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List of symbols 

ā:  Basquin fatigue strength coefficient 

 at 1 cycle.  

b̅:  Basquin exponent. 

k,CB:  Basquin's law constants (alternate 
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 factor.  
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Ĉ1 , Ĉ2:  least squares method fitting 
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ϵ:  random error.  
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σ:  sample standard error of Yj on Xj.  
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C,m: Se:  Paris’ law constants.  
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 crack growth equation 

γ:  Walker’s law exponent.  

ΔK:  stress intensity factor range.  

ΔKth:  threshold stress intensity factor 

 range.  

KIc:  mode I fracture toughness.  

AC, BC:  Ciavarella constants for a0(N).  

r:  material constant to determine AC, BC.  

AST, BST:  Susmel and Taylor constants for a0(N).  

2a:  crack/notch characteristic size.  

cL:  Leve’s exponent 

D:  damage.  

f:  geometric factor.  

G:  shift factor.  

kCL:  slope of the power law in the crack 

like  region for notched specimen.  

L/2:  critical distance in the TCD-P.  

N, S:  number of cycles and stress.  

NB:  number of load blocks in a load 

 history.  

j:  load block on NB 

Ne:  cycles to the fatigue limit.  

NH:  number of cycles in the load history.  

nj:  number of cycles in a load block j.  

Nj:  fatigue life at load block j.  

nf:  number of experimental tests.  

Ni:  inflection point in Weibull's law.  

Nu:  number of cycles at Su for Basquin's 

 law.  

νj:  life proportion spent at block j. 

wj:  work adsorbed during the block j 

W:  total work 

R:  load ratio.  

S’f:  fatigue strength at one cycle.  

Sae:  effective stress amplitude.  

Smax:  maximum stress.  

Smin:  mininum stress.  

Smj, Saj:  mean and alternate stress at load 

 block j.  

Snom,max:  maximum nominal alternate 

 stress of the load history.  

Snom,max:  maximum nominal alternate 

 stress of the load history.  

Se:  fatigue limit stress.  

Su:  ultimate tensile strength.  

β:  multiplicative factor of the spectrum.  

ΔS:  stress range.  

ΔSe:  fatigue limit stress range.  

ai, af:  initial and final crack sizes.  

ψ:  generic function of N 
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Outline 

This Thesis provides a collection of stress-life (S/N) models for fatigue life evaluation 

of both pristine and notched metallic components. The document is subdivided into 

five Chapters, the first being a Literature Overview of fatigue in general, and, in the 

specific, of the tools needed in the subsequent Chapters. In Chapter 2 the “crack like 

to blunt” notch transition is adapted to the stress-life approach using the theory of the 

critical distances, therefore a new S/N curve to model this transition is defined. 

Chapter 3 relies on the new S/N curve model for variable amplitude fatigue loading 

by demonstrating that fatigue life assessment under these conditions can be performed 

through a constant shift of the Wöhler curve if adopting a linear damage accumulation 

rule. The method is quite general since there is no need of hypothesizing specific 

constraints on loading history as the shift accounts for mean stress effects, albeit 

suffering from the weaknesses of the underlying linear damage accumulation rule. The 

models proposed have been experimentally validated through the SAE Keyhole test 

program data, publicly available online at 

https://www.efatigue.com/benchmarks/SAE_keyhole/SAE_keyhole.html. 

Chapter 4 discusses the limits of validity of a linear damage accumulation rule, giving 

special attention to its relationship with crack propagation laws of the generalized Paris 

type. Specifically, the Chapter proves that supposing a linear damage accumulation 

exactly corresponds to integrating a power law of the stress and the crack size in the 

form of Paris’ or Walker’s law. Ergo, this result is valid even for non-zero mean stress, 

yet neither accounting for load sequence nor for crack closure is considered. 

Thenceforth, despite some clear limitations, no difference in terms of accuracy is 

expected between the application of a linear damage accumulation rule vs. integration 

of a crack growth equation. Finally, Chapter 5 presents an investigation of the 

advantages in the application of a (maybe more realistic) four parameters S/N curve 

directly obtained postulating that the two parameters curve corresponds to the first 

derivative of the former one in its inflection point. The accuracy of the new curve is 

compared with the former employing an experimental campaign fatigue data on steel 

and aluminum alloy conducted by the National Advisory Committee for Aeronautics 

(NACA). 

https://www.efatigue.com/benchmarks/SAE_keyhole/SAE_keyhole.html




 

 

1 Overview 

Introduction 

This Chapter provides an overview of the notions used in this Thesis, starting with the 

derivation of stress vs. number of cycles (S/N) curve models for short cracks, since 

the work of these years is relying on the stress-life approach. Then, an overview of 

crack propagation models is given, in fact power law type crack propagation equations 

are integrated to recharacterize the concept of S/N curve for long cracks. 

Subsequently, the effect of notches in the stress-life formulation is treated mostly by 

means of the theory of the critical distances. Besides providing a variety of fatigue S/N 

curve models, a brief overview of damage accumulation rules for fatigue prediction 

deriving from variable amplitude loading is given. The Chapter concludes with a brief 

overview of the regulatory aspects of fatigue tolerance evaluation for rotorcrafts. 
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1.1 The S/N curve 

The advent of the First Industrial Revolution in the 18th century caused a dramatic 

increase of the frequency of work of the machines; this event could be identified as 

the trigger for the widespread study of fatigue in the last two centuries. Indeed, even 

if it has been known for centuries that repeatedly applying a load causes early ruptures, 

as it used to happen to long distance travelling boats, it was only around 1830s that 

engineers and scientists started investigating how a load much lower than the material 

strength can cause failure if applied many times. The first reference to the fatigue of 

metals dates to 1837 when Albert [1], a German mining administrator, 

published the first document in history relating to a fatigue test was published. 

The test was aimed to understand the causes of the failure of the conveyor 

chains in the Clausthal mines in 1829. The test involved the entire component, 

not only a representative specimen of material. Therefore, since the replacement 

hemp rope was an expensive good, Albert invented the wire rope which 

certainly is the innovation he is remembered for. Independently, in 1839 

Poncelet [2], a French 

military engineer, used 

the adjective “tired” (in 

French, fatigué) to 

describe steels under 

cyclic stress and assumed 

that steel components 

experience a decrease of durability when they undergo repeated variable loads. 

In 1843 Rankine [3] and York [4], [5] focused their attention on railway axles 

thanks to the establishment of the Her Majesty’s Railway Inspectorate instituted 

due to the increasing number of accidents, amongst which the so-called 

Versailles disaster where at least 55 people lost their lives due to the failure of 

the axle tree of the first engine on the 5th October 1842. Anyway, the term 

fatigue was coined only in 1854 by the Englishman Braithwaite [6], who 

discussed the fatigue failures of multiple components as water pumps, brewery 

equipment and, of course, railway axles. Many other English and German studies on 

the deterioration of railway axles were conducted in those years [7]–[10], but the work 

of Wöhler, Royal “Obermaschinenmeister” of the “Niederschlesisch-Mährische 

Railways in Frankfurt an der Oder”, was the milestone paving the way for the modern 

August Wöhler 
(1819/06/22 –
1914/03/21) 

Wilhelm A. J. Albert 
(1787/01/24 – 
1846/07/04) 

 

Disaster on the 
Railway between 
Versailles and 
Bellevue, 8th May 
1842. 
(55 - 200 casualties) 

A. Provost (1834-
1855) 
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conception of fatigue testing and interpretation of results. In 1858 [11] and 1860 [12] 

August Wöhler measured for 22,000 km the service loads of railway axles with 

deflection gages personally developed and from his studies concluded that “If we 

estimate the durability of the axles to be 200,000 miles with respect to wear of the journal bearings, 

it is therefore only necessary that it withstands 200,000 bending cycles of the magnitude measured 

without failure”. Such statement represents the first suggestion for a safe life design 

philosophy with retirement time (or distance travelled). Wöhler then calculated the 

stresses deriving from service loads and concluded that the higher the stress amplitude 

is, the more detrimental influence on the axle will be, plus a tensile mean stress 

anticipates the rupture. Furthermore, he even stated that a replacement of the axle 

would have been necessary if radial flaws propagated up to 20 mm into the material, 

and this procedure could be interpreted as an ancestor of the flaw tolerant safe life 

methodology [13]. Notwithstanding, Wöhler’s test results were tabulated and not 

plotted until 1875, when Spangenberg [14] adopted unusual linear axes to present these 

data. Furthermore, stress vs. number of cycles (S/N) curves were addressed as Wöhler 

curves only in 1936 by Kloth and Stroppel [15]. The idea to plot many fatigue test data, 

including the 60 years old Wöhler’s experiments, in logarithmic axes and interpolate 

them with a power law is from 1910 by Basquin [16]. The equation relating maximum 

or alternate stress with the number of cycles is 

S = b̅ ⋅ Na̅ (BASQUIN) (1.1) 

Where S denotes the stress, alternate or maximum, N the number of cycles and a̅ and 

b̅ are constants depending on the material. Later such law took his name. The proof 

of existence of a fatigue limit was given four years later by Stromeyer [17]. In 1914 he 

conducted tests on small scale specimens in order to reduce to a minimum the 

difference in terms of chemical composition and mechanical properties in the 

component under test. The specimens were loaded in bending and twisting moment 

and the stress plotted against the empirical formula (106/N)1/4 resulted in a straight line 

corresponding to the fatigue limit. Stromeyer also theorized that if the maximum stress 

would have exceeded the yielding, the constant slope ¼ would have certainly changed. 

The final form of Stromeyer’s law simply adds a constant term to (1.1). 

S = b̅ ⋅ Na̅ + Se (STROMEYER) (1.2) 

Where Se is the fatigue limit and for the same material a̅ and b̅ defined in (1.2) have 

different values from the corresponding quantities defined in (1.1). In 1924 
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Palmgren [18] in his studies for the ball bearings life estimation introduced a term B 

to (1.2), i.e. 

S = b ⋅ (N + B)a + Se (WEIBULL) (1.3) 

The B introduces an inflection point in the equation both when plotted in S/log(N) 

and when plotted in log(S)/log(N) axes, consequently low cycle fatigue data are better 

fitted by this model. Indeed, as suggested by Shanley [18] in the 1956 “Colloquium on 

Fatigue” [20], Basquin’s law fails to model low cycle fatigue since it does not predict 

correctly the strain at high stresses, while by using (1.3) one supposes that a stress close 

to the ultimate tensile strength causes much lower strain, hence it can be applied a 

certain number of times without failure. This is also confirmed by Epremian and 

Mehl [21] that in 1952 showed that an S/N diagram, when the alternate strength is 

close to the ultimate tensile strength, can be fit with very good agreement by a 

probability scale instead of a logarithmic scale and this suggests that at high stresses 

alternating plastic strain dependence on stress amplitude is primarily of statistic nature. 

The model found by Palmgren has been widely used by Weibull since 1949 [22]. For 

this reason, (1.3) will be addressed here as Weibull’s law. Engineer and 

mathematician, Ernst Hjalmar Waloddi Weibull (1887-1979) gave a huge 

contribution to material science and statistics in his prolific scientific career. 

Concerning fatigue, there are tens of documents, many of which are ICAF 

(International Committee on Aeronautical Fatigue and Structural Integrity) 

proceedings [23]–[26] and reports to the Aeronautical Research Institute of 

Sweden (FFA) [27]–[31]. His contribution to the field is principally, but not 

only, related with the statistical aspects of fatigue. Weibull, in Sweden, approached 

material science by developing a theory of static strength [32], then his interest 

extended to fatigue [22]–[26], [28]–[31]. (1.3) has been used by the author in Chapter 

5. It is worth of mention that Yokobori [33] and Shanley [19] developed independently 

theories for interpreting the parameters b and a from physical quantities as absolute 

temperature, loading frequency, number of preferred nucleation sites per unit volume, 

etc. As stated by Weibull, (1.3) is the most realistic way of describing S/N data pretty 

much all over the domain, nevertheless the model has not been extensively used in 

history and usually Basquin’s law is preferred because of its simplicity. Indeed, most 

usually the simplified power law is preferred to the four parameters law, and for this 

reason most of the databases in Literature are available as Basquin’s constants b̅, a̅. 

This is also due to some generalizations and links that can be derived quite naturally 

starting from a pure power law fatigue behavior. 

E. H. Waloddi Weibull 
(1887/06/18 – 
1979/10/18) 
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1.2 The crack growth curves 

Crack growth curve equations have been extensively studied since the ‘50s of the last 

century, almost in conjunction with the first catastrophic accident of the first jet 

transportation aircraft, the De Havilland Comet 1 [34]–[36] (1954), where the 

propagation of fatigue cracks in the upper fuselage panels, starting from the sharp 

corner of the top rectangular 

windows brought 35 deaths. As Frost 

and Dugdale [37] already pointed out 

in 1958, the cylindrical specimens 

were the protagonists of the first half 

of the 20th century in the panorama of 

fatigue, and this typology of 

specimens makes really complex the study of crack growth, meaning that no special 

attention up to that moment was given to crack growth testing of sheet specimens. 

Secondly, Frost and Dugdale observed that “In aircraft structures the ‘fail-safe’ design 

philosophy requires the structure to be constructed in such a way that fatigue cracks do not cause 

catastrophic failure before corrective measures can be taken”. The first scientist that emphasized 

the necessity to have polished surfaces to minimize the hotspots from where a crack 

can propagate is Griffith [38] who extended the theorem of minimum potential energy 

to the phenomena of rupture of elastic solids. Griffith’s work was motivated by 

Inglis’ [39] linear elastic solution for the stress around an elliptical hole asymptotically 

loaded in tension, from which he predicted that the stress would go to infinite as the 

ratio between the minor and major axis goes to zero. Griffith’s theory provides correct 

predictions as long as brittle materials, such as glass or ceramics, are considered. 

Starting from the pioneering work of Griffith, Berto and Lazzarin [40] provided an 

exhaustive overview of local approaches for the description of brittle and quasi-brittle 

fracture of engineering materials. Anyway, since in structural materials there is almost 

always some inelastic deformations around the crack faces, Griffith’s hypothesis of 

linear elastic medium in structural metals application becomes highly unrealistic. For 

this reason, the first crack growth equation relating the stress with the crack growth 

rate (i.e. the crack length increment per cycle) did not make use of the elastic energy 

approach. The formulation dates 1953 and has been proposed by Head [41]; it is based 

on Inglis’ [39] solution and the final simplified form of the crack growth equation is 

Fatigue test on the 
Comet G-ALYU 
fuselage 
(Farnborough, GB) 

The fuselage was 
hydraulically 
pressurized, and 
the first detectable 
crack was found 
after 1836 cycles. 
In service failure 
occurred after 1221  
cycles. 
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da

dN
= φ(Sa, Sy, Sf

′) ⋅ a
3
2 ⋅ tp

−
1
2    (HEAD) (1.4) 

Where N is the number of cycles, φ(S) is (asymptotically) a linear function of the stress, 

yielding, and strength, a is the half crack size, and tp is the thickness of the plastic zone 

ahead of the crack tip. Frost and Dugdale [37] argued that tp is not a constant 

independent of crack length and derived the exponential model for crack propagation, 

seldom used up to nowadays  

da

dN
= kFD(Sa

3) ⋅ a (a)

ln (
a

ai
) = kFD(Sa

3) ⋅ N (b)
   

(FROST-

DUGDALE) (1.5) 

In which ai is the initial size of the crack and kFD is an experimental quantity depending 

on the cubic power of the remote alternating stress Sa. During WWII, a group 

of researchers of the U.S. Naval Research Labs headed by George Rankine Irwin 

realized that plasticity plays an important role in  [42] in fracture mechanics. On 

this purpose, Griffith’s energy formulation was modified in order to make it 

account for plasticity, too, i.e. the energy release was redefined by adding a plastic 

dissipation term. Another major achievement of Irwin’s work is certainly the 

relation between the energy release rate G̅ and the stress intensity factor in 

opening mode KI: 

G̅ = KI
2/E⋆    (1.6) 

Where E⋆=E for plane stress or E/(1-ν)2 for plane strain. The critical stress intensity 

factor is the value of K beyond which a crack starts to propagate and is addressed as 

fracture toughness KC. Namely, the toughness is the resistance to fracture of a material, 

it is a material property and is defined as the stress intensity factor required for a crack 

to advance from length a to aC. The fracture toughness values have been grouped by 

material family by Ashby [43], [44] and are shown in Figure 1.1. 

George R. Irwin 
(1907/02/26 – 
1998/10/09) 
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Figure 1.1: Fracture toughness against yield strength (from Ashby [43], [44]). The dottted lines 
are the value of K2

Ic/(πSy
2), i.e. approximately the diameter of the process zone 

Few years later, in 1963, Paris and Erdogan [45] published a work substantiated by 

many experimental tests where they postulated, differently from Head or Frost and 

Dugdale, that the crack growth is described by a power law of the stress intensity 

factor, viz. 

da

dN
= C ΔKm (PARIS-ERDOGAN) (1.7) 

At the time of publication, the authors were uncertain on the value of the exponent 

m, in fact there is a famous statement in their paper saying: “The authors are hesitant 

but cannot resist the temptation to draw the straight line slope 1/4 through the data...”. 

Therefore, the so-called Paris’ law, or Paris-Erdogan law, has been formulated in 

principle with fixed m=4. Indeed, as evident from Figure 1.2 (taken from 

Ashby [43], [44]), the majority of engineering alloys is concentrated in the 

neighborhood of m=4, and this may have tricked the authors.  
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Figure 1.2: Ashby map for Paris’ slope against toughness ratio (from [43], [44]). Many 
engineering alloys are concentrated in the range (ΔΚth/KIc=0.1, m=4) 

Paris’ law is considered valid within the range ΔKth<ΔK<ΔKcr, where ΔKcr is the 

critical stress intensity factor range which depends on the toughness as ΔKcr=(1-R)KIc, 

with R load ratio, and ΔKth is the threshold value below which the crack should not 

propagate1. In the following years there have been many attempts to generalize Paris’ 

law, mainly to account for mean stress effect, crack closure and near threshold/near 

failure modelling. The simplest model of Paris’ law for mean stress effect has been 

proposed in 1970 by Walker [47]: 

   
da

dN
= C0 (

ΔK

(1 − R)1−γ
)

m

 (WALKER) (1.8) 

With γ being Walker exponent and R the load ratio. A more general form of Walker 

equation had already been given in 1967 by Forman et al. [48]: 

 
1The crack behavior below threshold is still a quite challenging quantity to predict and 
measure. The reader is advised to read the work of Zerbst et al. [46] to have a better insight 
of the topic. 
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da

dN
= C

ΔKm

Kc −
ΔK

1 − R

 (FORMAN ET AL.) (1.9) 

Forman equation is, to some extent, the ancestor of the most sophisticated crack 

propagation equation available in Literature: the NASGROTM equation 

da

dN
= C ⋅ (

1 − φ

1 − R
⋅ ΔK)

m

⋅
(1 −

ΔKth

ΔK )
p

(1 −
Kmax

Kc
)

q    (NASGRO) (1.10) 

Where the mean stress effect is accounted for through (1–R), and the crack closure 

effect through (1–φ). The equation is shown in Figure 1.3 for a sample ASTM A579 

Grade 75 steel, forged. Three stages of the crack propagation are easily identified: (i) 

in the near threshold regime (so-called stage I) slight changes in the microstructure 

imply high changes in the crack growth rate; (ii) in the stable propagation the crack 

grows as a power law (Paris’ law); (iii)  when the crack reaches a length close to the 

critical ac, the propagation becomes unstable. Generally, Stage I and II take almost the 

90% of the entire life.  
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Figure 1.3: Example crack growth curves according to NASGRO 3.0 equation for an ASTM 
A579 steel. The mean stress effect is clearly visible from the figure.  

The quantity f in Equation  is called Newman [49] opening function and is the ratio 

between the opening and maximum stress (intensity factor). i.e.: 

φ =
Kop

Kmax
=

{
  
 

  
 

max (R,  ∑Aj ⋅ Rj

3

j=0

) R ≥ 0

∑ Aj ⋅ Rj

1

j=0

−2 ≤ R < 0

    (1.11) 

Where Aj are some empirical constants depending on a value α ranging from 1 (plane 

stress) to 3 (plane strain), the maximum stress Smax and the flow stress S0=½·(Su+Sy) 

(average between the yielding and ultimate tensile strength). 
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{
 
 
 

 
 
 

A0 = (0.825 − 0.34 ⋅ α + 0.05 ⋅ α2) ⋅ √cos (
π

2
⋅
Smax

S0
)

α

A1 = (0.415 − 0.071 ⋅ α) ⋅
Smax

S0

A2 = 1 − A0 − A1 − A3

A3 = 2 ⋅ A0 + A1 − 1 

    (1.12) 

The near threshold and near failure areas are dealt through the exponents p and q. As 

regards the calculation of the ΔKth, the NASGRO 3.0 [50]2 equation defines 

ΔKth = ΔK0

√
a

a + a0

(
1 − φ

(1 − A0)(1 − R)
)

1+Cth R    (1.13) 

Being Cth a constant to be calibrated and ΔK0 the threshold stress intensity factor for 

long cracks calculated at R=0. Equation (1.13) has been derived to take into 

consideration the small crack effect demonstrated by Tanaka et al. [51]. The value a0 is 

a quantity of paramount importance: the intrinsic crack size. It was defined for the first 

time in 1980 by El Haddad [52]. El Haddad’s constant is, by definition, proportional 

to the square of the ration between the fatigue threshold and the fatigue limit (at fixed 

load ratio), i.e. 

a0 =
1

π
 (

ΔKth

ΔSe
)

2

    (1.14) 

Cracks smaller than El Haddad intrinsic size do not follow Paris’ law even for 

ΔK>ΔKth, whereas the fatigue behavior in this range of crack size is ruled by the 

fatigue limit. The quantity a0 is also used in the famous interpolating equation proposed 

by El Haddad-Dowling-Topper-Smith [52] and modified by Atzori and Lazzarin [53]–

[56] in the following form: 

ΔSe =
ΔKth

√π(f ⋅ a + a0)
    (1.15) 

This equation fits the data of the Kitagawa-Takahashi [57] diagram3 first proposed in 

1976: 

 
2 NASGRO 3.0 is the last free version of the equation. Indeed, since the version 4.0 the 
equation has been amended considerably especially in the calculation of the threshold 
stress intensity factor. 
3 Data have been collected in the form of Kitagawa-Takahashi diagram already in 1973 by 
Sprowls et al. [58], as also pointed out by Sadananda and Sarkar [59], but Kitagawa and 
Takahashi were the first observing that below a0 the threshold stress remains constant and 
propagation is ruled by the fatigue limit. 
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Figure 1.4: Kitagawa-Takahashi diagram for some material data taken from  [51], [52], [57]. The 
red line is El Haddad equation, while the grey line is the Kitagawa-Takahashi criterion. 

1.3 Notch fatigue 

The idea behind Equation (1.14) is one aspect of the “Theory of the Critical Distances” 

(TCD) whose ancestor, as summarized by Taylor [60], and Yao et al. [61], can be 

identified in the effective stress concentration factor Kf first proposed by Neuber [62] 

in 1946, then picked up by Kuhn and Hardrath [63] who in the early ‘50s assumed that 

the notched specimen fails if the averaged stress over the distance AKH ahead of the 

notch root is equal to the fatigue limit Se of the plain specimen. From this hypothesis, 

Kf was calculated as  

Kf = 1 +
Kt − 1

1 +
π

π − ω√AKH/ρ
 (1.16) 

Where Kt is the theoretical stress concentration factor (e.g. 3 for a circular hole in an 

infinite plate, from Kirsch [64] solution), ω is the notch flank angle, ρ is the notch root 

radius and the distance AKH is a material constant. The stress concentration factor 

equation was later modified by Neuber as 

Kf = 1 +
Kt − 1

1 + √aN/ρ
 (1.17) 

aN is known as Neuber’s material constant 

In 1949 Peterson [65] derived his version of the stress concentration equation based 

on the hypotheses that (i) the notched material fails if the point stress at a distance d0 
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away from the notch root is at least equal to the fatigue strength of the plain specimen 

and (ii) the stress ahead of the notch root drops linearly up to d0 obtaining 

Kf = 1 +
Kt − 1

1 + aP/ρ
 (1.18) 

Where aP is Peterson’s material constant. Nevertheless, as also confirmed by Topper 

et al. [66], as ρ increases the fatigue limit is actually fully controlled by the theoretical 

stress concentration factor, thus Kf→Kt since aP/ρ→0 and the notch is addressed as 

blunt notch. From a mathematical point of view, a notch can be effectively be 

addressed as blunt when its characteristic size a* excedes [54]–[56], [67] 

a∗ ≥ Kt
2 ⋅ a0 (1.19) 

Hence, for instance for a hole in an infinite plate this occurs when the circle radius is 

almost one order of magnitude larger than a0. For aluminum alloys and steels, typically 

10 μm<a0<100 μm respectively implying 0.1 mm< a*<1 mm respectively. Therefore, 

Atzori and Lazzarin suggested the following infinite life design criterion for notched 

components 

Kf = min(√1 + a/a0,  Kt) (1.20) 

The combination of Equations (1.19) and (1.20) implies that below a* notches behave 

similarly to cracks, and above a* they behave as blunt notches. In the last decades, tens 

of  notch sensitivity estimation models for infinite life design have been proposed. 

Most of them have been collected in 2004 by Ciavarella and Meneghetti [68] who 

reviewed a series of classical and modern approaches to the stress concentration factor 

estimate concluding that Neuber’s method [62] is the most conservative and accurate 

among the “classical” approaches whilst the Atzori-Lazzarin criterion is the most 

conservative yet easy-to-use between the “modern” ones. Therefore, they proposed 

their personal modification to the Atzori-Lazzarin criterion to make it consistent with 

Lukáš and Klesnil [69] discussion which can be interpreted as a modification of 

Neuber’s rule including the effect of cyclic plasticity. The Ciavarella-Meneghetti 

criterion for infinite life design is: 

Kf = min((1 + (a/a0 )
r) 1/2r ,  Kt) 0 < r ≤ 1 (1.21) 

Equation (1.21) for r=1 obviously returns the Atzori-Lazzarin criterion, while for 

r=0.5 gives Lukáš-Klesnil criterion. Bazant [70] has shown in detail that the expression 

(1+(a/a0)
r)1/2r is an asymptotic matching with truncation at the first order between the 

large-size (a≫a0) and the short-size (a≪a0) expansions of the crack propagation 

criterion in terms of stress intensity factor, concluding that El Haddad equation can 
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be interpreted as a “matching asymptotics” solution for the transition between fatigue 

endurance towards fatigue threshold dominated threshold. 

The first modern reformulation of Neubers’ idea is attributed to Tanaka [71]. The 

formulation is based on the assumption, confirmed by experimental evidence, that the 

stress that can be withstood at the notch root/crack tip without causing defect can be 

higher than Kt·Snom. Thus, Tanaka averaged the local stress ahead of the notch 

root/crack tip up to a distance l0=2a0 

Sl0 =
1

l0
∫ S(x)

a+l0

a

dx   (1.22) 

From this assumption, the effective stress intensity factor according to the TCD is 

Kf =
Sl0

Snom
    (1.23) 

Tanaka’s model has been picked up and extended to other variants by Taylor who 

formulated “a unifying theoretical model” in 1999. Indeed, Taylor’s extension of the TCD 

defines three variants: (i) point, (ii) line, and (iii) area. Considering the system as 

described in Figure 1.5, the stress according to the TCD is: 

Sl0 = S(l0) = S(½a0)    (POINT) (1.24) 

 

Sl0 =
1

l0
∫ S(x)

a+l0

a

dx =
1

2a0
∫ S(x + a)

2a0

0

dx   (LINE) (1.25) 

 

Sl0 =
2

𝜋 a0
2 ∫ ∫ S(r)

a0

0

φ(θ) r dr

π
2

−
π
2

 dθ  (AREA) (1.26) 
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Figure 1.5: Stress field ahead of a crack (red) and of a circular notch(blue) for r, θ=0°. The green 
point, line and circle express the TCD process zones in its variants.  

The design criterion just mentioned can be easily extended to finite life. This has been 

done by Susmel and Taylor [72]–[75] and by Ciavarella et al. [76] through similar, yet 

different approaches. The key assumption is postulating that the intrinsic crack size 

follows a power law of the number of cycles up to a critical value a0
u defined as a 

function of the toughness and the fatigue strength at one cycle (or the ultimate tensile 

strength), i.e. 

a0
u =

1

π
 (

KIc

Sf
′ )

2

    (1.27) 

Through this assumption the Atzori-Lazzarin diagram can be extended to finite life 

and a general S/N curve model valid for both crack and notches can be obtained. The 

model is described in Chapter 2. The validation has been done with experimental data 

available in Literature (from the SAE Keyhole test program [77]) both considering 

constant and variable amplitude loading. 

1.4 Damage accumulation rules 

The majority of the mechanical components undergo complex load histories in their 

operating life, called variable-amplitude (VA) loading. For this reason, VA life 

prediction still attracts the attention of engineers and researchers, indeed multiple 

damage models keep being proposed until very recently. Especially the most recent 

models tend to be more and more sophisticated; for example, in 2019 Susmel et al. [78] 

proposed a strain energy density based model to predict VA life of notched 

components. Another energy based method was recently (2018) proposed by Braccesi 

a0 2a0½a0

y, 
S(x)-Snom

x

r,θ
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et al. [79] to predict VA fatigue life in multiaxial stress state. The model is formulated 

in the frequency domain and converts the multiaxial stress state into an equivalent 

uniaxial Von Mises stress that is then used to perform the life prediction calculation. 

Going back to the basics, the simplest VA fatigue prediction rule has been proposed 

about a century ago (1924) by Palmgren [18] for the fatigue calculation of ball-bearings. 

Supposing that the load history consists of NH cycles that have been counted through 

one of the multiple cycle-counting algorithms available in Literature. The counted 

cycles are then grouped into NB load blocks, each one containing nj cycles at the stress 

amplitude Saj and the corresponding fatigue strength N(Saj)=Nj. Therefore, the damage 

rule is expressed as 

D = ∑ nj/Nj

NB

j=1

= 1    (1.28) 

In other words, Palmgren postulated the linear accumulation of the fatigue damage, 

postulating that the failure occurs as the damage goes to unity without providing a 

derivation for the rule, and the same holds for Langer [80] that in 1937 postulated the 

same rule applied separately to the crack initiation and to the crack propagation phases. 

The first derivation of the linear damage accumulation rule has been formulated by 

Miner [81]. His hypothesis was that the work that can be adsorbed until failure is a 

constant value and that the amount of work adsorbed during nj is directly proportional 

to nj. Thus, said W the total work and wj the work adsorbed during the block nj, the 

criterion is Σjwj=W. The use of Miner hypothesis (nj/Nj=wj/W) leads immediately to 

Equation (1.28). Miner conducted a series of tests on smooth and riveted 2024-T3 

aluminum alloy sheet specimens by applying load histories having 2≤NB≤4 and found 

0.61≤Σjnj/Nj≤1.45, very close to 1 on average. Since then the linear damage 

accumulation rule has been addressed very often as Miner’s rule, but probably 

Palmgren-Miner’s (PM) rule, is the more corrected form and it is how the rule will be 

called in this work. Since that time many works have been published to verify the PM 

rule and to find its limits of validity. For example, also the author, together with 

Ciavarella and Papangelo [82] has co-authored a work which will be dealt with in 

Chapter 4 where they show that the limit values of PM rule range from 0.001 to 10. 

Several theories that tried to overcome this limit and generalize the rule have been 

proposed. The most comprehensive overview of cumulative fatigue damage theories 

was published by Fatemi and Yang [83] in 1997. The authors identified eight categories 

of damage rules that they grouped in as many tables, some of which are listed hereafter: 
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• Phenomenologically based damage theories (work before 1970)  

To this period belong theories categorizable into five groups: the damage curve 

approach, endurance limit-based approach, S/N curve modification approach, 

two stage damage approach, and crack growth-based approach. The damage 

curve approach defines the damage curve by plotting damage D vs. cycle ratio 

nj/Nj. Therefore, the damage curve of the PM rule simply corresponds to the 

bisector of the first quadrant. The major limitations of PM rule are: (i) no load 

level dependence, (ii) no load sequence dependence, (iii) no load interaction 

accountable. Marco and Starkey [84] proposed a load level dependent damage 

theory that modifies the damage curves at each level j, i.e. 

   D = ∑(
nj

Nj
)

ζj
NB

j=1

= 1 (1.29) 

Where ζj varies at each level j. 

Concerning endurance limit reduction theories, they have been introduced to 

model the effect of residual stresses on the fatigue behavior, as stated by 

Kommers [85], [86]. The S/N curve modification has been used by Corten and 

Dolon [87] and by Freudenthal [88] to include load interaction effects. 

Basically, these methods correspond to a rotation of the power law around a 

point at low cycles. The first damage theory based on crack growth concept 

was presented by Valluri [89], [90]. The damage model is based on dislocation 

theory and elastoplastic fracture mechanics. 

  
da

dN
= CV φ(S) a (1.30) 

• Refined double linear damage rule and refined damage curve approach 

The double linear damage rule (DLDR) basically defines a knee in the damage 

curve. In the refined version (R-DLDR) the knee point is derived from a first 

order series expansion of the damage curve approach (DCA) which was 

empirically formulated by Manson and Halford [91], [92]. Said ai and af the 

initial and final crack length, the damage curve approach defines an effective 

crack growth depending on some material parameters β1 and β2, i.e.: 

  Dj =
aj

af
=

a0

af
+ (1 −

a0

af
) ⋅ (

nj

Nj
)

β1Nj
β2

 (1.31) 
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A comparison between some damage curves is provided Figure 1.6. It can be 

seen how the slope of the R-DLDR equals the first derivative of the DCA at 

the extremes. 

 

Figure 1.6: Comparison between the damage curves for linear damage rule (PM rule), 
damage curve approach (DCA) and refined double linear damage rule (R-DLDR) 

• Theories using the crack growth concept 

Crack growth approaches have met a wide approval among the damage 

calculation theories because crack length is the simplest measure of damage. 

One of the most famous approaches in this direction was proposed by 

Barsom [93] and translates the VA load history in an equivalent CA load by 

calculating the root-mean-square of the stress intensity factor range, i.e. ΔKrms 

 ΔKrms = 1/NB√∑ΔKj
2

NH

j=1

 (1.32) 

Where NH is the total number of cycles in the load history. It is noteworthy 

that this empirical method does not require the cycles to be counted, and that 

it does not account for load sequence effects. 

Tens of other cumulative fatigue damage theories have been described by Fatemi and 

Yang, based on the S/N curve modification approach [94]–[96], or energy-based [97], 

[98] or even continuum damage mechanics-based [99], [100]. 

Despite hundreds of damage accumulation theories have been proposed in the last 

decades, the PM rule remains by far the most used damage accumulation method. 

Maybe because of its simplicity, or maybe because no other simple rule has 

demonstrated to be more accurate without proper calibration or even because it has 
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been demonstrated that applying the PM rule corresponds to the integration of the 

Paris’ law, which for its part still is widely used in crack propagation calculations. As 

regards this Thesis, the PM rule has been chosen because its application led to some 

interesting generalizations shown in Chapters 3 and 4. 

1.5 Brief outline of regulatory aspects in rotorcrafts 

The oldest method to perform fatigue tolerance evaluation of metallic rotorcraft 

structures is addressed as safe life. The expression is derived from the concept of safety 

by retirement, which means that the component is not allowed to show any defect that 

may weaken it below the design value during its entire lifespan. Safe life breaks down 

when loads are too high (usually high altitudes/speeds), when fatigue lives shall be 

extended (for economic reasons), or when stronger materials with poorer fatigue 

properties shall be used. A graphical representation of the safe life philosophy is given 

in Figure 1.7. 

 

Figure 1.7: Strength vs. life plot showing the strength trend along the component lifespan and 
the safe life which must be lower than the “minimum expected life”.  

After the abovementioned Comet accidents, safe life design philosophy was integrated 

with a safe by design approach called fail-safe. According to this design philosophy, the 

structure must safely withstand the maximum load without catastrophic failure for all 

the time between two inspections, even after partial or total failure of one of its 

principal structural elements. Fail-safe structures must have some redundancies to do 

so. Obviously, redundancies imply higher weight, which makes the fail-safe design not 

optimal where not strictly necessary. For this reason, fail-safe has been integrated with 

the most modern design philosophy called damage tolerance, defined as the ability of the 
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structure to withstand fatigue loads, corrosion or accidental damage until such damage 

is detected through inspections or malfunctions and it is repaired. A damage tolerant 

structure is assumed to be flawed and the initial dimension of this defect corresponds 

conventionally to the maximum non-detectable flaw size. Such sizes are defined in the 

certification process and are listed, for each component, in a document called threat 

assessment. A hybrid philosophy between damage tolerance and safe life is addressed 

as flaw-tolerance safe life design [101], [102]. A flaw-tolerant structure is a safe life 

structure which can withstand fatigue loads for its entire lifetime even if a flaw 

(introduced by manufacturing, or inspection) is present. The Authorities (FAA, EASA) 

clearly state that the safe life design can be applied only after demonstrating that 

damage tolerance cannot be applied. Typically, in rotorcrafts this happens for the 

landing gears, main and tail rotor shafts, etc. Therefore, damage tolerance design 

philosophy is becoming progressively of widespread application, also under the 

pressure of the Airworthiness Authorities that, after the successful application to the 

military and commercial fixed wing world as well as to engines, are convinced that this 

is the gold standard to ensure safety against fatigue cracking and accidental damages. 

All the concepts just given, together with the duties regarding fatigue substantiation of 

a rotorcraft principal structural element (PSE), are detailly described in the Federal 

Aviation Administration (FAA), DOT rules 29.571 (for metals) and 29.573 (for 

damage tolerance and composites).  
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“§ 29.571 Fatigue Tolerance Evaluation of Metallic Structure. 

(a) A fatigue tolerance evaluation of each principal structural element (PSE) must be 
performed, and appropriate inspections and retirement time or approved equivalent means 
must be established to avoid catastrophic failure during the operational life of the rotorcraft. 
The fatigue tolerance evaluation must consider the effects of both fatigue and the damage 
determined under paragraph (e)(4) of this section. Parts to be evaluated include PSEs of 
the rotors, rotor drive systems between the engines and rotor hubs, controls, fuselage, fixed 
and movable control surfaces, engine and transmission mountings, landing gear, and their 
related primary attachments. 

(b)  For the purposes of this section, the term: 
(1) Catastrophic failure means an event that could prevent continued safe flight and 

landing 
(2) Principal structural element (PSE) means a structural element that contributes 

significantly to the carriage of flight or ground loads, and the fatigue failure of that 
structural element could result in catastrophic failure of the aircraft. 

(c)  The methodology used to establish compliance with this section must be submitted to and 
approved by the Administrator. 

(d) Considering all rotorcraft structure, structural elements, and assemblies, each PSE must be 
identified. 

(e) Each fatigue tolerance evaluation required by this section must include:  
(1) In-flight measurements to determine the fatigue loads or stresses for the PSEs 

identified in paragraph (d) of this section in all critical conditions throughout the 
range of design limitations required by § 29.309 (including altitude effects), except 
that maneuvering load factors need not exceed the maximum values expected in 
operations. 

(2) The loading spectra as severe as those expected in operations based on loads or 
stresses determined under paragraph (e)(1) of this section, including external load 
operations, if applicable, and other high frequency power-cycle operations. 

(3) Takeoff, landing, and taxi loads when evaluating the landing gear and other 
affected PSEs. 

(4) For each PSE identified in paragraph (d) of this section, a threat assessment 
which includes a determination of the probable locations, types, and sizes of 
damage, taking into account fatigue, environmental effects, intrinsic and discrete 
flaws, or accidental damage that may occur during manufacture or operation. 

(5) A determination of the fatigue tolerance characteristics for the PSE with the 
damage identified in paragraph (e)(4) of this section that supports the inspection 
and retirement times, or other approved equivalent means. 

(6) Analyses supported by test evidence and, if available, service experience. 
(f) A residual strength determination is required that substantiates the maximum damage size 

assumed in the fatigue tolerance evaluation. In determining inspection intervals based on 
damage growth, the residual strength evaluation must show that the remaining structure, 
after damage growth, is able to withstand design limit loads without failure. 

(g) The effect of damage on stiffness, dynamic behavior, loads, and functional performance must 
be considered. 

(h) Based on the requirements of this section, inspections and retirement times or approved 
equivalent means must be established to avoid catastrophic failure. The inspections and 
retirement times or approved equivalent means must be included in the Airworthiness 
Limitations Section of the Instructions for Continued Airworthiness required by Section 
29.1529 and Section A29.4 of Appendix A of this part. 

(i) If inspections for any of the damage types identified in paragraph (e)(4) of this section 
cannot be established within the limitations of geometry, inspectability, or good design 
practice, then supplemental procedures, in conjunction with the PSE retirement time, must 



 
Overview 

 
 

49 

be established to minimize the risk of occurrence of these types of damage that could result 
in a catastrophic failure during the operational life of the rotorcraft. 

[Doc. No. FAA-2009-0413, Amdt. 29-55, 76 FR 75442, Dec. 2, 2011]” 

 

“§ 29.573 Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft 

Structures. 

(a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance 

standards of paragraph (d) of this section unless the applicant establishes that a damage 

tolerance evaluation is impractical within the limits of geometry, inspectability, and good 

design practice. If an applicant establishes that it is impractical within the limits of 

geometry, inspectability, and good design practice, the applicant must do a fatigue evaluation 

in accordance with paragraph (e) of this section. 

(b) The methodology used to establish compliance with this section must be submitted to and 

approved by the Administrator. 

(c) Definitions: 

(1) Catastrophic failure is an event that could prevent continued safe flight and 

landing. 

(2) Principal Structural Elements (PSEs) are structural elements that contribute 

significantly to the carrying of flight or ground loads, the failure of which could 

result in catastrophic failure of the rotorcraft. 

(3) Threat Assessment is an assessment that specifies the locations, types, and sizes of 

damage, considering fatigue, environmental effects, intrinsic and discrete flaws, and 

impact or other accidental damage (including the discrete source of the accidental 

damage) that may occur during manufacture or operation. 

(d) Damage Tolerance Evaluation: 

(1) Each applicant must show that catastrophic failure due to static and fatigue loads, 

considering the intrinsic or discrete manufacturing defects or accidental damage, is 

avoided throughout the operational life or prescribed inspection intervals of the 

rotorcraft by performing damage tolerance evaluations of the strength of composite 

PSEs and other parts, detail design points, and fabrication techniques. Each 

applicant must account for the effects of material and process variability along with 

environmental conditions in the strength and fatigue evaluations. Each applicant 

must evaluate parts that include PSEs of the airframe, main and tail rotor drive 

systems, main and tail rotor blades and hubs, rotor controls, fixed and movable 

control surfaces, engine and transmission mountings, landing gear, other parts, 

detail design points, and fabrication techniques deemed critical by the FAA. Each 

damage tolerance evaluation must include: 

(i) The identification of all PSEs; 

(ii) In-flight and ground measurements for determining the loads or stresses 

for all PSEs for all critical conditions throughout the range of limits in § 

29.309 (including altitude effects), except that maneuvering load factors 

need not exceed the maximum values expected in service; 

(iii) The loading spectra as severe as those expected in service based on loads 

or stresses determined under paragraph (d)(1)(ii) of this section, including 

external load operations, if applicable, and other operations including 

high-torque events; 
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(iv) A threat assessment for all PSEs that specifies the locations, types, and 

sizes of damage, considering fatigue, environmental effects, intrinsic and 

discrete flaws, and impact or other accidental damage (including the 

discrete source of the accidental damage) that may occur during 

manufacture or operation; and 

(v) An assessment of the residual strength and fatigue characteristics of all 

PSEs that supports the replacement times and inspection intervals 

established under paragraph (d)(2) of this section. 

(2) Each applicant must establish replacement times, inspections, or other procedures 

for all PSEs to require the repair or replacement of damaged parts before a 

catastrophic failure. These replacement times, inspections, or other procedures must 

be included in the Airworthiness Limitations Section of the Instructions for 

Continued Airworthiness required by § 29.1529. 

(i) Replacement times for PSEs must be determined by tests, or by analysis 

supported by tests, and must show that the structure is able to withstand 

the repeated loads of variable magnitude expected in-service. In 

establishing these replacement times, the following items must be 

considered: 

(A) Damage identified in the threat assessment required by 

paragraph (d)(1)(iv) of this section; 

(B) Maximum acceptable manufacturing defects and in-service 

damage (i.e., those that do not lower the residual strength below 

ultimate design loads and those that can be repaired to restore 

ultimate strength); and 

(C) Ultimate load strength capability after applying repeated loads. 

(ii) Inspection intervals for PSEs must be established to reveal any damage 

identified in the threat assessment required by paragraph (d)(1)(iv) of 

this section that may occur from fatigue or other in-service causes before 

such damage has grown to the extent that the component cannot sustain 

the required residual strength capability. In establishing these inspection 

intervals, the following items must be considered: 

(A) The growth rate, including no-growth, of the damage under the 

repeated loads expected in-service determined by tests or analysis 

supported by tests; 

(B) The required residual strength for the assumed damage 

established after considering the damage type, inspection interval, 

detectability of damage, and the techniques adopted for damage 

detection. The minimum required residual strength is limit load; 

and 

(C) Whether the inspection will detect the damage growth before the 

minimum residual strength is reached and restored to ultimate 

load capability, or whether the component will require 

replacement. 

(3) Each applicant must consider the effects of damage on stiffness, dynamic behavior, 

loads, and functional performance on all PSEs when substantiating the 

maximum assumed damage size and inspection interval. 

(e) Fatigue Evaluation: If an applicant establishes that the damage tolerance evaluation 

described in paragraph (d) of this section is impractical within the limits of geometry, 
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inspectability, or good design practice, the applicant must do a fatigue evaluation of the 

particular composite rotorcraft structure and: 

(1) Identify all PSEs considered in the fatigue evaluation; 

(2) Identify the types of damage for all PSEs considered in the fatigue evaluation; 

(3) Establish supplemental procedures to minimize the risk of catastrophic failure 

associated with the damages identified in paragraph (d) of this section; and 

(4) Include these supplemental procedures in the Airworthiness Limitations section of 

the Instructions for Continued Airworthiness required by § 29.1529. 

[Doc. No. FAA-2009-0660, Amdt. 29-59, 76 FR 74664, Dec. 1, 2011]” 

Conclusion 

All the basic concepts regarding the topics covered in this work have been given, 

alongside with a brief overview of regulatory aspects in rotorcrafts fatigue tolerance 

evaluation. Specifically, the reader now has a deeper insight of (i) two and four 

parameters S/N curve, (ii) constant and variable amplitude fatigue, (iii) damage 

accumulation rules, (iv) theory of the critical distances for crack/notch stress-life 

evaluation, (v) crack propagation, (vi) design philosophies. 
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2 “Crack like to blunt” notch S/N curve 

model 

Introduction 

In this Chapter the infinite life design philosophy of notched specimens is analyzed, 

then the same concepts are specialized to finite life design concepts in the context of 

the “Theory of the Critical Distances” to analyze the transition from “crack-like to 

blunt” notch. It is shown that a notched specimen behaves very similarly to a crack up 

to a certain number of fatigue cycles, then its fatigue behavior can be approximated 

with a plain specimen reduced by the effective stress concentration factor. 

Accordingly, some fast assessment methods have been suggested: (i) a crack like notch 

could be replaced by a crack for which there is a wide amount of solutions in Literature 

and (ii) a blunt notch could be treated through infinite life design concepts only. To 

verify the analytical method, the SAE Keyhole test program constant amplitude fatigue 

test data have been used and predictions are in good agreement with experiments, also 

compared with other methods as strain-life approaches through Neuber’s rule. 

2.1 Infinite life design 

The effect of notches in infinite life fatigue design can be simply estimated through 

the concept of crack like notch introduced by Smith and Miller [1] which allows to 

obtain characteristic diagrams [2]–[5] under the assumption that the governing factor 

for infinite life modeling is the threshold stress intensity factor range ΔKth, value below 

which a so-called long crack should not propagate consistently with Paris’ law [6]. 

Indeed, infinite life fatigue design is governed by the threshold stress intensity factor 

range for long cracks, and by the fatigue limit stress range ΔSe for short cracks [7]; 

hence in order to identify the order of magnitude of the critical length of transition 

from short to long crack, El-Haddad’s intrinsic defect size a0 can be introduced 

a0 =
1

π
(
ΔKth

ΔSe
)

2

  (2.1) 

The equation is given for a prescribed load ratio R=Smin/Smax. Such transition has been 

studied in principle experimentally in 1976 by Kitagawa and Takahashi [8] which 
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plotted stress range vs. crack size (ΔS-a) diagrams confirming the validity of the 

relation connecting the stress intensity factor range ΔK and the stress range ΔS 

ΔΚ = f ⋅ ΔS√πa (2.2) 

Where f is a geometric factor. Then, in 1977 Smith evidenced that Equation (2.2) is 

valid only beyond a specific value of crack size and later, in 1980, this limit was 

overcome by El Haddad et al. [9] who proposed the empirical formula 

ΔSe = ΔKth/√π(a + a0) (2.3) 

In which the intrinsic defect size has been simply added to Equation (2.2) and the 

geometric factor f has been set to 1 for simplicity. The idea behind Equation (2.3) is 

one aspect of the “Theory of the Critical Distances” whose ancestor, as summarized 

by Taylor [10], and Yao et al. [11], can be identified in the effective stress concentration 

factor Kf proposed by Neuber [12], Kuhn and Hardrath [13] who in the early ‘50s 

assumed that the notched specimen fails if the averaged stress over the distance AKH 

ahead of the notch root is equal to the fatigue limit Se of the plain specimen. From this 

hypothesis, Kf was calculated as 

Kf = 1 +
Kt − 1

1 +
π

π − ω√AKH/ρ
 (2.4) 

Where Kt is the theoretical stress concentration factor (e.g. 3 for a circular hole in an 

infinite plate), ω is the notch flank angle, ρ is the notch root radius and the distance 

AKH depends on the material under exam. Later the equation has been modified as 

Kf = 1 +
Kt − 1

1 + √aN/ρ
 (2.5) 

aN is known as Neuber’s material constant 

Few years later Peterson [14] derived an equation based on the hypotheses that (i) the 

notched material fails if the point stress at a distance d0 away from the notch root is at 

least equal to the fatigue strength of the plain specimen and (ii) the stress ahead of the 

notch root drops linearly up to d0 obtaining 

Kf = 1 +
Kt − 1

1 + aP/ρ
 (2.6) 

Where aP is Peterson’s material constant. Notwithstanding, as also confirmed by 

Topper et al. [15], as ρ increases the fatigue limit is actually fully controlled by the 

theoretical stress concentration factor, thus Kf→Kt since aP/ρ→0 and the notch is 
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addressed as blunt notch. From a mathematical point of view, a notch can be 

effectively be addressed as blunt when its characteristic size a* is [2]–[5] 

a∗ ≥ Kt
2 ⋅ a0 (2.7) 

Hence, for instance for a hole in an infinite plate (Kt=3) this occurs when the circle 

radius is almost one order of magnitude larger than El Haddad’s intrinsic defect size. 

For aluminum alloys and steels, typically a0 is of the order of 10 μm and 100 μm 

respectively implying a* of the order of 0.1 mm and 1 mm respectively which are typical 

orders of magnitude of drilled holes for riveting. Therefore, Atzori and Lazzarin 

suggested the following infinite life design criterion for notched components 

Kf = min(√1 + a/a0,  Kt) (2.8) 

Combining Equation (2.7)with Equation (2.8) implies that below a* notches behave 

like cracks, and above a* they behave as blunt notches. In 2004, with the purpose of 

collecting and comparing exhaustively the existing notch sensitivity estimation models 

for infinite life design, Ciavarella and Meneghetti [16] reviewed a series of classical and 

modern approaches to the stress concentration factor estimate and concluded that 

Neuber’s method [12] is the most conservative and accurate amongst the “classical” 

approaches whilst the Atzori-Lazzarin criterion is the most conservative yet easy-to-

use between the “modern” ones. Moreover, they proposed the following modification 

to the Atzori-Lazzarin criterion of Equation (2.8) in order to make it consistent with 

Lukáš and Klesnil [17] discussion which can be interpreted as a modification of 

Neuber’s rule including the effect of cyclic plasticity. 

Kf = min((1 + (a/a0 )
r) 1/2r ,  Kt) 0 < r ≤ 1 (2.9) 

Equation (2.9) for r=1 obviously returns the Atzori-Lazzarin criterion, while for r=0.5 

gives Lukáš-Klesnil criterion. Bazant [18] has shown in detail that the expression 

(1+(a/a0)
r)1/2r corresponds to an asymptotic matching with truncation at the first order 

between the large-size (a≫a0) and the short-size (a≪a0) expansions of the crack 

propagation criterion in terms of stress intensity factor and concluded that the El-

Haddad equation can be seen as a “matching asymptotics” solution for the transition 

between fatigue limit towards fatigue threshold dominated threshold. Nevertheless, 

Ciavarella and Meneghetti in their review did not discuss the implications of applying 

the “Theory of the Critical Distances”[10], [19]–[22] (TCD) in its point variant (TCD-

P); this shall be done here since the transition from infinite to finite life design here 

proposed is based on the TCD-P. Anyway, since it has already been demonstrated that 
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Neuber’s (2.5) and Peterson’s (2.6) equations are prototypical critical distance 

approaches, a similar result with respect to Ciavarella and Meneghetti’s is expected. 

Indeed, the basic hypothesis of the TCD-P is that the material fails when the stress at 

a distance a0/2 from the notch root/crack tip reaches the fatigue strength of the plain 

material. For instance, considering the Kirsch solution [23] for an infinite plate with a 

circular hole under uniform remote tension Snom and imposing that the stress SY parallel 

to Snom at distance r=a+a0/2 from the center of the hole is equal to the alternate fatigue 

limit Se leads to 

Kf =
SY (a +

a0
2

)

Snom
=

Se

Snom
=

1

2
⋅ (2 + (

a

a +
a0
2

)

2

+ 3(
a

a +
a0
2

)

4

) (2.10) 

Returning the well-known Kt=3 for a≫a0. Similarly, considering Westergaard [24] 

solution for a crack immersed into an infinite plate and loaded perpendicularly to the 

crack flanks it results, at a distance a0/2 from the crack tip 

Kf =
SY (

a0

2 )

Snom
=

Se

Snom
=⋅

1 +
a0/2

a

√a0/2
a

√2 +
a0/2

a

 (2.11) 

Which goes to infinite for a≫a0. In Figure 2.1 on the left it is shown the normalized 

stress component SY/Snom ahead of the crack tip/notch root for the Kirsch and 

Westergaard problems, while on the right there is a comparison between stress 

concentration factors according to different criteria. Atzori-Lazzarin criterion is 

extremely close to the TCD-P applied to Westergaard problem for a<a* and then it 

becomes constant for a≥a* and at the same time it is comparable with the TCD-P 

applied to the Kirsch solution within the entire domain. However, there is a region 

where the TCD-P applied to Kirsch solution is more conservative than both 

Westergaard solution and the Atzori-Lazzarin criterion. This may sound 

counterintuitive, but comparing the stress gradient ahead of a hole (low) with the stress 

gradient ahead of a crack (high) provides a simple explanation; indeed, even if the 

stress immediately ahead of a hole is lower than the stress ahead of a crack, then at a 

certain distance the situation has to reverse to respect the global equilibrium, as evident 

from Figure 2.1 (Left). 
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Figure 2.1: (Left) Stress field for Kirsch, Westergard and Westergaard for a≫a0; (Right) 1/Kf as 
a function of the notch/crack size. E l Haddad’s equation is nearly indistinguishable from 
Westergaard TCD. The Atzori-Lazzarin criterion for a hole is equal to El Haddad’s equation up 
to a*, beyond which it holds 1/Kt and it is comparable to Kirsch TCD 

The infinite life design approach is useful when there are no other design constraints 

such as weight limits, but it becomes too limiting in aerospace applications, where the 

conflicting requirements of lightweight and durable structures must be simultaneously 

met. For this reason, it is convenient to extend the TCD-P design philosophy to finite 

life. 

2.2 Finite life design 

The extension to a finite life design for notched components leading to a generalized 

Kitagawa-Takahashi diagram has been approached in multiple ways by other 

authors [25]–[28], but all the approaches are usually less intuitive/straightforward than 

the corresponding ones for infinite life. As regards the stress-life approach (suitable 

for short cracks), the classical simplest technique to account for notch effect has been 

suggested by Fuchs and Stephens [29] in their Textbook, re-edited as Stephens et 

al. [30]. They suggested to account for the notch effect by using its infinite life effect, 

then they wrote that “in the absence of other data, one can estimate the monotonic tensile strength 

of the notched part for a metal behaving in a ductile manner to be equal to the strength of the smooth 

part in monotonic testing”. In other words, notch effect for short cracks can be modeled 

into an S/N curve by interpolating with a power law between the value Se-plain/Kf and 

the fatigue strength of the plain material at a prescribed number of cycles. Such number 

of cycles generally ranges from 1 to 1,000 cycles to failure, but it is not a general rule. 

Turning to more general proposals, Ciavarella [27] attempted a generalized finite life 
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form of the El Haddad equation, postulating a life dependent power law for the 

intrinsic defect size, i.e. a0=a0(N) (life-dependent) 

a0(N) =
1

π
(
ΔKth

ΔSe
)

2

(N/Ne)
2(

1
k
−

1
r
) = AC ⋅ NBC  (2.12) 

Where BC=2(1/k-1/r), AC=1/π∙(ΔKth/ΔSe)
2∙Ne

–Bc, Ne is the number of cycles to the 

fatigue limit, k =– 1/b̅ is Basquin’s law exponent and r is a material constant which 

could coincide with the Paris’ law exponent since it has been introduced to the 

postulate the evolution of ΔKth(N)= ΔKth∙(Ne/N)1/r. A very similar approach to the 

problem has been proposed by Susmel and Taylor [10], [19]–[22] in their TCD-P in 

which a life dependent power law evolution of the critical distance L/2 from the crack 

tip/notch root has been postulated, i.e. 

L(N)/2 = AST ⋅ NBST  (2.13) 

Where the constants AST and BST have similar meaning to AC and BC and can be 

determined both through experimental fitting of data from notched specimens and 

from basic material properties. Considering the derivation from the material 

properties, it is straightforward to define the power law from the El Haddad intrinsic 

defect size to the equivalent ultimate, or static, one 

a0
u = 1/π (

KIc

Sf
′ )

2

 (2.14) 

Where KIc is the mode I fracture toughness and S’f is the fatigue strength at one cycle 

according to Basquin’s law, i.e. S = a̅ Nb̅. S’f has been used instead of the ultimate 

tensile strength Su since it is there’s still another free parameter to be set: the number 

of cycles Nu where the a0
u is assumed to hold. The definition of a0

u incidentally leads 

to the definition of an extended Atzori-Lazzarin diagram to finite life (cfr. Figure 

2.2) [4], [31], [32]. Atzori and Lazzarin in their conference paper proposal [31] were 

uncertain if the static failure line could have been always drawn by means of the linear 

elastic fracture mechanics, i.e. omitting geometric factors: 

KIc = Snom√π a (2.15) 

Consequently, they proposed the model only for brittle materials. 
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Figure 2.2: Extended Atzori-Lazzarin diagram to finite life considering a circular hole in an 
“infinite” plate. The materials considered are  the RQC-100 steel (higher strength, low carbon, 
hot rolled, quenched and tempered) and Man Ten (medium carbon, lower strength,  higher 
ductility). Observe that a0 for RQC-100 is almost 10 times smaller than for Man Ten because of 
the difference in ductility 

However, an experimental measure of the fracture toughness for ductile materials is 

very challenging, if not even impossible, because most probably in that case a0
u would 

be too large and the specimen required to perform the tests would be excessively big. 

Concerning steels, as said the a0 lies in the range of 10÷100 μm, whilst a0
u is in the 

order of 1÷100 mm. In the current work, two very common steels close to the 

extremes of the ranges of a0 have been used as reference: (i) the Bethlehem RQC-100 

steel [33] (up to 0.21% carbon content, quenched, tempered and hot rolled) and (ii) 

the U.S. Man Ten steel [34] (up to 0.35% carbon content, hot rolled), whose properties 

are listed in Table 2.1. These material properties have been used to draw the finite life 

Atzori-Lazzarin diagrams in Figure 2.2. The TCD has been used lately also to predict 

with a certain level of accuracy the static failure of notched cold rolled low carbon steel 

and in presence of large plastic deformation before failure. Nonetheless, in order to 

state that the TCD is a fully established approach, a large number of tests is still needed 

on larger notch radii a> a0
u and even a> a0

u* and on a wider amount of material classes; 

for this reason, albeit accurate in the cases analyzed, the current linear elastic approach 

does not expect to supersede the elastoplastic fracture mechanics. It is however 

noteworthy that no other simple methods, including strain-life approach applied to 

notched geometries, give higher accuracy. Thus, in order to draw some conclusions 

regarding the generalized Atzori-Lazzarin diagram and criterion, some limit cases need 

to be analyzed and discussed. 
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Table 2.1: Material properties for RQC-100 and Man-Ten 

Property Description RQC-100 Man Ten 

Elastic Modulus, E, GPa 203 203 

Yield Strength, Y, MPa 883 325 

Ultimate Strength, Su, MPA 931 565 

Fatigue Limit Strength Range, ΔSe, MPa 449 272 

Fatigue Strength Coefficient, S’f, MPa 1,240 1,160 

Threshold Stress Intensity Range, ΔKth, MPa·√mm 158 285 

Fracture Toughness, KIc, MPa·√mm 4,870 5,091 

Fatigue Strength Exponent, b -0.07 -0.095 

Fatigue Ductility Coefficient, ε 1.06 0.26 

Fatigue Ductility Exponent, c -0.75 -0.47 

Crack Growth Intercept, C, mm·cycle⁻¹ 5.2E-9 3.0E-9 

Crack Growth Exponent, m 3.15 3.43 

The TCD has been used lately also to predict with a certain level of accuracy the static 

failure of notched cold rolled low carbon steel and in presence of large plastic 

deformation before failure. Nonetheless, in order to state that the TCD is a fully 

established approach, a large number of tests is still needed on larger notch radii a> 

a0
u and even a> a0

u* and on a wider amount of material classes; for this reason, albeit 

accurate in the cases analyzed, the current linear elastic approach does not expect to 

supersede the elastoplastic fracture mechanics. It is however noteworthy that no other 

simple methods, including strain-life approach applied to notched geometries, give 

higher accuracy. Thus, in order to draw some conclusions regarding the generalized 

Atzori-Lazzarin diagram and criterion, some limit cases need to be analyzed and 

discussed. 
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2.3 The crack-like notch 

Consider the very basic case of a 

large, conceptually infinite, plate 

having a central crack whose length 

is 2a, loaded in opening mode (I) by 

a nominal stress Snom as shown in 

Figure 2.3. The fully analytical 

solution to the stress field of the 

plate has been found in 1934 

through the usage of the Airy’s 

stress function by Westergaard [35]. 

The asymptotic stress field in the 

region x>0, y=0 is given by 

S(x) =
KI

√2π x
=

Snom

√2 x/a
 (2.16) 

Using the TCD-P implies moving at a0/2 from the crack tip, i.e. 

S(N) =
Snom

√AST

a NBST

 
(2.17) 

Postulating a power law evolution for a0(N) between a low number of cycles Nu and a 

high number of cycles Ne gives 

a0 =
1

π
 (

ΔKth

ΔSe
)

2

(a)

a0
u =

1

π
 (

KIc

Sf
′ )

2

(b)

 (2.18) 

From which the constants AST and BST are easily found as 

BST = 2 
Log(ΔKth/KIc) + Log(Sf

′/ΔSe)

Log(Ne/Nu)
 (a)

AST = a0 N
−BST (b)

 (2.19) 

If the plain material stress-life behavior follows Basquin’s law (at fixed load ratio) 

SkN=CB, it implies that also the also the stress-life behavior of the “asymptotic crack” 

is a power law 

Snom
kST  N = CST (2.20) 

Figure 2.3: Large plate with central crack and remote 
nominal stress Snom 
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Where kST =
k

1−BST k/2
 and CST = ((

a

AST
)

k

2
 1/CB)

kST
k

 meaning that if BST≠0 then 

kST≠k. The latter can be valid only if a0 is constant. Turning to the full Westergaard 

solution for the opening stress ahead of the crack tip 

S(x) =
Snom (x/a + 1)

√ x/a√x/a + 2
 (2.21) 

Which obviously tends to Equation (2.16) when x≪a. Substituting (2.13) into (2.21) 

and then within Basquin’s law, leads to the complete S/N curve for a crack 

(

 
Snom  (

AST

2a NBST + 1)

√AST

2a NBST√AST

2a NBST + 2)

 

k

N = (Snom κW(N))
k
N = CB (2.22) 

Where the Greek symbol κ represents a sort of life dependent stress concentration 

factor Equation (2.22) is an implicit function of the number of cycles and tends to 

Equation (2.20) for a N higher than a certain number of cycles N*, as shown in Figure 

2.4, where also the Basquin’s law for the corresponding plain specimen is plotted. In 

the cases under exam a=4.75 mm and the transitions to blunt notch behavior occur at 

ca. 104÷105 cycles for RQC-100 and 105÷106 cycles for Man Ten. 

 

Figure 2.4: The dashed dark gray lines represent the S/N curve for the plain specimen and the 
same curve reduced by Kt. The orange dashed curve represents the asymptotic S/N curve for a 
cracked body by means of the TCD-P. Finally, the solid curve is the full S/N curve for a cracked 
body according to the TCD-P 

It is noteworthy that the Basquin’s law has not been truncated here neither at the 

ultimate tensile strength nor at the fatigue limit. Basquin’s truncated law will be dealt 
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with in detail in Chapter 5. By intersecting the Basquin’s law for the smooth specimen 

with the Basquin’s law for the “asymptotic crack” the value of N0 is obtained as 

N0 = (
a

AST
)

1
BST

 (2.23) 

Since BST<0, N0 and N* must decrease as the semi-crack length a increases as intuitively 

expected from the observation of the change of slope of the orange solid line in Figure 

2.4, hence the corresponding stress S(N0) (and S(N*)) must increase as the crack size 

is decreased, i.e.: 

S(N0) = CB (
a

AST
)

− 
1

kBST
 (2.24) 

2.4 The transition to blunt notch 

The transition from crack like to blunt notch behavior occurs, considering Figure 2.4, 

at around N* cycles, i.e. 

N∗ = (
a

Kt
2 AST

)

1
BST

=
N0

Kt
2/BST

= Ne  (
a

Kt
2 a0

)

1
BST

= Ne  (
a

a∗)

1
BST

 (2.25) 

Equation (2.25) confirms that the 

transition can occur only if 

a>a*=Kt
2a0; after such point the 

notch behaves as blunt, extending 

the Atzori-Lazzarin definition to 

finite life. Specifically, if the notch 

is larger than a*, then for N>N* the 

S/N curve for the notched 

specimen can be approximated 

with the Basquin’s law for the plain 

specimen reduced by Kt. For 

instance, considering a circular 

notch and using the analytical 

solution to the Kirsch [23] problem (cfr. Figure 2.5rewritten by means of the the TCD-

P (cfr. Equation (2.10)) into Basquin’s law to reduce the S/N curve by a life- dependent 

Kt leads to another implicit function of N. 

Figure 2.5: Large plate with central hole and remote 
nominal stress Snom 
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(

 
 

Snom

1

2
⋅ (2 + (

a

a +
a0
2

)

2

+ 3(
a

a +
a0
2

)

4

)

)

 
 

k

N = (Snom κK(N))
k
N = CB (2.26) 

It is important to note that Equations (2.22) and (2.26) written in general form as 

   (Snom κ(N))
k
N = CB (2.27) 

can be used for a much wider range of application than the simple cases from which 

they have been derived, indeed, deviations from these expressions ahead of a crack or 

a notch occur at a higher distance with respect to what is required by the TCD. 

Therefore, this model, despite being simple, has provided satisfactory estimates in an 

example that nominally should is very different from the ideal cases used to derive 

Equation (2.27). 

 

2.5 New S/N curve model for notches 

The TCD-P allows to draw multiple S/N curves whose shape changes based on the 

ratio a/a0. Figure 2.6 and Figure 2.7 show some example for RQC-100 and Man Ten 

respectively considering the notch sizes evidenced in the extended Atzori-Lazzarin 

diagrams of Figure 2.2.  
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Figure 2.6: RQC-100 S/N curves obtained with increasing notch/crack size. The TCD-P curve 
with Westergaard solution (orange) is nearly indistinguishable from the TCD-P curve with 
Kirsch solution (red). The green dashed line is a power law drawn between N0/10 and N* 

Evidently, in first approximation the behavior of the notch and of the crack in the 

crack like region are almost identical, similarly to what happens in the Atzori-Lazzarin 

criterion for infinite life under similar conditions. Conversely, at around N* cycles there 

is the transition to blunt notch behavior where the “Kirsch” curve behaves similarly 

to the Basquin’s law reduced by Kt. Thus, the new curve follows the S/N curve for 

the crack up to N*, then the Basquin’s law reduced by Kt should be used. 
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Figure 2.7: Man Ten: S/N curves obtained with increasing notch/crack size. The TCD-P curve 
with Westergaard solution (orange) is nearly indistinguishable from the TCD-P curve with 
Kirsch solution (red). The green dashed line is a power law drawn between N0/10 

Figure 2.6 and Figure 2.7 confirm Equation (2.25), i.e. the blunt notch region increases 

as the notch size is increased and for extremely large notches the S/N curve coincides 

with the reduced Basquin’s law. The S/N curves for the circular hole slightly deviate 

from the S/N curve for the “asymptotic crack”. Such difference can accounted for by 

defining a steeper power law curve between N0/η (on the Basquin curve) and N* (on 

the reduced Basquin curve); using η=10 leads to the green dashed lines in Figure 2.6 

and Figure 2.7. A simple proposal, therefore, in the spirit of being conservative in line 

with the Atzori-Lazzarin criterion for infinite life, would be to take this power law for 

crack-like and the reduced Basquin’s law in the blunt notch region. Clearly at Ne the 

long crack threshold should be considered, and this may induce a knee in the piecewise 

power law S/N curve even for materials which do not show a knee in the smooth S/N 

Man Ten, a₀=348.5 μm
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curve. In fact, light alloys without a precise fatigue limit are known, but even these still 

have a fatigue threshold. 

2.6 Quantitative validation with experiments 

In the 1970s, the Society of Automotive Engineers (SAE) Fatigue Design & Evaluation 

Committee conducted a test program using a notched member with two steels 

commonly used in the ground vehicle industry (Bethlehem RQC-100 and U.S. Steel 

Man-Ten). The test program is explained in details by Tucker and Bussa [36] and in 

the website https://www.efatigue.com/benchmarks/ under “SAE Keyhole Test 

Program”, finally test program and analysis are described in the book [20]. Most basic 

material properties were measured for both materials (listed in Table 2.1) and constant 

amplitude tests were performed on the “component like” specimen, although the main 

scope of the test program was variable amplitude fatigue testing using three loading 

histories at several load levels. In fact, many different prediction models for constant 

and variable amplitude fatigue life have been collected in the SAE Transactions 

Vol. 84, 1975, § 1. For example, Landgraf et al. [37] and Potter [38] adopted a strain-

life approach through Neuber’s rule [39] whilst Nelson and Fuchs [40] decided to work 

with stress-life models called nominal stress range I and II methods. In this work, a 

strain-life method is used to compare TCD-P the constant amplitude fatigue 

predictions and make some final considerations. 

 Calibration of TCD-P constants 

As already mentioned, there is a free parameter in the model: Nu, i.e. the number of 

cycles adopted as upper bound for a0(N), i.e. a0
u=a0(Nu). In the cases under exam Nu 

has been set to 1,000 cycles both for RQC-100 and for Man-Ten, which implies that 

a0
u=1/π·(4,870/1,240)2=4.91 mm and a0

u=1/π·(5,091/1,160)2=6.13 mm respectively. 

Nu is the only fitting parameter the required by the model and it should be calibrated 

through best fitting technique. Other authors also have to recur to similar assumptions 

when calibrating the constants of the TCD method for finite life [19]. Notice that the 

plots here presented have not been truncated below Nu and above Ne for cleanliness, 

albeit some truncations should be considered to have more precise plots. Thereupon, 

the TCD-P constants are: 

https://www.efatigue.com/benchmarks/
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BST = 2 
Log(158/4,870) + Log(1,240/449)

Log(106/103)
≈ −0.70 (a)

AST =
1

π
 (

158

449
)

2

⋅ 1060.70
≈ 610 mm (b)

 RQC-100(2.28) 

BST = 2 
Log(284/5,091) + Log(1,160/272)

Log(106/103)
≈ −0.41 (a)

AST =
1

π
 (

285

272
)

2

⋅ 1060.42
≈ 100 mm (b)

 Man Ten(2.29) 

Notice that, using Ciavarella’s proposal [27] and taking r equal to the Paris’ law 

exponent, the constants would be comparable for Man Ten but quite different for 

RQC-100: 

BC = 2 (
1

14.28
−

1

3.15
) ≈ −0.50 (a)

AC =
1

π
 (

158

449
)

2

·1060.50
≈ 40 mm (b)

 RQC-100(2.30) 

BC = 2 (
1

10.53
−

1

3.43
) ≈ −0.40 (a)

AC =
1

π
 (

285

272
)

2

·106−0.40
≈ 74 mm (b)

 Man Ten(2.31) 

In order to have AC and BC equal to AST and BST, the exponent r should be equal to 2.4 

for RQC-100 and 3.3 for Man Ten. 

 Stress field 

The specimen geometry and the test setup the SAE keyhole test program is provided 

in Figure 2.8, whilst the load set is given in Figure 2.9. Some considerations on the 

stress field ahead of the notch are necessary since the geometry is very different from 

the ideal cases considered in the derivation of the equations. From the load set 

adopted, a nominal stress Snom can be defined for convenience by “cutting” a beam 

shaped section immediately ahead of the crack tip and by writing the tensile stress from 

a combined axial-bending load (cfr. Figure 2.9). Concerning the blunt notch region, 

the presence of the circular notch theoretically raises the stress of a Kt=3 at the notch 

root. Furthermore, from comparison with finite elements analysis it is observed that a 

significant part of the stress field is like the Kirsch solution since the critical distance 

where the stress is computed lies between 4.9≤a0
u≤6.1 mm (cfr. Figure 2.10) which is 

comparable with the radius of the hole and much smaller than the width of the beam 

W. 
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Figure 2.8: SAE keyhole test specimen: (Left) experiment setup and (Right) dimensioned 
drawing. Units in mm 

 

 

Figure 2.9: SAE Keyhole test specimen: load set. The nominal stress has been calculated through 
the beam on the left 
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Obviously at large distances from 

the notch root the finite elements 

solution diverges from the ideal 

notch but, in the range of interest 

of this model, Kirsch solution is 

more than appropriate (again 

cfr. Figure 2.10). As regards the 

crack-like behavior, the notch is 

abruptly substituted by a crack in 

the finite elements model and the 

stress intensity factor is then 

estimated via Ansys, obtaining 

KI=Υ·Snom(πa)1/2, with , with 

Υ=1.36. Again, the distance 

between the numerical and the 

asymptotic stress increases as the distance from the crack tip increases, but it is 

acceptable up to a0
u for both RQC-100 and Man Ten. Then, with the only assumption 

that Nu=1000, the values of beginning for the crack like region N0 and the transition 

to blunt notch N* can be obtained from Equation (2.23) and (2.25) and the full S/N 

curve to predict the notch constant amplitufe behavior through the TCD-P can be 

drawn. The predictions in an S/N plot are shown in Figure 2.11 for RQC-100 (Left) 

and Man Ten (Right).  
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Figure 2.11: SAE Keyhole test program: comparison of experimental data for constant amplitude 
fatigue of the RQC-100 (Left) and Man Ten (Right) specimen with the proposed TCD-P based 
model for notched or cracked specimen. (Left) Strain-life predictions are added to show. The 
alphanumeric code next to the experiment represents the type of loas history, the material and 
the applied load 

 

Results are satisfactory and 

tendentially conservative, as also 

shown in Figure 2.12. The use of 

the actual stress profile from 

finite elements analysis would 

not improve significantly the 

fitting capabilities of the method. 

A simple suggestion to simplify 

the model could be to assume a 

power law behavior also in the 

crack like region from N0/η up to 

N* on the reduced Basquin’s law. 

For this problem η=10 for both 

materials, but the factor can vary 

in other cases. Besides, a strain-life analysis has been performed through the website 

Efatigue which uses the full Coffin-Manson model with Neuber’s rule. Predictions are 

much poorer than the ones with the current model. 

  

   –––– Kirsch     – · · – FEM Hole     – · · – FEM Crack     –––– New proposal      –––– Efatigue Experiments

200

300

400

500

700
800

1,240

CR18

CR4

CR12

CR17

CR13

CR14

CR2
CR3

CR15

CR7

CR1

100

1,000

1E+0 1E+2 1E+4 1E+6

S n
o

m
, M

P
a

N, cycles to failure

RQC-100

Basquin 
unnotched

Basquin 
unnotched/Kt

crack-like 
behavior

blunt 
notch 

behavior

200

300

400

500

700
800

1,160

CM8

CM9

CM10

CM5

CM6

100

1,000

1E+0 1E+2 1E+4 1E+6

S n
o

m
, M

P
a

N, cycles to failure

Man Ten

Basquin 
unnotched

Basquin 
unnotched/Kt

crack-like 
behavior

blunt 
notch

behavior

x 1
x 3

÷ 3

CR18

CR12

CR4

CM8

CM9

CM10

CM5

CR17

CR13

CM6

CR14
CR3

CR2

CR15

CR7

CR1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

P
re

d
ic

te
d

 l
if

e,
 C

y
cl

es

Experimental test life, Cycles

SAE Keyhole, Constant Amplitude

non-conservative

conservative

Figure 2.12: SAE Keyhole test program: Comparison of 
predictions and test results for constant amplitude 
loading. The accuracy is always within a factor 3 and 
almost always in the conservative half of the plane 



 
“Crack like to blunt” notch S/N curve model 

 
 

79 

 

Conclusion 

It has been shown that the S/N curves obtained through the TCD-P for a crack and 

a notch are very close each other within a certain range of medium cycle fatigue life. 

Such region, denominated crack like behavior of the notch then undergoes a transition 

to another regime addressed as blunt notch, i.e. where the fatigue resistance is very 

close to the Basquin’s law reduced by the stress concentration factor. This allows to 

define some conservative and accurate design criteria which have been proven to be 

very satisfactory when compared to the experimental data from the SAE Keyhole test 

program once the only free parameter of the model has been calibrated. The model 

here proposed is going to be combined with the one in the following Chapter to define 

a variable amplitude fatigue criterion for the life prediction of notched members. 
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3 Gaßner curves as shifted Wöhler curves 

Introduction 

In this Chapter a criterion for the life prediction under variable amplitude spectrum 

loads for both smooth and notched specimens is presented. The criterion is obtained 

from the Basquin’s law for constant amplitude loading and arrives to define the S/N 

curve for spectrum load simply as a shifted Basquin’s law. Further, it is shown that the 

shift factor obtained for the smooth specimen is also valid for the cracked and notched 

one, where in these cases the S/N curve models obtained through the TCD-P in the 

previous Chapter have been used. Some comparisons with Literature data are added 

to substantiate the findings and finally, the possibility of defining a shift factor for 

damage accumulation rules different from the Palmgren-Miner rule is discussed. 

3.1 Variable amplitude loading 

Fatigue under cyclic loading with a constant amplitude and a constant mean load is 

addressed as constant-amplitude (CA) fatigue loading, classical example of it being the 

sinusoidal loading applied in many fatigue tests. Nevertheless, many components 

undergo complex load histories in their operating life, called variable-amplitude (VA) 

loading. The study of this phenomenon is still of great interest both in academia and 

in industry, and this is confirmed by the multiple authors that keep studying this topic 

although there have been thousands of experimental campaigns, analytical and 

numerical models trying to predict the VA fatigue behavior of materials in the last 

century. The simplest VA fatigue prediction rule has been proposed for the first time 

in 1924 by Palmgren [1] for the fatigue calculation of ball-bearings. Supposing that the 

load history is made of NB load blocks, each one containing nj cycles at the stress 

amplitude Smj, Saj and the corresponding fatigue life N(Saj)=Nj, the rule can be 

expressed as 

D = ∑
nj

Nj

NB

j=1

= 1    (3.1) 

In other words, Palmgren postulated the linear accumulation of the fatigue damage, 

stating that the failure occurs when the damage D=1. Anyway, Palmgren did not 
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provide a derivation for the rule, and the same holds for Langer [2] that in 1937 

postulated the same rule applied separately to the crack initiation and the crack 

propagation phases. The first derivation of the linear damage accumulation rule has 

been proposed by Miner [3]. His hypothesis was that the work that can be adsorbed 

until failure is a constant value and that the amount of work adsorbed during nj is 

directly proportional to nj. Thus, if W is the total work and wj the work adsorbed during 

the block nj, the criterion is Σjwj=W. The use of Miner hypothesis (nj/Nj=wj/W) leads 

immediately to Equation (3.1). Miner conducted a series of tests on smooth and riveted 

2024-T3 aluminum alloy sheet specimens by applying load histories having 2≤NB≤4 

and found 0.61≤Σjnj/Nj≤1.45, very close to 1 on average. Since then the linear damage 

accumulation rule has been addressed very often as Miner’s rule, but probably 

Palmgren-Miner’s (PM) rule is the more corrected form and it is how the rule will be 

called in this work. Starting from the 1950s, tens of works have been published to 

verify the PM rule and to find its limits of validity, and also Ciavarella et al. [4] have 

shown that the limit values of PM rule range from 0.001 to 10. Furthermore, several 

theories trying to overcome this limit have been proposed; some of them where quite 

simple, e.g. Leve [5] in 1960 postulated the first simple nonlinear damage accumulation 

rule Σj(nj/Nj)
CL with cL>1, whilst others were much more complicated, like Park and 

Padgett’s [6] general class of cumulative damage models which defined the damage as 

function of a statistical “strength reduction function”. Despite all the interest in 

defining a generalized damage accumulation model, PM remains by far the most used 

rule in fatigue design. Thus, to increase its conservativism, some handbooks (e.g. the 

FKM-Guideline [7]) suggest reducing the critical damage from 1 to 0.3 for steels, steel 

castings, aluminum alloys, while keeping 1 for ductile iron, gray cast iron, malleable 

cast iron, albeit Sonsino [8]–[10] and Schijve [11], [12] suggest that testing is always the 

best choice. However, even testing can be extremely expensive and very difficult both 

in the setup of the VA experiments and in the interpretation of the results. Indeed, 

carrying a VA fatigue test campaign is an art on its own involving the concepts of 

safety factors both in life and in stress [13]: essentially, under a given service loading 

history, a single test can assess a given same reliability (typically assuming a Weibull 

distribution) only by increasing the load or the number of cycles/blocks to failure with 

respect to the mission. The former version is preferred because of the obvious time 

(and cost) savings that it implies, although special attention is needed when testing at 

high loads; in fact, during the test of a complex component with a complex loading, 

local plasticization phenomena (not foreseen via previous finite elements analyses) 
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might arise. On the other hand, a VA test with higher expected cycles to failure might 

(and usually it does) last too long if the bandwidth of the rig actuators is limited with 

respect to the load amplitude they should provide, plus, if time-dependent phenomena 

affect the fatigue process, the results obtained with a high loading frequency would be 

partially or completely unreliable. Often, small amplitude cycles are omitted for 

simplicity and to accelerate testing (and similarly in the original PM rule the cycles 

below fatigue limit are omitted from the computation of the damage), although in 

some design handbooks, especially in welded joints, these are known to produce 

fatigue damage. Indeed, low amplitude cycles can be dealt with according to the PM 

rule with prolongation of the Wöhler curve below the knee point with the same slope, 

or according to Haibach [14] with a reduced slope. The former method is the most 

conservative amongst the listed ones and has been adopted in the current methodology 

without loss of generality, i.e. for VA fatigue calculations the S/N power law curve for 

CA is supposed to extend for N→∞. This is particularly true for materials which do 

not show a clear fatigue limit, like aluminum or especially magnesium alloys, for which 

Haibach correction would not be required anyway. At the other extreme, it is 

demonstrated that the application of some isolated high amplitude cycles has a 

beneficial effect on the total life since it induces compressive residual stresses at notch 

roots. These effects are not considered in the current methodology for the sake of 

conservativism; furthermore, the model is suitable for fast and simple design level 

assessment, hence it is in the authors’ intent to keep it as slender as possible. Moreover, 

in many cases, it is still debatable whether load spectra are known with satisfying 

accuracy, or if cycle-counting methods (such as rainflow or range-pair) are reliable (i.e. 

if load sequence effects are not important); therefore Miner’s law is still very much 

used, and this is why predictions cannot completely substitute testing. They are just 

going to suggest better ways to plot Gaßner curves than what presently done, or and 

what one may expect when applying PM rule according to the theory of the critical 

distances (TCD) in complex situations, perhaps coming from finite element results of 

the stress fields, though in the case studies under exam finite elements have been 

avoided through analytical considerations. 
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3.2 Gaßner curves for smooth specimen 

Under the hypothesis that Basquin’s law holds 

Nu Su
k = Ne Se

k = N Sk = CB    (3.2) 

Where the equation has been written also at the extreme points of the classical domain 

of validity of Basquin’s law, i.e. at some low number of cycles Nu corresponding to the 

static strength Su and at a high number of cycles Ne corresponding to the fatigue limit 

Se. In the VA case the existence of the fatigue limit is disregarded and the Wöhler curve 

is extended to infinity. According to PM rule, the damage D in function of the alternate 

stress Sa for a given load history containing NB blocks and a total number of cycles NH 

would be 

D = ∑
nj

Nj

NB

j=1

= ∑
nj

NH
⋅
NH

Nj
 

NB

j=1

= NH ∑
νj

Nj

NB

j=1

=
NH

CB
 ∑νj Saj

k

NB

j=1

    (3.3) 

Where νj=nj/NH is the proportion of cycles spent at level j on the total number NH. 

The life under the sum of all j blocks is N̅ 

1

N̅
=

D

NH
=

1

CB
 ∑νj Saj

k

NB

j=1

    (3.4) 

Therefore, normalizing the history by its peak tension Sa.max such that S̅ =βSa,max (and 

S̅aj=βSaj) and by varying the factor β a full Gaßner curve is obtained 

1

N̅(S̅)
=

S̅k

CB
  ∑ νj  (

Saj

Sa,max
)

kNB

j=1

= 
S̅k

CB
⋅ G  (3.5) 

Where G has been addressed as shift factor and has the following expression 

G =    ∑ νj  (
Saj

Sa,max
)

kNB

j=1

 (3.6) 

G depends on the spectrum and the fatigue exponent only. In this way the Gaßner 

curve for a smooth specimen can be interpreted as a shifted Wöhler curve in the 

Log(S)/Log(N) coordinates. Equation (3.5) can be rewritten as 

(
S̅

G− 
1
k

)

k

N̅ = CB    (3.7) 

Besides, the Gaßner curve can be plotted as overlapped to the Wöhler curve by using 

the scale Log(S/G-1/k) instead of the common Log(S). Such scale will be used for all 
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the Gaßner curves plotted in this Chapter because it will be shown that this result has 

much wider and interesting generalizations. 

3.3 Gaßner curve in the crack like region 

In the previous Chapter (as in Ciavarella et al. [15]) it has been shown that in many 

cases when notches are sufficiently “sharp” their behavior is not too dissimilar from 

cracks in a certain span of fatigue cycles ranging from the quantities N0 and N*
 defined 

in Chapter 2. Then this hypothesis has been generalized to a wider family of problems 

through Susmel and Taylor’s [16]–[20] theory of the critical distances in its point 

variant (TCD-P) exhaustively explained in § . The aim was the formulation of an 

analytical S/N curve model which could account for the effect of notches in medias 

to estimate their fatigue life under CA loading with satisfying accuracy. In the current 

section instead, under the proper hypotheses, such model will be extended to the 

estimation of VA fatigue life by demonstrating that the shift factor G is not affected 

by the presence of notches, thence it can be applied also to the more sophisticated 

S/N curves previously defined. For instance, considering the asymptotic part (x→0) 

of the Westergaard [21] solution for a crack of length 2a immersed in an infinite plate 

and subjected to opening mode loading with asymptotic nominal stress Snom (cfr. Figure 

2.3), i.e. 

S(x) =
KI

√2π x
=

Snom

√2 x/a
    (3.8) 

The TCD-P suggests evaluating the stress at a distance a0(N) from the crack, resulting 

in S(x(N)) to evaluate the fatigue life. This means that there is a spectrum of Sej values 

giving a spectrum of S(x(N)) values, where one takes (either Ciavarella [22] or Susmel 

and Taylor variants [16]–[20]) a critical distance of the form 

x(N) =
a0(N)

2
= AC−ST NBC−ST   (3.9) 

Where the subscript C-ST stands for Ciavarella-Susmel and Taylor (anyway ST is going 

to be used here, congruently with Chapter 2). Equation (3.9) constants shall be 

calibrated either according to some dedicated tests or with some material constants. 

Substituting (3.9) into (3.8) 

  Sj(x(N)) =
Snom,j

√AST

a  NBST  

    
(3.10) 
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In order to use Equation (3.10) in VA loading, it must be hypothesized that the 

intrinsic defect size a0 is not dependent on the spectrum, but only on the final life of 

the specimen for a given load history. Hence, using PM rule 

1

N̅
=

D

NH
=

1

CB
 ∑νj Snom,j

k

NB

j=1

(
AST

a
 N̅BST)

− 
k
2
 

=
1

CB
(
AST

a
 )

− 
k
2
N̅−

BSTk
2  ∑ νj Snom,j

k

NB

j=1

 

(3.11) 

Notice that this (3.11) is explicit in N̅ 

N̅
BSTk

2
 −1 = 

1

CB
(
AST

a
 )

− 
k
2
 ∑ νj Snom,j

k

NB

j=1

  (3.12) 

Therefore, normalizing the history by the peak tension Snom,max so that S̅=βSnom,max the 

Gaßner curve in the crack like region is 

(N̅(S̅nom))
BSTk

2
−1

= 
S̅nom

k

CB
(
AST

a
 )

− 
k
2
 ∑ νj  (

Snom,j

Snom,max
)

kNB

j=1

=
S̅nom

k

CB
(
AST

a
 )

− 
k
2
 G  

(3.13) 

Where the shift factor G is the same as for the smooth material. However, notice that 

the new curve can be written as  

S̅nom
  kCL 

  N̅ = ((
AST

a
 )

− 
k
2

⋅
G

CB
)

−kCL/k

 (3.14) 

Where the new slope kCL=k/(1–BSTk/2). Consequently, this curve would have the 

same slope as the smooth one only if BST=0, i.e. if a0 stayed constant. As done for 

Equation (3.7), Equation (3.14) can be rearranged as 

(
S̅nom

G− 
1
k

)

kCL

  N̅ = ((
AST

a
 )

− 
k
2

⋅
1

CB
)

−kCL/k

 (3.15) 

From Equation (3.15), a bigger crack like notch implies a shorter life, consistently with 

what expected. Besides, this equation means that, in terms of nominal stress amplitude 

the S/N curve in the crack like region is shifted exactly of the same amount of the 

unnotched S/N curve when obtaining VA data. 
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3.4 Gaßner curve in the blunt notch region 

Considering the piecewise power law defined in § 2.5 for Wöhler curves, there is a 

region for N>N* where the fatigue behavior can be approximated with enough 

accuracy by the Wöhler curve of the smooth specimen reduced by the stress 

concentration factor, i.e. 

(S Kt)
k N = CB    (3.16) 

Or  

Sk N = CB Kt
−k    (3.17) 

This region is addressed as blunt notch region, as also stated by Ciavarella [23]. 

Obviously, through the same passages made here above, the Gaßner curve in the blunt 

notch region becomes 

(
S̅

G− 
1
k

 Kt)

k

N̅ = CB    (3.18) 

Being G the same shift factor defined for the smooth material. This means that in the 

entire domain of N, the Gaßner curve for a notched body defined through the TCD-

P (and approximated with a piecewise power law) is equivalent to a Wöhler curve 

shifted by G-1/k. 

3.5 Practical example 

In this practical example it will be shown that the result obtained for the piecewise 

power law has even a wider validity and it will be extended to a life-dependent stress 

concentration factor. To this end, the S/N curves deriving from the usage of the TCD-

P in the full Westergaard [21] and Kirsch [24] solutions (cfr. respectively Figure 2.3 

and 2.5) are applied to an example steel having KIc=950  Mpa mm1/2, 

ΔKth=85 Mpa mm1/2, Su=900 MPa at Nu=1,000 cycles and ΔSe=400 MPa at 

Ne=1,000,000 cycles. These values imply k=8.55 and CB=1.82∙1028. If the TCD-P 

constants are calibrated according to Susmel and Taylor’s [16]–[20] variant, it results 

a0=14.5 μm, a0
u=0.35 mm, AST=8.62 mm and BST=-0.46. From the definition of the 

exact TCD-P Wöhler curves in these cases it is not so simple to isolate smoothly the 

shift factor as done before. For this reason, a fundamental postulate has been made: 

the Gaßner curves deriving from the exact solution of the stress field ahead of the 

notch/crack can be obtained by shifting of the corresponding Wöhler curves through 

the factor G, i.e. 
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N̅ (S̅ κ(N̅))
k

= CB  öhler

N̅ (
S̅

G−
1
k

 κ(N̅))

k

= CB Gaßner
    (3.19) 

Where κ(N̅) has been defined in Chapter 2 as the life dependent stress concentration 

factor. Equation (3.19) cannot be made explicit in N̅, but can be rearranged as an 

explicit function of S̅. This 

postulate is justified by the findings 

on the piecewise curve and has been 

verified by applying the benchmark 

variable amplitude load history 

presented as a solid black line in 

Figure 3.1. The shift factor 

calculated from the non-

dimensional load history and 

k=8.55 is G≈0.15, or equivalently 

G-1/k≈1.25. The VA results (from 

the application of numerous 

amplification factors β to the 

loading history) plotted as S̅(N̅)/G-

1/k, as suggested by Equation (3.7) 

are almost perfectly overlapped to 

the CA S/N curves. Therefore the 

iterative procedure suggested by Susmel and Taylor [19] seems not needed. It is 

noteworthy that the difference between a crack and a hole is almost negligible at low 

number of cycles, as it is relatively established fact, whereas starts to be much more  

important at longer lives, where for the crack a truncation below the fatigue threshold 

levels should be needed. 

3.6 Quantitative validation 

Susmel and Taylor [19] have already provided some evidence of the validity of their 

method, despite the main general warnings about the PM rule should be taken into 

account. Therefore, what really needs a validation is that the VA and CA curves can 

be superposed as it is beautifully indicated in Figure 3.1. It is difficult unfortunately to 

find known and reliable data from the literature about Gaßner curves, including details 
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Figure 3.1: S/N curves for notched specimen using the 
TCD-P: notched specimen (red), cracked specimen 
(orange) and smooth specimen (gray dashed). Markers 
have been used to plot VA data (the scale Su/G-1/k has 
been used, as suggested by Equation (3.7)) for the 
cumulative loading history shown with the black line. 

Gaßner results· are almost indistinguishable from the 
Wöhler lines 
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of the spectra. One simple semi-direct way to do this is to use data from Sonsino and 

Dieterich [9]. To estimate the Wöhler k slope, their Table 3 has been considered (Cyclic 

material data for unnotched specimen). There is the entire Coffin Manson law which 

for cast magnesium alloys AZ 91 and AM50 and strain ratio R=–1 gives very similar 

slope factors, i.e. k≈5.60 to k≈5. This is extremely close to the slope kCL=5 for the 

notched data (Kt=2:5 in Figures 7–9 under both R=–1 ratio, for all alloys. As a result, 

the following observations can be made: (i) the slope of Gaßner curve for notched 

data is indeed unchanged for CA or VA loading (cfr. Figures 6, 8, 9 of Sonsino and 

Dieterich [9]) in the entire set of tests and within the measured life intervals; actually a 

similar number of cycles to failure is obviously expected for very high stress 

amplitudes. This confirms, independently, the curve exponents in 

Equations (3.7), (3.14), (3.18); (ii) considering N=100,000 as reported in Table 4 of [9], 

the shift factor using smooth or notched in fatigue data should remain unchanged. In 

Table 3.1 the ratio NCA/NVA is reported for both notched and smooth data. As evident 

from the last column of Table 3.1, the difference in this ratio is in the range ~–

10%÷10% (it is perfectly within the expected scatter of fatigue data), and this confirms 

again the finding; (iii) the knee point in correspondence of the fatigue limit is more 

difficult to estimate from the analytical point of view. 

Table 3.1: Elaboration of data from Sonsino and Dieterich’s  [9] Table 4. Fatigue strength 
amplitudes Sa at N=100,000 cycles with confidence level CL=50%. The ratio of NCA/NVA is 
nearly the same for notched and smooth data, as predicted 

 
 Kt=1 

 
Kt=2.5  NCA

NVA
|
Kt=1

−
NCA

NVA
|
Kt=2.5

NCA/NVA |Kt=1

% 
 

 NC

A 

NV

A 

NCA/NV

A 

 
NC

A 

NV

A 

NCA/NV

A 

 

AZ91R=-1  84 163 0.52  61 132 0.46  -11.5 

AZ91 R=0      38 91 0.42   

AM50 R=-

1 
 70 157 0.45  49 101 0.49  8.9 

AM50 R=0      36 82 0.44   

AM20 R=-

1 
 61 126 0.48  43 85 0.51  5.9 

AM20 R=0      32 72 0.44   

In some cases, the Gaßner curve is seen to have a slope which differs (albeit slightly) 

from Wöhler law; this may be a sign of invalidity of the PM rule: indeed, the simple 

use of non-unitary value of critical damage sum doesn’t change the slope of Gaßner 

curves. Unfortunately, despite some data are available in the literature indicating the 

modest change of slope [10], they are not sufficiently detailed to comment on the 

frequency and relevance of this effect. 
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3.7 Mean stress effect on the shift factor 

 A brief outline on models 

The study of mean stress effect on fatigue loading is probably almost as old as the 

study of fatigue itself. Indeed, in the very old days of fatigue, Wöhler [25]–[27] between 

1858 and 1870 already mentioned a possible detrimental effect of positive mean cyclic 

stresses on life of railway axles. The first quantitative model relating the stress 

amplitude Sa and mean stress Sm through the ultimate tensile strength Su dates 1874 

from Gerber [28], who introduced the famous Gerber parabola 

(
Sm

Su
)

2

+
Sa

Sae
= 1   (3.20) 

Where Sae is the effective stress amplitude in fully reversed loading conditions. In this 

model, the equivalent stress amplitude can be expressed as a function of the mean and 

alternate stress, being the ultimate tensile strength a material constant. This means that 

for a given couple (Sm, Sa) there exists an equivalent condition (0, Sae) (fully reversed 

loading) providing the same number of cycles to failure as (Sm, Sa). Forty years later, in 

1914, Equation (3.20) has been “replaced” by the modified Goodman [29] line 

Sm

Su
+

Sa

Sae
= 1   (3.21) 

Which today is (maybe because of its simplicity) the most commonly used mean stress 

correction in industry and probably the most “popular” model with engineering 

students. In 1939 a more conservative version of the Goodman line has been proposed 

by Söderberg [30] who replaced the ultimate tensile strength with the yielding stress of 

the material, i.e. 

Sm

Sy
+

Sa

Sae
= 1   (3.22) 

Anyway, the Söderberg correction is considered by many authors way 

overconservative, in fact Woodward et al. [31] stated “The Söderberg line is safe for nearly 

all materials, but in very many instances the line seriously over-estimates the effect of mean stress”. 

Moreover, it has been demonstrated that for many types of steels even the modified 

Goodman line (and consequently Söderberg line) provides too conservative 

corrections [32], [33], and for this reason sometimes it is replaced by the Morrow [34] 

line which substitutes the ultimate tensile strength with the fatigue strength at one 

cycle, namely 



Chapter 3 
 

 
 

94 

Sm

S′f
+

Sa

Sae
= 1   (3.23) 

S’f is not much higher than Su for materials that do not exhibit a pronounced necking, 

thus Goodman and Morrow lines provide similar corrections. However, in the case of 

materials which show high plastic deformations, the fatigue strength at one cycle can 

be much higher than the ultimate tensile strength resulting in a highly less conservative 

Morrow line with respect to Goodman’s. Dowling [32] in his Figure 3 and Figure 4 

has shown this phenomenon, with Morrow correction giving highly non-conservative 

estimates in the case of 2024-T3 aluminum, while providing very good estimates in the 

case of AISI 4340 steel. It is very common to find Equations (3.20)–(3.23) expressed 

as a function of the effective stress amplitude Sae which in fact usually is the unknown 

of the problem. In 1970 the Smith-Watson-Topper [35] (SWT) proposed an equation 

where the mean stress effect was not dependent on any material properties, but only 

on the loading history itself. The model can be written equivalently as: 

Sae = √Smax Sa (a)

Sae = Smax √
1 − R

2
(b)

Sae = Sa √
2

1 − R
(c)

    (3.24) 

Where Smax is the maximum stress in the cycle and R)Smin/Smax is the load ratio. 

Equations (3.24) (a), (b) and (c) are equivalent since Sa=½∙Smax∙(1-R), as can be easily 

recovered from Figure 3.2, where an example constant amplitude cyclic loading history 

has been plotted. A generalization of SWT model is the one from Walker [36] which 

can be interpreted as a modified SWT model with a fitting exponent γ. Therefore, 

Walker equation can be written similarly to Equation (3.24), i.e 

   

Sae = Smax
1−γ

 Sa
γ (a)

Sae = Smax  (
1 − R

2
)

γ

(b)

Sae = Sa  (
2

1 − R
)

1−γ

(c)

    (3.25) 
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Which for γ=½ obviously returns 

Equation (3.24). Dowling [32] in his 

Figure 5 and Figure 6 shows that for 

Al 2024-T3 and AISI 4340 steel the 

Walker and SWT equations 

overcome the limitations of 

Goodman and Morrow lines 

discussed above related with the 

ductility of the material. Dowling 

concludes his work stating that 

Walker and SWT models are the 

most accurate for general use, 

precising obviously that Walker 

model gives higher ac curacy when the exponent γ is known or can be estimated. In 

the current work SWT and Walker models are going to be used since, besides Dowling 

conclusions, they are independent of the material constants, which means that they 

can lead to more general conclusions on the shift factor definition for variable 

amplitude life prediction.  

 Generalized shift factor with mean stress effect 

The definition of G given in §§ 3.2, 3.3, 3.4 does not account for mean stress effect, 

therefore it is only suitable for variable amplitude fatigue in fully reverse loading 

conditions. In order to introduce a mean stress effect correction in the definition of 

the G, Equation (3.3) has to be rewritten in terms of effective stress amplitude, viz. 

D = ∑
nj

Nj

NB

j=1

= ∑
nj

NH
⋅
NH

Nj
 

NB

j=1

= NH ∑
νj

Nj

NB

j=1

=
NH

CB
 ∑νj Saej

k

NB

j=1

    (3.26) 

3.7.2.1 Smith Watson Topper mean stress effect correction 

SWT mean stress correction (3.24) shall be substituted into Equation (3.26). With this 

correction Equation (3.4) becomes 

1

N̅
=

D

NH
=

1

CB
 ∑νj (Smaxj Saj)

k/2

NB

j=1

    (3.27) 

And normalizing the history by its peak tension Sa.max such that S̅ =βSa,max (and S̅aj=βSaj, 

S̅maxj=βSmaxj) and by varying the factor β the full Gaßner curve is obtained again as 

0

Smin

Smax

Sa

Sa

Sm

S(t)

t

Figure 3.2: Definitions for fatigue stress cycle 
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1

N̅(S̅)
=

S̅k

CB
  ∑ νj  (

Smaxj Saj

Sa,max
2

)

k/2NB

j=1

= 
S̅k

CB
⋅ G  (3.28) 

Where G has a slightly different definition from Equation (3.6), viz. 

G = ∑νj  (
Smaxj Saj

Sa,max
2

)

k/2NB

j=1

(a)

G = ∑νj  (
Smaxj

Sa,max
  √

1 − Rj

2
)

k
NB

j=1

(b)

G = ∑νj  (
Saj

Sa,max
 √

2

1 − Rj
)

kNB

j=1

(c)

    (3.29) 

Equation (3.29) returns equal to Equation (3.6) for R=–1 (i.e. if Saj=Smaxj). 

3.7.2.2 Walker mean stress effect correction 

As done with the SWT model, if Walker equation (3.25) is substituted into (3.26) and 

the usual passages are performed, the following definition of G holds 

G = ∑νj  (
Smaxj

1−γ
 Saj

γ

Sa,max
2

)

kNB

j=1

 (a)

G = ∑νj  (
Smaxj

Sa,max
 (

1 − Rj

2
)

γ

)

kNB

j=1

(b)

G = ∑νj  (
Saj

Sa,max
 (

2

1 − Rj
)

1−γ

 )

kNB

j=1

(c)

    (3.30) 

Again, the first definition of G is retrieved under fully reversed loading. As regards the 

mean stress effect correction in the crack like notch and the blunt notch region, it is 

trivial to demonstrate that the current definition of G applies to Equation (3.13) and 

(3.18), too. 

3.8 Quantitative validation with experiments 

The validation of the model proposed has been done again by using the data deriving 

from the SAE Keyhole test program, beautifully explained by Tucker and Bussa [37]. 

Indeed, the main scope of the test program was variable amplitude fatigue testing and 

prediction using three loading histories at several load levels. To this purpose many 

different prediction models for constant and variable amplitude have been collected in 

the SAE Transactions Vol. 84, 1975, § 1. For example, Landgraf et al. [38] and 
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Potter [39] adopted a strain-life approach through Neuber’s rule [40] whilst Nelson 

and Fuchs [41] decided to work with stress-life models called nominal stress range I 

and II methods. As also stated in Chapter 2, the TCD has been used in 2008 also to 

predict with an acceptable level of accuracy the static failure of notched cold rolled low 

carbon steel and in presence of large plastic deformation before failure [17]. 

Nonetheless, in order to state that the TCD is a fully established approach, a large 

number of tests is still needed on larger notch radii a>a0
u and on a wider amount of 

material classes; for this reason, albeit accurate in the cases analyzed, the current linear 

elastic approach does not expect to supersede the elastoplastic fracture mechanics, 

neither in constant nor in variable amplitude fatigue. It is however noteworthy that no 

other simple methods amongst the ones collected in the SAE Transactions Vol. 84, 

1975, § 1, including strain-life approach applied to notched geometries, seem to give 

higher accuracy.  

 Loading histories 

The loading histories used in the Test Program are (B) Bracket: narrow band load 

history, (T) Transmission: strong tensile bias with several compressive reversals and 

(S) Suspension: strong compressive bias. Some additional tests were done with the 

same truncated (mini) spectra, namely mB, mT, mS. All the spectra are shown here in 

Figure 3.3. 

 

Figure 3.3: SAE Keyhole Test Program: load histories used in the tests. With solid lines are 
represented the full histories, the mini histories are shown with “+” markers. The data  have been 
downloaded from the website https://www.efatigue.com/benchmarks/ under “SAE Keyhole 
Test Program” 
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The spectra have been cycle counted through the rainflow counting algorithm (cfr. 

Matsuishi and Endo [42]) shown in Appendix. Once the cycle counting is done, it is 

possible to calculate the summation for G. In this case, since no data on Walker’s 

exponent γ were available in Literature, SWT method has been used. In this way it has 

been possible to plot an unusual representation of the rainflow, i.e. all the SWT 

corrected addenda Gj have been plotted as a function of the j-th stress amplitude Saj 

(cfr. Figure 3.4). From Figure 3.4 some interesting considerations can be made: (i) for 

higher non-dimensional stress amplitude there is usually a higher contribution to the 

Gj: indeed, G would have been a monotonic increasing function only if the loading 

spectra had been at R=–1; (ii) G at R=–1 (solid thick lines) is higher than G(R≠–1) if 

R<–1 and smaller than G(R≠–1) if R>–1. This implies that if the spectrum has 

compressive average mean stress then a longer life is predicted (high shift G-1/k), vice 

versa for tensile mean stress a shorter life is predicted (shift G-1/k is lowered), 

coherently with the mean stress effect correction; (iii) a higher Basquin’s law exponent 

k tends to lower the G-1/k. This effect is visible by comparison of the two different 

materials, with Man-Ten which provides higher values of G-1/k. 

 

Figure 3.4: SAE Keyhole test program: loading histories here expressed in terms of G j, i.e. the 
j-th contribution to the shift factor for every material is here provided as a function of the non -
dimensional stress amplitude. Letters B, T, S are the initials of the spectra: (B) Bracket, (T) 
Transmission (S) Suspension 

The VA life predictions have been calculated by shifting the green S/N curves shown 

in Chapter 2 by G-1/k for each one of the six spectra and the experimental results are 

plotted in Figure 3.5 for both RQC-100 (left) and for Man Ten (right). Predictions are 

satisfactory and are always in a scatter factor of ±3 times the predicted life. As regards 
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RQC-100, almost all the predictions seem to be collocated  on the conservative side 

of the bisector, while for Man Ten predictions are simply within the scatter bands.  

 

Figure 3.5: SAE Keyhole test program: experimentally measured vs. predicted life through the 
shift factor approach. On the left predictions for RQC-100 and on the right for Man Ten. The 
solid line (bisector) is the prefect correspondence and the dashed lines are the scatter bands with 
multiplicative factors ±3. The alphanumeric codes are explained in Table 3.2 

Table 3.2: Specimen code number (from Tucker and Bussa [37]) 

1st letter B - Bracket 

(History Identification) T - Transmission 

 
S - Suspension 

    
2nd letter R - RQC-100 

(Material Identification) M - Man Ten 

    
3rd number 1 - Highest Load 

 
2 - 

 

 
3 - 

 

 
4 - 

 

 
5 - Lowest Load 
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3.9 Discussion 

 Shift factor with nonlinear damage accumulation rule 

As abovementioned, the first simple nonlinear damage rule was proposed by Leve [5] 

in 1960. Leve’s model simply postulates a load-level dependency of the damage 

according to: 

∑(
nj

Nj
)

cL
NB

j=1

 = 1  (3.31) 

With cL≥1 constant. Equation (3.31) obviously returns to PM rule when cL=1. The 

damage curves associated with this rule are plotted as solid green lines in Figure 3.6 to 

varying of cL. An attempt to calculate the shift factor through Leve’s damage 

accumulation rule gives no simple definition of G, viz. 

D =   (
NH

CB
)

cL

 S̅kcL ∑ [νj  (
Saj

Sa,max
)

k

]

cLNB

j=1

  (3.32) 

Nevertheless, considering only the summation and applying the well-known power 

mean inequality [43] yields 

{
1

NB
∑[νj  (

Saj

Sa,max
)

k

]

cLNB

j=1

}

1/cL

≥
1

NB
∑ νj  (

Saj

Sa,max
)

kNB

j=1

 (3.33) 

Which may be rewritten as 

{∑[νj  (
Saj

Sa,max
)

k

]

cLNB

j=1

}

1/cL

≥ NB

1−cL
cL G (3.34) 

Or 

∑[νj  (
Saj

Sa,max
)

k

]

cLNB

j=1

≥ (NB

1−cL

cL
2

G)

cL

   (3.35) 

Inequation (3.35) is a lower limit for the estimated total damage, in fact from its 

substitution into (3.32) it results that 

D ≥   (
NH

CB
)

cL

 S̅kcL (NB

1−cL

cL
2

G)

cL

  (3.36) 

Which can be rearranged as 
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1

N̅
=

D

NH
≥  

S̅kcL

CB
 (

NH

NB
cL

)

cL−1

GcL (3.37) 

Or, in a more familiar way as 

1

N̅
≥

(
NH

NB
cL

)

cL−1

CB
 (

S̅

G− 
1
k

)

kcL

 
(3.38) 

Therefore, the lower limit S/N curve is 

(
S̅

G− 
1
k

)

kcL

N̅ ≥ CBcL
 (3.39) 

With CBcL=CB(NH/NB
cL)1-cL. 

Obviously (3.38) returns to the 

“classical” definition of Gaßner 

curve (3.5) when cL=1. 

Inequation (3.38) underestimates the 

cycles to failure deriving from the 

application of a nonlinear damage 

accumulation rule of the Leve’s type, 

henceforth it shall not be used for 

practical computation, but only in 

very preliminary assessment. It is 

noteworthy, anyway, that the use of 

a nonlinear damage accumulation 

rule entails an increase in the slope of 

the Gaßner curve from k to kcL, 

meaning that this nonlinearity might be the cause of the slight difference between the 

slopes of the Wöhler and the Gaßner curves experimentally measured for example by 

Sonsino and Bacher-Höchst [44]or by Sonsino et al. [45]. 

 Introduction of a fatigue limit in the shift factor model using 

a double linear damage rule 

An exact solution, function of the shift factor, can be retrieved again if the Leve’s rule 

is approximated through its first derivatives in (n/N, D)=(0,0) and (n/N, D)=(1,1). In 

fact, the slope of Leve’s rule is 0 in the origin and cL in 1 (cfr. the red dashed lines in 

Figure 3.6), therefore the following double linear damage model can be defined. 
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D = ∑ cL

nj

Nj
+ 1 − cL

NB

j=1

= NB(1 − cL) + cL ∑
nj

Nj

NB

j=1

, with 
nj

Nj
≥

cL − 1

cL

 (3.40) 

As evident from Equation (3.40) and Figure 3.6, this model introduces a rather peculiar 

definition of fatigue limit in the damage rule. Indeed, substituting Basquin’s law into 

the limit value of Nj returns the expression of the fatigue limit at the j-th load level 

Sej = (
cL − 1

cL
⋅
CB

nj
)

1
k

 (3.41) 

From equation (3.41) cL can be calibrated to obtain the correct fatigue limit, and its 

value is unique only if all the blocks contain the same number of cycles.  

cL = (1 −
Sej

k  nj

CB
)

−1

 (3.42) 

Using the proportion of cycles νj spent at level j allows to rewrite (3.40) as 

D = NB(1 − cL) +
NH

CB
cL ∑νj Saj

k

NB

j=1

 (3.43) 

After the normalization and the mean stress effect correction through Walker’s model, 

the final shifted S/N curve equation can be written 

1

N̅(S̅)
=

D

NH
=

NB

NH

(1 − cL) +
S̅k

CB
cLG (3.44) 

Where G has the general form defined in Equation (3.30). Equation (3.44) can be 

rearranged in a more convenient form to highlight the fatigue limit 

(
S̅

G− 
1
k

)

k

− Se
k =

1

N̅

CB

cL
  (3.45) 

The fatigue limit Se has been defined by supposing for convenience that each load 

block has constant number of cycles nj=NH/NB.  
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Equation (3.45) returns to 

Basquin’s law if cL=1 and G=1, but 

if G=1 and cL is used to define Se, 

it is possible to modify also the CA 

S/N curve retrieving a non-pure 

power law. Indeed, in Figure 3.7 

the S/N curves from (3.45) are 

plotted for RQC-100 steel 

(material properties in Table 2.1) 

considering both the case G=1, 

which corresponds to a CA S/N 

curve with fatigue limit and G<1 

being a VA S/N curve deriving 

from a generic variable amplitude 

load history. 

Conclusion 

It has been demonstrated that the S/N curves under CA or VA loading can be 

obtained by a simple shift factor depending on the spectrum histogram and the 

Basquin’s law slope, within the assumptions of PM rule. This holds true for both 

smooth and notched specimens and seems to be confirmed by some experimental data 

taken from the Literature. The finding is based on the TCD in its point variant 

proposed and validated by Susmel and Taylor. However, considering this result, there 

is no need to apply the iterative calculations that Susmel and Taylor propose, as the 

VA curves can be obtained directly from the CA curves, for which many proposals 

have already been put forward, also in closed form. Even the computation of the stress 

field from Finite Element Method does not seem necessary in many cases, as it does 

not add much accuracy to a problem where the number of assumptions is already quite 

strong, and more important, than the details of the stress field. As a first 

approximation, spectrum loading effects in notched or even cracked structures can be 

estimated easily from reduced amount of testing. Mean stress effect correction has 

been introduced in the definition of the shift factor through the SWT and the Walker 

equations and it has been demonstrated that under fully reversed loading the initial 

definition of shift factor is retrieved. Finally, it is proposed a discussion on the 

implications of using different damage accumulation rules in the calculation of the shift 
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factor and the concept of fatigue limit is introduced in the shift through a double linear 

damage rule. 
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4 Limits of the Palmgren Miner rule 

Introduction 

In this Chapter the limits of validity of the Palmgren-Miner (PM) rule are discussed 

with special attention to its relationship with crack propagation laws of the generalized 

Paris type. An analysis of the connection between the linear accumulation damage rule 

and crack propagation laws is necessary also in order to have a better understanding 

regarding the subtle, yet clear, boundary dividing the phases of crack initiation 

(primarily studied in fatigue) and propagation (primarily studied in fracture mechanics). 

The Chapter is extracted directly from Ciavarella et al. [1] paper titled “On the connection 

between Palmgren-Miner rule and crack propagation laws”. The classical PM rule, despite 

clearly approximation, is commonly applied for life prediction under variable 

amplitude (VA) fatigue loading, and to date, there is no simple alternative. Multiple 

authors have previously commented in Literature that the PM hypothesis is based on 

an exponential fatigue crack growth law, i.e. when the crack propagation rate is 

proportional to the crack size a, the specific case including Paris’ law for crack 

propagation exponent equal to 2. This is verified when PM is applied by updating the 

damage estimate during the crack growth. In this Chapter it is shown that applying PM 

to the “initial” and nominal (stress vs. number of cycles) curve of a cracked structure 

results exactly in the integration of the simple Paris’ power law equation and more in 

general to any crack propagation law in the form da∕dN=H∙ΔSηaζ. This leads to an 

interesting new interpretation of the PM rule. Indeed, the fact that PM rule is often 

considered to be quite inaccurate probably pertains more to the general case when 

propagation cannot be simplified to this form (like when there are distinct initiation 

and propagation phases), rather than in long crack propagation. In fact, results from 

well-known round-robin experiments under VA loading confirm that, even using 

modified Paris’ laws for crack propagation, the results of the non-interaction models, 

neglecting retardation and other crack closure or plasticity effects due to overloads, are 

quite satisfactory, and these correspond very closely to the application of PM rule, at 

least when geometrical factors can be neglected. The use of generalized exponential 

crack growth, even in the context of spectrum loading, seems to imply the PM rule 

applies. Therefore, this seems closely related to the so-called lead crack fatigue lifing 
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framework. The connection means however that the same sort of accuracy is expected 

from PM rule and from assuming exponential crack growth for the entire lifetime. 

4.1 Description 

The classical approach to VA fatigue loading is to apply the (PM) rule, proposed by 

Miner [2] at Douglas Aircraft in 1945, 21 years after Palmgren [3], which suggested 

that for a given block with a total number of cycles per block NH, damage would be  

D = ∑
nj

Nj

NH

j=1

    (4.1) 

where nj is the number of cycles spent at level j on the stress amplitude and Nj is the 

total number of cycles the specimen could resist at the stress level Sj according to the 

CA S/N (Wöhler) curve. Failure according to the PM hypothesis should occur when 

the damage reaches the critical value Dc=1. The linear damage accumulation rule is 

obviously quite approximate, neither load sequence nor memory effects are 

considered, and could be both on the unsafe and on the safe side, but it is by far the 

most well-known and used damage accumulation law (cfr. the review by Fatemi and 

Yang [4]). In order to achieve safety by design, handbooks suggest to simply assume a 

lower Dc. For instance, the FKM Guidelines [5] (Research Committee Mechanical 

Engineering) recommend Dc=0.3 for steels, steel castings, and aluminum alloys, while 

Dc=1 for ductile iron, grey cast iron, and malleable cast iron (therefore in these cases 

1 seems to work quite well in general). Attempts to generalize the PM rule have had 

limited spread: for instance the first nonlinear damage accumulation rule by Leve [6] 

in 1960 encountered limited success; Miller and Zachariah [7] in 1977 proposed an 

exponential evolution of damage, and Manson and Halford [8] in 1981 proposed the 

“damage curve concept” and a double linear damage accumulation rule to weight 

initiation and propagation differently. Probably, these methods are not particularly 

diffused because they usually need calibration and can become very cumbersome when 

large number of blocks or random loading is considered. Concerning cracked 

structures, the PM rule has been applied much less, since the full integration of crack 

propagation equations is generally preferred with the hope of being more accurate [9]–

[13], and the ultimate goal of obtaining eventually the full S/N curve solely via 

integration as a total-life analysis based on crack propagation, hence including the stage 

of (very) short cracks. This would hope to shed a light on the old problem of 

distinguishing between the initiation and propagation stages, which generally has only 
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a vague solution (the threshold “has often been defined as a macrocrack, visible in a low-power 

microscope” [14]). Notwithstanding, unsatisfactory prediction quality at times “stems from 

an inadequate conception of the constraint factors incorporated in the NASGRO models.” [11] 

Clearly, the PM rule is not the way forward for very advanced designs of light 

structures, although it remains the basis for the applications where it started from, viz. 

rolling bearings, and many other applications. It is also commonly used in design of 

welded joints (cfr. Haibach [5] where variants are proposed to account for cycles below 

the fatigue limit, where it exists). In any case, it is appropriate to outline some possible 

conclusions, because some confusion may have originated from some authors who 

have noticed, like Miller and Zachariah [7], that “the Palmgren-Miner hypothesis can be stated 

to be based on an exponential fatigue crack growth law.” Indeed, Miller and Zachariah [7] 

noticed that the integration of a law of the form 

da

dN
= Γ ΔSηa    (4.2) 

Leads to the PM rule; in their case Miller and Zachariah referred to the type of 

equations originally proposed by Frost and Dugdale [15]. It should be noted 

immediately that the “exponential crack growth” was already proposed in 1952 by 

Shanley [16] in his Equation 4 to justify the S/N curves also under spectrum loading. 

His reference to h≈8 without much reference to actual real crack is rather similar to 

the equations by few authors (Nisitani [17], Goto and Nisitani [18], Nisitani et al. [19], 

[20], Murakami et al [21], and Murakami and Miller [22]; cfr. also Pugno et al. [23]). It 

is noteworthy that the integration of this type of crack growth laws leads to an S/N 

curve ΔSη∙N=const, in which the typical value of η is of the order of the Basquin’s law 

exponent known from Textbooks. The logarithmic dependence on the initial crack 

size resulting from the integration has been obviously not observed in the classical 

studies and Textbooks (exception made for the empirical factors taking into account, 

for example, surface finish which might be an indication of a small initial crack), until 

recently when it was indeed observed [21], [24], [25]. The exponential crack growth 

sometimes is even recalled in the more general attempt to identify unified procedures 

for crack growth under spectrum loading [26], [27]. Indeed, the USAF report refers to 

exponential fits either for crack sizes a<0.005 in (which probably would be called short 

cracks) [21], or as an approximation in small increments of propagation. Indeed, on 

their page A10 it is explicitly written that exponential fits are assumed only over small 

increments “Incremental crack growth is determined through log-linear interpolation of the crack 

growth curve. Crack growth curves typically increase at about the same rate as an exponential function. 
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That is, although an exponential function may not fit the crack growth curve exactly, over a short 

interval the rate of increase of the crack growth curve is nearly exponential. Crack growth calculation 

errors can occur using linear interpolation even when many points are included in the crack growth 

table.” Thus, it should not be concluded that exponential crack growth can be assumed 

for the entire lifetime. The present note starts from showing a disagreement with the 

Miller-Zachariah [7] statement that the Palmgren-Miner hypothesis should be valid 

only with exponential crack growth. This erroneous conclusion is shown to clearly 

come from updating the damage in each block starting from the initial crack size. This 

is not the correct interpretation of the PM rule, which in general never updates the 

damage during the calculation, being such simplification the basis for its simplicity. A 

more correct interpretation of the Palmgren-Miner hypothesis in the context of long 

cracks leads to quite more general conclusions. Indeed, it is here shown that a correct 

application of PM rule follows directly from any propagation law of the form 

da

dN
= Γ ΔSηaζ    (4.3) 

Covering the equation for short cracks which actually is a special case of 

Equation (4.3), as well as the best-known Paris’ law [28] defining the advancement of 

the crack in terms of stress intensity factor range 

da

dN
= C ΔKm    (4.4) 

Where C and m are material parameters to be experimentally calibrated. This is just 

the basic form of the Paris’ law and, strictly speaking, the PM rule does not follow 

from application in range where da/dN vs. ΔK data show deviations from the power 

law, like near threshold or near static failure. The Chapter then concludes with a 

discussion about what may be the reasons why the linear accumulation damage rule 

does not seem to work so well in general and when it could work instead. 

4.2 Palmgren-Miner hypothesis from crack propagation 

laws 

The starting point is the application of PM rule to a crack of characteristic size a, 

considering that Paris’ law defines a crack advancement per cycle in terms of stress 

intensity factor, ΔK=f ΔS(πa)1/2. Under the hypothesis that the geometric factor f is 

independent of the crack size, Paris’ law (Equation (4.4)) can be integrated within the 

load block j, i.e., assuming m>2, from aj to aj+1: 
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π
m
2 (

m

2
− 1) C (f ΔSj)

m
 Nj = a

j

1−
m
2 − a

j+1

1−
m
2     (4.5) 

Summing all the NB blocks in the load history up to failure, all the intermediate terms 

cancel out (of course, retardation and interaction effects have been neglected in the 

current analysis), hence 

∑ΔSj
m Nj

NB

j=1

=
a

i

1−
m
2 − a

f

1−
m
2

π
m
2 (

m
2 − 1) C fm

    (4.6) 

Where ai and af are the initial and final crack sizes respectively. Writing the factor 

νj=Nfj/N̅=nj/NH, (proportion of cycles spent at level j on the total number NH), the 

life under the sum of all NB blocks is: 

ΔS̅j
m N̅j = 

a
i

1−
m
2 − a

f

1−
m
2

π
m
2 (

m
2 − 1) C fm

⋅
1

G
  (4.7) 

Having defined again, as done in Chapter 3, an amplification factor β for the base 

spectrum such that ΔS̅=βΔSmax is a Gaßner stress range and ΔSmax is the largest stress 

range of the spectrum, so that each individual block stress range is that ΔSj=βΔS̅j. 

Finally, the multiplicative factor can be computed from the base spectrum as 

G = ∑ νj  (
ΔSj

ΔS̅
)

m

= νj  (
ΔS̅j

ΔSmax
)

mNB

j=1

    (4.8) 

This result looks identical to the result that was recently obtained for the VA S/N 

(Gaßner) curve (i.e., the Wöhler SN curve for spectrum loading); see Ciavarella et 

al [29] where it was found that Gaßner curve is simply shifted CA S/N curves starting 

from power laws for CA loading, like Basquin’s [30] law, and even much more in 

general. The integrated form of Paris law for CA (4.4) with G=1 is also a power law 

of the Basquin type, N∙ΔSk=CB where m=k and CB=(ai
1-m/2 – af

1-m/2)/(πm/2(m/2-1)C). 

This result is the exact same as obtained from applying the linear damage sum rule of 

PM for which the damage sum will be given by 

D = ∑
nj

Nj

NB

j=1

= ∑
nj

NH
⋅
NH

Nj
 

NB

j=1

= NH ∑
νj

Nj

NB

j=1

=
NH

CB
 ∑νj ΔSj

k

NB

j=1

    (4.9) 

The life under the sum of all j blocks is N̅ 

1

N̅
=

D

NH
=

1

CB
 ∑νj ΔSj

k

NB

j=1

    
(4.10) 
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And the result follows. If G=1, one simply has the CA S/N curve. Indeed, in Ciavarella 

et al. [29] it was also found that starting from Basquin’s law and applying the PM rule, 

gives a Gaßner curve which is shifted from the CA S/N curve, but here dealing with 

specimen with a long crack, there is also the independent integration of Paris law that 

results in the same final equation. For a plain specimen or a notched one (if the theory 

of the critical distances can be applied), Ciavarella et al. [29] proved only that VA S/N 

curves were shifted CA S/N curves with the factor G. An important consideration is 

that the same procedure just outlined can be generalized for the law of Equation (4.3) 

as the exponent in ΔS plays no role in the summation, and the result carries over to 

the more general crack growth curves. Therefore, it is concluded that in this general 

class of crack propagation laws, including many short crack laws proposed in the past, 

as well as Frost-Dugdale, the Palmgren-Miner rule follows naturally and is equivalent 

to the integration of the crack growth. 

 Mean stress effect 

Mean stress effects can be accounted for in spectrum loading by using the modified 

definition of shift factor recently given by D’Antuono and Ciavarella [31]. In this case, 

the starting point is Walker [32] equation for crack growth 

da

dN
= C0 (

ΔK

(1 − R)1−γ
)

m

    (4.11) 

Where C0 is the intercept of Paris’ law calculated at R=0 and γ is Walker exponent for 

mean stress correction. Under the hypothesis that the geometric factor f is independent 

of the crack size, Walker equation (4.11) can be integrated within the load block j, i.e., 

assuming m>2, from aj to aj+1 

π
m
2 (

m

2
− 1) C0  (f

ΔSj

(1 − Rj)
1−γ)

m

 Nj = a
j

1−
m
2 − a

j+1

1−
m
2     (4.12) 

As done for Paris’ law, summing all the NB blocks in the load history up to failure leads 

to 

∑(
ΔSj

(1 − Rj)
1−γ)

m

 Nj

NB

j=1

=
a

i

1−
m
2 − a

f

1−
m
2

π
m
2 (

m
2 − 1) C0 fm

    (4.13) 

Writing the life proportion spent at level j, νj=Nfj/N̅=nj/NH, and rearranging (4.19) 

leads to 
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1

N̅
=

D

NH
=

π
m
2 (

m
2

− 1) C0 f
m

a
i

1−
m
2 − a

f

1−
m
2

  ∑νj  (
ΔSj

(1 − Rj)
1−γ)

mNB

j=1

    (4.14) 

Then normalizing the spectrum by its peak stress range ΔSmax such that ΔS̅ =βΔSmax 

(and ΔS̅j=βΔSj, S̅maxj=βSmaxj) and by varying the factor β, the full Gaßner curve is 

obtained again as 

ΔS̅i
m N̅j = 

a
i

1−
m
2 − a

f

1−
m
2

π
m
2 (

m
2 − 1) C0 fm

⋅
1

G
  (4.15) 

Where, as in Chapter 3, G now accounts for mean stress effect, being 

G = ∑νj  (
Smaxj

1−γ
 Saj

γ

Sa,max
2

)

kNB

j=1

 (a)

G = ∑νj  (
Smaxj

Sa,max
 (

1 − Rj

2
)

γ

)

kNB

j=1

(b)

G = ∑νj  (
Saj

Sa,max
 (

2

1 − Rj
)

1−γ

 )

kNB

j=1

(c)

    (4.16) 

 

4.3 Applying Palmgren-Miner hypothesis in a refined 

sense 

The reason why Miller and Zachariah [7] suggested PM rule stems from the 

exponential crack growth, and not from Paris’ law, may be that they computed the 

damage by considering at the denominator the number of cycles Nj which would lead 

to failure at the given stress range level, 

π
m
2 (

m

2
− 1) C (f ΔSj)

m
Nj = a

j

1−
m
2 − a

fj

1−
m
2  ~ a

j

1−
m
2     (4.17) 

Where it has been supposed that the final crack size afj is large enough to be neglected. 

Hence, dividing the actual number of cycles spent at each level nj by Nj, the total 

damage is obtained as 

D = ∑
nj

Nj

NB

j=1

= ∑
a

j

1−
m
2 − a

j+1

1−
m
2

a
j

1−
m
2

NB

j=1

    (4.18) 
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Which does not sum to 1. Indeed, considering small increments aj+1=aj+Δa, and then 

expanding in Taylor series 

D = ∑
nj

Nj

NB

j=1

= ∑
1

2
 
a

j

− 
m
2

a
j

1 − 
m
2

(m − 2) Δa

NB

j=1

= −(1 −
m

2
) ∑

Δa

a

NB

j=1

                            

Δa→0
→   − (1 −

m

2
) ∫

da

a

af

ai

= −(1 −
m

2
) ln

af

ai
  

(4.19) 

That in general is ≫1. For instance, if af=1,000∙ai, then ln(af/ai)≈6.9. This is only valid 

for m>2, and approximately as (4.19) was expanded in Taylor series, and neglected the 

final values of the crack at failure at each stress range level. For example, for m=4, this 

means a spurious artificial increase of damage of 7. There could be also an effect of 

load sequence for discrete spectra, if these approximations were removed. Miller and 

Zachariah [7] mention this interpretation of the PM rule and, therefore, state that the 

PM hypothesis is based on an exponential fatigue crack growth law, i.e., Paris for m=2, 

as in this case, repeating the process just completed for m>2, one obtains simply 

(similar to their Equation 3) 

D = ∑
nj

Nj

NB

j=1

= D = ∑
ln aj/ai

ln afj/ai

NB

j=1

=    (4.20) 

Neglecting the change of afj with ΔS (considering a given final crack size that is dictated 

by static failure KIc∙(1−R)=f∙ΔSj∙(πafj)
1/2, where R =Smin∕Smax is the load ratio and KIc is 

static toughness) and neglecting the influence of ΔSj on afj 

D =
1

ln
af

ai

∙  ∑ ln
aj+1

aj

NB

j=1

= 
1

ln
af

ai

∙ (ln
a2

a1
+ ln

a3

a2
+ ⋯ + ln

af

aNB−1
)

=
1

ln
af

ai

⋅  ln
af

a1
= 1 

(4.21) 

Since ai=a1. This satisfies the PM hypothesis. In view of the general correct 

interpretation, the PM rule should apply rather commonly, including the case of short 

cracks. However, since it cannot be stated that “fatigue life is dominated” by initiation, 

as it is often believed for CA loading at low levels of stress range, in the case of short 

cracks there is inevitably the sum of the two fatigue phases (initiation and propagation), 
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and probably this makes the PM rule invalid. Indeed, as reported in previous 

studies [33], [34] and in the Q-Q plots of Figure 4.1, damage sum Dreal can be as low 

as Dreal=0.001 in extreme cases, or as large as Dreal=10 in other extreme cases, although 

the distribution is rather of the extreme values type, so that only 10% of cases, for 

example, Dreal<0.1, or in another 10% of cases, it is Dreal>1.  

 

Figure 4.1: Adapted from Eulitz and Kotte [33] and Sonsino[34]: Damage sum Dreal can be as 
low as Dreal=0.001 in extreme cases or as large as D real=10 in other extreme cases 

It is found that the median value is rather 0.4, from which the standards obtain the 

safety factors suggested for design purposes mentioned in § 4.1. It is interesting to note 

that in double linear damage rules like Miller and Zachariah [7], and also Manson and 

Halford [8], it is said that cycles at high strains tend to decrease the initiation life at 

cycles at lower strains, so they introduce a negative effect, accelerating failure. In crack 

propagation, the opposite is normally found, as overloads give “crack retardation” 

effects. This means that even double linear damage rules would need to be adapted to 

crack propagation effects and tuned appropriately and it is not clear if this could be 

done in the general context. In the most common case, when there is crack initiation 

and propagation, it is unclear what their benefit could be, and indeed, this may explain 

their very limited success. When dealing with long cracks, there have been very few 

investigations of PM rule, perhaps because overload effects were found, and an 

attempt was immediately started to deal with them accurately. Not only Miller and 

Zachariah [7], but also in this context, early authors (Schijve and Broek [35]) 

interpreted PM rule in the “refined sense”, exacerbating the increase of damage. 

Indeed, in Schijve and Broek [35] the ratio of final to initial crack length is 30/5=6, 

hence the spurious artificial increase of damage (4.20) is (for their material having 
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m=4), i.e. (m-2)/2∙ln(af/ai)≈1.8. This means that their result that gust load fatigue tests 

the predicted damage at failure was fairly high, namely, of the order 2 to 4, should be 

significantly reconsidered to be not so high, of the order 1 to 2, which is very close to 

values of a round-robin exercise that is going to be described. Therefore, despite clearly 

there are overload effects as it is well known, they do not produce such tremendous 

effect on the linear damage accumulation. A fortiori one of the conclusions from 

Schijve and Broek [35] is valid: “The Palmgren-Miner rule will give conservative crack rate 

predictions … it can be a useful tool to fix inspection periods for ‘fail-safe’ aircraft structure.” Today, 

NASGROTM equation [10] (formerly known as Forman equation) is considered to be 

among the best possible crack growth prediction methods. It does attempt to consider 

load sequence effects with “interaction models” of various complexity. However, as it 

can be read in paragraph 2.1.7.6 (Notes on using the Load Interaction Models): “In 

general, caution should be exercised when these models are used because they can be unconservative 

compared with the non-interaction model. This is so because the dominant effect modelled is retardation, 

even if accelerated growth is predicted in a few cases. Before applying these models for life predictions, 

it is recommended that the user gain sufficient experience and fine tune the various model parameters 

based on comparisons with test data for the kind of spectra relevant to the use.” Obviously, a 

calculation based on PM rule would work similarly to integration of Paris law with 

non-interaction models, at least in the sense that no overload effect and other memory 

effects are considered and within the assumption that geometrical factors in the crack 

size do not change during propagation, which is largely satisfied in cases when cracks 

are relatively small for much of their life. Hence, with respect to a full NASGROTM 

calculation without load interaction, the PM rule will often be almost equivalent. Based 

on Table 4 of the NASGROTM manual [10], which in turn reports a large set of data 

from a round-robin exercise [9] with a material having a rather good form of Paris law 

crack propagation law, with m very close to 3 (2219-T851 aluminum), some findings 

in the present paper seem confirmed. The paper deals with a center-cracked tension 

specimens (so that geometrical factors are probably constant over much of the fatigue 

propagation), under random spectrum loading of interest of a typical fighter aircraft 

air-to-air (A-A), air-to-ground (A-G), instrumentation and navigation (I-N), and 

composite missions. Indeed, even though the round-robin exercise was made with 

slightly different forms of crack propagation law than Paris law, the results are very 

encouraging, and they are relevant for spectrum loading of engineering interest, and 

with high quality data, although since 1981 of course the crack propagation codes may 

have improved. As in the previous studies[9], [10], load interaction models despite their 
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complexity lead to unconservative results unless the parameters are finely tuned; the 

non-interaction assumption seems to be more appealing (as indeed recommended in 

the NASGROTM manual after all). Indeed, they lead to errors that are certainly not very 

large, with total life predicted very close to the real life measured, as reported in Table 

4.1 (see second and third columns). And what is important to notice, with respect to 

the PM rule, is that they are much closer to correct than the real damage sum, Dreal, 

from Table 4.1 was suggesting. Remarkably the damage sums in this round-robin 

exercise are not too different from those of Schijve and Broek [35], once the latter are 

corrected for the misinterpretation of PM damage rule. Hence, in general, the error in 

applying the PM rule in the most general cases could be attributed to various factors: 

(i) either the laws governing crack propagations are not correctly of the form above 

(separate variables power law forms) and in particular not of the exponential type (ii) 

or they are correct for short cracks, but differ largely when propagation stage is reached 

(and probably they are no longer exponential, but rather of the form expected from 

the integration of Paris law), in which case a single exponential law should not be used. 

These effects tend to make the damage sum too low; (iii) there are strong sequence 

effects (and, overloads) that make the damage sum too high. 

Table 4.1: Ratio test over predicted life N test∕Npred for ASTM (American Section of the 
International Association for Testing Materials)round-robin spectra 

 
Note: Material 2219-T851, L-TAL. Data in Table 4 of NASGRO® manual [10] and in turn based on Chang and 
Hudson [9]. The non-interaction model prediction (which is a form very close to applying PM rule to crack 
propagation) is extremely close to real tests and often conservat ive by a little margin. Instead, interaction models 
predict often unconservative results and sometimes by larger margins.  

  

Loading Spec Stress, Test Non Int Non Int Willenborg Willenborg Willenborg Strip Constant

Spectrum No ksi Cycles NASGRO Walker Walker Generalized Modified Yeld Closure

R=3 R=3 Φ0=0.4 Cfspec=0.5

M-81 20 115700 0.78 0.71 0.49 0.54 0.54 0.62 0.7

M-82 30 58585 1.27 0.92 0.62 0.87 0.92 1.27 1.15

M-83 40 18612 1.28 0.79 0.54 0.88 0.94 1.71 1.16

M-84 20 268908 0.86 0.77 0.51 0.57 0.55 0.52 0.6

M-85 30 95642 1.25 0.98 0.63 0.81 0.82 0.98 0.87

M-86 40 36397 1.24 1.04 0.67 0.99 1.04 1.64 1.06

M-88 30 380443 1.36 1.19 0.56 0.66 0.59 0.51 1.23

M-89 40 164738 1.73 1.37 0.63 0.8 0.79 0.92 1.56

Air-Air

Air-Grn

Ins-Nav
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Conclusion 

There has been a suggestion in the literature that PM should follow from exponential 

crack growth only [7]. This is shown to stem perhaps from an incorrect interpretation 

of PM rule, updating the damage during the damage sum, which was repeated also in 

some early assessment of PM rule for long cracks [35]. In the correct version, the 

Palmgren-Miner hypothesis follows instead directly from a much more general crack 

growth law, where the crack growth is proportional to the product of powers of stress 

amplitude and crack length. This includes several laws proposed in the past for short 

or long crack growth, and obviously Paris law. The reason why PM does not apply 

very accurately in general may stem from its use in context involving a change from 

initiation to propagation laws (which tends to make the damage sum too low), or 

obviously also sequence effects and in particular overloads effects in long crack 

propagation, which tend to make the damage sum too high. When correcting for the 

“refined” interpretation of PM rule for long crack, the rule may work not too bad, as 

for some important round-robin data on spectrum loading for an aluminum alloy used 

in military aircrafts, moreover neglecting interaction effects was found to be perhaps 

better than including them. The application of the PM rule as suggested by Ciavarella 

et al [29] leads to VA S/N curves that are shifted power laws of the CA curve, similarly 

to what was found plain specimen having power law S/N curves (Basquin’s law) but 

also for notched cases, whenever the theory of the critical distance applies. Therefore, 

this provides a general framework to consider Gaßner curves. The use of generalized 

exponential crack growth during the entire lifetime (which seems closely related to the 

“lead crack fatigue lifing framework” [27]), even in the context of spectrum loading, 

seems to imply that the PM rule applies. Therefore, the same sort of accuracy is 

expected. 
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5 An anal tical relation between Weibull’s 

and Basquin’s laws 

Introduction 

In this Chapter, the advantages of introducing a more versatile S/N curve model are 

investigated. Such necessity may arise from the need of having a more realistic S/N 

curve whose trend towards the fatigue limit can be controlled, instead of being a knee. 

The Chapter is directly extracted from an article by the author [1] titled “An analytical 

relation between Weibull's and Basquin's laws for smooth and notched specimens and application to 

constant amplitude fatigue”. Starting from the classical definition of stress-life Wöhler 

curve in the form of Basquin’s law, an analytical procedure for the calibration of the 

four parameters Wöhler curve (Weibull’s law) for a plain specimen is proposed. The 

higher precision of the four parameters S/N curve is highly evidenced by Weibull 

stating in his book [2], in disagreement with Moore and Kommers [3], that the knee 

that seem to show S/N diagrams “is an accidental phenomenon caused by the joint effect of a 

large scatter in fatigue life and too small number of observations”. Furthermore, as suggested by 

Shanley [18] in the 1956 “Colloquium on Fatigue” [19], Basquin’s law fails to model 

low cycle fatigue since it does not predict correctly the strain at high stresses, while by 

using Weibull’s law one supposes that a stress close to the ultimate tensile strength 

causes much lower strain, hence it can be applied a certain number of times without 

failure. This is also confirmed by Epremian and Mehl [20] that in 1952 showed that an 

S/N diagram when the alternate strength is close to the ultimate tensile strength, can 

be fit with very good agreement by a probability scale instead of a logarithmic scale 

and this suggests that at high stresses alternating plastic strain dependence on stress 

amplitude is primarily of statistic nature. Thence, for the reasons just evidenced the 

smooth Weibull’s S/N curve model is certainly a more realistic form of modelling 

stress life fatigue data with respect to a Basquin’s law truncated at the fatigue limit and 

at some low cycle fatigue strength. Similarly, in crack growth analysis the NASGROTM 

equation in its original and modified forms [4]–[6] is a much more realistic 

representation of the Paris’ law[7] truncated below the threshold stress intensity factor 

and above the limit stress intensity factor. Nevertheless, Basquin’s law has been 

extensively used by most of the researchers and engineers until these days because of 
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its simplicity and consequently most of the fatigue databases for S/N curves available 

in literature are given in the form of Basquin’s law truncated at the fatigue limit. To 

the author’s knowledge, nobody before has ever tried to relate Basquin’s and Weibull’s 

laws and this shall be done in this work. The usefulness of this exercise can be found 

in the fact that many stress life models are based on Basquin’s law, thus finding an 

analytical relationship with Weibull’s law could make simpler to rewrite these models 

by means of a more sophisticated and realistic model, plus an entire database of 

Basquin’s law coefficients might be converted into Weibull’s law by simply applying 

an analytical formula. Moreover, since “the more parameters need to be calibrated, the 

more experimental data need to be known”, having a direct link between a four and a 

two parameters model allows to reduce the amount of experimental data necessary to 

reliably characterize Weibull’s law. Indeed, as also Weibull states in his book [2], tuning 

the parameters of Weibull’s law is not as immediate as doing the same thing with a 

pure power law. On this purpose, Weibull suggests a graphical and a semi-analytical 

trial and error procedure to derive the parameters for his equation from experimental 

data. With the model described here, one could find the power law which interpolates 

the data in the high cycle fatigue regime and then the calculation of the four parameters 

is straightforward. Finally, the important matter of developing a unique S/N curve 

model based on Weibull’s law which can account for the notch effect is addressed. 

The obtained parameters are then adjusted by means of an additional slope factor 

preserving the inflection point of the curve while changing its slope in order to model 

the experimental observations in which an increase of the scatter in life prediction is 

observed when reducing the stress amplitude. The same approach has then been 

adopted to calibrate the Weibull’s law parameters for a notched specimen, and the 

fitting slope factor has been found to be a value that changes with the material but 

remains constant with the stress concentration factor. The findings have been 

validated with existing experimental data on 2024-T3 aluminum alloy and normalized 

SAE 4130 steel.  
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5.1 Wöhler curve in the  orm o  Basquin’s law 

When dealing with Basquin’s law, it must be considered that in its truncated form it 

depends on four parameters, i.e. 

{

S(N) = Su = b̅ ⋅ Nu
a̅ 1 ≤ N ≤ Nu

S(N) = b̅ ⋅ Na̅ Nu < N ≤ Ne

S(N) = Se = b̅ ⋅ Ne
a̅ N > Ne

 (5.1) 

Here the four parameters are the slope a̅, the fatigue strength at 1 cycle (or at one 

reversal) b̅, the ultimate tensile strength Su (Nu) and the fatigue limit Se(Ne). 

Equation (5.1) corresponds to a piecewise straight line in a log-log plot. Basquin’s law 

is also currently the most used in the field of research since because of its simplicity it 

can be easily manipulated. Even the author used extensively Basquin’s law in his works 

to derive new simplified models to predict variable amplitude fatigue life [8] or to 

derive another smoothed model which could account for the notch effect in the case 

of a plate with circular holes [9]. 

5.2 Wöhler curve in the  orm o  Weibull’s law 

Finding an analytical link between Basquin’s and Weibull’s laws does not introduce 

new variables and complexity to the problem since in both cases four parameters are 

necessary to draw the Wöhler curve; on the contrary, the user will be able to 

condensate a piecewise function into a single equation and consequently, no further 

experimental analysis should be needed to re-characterize a material by means of 

Weibull’s S/N curve model. In this way, Weibull’s law can be intended as a direct 

smoothing of the truncated power law. Weibull’s law was defined such that three 

constraints had to be satisfied when plotting it in semilogarithmic coordinates: (i) slope 

equal to zero for N→0, (ii) slope equal to zero for N→∞ and (iii) the curve must show 

an inflection point. The same constraints must be valid in a log-log plot. The law along 

with its derivatives w.r.t. N is 

{
 
 

 
 

S(N) = b ⋅ (N + B)a + Se (a)

S′(N) =
dS(N)

dN
= b ⋅ a ⋅ (N + B)a−1 (b)

S′′(N) =
d2S(N)

dN2
= b ⋅ a ⋅ (a − 1) ⋅ (N + B)a−2 (c)

 (5.2) 

The parameters a, b, B, Se must be calculated such that the new S/N curve respects 

the constraints defined by the Basquin’s law. On this purpose, it is assumed that the 
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slope of the Basquin’s law matches the first derivative of Weibull’s law in the inflection 

point Ni of the log-log plot, i.e. log10 S(N)/log10 N|
N=Ni

 = a̅. 

{
log10 S(N)/log10 N|

N=Ni
= a̅

log10 S(N)/ log10 N log10 N|
N=Ni

= 0
 (5.3) 

Using the equations defined in Appendix gives 

{
 
b ⋅ a ⋅ (1 + B/Ni)

a−1

b ⋅ (1 + B/Ni)a + Se
= a̅ (a)

(Ni + B) ⋅ (1 − a) + Ni ⋅ (a − 1) = 0 (b)

 (5.4) 

The hypothesis on the slope of the inflection point is then combined with the static 

failure and the fatigue limit conditions, i.e.: 

{
b = (Su − Se) ⋅ B−a (a)

S(N → ∞) = Se (b)
  (5.5) 

Equation (5.4)(b) can be expressed as function of the auxiliary variable α=B/Ni 

corresponding to the exponent of Weibull’s law in S/log(N) coordinates (it is a positive 

number since Weibull uses a minus sign at the exponent in his notation). With some 

simple passages the system of equations is then solved for α giving the following 

implicit equation 

(
α + 1

α
)

α+1

= −
a̅Se

Su − Se
for 0 < α < 1 (5.6) 

Once numerically solved, Equation (5.6) gives the ratio α=B/Ni. Then, the value of Ni 

is retrieved by considering that both the classical S/N curve and the smoothed one 

pass by (Ni, S(Ni)), i.e. equation (5.1) has to be equal to Equation (5.2)(a) for N=Ni 

b̅ Ni 
a̅ = b ⋅ (Ni + B)a + Se (5.7) 

or 

b =
b̅ Ni 

a̅ − Se

Ni
a ⋅ (1 + α)a

 (5.8) 

By using again Equation (5.4)(a) and the definition of α, an explicit expression of the 

inflection point Ni is found 

Ni = ((
1

α
+ 1)

a

⋅
(Su − Se)

b̅
 +

Se

b̅
)

1/a̅

 (5.9) 

The value of b can be found from Equation (5.5)(a) for N=0 or from Equation (5.8)s. 

From the above passages, the complete set of equations which “converts” Basquin’s 

law into Weibull’s law is 
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{
  
 

  
 (

α + 1

α
)

α+1

= −
a̅ Se

Su − Se
(a)

a = α ⋅ (a̅ − 1) + a̅ (b)

B = α ⋅ ((
1

α
+ 1)

a

⋅
(Su − Se)

b̅
 +

Se

b̅
)

1/a̅

(c)

b = (Su − Se) ⋅ B−a (d)

 (5.10) 

Note that for Se=0 (no fatigue limit) the smoothed S/N curve shows no inflection 

point which implies α→0, and the problem is again solvable in closed form. For a full 

analytical solution of the system shown in (5.10), an approximate form of 

Equation (5.10)(a) should be found. The basic consideration is that (
α+1

α
)

α+1

=

(
α+1

α
) ⋅ (

α+1

α
)

α

 and the approximate form to be found must be valid in the range 

0<α<1. Hence, by studying the function (
α+1

α
)

α

, one finds that in the range of interest 

it can be approximated by an equilateral translated hyperbola 
A1x+A3

A2x+A3
, where the 

coefficients A1=5, A2=2 and A3=1 minimize the error between the correct and the 

approximated form, with a maximum error lower than 2.5%, as shown in Figure 5.1. 

Thus, the full analytical approximated solution to the classical Wöhler curve smoothing 

problem proposed in this work is 

{
 
 
 

 
 
 α =

6 − γ + √(6 − γ)2 + 4(2γ − 5)

2(2γ − 5)
(a)

a = α ⋅ (a̅ − 1) + a̅ (b)

B = α ⋅ ((
1

α
+ 1)

a

⋅
(Su − Se)

b̅
 +

Se

b̅
)

1/a̅

(c)

b = (Su − Se) ⋅ B−a (d)

 (5.11) 

Where γ=(–āSe/(Su–Se))
1/(ā–1). 
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Figure 5.1: Approximate form of (
𝛼+1

𝛼
)

𝛼+1

(left side) and relative error between (
𝛼+1

𝛼
)

𝛼+1

 and 

5𝛼+1

2𝛼+1
 (right side) in the range 0<α<1 

5.3 Discussion of the results 

As written in the introduction, all the stress-life material data available in literature in 

terms of Basquin’s law can be easily recalculated by means of the smoothing technique 

just explained providing Weibull’s law data. As an example, consider a generic steel, in 

this case the material data for the two forms of S/N curve are: 

Table 5.1: Example of material properties recalculation for a generic steel  

Basquin’s law Weibull’s law 

b̅, MPa 
1,796.4 b, MPa 6,715 

ā -0.1 a -0.343 

Nu, cycles 1,000 B, cycles 2,687 

Se, MPa 451.2 Se, MPa 451.2 

The truncated Basquin’s law and Weibull’s law are shown in Figure 5.2; in the low cycle 

fatigue regime Weibull’s law is more conservative than the truncated Basquin’s law, 

while almost a decade after the inflection point, the smoothed curve becomes less 

conservative w.r.t. the truncated power law since the transition to the fatigue limit 

appears too slow. A possible way to recalibrate these constants in order to get a more 

conservative curve and/or a better fit of experimental data shall be explained hereafter: 

1
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f(
α
)

α

((Г+1)/Г)(Г+1)

(Г+1)/Г·(5Г+1)/(2
Г+1)

f1(𝛼) =
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Figure 5.2: Comparison between Basquin’s law and the corresponding derived Weibull’s law 

5.4 Techniques of recalibration of the constants 

 Graphical recalibration 

If the experimental data require a steeper and more conservative curve in proximity of 

the fatigue limit, a smaller value of the exponent a should be chosen while keeping 

constant the inflection point Ni; on the contrary, if the transition to the fatigue limit is 

very smooth and should be modelled with a gentler slope, a higher value of the 

exponent should be used. In this way B, b, α vary consistently and the curve becomes 

more/less conservative in the very high cycle fatigue regime w.r.t. Basquin’s truncated 

law, instead its first derivative for N<Ni will not change too much. The definition of 

a slope factor fa accomplishes the scope of changing the slope in the high cycle fatigue 

regime, i.e.: 

{
 
 

 
 ǎ = fa ⋅ a (a)

α̌ = (a − a̅)/(a̅ − 1) (b)

B̌ = Ni ⋅ α̌ (c)

b̌ = (Su − Se) ⋅ B̌−ǎ (d)

 (5.12) 

The family of curves deriving from changing the “slope” ǎ by multiplying a by 0<fa<2 

is shown in Figure 5.3. 

450

500

550

600

650

700

750

800
850
900

400

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

S(
N

),
 M

P
a

N

Basquin

Weibull



 
An analytical relation between Weibull’s and Basquin’s laws 

 
 

131 

 

Figure 5.3: Family of S/N curves deriving from the analytical fitting of the basquin’s la w with 

decreasing �̌� 

 Statistical recalibration 

The statistical calibration of the S/N curve parameters is usually done via least-squares 

method. The assumptions when approximating fatigue data with least squares by a 

pure power law are (i) that the N at prescribed S follows a lognormal distribution and 

(ii) that the variance of log(N) is constant over the tested range (hypothesis of 

homoscedasticity). The general equation of a least squares regression line is 

Y = C1X + C2 + ϵ (5.13) 

Where ϵ is a random variable of error. The regression line is then 

Ŷ = Ĉ1 X + Ĉ2 (5.14) 

Where Ĉ1, Ĉ2 are the estimates obtained through the minimization of the sum of the 

squared deviations of the experimentally observed life from the predicted one 

considering nf tests 

Δ2 = ∑(Yj − Ŷj)
2

nf

j=1

= ∑(Yj − (Ĉ1 Xj + Ĉ2))
2

nf

j=1

 (5.15) 

From the minimization of Δ2 w.r.t. Ĉ1, Ĉ2, the estimated regression line is obtained: 

{
Ĉ1 =

∑ (Xj − X̅)(Yj − Y̅)
nf
j=1

∑ (Xj − X̅)
2nf

j=1

 (a)

Ĉ2 = Y̅ − Ĉ1X̅ (b)

 (5.16) 
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Where X̅ = 1/nf ∑ Xj
nf
j=1 , Y̅ = 1/nf ∑ Yj

nf
j=1  are the average values of X and Y. The 

variance of Yj on Xj is
 

σ2 =
1

nf − 1
∑(Yj − (Ĉ1 Xj + Ĉ2))

2
nf

j=1

 (5.17) 

Taking the decadic logarithm of the power law S = b̅ Na̅ gives Log(N) =
1

a̅
Log(S) +

1

a̅
Log(b), hence Y=Log(N) and X=Log(S), from which Basquin’s law constants are 

{
a̅ = 1/ Ĉ1 (a)

b̅ = 10−Ĉ2/a̅ (b)
 (5.18) 

From Lee et al. [10], the coefficient of variation, defined as the ratio of the standard 

deviation to the mean, is estimated as Ca̅ = √10a̅2⋅σ2
− 1. The design S/N curve 

deriving from this approach is obtained with a confidence level (CL) of 50%. The 

simplest strategy to obtain a design S/N curve with higher CL is to introduce the 

lower limit YL of Y at given X and level of confidence Kσ, where K is a multiplier, 

i.e. 

YLj
(K) = Ŷj − K ⋅ σ (5.19) 

Concerning the approximation of experimental data via Weibull’s law and a required 

CL, the following three steps procedure could be applied: (i) calculate Basquin’s law 

constants with the least squares method and the desired CL, (ii) calculate Weibull’s law 

constants through Equations (5.11) and (5.12) with fa=1 and (iii) calibrate the slope 

factor fa through the least squares method considering Y=Log(N+B) and X=Log(S-

Se). In this way the smooth S/N curve can be represented as a power law from which 

ǎ = 1/Ĉ1 and b̌ = 10−Ĉ2/ǎ and the value ǎ providing the 50% of CL can be found. 

5.5 Notch effect 

In the classical stress-life approach, the effect of notches can be accounted for through 

the definition of the material notch sensitivity factor q: 

q =
Kn − 1

Kt − 1
 (5.20) 

Where Kn is the technical stress concentration factor, i.e. the predicted ratio of the 

plain endurance limit to that for the notched member, and Kt is the theoretical elastic 

stress concentration factor. The notch sensitivity factor definition is based on Neuber’s 

“building blocks” idea from 1946 [11], i.e. the material is not a continuum, but an 



 
An analytical relation between Weibull’s and Basquin’s laws 

 
 

133 

aggregate of building blocks and the stress gradient cannot develop across blocks. 

Thus, a characteristic length AN, equal to the half-size of the block, was defined such 

that the notch sensitivity factor takes the form 

q =
1

1 + √AN/ρ
 (5.21) 

Where ρ is the notch root radius and AN is Neuber’s constant. In 1952 the effective 

stress concentration factor Kf was experimentally measured for many materials by 

Kuhn and Hardrath [12] and also by Kuhn in a work from “Colloquium on 

Fatigue” [13] and good agreement was found with Kn. Thus, the approximation Kn≈Kf 

will be taken as valid. From Kuhn and Hardrath’s work [12], the values of Neuber’s 

constants giving the ratios 0.9<Kn/Kf<1.1 are 0.02 in for aluminum alloys and 0.027 in 

for steels with Su≈115 ksi. In 1949 Peterson [14] based on the approximation of a 

linear variation of the stress near the crack tip modified Neuber’s Equation (5.21) as 

q =
1

1 + AP/ρ
 (5.22) 

Where AP is Peterson’s material constant. Thus, by considering the notch effect, 

Basquin’s law is then modified as also done by Nelson and Fuchs in “nominal stress 

range II method” [15] 

{

S(N) = Su = bn ⋅ Nu
an 1 ≤ N ≤ Nu

S(N) = bn ⋅ Nu
an Nu < N ≤ Ne

S(N) = Se/Kf = bn ⋅ Nu
an N > Ne

 (5.23) 

Where an=ā–Log10(Kf)/Log10(Ne/Nu) and bn=Su/Nu
an. Equation (5.23) can be used to 

obtain the same system of equations of (5.10) or (5.11) with an and bn in place of ā and 

b̅. An example of application of Basquin’s law smoothing for both plain and notched 

specimen is given in Figure 5.4. 
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Figure 5.4: Comparison between an S/N curve for plain and notched member 

5.6 Quantitative validation with experimental data 

In 1956 the National Advisory Committee for Aeronautics (NACA) conducted a 

fatigue test program on plain and notched 2024-T3, 7075-T6 aluminum alloy and SAE 

4130 steel sheet specimens [16]. The fatigue data from this program were merged with 

other previous test programs [17]–[21] to gather the huge amount of S/N data 

collected in the NACA Technical Note 3866 [16]. The materials tensile properties are 

listed in Table 5.2. The note was aimed to fully characterize the S/N curve shape for 

all the materials tested, from 100 to 108 fatigue cycles and for Kt=1.0, Kt=2.0 and 

Kt=4.0 with emphasis on the range between 2 and 10,000 cycles. The geometry of the 

specimens under test is shown in Figure 5.5. The specimens were axially loaded and, 

depending on the stress amplitude, the loading frequency was opportunely adjusted 

from 12 (manual control) to 1,800 (subresonant testing) cycles per minute. In the last 

figure of the note Illg [16] showed a plot of Kf vs the alternate stress observing that at 

very low number of cycles to failure Kf≈1 for all the materials testes, in good agreement 

with the S/N curve model later proposed by Nelson and Fuchs [15]. The maximum 

Kf is found when the alternate stress tends to the fatigue limit; this value is generally 

in good agreement with Neuber’s empirical Equation (5.20). In this work the behavior 

of 2024-T3 aluminum alloy and normalized SAE 4130 steel have been considered in 

the case of fully reversed loading. Besides, results for 2024-T3 are applicable also to 

7075-T6. In fact, “due to the nearly identical fatigue properties of the T3, T351 and T4 conditions 
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of 2024 and T6 and T651 conditions of 7075, no decision needs to be made between all these various 

conditions over the life region of interest” [22]. 

- 

Figure 5.5– Configuration of sheet specimens, as in reference [16]. Lengths are in inches. 
Aluminum specimens are 0.09 inch thick; steel specimens are 0.075 inch thick 
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Table 5.2: Tensile properties of the materials analyzed (from Illg’s Table  1 [16]) (*) σ2 is the 
standard deviation 

 

Illg concludes his analysis with the following consideration: “The scatter in the results 

of the tests in the short-life range was remarkably small, whereas the tests at long 

lifetimes indicated considerably more scatter in the results” [16], in agreement with the 

capability of the model here described to vary consistently in proximity of the fatigue 

limit whilst keeping low scatter before the inflection point. All the S/N curves for the 

plain specimens have been calculated through the statistical procedure previously 

described with 50% of confidence level. 

 Plain specimens 

As concerns the Al 2024-T3 plain specimens, from Table 5.2 Su = 72.1 ksi, while 

Basquin’s law parameters have been calculated with a linear regression in log(S)/log(N) 

coordinates between 2∙103 and 5∙106 cycles, consistent with the trend observed from 

experimental data, giving b̅ = 308.34 ksi and a̅ = −0.191; consequently Se(Ne) =

16.32 ksi. Then, Weibull’s law parameters have been calculated from Equation (5.11), 

giving b = 1007.5 ksi, a = −0.347 and B = 4196. In order to obtain the Weibull’s 

law with 50% of confidence level, Equation (5.12) has been used to calculate and plot 

the linear regression in Log(S-Se)/Log(N+B) coordinates. The factor fa = 1.15 

satisfies the required condition giving b̌ = 1743.9  ksi, ǎ = −0.399, and B =

5591.7. The S/N curve for normalized SAE 4130 steel has been calculated with the 

same procedure just introduced. All the fitting data are given in Table 5.3 and the final 

curves are shown in Log(S-Se)/Log(N+B) coordinates in Figure 5.6. For both the 

materials it is evident a dramatic increase in the scatter of fatigue data with decreasing 

stress amplitude, as also underlined by Illg [16]. Hence, in this case the hypothesis of 

homoscedasticity is maybe too rough to draw the Wöhler curves with the desired CL. 

2024-T3 

aluminum 

alloy

148 52.1 46.9 59.3 1.7 72.1 70.3 73.4 0.9 20.3 15 25 1.89 10,500 10,150 10,750 134

7075-T6 

aluminum 

alloy

152 75.5 70.7 79.8 1.4 83 79.8 84.5 1.1 12.3 7 15 1.27 10,200 10,000 10,550 104

Normalize

d SAE 

4130 steel

149 93.9 87.4 102.2 2.1 115.9 111.4 124.6 1.8 15.2 12 18 1.06 29,400 28,200 31,500 660

Hardened 

SAE 4130 

steel

9 174 168 178 --- 180 178 183 --- 8.3 8 9 ---- 29,900 29,200 30,800 ---

Numbe

r of 

tests

percent ksi

Av. Min. Max. σ (*) Av. Min. Max. σ (*) Av. Min.
Max

.
σ (*) Av. Min.

Total elongation, Young's

Max. σ (*)

(0.2 percent offset), strength, 2-inch gage length, modulus,

Material

Yield stress, Ultimate tensile

ksi ksi
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Anyway, if the maximum variance is chosen to factorize the curve in stress (cfr. 

Equation (5.19)), the estimate will certainly be conservative. 

Table 5.3: Fitting parameters for the S/N curve construction of the plain specimens 

 Basquin Weibull Factorized Weibull 

2024-T3 
aluminum 
alloy 

b̅, ksi 308.3 b, ksi 1007.5 b̌, ksi 1744 

a̅ -0.191 a -0.3469 ǎ -0.3989 

Su, ksi 72.1 B, cycles 4196 B̌, cycles 5592 

Se, ksi 16.3 Se, ksi 16.3 Se, ksi 16.3 

    Implies fa 1.15 

Normalized 
SAE 4130 
steel 

b̅, ksi 161.2 b, ksi 159.393 b̌, ksi 266.3 

a̅ -0.0856 a -0.1773 ǎ -0.257 

Su, ksi 116 B, cycles 83 B̌, cycles 155 

Se, ksi 43 Se, ksi 43 Se, ksi 43 

    Implies fa 1.45 
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Figure 5.6: Statistical recalibration of Weibull’s law parameters via least squares method for plain 

specimens. The scaling 𝑓𝑎 used give 50% CL 

 Notched specimens 

The S/N curves for the notched specimens have been calculated through the nominal 

stress range II method, i.e. Equation (5.23), applied to the best fit truncated Basquin’s 

law for the plain specimen. The values of Kf have been calculated through 

Equation (5.20) and then compared with Figure 16 of the NACA Technical Note 

3866 [16] where Kf is plotted vs the maximum stress. The values have been calculated 

through the Neuber’s constants suggested by Kuhn and Hardrath’s [12] which led to 

Kf(Kt=2)≈1.85, Kf(Kt=4)≈2.90 for aluminum and Kf(Kt=2)≈1.78, Kf(Kt=4)≈2.78 for 

steel. The effective stress concentration calculated for aluminum are confirmed by 

Figure 16 of the NACA Technical Note 3866 [16] and are also very similar to the 

values calculated by Topper et al. [22], while the values for steel at Kt=4 

underestimated the actual notch effect, thence it had to be modified to Kf(Kt=4)≈3.65 

in accordance with Illg’s Figure 16 [16]. Moreover, from Figure 16 [16] it is evident 

that the Kf tends to one when the maximum nominal stress approaches the ultimate 

tensile strength, confirming the hypothesis that the effect of the presence of notches 

only marginally affects the ultimate tensile strength. Anyway, as regards Al 2024-T3, 

notched specimens do not show the initial plateau characterizing the curve for Kt=1, 

consequently the nominal stress range II approach as is does not fit properly the 

experimental data. For this reason, Nu has been reduced from 2∙103 to 20 for Kt=2 and 

to 2 for Kt=4, then the resulting Weibull’s law has been recalibrated via 

Equation (5.12). For normalized 4130 steel the nominal stress range II approach 

provided a satisfying fit of experimental data. The final S/N curves obtained through 
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the model here introduced provide a smooth fit of the experimental data for both plain 

and notched experiments. The scaling factors remain unchanged with respect to the 

plain specimen, i.e. fa=1.15 and fa=1.45 for aluminum alloy and steel respectively. In 

Figure 5.7 the S/N curves obtained with the presented model are shown. Those curves 

are also compared with the non-corrected Weibull’s law and with the truncated 

Basquin’s law curves. The trend theorized by Weibull is globally confirmed, indeed 

Basquin’s law through the present model appears to be an approximation of Weibull’s 

law and the transition to the fatigue limit is smooth rather than a knee, especially when 

many data are available at N ≥ 107 cycles. 

 

Figure 5.7: S/N curves for plain and notched sheet specimens. The dashed gray line represents 
the truncated Basquin’s law, the solid gray line is Weibull’s law with no modifications, and the 
black solid line is the updated Weibull’s law 

Conclusion 

An analytical explicit model relating Basquin’s law truncated at the fatigue limit and 

Weibull’s law for a smooth four parameters S/N curve is proposed. Weibull’s 

approach for the “determination of average load-life relations” [2] made use of 

graphical or approximate analytical trial and error procedures to determine the S/N 

curve equation in semilogarithmic axes. The Log(S)/Log(N) coordinates are helpful 

since the Basquin’s power law can be used to represent the slope in the inflection point, 

thus making straightforward the analytical exact definition of Weibull’s law parameters. 

The model can be used to define a family of S/N curves where the scatter increases 

with decreasing stress amplitude through the only introduction of a slope factor fa and 

the hypothesis that Ni stays constant. This result is in agreement with Illg’s 
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experiments [16] and shall be further studied from the statistical point of view. Finally, 

the effect of notches can be easily and successfully modelled only by knowing the 

effective stress intensity factor and the S/N curve for the plain specimen and it has 

been found that the parameter fa is not affected by the presence of the notch. 
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6 Appendix 

Appendix A 

Python implementation of Rainflow counting algorithm with Walker mean stress 

correction. 

#!/usr/bin/env python 
""" 
------------------------------------------------------------------------------- 
Author: Pietro D'Antuono 
------------------------------------------------------------------------------- 
""" 
from numpy import fabs as fabs 
import numpy as np 
 
def rainflowSWT(array_ext,  
             gamma=0.5, uc_mult=0.5): 
    """  
    Rainflow counting of a signal's turning points  
    with Walker correction 
        Args: 
            array_ext (numpy.ndarray): array of turning points 
        Keyword Args: 
            gamma (float): Walker's constant [opt, default=0.5] 
                           0.5 for SWT lmean effect correction 
            uc_mult (float): partial-load scaling [opt, default=0.5] 
        Returns: 
            array_out (numpy.ndarray):  
                (4 x n_cycle) array of rainflow values: 
                    1) load range 
                    2) range lmean 
                    3) Walker-adjusted range 
                    4) cycle count 
    """ 
 
    tot_num = array_ext.size             # total size of input array 
    array_out = np.zeros((4, tot_num-1)) # initialize output array 
                                          
    pr = 0                               # index of input array 
    po = 0                               # index of output array 
    j = -1                               # index of temporary array "a" 
    a  = np.empty(array_ext.shape)       # temporary array for algorithm 
     
    # loop through each turning point stored in input array 
    for i in range(tot_num): 
         
        j += 1               # increment "a" counter 
        a[j] = array_ext[pr] # put turning point into temporary array 
        pr += 1              # increment input array pointer 
         
        while ((j >= 2) & (fabs( a[j-1] - a[j-2] ) <= \ 
                fabs( a[j] - a[j-1]) ) ): 
            lrange         = fabs( a[j-1] - a[j-2] ) 
            # partial range 
            if j == 2: 
                lmean      = ( a[0] + a[1] ) / 2. 
                lmax       = lrange/2 + lmean 
                if lmax > 0: 
                    adj_lrange = 2 * lmax**(1 - gamma) * (lrange / 2)**gamma 
                else: 
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                    adj_lrange = 0 
                a[0]=a[1] 
                a[1]=a[2] 
                j=1 
                if (lrange > 0): 
                    array_out[0,po] = lrange 
                    array_out[1,po] = lmean 
                    array_out[2,po] = adj_lrange 
                    array_out[3,po] = uc_mult 
                    po += 1 
                 
            # full range 
            else: 
                lmean      = ( a[j-1] + a[j-2] ) / 2. 
                lmax       = lrange/2 + lmean 
                if lmax > 0: 
                    adj_lrange = 2 * lmax**(1 - gamma) * (lrange / 2)**gamma 
                else: 
                    adj_lrange = 0 
                a[j-2]=a[j] 
                j=j-2 
                if (lrange > 0): 
                    array_out[0,po] = lrange 
                    array_out[1,po] = lmean 
                    array_out[2,po] = adj_lrange 
                    array_out[3,po] = 1.00 
                    po += 1 
                     
    # partial range 
    for i in range(j): 
        lrange         = fabs( a[i] - a[i+1] ); 
        lmax           = lrange/2 + lmean 
        if lmax > 0: 
            adj_lrange = 2 * lmax**(1 - gamma) * (lrange / 2)**gamma 
        else: 
            adj_lrange = 0 
        if (lrange > 0): 
            array_out[0,po] = lrange 
            array_out[1,po] = lmean 
            array_out[2,po] = adj_lrange 
            array_out[3,po] = uc_mult 
            po += 1   
             
    # get rid of unused entries 
    array_out = array_out[:,:po] 
    return array_out 
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Appendix B 

In order to define an analytical relationship between the variables SU, ā, ̅b and a, b, B 

of Chapter 5, the following definitions valid for the generic variable ψ have been used: 

log10 ψ =
lnψ

ln 10
 (6.1) 

Where ln stands for the natural logarithm. 

Generic derivative of a quantity □ with respect to the decadic logarithm of N 

dψ(N)

d log10 N
= log 10

dψ

dN
d lnN
dN

= ln 10 ⋅ N ⋅
dψ

dN
 (6.2) 

First derivative of the decadic logarithm of a function □(N) with respect to the decadic 

logarithm of N: 

d log10 ψ(N)

d log10 N
= log10 ψ/ log10 N = N ⋅

d ln ψ

dN
= N ⋅

ψ′(N)

ψ(N)
 (6.3) 

Second derivative: 

d2 log10 ψ(N)

d (log10 N)2 
= log10 ψ/ log10 N log10 N = N ⋅ ln 10 ⋅

d

dN
⋅ [N ⋅

ψ′(N)

ψ(N)
]

= N ⋅ ln 10 ⋅
1

ψ(N)

⋅ [ψ′(N) ⋅ (1 − N ⋅
ψ′(N)

ψ(N)
) + N ⋅ ψ′′(N)]

= N ⋅ ln 10 ⋅
1

ψ(N)

⋅ [ψ′(N) ⋅ (1 − log10 ψ/ log10 N) + N ⋅ ψ′′(N)] 

(6.4) 

Hence, substituting equation (5.2) into the generic derivatives written in 

equations (6.3) and (6.4) the following expressions are found: 

log10 S/ log10 N = N ⋅  
b ⋅ a ⋅ (N + B)a−1

b ⋅ (N + B)a + Se
 (6.5) 

log10 S/ log10 N log10 N

=
N ⋅ log 10 ⋅ b ⋅ a ⋅ (N + B)a−2

b ⋅ (N + B)a + Se

⋅ [(N + B) ⋅ (1 − log10 S/ log10 N) + N ⋅ (a − 1)] 

(6.6) 

 


