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Detection of Erwinia amylovora in pear leaves using a combined 
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Summary. Erwinia amylovora infections on pear leaves were studied using nuclear magnetic resonance and hyper-
spectral reflectance spectroscopies. Inoculated pear plants under controlled conditions were used for comparing 
Erwinia amylovora infected leaves with those infected by Pseudomonas syringae pv. syringae or non-infected controls. 
Hyperspectral reflectance-NMR covariance analysis allowed the transfer of metabolome information obtained by 
NMR to hyperspectral reflectance bands through a knowledge transfer approach. At 20 d after Erwinia amylovora 
inoculation, correlation was found between the NMR signal at 1.16 ppm (attributed to the methyl group of a 
fucosyl-containing polysaccharide, identified as a specific metabolite from Erwinia amylovora) and a hyperspectral 
reflectance band centred at 1400 nm. At 50 d after inoculation the same marker metabolite was correlated to hy-
perspectral reflectance bands centred at 850 nm and 1050 nm. These methods allow maps to be developed which 
represent the specific infection status of pear plants, and could facilitate development of simple, fast and affordable 
hyperspectral reflectance-based devices for the detection of Erwinia amylovora infections on pear leaves.
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Introduction
Fire blight, caused by Erwinia amylovora (Ea), is 

one of the most important bacterial diseases that af-
fects production of pears, apples and other rosaceous 
crops (Bonn and van der Zwet, 2000). Since 1975, Ea 
has been recognized as a harmful quarantine pest, ac-
cording to the A2 list of the European and Mediterra-
nean Plant Protection Organization (EPPO). 

Erwinia amylovora can survive as endophytes or 
epiphytes for variable periods, depending on envi-
ronmental factors (Thomson, 2000). The development 
of symptoms on host plants is related to seasonal 

growth of the hosts and climatic conditions, start-
ing in spring with production of primary inoculum 
and infection of flowers, continuing in summer with 
infection of shoots and fruits, and ending in autumn 
with the development of cankers. The pathogen is 
apparently quiescent throughout host dormant peri-
ods (van der Zwet and Beer, 1995). Leaf symptoms 
induced by Ea are either necrotic patches, which de-
velop on the margins of leaf blades, or blackening of 
petioles and leaf midribs, depending on the mode of 
infection (Thomson, 2000).

Since the symptoms of fire blight generated by Ea 
may be confused with those caused by other bacteria 
such as Pseudomonas syringae pv. syringae (Pss), treat-
ments to eradicate the disease could be ineffective 
because of a wrong diagnoses. Currently, the most ef-
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ficient strategies for management of disease caused 
by Ea are a combination of stringent quarantine meas-
ures, sanitation, appropriate agronomic practices, 
chemical or biological treatments, along with vigilant 
and regular crop inspections.

The use of predictive models, which correlate the 
development of disease with pedoclimatic parame-
ters, are useful to warn technicians and farmers of the 
incipient pest risk in pear trees and apple orchards. 
These are especially useful during flowering and 
post-flowering periods, when diffusion of the bacte-
rium is most probable (Jacquart-Romon and Paulin, 
1991; Billing, 2000). However, large scale detection of 
the first symptoms is not always easy to attain, due to 
the large numbers of trees to be inspected. Moreover, 
pathogen detection in asymptomatic plants is also dif-
ficult, and depends on favourable climatic conditions 
and susceptibility of the host plants and cultivars.

Two ways to achieve early detection of the pres-
ence of Ea are the use of the metabolomics and proxi-
mal sensing approaches. Metabolomics aims to meas-
ure the global, dynamic metabolic response of living 
systems to biological stimuli, and provides informa-
tion on a wide range of detectable chemical com-
pounds contained in food products (Nicholson and 
Lindon, 2008). Metabolomic studies are often based 
on Nuclear Magnetic Resonance (NMR) spectrosco-
py, integrated with multivariate statistical methods 
(Ali et al., 2011; Bevilacqua et al., 2012; Ferrara et al., 
2013, 2014; Longobardi et al., 2013; Gallo et al., 2014; 
Rizzuti et al., 2015). NMR spectroscopy has been used 
for detection of symptomatic and asymptomatic plant 
diseases (Sankaran et al., 2010), as well as for inves-
tigations of metabolites acting as signal compounds 
and protecting agents produced during host plant 
resistance processes (Leiss et al., 2011). Other studies 
have focused on the identification of metabolic path-
ways connected with the defence responses, to Esca 
disease of Vitis vinifera (Lima et al., 2010) and phyto-
plasma in Catharanthus roseus (Choi et al., 2004).

As a proximal sensing technique, Hyperspectral 
Reflectance (HR) has been used for the detection of 
biotic and abiotic stresses in plants under laboratory 
and greenhouse conditions. HR provides a rapid de-
tection tool, requires limited sample preparation and 
is a non-invasive technique for plant disease detec-
tion (Sankaran et al., 2010).

Numerous studies have shown that changes de-
tectable by spectral signature can be diagnostic of 
specific deviations in plant health status (Liew et al., 

2008), and specific spectral bands can be used to de-
tect infections before the development of symptoms 
(West et al., 2003; Sankaran et al., 2010).

Infections caused by viruses, fungi and bacteria 
cause significant re-organization of cell metabolism 
in the early stages of infection, generating specific 
physical/chemical alterations of the host plants that 
can be detected through optical spectroscopy (Polis-
chuk et al., 1997; Spinelli et al., 2004; Naidu et al., 2009; 
Santoro et al., 2009; Delalieux et al., 2007; Grisham et 
al., 2010; Sankaran et al., 2011; Abu-Khalaf, 2015; Lor-
ente et al., 2015; Afonso et al., 2017). 

During our studies aimed at extracting metabo-
lome information from plant material by combined 
analytical approaches, we have found that spectro-
scopic knowledge transfer can be driven from tech-
niques giving information on identity and quantity 
of metabolites to other techniques providing physical 
information of the samples. In particular, it was found 
that variability of signals in NMR and mass spectrom-
etry (MS) can be correlated to variability of signals in 
X-ray diffraction spectra for discrimination of fresh 
and salt-affected grape leaves, on the basis of cultivars 
and agronomical practices (Rizzuti et al., 2013). 

In order to evaluate the potential of spectroscopic 
knowledge transfer in the detection of plant patho-
gens we have investigated infections caused by Ea 
on pear plants in a model system, by means of NMR 
and HR. The goals of this study were: i) to identify 
possible markers related to Ea infection by NMR; and 
ii) to correlate NMR signals of the identified markers 
to HR wavelengths with the strongest characters for 
identification of Ea infections.

Materials and methods
Experimental design

Pear plants were examined in the period February-
April 2014, in a quarantine greenhouse under con-
trolled conditions (temperature 24°C (±2°C); relative 
humidity greater than 80%) at CIHEAM, Bari (Italy). 
Bacterial infections were induced artificially by cut 
inoculations, using 100 μL of a bacterial suspension 
(108 CFU mL-1). All plants were grown in sterilized 
growth media and regularly irrigated and fertilized 
to avoid possible biotic or abiotic stresses.

Three groups of 3-year-old pear plants (Pyrus 
communis cv. Bella di Giugno) were used. One group 
consisted of four plants inoculated with Ea, strain 
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OMPBO329 (Minardi et al., 2003), the second con-
sisted of four plants inoculated with Pss, strain CFBP 
311 (France), and the third group included four plants 
which were inoculated with sterilized deionized wa-
ter and were used as negative controls.

Ten asymptomatic leaves per plant were sampled 
at three collection times (days post inoculation, dpi): 
at 0 dpi, just before inoculation (27 Feb 2014), 20 dpi 
(19 Mar 2014), or 50 dpi (17 Apr  2014). Two collec-
tion times, at 20 or 50 dpi, were selected based on 
symptom expression induced by both pathogens. A 
total of 40 biological replicates were prepared for each 
harvesting time and treatment. All harvested samples 
were coded and stored in plastic bags. Each sample 
was used for HR measurements and NMR analyses. 
All plants were inspected daily to monitor the devel-
opment of symptoms.

HR measurements

HR spectra were acquired by a FieldSpec®3 ASD 
spectrophotometer (Analytical Spectral Device, ) using 
a specific capture interface formed by an optical fibre 
connected to the Plant-probe (ASD) “contact” internal-
ly illuminated (light source type: halogen bulb, colour 
temperature: 2,901 K ± 10% and spot size: 10 mm). This 
proximal sensing system collected real-time hyper-
spectral reflectance data in the Vis-NIR range between 
350–1000 nm (Full Width Half Maximum, FWHM: 
3 nm) and SWIR range between 1,000–1,800 nm 
(FWHM: 10 nm). Spectral channels of the spectroradi-
ometer were sub-sampled and interpolated, providing 
spectra with a resolution of 1 nm. The acquisition sys-
tem (plant probe, optical fibre and spectroradiometer) 
was anchored to a stable workbench to avoid opti-
cal absorption noise due to optical fibre motion dur-
ing measurements. In the greenhouse, asymptomatic 
leaves were taken from plants and rapidly analysed 
(upper surface) by the plant probe equipped with a 
leaf clip. For each run, an internal automatic procedure 
consisting of calibration and referencing (blank refer-
ence and optimization of light) was performed before 
HR spectrum acquisition. All the acquired HR spectra 
were stored by the spectroradiometer management 
software in a proprietary format (asd).

NMR measurements

After HR analysis, pear leaves were washed and 
freeze-dried at –50°C and 0.045 atm for 24 h in a 

lyophilizer (Martin-Christ GmbH, Model Alpha 1-4 
LSC). Dry leaves were ground using a mortar and 
pestle, and the resulting powder was sieved (metallic 
sifter pore size of 0.5 mm) and stored at room temper-
ature under vacuum in a plastic bag protected from 
light, until analysis. NMR analyses were carried out 
within 4 months from the harvest.

For each sample, pear leaf powder (25 mg) was 
added to 1.5 mL of oxalate buffer pH = 4.2 (pH value 
was reached after addition of 37% HCl to 100 mL of 
an aqueous solution containing 0.25 M of Na2C2O4 
and 2.5 10–3 M of NaN3), shaken for 30 min in a Vortex 
at 2,000 rpm, and centrifuged for 30 min at 4,000 rpm. 
Extract (0.9 mL) was added to 0.1 mL of 0.15 %w of 
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt 
(TSP) in D2O. All chemicals were of analytical rea-
gent grade. Hydrochloric acid (37%), sodium oxalate 
(≥99.5%), deuterium oxide (99%D) and sodium azide 
(≥99.0%) were obtained from Sigma–Aldrich, and so-
dium salt of TSP, 99%D) was obtained from Armar 
Chemicals. Water was double deionised (resistivity: 
18 MΩ·cm) with a Milli-Q water purification system 
(Merck Millipore).

One-dimensional 1H NOESY spectra were re-
corded on a Bruker Avance I 400 MHz spectrometer 
equipped with a 5 mm inverse probe and with an 
autosampler. 1H NOESY spectra were acquired with 
128 scans of 64K data points with a spectral width of 
8,013 Hz, a pulse angle of 90°, an acquisition time of 
4.09 s, a mixing time of 10 ms and a recycle delay of 
3.0 s. Each spectrum was acquired using TOPSPIN 3.0 
software (Bruker BioSpin GmbH) under an automatic 
procedure lasting approx. 22 min, and consisting of 
sample loadings, temperature stabilization for 5 min, 
tuning, matching, shimming and 90° pulse calibra-
tion. Free induction decays (FIDs) were Fourier trans-
formed, the phase was manually corrected, the base-
line was automatically corrected and the spectra were 
aligned by setting the TSP singlet to 0 ppm. Signal 
attribution was made by comparison with spectra of 
authentic samples and with literature data (Ali et al., 
2011; Ferrara et al., 2013, 2014; Rizzuti et al., 2013, 2015; 
Gallo et al., 2014). The levels of chemical identification 
were in accordance with the published guidelines for 
metabolomics studies (Salek et al., 2013).

NMR spectra were converted in regular rectangu-
lar buckets (0.04 ppm width) in the range between 8.5 
and 0.5 ppm by AMIX 3.9.13. Principal Component 
Analysis (PCA) was performed using AMIX 3.9.13 
software (Bruker BioSpin GmbH).
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Pre-processing of HR data

Raw spectral data from pear leaves were pre-pro-
cessed, eliminating irregular and distorted spectral 
curves by ViewSpecPro® ASD software. The result-
ing data were then exported as text format (Ameri-
can Standard Code for Information Interchange, 
ASCII) and imported in a Matlab routine R2011b 
(MathWorks, Inc.) developed by the authors for fur-
ther correction and filtering. “Noisy bands” of the 
UV region from 350 nm to 400 nm were truncated 
and the interval ranging between 400 nm and 1,800 
nm was considered as HR spectra. In all remaining 
bands a smoothing filter Savitzky-Golay with frame 
size of 15 data points (2nd Degree polynomial) was 
applied (Nevius and Pardue, 1984). Chemometric 
analyses were performed by STATISTICA 8 software 
(StatSoft, Inc.).

Pre-processing of NMR data

NMR spectra were converted in regular rectangu-
lar buckets (0.04 ppm width) in the range between 8.5 
and 0.5 ppm by AMIX 3.9.13. Chemometric analyses 
were performed by means of AMIX 3.9.13 software 
(Bruker BioSpin GmbH).

Principal Component Analysis

Principal Component Analysis (PCA) is a multi-
variate unsupervised statistical method that reduces 
the dimensionality of data to a subspace, consisting in 
a few principal components (PCs) which are related 
to directions of largest amount of the variance in the 
spectra matrix. Results of PCA are presented as scores 
and loadings in the corresponding plots. Each spec-
trum (and then each leaf sample) is represented by a 
data point in the scores plot. Samples characterized by 
similar spectral features are grouped in the scores plot. 
In the loadings plots, variables (rectangular buckets) 
are identified which are responsible for grouping of 
the sample.

Covariance analysis

The correlations between NMR and HR data vec-
tors were studied by calculating the covariance ma-
trix:

where A and B stand for NMR and HR, respectively, 
 is the bucket of sample k and  is the average 

value calculated over the samples for the i-th variable. 
Calculation of the covariance matrix was performed 
using RootProf software (Caliandro and Belviso, 
2014).

Results and discussion
Symptom development

Symptoms of fire blight caused by Ea became in-
creasingly apparent, and after 20 dpi some leaves and 
stems of Ea-inoculated plants were completely ne-
crotic. All leaves of plants inoculated with Pss were 
asymptomatic after 20 dpi, and necrosis was evident 
about 50 dpi. However, all plants used as controls 
maintained optimum vegetative vigour status up to 
50 dpi, when the last measurement was carried out. 
Only asymptomatic leaves were selected for HR and 
NMR analyses at the three observation times (0, 20 or 
50 dpi).

HR analyses

Figure 1 shows the reflectance curves in the range 
400-1,800 nm of spectra from typical control leaves 
at 0 dpi, 20 dpi and 50 dpi. Qualitatively, the curves 
show the effects of natural growth of the leaves on the 
reflectance bands. In the 400–700 nm region, the inten-

Figure 1. Typical HR spectra for pear leaf samples from 0 
dpi-control, 20 dpi-control and 50 dpi-control pear leaves 
samples.
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sity of the bands decreased with time. In this region, 
bands at 450–495 nm and at 620–700 nm were ascriba-
ble to the presence, respectively, of chlorophylls a and 
b (Ben-Dor et al., 1997; Thenkabail et al., 2014). Leaves 
at 0 dpi resulted in greater values of reflectance in the 
green region (510–600 nm) when compared to leaves 
at 20 dpi or 50 dpi. This can be ascribed to lower 
concentrations of chloroplasts (chlorophylls, carot-
enoids) in leaves that were not fully mature. In the re-
gion between 680 and 730 nm, reflection increased to 
values ranging from 43 to 46 % of the total reflectance, 
depending on the maturity stages of the leaves. Leaf 
maturity also affects the region between 800 and 1,300 
nm (near and medium infrared plateau). In particular, 
curve sections between 800 and 900 nm were char-
acterized by negative slopes for juvenile conditions, 
null slopes for almost adult conditions and positive 
slopes for mature leaves. Furthermore, curve sections 
between 800 and 1300 nm showed greater reflectance 
for leaves collected at 20 dpi and 50 dpi than those at 
0 dpi. This may be due to greater light scattering from 
adult leaves (richer in lignocellulosic compounds, 
structurally more reflecting) compared with young 
leaves.

To provide an overall perspective of the samples, 
PCA was applied to HR spectral data, to evaluate ef-
fects of leaf age and inoculation on HR spectral fea-
tures. The qualitative spectroscopic changes due to 
leaf age were confirmed by PCA, but, overall, these 
changes were not significant for discrimination of 
the three group samples (0, 20 or 50 dpi), as shown 
in Figure S1. Conversely, inoculations affected sample 
distribution in PC1/PC2 scores plot. Figure 2 shows 
the PC1/PC2 scores plot for leaf samples (pathogen 
inoculated and controls) after 20 dpi. A clear dis-
crimination between Ea (positive values of PC1) and 
control (negative values of PC1) was obvious along 
PC1which explains 93.3% of the total variance. HR 
spectral features from the Pss-inoculated leaves re-
sembled those from the control samples. After 50 
dpi, differentiation of the Ea-inoculated group from 
the other clusters was also apparent along PC1 (Fig-
ure S2), although the explained variance decreased to 
60.3%. Leaves from the Pss-inoculated samples could 
be distinguished from control and Ea samples.

Interpretation of the corresponding 1D loadings 
plots (Supporting information: Section S1, Figures 
S3 S4) permitted identification of wavelength values 
responsible for the “spontaneous groupings” found 
among the three inoculation treatments. Table S1 

summarizes these wavelength values as functions of 
leaf age (dpi), inoculation treatments (control, Ea or 
Pss), and biochemical/biophysical absorption charac-
teristics.

NMR analyses

A typical 1H-NMR spectrum of a pear leaf sample 
is shown in Figure 3. The 1H-NMR spectra can be di-
vided into three regions:

a) The region between 10.00 ppm and 5.50 ppm 
showed weak signals attributable to phenolic and 
other aromatic compounds. Doublets at 6.41 ppm 
and 7.66 ppm were attributed to the olefinic protons 
of chlorogenic acid; the aromatic protons of the chlo-
rogenic acids were found at 7.21 ppm, 7.14 ppm and 
6.96 ppm. Four singlets at 8.42 ppm, 7.09 ppm, 6.81 
ppm and 6.56 ppm were ascribed, respectively, to for-
mic acid, gallic acid, hydroquinone and fumaric acid. 
Two signals at 6.99 ppm and 6.86 ppm due to the 
aromatic protons of the 6-O-acetylarbutin were also 
identified;

b) The region from 5.50 ppm to 3.00 ppm mainly 
contained sugar signals. Peaks attributable to sorbitol 
were found at 3.84 ppm, 3.82 ppm, 3.72 ppm and 3.65 
ppm. Anomeric protons of sucrose, α- and β-glucose 
appeared, respectively, at 5.40 ppm, 5.23 ppm and 4.64 
ppm. In this region the singlet at 3.19 ppm, ascribable 
to the choline, and other signals due to metabolites 

Figure 2. PC1/PC2 scores plot obtained after PCA applied to 
HR data for pear leaf samples from 20 dpi-control, 20 dpi-
Ea and 20dpi-Pss treatments.
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such as chlorogenic acid (5.32 ppm, 4.25 ppm and 3.88 
ppm), 6-O-acetylarbutin (5.18 ppm), malic acid (4.35 
ppm), quinic acid (4.16 ppm and 4.03 ppm) and argi-
nine (3.23 ppm), were also observed;

c) In the region from 3.00 ppm to 0.50 ppm, signals 
were present for amino acids such as asparagine (2.93 
ppm), arginine (1.75 ppm and 1.62 ppm) and alanine 
(1.47 ppm), as well as for organic acids such as citric 
acid (2.80 ppm and 2.70 ppm), malic acid (2.77 ppm 
and 2.57 ppm), succinic acid (2.56 ppm), and quinic 
acid (2.08 ppm, 2.06 ppm, 1.96 ppm and 1.87 ppm).

The metabolites identified by 1H NMR are listed 
in Table S2.

As described above for HR data, NMR spectra 
were also submitted to PCA, to evaluate possible 
effects of leaf age and inoculation on NMR spectral 
features. PCA of NMR spectra of the control sam-
ples at 0, 20 or 50 dpi was performed. The PC1/PC2 
scores plot in Figure S5 showed that the samples were 
grouped depending on the harvesting time (0 dpi, 20 
dpi or 50 dpi). Along PC1, which explained 56.2 % 
of the total variance, 0 dpi control samples were at 
positive scores and were clearly separated from the 
20 dpi-control and 50 dpi-control samples, which had 
negative scores. Along PC2, which explains 13.6 % of 
the total variance, the 20 dpi-control samples were 

Figure 3. Typical 1H-NMR spectrum of a pear leaf sample. a) the full 1H-NMR spectrum is divided into three regions: b) 
aromatic regions, c) sugar region and d) aminoacid region. Peak labels assigned according to Table 1.
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differentiated from the 50 dpi samples. Among the 
signals responsible for this differentiation, those at 
3.84, 3.64, 3.68, 3.76, 3.80 and 3.72 ppm, ascribed to 
sorbitol, decreased during plant growth from 0 dpi 
to 50 dpi. The amino acids arginine (3.24 and 1.92 
ppm), asparagine (4.00 ppm) and alanine (1.47 ppm) 
were also of reduced concentrations after 50 d. In con-
trast, the contents of quinic acid (4.16, 2.04 and 2.00 
ppm) increased during the plant growth. Signals at 
2.80, 2.72, 2.68 ppm for citric acid characterized the 20 
dpi-control samples. Their intensity increased during 
the first 20 d and returned to the initial values after 
further 30 d. PCA carried out using buckets from the 
region between 8.50 and 5.10 ppm (Figure S6) indi-
cated that signal intensities of α-glucose (5.24 ppm) 
and of hydroquinone derivatives (6.80 and 6.86 ppm) 
decrease during leaf growth, whereas an increase oc-
curred for signals of chlorogenic acid (7.20 and 6.96 
ppm).

The distribution of intensities of the NMR signals 
related to the main metabolites which changed dur-
ing plant growth is reported in Figure 4. Sorbitol is 
a polyol which is the primary photosynthetic prod-
uct, representing 60 to 90% of the carbon exported 
from leaves towards pear fruits (Hudina et al., 2007). 
Citric acid is involved in leaf respiration along with 
carbohydrates (Hudina et al., 2007). Amino acids are 
used by plants for the synthesis of proteins and have 
important roles in the nitrogen uptake, assimilation, 
translocation and remobilization during plant devel-

opment (Roy et al., 2013). Hydroquinone derivatives 
have been identified as antibiotic substances associat-
ed with fire blight resistance, and are specific markers 
of pear products for evaluation of product authentic-
ity (Cui et al., 2005). Since hydroquinone and its de-
rivative 6-O-acetyl arbutin are generated by oxidation 
processes against bacterial invasion, the decrease of 
their amounts with leaf age is expected when no in-
fections occur, as for the control samples.

Once the effects of the leaf growth on NMR spec-
tral features were accounted for, PCA was applied to 
NMR data of the control, Ea and Pss treated leaves 
collected at 20 dpi. Figure 5 shows PC1/PC2 scores 
and loadings plots. Along PC1, which explained 56.1 

Figure 5. a) PC1/PC2 scores plot and b) PC1/PC2 loadings 
plot obtained after PCA applied to NMR data for pear leaf 
samples from 20 dpi-control, 20 dpi-Ea and 20 dpi-Pss treat-
ments.

Figure 4. NMR signal distribution of selected metabolites at 
for pear leaf samples from 0 dpi, 20 dpi and 50 dpi treat-
ments.
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% of the total variance, Ea-inoculated leaves and some 
of the Pss-inoculated leaves were separated from the 
control leaf samples, and the main signals respon-
sible for this discrimination were those ascribed to 
sorbitol (between 3.84 and 3.60 ppm). Since sorbitol 
concentrations decrease during plant growth, greater 
amounts in infected leaves at 20 dpi indicates reduced 
consumption of this sugar, due to a particular stress 
condition. NMR spectra of Ea-inoculated samples 
were characterized by the presence of two signals: 
a doublet at 1.47 ppm and a multiplet at 1.16 ppm 
(Figure 6). The first belongs to the methyl protons of 
alanine, while the second was ascribed to a methyl 
group of a fucosyl residue of a polysaccharide (or li-
popolysaccharide). Formation of these compounds is 
triggered by Ea infection (Ray et al., 1987; Vrancken et 
al., 2013). In Figure S7, the distribution of the intensi-
ties of the signal at 1.16 ppm is outlined for all of the 
20 dpi leaf samples.

Statistical analyses applied to NMR data of the 
control, Ea and Pss samples at 50 dpi indicated that 
the signal at 1.16 ppm was still present in some Ea-
inoculated leaves (Figure S8), although the number 
of samples marked by the fucosyl group was less 
than that found at 20 dpi. The fucosyl residue of the 
polysaccharide (or lipopolysaccharide) was therefore 
confirmed as the strongest discriminating factor of Ea 
infections compared to Pss infections.

HR-NMR covariance analyses

A covariance matrix results in a normal 2D spec-
trum containing crosspeaks relating the data of the 
two evaluation techniques. These cross-peaks indi-
cate correlated fluctuations of intensity throughout 
the ensemble of underlying spectra. Cross-peaks are 
positive when fluctuations have the same sign, and 
are negative when fluctuations have opposite sign. 
Signals arising from the same molecule are positively 
correlated.

The contour plot resulting from the HR-NMR 
covariance analyses applied to control leaf samples 
at different plant growth stages (Figure 7) indicated 
consumption of sorbitol, amino acids and hydroqui-
none which can be monitored by analysing the bands 
at 540 nm and 710 nm of the HR spectrum. HR bands 
centred at 540 nm and 710 nm were positively corre-
lated with the NMR peaks ascribable to sorbitol and 
glucose (3.24–3.84 ppm, 5.23 ppm), amino acids (1.75 
ppm, 1.92 ppm, 2.93, 4.01 ppm, 6.7 ppm, 6.9 ppm, 
7.3 ppm, 7.6 ppm), and hydroquinone (6.81 ppm). 
HR band ranging between 1,380 and 1,520 nm was 
positively related to the NMR signal at 2.06 ppm, as-
cribed to quinic acid, and negatively correlated with 
the NMR signal at 2.80 ppm, ascribed to citric acid. 
HR bands between 900 and 1,800 nm were strongly 
inversely correlated to the sorbitol content. The nega-
tive sign of this correlation indicates that decreased 
sorbitol during the plant growth corresponded to 

Figure 6. NMR spectra for 20 dpi-Ea, 20 dpi-Pss and 20 dpi-
control pear leaf samples (signals of polysaccharide and 
alanine are marked with asterisks).

Figure 7. Contour plot resulting from the HR-NMR covari-
ance analysis applied to control pear leaf samples at differ-
ent plant growth stages.
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increases of the 900–1,800 nm reflectance in the HR 
spectra of the control leaves.

The contour plot resulting from the HR-NMR co-
variance analysis applied to control, Ea and Pss sam-
ples harvested at 20 dpi (Figure 8) showed positive 
correlation between sugars such as sorbitol (3.65–3.84 
ppm), glucose (5.23 ppm) and sucrose (5.40 ppm) and 
the band centred at 1,400 nm. The HR band at 1,400 
nm also correlated positively to the NMR signals of 
two metabolites characterizing the Ea inoculated leaf 
samples, i.e. the molecule with a fucosyl residue at 
1.16 ppm and alanine (1.47 ppm). This correlation can 
be attributed to infection of the leaves for the Ea and 
Pss inoculated samples.

At 50 dpi, HR-NMR covariance analyses applied 
to control, Ea and Pss leaves (Table 1) showed positive 
correlation between HR bands centred at 850 nm and 
1,050 nm, and the NMR signal of the fucosyl moiety 
at 1.16 ppm, which was the marker for the Ea-inocu-
lated samples.

The only previous study that aimed to detect fire 
blight by spectroscopy (NIR spectroscopy) under con-
trolled conditions was that reported by Spinelli et al. 
(2004). They suggested that NIR analysis did not al-
low early diagnosis of the disease, due to the limited 
leaf observation surface (spots of about 2 mm2). In con-
trast, our combined HR/NMR approach revealed the 
possibility to link specific regions of the HR spectrum 
to markers of the infection by Ea. This approach also 

permitted detection of infections at 20 dpi. The reason 
for the different results obtained in the present study 
and those of Spinelli et al. (2004) may be i) the different 
observation times used in the two studies; ii) the dif-
ferent detection leaf area (2 mm2 at 650–1200 nm versus 
314 mm2 at 400–1830 nm); iii) the characteristics of the 
inoculated bacterial strains; iv) the susceptibility of the 
pear variety used (cv. Bella di Giugno vs cv. Abbé Fé-
tél); and/or v) the methodological and instrumental 
conditions in which spectra were acquired (e.g. direct 
or indirect contact of leaves, lighting conditions).

In conclusion, NMR analyses of pear leaves in-
dicates that, depending on the detection period, ala-
nine and a fucosyl-containing polysaccharide are the 
metabolites mainly associated with infections by Ea. 
Using NMR-HR covariance analyses, HR bands cor-
related to these metabolites were identified. After 20 d 
from inoculation, the HR band at 1,400 nm correlated 
positively to the NMR signals for alanine and a poly-
saccharide containing the fucosyl residue. After 50 d, 
bands centred at 850 nm and 1,050 nm were positively 
correlated to the fucosyl group, which can be consid-
ered a marker for the Ea infected pear leaf samples. 

The spectroscopic knowledge transfer approach 
used in this study gave NMR-HR maps representing 
the specific infection status of pear plants. This result 
could facilitate development of methods and hand-
held optical devices for the detection of Ea infections 
in pear plants.
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Table 1. NMR-HR covariance correlations for pear leaves 
sampled at 50 dpi.

Metabolite NMR signal 
(ppm)

HR band  
(nm) Correlation

Sorbitol 3.65-3.84 1400 Negative

Citric acid 2.70 and 
2.80

740 Positive

Quinic acid 2.06 900-1400 Negative

Hydroquinone 6.81 900-1400 Negative

Molecule having 
a fucosyl residue

1.16 850
1050

Positive
Positive
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