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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract

In the last years, increasing interest has been devoted to the study of the adhesion between rough media. The Derjaguin, Muller &
Toporov (DMT) theory is one of the most known models to describe adhesion between hard elastic solids with long range adhesive
interactions. However, many versions of the DMT theory can be found in the literature.

In the first part of the present work, we try to make order about the various versions of the DMT theory appeared over the
years. All models, often confusedly called with the same name ”DMT theory”, are based on the same assumption of neglecting
deformations due to the adhesive forces. They predicts the same value of the detachment force at the pull-off, but only the so-called
DMT force approach correctly captures the evolution trend of the adhesive force during the contact.

In the second part of the work, we address the problem to include adhesion in the contact of rough surfaces according to the
DMT theory. Specifically, we compare the Maugis’ idea to add adhesion in the Greenwood and Williamson asperity theory, with
more recent models: the Interacting and Coalescing Hertzian Asperities (ICHA) one and the Persson’s theory. The two models,
which both take account of adhesion according to the DMT force approach, give very similar results, showing that the pull-off
force is negligibly affected by the shortest wavelength components of the surface roughness.

On the contrary, the Maugis’ model strongly underestimates adhesion and predicts a vanishing pull-off force when the upper
cut-off spatial frequency of the surface is increased.
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1. Introduction

The first study of adhesion between bodies is due to Bradley (1932), which integrated the Lennard-Jones interaction
law between rigid spheres finding a total attractive force equal to 2π∆γR, where ∆γ is the adhesion surface energy and
R is the composite radius of the contacting spheres. In order to study the adhesive contact between elastic spheres,
Derjaguin (1934) supposed deformations of the contacting bodies are not affected by attractive interactions, and hence
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he assumed a Hertzian gap between the deformed spheres. He found the detachment occurs at zero contact area with
a pull-off force π∆γR.

In the same work, Derjaguin computed the attractive force acting between a sphere and a plane separated by a
”small” positive gap. In this case, he obtained an attractive force equal to the value calculated by Bradley (1932). Der-
jaguin supposed the adhesive force between a sphere and a plane is proportional to the interaction potential between
flat surfaces at the same distance (Derjaguin approximation). Such a condition is valid if one assumes that the attrac-
tive forces do not modify the surfaces profile (Barthel (2008)). This assumption is also at the basis of the so-called
DMT theory proposed by Derjaguin, Muller & Toporov.

Specifically, in 1975, they presented a first version of their theory (Derjaguin et al. (1975)), where the adhesive
force between an elastic sphere and a flat layer is calculated by computing the rate of change of the surface energy
as the penetration of the sphere is increased. Such approach (formally known as DMT thermodynamic approach)
predicts a pull-off force equal to 2π∆γR. Moreover, the detachment occurs at zero penetration and the adhesive load
decreases as the penetration increases.

An improved version of the DMT theory was presented by Muller et al. (1983). Actually, in this second version,
the authors introduced two different methods to calculate the adhesive force. The first one is again the thermodynamic
approach, but with a more accurate law of interaction. The second method is the so-called DMT force approach,
according to which the adhesive load is computed by summing up the adhesive interactions outside the contact area.
This approach leads to a pull-off force still equal to 2π∆γR, but this time the adhesive force is an increasing function
of the penetration in agreement with previous numerical calculations performed by Muller et al. (1980).

Really, results of the DMT theory appeared at first to be contradictory with respect to the predictions of the Johnson,
Kendall & Roberts (JKR) theory (Johnson et al. (1971)). The JKR theory assumes interaction is fully characterized
by the work of adhesion ∆γ (the spatial extent of the wall-wall interaction potential is neglected) and considers the
effect of adhesion only inside the area of contact. Finally, the solution is found by a balance between the stored elastic
energy and the loss in surface energy. In the JKR theory the force at pull-off is found to be 1.5π∆γR.

Tabor (1977), showed that the two theories applied to opposite extremes of a spectrum of the parameter (known
as Tabor parameter) µ =

[
R∆γ2/

(
E∗2z3

0

)]1/3
, where E∗ is the composite elastic modulus of the spheres and z0 is the

equilibrium separation, which is of the order of magnitude of the interatomic distance. Such a parameter represents
the ratio between the displacements of the spheres at the pull-off and the range of surfaces characterized by z0.

The DMT theory applies at low values of µ, i.e. for small, rigid spheres and long range interactions. The JKR
theory is instead more appropriate at large values of µ, i.e. for large, compliant spheres and short range interactions. In
particular, Pashley (1984) and Greenwood (2007) gave the value of 0.24 as upper limit for applicability of the DMT
force approach. Moreover, Muller et al. (1980), Greenwood (1997), Feng (2000) and Feng (2001) showed that the
effective value of the pull-off force is always lower than 2π∆γR, moving towards 1.5π∆γR at high µ.

Several works showed that surface roughness strongly affects adhesion (Fuller & Tabor (1975), Cheng et al. (2002),
Wei et al. (2010), Ramakrishna et al. (2013), Jacobs et al. (2013), Afferrante et al. (2015)). In this respect, many efforts
have been done with the aim of extending the adhesion theories for smooth contacts to rough ones.

Maugis (1996), for example, extended the multiasperity theory of Greenwood & Williamson (1966) (GW) to the
DMT case. In the GW theory, roughness is modeled by a set of spherical identical asperities, whose heights follow a
well defined statistical distribution. According to the Maugis idea, adhesion is added to the GW model by adjusting
the load due to each asperity in contact. Specifically, the load is computed by subtracting to the Hertzian contribution
an adhesive constant term equal to 2π∆γR. Frequently, the Maugis approximation has been denoted as the real DMT
theory. Actually, the Maugis idea of taking the adhesive term to be constant, can be considered as an alternative DMT
model (which we identify with the acronym DMT-M).

More recently, Persson & Scaraggi (2014) (PS) implemented the DMT force approach in the Persson’s theory.
They found a good agreement between numerical simulations and analytical predictions.

Pastewka & Robbins (2014) (PR) presented a criterion for adhesion between rough surfaces. In the calculations of
the attractive force, PR assumed that the variation of the surface separation is not affected by adhesion. This is the
classical approximation found in the DMT theory. The PR criterion suggests a strong dependence of the pull-off force
on the slopes and the curvatures that characterize the surface topography. However, this is in contrast with the bearing
area model (BAM) proposed by Ciavarella (2018), where the attractive area is estimated from the bearing area and the
force of attraction is computed by assuming a Maugis-Dugdale potential (Maugis (1992)) acting between the bodies.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2018.11.106&domain=pdf
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Specifically, the BAM shows a negligible effect of the slopes and curvatures on the pull-off force, especially at low
fractal dimensions.

Very recently, the Interacting and Coalescing Hertzian Asperities (ICHA) model, which showed to be very accurate
in predicting the contact quantities in problems with contacting rough surfaces ((Afferrante et al. (2012), Afferrante et
al. (2018), Muser et al. (2017)), has been extended to include adhesion in the framework of the DMT theory (Violano
et al. (2018), Violano & Afferrante (2018)).

In this paper we present a review on the various DMT models. In the first part of the work, the mathematical
formulation of the different DMT approaches is presented, with applications to the simple case of spherical contact.
In the second part of the work, adhesive rough contact models based on the DMT theory are compared.

2. Contact of spheres

2.1. The Derjaguin model

Derjaguin (1934) extended the Hertz contact theory for elastic spheres to the adhesive case. He calculated the
applied force as the derivative of the total energy of the system with respect to the penetration δ. Specifically, under
the assumption that attractive interactions do not deform the bodies, the penetration δ and the contact force F are given
by

δ =
a2

R
, (1)

F = FH − Fad =
4
3

E∗
a3

R
− π∆γR, (2)

where E∗ is the composite elastic modulus of the materials, R = R1R2/(R1 +R2) is an equivalent radius, a is the radius
of contact and ∆γ is the adhesion surface energy.

In such formulation, the adhesive load Fad = π∆γR is constant and depends only on the surface energy. The
detachment occurs at a = 0 (i.e. δ = 0) with a pull-off force equal to π∆γR.

2.2. The DMT thermodynamic approach (DMT-T)

The first version of the DMT theory was published in 1975 (Derjaguin et al. (1975)). Differently from the original
paper (Derjaguin (1934)), the authors proposed a new definition of the surface energy

Wad = π∆γa2 + 2π
∫ ∞

a
Γ(u(r, δ))rdr, (3)

taking account of both the contribution inside the contact area (π∆γa2) and the adhesive interactions outside the
contact zone (2π

∫ ∞
a Γ [u(r, δ)] rdr) . Γ [u(r, δ)] is the interatomic potential depending on the radial coordinate r and

penetration δ, through the Hertzian gap

u(r, δ) =
1
πR

Rδ
√

r2

Rδ
− 1 −

(
2Rδ − r2

)
arctan

√
r2

Rδ
− 1

 (4)

The adhesive force is hence calculated by deriving the potential Wad with respect to the approach δ

Fad =
dWad

dδ
= π∆γR + 2π

∫ ∞
a

dΓ (u)
du

du(r, δ)
dδ

rdr, (5)
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where

dΓ (u)
du

=
2∆γ
ε

(
ε

u + ε

)3
(6)

and ε is the range of attractive forces, whose value is of the order of magnitude of the atomic spacing z0
Detachment still occurs at zero contact area and for a pull-off force equal to 2π∆γR, which is twice the value

originally obtained by Derjaguin (1934).

2.3. The improved DMT thermodynamic approach (IDMT-T)

Muller et al. (1983) improved their original thermodynamic approach by describing the adhesive interactions with
a two-term Lennard-Jones potential law. As a result, eq. (6) becomes

dΓ (u)
du

=
8∆γ
3ε

[(
ε

u + ε

)3
−
(
ε

u + ε

)9]
, (7)

giving an adhesive force decreasing with the penetration.

2.4. The DMT force approach (DMT-F)

In the same work, Muller et al. (1983) proposed an alternative method to calculate the adhesive force by summing
up the adhesive interactions acting outside the contact zone

Fad = 2π
∫ ∞

a

8∆γ
3ε


(

ε

u(r, δ) + ε

)3
−
(

ε

u(r, δ) + ε

)9 rdr. (8)

Pull-off still occurs at a force 2π∆γR, but, in such case, the adhesive force is found to be an increasing function of
the penetration.

2.5. The Maugis approximation of the DMT theory (DMT-M)

To solve the contradiction between the thermodynamic and force approach, Maugis (1992) proposed to consider a
constant adhesive contribution Fad = 2π∆γR independent of the indentation of the sphere.

2.6. Discussion

The above summarized models move from the same assumption: a Hertzian gap profile is assumed, thus neglecting
the effect of adhesive interactions on the displacements. Despite this common starting idea, the various models are
based on a different computation of the adhesive force.

Fig. 1 shows the adhesive load Fad, normalized with respect to the quantity 2π∆γR, as a function of the ratio a/R.
Calculations have been performed at µ = 0.2.

The thermodynamic approaches DMT-T and IDMT-T give very close results, with an adhesive force confined be-
tween the values predicted by the original Derjaguin model and Maugis approximation (DMT-M model). In particular,
the adhesive force decreases asymptotically from 2π∆γR (pull-off force) towards π∆γR for high values of the contact
radius (i.e. high penetrations).
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√
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based on a different computation of the adhesive force.
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Fig. 1. The normalized adhesive force Fad/(2π∆γR) as a function of the ratio a/R. Results are referred to: i) Derjaguin model (cyan); ii) DMT
thermodynamic approach (magenta); iii) improved DMT thermodynamic approach (blue); iv) DMT-Maugis model (green); v) DMT force approach
(red). Calculations are performed at µ = 0.2.

On the contrary, the DMT-F approach predicts an adhesive force increasing with the contact area. Really, as ob-
served by Pashley (1984), thermodynamic and force approach should give the same results. However, this is not the
case because the deformed profile does not correspond to an effective equilibrium configuration at a minimum point of
the energy. In fact, the deformed profile is arbitrarily determined with the assumption to follow the Hertzian prediction.

The force method is however the only approach giving the correct relationship between adhesive force and contact
area, as observed by Muller et al. (1983) and Pashley (1984).

Similar conclusions can be drawn from Fig. 2, where the normalized applied force F/2π∆γR is plotted in terms of
the ratio δ/ε. Numerical results presented by Greenwood (2007) are also plotted as reference. At negative penetrations
(i.e. positive gap), the problem is governed by the Bradley’s solution, as in the DMT theory adhesive interactions are
assumed not to deform the bodies. In the range of positive penetrations, the thermodynamic approaches give larger
values of the applied load as a result of the erroneous computation of the adhesive load. Notice, in such range, the
very simple approximation of Maugis works better.

3. Contact of rough bodies

Adhesion is of wide interest in many fields, e.g. nano-mechanics (He et al. (2018), Menga et al. (2016)), biomimet-
ics (Afferrante & Carbone (2012), Afferrante & Carbone (2013), Dening et al. (2014)), electronics (Hoang et al.
(2017), Rauscher et al. (2018)). Several works investigated the effect of roughness on adhesion, which significantly
affects the contact solution also at the micro- and nano-scale (Pastewka & Robbins (2014)).

In this section, we review some of the most known theories implementing the DMT approach to study the adhesive
contact of randomly rough surfaces.

3.1. Maugis extension of the Greenwood & Williamson model to DMT contacts (GW-M model)

Maugis (1996) extended the GW multiasperity model by introducing adhesion according to his approximation of
considering the adhesive force independent of the penetration. In the GW model, roughness is replaced by spherical
asperities, all having the same radius of curvature R. The contact solution is obtained independently for each asperity,
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Fig. 2. The normalized applied force F/(2π∆γR) as a function of the dimensionless penetration δ/ε. Results are referred to: i) Bradley model
(black); ii) Derjaguin model (cyan); iii) DMT thermodynamic approach (magenta); iv) improved DMT thermodynamic approach (blue); v) DMT-
Maugis model (green); vi) DMT force approach (red); vii) JKR theory (green dashed line); viii) numerical solution (orange line with circular
markers). Calculations are performed at µ = 0.2.

thus neglecting the elastic coupling of the contact regions. In particular, denoting with d̄ the distance between the
plane of summits and the smooth plane and with ϕ(z) the heights distribution of asperities, the number of asperities in
contact nc can be written as

nc = ntot

∫ ∞
d̄
ϕ(z)dz, (9)

where ntot is the total number of the summits.
The total real area and total load are obtained by summing the Hertzian relations Ai = πR

(
zi − d̄

)
and Fi =

4E∗R1/2
(
zi − d̄

)3/2
/3 obtained on the ith sphere, for all the asperities in contact

A = ntot

∫ ∞
d̄

Aiϕ (z) dz (10)

F = ntot

∫ ∞
d̄

Fiϕ (z) dz (11)

In presence of adhesion and according to the Maugis’ approximation for contacts of the DMT type, the calculations
of nc and A are not modified, but for F we have

F = ntot

∫ ∞
d̄

(
4E∗R1/2

(
zi − d̄

)3/2
/3 − 2π∆γR

)
ϕ (z) dz

=
4
3

ntotE∗R1/2
∫ ∞

d̄

(
zi − d̄

)3/2
ϕ (z) dz − 2π∆γRnc (12)

Therefore, the total adhesive load Fad = 2π∆γRnc is simply the sum of the constant adhesive contribution calculated
for each asperity in contact.
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thus neglecting the elastic coupling of the contact regions. In particular, denoting with d̄ the distance between the
plane of summits and the smooth plane and with ϕ(z) the heights distribution of asperities, the number of asperities in
contact nc can be written as

nc = ntot

∫ ∞
d̄
ϕ(z)dz, (9)

where ntot is the total number of the summits.
The total real area and total load are obtained by summing the Hertzian relations Ai = πR
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and Fi =

4E∗R1/2
(
zi − d̄

)3/2
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In presence of adhesion and according to the Maugis’ approximation for contacts of the DMT type, the calculations
of nc and A are not modified, but for F we have
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Therefore, the total adhesive load Fad = 2π∆γRnc is simply the sum of the constant adhesive contribution calculated
for each asperity in contact.
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3.2. Interacting and Coalescing Hertzian Asperities (ICHA) model

The ICHA model, presented for the first time by Afferrante et al. (2012), can be classified in the category of
mixed asperity-BEM models. As in the classical multiasperity models, the real surface is replaced with parabolic
asperities with radii of curvature equal to the geometric mean of the principal radii (Greenwood (2006)). Elastic
coupling between contact regions is considered by following the procedure proposed by Ciavarella et al. (2006) and
successively improved by Afferrante et al. (2018). Specifically, the displacement at a distance r from the location of a
certain asperity is calculated by using the Johnson’s formulas (Johnson (1985)) of an elastic half-space in contact with
a single axisymmetric parabolic asperity. Thus, the total displacement at the location of the ith asperity is calculated
by summing up the contribution for all the asperities in contact

wi =
a2

i
Ri
+
∑nc

j=1, j�i

(
a2

j

R j
− r2

i j

2Rj

)
if ri j < a j

wi =
a2

i
Ri
+ 1
π

∑nc
j=1, j�i

(
2a2

j−ri j

R j
arcsin ai

ri j
+

a j

R j

√
r2

i j − a2
j

)
if ri j ≥ a j

(13)

where ri j is the distance between the asperities i and j.
Moreover, when the applied load is increased, the number of asperities in contact increases and adjacent asperities

can merge to form larger contact regions. To take account of this phenomenon, overlapping contact asperities are
replaced with an equivalent one, which preserves the total area of contact and the geometric volume centroid.

Adhesion is introduced in the model according to the DMT-F approach, i.e. by assuming displacements are not
modified by adhesive interactions. Under such assumption, the total adhesive force can be calculated as (see Persson
& Scaraggi (2014), Violano et al. (2018))

Fad = A0

∫
Anc

dΓ [u (x)]
du

dA

= A0

∫ ∞
0

dΓ [u (x)]
du

P(u)du (14)

where dΓ [u (x)] /du is given by eq. (7), Anc is the non-contact area, A0 is the nominal contact area and P(u) is the gap
probability distribution.

3.3. Persson’s theory

Persson (2001) developed an innovative multiscale theory for the contact mechanics of rough surfaces. In the
original formulation of the theory, the contact between a flat elastic half-space and a rough rigid surface is studied
assuming equal the power spectral densities (PSD) of the deformed half-space and rigid surface. Such assumption,
which is rigorously true in full-contact conditions, leads to less and less accurate results moving towards small loads
(i.e. large separations).

For this reason, Persson (2008) proposed an improvement of his theory by adjusting the PSD of the deformed half-
space in partial contact with a corrective factor S (q) = γ + (1 − γ) [A (q) /A0

]2, where q = |q| is the modulus of the
wave vector q and γ is an empirical parameter whose value can be taken in the range 0.4 − 0.5. With this correction,
the contact area at the applied load F can be expressed as

A
A0
= erf


F

A0
√〈∇u2〉 /2E∗

 (15)

where 〈·〉 is the ensemble average operator and
〈
∇u2
〉
=
∫ q1

qL
d2q q2C (q) S (q) can be interpreted as the averaged square

slope of the deformed half-space (we have denoted with C (q) the PSD of the rigid rough surface).
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For contacts of the DMT type, adhesion can be introduced in the Persson’s theory by computing the adhesive force
according to eq. (14) (see Persson & Scaraggi (2014)).

In this work, about the gap probability distribution P(u), we have used a more accurate expression, as given in
Afferrante et al.(2018), with respect to the formulation proposed by Almqvist et al. (2011). Therefore, denoting with
ζ the magnification, P (u) writes as

P(u) ≈ 1
A0

∫
dζ
−(dA(ζ)/dζ)

(2πh2
rmseff (ζ))1/2

×
[
exp
(
− (u − u1(ζ))2

2h2
rmseff (ζ)

)
+ exp

(
− (u + u1(ζ))2

2h2
rmseff (ζ)

)]
, (16)

where hrmseff
(ζ) =

[
h−2

rms(ζ) + u−2
1 (ζ)
]−1/2

, being h2
rms(ζ) =

∫
q>q0ζ

d2q C(q). Moreover u1(ζ) is the average separation in
the surface area that moves out of contact when the magnification is increased of an infinitesimal quantity dζ, and can
be calculated as (see Yang & Persson (2008))

u1 (ζ) = ū (ζ) +
[
(dū (ζ) /dζ)A (ζ)

]
/(dA(ζ)/dζ) (17)

where ū (ζ) is the mean interfacial separation, which is given by (see Yang & Persson (2008))

ū (ζ) =
1

2
√
π

∫
D(ζ)

d2q qC (q) w (q)
∫ ∞
σ0

dσ
σ

[
γ + 3 (1 − γ) erf2

(
w (q)σ

E∗

)]
e−
(

w(q)σ
E∗
)2

(18)

where D (ζ) = {q ∈ R2| qL ≤ |q| ≤ ζqL}, and

w (q) =
12
∫

Dq

d2q′ q′2C
(
q′
)
−1/2

(19)

being Dq = {q∈ R2| qL ≤ |q| ≤ q}.

3.4. Discussion

Calculations with the ICHA model and Persson’s theory are performed on self-affine fractal surfaces with PSD
described by a power law

C(q) =
{

C0
C0q−2(H+1)

if qL ≤ |q| ≤ q0
if q0 ≤ |q| ≤ q1

, (20)

where H is the Hurst exponent and q is the wave vector, being q = |q|. The quantities qL and q1 are the lower and
upper cut-off wave vectors, while q0 is the crossover wave vector from the power law C0q−2(H+1) for q > q0 to the
constant C0 for q < q0 (also known as roll-off wave vector). Specifically, the fractal surface are numerically generated
by exploiting the spectral method developed in Putignano et al. (2012) with a fixed root mean square (rms) roughness
amplitude hrms = 0.52 nm. Moreover, the short cut-off spatial frequency qL is fixed to 2.5 × 10−5 m−1, and q0 = 4qL.
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where D (ζ) = {q ∈ R2| qL ≤ |q| ≤ ζqL}, and

w (q) =
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Dq

d2q′ q′2C
(
q′
)
−1/2

(19)

being Dq = {q∈ R2| qL ≤ |q| ≤ q}.

3.4. Discussion

Calculations with the ICHA model and Persson’s theory are performed on self-affine fractal surfaces with PSD
described by a power law

C(q) =
{

C0
C0q−2(H+1)

if qL ≤ |q| ≤ q0
if q0 ≤ |q| ≤ q1

, (20)

where H is the Hurst exponent and q is the wave vector, being q = |q|. The quantities qL and q1 are the lower and
upper cut-off wave vectors, while q0 is the crossover wave vector from the power law C0q−2(H+1) for q > q0 to the
constant C0 for q < q0 (also known as roll-off wave vector). Specifically, the fractal surface are numerically generated
by exploiting the spectral method developed in Putignano et al. (2012) with a fixed root mean square (rms) roughness
amplitude hrms = 0.52 nm. Moreover, the short cut-off spatial frequency qL is fixed to 2.5 × 10−5 m−1, and q0 = 4qL.
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Fig. 3. The relative contact area A/A0 as a function of the applied load F/(A0E∗h′rms). ICHA model results are plotted with red markers, the
Persson’s theory ones with blue solid line, the GW-M model ones with black dashed line. Calculations are performed in presence (∆γ = 0.2 J/m2)
and absence (∆γ = 0) of adhesion on a surface with N = 32 and H = 0.8.

Calculations with the GW-M model are instead performed by considering a Gaussian height distribution of circular
asperities with radius equal to the average curvature radius R̄ = 2/h′′rms of the generated fractal surfaces (where

h′′rms =

[〈(
∇2h
)2〉]1/2

), and standard deviation equal to the root mean square (rms) roughness amplitude hrms.

In all simulations, we have assumed E∗ = 1.33 · 1012 Pa and ∆γ = 0.2 J/m2. The attractive range of adhesive
interactions ε has been fixed to 1 nm.

Fig. 3 shows the area-load relation in presence and absence of adhesion. Calculations have been performed on a
surface with H = 0.8 and N = 32. The curves predicted by the GW-M model (black dashed line) significantly deviate
from the ICHA model (red line with circular markers) and Persson’s theory (blue line), which instead are in very
good agreement. In absence of adhesion, as expected, in the range of small contact areas the area-load relation is
linear. However, in such case, the ICHA model correctly predicts the coefficient of proportionality κ (κ ∼ 2), while
the Persson’s theory slightly overestimate it (κ ≈ 2.15). On the contrary, at high loads, close to complete contact, the
Persson’s theory is expected works well.

Figs. 4 and 5 investigate the effect of fractal dimension D = 3 − H and number of scales on the contact behavior.
Specifically, in Fig. 4 calculations are performed on surfaces with N = 64 and H = 0.4, 0.6, 0.8, while in fig. 5 on
surfaces with H = 0.8 and N = 16, 32, 64.

At fixed load, the contact area increases with the Hurst exponent H, as the size of the contact spots reduces because
of the shrinking of the asperities radii of curvature. The effect of increasing N is instead opposite, with the relative
area which reduces when the number of scales grows. In such case, indeed, the contact is splitted in several microspots
and the resulting contact area is smaller.

In the DMT limit, adhesive hysteresis is neglected and this is effectively observed when we deal with hard solids
and low surface energy (see Pastewka & Robbins (2014), Medina & Dini (2014)). The pull-off force can be hence
assumed equal to the maximum tensile load reached during the loading phase.

Fig. ?? shows the normalized pull-off force as a function of the Fuller & Tabor (FT) adhesive parameter θFT =

E∗h3/2
rmsR̄1/2/

(
∆γR̄
)

. The parameter θFT represents the ratio between the compressive repulsive force and the tensile
adhesive one. When θFT increases a reduction of the detachment force is then expected. Results in fig. ?? are obtained
at different values of the number of scales (N = 16, 32, 64) and Hurst exponent (H = 0.4, 0.6, 0.8). The symbols size
decreases at higher values of N, while the shape of the symbols depends on the value of H, as specified in the figure
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Fig. 4. The relative contact area A/A0 as a function of the applied load F/(A0E∗h′rms). ICHA model results are plotted with red markers, the Persson’s
theory ones with blue solid line. Calculations are performed on surfaces with N = 64 and H = 0.4, 0.6, 0.8. The surface energy is ∆γ = 0.2 J/m2.

Fig. 5. The relative contact area A/A0 as a function of the applied load F/(A0E∗h′rms). ICHA model results are plotted with red markers, the
Persson’s theory ones with blue solid line. Calculations are performed on surfaces with H = 0.8 and N = 16, 32, 64. The surface energy is ∆γ = 0.2
J/m2.

caption. ICHA model (red symbols) and Persson’s theory (blue symbols) predicts the same trend for the pull-off force
even if the Persson’s theory leads to slightly lower values.

The slight decrease of the pull-off force with decreasing H can be easily justified by observing that a reduction in
H entails a decrease in the mean curvature radius R̄, and then an increase in θFT . For the same reason, an increase in
the number of scales determines a decrease of the detachment force, even if the influence of N on the pull-off force is
less and less significant as N increases. This is in agreement with the recent results given in Joe et al. (2017), where
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Fig. 6. The normalized pull-off force as a function of the FT adhesion parameter θFT . ICHA model results are plotted with red markers, the Persson’s
theory ones with blue markers and the GW-M model ones with black markers. Calculations are performed on surfaces with H = 0, 4 (triangles),
H = 0.6 (squares) and H = 0.8 (circles) and at different number of scales (N = 16, 32, 64). The symbol size decreases as N increasing.

the adhesive contact of rough surfaces is studied at increasing cut-off frequency q1. It is found that the contact solution
(in terms of a modified interfacial force) converges at arbitrarily large wavenumbers.

The predictions of the GW-M theory (black symbols) strongly underestimates the effect of adhesion on the force
required to detach the bodies. This is particularly evident at the higher values of the FT parameter.

4. Conclusions

The adhesion of elastic bodies has attracted a lot of interest in the past years. Here, we have tried to make order
about the historical evolution of the so-called DMT theory. In the first part of the work, we recall the various formula-
tions appeared in the literature over the years. Although the various approaches move from the same assumptions that
adhesion act only outside the contact area and adhesive interactions do not deform the bodies, they lead to different
results. In particular, with reference to the contact between spherical bodies, all models predicts the same pull-off
force 2πR∆γ, but only the DMT force approach gives also the correct trend between adhesive force and penetration
(or contact area).

In the second part of the work, we discuss about the application of the DMT theory to the contact of rough surfaces.
Specifically, we have considered: (i) the Maugis’ extension of the classical GW multiasperity theory (GW-M), based
on the idea of taking constant the adhesive force on each asperity in contact, (ii) the application of the DMT force
approach to a recent advanced version of the Persson’s theory, and (iii) a new advanced multiasperity model (the
ICHA model) including adhesion in accordance with the DMT force approach. The ICHA model and Persson’s theory
predictions are in very good agreement. On the contrary, significant discrepancies are observed with the GW-M theory.

In our calculations, we found that the pull-off force decreases at higher fractal dimensions, while the effect of the
number of scales on the detachment force is almost negligible. This is in agreement with recent findings showing that
the interfacial adhesive force is almost insensitive to the upper cut-off spatial frequency q1 of the surface, provide that
q1 is sufficiently large.
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Fig. 6. The normalized pull-off force as a function of the FT adhesion parameter θFT . ICHA model results are plotted with red markers, the Persson’s
theory ones with blue markers and the GW-M model ones with black markers. Calculations are performed on surfaces with H = 0, 4 (triangles),
H = 0.6 (squares) and H = 0.8 (circles) and at different number of scales (N = 16, 32, 64). The symbol size decreases as N increasing.
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