three tensegrity shapes considered here. As the figure shows,
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the hexagonal shape is the most convenient. Interestingly we
find an almost linear log-log dependence. This “scale invariant”
behavior has been previously observed for similar tensegrities in
DeTommasi et al. (2015) and had been used in DeTommasi et al.
(2017a) to obtain optimal fractal like tensegrity structures.

This is coherently reflected in the observation that the optimal
value of the geometrical parameter α, which describes the cell
geometry, varies only very slightly in the considered range of the
design macro stress 6d. In particular, for all the three different
shapes we have tanα ∈ [0.10, 0.11]. Interestingly also the optimal
prestress parameters β and τ change only very slightly in the
considered range of the design macro stress: β ∈ [1.18, 1.20],
τ ∈ [0.04, 0.05]. We then deduce that our solution identifies
an optimal shape which is almost independent from the design

macro stress in the considered range. Of course, on the contrary
the optimal cross section areas strongly depend on the design
macro stress.

Figure 5 shows the dependence of the macro elastic moduli
Em and Gm of the optimal slabs from the design macro stress
6d. Also here we notice that the log-log graph is almost linear.
Due to the small values of the shear modulus, we argue that
the small deviations from the power law regime of graph can
be ascribed to numerical reasons. A very important property
of the considered metamaterial is that it is characterized by a
difference of several orders of magnitude (from 2 to 5) between
the Young’s modulus Em and the tangential elastic modulus
Gm, especially for low values of the design macro stress. This
feature can be explained by observing that, in the considered

FIGURE 4 | Optimal volume density.

FIGURE 5 | Em and Gm (MPa) vs. design macro stress.
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FIGURE 6 | Young modulus vs. the actual macrostress 6 at different values of the design macrostress 6d . The symbols △,�, *, refer to triangular, quadrangular, and

hexagonal cells, respectively.

FIGURE 7 | (A) Tangent shear modulus Gm vs. the actual macrostress 6 for different values of the design macrostress 6d . The symbols △,�, * refer to triangular,

quadrangular and hexagonal cells, respectively. (B) Tangent shear modulus vs. the actual macrostress 6 at (6d = 0.1MPa) .
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range of the design data, the cross sections of the struts are
always determined by the local buckling constraints and are
much greater than those of the cables, especially for low values
of the design macrostress. Furthermore, as we already stated, the
optimal value of the angle between the principal cables and the
struts is always small (tanα ⋍ 0.10).

In Figure 6, we represent the variation of the tangent Young
modulus Em with respect to both the actual applied macrostress
6 and the design macrostresses 6d. In particular, for each value
of 6d it is shown that the tangent macro elastic modulus Em is
almost independent from 6, which is varying from the unloaded
state (6 = 0) to the loaded state (6 = 6d). Therefore we argue
that the proposed metamaterial has a linear behavior with respect
to the axial load 6.

Similarly, in Figure 7A, we represent the tangent shear
modulus Gm (MPa) of the optimal slabs. As in the previous
figure, for different fixed design macrostresses 6d we analyze its
dependence on the actual applied macrostress 6, with 6 ranging
from the unloaded state (6 = 0MPa) to the loaded state (6 =

6d). We point out that, differently from the previous case, for
each value of 6d the tangent shear modulus Gm varies with the
applied macro stress, even if its decrease (softening) with respect
increasing values of the actual macro stress is quite limited. This
is shown in detail in Figure 7B for a single fixed value of the
design macro stress (6d = 0.1MPa). Observe that the tangent
shear modulus Gm decreases linearly as the applied macrostress
grows, showing the same slope for the three geometries. A
similar softening behavior has been also observed in the
non-linear elastic analysis for laminated rubber bearings (see
D’Ambrosio et al., 1995). Several augmentations of the obtained
interesting behavior of these tensegrity slabs should be obtained
by extending the optimization to multiscale tensegrity structures
(see e.g., DeTommasi et al., 2015, 2017a) and by considering
multilayer slabs.

CONCLUSIONS

In this paper he have optimized a planar metamaterial made
up of periodically patterned tensegrity-type unit cells. With
reference to different values of the design macro stress we
have compared the mechanical responses of three different
geometries of unit cells. Further, for each value of the design
macro stress the optimal densities are compared, showing that
the minimal density metamaterial is made up by hexagonal cells
(see Figure 2). As already found previously, the optimal density
of these slabs exhibits a log-log dependence on the applied
macrostress. Here this result has been extended to the elastic
macroscopic response, showing again a power law dependence
of the macroscopic elastic moduli on the design macro stress.
Interestingly, for each adopted geometry we have found shapes
of the optimal tensegrity cells almost independent by the design
macro stress. These results suggest a scale-invariant behavior
of the proposed metamaterial. Finally, we remark that the
optimal proposed metamaterial is characterized by a shear elastic
modulus which is up to five orders of magnitude smaller than
the Young modulus. This indicates that the proposed scheme of
metamaterial is suitable for the design of new isolation devices.
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