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On the use of TCEV and Kappa four-parameter distributions for at-site flood 

frequency analysis 

 

EXTENDED ABSTRACT (eng) 
 

Main task of Flood Frequency Analysis (FFA) is the estimation of a design flood 

for a given site fitting a probability distribution to a record of peak flows. This 

allows to compute parameters and quantiles estimates, achievable with different 

approaches (e.g. frequentist and Bayesian methodologies). Although appears a 

conceptually simple procedure, several approaches were proposed for its 

implementation. As a consequence, a wide debate started up in hydrology on 

merits and limits of each method, making FFA an attractive topic for scientists. 

Furthermore, regardless of strategies adopted for achieving parameters and 

quantiles estimates, as well as the choice of the best fitting model, the correct 

evaluation of uncertainty in flood frequency estimates should be considered an 

important step for undertaking an aware decision strategy. At-site flood 

frequency analysis is one of more direct methods for making inference from data. 

Several probability distributions are traditionally fitted for this type of analysis, 

such as Gumbel, log-Normal, Generalized Extreme Value (GEV) and log-Pearson 

type 3 (LP3). However, these distributions are typically characterized by two or 

three parameters, leaving the use of distributions with more parameters only for 

regional applications. This is the case of Two Components Extreme Value (TCEV) 

and Kappa distributions, which belong to the class of four-parameter 

distributions. These distributions are characterized by a distinct theoretical 

background, which reflects on their analytical properties. With respect to at-site 

analysis, while some investigations for properties of Kappa were conducted, 

similar studies for TCEV were neglected, probably due to the supposed relevant 

degree of uncertainty that should affect related estimates.  

In this thesis the applicability of a Bayesian approach for at-site estimation of 

parameters and quantiles of TCEV and Kappa distribution is tested.   In particular, 
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in order to achieve a complete vision about this topic, the theoretical background 

of extreme value distributions was revisited, with a focus on their role in 

interpreting floods phenomenology.  

One of the main contributions of this work can be considered the development 

of a Bayesian procedure for providing inferential conclusions about Kappa and 

TCEV, with an explicit quantification on connected uncertainty and, in the case of 

this latter distribution, a new measure for discerning the presence of two 

different populations into a sample was introduced. 

As case study, Eastern and Northern Australia was selected, due to high variability 

of climate and floods regime in this area. In this way, several underlying 

mechanisms of floods generation are expected to be analyzed, and abilities of 

TCEV and Kappa in fitting gauged data was tested. Results of application showed 

that in most cases, for sites located below the latitude of 23° south, TCEV 

distribution provide an excellent fit to at-site data, when compared to LP3 and 

GEV distributions. Furthermore, better performances were detected also in 

terms of uncertainty for high quantiles. Results are explainable with the climate-

driven floods regime that affect the region. 

Finally, a single Italian case study was investigated, on the basis of several studies 

that documented two different mechanisms of runoff generation: as expected, 

in accordance with its theoretical formulation, TCEV provided a relevant ability in 

fitting at-site data. 
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Sull’uso delle distribuzioni a quattro parametri TCEV e Kappa nell'analisi di 

frequenza delle piene a scala locale 

 

 

EXTENDED ABSTRACT (ita) 
 

Una delle principali funzioni dell’analisi di frequenza delle piene è la stima di una 

piena di progetto per un determinato sito applicando una certa distribuzione di 

probabilità ad una serie storica di eventi di piena. Questo al fine di permettere la 

stima dei parametri di tale distribuzione e dei relativi quantili di progetto, 

ottenibili con diversi approcci (e.g. metodologie frequentiste o Bayesiane). 

Benchè si tratti di una procedura concettualmente semplice, per la sua 

implementazione sono stati proposti diversi approcci. Ciò ha condotto ad un 

ampio dibattito nella comunità idrologica sui meriti ed i relativi limiti di ciascun 

metodo, rendendo così l’analisi di frequenza delle piene un argomento molto 

dibattuto. Inoltre, in merito alla strategia impiegata per ottenere le stime di 

parametri e quantili, come anche la scelta della distribuzione che meglio si adatta 

ai dati osservati, la corretta valutazione dell’incertezza di tali stime dovrebbe 

essere considerata come una fase importante per intraprendere una 

consapevole strategia decisionale. 

L’analisi di frequenza delle piene è uno dei più diretti metodi che permette 

l’inferenza sui dati osservati. In quest’ambito, vengono tradizionalmente 

applicate diverse distribuzioni di probabilità, come la Gumbel, la Log-Normale, la 

Generalized Extreme Value (GEV) e la Log-Pearson di tipo 3 (LP3). Si tratta, in ogni 

caso, di leggi caratterizzate da due o tre parametri, riservando l’uso di 

distribuzioni che ne prevedono un numero maggiore solo per applicazioni di 

carattere regionale. È questo il caso delle distribuzioni TCEV (Two Components 

Extreme Value) e Kappa, che appartengono alla classe delle distribuzioni a 

quattro parametri. Queste distribuzioni sono caratterizzate da formulazioni 

teoriche diverse, che si riflettono sulle loro proprietà analitiche. Con riferimento 
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alle analisi a scala locale, mentre per la distribuzione Kappa sono presenti diversi 

studi che ne documentano le proprietà, tali investigazioni sono state trascurate 

per la distribuzione TCEV, molto probabilmente a causa del supposto grado di 

incertezza associato alle relative stime. 

In questa tesi di è verificata l’applicabilità di un approccio Bayesiano per la stima 

di parametri e quantili per le distribuzioni TCEV e Kappa. In particolare, per 

ottenere un quadro completo di questo argomento, si è realizzata una 

rivisitazione del contesto teorico in cui queste distribuzioni sono inserite, facendo 

particolare attenzione sulle rispettive abilità nell’interpretare la fenomenologia 

delle piene. 

Uno dei principali contributi di questo lavoro di tesi può essere considerato lo 

sviluppo di una procedura Bayesiana per realizzare analisi di natura inferenziale 

sulle distribuzioni TCEV e Kappa, con una quantificazione esplicita della relativa 

incertezza. Inoltre, nel caso della TCEV, è stata introdotta una nuova misura per 

distinguere la presenza delle due componenti in un campione. 

L’Australia orientale e settentrionale è stata selezionata come caso di studio, 

motivando l’opportunità di questa scelta con l’elevata variabilità del clima e del 

regime delle piene che si verifica in quest’area. In questa maniera, si sono potuti 

confrontare diversi meccanismi di generazione delle piene, verificando l’abilità 

delle distribuzioni TCEV e Kappa nell’interpretare i dati delle piene. In termini di 

risultati si è osservato che, in molti casi, per siti posizionati al di sotto della 

latitudine 23° sud, la TCEV presenta un eccellente adattamento sulla scala locale, 

rispetto alla LP3 ed alla GEV. Inoltre, performances migliori sono state notate 

anche in termini di incertezza per quantili elevati. Questi risultati sono spiegabili 

con l’influenza del clima sul regime delle piene nella regione così determinata. 

Infine, è stato analizzato un singolo caso studio italiano, scelto sulla base di studi 

che documentano la presenza di due differenti meccanismi di generazione dei 

deflussi: come atteso, in accordo con la sua formulazione teorica, la TCEV ha 

un’elevata affidabilità nell’interpretare i dati osservati. 
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CHAPTER 1 - INTRODUCTION 
 

1.1 - Overview 
 

The topic of Flood Frequency Analysis (FFA) is usually introduced reporting that 

its goal is to estimate a design flood for a given site or location (Stedinger et al., 

1993; Laio et al., 2009; Castellarin et al., 2012). This can be obtained by fitting a 

probability distribution to a series of recorded maxima of peak flows and 

estimating their parameters and quantiles (Cunnane, 1989). At the expense of 

this apparent simplicity, each of these steps involves number of questions and 

problems, whose discussion is crucial for a proper interpretation of results, aimed 

at providing the practitioner of affordable design rules. Furthermore, regardless 

of strategies adopted for achieving parameters and quantiles estimates, as well 

as the choice of the best fitting model, the correct evaluation of uncertainty in 

flood frequency estimates is a necessary condition for undertake an aware 

decision strategy (Merz and Thieken, 2005; Parkes and Demeritt, 2016).  

Quae cum ita sint, is fully comprehensible how flood frequency analysis has 

always been an attractive topic for hydrologists, subject of numerous studies and 

reports (e.g. Cunnane, 1985, 1989; Bobée and Rasmussen, 1995; Hosking and 

Wallis, 1997; Ramachandra Rao and Hamed, 2000; Singh and Strupczewski, 

2002).  

Different probability distributions are classically proposed for flood frequency 

analysis: the most used can be considered log-Normal, Gumbel, Generalized 

Pareto (GP), Generalized Extreme Value (GEV) and log-Pearson type 3 (LP3). 

Typically, they rely in the space of two (log-Normal, Gumbel) or three (GEV, LP3) 

parameters. Use of four- or five-parameter distributions is typically diffused in 

Regional Flood Frequency Analysis (RFFA; Cunnane, 1989). Such in the case of 

two famous distributions, the Two Component Extreme Value (TCEV; Rossi et al., 

1984) and the Kappa distributions (Hosking, 1994). While Kappa distribution is 

widely employed in the framework of L-Moments RFFA (Hosking and Wallis, 
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1997), TCEV was employed in the same framework almost exclusively in Italy 

(Castellarin et al., 2012).  Furthermore, it should be mentioned that some multi-

parameter distributions (such as TCEV and Wakeby; Cunnane, 1989) are able to 

justify the condition of separation introduced by Matalas et al. (1975). 

Moreover, as is the TCEV case, the use of a four-parameter distribution can be 

theoretically justified by the presence of different sub-populations. As noted by 

Cunnane (1985), floods can be generated by some different contributions, such 

as frontal and cyclonic rains, hurricanes and snowmelt. In the field of theoretically 

derived distributions, in the spite of the original work of Rossi et al., (1984), Gioia 

et al. (2008) exploited the use of a two-component threshold driven mechanisms 

of runoff generation, which justify the presence of ordinary (with frequent 

occurrences) and rare flood events. A such made distribution, furthermore, is 

able to interpret the presence of high outliers in a time series, which can affect 

the output of inferential procedures with two- or three-parameter distributions. 

As previously reported, Kappa distribution is widely employed in RFFA with L-

moments. Especially, an extensive use of this distribution is made during the 

evaluation of the heterogeneity measure proposed by Hosking and Wallis (1993).  

As the matter of the fact, at-site uses of Kappa and TCEV was investigated only 

by some authors. For example, Parida (1999) proposed an at-site use of Kappa 

distribution for modelling Indian summer monsoon rainfall using L-Moments 

Estimation (LME). A comparison between statistical properties of Maximum 

Likelihood (MLE) and LME was performed by Winchester (2000) and Dupuis and 

Winchester (2001). At-site use of TCEV distribution, instead, is very difficult to be 

found. A technique based on the use of a Newton-Raphson algorithm for 

obtaining MLE of the four parameters is reported in Rossi et al. (1984). However, 

the same authors reported that “when the four parameters of the TCEV 

distribution are estimated from a single AFS1, the uncertainty is great, particularly 

as regards the parameters of the outlying component. The uncertainty becomes 

 
1 Annual Flood Series 



 11 

extremely high for AFS’s without outliers…”. This statement is very important for 

this thesis, because explicitly refers to the concept of uncertainty. Another use of 

an at-site TCEV can be found in Connell and Pearson (2001), that applied to 

annual maximum floods for the Canterbury region in New Zealand using least 

squared method, finding good results for several sites. 

Interest in four-parameter distribution can arise also by the necessity of looking 

for different distribution able to model changes in modifying environment. 

For example, perception of living in a changing environment, and the need of 

mitigate negative impacts on people and assets, led European Commission to 

enact the so-called “Flood directive” 2007/60/CE, that bound member countries 

to promulgate acts finalized to the reduction of flood risk. One of the most 

important statements in this directive, is “… some human activities (such as 

increasing human settlements and economic assets in floodplains and the 

reduction of the natural water retention by land use) and climate change 

contribute to an increase in the likelihood and adverse impacts of flood events”. 

It is important to note that there is an explicit reference to climate change in 

relationship with a consequential increasing in flood risk. If, from one side, is 

symptomatic of an awareness of the importance of managing and reduction of 

flood risk, from the other side hands the responsibility to the practitioner to 

understand links between climate variables and flows regime. This is a very 

difficult task, because of natural variability can mask anthropogenically inducted 

changes in flooding (McCabe and Wolock, 1997). Furthermore, flood regime can 

be also influenced on multidecadal time scales, linked with climatic phenomena 

such as El Nino Southern Oscillation (ENSO). This is the case of New South Wales 

(Australia), where evidences of this phenomena were documented by Erskine 

and Warner (1988), Franks and Kuczera (2002), Micevski et al. (2006). A practical 

implication of this climate driven floods regime was documented by Franks and 

Kuczera (2002), which found inconsistent the hypothesis that annual maximum 

peak flows could be retained identically distributed. 
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In this framework, potential of TCEV and Kappa for at-site frequency analysis 

deserves a proper assessment. Moreover, the need of giving ad adequate 

quantitative estimation of the related uncertainty in parameters and quantiles 

estimates make the Bayesian theory the most suitable method for performing a 

flood frequency analysis. Such investigations motivated this study. 

 

In this spite, first goal of this thesis is to provide a common theoretical framework 

able to describe the role of TCEV and Kappa in the world of flood frequency 

distributions; this can be a first and helpful tool for interpreting results of 

analysis.  

Secondly, a unique description of all the properties of these two distributions into 

the frequentist theory is essential. The need of these discussion arises mostly for 

TCEV distribution, where L-Moments theory was not described in detail in last 

decades, also because analytical complexity that arise in the LME procedure. This 

is reflected in the neglection of TCEV distribution in the L-Moments ratio diagram, 

that is here illustrated in a complete version.  

Implementation of an appropriate procedure able to model TCEV and Kappa in a 

Bayesian analysis is another cornerstone of this study. Evaluation of uncertainty 

is an important step in a flood frequency procedure, and its relevance will be 

decisive when two or more distributions will have similar fits to observed data. 

Lastly, application of this new tool for an at-site flood frequency analysis is the 

crucial point in this thesis. Analysis of the goodness of fit of TCEV and Kappa to a 

real dataset will be a helpful step for understanding the increase in the degree of 

knowledge from an at-site data that is possible to obtain. 

 

1.2 – Outline 
 

With the purpose of describing logical steps between the state of the art and the 

new approach proposed, thesis is articulated with the following structure. 
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In chapter 2 Extreme Value Theory (EVT) is illustrated in respect of both its 

asymptotic and exact developments. Both frameworks are described in their 

main features, in order to highlight properties of the traditional Extreme Values 

Distributions (EVD). In particular, special attention is given to the exact 

formulation of theoretically probability distributions of floods, with a detailed 

description of the theoretical framework, formulated firstly by Zelenhasic (1969) 

and Todorovic and Zelenhasic (1970). This is the fundamental background for 

understanding properties and physical nature of Two Component Extreme Value 

(TCEV) and Kappa distributions. The opportunity of reporting these concepts will 

be evident during the discussion of results, where the physical nature of floods 

phenomena has to be taken into account. 

In chapter 3 a summary on the frequentist approach to statistical inference for 

EVDs is provided. Goal of this chapter is to illustrate the main concepts of this 

field, in order to provide a basis for framing the literature review of TCEV and 

Kappa. 

This review is reported in chapter 4, where a full description of all the frequentist 

approach to these two distributions is illustrated. The wide use of Kappa 

distribution for Regional Flood Frequency Analysis (RFFA) led to a moderate 

diffusion of its properties for at-site analysis, also because of the availability of 

the code provided by Hosking (2000) for the estimation of L-Moments. On the 

contrary, TCEV distribution has been used for FFA only in Italy and Spain into a 

regional framework. Properties of at-site estimation were investigated only in 

some cases (Rossi et al., 1984; Connell and Pearson, 2001). A lack of insights is 

missing on the L-moments estimation, due to its complexity. An investigation on 

this topic is reported, along with the plots of this distribution on L-Moments Ratio 

Diagram (LMRD). 

The problem of parameters and quantiles estimation coupled with a 

quantification of their uncertainty is investigated with a Bayesian approach, 

illustrated in Chapter 5. This inferential framework is described in its main 

aspects, together with the explanation of its practical implementation. Finally, a 
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new measure based on the sampling of the posterior distribution, 𝑇𝐶𝑟𝑎𝑡𝑖𝑜, is 

introduced, with the aim to provide a graphical tool for a discrimination of the 

presence of two different populations into a single series. 

In Chapter 6 an application to at-site flood frequency analysis using TCEV and 

Kappa is proposed for eastern and northern Australia. Performances of these 

distributions are investigated and compared to those provided by traditional 

distributions. The role of uncertainty for discriminating between candidate 

distributions is investigated. 

A summary of conclusions and a proposal for some future research directions is 

provided in Chapter 7. 
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CHAPTER 2 – AN OVERVIEW ON EXTREME VALUE THEORY 
 

2.1 – Introduction 
 

Consistently with the scope of this thesis, in this chapter the main outlines of 

Extreme Value Theory (EVT) will be illustrated. The goal is the description of a 

common background in which framing the two four-parameter distributions 

analyzed in this work, TCEV and Kappa. Indeed, when fitting these distributions 

to real data, is fundamental to understand their theoretical basis for interpreting 

results.  

In Par. 2.2, an historical overview on the use of extremes in hydrology is 

illustrated, while in Par. 2.3 a short introduction to FFA is reported. Then, in Par. 

2.4, the asymptotic approach to extreme value theory is described and in Par. 2.5 

will be discussed in detail the theoretical approach for deriving probability 

distributions of floods. Focus on this latter model is justified by its specificity, that 

can allow to a complete description of underlying processes. As will be shown in 

Chapter 6, this theory can be very useful also for discriminating between 

distributions. 

Finally, Annual Maximum (AM) and Peak-Over-Threshold (POT) approaches will 

be compared with a focus in their main characters. 

 

2.2 – Some historical notes on Extreme Value Theory 
 

What is the origin of the term “extreme”? Stopping at the Roman period, this 

term comes from the Latin extremus, superlative of the adjective extĕr, which 

means «that stands out».  

The importance of dealing with extremes has been recognized since the fourth 

century B. C., the age of the Greek philosopher Plato. A trace can be found in 

Phaedo 90α: 
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ὥσπερ, ἦ δ᾽ ὅς, περὶ τῶν σφόδρα σμικρῶν καὶ μεγάλων: οἴει τι σπανιώτερον εἶναι 

ἢ σφόδρα μέγαν ἢ σφόδρα σμικρὸν ἐξευρεῖν ἄνθρωπον ἢ κύνα ἢ ἄλλο ὁτιοῦν; ἢ 

αὖ ταχὺν ἢ βραδὺν ἢ αἰσχρὸν ἢ καλὸν ἢ λευκὸν ἢ μέλανα; ἢ οὐχὶ ᾔσθησαι ὅτι 

πάντων τῶν τοιούτων τὰ μὲν ἄκρα τῶν ἐσχάτων σπάνια καὶ ὀλίγα, τὰ δὲ μεταξὺ 

ἄφθονα καὶ πολλά; 

 

Just what is true of extremely large and extremely small things, he replied. What 

is rarer than to find a man, or a dog, or anything else which is either extremely 

large or extremely small? Or again, what is rarer than to find a man who is 

extremely swift or slow, or extremely base or honourable, or extremely black or 

white? Have you not noticed that in all these cases the extremes are rare and few, 

and that the average specimens are abundant and many?  

 

It is very interesting remarking that Plato used the two words extremes (ἄκρα) 

and average (μεταξὺ). This can be considered a primitive description of a 

statistical distribution, which highlight how since ancient times the analysis of 

exceptional events was recognized as crucial. A strong link between extremes 

and social life can be traced as a consequence of the decisioning process on the 

location of urban and rural settlements, with regard to the availability of water 

resources. Although since the Bronze Age is documented the presence of 

technological urban hydraulic systems for water supply (Mays et al. 2007), rivers 

have always considered as a preferential component for civil settlements. But, if 

living in flood-prone areas from one hand means having flat and fertile soils 

(Tingsanchali, 2012), from the other hand exposes people to flood risk. An 

exception to this urban planning strategy can be considered the ancient Greece, 

where a preventive approach for managing flood risk was applied, and cities were 

mostly built far from water courses (Koutsoyiannis et al., 2012). The unavoidable 

need of people to coping with flood risk, led them to find some measures for its 

mitigation: for example, Alyzia dam (Western Greece) was built reasonably 

during sixth century BC probably for flood mitigation (Koustoyiannis et al., 2008). 
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This short excursus has been reported just for illustrating to the reader how 

analysis of extremes has always been an important issue during centuries.  

Quae cum ita sint, is evident how the necessity of finding some theoretical tools 

able to manage with water-linked calamities has been a key question in 

engineering. The necessity of monitoring hydrological variables followed from 

this problem, and the contemporary availability of recorded measures and new 

statistical tools pushed the attention to extreme value analysis. 

Framed in a historical context, the statistics of extreme values represents a 

relatively modern field of research. Describing its history is not only a literary 

exercise, but can help us in a better comprehension of reasons and developments 

of this theory. 

As reported in Gumbel (1958), the first example of analysis of extreme values can 

be traced back to Nicolaus Bernoulli2 that, in 1709 in Basel, published his work 

Specimina Artis Conjectandi, ad quaestiones Juris applicatae. Among the 

questions addressed in this opera, there is that of considering the age of the last 

survivor of a certain number of men of the same age who die in a certain number 

of years. Todhunter (1865) reported how from this essay it is not possible to 

appreciate the mathematical power of its author, but still manages to emerge his 

faith in the theory of probability. 

The importance of dealing with extreme values emerged subsequently in 

astronomy, with the need of finding objective criteria for accepting or rejecting 

suspect measures (such as those that may concern diameters or distances 

between stars). The research in this topic, consistent with the nature of the 

problem, was carried out within the gaussian distribution framework. Literature 

in this sense was produced by Peirce (1852), Chauvenet (1868) and Rider (1933). 

 
2 Nicolaus Bernoulli (1687-1759) was the nephew of Jacob (1654-1705, who introduced the 
famous distribution of B.) and of Johann (1667-1748, who contributed to the development of 
differential calculus in Europe), and cousin of Daniel (1700-1782) known for the fluid dynamics 
theorem bearing his surname. 
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Kotz and Nadarajah (2000) reported that Von Bortkiewicz (1922) introduced the 

concept of extreme value distribution for the first time. In the following years the 

developments in this field were linked exclusively to the normal distribution, and 

the first use of a non-Gaussian distribution is due to Fréchet (1927), who was the 

first to derive an asymptotic distribution of extreme values. Moreover, in this 

work the stability postulate was introduced, according to which the distribution 

of the extreme value is equal to the initial one, except for a linear transformation. 

It is important to note that Gumbel (1958) recognized how this work was 

underestimated, so much so that it was published in a second-order journal. 

Fisher and Tippett (1928) showed how, using the same stability postulate, limit 

distributions can be of three types. Von Mises (1936) formulated the sufficient 

conditions for the validity of these three asymptotic distributions. Gnedenko 

(1943) completed this work by formulating the necessary and sufficient 

conditions. Gumbel (1941) applied Fisher and Tippett theory to Annual Maximum 

(AM) values under the hypothesis that maximum daily flow in one year should be 

distributed as an extreme value variate (Adams and McMahon, 1985). This work 

of Gumbel (“The return period of flood flows”) is fundamental, because in can be 

retained as the first explicit reference to the application of statistic of extremes 

to hydrology (Katz et al., 2002). In 1955 Jenkinson provided a complete 

interpretation of the Asymptotic distributions formulating the Generalized 

Extreme Value (GEV) distribution, while Gumbel's first fundamental text on the 

theory of extreme values dates back to 1958. Focusing the discussion only in the 

hydrological framework, is has to be remarked that Todorovic and Zelenhasic 

(1970) introduced the Peak-Over-Threshold (POT) model in hydrology, showing 

how results similar to those of the asymptotic theory of extreme values can be 

obtained. Picklands (1975) proposed the use of above threshold models and 

introduced the Generalized Pareto (GP) distribution. Landwehr et al. (1979) 

introduced Probability Weighted Moments (PWM) and in 1990 Hosking 

developed their linear combinations, L-Moments. In the perspective of improving 

the distributions of extreme values in the adaptation to physical phenomena, 
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Rossi et al. (1984) introduced TCEV distribution, which had the remarkable merit 

of contemplating double-component processes.  

This is only a brief historical overview on the extreme value theory, which goal is 

to illustrate how dynamic and relatively young is this science. Its role is 

remarkable also in other fields, such as ecology (Katz et al., 2005) and climatology 

(Buishand, 1989). 

 

2.3 – An overview on flood frequency analysis (FFA) 
 

Introductory chapters of papers and books about Flood Frequency Analysis (FFA) 

report, even if with different sentences, that its goal is to estimate a biunivocal 

relationship between flood magnitude and a certain probability of occurrence 

(Stedinger et al., 1993; Laio et al., 2009; Ramachandra Rao and Hamed, 2000). 

This inferential procedure requires the analysis of an adequate flow record, from 

which formulate basic hypothesis and derive all the information needed.  

For this purpose, three main models can be used (Cunnane, 1989):  

 

a) Time Series (TS): represents the flow hydrograph by a series of ordinates 

at equally spaced time intervals (one day for flood frequency analysis) 

called a time series; 

b) Block Maxima (BM): this method provides the division of the record into 

a series of equal nonoverlapping periods, taking into account only their 

maximum value (Ferreira and de Haan, 2015). If the interval is one year, 

then the method is called Annual Maximum (AM); 

c) Peak Over Threshold (POT): in this approach only the values that exceed 

a certain threshold are selected.  

 

AM approach can be regarded as a particular case of TS modelling, where the 

unit of time is one year and the flow representing that time is the highest flow 

during the year (Adams and McMahon, 1985). 
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This thesis will deal only with AM approach; however, POT will be discussed 

because its formulation contains important concepts that can be helpful for 

analyze and comprehend results. TS method is here cited only for completeness.  

Traditional FFA can be modeled in 3 main steps: 

 

1. Choice of the model type, between a), b) or c); 

2. Choice of the probability distribution; 

3. Definition of the method for parameter and quantile estimation. 

 

Each of those three points requires particular care in FFA modeling. An adequate 

analysis of floods frequency cannot disregard a critical analysis of these steps. 

 

2.4 – Asymptotic theory of extremes 
 

The largest of a number of independent and identically distributed random 

variables can be described following both an asymptotic and an exact theoretical 

derivation (Koutsoyiannis, 2003). Due to their simplicity and theoretical basis, 

asymptotic distributions are widely used in hydrological applications. However, 

because of the conceptual adequacy of theoretical approach to extremes to 

investigate flood dynamics, this topic will be illustrated in detail in paragraph 2.5. 

 

2.4.1 – Annual Maximum models 
 

Denote by 𝑋1, 𝑋2, . . . , 𝑋𝑛 a sequence of independent random variables having a 

common distribution function F. Then, variables 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤ 𝑋𝑛:𝑛 are 

order statistic3 related to given sample. In the following the statistical behavior 

of this quantity will be studied: 

 

 
3 It is possible to refer to orders statistic using also this notation: 𝑋(1) ≤ 𝑋(2) ≤. . . ≤ 𝑋(𝑛).  
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 𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, … , 𝑋𝑛} = 𝑋𝑛:𝑛 (2.1) 

 

Eq. (2.1) represents the maximum over n time units of observations; then, if n is 

equal to the number of observations in one year, then 𝑀𝑛 is the annual 

maximum.  

The independence hypothesis about variable 𝑋𝑖 allows to define the probability 

distribution of the maximum as 

 

𝐻𝑛(𝑥) = 𝑃𝑟{𝑀𝑛 ≤ 𝑥} = 𝑃𝑟{𝑋1:𝑛 ≤ 𝑥,… , 𝑋𝑛:𝑛 ≤ 𝑥} = 𝑃𝑟{𝑋1:𝑛 ≤ 𝑥} ∙ … ∙ 𝑃𝑟{𝑋𝑛:𝑛 ≤ 𝑥} = {𝐹(𝑥)}
𝑛 

 

However, in the general case is 𝐹 is unknown and is necessary to study the 

asymptotic behavior of 𝐹𝑛, for n that tends to infinity. 

According to Castillo (2012), is important the investigation of the behavior of the 

function F in its domain borders. Defining 

 

𝛼(𝐹) = 𝑖𝑛𝑓{𝑥: 𝐹(𝑥) > 0} 

 

as the lower end point of 𝐹(𝑥), and  

 

𝜔(𝐹) = 𝑠𝑢𝑝{𝑥: 𝐹(𝑥) < 1} 

 

as the upper end point, for n that goes to infinity is 

 

lim
𝑛→∞

𝐹𝑛(𝑥) = {
1    𝑖𝑓 𝐹(𝑥) = 1
0    𝑖𝑓 𝐹(𝑥) < 1

 

 

This is symptomatic of a degeneration of the limit distribution in the extremes. 

According to a classical approach in statistic, this problem is usually faced 

verifying the existence of two successions of variables {𝑎𝑛} and {𝑏𝑛 > 0}, 𝑛 ∈ ℕ, 

such that: 
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 𝐺(𝑥) = lim
𝑛→∞

𝐹𝑛(𝑎𝑛 + 𝑏𝑛𝑥),             𝑥 ∈ ℝ (2.2) 

 

i.e., this is equivalent of the study of the asymptotic behavior of the rescaled 

variable 𝑀𝑛: 

 

 
𝑀𝑛
∗ =

𝑀𝑛 − 𝑎𝑛
𝑏𝑛

 (2.3) 

 

𝐹 is said to be concerned to the domain of attraction for the maxima of G if 

satisfies (2.2) for good {𝑎𝑛} and {𝑏𝑛 > 0}. 

 

In this framework, the following key theorem was introduced.  

 

Fisher and Tippett Theorem: if exist series {𝑎𝑛} and {𝑏𝑛 > 0} such that is, for 

 𝑧 ∈ ℝ, 

 

 
lim
𝑛→∞

𝑃𝑟 {
𝑀𝑛 − 𝑎𝑛
𝑏𝑛

≤ 𝑧} = 𝐺(𝑧) (2.4) 

 

Where G is a non-degenerate function. Then, G belongs to one of the following 

families of extreme value for maxima: 

 

            𝐺(𝑧) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑧−𝑎

𝑏
)]            − ∞ < 𝑧 < +∞     

 

 

 
𝐺(𝑧) = {

0                                                            𝑧 ≤ 𝑎

𝑒𝑥𝑝 [−(
𝑧 − 𝑎

𝑏
)
−𝛾

]                            𝑧 > 𝑎
   

 

 

 
𝐺(𝑧) = {𝑒𝑥𝑝 {− [(−

𝑧 − 𝑎

𝑏
)
𝛾

]}                      𝑧 < 𝑎

1                                                           𝑧 ≥ 𝑎
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□ 

 

Jenkinson (1955) combined these distributions into the Generalized Extreme 

Value (GEV) distribution, that can be expressed using the following form: 

 

 

𝐹(𝑥) = {
𝑒𝑥𝑝 {− [1 − 휀 (

𝑥−𝜁

𝜎
)]
1
𝜀⁄

}          휀 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−(
𝑥−𝜁

𝜎
)]}               휀 = 0

       (2.5) 

 

where 𝜎 > 0 and 1 − 휀 (
𝑥−𝜁

𝜎
) > 0. Shape parameter 휀, instead, is defined in the 

whole real domain. However, from a practical perspective it can be expected that 

휀 can varies into a small neighbourhood of 0. For example, Papalexiou and 

Koutsoyiannis (2013) analyzed a wide dataset of rainfall time series from all over 

the world and found that 휀 can lie in the interval (−0.23,0). 

As noted in the definition of GEV, this distribution family comprehend 

distributions of Gumbel, Fréchet and Weibull, that now can be written in their 

definitive form according relative values of 휀: 

 

− 휀 = 0 - Gumbel distribution. This distribution is characterized only by 

location and scale parameters. It is an unbounded distribution, whose 

CDF can take the form: 

 

 
𝐹(𝑥) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−(

𝑥 − 휁

𝜎
)]} (2.6) 

 

− 휀 < 0 - Fréchet distribution. Taking 𝑦 = 1 − 휀 (
𝑥−𝜁

𝜎
), this distribution 

assumes the following expression: 
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{𝑒

(−𝑦)
1
𝜀⁄           𝑦 > 0

0                     𝑦 ≤ 0
 (2.7) 

 

and 𝑥 ∈ (
𝑥−𝜁

𝜎
, +∞), i. e. is bounded on the left. 

 

 

− 휀 < 0 – Weibull distribution: in this last case, taking 𝑦 = [1 − 휀 (
𝑥−𝜁

𝜎
)], 

this CDF can be written as 

 

 
{𝑒

−(−𝑦)−
1
𝜀⁄           𝑦 > 0

0                          𝑦 ≤ 0
 (2.8) 

 

Domain if Weibull distribution is 𝑥 ∈ (−∞,
𝑥−𝜁

𝜎
) and is right-bounded. 

 

2.4.1.1 – Pearson and Log-Pearson type 3 distributions 
 

Pearson distributions can be considered as a family of continuous distributions 

which generalized the normal distribution and was introduced in 1895 by the 

mathematician Karl Pearson. In particular, Pearson type 3 based distributions 

play an important role in hydrological applications.  

Pearson type 3 (P3) density function has the following expression: 

 

 
𝑓(𝑥) = |𝛽|[𝛽(𝑥 − 휁)]𝛼−1

𝑒𝑥𝑝[−𝛽(𝑥 − 휁)]

Γ(𝛼)
 (2.9) 

 

where 𝛼, 𝛽, 휁 are its parameters under the condition that 𝛼 > 0. Depending on 

the values assumed by 𝛽, two cases have to be discussed: if 𝛽 > 0, then 휁 ≤ 𝑥 <

+∞  and distribution is positively skewed; if 𝛽 > 0, then skewness is negative 

and −∞ < 𝑥 ≤ 휁.  
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Special case is when 휁 = 0: in this case Gamma distribution is obtained.  

Log-Pearson type 3 (LP3) distribution can be obtained from Pearson type 3 

distribution taking (Bobée, 1975): 

 

𝑦 = log𝑎 𝑥 

 

where the base a, here reported as general, is usually set equal to 10 or to e. The 

pdf of LP3 will take the form: 

 

 
𝑓(𝑥) = |𝛽|[𝛽(log𝑎 𝑥 − 휁)]

𝛼−1
𝑒𝑥𝑝[−𝛽(log𝑎 𝑥 − 휁)]

xΓ(𝛼)
𝑘 (2.10) 

 

where k is a constant dependent on the base a (assumed greater than 0) so that 

 

𝑘 = log𝑎 𝑒 

 

As in (2.9) 𝛼, 𝛽, 휁 are its parameters under the condition that 𝛼 > 0 and for 

 𝛼 > 0 (positive skew) 𝑒𝑥𝑝(휁) < 𝑥 < ∞, while for 𝑎 < 0 (negative skew) 

 0 < 𝑥 < 𝑒𝑥𝑝(휁). 

This a really important distribution, also because its use is recommended U.S. 

federal agencies for flood frequency analyses as described by Bulletin 17B 

(IACWD, 1982). A wide review on LP3 distribution (and parameters estimation 

techniques) can be found in (Bobée, 1975; Phine and Hira, 1983; Arora and Singh, 

1989; Griffis and Stedinger, 2007a, 2007b). 

 

2.4.2 – Peak-Over-Threshold Approach 
 

As described paragraph 2.3, Partial Duration Series (or Peak Over Threshold) 

approach is an alternative model widely used in hydrology for modelling 

distributions of extreme values.  



 26 

As usual, let consider a sequence of independent and identically distributed 

random variables (𝑋1, 𝑋2, . . . , 𝑋𝑛) sampled from a marginal distribution F. In this 

case extreme events are considered those who exceed a high threshold 𝑞0. The 

stochastic behavior of extreme events is then given by the conditional 

probability: 

 

 
𝑃𝑟{𝑋 > 𝑞0 + 𝑦|𝑋 > 𝑞0} =

1 − 𝐹(𝑞0 + 𝑦)

1 − 𝐹(𝑞0)
 𝑦 > 0 (2.11) 

 

However, usually F is unknown, requiring the approximation given by the next 

theorem (Balkema and de Haan, 1974; Picklands, 1975; Coles, 2001): 

 

Pickands-Balkema-de Haan theorem: be (𝑋1, 𝑋2, . . . , 𝑋𝑛) a sequence of random 

variables with common distribution F, and  

 

𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2, . . . , 𝑋𝑛} 

 

Under the validity of Fisher-Tippett theorem, for large n 

 

𝑃𝑟{𝑀𝑛 ≤ 𝑧} ≈ 𝐺(𝑧) 

 

with 𝐺(𝑧) the GEV distribution. If the value of the threshold 𝑞0 is large enough, 

the distribution function of (𝑋 − 𝑞0|𝑋 > 𝑞0) is approximately given by 

 

 
1 − (1 − 휀

𝑥 − 𝑞0
𝜎∗

)
1
𝜀⁄
 (2.12) 

 

with 1 − 휀
𝑥−𝑞0

𝜎∗
> 0.  

The limit case that is for 휀 → 0 lead to: 
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 1 − 𝑒𝑥𝑝 (
𝑥 − 𝑞0
𝜎∗

) (2.13) 

 

i.e. an exponential distribution with parameter 1 𝜎∗⁄ . The family which 

comprehend both distributions (2.12) and (2.13) is called the Generalized Pareto 

family, and the famous Generalized Pareto (GP) distribution can be expressed as: 

 

 

𝐹(𝑥|𝑞0) = {
1 − (1 − 휀

𝑥 − 𝑞0
𝜎∗

)
1
𝜀⁄

                  휀 ≠ 0 

1 − 𝑒𝑥𝑝 (
𝑥 − 𝑞0
𝜎∗

)                           휀 = 0

 (2.14) 

 

An important property of such made truncated GP distributions is their 

invariance respect of the choice of the threshold (Madsen et al., 1997). 

  

2.5 – Theoretical probability distributions for flood peaks 
 

Rasmussen and Rosbjerg (1991) reported that Partial Duration Series model was 

firstly adopted in hydrology by Shane and Lynn (1964) and Todorovic and 

Zelenhasic (1970). This approach could be illustrated in respect of the variable 

describing a streamflow hydrograph (fig. 2.1) or a precipitation hyetograph.  
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Figure 2.1 – streamflow hydrograph of instantaneous discharges 

 

Peak Over Threshold method consists in analyzing only the exceedances over an 

assigned threshold level 𝑞0 in a certain interval [0, 𝑡]. Denoting with 𝜈 the 

number of those exceedances happening at time 𝜏𝜈, exceedances over 𝑞0 are: 

 

 𝑍𝜈 = 𝑋𝜈 − 𝑞0 (2.15) 

 

With these previous statements, the number of exceedances in time interval 

[0, 𝑡], their occurrence time and their magnitudes are random variables. This 

allows to deals with these events using the theory of stochastic processes. In this 

framework, a process that associate a time of occurrence with the magnitude of 

the relative observation is called marked point process (Snyder and Miller, 2012). 

A graphical representation of such defined process  

 

{𝜏𝑖, 𝑍𝑖;  𝑖 = 1,2, . . . , 𝜈;  𝜈 ∈ ℕ} 

 

is in fig. 2.2: 
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Figure 2.2 – A realization of the stochastic process of flood peak exceedances 

 

Be 휂(𝑡) a discrete value process which gives the number of exceedances in [0, 𝑡]. 

It is straightforward that, for every 𝑡 ≥ 0 and ∆𝑡 > 0,  휂(𝑡) ≤ 휂(𝑡 + Δ𝑡). 

A rigorous mathematical formulation on these processes requires the definition 

of the probability space Ω (Todorovic and Yevjevic, 1969) associated to an 

experiment:  

 

 (Ω = {𝜔},𝒜, 𝑃)  

 

where 

− Ω, the sample space: is the set of all possible outcomes 𝜔 of the 

experiment. In the present case, the hydrograph of fig. 2.4 can be 

regarded as an outcome 𝜔 of random observations, while Ω is the set of 

all possible hydrographs, and this allows to give it the quality of a 

functional space. Realizations of the stochastic process 𝑍𝜈 are, finally, 

function defined on the space Ω; 

− 𝒜, a σ-algebra over Ω: is a set of subsets (i.e. events) of Ω and whose 

probability can be evaluated. It has the property to be a class closed 

under all countable set operations (Loeve, 1977) 

− 𝑃, the probability measure: is a function with the property of associating 

a probability of an event defined on 𝒜, i.e. 𝑃:𝒜 → [0,1]. 
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For example, a measurable subset belonging to the σ-algebra is that who 

comprehend all the events (and their functions) in which the number of events 

in [0, 𝑡] is less than 𝜈, i.e. 휂𝑡 < 𝜈. 

 

2.5.1 – Distribution of the number of exceedances 
 

The search for the probabilistic interpretation of this kind of process requires the 

introduction of a particular subset of Ω, 𝐸𝜈
𝑡, which is characterized by having all 

the realizations of the stochastic process 𝑍𝑡 with only 𝜈 points in [0, 𝑡].  

This means that (Zelenhasic, 1970): 

 

 𝐸𝜈
𝑡 = {휂𝑡 = 𝜈} (2.16) 

and 

𝐸𝑖
𝑡 ∩ 𝐸𝑗

𝑡 = ∅ ⋃𝐸𝜈
𝑡 = Ω

+∞

𝜈=0

 for all 𝑖 ≠ 𝑗 = 0,1, . .. 

 

Be Λ(𝑡) the expected value of 휂𝑡: 

 

 
Λ(𝑡) =∑𝜈𝑃(𝐸𝜈

𝑡)

∞

𝜈=1

 (2.17) 

 

and  

 

 𝐹𝑘(𝑡) = 𝑃{𝜏(𝑘) ≤ 𝑡} (2.18) 

 

with 𝜏(𝑘) time of occurrence of the k-th exceedance. According to Todorovic and 

Yevjevic (1969), because of (2.16) 
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 𝐸𝑘
𝑡 = {𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1} = {𝜏𝑘 ≤ 𝑡} − {𝜏𝑘+1 ≤ 𝑡} (2.19) 

 

Combining (2.18) and (2.19) follows that 

 

 𝑃(𝐸𝑘
𝑡) = 𝑃{𝜏𝑘 ≤ 𝑡} − 𝑃{𝜏𝑘+1 ≤ 𝑡} = 𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡) (2.20) 

 

 

Finally, according to Zelenhasic (1970), it can be written that 

 

 
𝐹𝑘(𝑡) = 1 −∑𝑃(𝐸𝑗

𝑡) =∑𝑃(𝐸𝑗
𝑡)

∞

𝑗=𝑘

𝑘−1

𝑗=0

 (2.21) 

 

Define, from (2.16), 𝐸𝑘
𝑡  as the event that only k exceedances occur in [0, 𝑡], and 

𝐸1
𝑡,𝑡+∆𝑡 as the event that only one exceedance occurs in [𝑡, 𝑡 + ∆𝑡], with ∆𝑡 > 0 

an assigned interval of time. In Zelenhasic (1970) can be ulteriorly found that 

probabilities 𝑃(𝐸𝑘
𝑡), 𝑘 = 0,1, . .. satisfy this set of differential equations: 

 

 

{
 

 
𝑑𝑃(𝐸𝑘

𝑡)

𝑑𝑡
= 𝜆1(𝑡, 𝑘 − 1)𝑃(𝐸𝑘−1

𝑡 ) − 𝜆1(𝑡, 𝑘)𝑃(𝐸𝑘
𝑡)             𝑘 = 1,2, . . .

𝑑𝑃(𝐸0
𝑡)

𝑑𝑡
= −𝜆1(𝑡, 0)𝑃(𝐸0

𝑡)                                                     𝑘 = 0         

 (2.22) 

 

where 

 

𝜆1(𝑡, 𝑘) = lim
Δ𝑡→0

𝑃(𝐸1
𝑡,𝑡+∆𝑡|𝐸𝑘

𝑡)

∆𝑡
 

 

and  

 

𝐸1
𝑡,𝑡+∆𝑡 = {휂(𝑡 + Δ𝑡) − 휂(𝑡) = 1} 
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It follows that: 

 

 
𝜆1(𝑡) = ∑𝜆1(𝑡, 𝑘)𝑃(𝐸𝑘

𝑡)

∞

𝑘=0

 
 

 

If 𝜆1(𝑡, 𝑘) is an integrable function for 𝑘 ∈ ℤ0
+, and 

 

lim
𝑡→0

𝑃(𝐸𝑘
𝑡) = {

0,     𝑖𝑓 𝑘 > 0
1,     𝑖𝑓 𝑘 = 0

 

 

then solution of system (2.22) is: 

 

𝑃(𝐸𝑘
𝑡) = 𝑒𝑥𝑝 {−∫𝜆1(𝑠, 0)

𝑡

0

𝑑𝑠} ∙ ∫ 𝜆1(𝑡1, 𝑘 − 1)

𝑡

0

𝑒𝑥𝑝 {∫ Δ𝜆1(𝑠, 𝑘)𝑑𝑠

𝑡1

0

} ∙ 

∙ ∫ 𝜆1(𝑡2, 𝑘 − 2)

𝑡1

0

𝑒𝑥𝑝 {∫ Δ𝜆1(𝑠, 𝑘 − 1)𝑑𝑠

𝑡2

0

} ∙ ⋯ 

∙ ∫ 𝜆1(𝑡𝑘−1, 1) 𝑒𝑥𝑝 {∫ Δ𝜆1(𝑠, 2)𝑑𝑠

𝑡𝑘−1

0

}

𝑡𝑘−2

0

∙ ∫ 𝜆1(𝑡𝑘 , 0)𝑒𝑥𝑝 {∫ Δ𝜆1(𝑠, 1)𝑑𝑠

𝑡𝜈

0

}

𝑡𝑘−1

0

𝑑𝑡𝑘𝑑𝑡𝑘−1. . . 𝑑𝑡1 

(2.23) 

 

From (2.17), instead: 

 

 
Λ(𝑡) = ∫𝜆1(𝑠)𝑑𝑠

𝑡

0

 (2.24) 
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Different cases can arise from the values that function 𝜆1(𝑡, 𝑘) can get. According 

to Bačová-Mitková and Onderka (2010) and Vukmirovic and Vukmirovic (2017), 

we can distinguish: 

 

Case 1:  𝜆1(𝑡, 𝑘) = 𝜆1(𝑡)  

 

 

𝑃(𝐸𝑘
𝑡) = {∫𝜆(𝑠)𝑑𝑠

𝑡

0

}

𝑘

𝑒−∫ 𝜆(𝑠)𝑑𝑠
𝑡
0

𝑘!
 (2.25) 

 

Eq. (2.25) expresses a time dependent Poisson process. Because of (2.24), (2.25) 

becomes: 

 

 
𝑃(𝐸𝑘

𝑡) =
[Λ(𝑡)]𝑘𝑒−Λ(𝑡)

𝑘!
 (2.26) 

 

Λ(𝑡) is the mean number of exceedances in [0, 𝑡].  

 

Case 2: 𝜆1(𝑡, 𝑘) = 𝜆1(𝑡) ∙ (1 −
𝑘

𝑎
) , 𝑎 > 0 

 

 
𝑃(𝐸𝑘

𝑡) =
Γ(𝑎 + 1)

Γ(𝑘 + 1)Γ(𝑎 + 1 − 𝑘)
𝑒−Λ(𝑡) (𝑒−

Λ(𝑡)
𝑎⁄ − 1)

𝑘

 (2.27) 

 

This equation can be traced back to that of a binomial distribution for  

 

𝑒−
Λ(𝑡)
𝑎 − 1 →

𝑝

1 − 𝑝
 

 

Case 3: 𝜆1(𝑡, 𝑘) = 𝜆1(𝑡) ∙ (1 +
𝑘

Θ
) , Θ > 0 
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𝑃(𝐸𝑘

𝑡) =
Γ(𝑘 + Θ)

Γ(𝑘 + 1)Γ(Θ)
𝑒−Λ(𝑡) (𝑒−

Λ(𝑡)
Θ
⁄ − 1)

𝑘

 (2.28) 

 

Analogously to (2.27), (2.28) takes the expression of a negative binomial 

distribution for  

 

𝑒−
Λ(𝑡)
Θ → 𝑝 

 

2.5.2 – Distribution of the largest peak 
 

The other variable which requires to be analyzed is the largest exceedance in the 

time interval [0, 𝑡], here denoted with 𝜒(𝑡). This is a random variable defined as: 

 

 𝜒(𝑡) = 𝑠𝑢𝑝
𝜏(𝜈)≤𝑡

𝑍𝜈 (2.29) 

 

The nature of 𝜒(𝑡) is such that, for every Δ𝑡 ≥ 0, is: 

 

 𝜒(𝑡) ≤ 𝜒(𝑡 + ∆𝑡)  

 

In this way, 𝜒(𝑡) is a non-decreasing function of t(fig. 2.3): 

 

 

Fig. 2.3 – A sample function of the process 𝜒(𝑡) 
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With continuity of notations, its CDF is defined as: 

 

 𝐹𝑡(𝑥) = 𝑃(𝜒(𝑡) ≤ 𝑥)  

 

for 𝑡 ≥ 0 and 𝑥 ≥ 0. 

Todorovic (1970, theorems 1 and 3) computed the value of 𝐹𝑡(𝑥) as the 

mathematical expectation of  

 
𝑃 { 𝑠𝑢𝑝

𝜏(𝜈)≤𝑡
𝑍𝜈 ≤ 𝑥|휂(𝑡)} 

 

i.e. (theorem 1): 

 

 
𝐹𝑡(𝑥) = ∑𝑃 [⋂{𝑍𝜈 ≤ 𝑥}

𝑘

𝜈=0

∩ 𝐸𝑘
𝑡]

∞

𝑘=0

 (2.30) 

 

and (theorem 3): 

 

 
𝐹𝑡(𝑥) = 𝑃(𝐸0

𝑡) +∑𝑃(𝐸𝜈
𝑡)𝑃{𝜒𝜈 ≤ 𝑥|𝐸𝜈

𝑡}

∞

𝜈=1

 (2.31) 

 

Zelenhasic (1970) reported that the same result can be obtained considering that 

 

𝐹𝑡(𝑥) = 𝑃(𝜒(𝑡) ≤ 𝑥) = 𝑃{[𝜒(𝑡) ≤ 𝑥] ∩ Ω} 

 

which is equivalent to write4: 

 

 
𝐹𝑡(𝑥) = 𝑃 {[𝜒(𝑡) ≤ 𝑥] ∩ [⋃𝐸𝜈

𝑡

∞

𝜈=0

]} = ∑𝑃{[𝜒(𝑡) ≤ 𝑥] ∩ 𝐸𝜈
𝑡}

∞

𝜈=0

 (2.32) 

 
4 In this deduction has been considered that events 𝐸0

𝑡, 𝐸1
𝑡… are exhaustive and mutually 

independent. 



 36 

 

An important result for extreme value theory can be derived considering that 

exceedances 𝑍𝜈 occurring in an interval [0, 𝑡] are independent and identically 

distributed random variables (Rossi and Versace, 1982).  

In particular, if process {𝑍𝜈;  ν = 1,2, . . . } is composed by a sequence of random 

variables independent both mutually and from the process {휂𝑡, 𝑡 ≥ 0} 

 

𝑃{𝜒𝜈 ≤ 𝑥|𝐸𝜈
𝑡} = 𝑃{𝜒𝜈 ≤ 𝑥} =∏𝑃[𝑍𝑖 ≤ 𝑥]

𝜈

𝑖=1

 

 

If process 𝑍𝑖  has identically distributed random variables with a common CDF 

𝐻(𝑥), then: 

 

∏𝑃[𝑍𝑖 ≤ 𝑧]

𝜈

𝑖=1

= [𝐻(𝑥)]𝜈 

 

The intensity, 𝜆(𝑡), of process 휂(𝑡) is representative of the mean number of 

exceedances in the time unity. 휂(𝑡) is said a homogeneous process if 𝜆 is 

independent of time, and Λ(𝑡) = 𝜆 ∙ 𝑡.  

Process 휂(𝑡) assumes a Poissonian distribution for high thresholds because of the 

poissonian distribution of rainfalls (Todorovic and Yevjevic, 1969) and the 

distance in time between big floods, which guarantee their independence. Under 

this statement, process results to be seasonally nonhomogeneous (Todorovic, 

1978). Concluding, 휂(𝑡) is here considered as a nonhomogeneous Poisson 

process, with a cyclical intensity function having a yearly period. 

 

Defining with 𝐻(𝑥) the distribution of the exceedances in the same interval, this 

leads to (Todorovic and Zelehnasic, 1970): 
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𝐹𝑡(𝑥) =∑{[𝐻(𝑥)]𝜈 𝑃(𝐸𝜈

𝑡)}

∞

𝜈=0

 (2.33) 

 

Consistent with eq. 2.32: 

 

 
𝐹𝑡(𝑥) = 𝑃(𝐸0

𝑡) +∑{[𝐻(𝑥)]𝜈𝑃(𝐸𝜈
𝑡)}

∞

𝜈=1

 (2.34) 

 

Substituting the expression on (2.26) into (2.34), will be: 

 

𝐹𝑡(𝑥) = 𝑒
−Λ(𝑡) {1 +∑

[Λ(𝑡)𝐻(𝑥)]𝜈

𝜈!

∞

𝜈=1

} 

 

Because the term into brackets is the Taylor expansion of 𝑒[Λ(𝑡)𝐻(𝑥)], is (Todorovic 

and Zelehnasic, 1970): 

 

 𝐹𝑡(𝑥) = 𝑒
{−Λ(𝑡)[1−𝐻(𝑥)]} (2.35) 

 

2.5.3 – Probability distributions of the largest exceedance in one year  
 

Different solutions were proposed in literature for describing the distribution of 

the largest exceedance under the hypothesis of Poissonian distribution of the 

number of occurrences. In this chapter, all the distribution will be derived under 

the assumption of the yearly duration of the interval of analysis:  

 

Λ𝑡 = Λ 

 

For example, Zelenhasic (1970) proposed to use the Gamma distribution for 

describing the distribution of exceedances 𝐻(𝑥), or its PDF ℎ(𝑥):  
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ℎ(𝑥) =

𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 𝑥 ≥ 0;    𝛼, 𝛽 > 0 

 

If 𝛼 is a positive integer: 

 

 
𝐻(𝑥) = ∫

𝛽𝛼

Γ(𝛼)
𝑢𝛼−1𝑒−𝛽𝑢 𝑑𝑢

𝑥

0

 𝑥 ≥ 0;          𝛽 > 0  

 

Special case 𝛼 = 1 leads to: 

 

 
𝐻(𝑥) = ∫𝛽𝑒−𝛽𝑢 𝑑𝑢 = [−𝑒−𝛽𝑢]

0

𝑥
= 1 − 𝑒−𝛽𝑥

𝑥

0

 (2.36) 

 

which is an exponential distribution. 

Substituting (2.36) into (2.35) leads to 

 

 𝐹(𝑥) = 𝑒[−Λ𝑒
−𝛽𝑥] (2.37) 

 

Eq. (2.37) is compatible with asymptotic laws described in paragraph 2.3. In fact, 

denoting with X the random variable representative of the annual maximum 

distribution, is easy to derive that: 

 

𝐻(𝑥) = 𝑥 = 𝑋 − 𝑞0 

 

and, for 

 

 𝛽 = 𝜎 Λ = 𝑒𝜎(𝜁−𝑞0)  
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Eq. (2.37) is much the same as Gumbel distribution (2.6) (Rossi et al., 1984). 

Same approach can be used for obtaining Fréchet distribution setting 

 

𝐻(𝑥) = ln(𝑥) 

 

and 

 

 𝛽 = 𝛼 Λ = 𝑒𝜎 ln(𝜁−𝑞0)  

 

Instead of exponential type, distribution of the annual maximum exceedance can 

be described by the generalized Pareto distribution in Eq. (2.14). Combining 

(2.35) and (2.14), under the hypothesis that 𝑥 > 𝑞0, is: 

 

 
𝐹(𝑥) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−

𝑥 − [𝑞0 + 𝜎
∗ ln(Λ)]

𝜎∗
]} 휀 = 0 

 

 

 

𝐹(𝑥) = 𝑒𝑥𝑝

{
 
 

 
 

− [1 − 휀
𝑥 − [𝑞0 +

𝜎∗(1 − Λ−𝜀)
휀 ]

𝜎∗Λ−𝜀
]

1
𝜀⁄

}
 
 

 
 

 휀 ≠ 0 (2.38) 

 

Eq. (2.38) is a GEV distribution with the same shape parameter of the Generalized 

Pareto distribution.  

Relationships between GEV and GP parameters are: 

 

 휁 = 𝑞0 + 𝜎
∗ ln(Λ) 휀 = 0 

   

 
휁 = 𝑞0 +

𝜎∗

휀
(1 − Λ−𝜀) 휀 ≠ 0 
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 𝜎∗ = 𝜎Λ𝜀  

 

At the point 𝑥 = 𝑞0 annual maximum cumulative distribution assumes the value 

𝑒𝑥𝑝(−Λ), that is the probability of having no exceedances into one year. 

 

Use of the Generalized Pareto distribution for characterizing the process of 

exceedances can be coupled with the hypothesis that the distribution of the 

number of events into one year, 𝜈, has a binomial distribution (case 2 in 

paragraph 2.5.1) with parameters n and p. It follows that (Hosking, 1994): 

 

 
𝐹(𝑥) =∑(

𝑛

𝑗
) 𝑝𝑗(1 − 𝑝)𝑛−𝑗[𝐻(𝑥)]𝑗 =

𝑛

𝑗=0

 

= {1 − 𝑝[1 − 𝐻(𝑥)]}𝑛 = 

= {1 − 𝑝 [1 − 휀
(𝑥 − 𝑞0)

𝜎∗
]

1
𝜀⁄

}

𝑛

 

(2.39) 

 

From Eq. (2.39), Hosking derived the following relationship: 

 

 

𝐹(𝑥) = {1 − ℎ [1 − 휀
(𝑥 − 휁)

𝜎
]

1
𝜀⁄

}

1
ℎ⁄

 (2.40) 

 

Eq. (2.40) is the expression of the four-parameters Kappa distribution, with ℎ =

1 𝑛⁄ . 

Hosking (1994) noted that 1 ℎ⁄  can be interpreted as the maximum number of 

independent events into one year.  

In the end, according to classical theory of probability, for 𝑛 → ∞ and 𝑛 ∙ 𝑝 

remains constant, binomial degenerates into a Poisson distribution, and Eq. 

(2.40) becomes as the GEV in Eq. (2.38). 
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2.5.4 – Double component Poissonian model 
 

As reported in Cunnane (1985), floods can be phenomenologically linked to 

different parent mechanisms (frontal or cyclonic rain, hurricanes and snowmelt), 

and this can explain the coexistence of different populations into a single sample. 

The presence of a second component into flood time series can be recognized, 

for example, by outliers, that can trigger to an unsatisfactory fit of traditional 

two- or three-parameter distributions. 

Statistical modelling of this statement can be obtained replacing the hypothesis 

that variables 𝑍𝑖  are identically distributed with the hypothesis that the same 

process arises from a mixture of two component. For example (Singh and Sinclair, 

1972): 

 

 𝐻(𝑥) = 𝑝 ∙ 𝐻1(𝑥) + (1 − 𝑝) ∙ 𝐻2(𝑥) (2.41) 

 

Under the hypothesis that exceedances are exponentially distributed, eq. (2.41) 

becomes (Rossi and Versace, 1982): 

 

 𝐻(𝑥) = 𝑝 ∙ [1 − 𝑒−𝜃1𝑥] + (1 − 𝑝) ∙ [1 − 𝑒−𝜃2𝑥] (2.42) 

 

where subscripts 1 and 2 are referred to respective components.  

Introducing the additional hypothesis that the annual number of exceedances of 

each component, 𝜈1 and 𝜈2, follows a Poisson process with parameters Λ1 and 

Λ2, then, reproductive property guarantees that total annual number of 

exceedances 𝜈 = 𝜈1 + 𝜈2 is Poisson distributed with parameter Λ = Λ1 + Λ2. 

Then, proportions 𝑝 and (1 − 𝑝) in eq. (2.41) will be: 

 

 
𝑝 =

Λ1
Λ1 + Λ2

 1 − 𝑝 =
Λ2

Λ1 + Λ2
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Combining (2.35) and (2.42) (Rossi et al., 1984) 

 

 
𝐹(𝑥) = 𝑒

(−Λ1𝑒
−
𝑥
𝜃1−Λ2𝑒

−
𝑥
𝜃2) (2.43) 

 

Eq. (2.43) represents the Two Component Extreme Value (TCEV) distribution, 

and is defined for x ≥ 0, Λ1 > Λ2 ≥ 0 and 휃2 > 휃1 > 0. 

Summing up, its four parameters represent the mean number of independent 

peaks into one year (Λ1 and Λ2) and the mean peak amplitude (휃1and 휃2) of the 

basic and the outlying component respectively (Rossi et al., 1984).  

 

2.6 – Annual Maxima (AM) vs. Peak-Over-Threshold (POT) approaches 
 

In this chapter Annual Maximum and Peak Over Threshold approaches for 

modelling hydrological extremes have been described. Here some important 

advantages and disadvantages of these models will be illustrated. 

 

As noted in paragraph 2.3, Annual Maximum approach is a particular case of the 

more general theory of Block Maxima. 

The choice of block size is a critical issue. Blocks too small are likely to lead to a 

poor approximation by the limit model in Fisher-Tippett theorem. This would 

lead to biases in the estimation of parameters and, consequently, in 

extrapolation. Large blocks would generate few block maxima, leading to a large 

estimation variance. It is therefore necessary to find a balance between the bias 

and the size of variances. Pragmatic considerations often lead to the adoption of 

blocks of length equal to one year, resulting in a series of annual maxima data. 

Furthermore, with this choice seasonal inhomogeneity problems are avoided. 

(Coles, 2001) 
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One of the most relevant limits of the AM approach is to consider only one value 

per year, excluding all other values that happens. Is often reported (e.g. Stedinger 

et al., 1993) that the second biggest value into one year can be greater than the 

largest in other years. As will be seen in chapter 6, this led to the incorporation 

into the analysis of values too small, not associated to any significant storm 

event. Including these data in FFA can influence the estimation of the right-hand 

tail of a frequency distribution. However, according to Cohn et al. (2013), this risk 

is very low for small probabilities of occurrence. Detection of this Potentially 

Influential Low Flows (PILFs) is an important step, and different tools have been 

proposed in literature for their identification (e.g. the Grubbs-Beck test). 

Finally, AM approach conduces to relatively small time series, which can give high 

uncertainty in the final results. However, dealing with only one data per year can 

be considered as a guarantee that time series is composed of independent 

random variables, in agreement with the basic hypothesis of EVT.  

The main quality of the POT model is basically its ability in the description of the 

flood phenomena, compounding modeling both of exceedance and base 

processes (Lang et al., 1999). Furthermore, this methodology gives the possibility 

of obtaining more numerous samples with respect to block maxima, leading to a 

more efficient estimate of parameters and quantiles. 

On the other hand, problems can arise in the threshold selection, which is an 

arbitrary operation: in fact, an improper choice can violate the independence 

assumption of random variables. Moreover, from different thresholds 

contradictory results can be.  

From a practical point of view, the choice between AM and POT models is 

strongly influenced by the availability of recorded data. For example, while 

countries as United States of America (USA), Canada and Australia have their own 

department which collect, validate and share water data, there are others in 

which this service is not efficient. It is the case of Italy, where water data 

recording is delegated to different regional or inter-regional departments, and 

time series of rainfall and discharges are only available in .pdf of in .xls files. An 
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exception are Calabria and Toscana region, in which data are provided in a user-

friendly electronic format. In these cases, it is evident how collect one data per 

year is easier and faster for the practitioner, which is so tempted to use the AM 

model. 

 

A last important remark has to be made about approaches used for describing 

probabilities of flood events. This work analyzes mainly Australian datasets and, 

in order to frame in previous studies about this topic, was considered reasonable 

to use notations proposed by Ball et al. (2019). This means that the measure of 

probability for AM approach will be the Annual Exceedance Probability (AEP), 

defined as the probability that a certain event is equaled or exceeded into one 

year. 
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CHAPTER 3: CLASSICAL APPROACH TO STATISTICAL INFERENCE 
 

3.1 - Overview 
 

In chapter 2 main probability distributions, according to their theoretical 

framework, were illustrated. One of the goals of this thesis, however, is to 

highlight properties and problems in using four-parameter distributions for flood 

frequency analysis. In this chapter, traditional methods of parameters estimation 

in the frequentist inference will be described, in order to give a rigorous basis for 

next chapter, where a comprehensive description of TCEV and Kappa will be 

provided in the same framework. In particular, paragraph 3.3 will deals with L-

Moments Ratio Diagram, with the aim to describe this useful tool for 

discriminating between candidate distributions. Its usefulness in detecting the 

best fitting distribution will be illustrated in chapter 6. 

 

3.2 – Methods of estimation 
 

3.2.1 – Method of Moments 
 

Velickov (2014) reported that this method was introduced before the era of 

Johann Bernoulli (1667-1748). Van Gelder (2004), in fact, noted that he made use 

of this method in his scientific production. 

Method of Moments (MoM) is a very simple approach for parameters estimation 

and consists in their calculation by equating theoretical moments of an assigned 

probability distribution with sample moments. This means that a number of 

equations equal to the number to unknown parameters is required to be solved. 

As will be explained later, bias in sample estimation suggests to use the lowest 

order of moments as possible. 

Define 𝐹(𝑥) and 𝑓(𝑥) respectively as the cumulative distribution function and 

the probability distribution function of a random variable 𝑥, while 𝜽 =
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[휃1, . . . , 휃𝑘] is a k-dimensional vector containing the parameters of the 

distribution. 

The non-central moment about the origin of order r of a probability distribution 

is: 

 

 
𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

+∞

−∞

 (3.1) 

 

For 𝑟 = 1 the non-central moment 𝜇1
′  is equal to the mean.  

Introducing a bias represented by the mean of this distribution, the central 

moment of order r about the mean is: 

 

 

 𝜇𝑟 = ∫ (𝑥 − 𝜇1
′ )𝑟𝑓(𝑥)𝑑𝑥

+∞

−∞

 (3.2) 

 

Obviously, from (3.2), 𝜇1 = 0. 

Relationships between central and non-central moments of order r can be found 

in Kendall and Stewart (1977, pag. 58): 

 

 
𝜇𝑟 =∑(

𝑟

𝑖
) 𝜇𝑟−𝑖

′ (−𝜇1
′ )𝑖

𝑟

𝑖=0

 
 

 

 
𝜇𝑟
′ =∑(

𝑟

𝑖
) 𝜇𝑟−𝑖

𝑟

𝑖=0

(𝜇1
′ )𝑖 

 

 

Respective sample moments (with n length of sample), instead, are: 
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𝑚𝑟
′ =

1

𝑛
∑𝑥𝑖

𝑟

𝑛

𝑖=1

 (3.3) 

 

 
𝑚𝑟 =

1

𝑛
∑(𝑥𝑖 − �̅�)

𝑟

𝑛

𝑖=1

 (3.4) 

 

where �̅� = 𝑚1
′  and, as before, 𝑚1 = 0. 

Cunnane (1989) reported how (3.3) and (3.4) are biased estimates (larger the 

smaller the sample is), and suggested corrections. For central moments, for 

example, the following expressions can be applied: 

 

 
�̂�2 =

1

𝑛 − 1
∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

 (3.3a) 

 

 
�̂�3 =

𝑛

(𝑛 − 1)(𝑛 − 2)
∑(𝑥𝑖 − �̅�)

3

𝑛

𝑖=1

 (3.4a) 

 

However, these corrections are not sufficient for eliminate bias. Wallis et al. 

(1974) investigated the bias in the sample estimates of the standard deviation 𝜎, 

�̂� = (𝑚2)
0.5, and in the skewness 𝐶𝑠, 𝑚3 𝑚2

1.5⁄  and noted that is function of 

sample size and skewness and form of the parent population.  

Despite its formal simplicity, MoM estimates are less efficient is compared with 

other methods (e.g. Maximum Likelihood). High bias in relatively small sample 

makes MoM are de facto not convenient for multi-parameter distributions (three 

or more). Matalas and Wallis (1973) obtained the same conclusions comparing 

MoM and ML for the three parameters distribution Pearson type 3. 

 

3.2.2 – Maximum Likelihood Method 
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It is a complicate study discovering who introduced Maximum Likelihood (ML) in 

the scientific literature. Kendall (1961) reported how traces can be found in 

Daniel Bernoulli’s opera. Given the relevant statistical importance of this method, 

the history about it discover has been the subject of a special paper written by 

Aldich (1997). 

Omitting the interesting historical notes, likelihood function can be defined as 

the joint pdf of the observations conditional on given values of the set of 𝑘 

parameters 𝜽 = [휃1, . . . , 휃𝑘] (Ramachandra Rao and Hamed, 2000), i.e.: 

 

 
ℒ(𝜽) =∏𝑓((𝑥𝑖)|𝜽)

𝑛

𝑖=1

 (3.5) 

 

Unknown parameters can be estimated maximizing this function with respect the 

same parameters. Usually, instead of the Likelihood function, its logarithm is 

used: 

 

 
ln[ℒ(𝜽)] =∑ln[𝑓((𝑥𝑖)|𝜽)]

𝑛

𝑖=1

 (3.6) 

 

The monotonic property of the logarithmic function guarantees the same 

maximum of the likelihood function ℒ(𝜽).  

From a strictly mathematical perspective, it means to solve the k-dimensional 

homogeneous system of equations obtained by differentiating (2.6) with respect 

to parameters 𝜽, i.e.: 

 

 𝜕 ln[ℒ(𝜽)]

𝜕휃𝑖
= 0 

𝑖 = 1,2, . . . , 𝑘 
(3.7) 

 



 49 

ML estimator has different properties which make it a reliable tool for 

hydrological applications. It can be retained an efficient method since provides 

the smallest sampling variance of the estimated parameters (and hence of the 

quantiles) with respect of other methods. It is important to note that ML method 

frequently gives biased estimates, but corrections can be found in literature 

(Fiorentino and Gabriele, 1984). Problems in getting ML estimates can be found 

when dealing with small samples and multi-parametric models. The main 

problem of ML estimation has been assumed for long time as the computational 

effort for solving system (3.7). Evolution and diffusion of computer machines 

allowed to overcome this issue. Actually, for example, parameter estimation with 

ML can be easily obtained using the statistical software R: extRemes (Gilleland 

and Katz, 2016) and ismev are an example of affordable packages than can give 

parameter estimation in both stationary and non-stationary framework. 

 

3.2.2.1 – Likelihood based model selection criteria 
 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are 

criteria for model selection widely employed in literature, due to their simplicity 

and clarity. They are likelihood-based criteria, and their use relies on the 

maximum-likelihood method. 

 

Information criteria are useful tools for model selection. It is reasonable to retain 

that Akaike Information Criterion (AIC; Akaike, 1974) is the most famous among 

them. Based on the Kullbach-Leibler discrepance measure, if 𝜽 is the parameter 

set of a k-dimensional model (𝑘 = 𝑑𝑖𝑚(𝜽)), AIC is defined as: 

 

𝐴𝐼𝐶 = −2ℓ(�̂�) + 2𝑘. 

 

The model that best fits data has the lowest value of AIC between candidates. It 

is useful to observe that the term proportional to the number of model 



 50 

parameters allows to account for the increased estimator variance due to a larger 

parametrization and embodies the principle of parsimony.  

Sugiura (1978) observed that AIC can lead to misleading results for small samples; 

he proposed a new measure for AIC: 

 

𝐴𝐼𝐶𝑐 = −2ℓ(휃̂) +
2𝑘(𝑘 + 1)

𝐿 − 𝑘 − 1
 

 

where a second-order bias correction is introduced and L is the sample size. 

Burnham and Anderson (2004) suggested to use this version only when 

𝐿 𝑘𝑚𝑎𝑥⁄ < 40, being 𝑘𝑚𝑎𝑥  the maximum number of parameters between the 

compared models. However, for larger L, 𝐴𝐼𝐶𝑐 converges to AIC. For a 

quantitative comparison between AIC and 𝐴𝐼𝐶𝑐 in the extreme value stationary 

model selection framework see also Laio et al. (2009). 

AIC is widely also used in model selection between non-stationary and stationary 

distributions. Dealing with GEV and Gumbel distributions with a linear trend in 

the location parameter, Totaro et al. (2019) proposed a new way for using AIC, 

introducing the 𝐴𝐼𝐶𝑟𝑎𝑡𝑖𝑜, and noted how the power of this statistic in model 

selection is strongly influenced by sample size and parent distribution. 

 

Bayesian Information Criterion (BIC) was originally introduced by Schwarz (1978) 

in a Bayesian framework. Its expression is: 

 

𝐵𝐼𝐶 = −2ℓ(휃̂) + ln(𝐿) ∙ 𝑘 

 

In practical application, after the computation of the BIC, for all of the operating 

models one selects the model with the minimum BIC value (Laio et al., 2009). 
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3.2.3 – Probability Weighted Moments 
 

Probability Weighted Moments (PWM) of a probability distribution having CDF 

𝐹 = 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) can be defined as (Greenwood et al., 1979): 

 

 
𝑀𝑝,𝑟,𝑠 = 𝐸[𝑋𝑝𝐹𝑟(1 − 𝐹)𝑠] = ∫[𝑥(𝐹)]𝑝𝐹𝑟

1

0

(1 − 𝐹)𝑠𝑑𝐹 (3.8) 

 

with [𝑝, 𝑟, 𝑠] ∈ ℝ. Conventional noncentral moments can be derived from (3.8) 

for r and s equal to 0 and 𝑝 ∈ ℤ: 

 

𝐸(𝑋𝑝) = ∫ 𝑥𝑝𝑓(𝑥)𝑑𝑥 = ∫[𝑥(𝐹)]𝑝𝑑𝐹 =

1

0

+∞

−∞

𝑀𝑝,0,0 

 

Parameters estimation with PWMs is conceptually analogous to MoM, and 

consists in equaling sample and theoretical PWM. 

Greenwood et al. (1979) reported also that if 𝑝, 𝑟, 𝑠 ∈ ℤ0
+ then 𝑀𝑝,𝑟,𝑠 is 

proportional to the p-th noncentral moment of the (r + 1)-th order statistic for a 

sample of size 𝑠 + 𝑟 + 1: 

 

𝐸[𝑋𝑟+1,𝑟+𝑠+1
𝑝 ] =

𝑀𝑝,𝑟,𝑠

𝐵[𝑟 + 1, 𝑠 + 1]
 

 

with 𝐵[∙,∙] the Beta function. 

Setting 𝑟 = 0, we will get: 

 

𝐸[𝑋1,𝑠+1
𝑝 ] =

𝑀𝑝,0,𝑠

𝐵[1, 𝑠 + 1]
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It can be proved that: 

 

 
𝐸[𝑋1,𝑠+1

𝑝 ] =
1

𝑘 + 1
𝑀𝑝,0,𝑠 (3.9) 

 

which is the p-th moment about the origin of the first order statistic for a sample 

of size s+1. 

Using p equal to 1 allows to use moments 𝑀1,𝑟,𝑠 for parameter estimation: in this 

way, only the first power of x is used, avoiding problems arising in the method of 

moments with higher orders. Furthermore, use of high powers gives more weight 

to large observation (Rasmussen, 2001). Particularly useful PWM are: 

 

 
𝛼𝑠 = 𝑀1,0,𝑠 = ∫𝑥(𝐹)

1

0

(1 − 𝐹)𝑠𝑑𝐹 (3.10a) 

 

𝛽𝑟 = 𝑀1,𝑟,0 = ∫𝑥(𝐹)𝐹𝑟
1

0

𝑑𝐹 (3.10b) 

 

with r and s ∈ ℤ0
+.  

Greenwood et al. (1979) reported that if r and s ∈ ℤ0
+ the following relationships 

hold: 

 

 
𝑀1,0,𝑠 =∑(

𝑠
𝑖
) (−1)𝑖𝑀1,𝑖,0

𝑠

𝑖=0

=∑(
𝑠
𝑖
) (−1)𝑖𝛽𝑖

𝑠

𝑖=0

 (3.11a) 

   

 
𝑀1,𝑟,0 =∑(

𝑟
𝑖
) (−1)𝑖𝑀1,0,𝑠 =

𝑟

𝑖=0

∑(
𝑟
𝑖
) (−1)𝑖𝛼𝑖

𝑟

𝑖=0

 (3.11b) 
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Application of the method of Probability Weighted Moments for parameters 

estimation allows to obtain in much cases simply relationships between 

parameters and moments 𝑀𝑝,𝑟,𝑠, especially when (3.10) are used.  

Given a sample of n observations 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), be 𝑥1:𝑛, 𝑥2:𝑛, . . . , 𝑥𝑛:𝑛 its 

elements ranked in ascending order, i. e. the order statistics. An unbiased 

estimate of αs and βr can be obtained using the following relationships (Hosking, 

1986), valid for 𝑟, 𝑠 = 0,1, . . . , 𝑛 − 15: 

 

𝑎𝑠 =
1

𝑛
∑

(
𝑛 − 𝑖
𝑠
)

(
𝑛 − 1
𝑠

)
𝑥(𝑖) =∑

(𝑛 − 𝑖)(𝑛 − 𝑖 − 1)… (𝑛 − 𝑖 − 𝑠 + 1)

(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑠)

𝑛

𝑖=1

𝑛

𝑖=1

 𝑥(𝑖) (3.12a) 

𝑏𝑟 =
1

𝑛
∑

(
𝑖 − 1
𝑟
)

(
𝑛 − 1
𝑟

)
𝑥(𝑖) =∑

(𝑖 − 1)(𝑖 − 2)… (𝑖 − 𝑟)

(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑟)

𝑛

𝑖=1

𝑥(𝑖)

𝑛

𝑖=1

 (3.12b) 

 

Other estimators for αs and βr are (Hosking et al., 1985; Hosking and Wallis, 1987):  

 

 
�̂�𝑠 =

1

𝑛
∑(1 − 𝑝𝑖,𝑛)

𝑠
𝑥(𝑖)

𝑛

𝑖=1

 (3.13a) 

 
�̂�𝑟 =

1

𝑛
∑(𝑝𝑖,𝑛)

𝑟
𝑥(𝑖)

𝑛

𝑖=1

 (3.13b) 

where pi,n is  

 

𝑝𝑖,𝑛 =
𝑖 + 𝛾

𝑛 + 𝛿
 

 

i.e. a plotting position estimate of 𝐹(𝑥(𝑖)), with γ and δ constants. 

Parameters of a probability distribution can be derived equaling theoretical 

expressions of PWMs (3.10) with sample ones. Generally, for two parameters 

 
5 It is useful remark that binomial coefficient (

𝑛
𝑘
) is defined for n, k ∈ ℕ and 0 ≤ 𝑘 ≤ 𝑛. 
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distributions simple analytical expressions between parameters and PWMs can 

be obtained for r or s equal to 0 and 1. In particular, (3.11) allow the practitioner 

to choose the more convenient quantity αs and βr because of their mutual links. 

For a three parameters distribution, moment of order 2 can be used in addition 

(e.g. Hosking et al., 1985, for the GEV).  For the GEV distribution, Wang (1997b) 

noted how using for 𝛽orders of 1,2,3 leads to a better fit of the right tail of the 

distribution.  

Stedinger (1993) reported that (3.13) should be used in at-site analyses, because 

mean square error in quantile estimates is lower than that obtained using the 

unbiased (3.12).  

Different applications have been made in parameters and quantile estimation 

using PWMs. Greenwood et al. (1979) derived expressions between parameters 

and PWMs for different distributions, including Weibull and Gumbel. Comparison 

between MoM, ML and PWM in estimation of parameters and quantiles has been 

made by Landwer et al. (1979) for Gumbel distribution and by Hosking and Wallis 

(1987) for Generalized Pareto distribution. Hosking et al. (1985) deriver 

parameters expressions in terms of PWMs for the GEV distribution. A review on 

PWMs theory and estimation can be found in Hosking (1986). Probability 

Weighted Moments for Kappa distribution are in Hosking (1994), while for TCEV 

are presented in Beran et al. (1986). 

Hosking and Wallis (1997) noted that is not easy to get a direct interpretation of 

PWM as a measure of the scale and the shape of a distribution. However, this link 

can be obtained using L-moments, that will be introduced and described in the 

following paragraph. 

 

3.2.4 – L-Moments 
 

L-moments of a probability distribution have been introduced in Hosking (1986) 

as linear (from which the “L” of “L-moments”) functions of the expected order 

statistics and can be defined as: 
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𝜆𝑟 =

1

𝑟
∑(−1)𝑖 (

𝑟 − 1

𝑖
) 𝐸{𝑋𝑟−𝑖:𝑟}

𝑟−1

𝑖=0

 𝑟 ∈ ℤ+ (3.14) 

 

being 𝐸(∙) the expectation of an order statistic defined by: 

 

 
𝐸{𝑋𝑗:𝑟} =

𝑟!

(𝑟 − 𝑗)! 𝑗!
∫𝑥{𝐹(𝑋)}𝑗−1{1 − 𝐹(𝑋)}𝑟−𝑗 𝑑𝐹(𝑋) (3.15) 

 

Combining (3.14) and (3.15): 

 

 
𝜆𝑟 = ∫𝑥(𝐹)𝑃𝑟−1

∗ (𝐹) 𝑑𝐹

1

0

 𝑟 ∈ ℤ+ (3.16) 

 

where is the r-th shifted Legendre polynomial: 

 

 
𝑃𝑟
∗(𝐹) =∑𝑝𝑟,𝑖

∗  𝐹𝑖
𝑟

𝑖=0

 
 

 

and 

 

 
𝑝𝑟,𝑖
∗ = (−1)𝑟−𝑖 (

𝑟

𝑖
) (
𝑟 + 𝑖

𝑖
) 

 

 

Shifted Legendre polynomials are related to the ordinary Legendre polynomials 

𝑃𝑟(𝑢) as 𝑃𝑟
∗(𝑢) = 𝑃𝑟(2𝑢 − 1) and are orthogonal on the interval (0,1) with 

constant weight function (Singh, 1998). 

First four L-moments can be expressed as: 
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𝜆1 = 𝐸(𝑋) = ∫𝑥(𝐹) 𝑑𝐹

1

0

 (3.17) 

   

 
𝜆2 =

1

2
𝐸(𝑋(2:2) − 𝑋(1:2)) = ∫𝑥(𝐹) (2𝐹 − 1)

1

0

 𝑑𝐹 (3.18) 

   

 

𝜆3 =
1

3
𝐸(𝑋(3:3) − 𝑋(2:3) + 𝑋(1:3)) = ∫𝑥(𝐹) (6𝐹

2 − 6𝐹 + 1)

1

0

 𝑑𝐹 (3.19) 

   

 𝜆4 =
1

4
𝐸(𝑋(4:4) − 3𝑋(3:4) + 3𝑋(2:4) − 𝑋(1:4))

= ∫𝑥(𝐹) (20𝐹3 − 30𝐹2 + 12𝐹 − 1)

1

0

 𝑑𝐹 
(3.20) 

 

L-moments can be expressed in terms of PWM using this general relationship 

(Hosking and Wallis, 1997): 

 

 
𝜆𝑟+1 = (−1)𝑟∑𝑝𝑟,𝑖

∗  𝛼𝑖

𝑟

𝑖=0

=∑𝑝𝑟,𝑖
∗  𝛽𝑖

𝑟

𝑖=0

 (3.21) 

 

Using (3.10), L-moments (3.17-3.20) become: 

 

 

 𝜆1 = 𝛼0 = 𝛽0 (3.22) 

    

 𝜆2 = 𝛼0 − 2𝛼1 = 2𝛽1 − 𝛽0 (3.23) 

    

 𝜆3 = 𝛼0 − 6𝛼1 + 6𝛼2 = 𝛽0 − 6𝛽1 + 6𝛽2 (3.24) 
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 𝜆4 = 𝛼0 − 12𝛼1 + 30𝛼2 − 20𝛼3 = 𝛽0 − 12𝛽1 − 30𝛽2 + 20𝛽3 (3.25) 

 

As for PWMs, parameters can be estimated equating (3.22-3.25) to their sample 

estimates ℓ obtained using (3.12) or (3.13). 

In the previous paragraph has been noted that PWM cannot be easily explained 

as property of an assigned distribution. This is possible, instead, for L-moments, 

where 𝜆1 is the mean (a measure of location) and 𝜆2 is a measure of the scale of 

the distribution. Higher moments 𝜆𝑟 , 𝑟 ≥ 3 can be standardizes giving L-

moments ratios: 

 

 
𝜏𝑟 =

𝜆𝑟
𝜆2

 (3.26) 

 

Usually, the following quantities are mostly used: 

 

L-Coefficient of Variation 𝜏 =
𝜆2
𝜆1

 (3.27) 

   

L-Skewness 𝜏3 =
𝜆3
𝜆2

 (3.28) 

   

L-Kurtosis 𝜏4 =
𝜆4
𝜆2

 (3.29) 

 

Some properties of L-moments and L-moments ratios have to be remarked, also 

because will be useful for the analysis (Hosking and Wallis, 1997): 

 

− Existence: if the distribution mean exists, then all of the L-moments exist. 

− Uniqueness: if the distribution exists, then it is uniquely defined by the L-

moments; two different distributions cannot have the same L-moments. 
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− sample L-moments are an unbiased estimate of the theoretical L-

moments. The estimate of the L-moments ratios is not unbiased, but 

them bias is very small for large samples.  

 

Some numerical limits have to be remarked too. These limits will be reported as 

a pointed list, because will be recalled in the next chapter about L-moments 

parameter estimation of TCEV and Kappa. 

 

1. 𝜆2 ≥ 0 

2. ‖𝜏‖ < 1 for 𝑟 ≥ 3. Given 𝜏3, there are limits for 𝜏4 

 

 1

4
(5𝜏3

2 − 1) ≤ 𝜏4 < 1 (3.30) 

 

If distribution can take only positive values (as TCEV), following 

constraints can be applied: 

 

 2𝜏 − 1 ≤ 𝜏3 < 1 (3.31) 

 

3.3 – L-moments ratio diagram 
 
L-moments ratio diagram is a useful graphical tool for representing L-moments 

of different distributions (Stedinger et al., 1993). We are dealing with a diagram 

that has on the abscissa the L-skewness 𝜏3 and on the ordinate the L-kurtosis 𝜏4. 

Basically, two parameters distributions are identified by a point on this diagram, 

while when parameters are three, they are represented by a line obtained for 

different values of the shape parameter (Hosking and Wallis, 1997). 

LMRD for GEV, Generalized Logistic (GLO), Generalized Pareto (GPA), Pearson 

Type III (PE3), Exponential (EXP) and Gumbel (GUM) are reported in fig. 3.1 This 

diagram has been realized using the R package lmomco (Asquit, 2018). 
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figure 3.1 – L-Moments Ratio Diagram 

 

Build a such-made diagram can have some degree of complexity due to analytical 

expression of distributions or to long time required write functions required. 

Hosking and Wallis (1997) noted that plotting this diagram can be made easier 

using a polynomial approximation 

 

𝜏4 =∑𝐴𝑘𝜏3
𝑘

8

𝑘=0

 

 

for each distribution. Coefficients for each distribution can be found in Hosking 

and Wallis (1997). 

It is important to remark that in fig. 3.1, is reported the Pearson type 3 

distribution and not the Log-Pearson type 3. Vogel et al. (1993a) noted that is not 

possible derive the theoretical relationships 𝜏3 − 𝜏4 for LP3. However, this issue 

can be overcome by compute sampling L-Moments for the logarithm of data.  
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Four parameters distribution, instead, are represented by an area on LMRD. Plots 

and considerations for Kappa and TCEV will be described in the next chapter. 
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CHAPTER 4: A REVIEW OF TCEV AND KAPPA DISTRIBUTIONS 
 
 

4.1 - Introduction 
 

Goal of this chapter is to provide a review of concepts described in the previous 

chapter for TCEV and Kappa distributions with regard to their point estimation. 

In particular, focus will be concentrated on the most popular methods in 

parameter estimation, such as Maximum Likelihood (MLE), Probability Weighted 

Moments (PWMs) and L-Moments (LME). The need of this review arises from the 

account that there are only some scientific papers which deal with the subject 

concerning the at-site Kappa distribution (Hosking, 1994; Parida, 1999; 

Winchester, 2000; Dupuis and Winchester, 2001), while only some notes about 

were given for TCEV distribution (Rossi et al., 1984; Beran et al., 1986; Arnell and 

Beran, 1988; Gabriele and Iiritano, 1994). 

Particularly, TCEV L-Moments theoretical relationships will be applied in order to 

introduce this distribution in L-Moments Ratio Diagram (LMRD), a useful tool for 

identify appropriate distributions to fitted data (Ramachandra Rao ad Hamed, 

2000). Indeed, only in some papers this diagram for TCEV was plotted; a visual 

comparison with other distributions can lead to interesting insight about 

goodness-of-fit. 

 

4.2 – Kappa distribution 
 

Kappa distribution was introduced by Hosking (1994) as a generalization of the 

three-parameter kappa distribution proposed by Mielke (1973). It is reasonable 

to assume that the most known use of this distribution is in the definition of the 

measures of heterogeneity and goodness of fit proposed by Hosking and Wallis 

(1993). However, multiple use can be found in literature.  

Castellarin et al. (2007) applied Kappa to empirical series of dimensionless daily 

streamflows with a modified procedure for parameters estimation that allows to 
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ensure feasibility of solution. Blum et al. (2017) found that Kappa has a good fit 

to daily streamflows in the conterminous United States, and reported 

computational problems in parameters estimation. Kjeldsen et al. (2017) 

modelled Kappa for FFA in United Kingdom and found it having the best fit in 

small and wet catchments.  

Point estimation of Kappa distribution was discussed in different studies. Parida 

(1999) applied Kappa to summer monsoon rainfall data in India with LME and 

found problems in computations due to feasibility region of searching. 

Winchester (2000) and Dupuis and Winchester (2001) discussed about problems 

in parameters estimation with MLE and LME and compared their performances 

both in parameters and quantiles estimation. Park and Jung (2002) proposed a 

penalized MLE for KAP. Singh and Deng (2003) proposed the application of 

Maximum Entropy for estimating parameters of Kappa and concluded that its 

performances are similar to LME. Park and Kim (2007) derived the exact 

expression and conditions of existence for Kappa Fisher information matrix. 

Murshed et al. (2014) derived the analytical distribution of LH moments of Kappa 

distribution and concluded that in the estimation of upper quantiles of 

distribution its performances are comparable to traditional LME.  A good fit to 

wind speed data of Kappa distribution was found by Morgan et al. (2011) and 

Ouarda et al. (2015).  

 

4.2.1 – Definition and moments 
 

Kappa cumulative distribution can be expressed in this general form 

 

 

𝐹(𝑥) = {1 − ℎ [1 − 휀
(𝑥 − 휁)

𝜎
]

1
𝜀⁄

}

1
ℎ⁄

 (4.1) 

 

while its pdf is 
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𝑓(𝑥) = [𝐹(𝑥)]1−ℎ
1

𝜎
[1 − 휀

(𝑥 − 휁)

𝜎
]

1
𝜀
−1

=  

 

 

=
1

𝜎
{1 − ℎ [1 − 휀

(𝑥 − 휁)

𝜎
]

1
𝜀⁄

}

1
ℎ
−1

[1 − 휀
(𝑥 − 휁)

𝜎
]

1
𝜀
−1

 (4.2) 

 

 

From eq. (4.1) it is possible to see that an explicit expression for the quantile of 

this distribution can be derived:  

 

 
𝑥(𝐹) = 휁 +

𝜎

휀
[1 − (

1 − 𝐹ℎ

ℎ
)

𝜀

] (4.3) 

 

According to the limiting values that parameters ε and h can assume, the CFD pf 

Kappa can assume different expressions: 

 

 

𝐹(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

{1 − ℎ [1 − 휀
(𝑥 − 휁)

𝜎
]

1
𝜀

}

1
ℎ

            𝑖𝑓 𝑘 ≠ 0, ℎ ≠ 0

𝑒
−[1−𝜀

(𝑥−𝜁)
𝜎

]

1
𝜀

                                     𝑖𝑓 𝑘 ≠ 0, ℎ = 0

[1 − ℎ𝑒−
(𝑥−𝜁)
𝜎 ]

1
ℎ
                              𝑖𝑓 𝑘 = 0, ℎ ≠ 0

𝑒−𝑒
−
(𝑥−𝜁)
𝜎                                             𝑖𝑓 𝑘 = 0, ℎ = 0

 (4.4) 

 

As reported in Parida (1999), Kappa distribution can include multiple 

distributions for different combinations of h and 휀: 
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ℎ 휀 Distributions 

1 ≠ 0 Generalized Pareto 

0 ≠ 0 Generalized Extreme Value 

-1 ≠ 0 Generalized Logistic 

1 0 Exponential 

0 0 Gumbel 

-1 0 Logistic 

1 1 Uniform  

0 1 Reverse Exponential 

 

It is evident to note that, for different combinations of h and휀, boundaries of 

distribution change: 

 

휁 +
𝜎

휀
(1 − ℎ−𝜀) ≤ 𝑥 ≤ 휁 +

𝜎

휀
 ℎ > 0 휀 > 0 

   

휁 + 𝜎 𝑙𝑛(ℎ) ≤ 𝑥 < +∞ ℎ > 0 휀 = 0 

   

휁 +
𝜎

휀
(1 − ℎ−𝜀) ≤ 𝑥 < +∞ ℎ > 0 휀 < 0 

   

−∞ < 𝑥 < 휁 +
𝜎

휀
 ℎ ≤ 0 휀 > 0 

   

−∞ < 𝑥 < +∞ ℎ ≤ 0 휀 = 0 

   

휁 +
𝜎

휀
≤ 𝑥 < +∞ ℎ ≤ 0 휀 < 0 

 

These bounds are very important, because observations from a sample must 

satisfy them. 
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The r-th noncentral moment6 of Kappa distribution can be obtained (in the spite 

of the discussion about PWM) as: 

 

 
𝜇𝑟
′ = ∫[𝑥(𝐹)]𝑟 = ∫{휁 +

𝜎

휀
[1 − (

1 − 𝐹ℎ

ℎ
)

𝜀

]}

𝑟1

0

1

0

𝑑𝐹 (4.5) 

 

According to Winchester (2000), introducing the variable y and letting 

 

𝑦 = 1 − 휀
(𝑥 − 휁)

𝜎
 

 
the related CDF will be 

𝐺(𝑦) = 1 − [1 − 휀𝑦
1
𝜀]

1
ℎ

 

 

and the quantile function is 

 

𝑦(𝐺) = [
1 − (1 − 𝐺)ℎ

ℎ
]

𝜀

 

 

Setting F = 1 – G, will be 

 

 
𝐸[𝑦𝑟] = ∫ [

1

ℎ
(1 − 𝐹ℎ)]

𝜀𝑟

𝑑𝐹

1

0

 (4.6) 

 

The evaluation of this integral should be done separately for the cases ℎ > 0 and 

ℎ < 0 (Hosking, 1994). 

 

 

 
6 r is a nonnegative integer  
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Case 1: h > 0 

 

Setting 𝑢 = 𝐹ℎ, integral (4.6) become: 

 

𝐸[𝑦𝑟] = ℎ−(1+𝑟𝜀)∫(1 − 𝑢)𝑟𝜀𝑢
1
ℎ
−1𝑑𝑢

1

0

 

 
Gradhteyn and Ryzhik (2007, eq. 3.191.3) state that, if 𝜇, 𝜈 > 0, then 

 

∫𝑥𝜈−1(1 − 𝑥)𝜇−1𝑑𝑥

1

0

= 𝔅(𝜇, 𝜈) 

 

with 𝔅(𝜇, 𝜈) the beta function. 

Because (Gradhteyn and Ryzhik, 2007; eq. 8.384.1) 

 

𝔅(𝜇, 𝜈) =
Γ(𝜇) Γ(𝜈)

Γ(𝜇 + 𝜈)
 

 

Being Γ(𝜇, 𝜈) the gamma function. It follows that 

 

∫(1 − 𝑢)𝑟𝜀𝑢
1
ℎ
−1𝑑𝑢

1

0

=
Γ(1 + 𝑟휀) Γ (

1
ℎ
)

Γ (1 + 𝑟휀 +
1
ℎ
)

 

 

Conditions of existence of this moment are: 

 

 if 휀 > 0 ⇒ 𝑟 ∈ ℤ0
+  

     

 if 휀 ≤ 0 ⇒ 𝑟휀 < −1  
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Case 2: h < 0 
 

In this case, solving the integral require the substitution 𝑢 = 𝐹ℎ − 1. In this 

way, will be: 

 

𝐸[𝑦𝑟] = (−ℎ)−(1+𝑟𝜀)∫ 𝑢𝑟𝜀(1 + 𝑢)
1
ℎ
−1𝑑𝑢

∞

0

 

 

According to (Gradhteyn and Ryzhik, 2007; eq. 3.196.2), will become 

 

𝐸[𝑦𝑟] = (−ℎ)−(1+𝑟𝜀)
Γ(1 + 𝑟휀) Γ (−𝑟휀 −

1
ℎ
)

Γ (1 −
1
ℎ
)

 

 

Conditions of existence allow to write that: 

 

 if 휀 > 0 
𝑟 < −

1

𝑟ℎ
 

 

    

 if 휀 ≤ 0 
{
𝑟𝑘 > −1

𝑟𝑘 < −
1

ℎ

 
 

 

Hosking (1994) reported that when using MoM for estimation, the first four 

moments of this distribution can be obtained for different values of (h, k). This 

has as direct consequence that MoM cannot be considered as a reliable tool for 

parameter estimation in the Kappa case. 
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4.2.2 – Maximum Likelihood  
 

According to paragraph 3.2.2, given a sample of length n, likelihood function for 

Kappa distribution is: 

 

 

ℒ(𝜽) =
1

𝜎𝑛
∏{1− ℎ [1 − 휀

(𝑥 − 휁)

𝜎
]

1
𝜀⁄

}

1
ℎ
−1

[1 − 휀
(𝑥 − 휁)

𝜎
]

1
𝜀
−1𝑛

𝑖=1

 (4.7) 

 

Log-likelihood function, therefore, will have the following structure: 

 

 
ln[ℒ(𝜽)] = −𝑛 ln(𝜎) + (

1

휀
− 1)∑ln {1 − [

휀(𝑥𝑖 − 휁)

𝜎
]}

𝑛

𝑖=1

 

                   + (
1

ℎ
− 1)∑ln{[1 − ℎ(1 −

휀(𝑥𝑖 − 휁)
1
𝜀

𝜎
)]}

𝑛

𝑖=1

 

(4.8) 

 

Reminding that the set of parameters 𝜽 is equal to: 𝜽 = [휁, 𝜎, 휀, ℎ], maximum of 

(4.8) can be found setting equal to zero the first derivatives of (4.9) with respect 

to the four Kappa parameters: 

 

 
𝑆1 =

𝜕{ln[ℒ(𝜽)]}

𝜕휁
= 0 

(4.9) 

  

 
𝑆2 =

𝜕{ln[ℒ(𝜽)]}

𝜕𝜎
= 0 

  

 
𝑆3 =

𝜕{ln[ℒ(𝜽)]}

𝜕휀
= 0 
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𝑆4 =

𝜕{ln[ℒ(𝜽)]}

𝜕ℎ
= 0 

 

Introducing the variable 𝑧𝑖 = 휀
(𝑥𝑖−𝜁)

𝜎
, 𝑖 = 1, . . . , 𝑛, equations (4.9) become: 

 

 

𝑆1 =
(
1
휀
− 1)

𝜎
휀∑

1

(1 − 𝑧𝑖)

𝑛

𝑖=1

−
(
1
ℎ
− 1)

𝜎
∑

ℎ(1 − 𝑧𝑖)
1
𝜀

[1 − ℎ(1 − 𝑧𝑖)
1
𝜀] (1 − 𝑧𝑖)

= 0

𝑛

𝑖=1

 
  

   

𝑆2 = −
𝑛

𝜎
+
(
1
휀
− 1)

𝜎
∑

𝑧𝑖
(1 − 𝑧𝑖)

𝑛

𝑖=1

−
(
1
ℎ
− 1)

휀𝜎
∑

ℎ(1 − 𝑧𝑖)
1
𝜀𝑧𝑖

[1 − ℎ(1 − 𝑧𝑖)
1
𝜀] (1 − 𝑧𝑖)

= 0

𝑛

𝑖=1

 
  

 (4.10) 

𝑆3 = −
1

휀2
∑ln(1 − 𝑧𝑖)

𝑛

𝑖=1

−
(
1
휀
− 1)

휀
∑

𝑧𝑖
(1 − 𝑧𝑖)

+

𝑛

𝑖=1

 

−(
1

ℎ
− 1)∑

ℎ(1 − 𝑧𝑖)
1
𝜀 [−

1
휀2
ln(1 − 𝑧𝑖) −

1
휀2

𝑧𝑖
(1 − 𝑧𝑖)

]

[1 − ℎ(1 − 𝑧𝑖)
1
𝜀]

= 0

𝑛

𝑖=1

 

  

   

𝑆4 = −
1

ℎ2
∑ln [1 − ℎ(1 − 𝑧𝑖)

1
𝜀]

𝑛

𝑖=1

− (
1

ℎ
− 1)∑

(1 − 𝑧𝑖)
1
𝜀

[1 − ℎ(1 − 𝑧𝑖)
1
𝜀]
= 0

𝑛

𝑖=1

 

  

 

that is a nonlinear system with four unknown parameters. 

 

4.2.3 – PWM and L-Moments 
 

According to the definition of Probability Weighted Moments given in the 

previous Chapter, has to be noticed that PWMs of a distribution exists only if the 

mean of the distribution exists. Following the development of (4.6) for 𝑟 = 1, this 
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condition of existence is verified for 휀 > −1 if ℎ ≥ 0 and for −1 < 휀 < −1 ℎ⁄  for 

ℎ < 0. (3.10b) can be written as: 

 

 
𝛽𝑟 =

1

𝑟 + 1
(휁 +

𝜎

휀
) −

𝜎

휀
∫ [

1

ℎ
(1 − 𝐹ℎ)]

𝜀

𝐹𝑟 𝑑𝐹

1

0

 (4.11) 

 

Solution of this integral can be obtained in the same way of conventional 

moments. For 휀 ≠ 0, Hosking (1994): 

 

𝑟𝛽𝑟−1 =

{
  
 

  
 휁 +

𝜎

휀
[1 −

𝑟Γ(1 + 휀)Γ(𝑟 ℎ⁄ )

ℎ1+𝜀Γ(1 + 휀 + 𝑟 ℎ⁄ )
]     ℎ > 0, 휀 > −1         

휁 +
𝜎

휀
[1 −

1

𝑟
Γ(1 + 휀)]                     ℎ = 0, 휀 > −1       

휁 +
𝜎

휀
[1 −

𝑟Γ(1 − 휀)Γ(−휀 − 𝑟 ℎ⁄ )

(−ℎ)1+𝜀Γ(1 − 𝑟 ℎ⁄ )
]        ℎ < 0,−1 < 휀 < −1 ℎ⁄

       (4.12) 

  

If 휀 = 0, instead: 

 

 

𝑟𝛽𝑟−1 = {

휁 + 𝛼[𝛾 + ln(ℎ) + 𝜓(1 + 𝑟 ℎ⁄ )]            ℎ > 0

휁 + 𝜎[𝛾 + ln(𝑟)]                                         ℎ = 0

휁 + 𝜎[𝛾 + ln(−ℎ) + 𝜓(−𝑟 ℎ⁄ )]              ℎ < 0

 (4.13) 

 

where 𝜓 is the digamma function and 𝛾 is the Euler’s constant. 

From equations (4.12) and (4.13) L-moments can be easily deducted. According 

to the theoretical framework, the following set of equations has to be 

numerically solved: 

 

 

{

𝜆1 = ℓ1
𝜆2 = ℓ2
𝜏3 = 𝑡3
𝜏4 = 𝑡4

 (4.14) 
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Distinguishing the three cases of eqs. (4.12) and (4.13) allows to evaluate the 

values of 𝛽0, 𝛽1, 𝛽2 and 𝛽3 for 휀 ≠ 0 and 휀 = 0. Results are reported in Appendix 

A. 

 

As reported by Hosking and Wallis (1997), four parameter distributions on L-

Moments Ratio Diagram are not represented by a line, but by an area. Kjeldsen 

et al. (2017) reported its position on LMRD for −1 ≤ ℎ ≤ 1, as in fig. 4.1: 

 

 
fig. 4.1 – LMRD for some values of h (from Kjeldsen et al., 2017) 

 

A Fortran subroutine for estimating Kappa parameters with the methods of L-

moments was provided by Hosking (2000). The availability of this subroutine gave 

a strong contribution for at-site applications with Kappa distribution. Is should be 

remarked how Hosking found that solutions of hydrological interest lie in the 

domain of ℎ > −1: in his code, this constraint is applied. Furthermore, the same 
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code privileges solutions with the highest value of ℎ (is more than one solution is 

available). 

Again, Kjeldsen et al. (2017) reported polynomials expressions for Kappa curves 

on LMRD (table 4.1). Coefficient meaning was described in paragraph 3.3 about 

L-Moments Ratio Diagram. 

 

 h 

  −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.5 0.75 

A0 0.16667 0.15993 0.14804 0.13031 0.10701 0.08080 0.05313 0.02588 

A1 - 0.02101 0.04803 0.08044 0.11090 0.14431 0.16889 0.18734 

A2 0.83333 0.83146 0.82980 0.83009 0.84838 0.86000 0.88910 0.92319 

A3 - −0.01700 −0.03850 −0.06646 −0.06669 −0.12105 −0.14619 −0.17023 

A4 - 0.00635 0.01946 0.04241 0.00567 0.05481 0.04945 0.04428 

A5 - −0.00151 0.00324 0.01688 −0.04208 0.00739 −0.00501 −0.01053 

A6 - 0.00071 −0.01072 −0.04121 0.03763 −0.02960 −0.00823 0.00197 

A7 - −0.00248 −0.01255 −0.03002 - −0.03004 −0.01744 −0.00649 

A8 - 0.00152 0.01334 0.03802 - 0.03380 0.01647 0.00465 

 

Table 4.1 - Polynomial expression for Kappa L-Moments (from Kjeldsen et al., 2017) 

 

 

4.3 – Two Component Extreme Value (TCEV) distribution 
 

Two Component Extreme Value (TCEV) distribution was introduced by Rossi et al. 

(1984) as the natural evolution of several works on outliers in hydrological 

records in southern Italy (Penta et al., 1980; Rossi and Versace, 1982). These 

studies were motivated by the need of finding a probability model able to justify 

and manage the systematic presence of outliers in different Italian floods and 

short-duration rainfalls time series. Beran et al. (1986) and Cunnane (1989) 

noticed that both TCEV and Wakeby (Houghton, 1978) distributions are able to 

justify the condition of separation introduced by Matalas et al. (1975) for Italian 
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and British sites. From the work of Cunnane (1989) emerges how since its 

publication no studies were produced for assessing the robustness of quantile 

estimates and advised against the at-site use of multiparameter distributions, 

such as TCEV and Wakeby because of large standard error in parameter 

estimation. Point estimation of TCEV parameter with MLE was proposed by Rossi 

et al. (1984), but authors noted that, when estimating from a single time series 

of annual maxima, uncertainty is high. However, they did not give any 

quantitative assessment of this uncertainty. Cunnane (1987) noticed the 

instability of the solution of at-site TCEV. Analytical derivation of PWM can be 

found in Beran et al. (1986), while LME of TCEV parameters was described in 

Arnell and Beran (1988), Gabriele and Arnell (1991) and Gabriele and Iiritano 

(1994). Fiorentino et al. (1987) and Singh (1998) derived a maximum entropy-

based method for estimating both at-site and regional TCEV parameters and 

quantiles. They found this method be simpler than MLE and in, a regional 

approach, they concluded that performances are of the same order of MLE 

approach. Connell and Pearson (2001) applied at-site TCEV to annual maximum 

floods for the Canterbury region in New Zealand using least squared method. 

They found a good fit of this distribution for rivers located in the South 

Canterbury East Coast and justified differences between northern and southern 

part of the above region with orographic effects and storms directions. It is 

interesting to note the first use of L-moments ratio diagram for TCEV. 

Conclusions about non optimal performances of point estimation of TCEV 

parameters probably led scientists to focus their attention only on the regional 

applications. This motivation was also justified by the above cited verification of 

the condition of separation. Fiorentino et al. (1987) proposed a hierarchical 

approach for regional frequency analysis with TCEV, able to combine regional and 

at-site estimation. Arnell and Gabriele (1988) analyzed performances of regional 

TCEV and noted that: i) failure in estimation can arise when outliers in time series 

are few; ii) TCEV regional procedure is robust; iii) performances of TCEV are 

directly proportional to region size, and inversely to sample size. Gabriele and 
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Arnell (1991) highlighted the importance of using a hierarchical approach and the 

reduction in quantiles estimation when into a region with a constant skewness is 

subdivided in sub-regions with constant coefficient of variation. Furthermore, 

they found the TCEV-MLE be more efficient than TCEV-PWM method. 

Application of TCEV in regional frequency analysis was proposed for Italy and for 

some regions of Spain (Castellarin et al., 2012). In particular, for Italy the 

hierarchical approach proposed by Gabriele and Arnell (1991) was applied; in fig. 

4.2 homogeneous regions for coefficient of skewness (first level of 

regionalization) are reported. 

 

 
fig. 4.2 – Homogeneous areas for TCEV at first level of regionalization in Italy  

(from Castellarin et al., 2012) 

 

This approach was formalized with VA.PI. and CUBIST projects. This latter was 

proposed in the Prediction in Ungauged Basins (PUB) research area. 
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In Spain, instead, TCEV model for preferred in those Mediterranean regions 

which showed a different behavior in rainfall mechanism: frontal storms, that are 

more frequent and representative of the first component of TCEV, and heavy 

convective storms, which described better the second component (Castellarin et 

al., 2012). 

 

4.3.1 – Definition and moments 
 

TCEV cumulative distribution function is: 

 

𝐹(𝑥) = 𝑒
(−Λ1𝑒

−
𝑥
𝜃1−Λ2𝑒

−
𝑥
𝜃2)

 

 

and its density function: 

 

 
𝑓(𝑥) = 𝑒

(−Λ1𝑒
−
𝑥
𝜃1−Λ2𝑒

−
𝑥
𝜃2)

(
Λ1
휃1
𝑒
−
𝑥
𝜃1 +

Λ2
휃2
𝑒
−
𝑥
𝜃2) (4.15) 

 

Both equations are valid for 𝑥 ≥ 0 and Λ1 > Λ2 ≥ 0 and 휃2 > 휃1 > 0. 

No explicit solutions can be found for evaluating quantiles of TCEV. This requires 

the use of root solver, such as the pegasus or its modifications (e.g. King, 1973). 

TCEV is an exponential type distribution, and its left-hand limit can be found for 

𝑥 = 0 and is 

 

𝐹(0) = 𝑒−Λ1−Λ2  

 

On the right-hand, for 𝐹(𝑥) ≤ 1, limit is given by: 

 

−Λ1𝑒
−
𝑥
𝜃1 − Λ2𝑒

−
𝑥
𝜃2 < 0 
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TCEV distribution can degenerate into Gumbel distribution with different 

combinations of its four parameters. The basic condition is, obviously, that Λ2 is 

equal to zero. Another condition is that parameters are such that the absolute 

value of the second component will asymptotically be close to zero for all values 

of x, i. e. 

 

|−Λ1𝑒
−
𝑥
𝜃1| >> |−Λ2𝑒

−
𝑥
𝜃2| 

 

TCEV noncentral moments have been derived in Beran et al. (1986), and are: 

 

𝜇𝑟
′ = 𝑚𝑟

′ + 휃1∑
(−1)𝑗Λ∗

𝑗

𝑗!
∑(−1)𝑘𝑘 (

𝑟

𝑘
) [ln(Λ1)]

𝑟−𝑘Γ(𝑘−1)
𝑟

𝑘=1

∞

𝑗=0

(𝑗 휃∗⁄ ) (4.16) 

 

with 

 

 
𝑚𝑟
′ = 휃1

𝑟∑(−1)𝑘 (
𝑟

𝑘
) [ln(Λ1)]

𝑟−𝑘Γ(𝑘−1)(1)

𝑟

𝑘=0

 
 

 

𝑚𝑟
′  represents the rth noncentral moment of the basic series. Instead: 

 

 
휃∗ =

휃2
휃1

 Λ∗ =
Λ2

Λ1
1 𝜃∗⁄

 (4.17) 

 

4.3.2 – Maximum likelihood estimation 
  

Likelihood function for TCEV is: 

 



 77 

 

ℒ(𝜽) =∏𝑒
(−Λ1𝑒

−
𝑥𝑖
𝜃1−Λ2𝑒

−
𝑥𝑖
𝜃2)

(
Λ1
휃1
𝑒
−
𝑥𝑖
𝜃1 +

Λ2
휃2
𝑒
−
𝑥𝑖
𝜃2)

𝑛

𝑖=1

 (4.18) 

 

Its natural logarithm is: 

 

ln[ℒ(𝜽)] =∑[−Λ1𝑒
−
𝑥𝑖
𝜃1 − Λ2𝑒

−
𝑥𝑖
𝜃2]

𝑛

𝑖=1

+∑ln [
Λ1
휃1
𝑒
−
𝑥𝑖
𝜃1 +

Λ2
휃2
𝑒
−
𝑥𝑖
𝜃2]

𝑛

𝑖=1

 (4.19) 

 

In this case 𝜽 is equal to: 𝜽 = [Λ1, 휃1, Λ2, 휃2]. As for Kappa distribution, maximum 

of (4.19) can be found setting equal to zero the first derivatives with respect to 

the four TCEV parameters (Rossi et al., 1984): 

 

𝑇1 =
𝜕{ln[ℒ(𝜽)]}

𝜕Λ1
= −∑(𝑒

−
𝑥𝑖
𝜃1) +

1

휃1
∑[

𝑒
−
𝑥𝑖
𝜃1

(−Λ1𝑒
−
𝑥𝑖
𝜃1 − Λ2𝑒

−
𝑥𝑖
𝜃2)

] = 0

𝑛

𝑖=1

𝑛

𝑖=1

 
 

  

𝑇2 =
𝜕{ln[ℒ(𝜽)]}

𝜕Λ2
= −∑(𝑒

−
𝑥𝑖
𝜃2) +

1

휃2
∑[

𝑒
−
𝑥𝑖
𝜃2

(−Λ1𝑒
−
𝑥𝑖
𝜃1 − Λ2𝑒

−
𝑥𝑖
𝜃2)

] = 0

𝑛

𝑖=1

𝑛

𝑖=1

 
 

 (4.20) 

𝑇3 =
𝜕{ln[ℒ(𝜽)]}

𝜕θ1
= −(

Λ1

휃1
2){∑𝑥𝑖𝑒

−
𝑥𝑖
𝜃1 +∑[

𝑒
−
𝑥𝑖
𝜃1 (1 −

𝑥𝑖
휃1
)

(−Λ1𝑒
−
𝑥𝑖
𝜃1 − Λ2𝑒

−
𝑥𝑖
𝜃2)

]

𝑛

𝑖=1

𝑛

𝑖=1

} = 0 

 

  

𝑇4 =
𝜕{ln[ℒ(𝜽)]}

𝜕θ2
= −(

Λ2

휃2
2){∑𝑥𝑖𝑒

−
𝑥𝑖
𝜃2 +∑[

𝑒
−
𝑥𝑖
𝜃2 (1 −

𝑥𝑖
휃2
)

(−Λ1𝑒
−
𝑥𝑖
𝜃1 − Λ2𝑒

−
𝑥𝑖
𝜃2)

]

𝑛

𝑖=1

𝑛

𝑖=1

} = 0 

 

 

Solving this set of equations will give the four unknown parameters. 
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4.2.3 – PWMs and L-Moments 
 

According to notations of eq. (3.8), Probability Weighted Moments for TCEV and 

Kappa distribution have been derived by Beran et al. (1986) for 𝑝 = 1 and 𝑠 = 0: 

 

 
𝛽𝑟 = 𝑀1,𝑟,0 = 𝑃𝑊𝑀𝑟

(1) +
휃1
𝑟 + 1

𝑇𝑟 (4.21) 

 

where 

 
𝑃𝑊𝑀𝑟

(1) =
휃1
𝑟 + 1

[𝛾 + ln(Λ1) + ln(𝑟 + 1)] (4.22) 

 

is the r-th probability weighted moment of the basic series and 

 

 

𝑇𝑟 =∑(−1)𝑗−1Λ∗
𝑗(𝑟 + 1)

𝑗(1−
1
𝜃∗
)
Γ (

𝑗
휃∗
)

𝑗!

∞

𝑗=1

 (4.23) 

 

According to Gabriele and Arnell (1991), theoretical L-moments for TCEV 

distribution are: 

 

𝜆1 = 𝛽0 = 휃1[𝛾 + ln(Λ1) + 𝑇0]  

   

𝜆2 = 2𝛽1 − 𝛽0 = 휃1[ln(2) + 𝐷1]  

  (4.24) 

𝜆3 = 6(𝛽2 − 𝛽1) + 𝛽0 = 휃1 [ln (
9

8
) + 2𝐷2 − 𝐷1] 

 

   

𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0 = 휃1 [ln (
216

310
) + 5𝐷3 − 5𝐷2 + 𝐷1] 
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being 𝐷𝑟 = 𝑇𝑟 − 𝑇𝑟−1. 

L-skewness and L-kurtosis can be easily evaluated: 

 

 

𝜏3 =
𝜆3
𝜆2
=
ln (

9
8) + 2𝐷2 − 𝐷1

ln(2) + 𝐷1
 

 

  (4.25) 

 

𝜏4 =
𝜆4
𝜆2
=
ln (

216

310
) + 5𝐷3 − 5𝐷2 + 𝐷1

ln(2) + 𝐷1
 

 

 

According to the general method for estimating parameters with the method of 

L-Moments, a system of four equations in four unknown parameters has to be 

solved for estimating the four TCEV parameters (Gabriele and Iiritano, 1994). 

Unlike for Kappa, no subroutines or codes are available for estimating TCEV 

parameters with the method of L-Moments and Maximum Likelihood.  

As expressed in previous paragraphs, the estimation of the four at-site TCEV 

parameters require the solution of a nonlinear system of four equations in four 

unknown parameters. Different methods are available in literature for finding a 

numerical solution of such-made systems. Newton-Raphson method is the 

simplest multidimensional root finding method, but its convergence is 

conditionate to the starting point of the algorithm. This can lead to a more 

frequent rejection of the hypothesis that system has no solutions. 

 

Plot of TCEV distribution on LMRD is not so easy to obtain. In literature can be 

found only in Arnell and Beran (1988) and Gabriele and Arnell (1991). Some of its 

characteristics are illustrated in Connell and Pearson (2001). However, in all cases 

this area was not compared with other distributions. 

This complete LMRD is illustrated in the following figure 4.3. Note that for 

building LMRD (except for TCEV), R package lmomco has been used (Asquith, 

2018). 
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figure 4.3 – L-Moments Ratio Diagram with TCEV distribution
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L-Moments for TCEV has been reported for a maximum value of 휃∗of 20. 

However, it is possible to increase it, but for practical purposes can be deemed a 

reliable upper limit. 

When looking at this diagram several considerations arise.   

 

1. TCEV’s area moves from the Gumbel point:  considering that TCEV comes 

from two different populations Gumbel distributed, this is a graphical 

confirmation of its nature; 

2. point 1 can be important for discriminating the presence of the second 

component of TCEV: if presence is weak, it can be hard to be 

distinguished. 

3. TCEV is able to cover areas over the Generalized Logistic (the limit 

imposed by Hosking for Kappa) and under the PE3 distribution; 

4. TCEV cannot explain distributions which combinations of  (𝜏3, 𝜏4) lower 

than those corresponding to Gumbel distribution; 

5. GEV line seems cut in half TCEV area, moving from the Gumbel point, 

which correspond to its limits case. 

 

Reproduce TCEV on LMRD can be tricky. Coefficients for polynomial 

approximations for curves of Λ∗ (as described in Par. 3.3) are reported in table 

4.2. 
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 Λ*  

 1 0.7 0.4 0.2 0.1 0.05 

A0 0.60502 0.16019 0.20163 0.24315 0.31885 0.52281 

A1 -14.39219 -1.37088 -1.97840 -2.74212 -4.35089 -8.94998 

A2 175.47031 16.20462 18.39390 23.11974 36.10041 77.70206 

A3 -1134.23455 -78.48093 -73.88646 -86.24619 -139.81071 -338.82988 

A4 4339.80707 224.11676 177.07711 192.48525 322.84410 878.34550 

A5 -9884.49020 -387.37502 -253.51274 -255.11716 -441.44235 -1348.24547 

A6 12412.34914 370.96819 199.20222 185.17320 330.13728 1133.15577 

A7 -6659.30979 -154.43081 -66.24105 -56.71435 -104.11043 -402.18168 

τ3, min 0.16988 0.16993 0.16993 0.16993 0.16993 0.16993 

τ3, max 0.39988 0.48993 0.60493 0.67493 0.65993 0.57993 

 

table 4.2 – Polynomial coefficients for 𝛬∗ 

 

For each of these curves, in last two rows boundaries with limits on LMRD are 

reported. 

Compared to those of other distributions, it is clear how the module of 𝐴𝑘 

coefficients are much greater.  This aspect can be explained with the marked 

curvature of TCEV lines, which reflect to the analytical form of polynomial 

coefficients. 

 

Analytical derivations of polynomial relationships for 휃∗are more complicated by 

the not bijection between  𝜏3 and 𝜏4 not only in the function 𝜏4 = 𝑓(𝜏3) but also 

in its inverse. Basically, an attempt for finding these coefficients can be made by 

splitting these curves and finding the optimal combination in terms of goodness-

of-fit. However, this can be investigated in future.
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CHAPTER 5 – BAYESIAN INFERENCE 
 

5.1 – Overview 

 

Bayesian inference is the main topic of this chapter. The ability of Bayesian theory 

in evaluating the uncertainty in parameters and quantiles is an attractive quality 

that make it the preferable method for analyzing and interpreting results about 

four parameters distributions. In paragraph 5.2 an overview on Bayesian 

inference is illustrated, with a focus on the role of uncertainty and of Markov 

chain Monte Carlo (MCMC) methods. In 5.3 a description of the proposed 

Bayesian approach is provided and main characteristics of Metropolis-Hastings 

algorithm are illustrated. 

In paragraph 5.4, finally, a new measure for distinguishing the presence of two 

components into a population, based on the sampling of posterior distribution, 

is described. Its skills will be evident in chapter 6. 

 

5.2 – Bayesian framework 

 

5.2.1 - Description 
 

The use of Bayesian methodologies for floods frequency analysis can be dated 

back to the works of Wood and Rodriguez-Iturbe (1975a, b) and Vicens et al. 

(1975). However, computational issues for long times did not encourage its use 

in hydrology. Currently, Bayesian methodologies are widely employed and 

recognized as an affordable tool, also because of their ability in incorporating 

several sources of information for analysis. 

Bayesian inference relies on the application of Bayes’ Theorem, formulated by 

Thomas Bayes and published by Richard Price in 1763, two years after Bayes’ 

death. This theorem has been applicated in many fields of sciences.  
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In the Bayesian framework, the set of n observations7 𝒙 =  (𝑥1, 𝑥2, . . . 𝑥𝑛) are 

considered random realizations depending from a probability distribution 

𝑓(𝒙|𝜽), where 𝜽 is the set of unknown parameters. It is useful to remark that 

𝑓(𝒙|𝜽) is known both as sampling distribution (in case is used for describing the 

model that generate 𝒙 for a given 𝜽) or likelihood function, ℓ(𝒙|𝜽) (when data 𝒙 

are known and inference is needed only on 𝜽). In the following all the description 

will deals with this latter case. 

One of the main characteristics of Bayesian approach is that the parameter set 𝜽 

is considered a random vector: the advantage is that its probability distribution 

will contain all the knowledge about the true value of 𝜽. 

Another important property of Bayesian inference relies in its ability of modelling 

the knowledge about 𝜽 trough the introduction of the prior distribution 𝑝(𝜽).  

With these statements, Bayes’ rule can be formalized as: 

 

 
𝑝(𝜽|𝒙) =

ℓ(𝒙|𝜽) 𝑝(𝜽)

∫ ℓ(𝒙|𝜽) 𝑝(𝜽) 𝑑𝜽
𝚯

∝ ℓ(𝒙|𝜽) 𝑝(𝜽) (5.1) 

 

𝑝(𝜽|𝒙) is known as the posterior distribution of the parameters 𝜽 and the integral 

in the denominator of eq. (5.1), computed in the whole parameter space 𝚯, is a 

normalization constant, whose goal is to guarantee that the area under the 

posterior density is one. This explain the proportional implication in eq. (5.1). 

It should be remarked that uncertainty evaluation is possible also in a not-

Bayesian framework, using an approach based on parametric bootstrap. 

However, it has not been implemented into this thesis. 

 

5.2.2 – Computation of the posterior distribution 
 

 
7 In our case, these observations are annual maximum floods. 
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One of the main differences between frequentist and Bayesian approaches relies 

on presence of the posterior distribution. In fact, likelihood-based inference 

allows only a point estimate of the parameters, and uncertainty can be described 

only through an asymptotic approximation of the likelihood function (Reis and 

Stedinger, 2005). On the other side, the posterior distribution 𝑝(𝜽|𝒙) introduced 

in the Bayesian framework contains all the information about the parameters 

(considered as random variables), giving a precise quantification of uncertainty. 

Nevertheless, achieving of an exact analytical solution for the posterior 

distribution can be complicated. A tractable relationship for the posterior can be 

obtained when both the posterior and the prior distributions are in the same 

probability distribution family: in this case, prior and posterior are called 

conjugate distributions. 

Even if this latter case is very useful, it happens very rarely. This issue has been 

one of the key factors that limited the diffusion of the Bayesian framework in the 

scientific community (Gelman et al. 2004).  

The development of Markov Chain Monte Carlo (MCMC) methods gave a boost 

to Bayesian theory development, because their ability of sampling values from 

the posterior distribution without the need of computing the normalization 

constant (Reis and Stedinger, 2005).  

 

5.2.3 – Markov Chain Monte Carlo (MCMC) methods 
 

Markov chain Monte Carlo (MCMC) techniques can realize an efficient sampling 

of the posterior distribution, because of their ability in detecting the zone where 

there is a peak, rejecting parts of parameter space where probabilities are low. 

Direct consequence is that the number of sampled points grows linearly and not 

exponentially with the dimension of the sample space. 

MCMC is a method that allows to draw samples 𝝍(1), 𝝍(2), . . . , 𝝍(𝑛) from an 

approximate distribution and then making some corrections to those draws, with 
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the goal of finding a good approximation to a target distribution 𝜋(𝝍) (Gelman 

et al., 2004). Write: 

 

𝜋(𝝍) = 𝐶 ∙ 𝑓(𝝍) 

  

where 𝑓(𝝍) in an unnormalized density and 𝐶 is a constant of normalization 

(generally unknown). MCMC methods draw a sequence of samples from a 

Markov chain whose stationary distribution converges to the target distribution. 

In this Bayesian framework, target and posterior distributions coincides. 

Convergence of the Markov chain to target distribution can be proved with a two-

step procedure: 

 

1. prove the convergence of the Markov chain converges to a stationary 

distribution: this requires that Markov chain be irreducible, aperiodic and 

not transient. Irreducibility holds if the Markov chain has a positive 

probability of visiting every part of the target distribution from any other 

part of the target distribution, while remaining conditions hold for a 

random walk of any proper distribution; 

2. show that the stationary distribution is equal to the target distribution.  

 

According to continuous Markov chain theory, a transition kernel 𝐾(𝝍|𝝎) can be 

defined as the conditional pdf for moving from a point 𝝍 to a point 𝝎. It should 

be remarked that chain cannot move from the point 𝝍, i.e. there is a transition 

from 𝝍 to 𝝍. 

The stationary pdf must satisfy  

 

 
𝜋(𝝎) = ∫𝐾(𝝎|𝝍) 𝜋(𝝍)𝑑𝝍 (5.2) 
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Analysis of (5.2) can lead to the conclusion that if the chain is stationary, then the 

total probability of moving to a region from any point 𝝍 is equal to the 

unconditional (or marginal) probability of sampling that region. In conclusion, 

chain can be retained no longer affect by the starting point 𝝍(0). 

The approach applied in MCMC methods denotes a different nature: the 

stationary pdf - 𝜋(∙), i.e. the target density - is known up to a constant of 

probability, unlike the transitional kernel. Within this framework, for generating 

samples from  𝜋(∙), in MCMC methods a transition kernel 𝐾(𝝎|𝝍) able to 

produce samples converging to 𝜋(∙) is sought. 

An affordable transition kernel is found in MCMC theory by construction one able 

to describes the probability density of either moving from 𝝍 to a new point 𝝎 or 

remaining at 𝝍: 

 

 𝐾(𝝎|𝝍) = 𝑝(𝝎|𝝍) + 𝑟(𝝍) ∙ 𝛿(𝝎 − 𝝍) = 

(5.3)  
= {

𝑝(𝝎|𝝍)                𝑖𝑓 𝝎 ≠ 𝝍

𝑟(𝝍) ∙ 𝛿(0)          𝑖𝑓 𝝎 = 𝝍
 

 

being 𝑝(𝝎|𝝍) a nonnegative function with 𝑝(𝝍|𝝍) = 0, 𝛿(𝝎 − 𝝍) is the well-

known Dirac delta function centered about 𝝍, and 

 

 
𝑟(𝝍) = 1 − ∫𝑝(𝝎|𝝍) 𝑑 𝝎 (5.4) 

 

is the probability of the chain remaining at 𝝍. 

In order to guarantee the stationarity of a Markov chain, is required to satisfy the 

reversibility condition: 

 

 𝜋(𝝍)𝑝(𝝎|𝝍) =  𝜋(𝝎)𝑝(𝝍|𝝎) (5.5) 
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Testing that 𝜋(∙) is the stationary density of the transition kernel 𝐾(∙ | ∙) if the 

reversibility condition is satisfied can be performed combining eq. (5.2), (5.3) and 

(5.5) and using properties of delta function: 

 

∫𝐾(𝝎|𝝍)𝜋(𝝍) 𝑑𝝍 = ∫[𝑝(𝝎|𝝍) + 𝑟(𝝍)𝛿(𝝎 − 𝝍)] 𝜋(𝝍)𝑑𝝍 = 

= ∫𝑝(𝝍|𝝎) 𝜋(𝝎)𝑑𝝍 + ∫𝑟(𝝍)𝛿(𝝎 − 𝝍)𝜋(𝝍)𝑑𝝍 = 

= 𝜋(𝝎)∫𝑝(𝝍|𝝎) 𝑑𝝍 + 𝒓(𝝎)𝜋(𝝎) ∙ 𝟏 = 𝜋(𝝎) 

 

q.e.d. 

5.2.4 – The nature of uncertainty 
 
Evaluation of uncertainty is a very important step in hydrological processes. Since 

hydrology is intrinsically affected by a high degree of uncertainty (Montanari et 

al., 2009), practical applications should not ignore its quantification. A review on 

the supporting reasons for undertaking the analysis of uncertainty was provided 

by Pappenberger and Beven (2006) For the purpose of allowing an aware 

management, two types of uncertainty are distinguished (National Research 

Council, 2000): 

 

− natural variability: is the uncertainty that arises from variability that can 

be observed in nature; in the scientific literature, is also defined with the 

following terms: aleatory, external, objective, random, stochastic, 

inherent; 

− knowledge uncertainty: is due to a lack of understanding events and 

processes. It is also known as epistemic, functional, internal, subjective 

uncertainty. 
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This latter, due to its intrinsic nature, it the only one that can be reduced, while 

natural variability can be only characterized.  

Defining as predictive uncertainty the total uncertainty in the estimates of the 

design flood (Ball et al., 2019), it can be split in difference sources. In flood 

frequency analysis with at-site data the most relevant are: 

 

− data uncertainty: is the uncertainty connected with streamflow data. 

Includes, inter alia, uncertainty about the quality of the rating curve 

employed for estimating streamflows and its stability; 

− parametric uncertainty: this source of uncertainty is connected with 

parameters estimation, and all the related problematics (e.g.: estimation 

method, length of time series). Is a function of data uncertainty in such a 

way that parametric uncertainty increases as data uncertainty increases); 

− structural uncertainty: it the uncertainty related to the probabilistic 

model used for fitting data. 

 

A detailed description of these sources of uncertainty can be found in Merz and 

Thieken (2005). 

 

5.3 – On the use of the Bayesian approach   
 

Bayesian inference for TCEV and Kappa distribution was performed working on 

source codes of FLIKE software under the supervision of prof. George Kuczera 

during a visiting period at The University of Newcastle (Australia) from 

26/02/2018 to 26/07/2018. FLIKE was recommended for flood frequency analysis 

in Australia in ARR8 2016 (Paul et al., 2016). Working on original scripts (in Fortran 

language) allowed to obtain the same approach for FFA, giving results totally 

comparable with previous studies. 

 
8 Australian Rainfall and Runoff 
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FLIKE software structure was thoroughly illustrated in Kuczera (1999), while a 

guide for users can be found in Ball et al. (2019). A modified version to the original 

inferential procedure was realized, introducing Metropolis-Hastings (MH) as an 

alternative algorithm to Importance Sampling for the implementation of the two 

four-parameters distribution: TCEV and Kappa. Metropolis-Hastings algorithm 

was added because of a less fine tune than Importance Sampling was needed for 

TCEV and Kappa. In the analysis of chapter 6, all the reported results were 

obtained using MH algorithm. 

 

 

5.3.1 – Metropolis-Hastings algorithm 
 

Metropolis-Hastings algorithm (Hastings, 1970) can be considered a 

generalization of the classical Metropolis algorithm (Metropolis et al., 1953). 

This algorithm requires the choice of a density 𝑞(𝝎|𝝍) from which a sample 𝝎 

(known as proposal) can be generated. Because 𝝎 is to form a Markov chain, the 

proposal density must be dependent on the current state of the chain 𝝍. 

Furthermore, it also required that the pdf 𝑞(𝝎|𝝍) satisfy the reversibility 

condition for all (𝝍,𝝎). This cannot occur for some couples (𝝍,𝝎), when 

 

 𝜋(𝝍)𝑞(𝝎|𝝍) > 𝜋(𝝎)𝑞(𝝍|𝝎) (5.6) 

 

This means that chain is more likely to move from 𝝍 to 𝝎 than from 𝝎 to 𝝍, 

without satisfying the reversibility condition. In order to achieve a convenient 

correction, in Metropolis-Hastings algorithm is introduced a “probability of 

move” 𝛼(𝝎|𝝍) < 1: its goal is to reduce the probability of the chain to move 

from 𝝍 to 𝝎. With this correction, the transition from 𝝍 to 𝝎 (with 𝝍 ≠ 𝝎) are 

made according to 

 

 𝑝𝑀𝐻(𝝎|𝝍) ≡ 𝑞(𝝎|𝝍) ∙ 𝛼(𝝎|𝝍) (5.7) 
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for 𝝍 ≠ 𝝎 and 𝛼(𝝎|𝝍) has to be determined.  Increase in the likelihood of the 

movement from 𝝎 to 𝝍 can be achieved by setting 𝛼(𝝍|𝝎) equal to one, i.e. the 

maximum value that a probability can assume. Reversibility condition is then 

applied to determine the probability of move 𝛼(𝝎|𝝍): 

 

𝜋(𝝍)𝑞(𝝎|𝝍)𝛼(𝝎|𝝍) = 𝜋(𝝎)𝑞(𝝍|𝝎)𝛼(𝝍|𝝎) = 𝜋(𝝎)𝑞(𝝍|𝝎) (5.8) 

 

If (5.6) is reversed, then 𝛼(𝝎|𝝍) is set to 1 and 𝛼(𝝍|𝝎) is derived as on eq. (5.8). 

The probability of move is then defined as: 

     

𝛼(𝝎|𝝍) = {𝑚𝑖𝑛 [
𝜋(𝝎)𝑞(𝝍|𝝎)

𝜋(𝝍)𝑞(𝝎|𝝍)
, 1]

1                                      

  
𝑖𝑓 𝜋(𝝍)𝑞(𝝎|𝝍) > 0

1

 (5.9) 

 

It must be remarked that proposal density 𝑞(𝝎|𝝍) has to be specified, and this 

is a crucial step, because affect the overall efficiency of the algorithm. For the 

purposes of this thesis, a multinormal distribution is a good choice. 

 

Metropolis-Hastings algorithm can be summarized by the following steps: 

 

1. Initialize 𝝍 with a starting value 𝝍(0);  

2. for 𝑖 = 1,2, . . . , 𝑛 

a) sample 𝝎 from 𝑞(∙ |𝝍(𝑖−1)) and 𝑢 from the uniform distribution 

b) if 𝑢 < 𝛼(𝝎|𝝍(𝑖−1)) 

        set 𝝍(𝑖) = 𝝎 

else  

        set 𝝍(𝑖) = 𝝍(𝑖−1) 

3. return the values {𝝍(1), 𝝍(2), . . . , 𝝍(𝑛)} 
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5.3.2 – Applicative example: TCEV distribution 
 

Introducing TCEV in FLIKE source structure required first to investigate its 

analytical properties, defining constraints and limits. It is not straightforward to 

manage this distribution, because of mutual constraints between parameters 

and the need of finding an adequate root-solver for defining quantiles, because 

no explicit solutions are available. A regula falsi algorithm was employed for this 

scope. However, as far as efficient could be an algorithm, computational times 

are higher with respect to distribution with an explicit expression for quantiles. 

Analytical implementation of TCEV parameters was conducted using a logarithm 

transformation of their parameters, and not their natural values. With this spite, 

new parameters were defined as: 

 

𝐵𝑒𝑡𝑎 1 = ln(Λ1)      𝐵𝑒𝑡𝑎 2 = ln(θ1)      𝐵𝑒𝑡𝑎 3 = ln(Λ2)      𝐵𝑒𝑡𝑎 4 = ln(θ2) 

 

An important step in obtaining a reliable tool is to fix it for diagnosing limiting 

cases. For example, in the case of TCEV, define a criterion for understanding 

when sample is Gumbel distributed is important. Simulating a Gumbel 

distribution time series with parameters 휁 = 50 and ln(𝜎) = 3, computing TCEV 

distribution led to the following results (figs. 5.1 and 5.2): 

 

 
fig. 5.1 – Posterior parameters plot of TCEV (from a Gumbel distributed sample) 
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fig. 5.2 – Probability plot of TCEV (from a Gumbel distributed sample) 

 

 

Parameter Mean Std dev Correlation    

Beta 1 2.535 0.137 1    

Beta 2 2.982 0.055 -0.853 1   

Beta 3 -100.498 63.028 0.001 -0.006 1   

Beta 4 -87.491 62.457 0.001 -0.005 0.996 1 

 

table 5.1 – A summary of Posterior Moments from Metropolis-Hastings for TCEV 

 

Analysis of posterior plot is very interesting, because in can be noted that values 

of 𝐵𝑒𝑡𝑎 3  and 𝐵𝑒𝑡𝑎 4 assumes couples such as to make the second component 

considerably smaller than the first one. Overparametrization is reflected in fig. 

5.2, where for higher quantiles the upper 95% confidence limit is extremely high. 

Furthermore, comparing traditional expression of Gumbel and TCEV (with only 

the first component) distributions, gives: 
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𝑒−𝑒
−(
𝑥−𝜁
𝜎
)

= 𝑒
[−Λ1𝑒

−(
𝑥
𝜃1
)
]

 

 

Considering that 𝐵𝑒𝑡𝑎 2 = 휃1 = 𝜎 and Λ1 = 𝑒
𝜁

𝜎, can be noted that, from table 

5.1: 

 

𝐵𝑒𝑡𝑎 2 = 2.982                    ln(Λ1) = 𝑒
𝜁

𝜎 = 2.526 

 

5.3.3 – Applicative example: Kappa distribution 
 

Unlike TCEV, Kappa has a more tractable analytical expression. This reflect in a 

faster computational step and a clearer interpretation of results. 

As shown in paragraph 4.2.1, Kappa has different limit distributions. Reporting 

results for all cases was retained not necessary, and the more evident degenerate 

case is reported, i.e. when the parent is a GEV distribution.  

Assuming a sample GEV distributed with parameters 휁 = 50, ln(𝜎) = 2 and 휀 =

0.3, its implementation in FLIKE gave these results: 

 

 
 

fig. 5.3 – Posterior parameters plot of Kappa (from a GEV distributed sample) 
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fig. 5.4 – Probability plot of Kappa (from a GEV distributed sample) 

 

 

Parameter Mean Std dev Correlation    

Location 휁 50.317 0.375 1    

ln(𝜎), scale 1.945 0.067 -0.801 1   

Shape 휀 0.474 0.031 -0.55 0.914 1   

h -0.047 0.065 -0.781 0.928 0.84 1 

 

table 5.2 – A summary of Posterior Moments from Metropolis-Hastings for Kappa 

 

Figs. 5.3 and 5.4 shows a well-behaved posterior and probability plots. Table 5.2 

gave a correct confirmation about the nature of the parent distribution. 

 

Examples of paragraphs 5.3.3.1 and 5.3.3.2 were firstly reported for illustrating 

the operative of the work on FLIKE software and describing the obtainable 

outputs. Secondarily, some applicative cases were shown, that allows to 

appreciate the amount on information that can be provided by the posterior 
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distribution, especially in terms of quantification of uncertainty in parameters 

and quantiles estimates. 

 

5.4 – A measure for discerning the presence of two populations  
 

Two Component Extreme Value distribution has a very specific nature, due to its 

ability in contemplating different components of the same natural phenomenon 

(e.g. floods, rainfall). This asset represents a relevant resource in the topic of 

model selection. In fact, when different distributions are fitted to data, in the 

TCEV case it is not enough the simple output of the goodness-of-fit or criteria 

applied. A further step should require the detection of the presence of these two 

components.  

Plot analysis of the posterior distribution of parameters can give some signs 

about the nature of the data (as shown in the previous section), but 

distinguishing between to distributions that have a similar fit requires more 

detailed investigations. A relevant consequence is a better comprehension of the 

underlying phenomena, which can be really decisive. This will be corroborated by 

some practical evidences that will be illustrated and discussed in the next 

chapter. 

Moving from this background, a metric for detecting the presence of two 

component in a flood time series moving from the samples of posterior 

distribution has been developed, and is here illustrated. 

TCEV distribution has this CDF (chapter 1): 

 

𝐹(𝑥|휃) = 𝑒
[−𝜆1𝑒

(−
𝑥
𝜃1
)
−𝜆2𝑒

(−
𝑥
𝜃2
)
]

 

 

The relative importance of two components has been discussed about the 

condition of degeneration of TCEV into a Gumbel distribution. Proposed metric, 

named 𝑇𝐶𝑟𝑎𝑡𝑖𝑜,is obtained by these steps: 
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1. define some 1 in years AEP, T (T = 1.05, 1.1, 1.25, 2,5,10,50,100); 

2. evaluate related non-exceedance probability 1-1/T 

3. for each of the sampled parameters evaluate quantiles corresponding to 

these probabilities 

4. for each T, define for each set of sampled parameters: 

 

− 𝑓𝑣1 = |−휃1𝑒
(−

𝑥

Λ1
)
| 

− 𝑓𝑣2 = |−휃2𝑒
(−

𝑥

Λ2
)
| 

− 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 =
𝑓𝑣1

𝑓𝑣1+𝑓𝑣2
 

 

where x is the quantile estimated at point 3 

5. plot the histogram of frequencies of ratio for all T. If 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 is close to 

one, then there is a marked influence of the first component; otherwise, 

second component is predominant. 

 

 An example of this application is reported in fig. 5.5. 
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fig. 5.5 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  plot with the presence of two components 

 

In this case can be noted how histograms are modified moving from AEP 1 in Y 

equal to 1.05 to 100. In the first case, the presence of the first component 

(represented by 𝑓𝑣1) can be easily detected and progressively disappear.  

When, instead, the presence of only one component is noticed, plots are of the 

type illustrated in fig. 5.6. 
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fig. 5.6 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  plot with the presence one components 
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CHAPTER 6 – CASES STUDY 

 

6.1 - Introduction 

 

Investigations on the best fitting distribution for at-site flood data in Australia 

were conducted since ‘70s, when Conway (1970) in his master thesis studied 

floods regime for several coastal streams of New South Wales. Following studies 

were realized (McMahon and Srikanthan, 1981; Nathan and Weinmann, 1991; 

Vogel et al., 1993a) and concluded that not only a probability distribution can be 

advised for performing at-site FFA, but there are different candidate distributions 

that can give different fits according to the location of sites. This is definitely a 

meaningful finding, also because the extension and the different variety of 

Australian climates. Namely, Nathan and Weinmann (1991) and Vogel et al. 

(1993) found GEV and Generalized Pareto as the distributions with the best fit to 

their case studies. However, should be noted that Australian Rainfall Runoff 

(ARR), 1987, recommended Log Pearson Type 3 (LP3) distribution for at-site FFA 

in Australia. Haddad and Rahman (2008) analyzed 18 catchments in southeast 

Australia and found advisable the use of GEV. Same authors (2010) noted how 

two-parameter Log-Normal distribution gave the best performances for sites in 

Tasmania. 

Rahman et al. (2013) realized a study for detecting the appropriate choice of a 

distribution of flood frequency analysis in the entire Australia, comparing several 

measures for testing goodness-of-fit of each distribution. Rahman et al. (2014) 

investigated the impact of outliers for flood frequency analysis in some sites of 

eastern Australia comparing original Grubbs and Beck and multiple Grubbs and 

Beck tests.  

Goal of this chapter is to give a contribution to these previous studies introducing 

in the analysis two four-parameter distribution, i.e. TCEV and Kappa. These two 

distributions were compared with Log-Pearson type 3 and Generalized Extreme 

Value. A kind of hierarchical analysis for testing the suitability of these 
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distributions was performed, starting from a critical observation of the “full” 

LMRD and the use of the 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 test. Therefore, visual analysis and some 

parametric tests were applied.  

A focus on the role of uncertainty for model selection is then discussed. Finally, 

results of these studies are compared to previous literature findings. A single 

Italian case study is also proposed, in order to highlight the nature of TCEV 

distribution. 

It is useful to remark that, in the spite of FLIKE options, all at-site Bayesian analysis 

were performed with no prior information. Furthermore, all quantiles are in m3/s. 

 

6.2 – Study area and dataset  

 

Annual maximum flood data for New South Wales (NSW), Queensland (QLD) and 

Nothern Territory (NT) were employed in this study. Data were available in the 

framework of Australian Rainfall and Runoff (ARR) Project 5 Regional Flood 

Methods9, are diffused online by the Bureau of Meteorology (BoM) of Australian 

Government and are freely available at the website 

http://www.bom.gov.au/waterdata/. Not all the records used in Project 5 (P5) 

were available. For New South Wales a shorter dataset was analyzed.  

All available data are reported in Appendix B. Into this dataset, only sites with 

more than 40 records were selected. In the next three sub-paragraphs their 

location for each region will be described and displayed.  

 

6.2.1 – New South Wales 
 

For New South Wales records were available only for 88 sites over the 176 of P5 

for NSW and ACT (Appendix B.1). Location of 7 selected sites is illustrated in fig. 

 
9 http://www.arr-software.org/pdfs/ARR_Project05_Stage3_Database%20report.pdf 

http://www.bom.gov.au/waterdata/
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6.1. In table 1, Station ID10, Station and River name, Latitude and Longitude, 

Period of Record and Size for each site are reported. In the first column, a number 

for the identification of the site both on the map and on LMRD is introduced. 

 

 

 
 

fig. 6.1 – Location of selected sites for NSW 

 

 
10 The same in BoM. 
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table 6.1 – Selected sites for NSW 

  
Station 

ID 
Station Name River Name 

Gauge 
Lat 

Gauge 
Lon 

Period of 
Record 

Size 

1 202001 Durrumbul (Sherrys Crossing) Brunswick -28.5333 153.4567 1972-2011 40 

2 204017 Dorrigo No.2 & No.3 Bielsdown Ck -30.3067 152.7133 1972-2011 40 

3 204034 Newton Boyd Henry -29.7633 152.2117 1972-2011 40 

4 204043 Bonalbo Peacock Ck -28.7367 152.6733 1961-2011 51 

5 206014 Coninside Wollomombi -30.4783 152.0267 1955-2011 57 

6 206018 Apsley Falls Apsley -31.0517 151.7683 1961-2011 51 

7 212011 Lithgow Coxs -33.5367 150.0933 1962-2011 50 

8 212320 Mulgoa Rd South Ck -33.8783 150.7683 1972-2011 40 

9 216002 Brooman Clyde -35.4700 150.2383 1961-2011 51 

10 216004 Falls Ck Currambene Ck -34.9700 150.5983 1971-2010 40 

11 219001 Brown Mountain Rutherford Ck -36.5967 149.4417 1949-2010 62 

12 219006 Tantawangalo Mountain (Dam) Tantawangalo Ck -36.7817 149.5417 1952-2010 59 
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6.2.2 – Queensland 
 
For Queensland, records were available for all 176 sites (Appendix B.2). As for 

New South Wales, their position and information are reported in fig. 6.2 and in 

table 6.2 respectively. 

 

 
 

fig. 6.2 – Location of selected sites for Queensland 
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Station 
ID 

Station Name River Name 
Gauge 

Lat 
Gauge 

Lon 
Period of 
Record 

Size 

1 102101 Fall Ck Pascoe -12.88 142.98 1968-2011 44 

2 104001 Telegraph Rd Stewart -14.17 143.39 1970-2011 42 

3 105105 Developmental Rd East Normanby -15.77 145.01 1970-2011 42 

4 107001 Flaggy Endeavour -15.42 145.07 1959-2011 53 

5 108002 Bairds Daintree -16.18 145.28 1969-2011 43 

6 108003 China Camp Bloomfield -15.99 145.29 1971-2011 41 

7 110003 Picnic Crossing Barron -17.26 145.54 1926-2011 86 

8 111001 Gordonvale Mulgrave -17.10 145.79 1917-1972 43 

9 111005 The Fisheries Mulgrave -17.19 145.72 1967-2011 45 

10 111105 The Boulders Babinda Ck -17.35 145.87 1967-2011 45 

11 112002 Nerada Fisher Ck -17.57 145.91 1929-2011 83 

12 112003 Glen Allyn North Johnstone -17.38 145.65 1959-2011 53 

13 112004 Tung Oil North Johnstone -17.55 145.93 1967-2011 45 

14 112101 U/S Central Mill South Johnstone -17.61 145.98 1917-2011 95 

15 112102 Upper Japoonvale Liverpool Ck -17.72 145.90 1971-2012 42 

16 113004 Powerline Cochable Ck -17.75 145.63 1967-2011 45 

17 114001 Upper Murray Murray -18.11 145.80 1971-2011 41 

18 116008 Abergowrie Gowrie Ck -18.45 145.85 1954-2004 58 

19 116010 Blencoe Falls Blencoe Ck -18.20 145.54 1961-2011 51 

20 116011 Ravenshoe Millstream -17.60 145.48 1963-2011 49 

21 116012 8.7KM Cameron Ck -18.07 145.34 1962-2011 50 
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Station 

ID 
Station Name River Name 

Gauge 
Lat 

Gauge 
Lon 

Period of 
Record 

Size 

22 116013 Archer Ck Millstream -17.65 145.34 1962-2011 50 

23 116014 Silver Valley Wild -17.63 145.30 1962-2011 50 

24 116015 Wooroora Blunder Ck -17.74 145.44 1967-2011 45 

25 116017 Running Ck Stone -18.77 145.95 1971-2011 41 

26 118101 Gleesons Weir Ross -19.32 146.74 1916-1960 45 

27 120102 Keelbottom Keelbottom Ck -19.37 146.36 1968-2011 44 

28 120216 Old Racecourse Broken -21.19 148.45 1970-2011 42 

29 120307 Pentland Cape -20.48 145.47 1970-2011 42 

30 121001 Ida Ck Don -20.29 148.12 1958-2011 54 

31 125002 Sarich's Pioneer -21.27 148.82 1961-2011 51 

32 125004 Gargett Cattle Ck -21.18 148.74 1968-2011 44 

33 129001 Byfield Waterpark Ck -22.84 150.67 1953-2011 59 

34 130004 Old Stn Raglan Ck -23.82 150.82 1964-2011 48 

35 130207 Clermont Sandy Ck -22.80 147.58 1966-2011 46 

36 130319 Craiglands Bell Ck -24.15 150.52 1961-2011 51 

37 130321 Mt. Kroombit Kroombit Ck -24.41 150.72 1964-2004 41 

38 130335 Wura Dee -23.77 150.36 1972-2011 40 

39 130413 Braeside Denison Ck -21.77 148.79 1972-2011 40 

40 135002 Springfield Kolan -24.75 151.59 1966-2011 46 

41 135004 Dam Site Gin Gin Ck -24.97 151.89 1966-2011 46 

42 136006 Dam Site Reid Ck -25.27 151.52 1966-2011 46 

43 136108 Upper Monal Monal Ck -24.61 151.11 1963-2011 47 

44 136111 Dakiel Splinter Ck -24.75 151.26 1966-2011 47 
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Station 

ID 
Station Name River Name 

Gauge 
Lat 

Gauge 
Lon 

Period of 
Record 

Size 

45 136112 Yarrol Burnett -24.99 151.35 1966-2011 46 

46 136202 Litzows Barambah Ck -26.30 152.04 1921-2011 91 

47 136203 Brooklands Barker Ck -26.74 151.82 1941-2011 71 

48 136301 Weens Br Stuart -26.50 151.77 1936-2011 76 

49 137001 Elliott Elliott -24.99 152.37 1949-2011 63 

50 137101 Burrum HWY Gregory -25.09 152.24 1967-2011 45 

51 137201 Bruce HWY Isis -25.27 152.37 1967-2011 45 

52 138002 Brooyar Wide Bay Ck -26.01 152.41 1910-2011 102 

53 138010 Kilkivan Wide Bay Ck -26.08 152.22 1910-2011 102 

54 138101 Kenilworth Mary -26.60 152.73 1921-1973 53 

55 138102 Zachariah Amamoor Ck -26.37 152.62 1921-2011 91 

56 138104 Kidaman Obi Obi Ck -26.63 152.77 1921-1963 43 

57 138106 Baroon Pocket Obi Obi Ck -26.71 152.86 1941-1986 46 

58 138107 Cooran Six Mile Ck -26.33 152.81 1948-2011 64 

59 138110 Bellbird Ck Mary -26.63 152.70 1960-2011 52 

60 138111 Moy Pocket Mary -26.53 152.74 1964-2011 48 

61 138113 Hygait Kandanga Ck -26.39 152.64 1972-2011 40 

62 141001 Kiamba South Maroochy -26.59 152.90 1938-2011 73 

63 141003 Warana Br Petrie Ck -26.62 152.96 1959-2011 53 

64 141006 Mooloolah Mooloolah -26.76 152.98 1972-2011 40 

65 142001 Upper Caboolture Caboolture -27.10 152.89 1966-2011 46 

66 142202 Drapers Crossing South Pine -27.35 152.92 1966-2011 46 

67 143010 Boat Mountain Emu Ck -26.98 152.29 1967-2011 45 
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Station 

ID 
Station Name River Name 

Gauge 
Lat 

Gauge 
Lon 

Period of 
Record 

Size 

68 143015 Damsite Cooyar Ck -26.74 152.14 1969-2011 43 

69 143102 Kalbar No.2 Warrill Ck -27.92 152.60 1913-1970 55 

70 143107 Walloon Bremer -27.60 152.69 1962-2011 50 

71 143108 Amberley Warrill Ck -27.67 152.70 1962-2011 50 

72 143110 Adams Br Bremer -27.83 152.51 1972-2011 40 

73 143203 Helidon Number 3 Lockyer Ck -27.54 152.11 1927-2011 84 

74 143209 Mulgowie2 Laidley Ck -27.73 152.36 1958-2011 44 

75 143303 Peachester Stanley -26.84 152.84 1928-2011 84 

76 145002 Lamington No.1 Christmas Ck -28.24 152.99 1910-1954 45 

77 145003 Forest Home Logan -28.20 152.77 1918-2011 60 

78 145010 5.8KM Deickmans Br Running Ckreek -28.25 152.89 1966-2011 46 

79 145011 Croftby Teviot Brook -28.15 152.57 1967-2011 45 

80 145012 The Overflow Teviot Brook -27.93 152.86 1967-2009 43 

81 145018 Up Stream Maroon Dam Burnett Ck -28.22 152.61 1971-2011 41 

82 145101 Lumeah Number 2 Albert -28.06 153.04 1911-2011 100 

83 145102 Bromfleet Albert -27.91 153.11 1919-2011 93 

84 145103 Good Dam Site Cainbable Ck -28.09 153.08 1963-2011 49 

85 146002 Glenhurst Nerang -28.00 153.31 1920-2011 92 

86 146003 Camberra Number 2 Currumbin Ck -28.20 153.41 1928-1982 55 

87 146010 Army Camp Coomera -28.03 153.19 1963-2011 49 

88 146012 Nicolls Br Currumbin Ck -28.18 153.42 1971-2011 41 

89 146014 Beechmont Back Ck -28.12 153.19 1972-2011 40 

90 146095 Tallebudgera Ck Rd Tallebudgera Ck -28.15 153.40 1971-2011 41 
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Station 

ID 
Station Name River Name 

Gauge 
Lat 

Gauge 
Lon 

Period of 
Record 

Size 

91 416303 Clearview Pike Ck -28.81 151.52 1935-1987 48 

92 416305 Beebo Brush Ck -28.69 150.98 1969-2011 43 

93 416312 Texas Oaky Ck -28.81 151.15 1970-2011 42 

94 422210 Tabers Bungil Ck -26.41 148.78 1967-2011 45 

95 422302 Killarney Spring Ck -28.35 152.34 1910-1955 46 

96 422303 Killarney Spring Ck South -28.36 152.34 1910-1955 46 

97 422304 Elbow Valley Condamine -28.37 152.16 1916-1972 57 

98 422306 Swanfels Swan Ck -28.16 152.28 1920-2011 92 

99 422307 Kings Ck Kings Ck -27.90 151.91 1921-1966 43 

100 422313 Emu Vale Emu Ck -28.23 152.23 1948-2011 64 

101 422319 Allora Dalrymple Ck -28.04 152.01 1969-2011 43 

102 422321 Killarney Spring Ck -28.35 152.33 1960-2011 52 

103 422326 Cranley Gowrie Ck -27.52 151.94 1970-2011 42 

104 422334 Aides Br Kings Ck -27.93 151.86 1970-2011 42 

105 915011 Mt Emu Plains Porcupine Ck -20.18 144.52 1972-2011 40 

106 917104 Roseglen Etheridge -18.31 143.58 1967-2011 45 

107 917107 Mount Surprise Elizabeth Ck -18.13 144.31 1969-2011 43 

108 919005 Fonthill Rifle Ck -16.68 145.23 1969-2011 42 

109 919201 Goldfields Palmer -16.11 144.78 1968-2011 44 

110 922101 Racecourse Coen -13.96 143.17 1968-2011 43 

111 926002 Dougs Pad Dulhunty -11.83 142.42 1971-2011 41 

 
table 6.2 - Selected sites for Queensland
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6.2.3 – Northern Territory 
 
Database for Northern Territory was composed by 50 sites. (Appendix B.3). In fig. 
6.3 is reported their location on the map, while in table 6.3 information about 
are provided. 
 

 
 

fig. 6.3 – Location of selected sites for Northern Territory 
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Station ID Station Name River Name Gauge Lat 

Gauge 
Lon 

Period of 
Record 

Size 

1 G8110004 Victoria HWY East Baines -15.7667 130 1963 - 2008 49 

2 G8140008 Old Railway Br Fergusson -14.07 131.9767 1958 - 2011 53 

3 G8140063 D/S Old Douglas H/S Douglas -13.7967 131.3383 1958 - 2011 54 

4 G8140158 Dam Site McAdden Ck -14.3483 132.3383 1964 - 2011 45 

5 G8140159 Waterfall View Seventeen Mile C -14.2833 132.4 1963 - 2008 46 

6 G8140161 Tipperary Green Ant Ck -13.7383 131.1033 1966 - 2011 46 

7 G8150018 Stuart HWY Elizabeth -12.605 131.0733 1955 - 2011 57 

8 G8150096 Cox Peninsula Carawarra Ck -12.5317 130.6683 1966 - 2011 45 

9 G8150098 Tumbling Waters Blackmore -12.77 130.9483 1960 - 2010 51 

10 G8150127 D/S McMillans Rd Rapid Ck -12.3933 130.8717 1964 - 2011 48 

11 G8150180 Gitchams Finniss -12.97 130.7617 1961 - 2007 47 

12 G8170002 Railway Br Adelaide -13.2417 131.1083 1954 - 2007 54 

13 G8170066 Stuart HWY Coomalie Ck -13.0133 131.1233 1958 - 2010 53 

14 G8170084 Tortilla Flats Adelaide -13.09 131.235 1960 - 2011 52 

15 G8170085 Stuart HWY Acacia Ck -12.7833 131.12 1964 - 2011 48 

16 G8180026 El Sherana Rd Crossing Mary -13.6017 132.22 1962 - 2011 48 

17 G8180069 near Burrundie McKinlay -13.5317 131.7183 1959 - 2009 51 

18 G8180252 D/S El Sherana Rd Harriet Ck -13.6767 131.9867 1965 - 2010 46 

19 G8200045 El Sherana (C) South Alligator -13.5233 132.52 1958 - 2009 52 
 

table 6.3 - Selected sites for Northern Territory 
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6.2.4 – Climate 
 
Australia is a wide country, in which there is a coexistence of several climate 
conditions. This spatial heterogeneity can be found also inside the single states. 
In this paragraph, a short description of the main features of climate for the three 
investigated states is reported. 
 
Climate across New South Wales ranges from the hot, dry, continental conditions 
in the west, to the subtropical, wet conditions in the northeast, to the alpine cold 
of the southeast. A marked variability can be found also in the average annual 
rainfall, which can assume values more than five times as much rain falling along 
the coast as in the west. Climate, furthermore, is affected by the influence of the 
Great Dividing Range, whose impacts influences mainly the distribution of rainfall 
and results in four distinct climate zones: 
 

i. the Coast: is characterized by a mild climate, which ranges from 
subtropical near the Queensland border to the cool temperate climate of 
the south. 

ii. The Ranges and Tablelands of the Great Dividing Range: climate is 
temperate in the north and cool temperate in the south. Areas above 
1200 m have an Alpine climate. 

iii. The Western Slopes and Plains: climate is generally hot and dry with a 
cooler winter.  

iv. The Arid Plains: continuing west into the central and far northwest 
regions of the State, the climate becomes hotter and semi-arid to arid. 

 
Queensland state is characterized by a considerable climate variation. In the 
inland west there are low rainfall and hot summers, a monsoon season in the 
north, and warm temperate conditions along the coastal strip contrast. Coastal 
strip climate is influenced by Coral and Tasman Seas, which in general, keep the 
region free from extremes of temperature and provide moisture for rainfall. In 
this region the annual median rainfall ranges between 1000 and 1600 mm. 
increasing to over 3200 mm along parts of the north Queensland coast.  
 
In the Northern Territory, instead, two climate zones can be distinguished: 
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i. the northern end: is characterized by a tropical climate and a wet (with 
tropical cyclones and monsoon rains) and a dry season.  

ii. the central region: which is located in the desertic center of Australia. 
There is a semi-arid climate with little rain. 

 
 

 6.3 – Applications and Results 
 

6.3.1 – Preliminary results 
 

In order to exploit the reliability of incorporating the use of TCEV and Kappa 

distributions in at-site flood frequency analysis, some preliminary investigations 

were made.  

The first, described in sub-paragraph 6.3.1.1, involves the use of L-Moments Ratio 

Diagram for a visual comparison between sample and theoretical L-Moments for 

candidate distributions. For a better visualization, Kappa area was neglected in 

all figures. However, due to the relationships with other three-parameter 

distribution represented on the plot, it will be possible to discuss the suitability 

of this distribution for at-site analysis. 

In sub-paragraph 6.3.1.2 the outcome of 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 test is illustrated, while in 

6.3.1.3 the outcome of the visual analysis of results is commented. Finally, in last 

sub-paragraph the application of AIC and BIC parametric tests is reported. 

 

6.3.1.1 – L-Moments Ratio Diagrams  
 

The use of L-Moments Ratio Diagram is considered an affordable preliminary 

assessment for evaluating the suitability of different distributions to sample data. 

Because of the large number of sites, results will be displayed in fig. 6.4, 6.6 and 

6.8 for each region and only for investigated sites. In order to achieve a 

comparison with LP3, in figures 6.5, 6.7 and 6.9 𝜏3 and 𝜏4 of the logarithms of 

annual maximum are plotted with theoretical curve for P3 distribution (Vogel et 

al., 1993a). 
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In appendix B LMRDs for all available sites in respective regions are plotted. 
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fig. 6.4 – L-Moments Ratio Diagram for selected sites in New South Wales 
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fig. 6.5 – L-Moments Ratio Diagram for Log-Pearson Type 3 for selected sites in New South Wales
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fig. 6.6 – L-Moments Ratio Diagram for selected sites in Queensland 
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fig. 6.7 – L-Moments Ratio Diagram for Log-Pearson Type 3 for selected sites in Queensland
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fig. 6.8 – L-Moments Ratio Diagram for selected sites in Northern Territory 
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fig. 6.9 – L-Moments Ratio Diagram for Log-Pearson Type 3 for selected sites in Northern Territory
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First, it should be noted that the limited number of sites is a limit for drawn 

definitive conclusions about New South Wales, while for Queensland and 

Northern Territory there is a clearer context.  

It is interesting to note how TCEV lines can be a helpful tool for discriminating 

between candidate distributions. Looking at fig. 6.4 and 6.6 for New South Wales 

and Queensland, can be recognized the presence of a cloud of points in the area 

between the TCEV curves for Λ∗ = 1 and 휃∗ = 20 and Generalized Pareto line, 

and that this area is crossed by the P3 distribution line. Queensland plot, 

furthermore, reports a wider cloud below the Λ∗ = 1 line characterized by values 

of 𝜏4 between 0.0 and 0.1. Northern Territory, instead, denotes a lack of points 

in the above-mentioned area in the TCEV space (except for one site). 

Observed dispersion in sample points in fig. 6.6 and 6.8 suggests that differences 

can be observed when performing FFA for those sites. Heterogeneity of region is 

confirmed by the evaluation of the Heterogeneity measure (Hosking and Wallis, 

1993), that assumes the values of 23.97 for Queensland and of 5.95 for Northern 

Territory. Both measures were evaluated using the R package lmomRFA (Hosking, 

2019) with 1000 simulations. 

LMRDs showing only LP3 distribution, instead, seems to confirm the note ductility 

of this distribution in giving often a good fit to eastern Australia flood data for at-

site analyses. Is should be remarked that LP3 distribution was recommended for 

at-site analyses by Australian Rainfall and Runoff (ARR) 1987 (I. E. Aust., 1987). 

This preliminary analysis confirms TCEV as a good candidate distribution for at-

site FFA in Queensland and New South Wales, while Kappa distribution (albeit 

not plotted in previous diagrams) by an initial analysis is suspected to be not 

adequate for New South Wales and of interest in some cases in Queensland and 

Northern Territory. 
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6.3.1.2 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 analysis  
 

𝑇𝐶𝑟𝑎𝑡𝑖𝑜 is a measure for discerning the presence of components of different 

nature in a sample. It is a measure based on the sampled posterior distribution 

of TCEV in a Bayesian framework. In paragraph 5.4 was illustrated in detail. Fig. 

6.10 contains the binary outcome of this investigation for selected sites. 

 

 
 

fig. 6.10 – Outcome of 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  test: green points indicate the presence of two-components, red 

the absence 
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This figure shows surprisingly a spatial correlation of the outcome of 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 test. 

Presence of two different populations seems to be a common characteristic in 

the Eastern Coast of Australia below the latitude of 23° south. This result seems 

to be in the spite of those found by Micevski et al. (2006, fig. 8), which reported 

a similar behavior of their flood ratio measure. 

Conversely, in Northern Territory only three sites show a positive outcome for 

the presence of a double component. 

Some good-behaved 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 diagrams are illustrated in figs. 6.11-6.13.  

 

 
 

fig. 6.11 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for Tantawangalo Creek at Tantawangalo mountain (dam) (NSW) 

 

 



 124 

 
 

fig. 6.12 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for Amamoor Creek at Zachariah (Qld) 

 

 
 

fig. 6.13 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for Elizabeth River - Stuart Hwy (NT) 
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Instead, in figs. 6.14-15 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 diagrams that exclude the presence of a second 

components are plotted. 

 

 

 
 

fig. 6.14 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for Ross River at Gleesons Weir (Qld) 
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fig. 6.15 - 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for South Alligator River - El Sherana (NT) 

 

6.3.1.3 – Visual Inspection  
 

A visual inspection of probability plot is always necessary for understanding the 

goodness of fit of a probability distribution to observed data. Application of 

traditional measures of goodness of fit or model selection without any screening  

of probability plots can lead to misleading results. However, combining different 

tests for detecting the best performant between several candidate distributions 

is a good strategy, because of the increasing in information content available to 

the analyst.  

In sub-paragraph 6.3.1.1 a classical measure for an initial screening of data such 

as L-moments Ratio Diagram was employed. As results, it showed that TCEV 

distribution could give a good fit for sites in New South Wales and Queensland, 

but not in Northern Territory. In 6.3.1.2, a new measure called 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 was 

employed for suspecting the presence of two component of different nature in a 
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time series. Spatial distribution of results of this test showed clusters similar to 

those illustrated in Micevski et al. (2006).  

Next step in that sort of hierarchical procedure for detection of the best fitting 

distribution, is to investigate the behavior of probability plots for three different 

distributions: TCEV, LP3 and GEV. Kappa distribution was omitted also because 

of the frequent issues arose in the computational step. In most cases, it was not 

possible start in sampling the posterior distribution. In all computations, Bayesian 

analysis with no prior information (Kuczera, 1999) was performed.  

Several probability plots are reported in the following figures. Their choice was 

led by the need of providing the main behaviors verified in the study area.  

Furthermore, for illustrating the uncertainty in the estimate of TCEV parameters, 

their parameters probability plots from the posterior distribution are also 

illustrated.  
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New South Wales: Apsley River at Apsley Falls 

 

 
 

figure 6.16 – TCEV, LP3 and GEV expected quantiles probability plots for Apsley River at Apsley Falls 
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figure 6.17 – TCEV, LP3 and GEV probability plots for Apsley River at Apsley Falls 
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figure 6.18 – TCEV parameters probability plot for Apsley River at Apsley Falls 
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Table 6.4 - Comparison of Selected Quantiles with 90% Confidence Limits  

for Apsley River at Apsley Falls 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.611 2.804 0.345 5.083 

Std Dev 0.402 0.284 0.240 0.177 
 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 4.670 0.161 -0.776 

Std Dev 0.168 0.127 0.428 
 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 79.383 4.380 -0.609 

Std Dev 14.143 0.184 0.202 
 

Tables 6.5 – Compsrison of estimates parameters for Apsley River at Apsley Falls 

1 in Y 
AEP  

Distribution  
Expected 

Parameter 
Quantile 

Quantile  
Confidence Limits  

5% Limit 

Quantile  
Confidence Limits  

95% Limit 

2 

TCEV 115.81 42.21 242.2 

LP3 123.96 55.2 270.4 

GEV 112.18 50.57 217.9 

10 

TCEV 418.44 231.92 914.1 

LP3 421.49 194.09 1454 

GEV 464.58 209.74 3714.2 

50 

TCEV 684.68 368.74 1542 

LP3 714.89 381.98 9762.4 

GEV 1359.99 386.17 57139 

100 

TCEV 797.24 426.58 1807.5 

LP3 833.38 457.97 20580.6 

GEV 2108.11 445.44 181500 
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New South Wales: Rutherford Creek at Brown Mountain 

 

 
 

figure 6.19 – TCEV, LP3 and GEV expected quantiles probability plots for Rutherford Creek at Brown Mountain 
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figure 6.20 – TCEV, LP3 and GEV probability plots for Rutherford Creek at Brown Mountain 
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figure 6.21 – TCEV parameters probability plot for Rutherford Creek at Brown Mountain 
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1 in Y 
AEP 

Distribution  
Expected 

Parameter 
Quantile 

Quantile 
Confidence Limits 

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 115.81 42.21 242.2 

LP3 123.96 55.2 270.4 

GEV 112.18 50.57 217.9 

10 

TCEV 418.44 231.92 914.1 

LP3 421.49 194.09 1454 

GEV 464.58 209.74 3714.2 

50 

TCEV 684.68 368.74 1542 

LP3 714.89 381.98 9762.4 

GEV 1359.99 386.17 57139 

100 

TCEV 797.24 426.58 1807.5 

LP3 833.38 457.97 20580.6 

GEV 2108.11 445.44 181500 
 

Table 6.6 - Comparison of Selected Quantiles with 90% Confidence Limits  

for Rutherford Creek at Brown Mountain 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.611 2.804 0.345 5.083 

Std Dev 0.402 0.284 0.240 0.177 
 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 4.670 0.161 -0.776 

Std Dev 0.168 0.127 0.428 
 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 79.383 4.380 -0.609 

Std Dev 14.143 0.184 0.202 
 

Tables 6.7 – Comparison of estimates parameters for Rutherford Creek at Brown Mountain
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New South Wales: Tantawangalo Creek at Tantawangalo Mountain (dam) 

 

 
 

figure 6.22– TCEV, LP3 and GEV expected quantiles probability plots for Tantawangalo Creek at Tantawangalo Mountain (dam) 
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figure 6.23 – TCEV, LP3 and GEV probability plots for Tantawangalo Creek at Tantawangalo Mountain (dam) 
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figure 6.24 – TCEV parameters probability plot for Tantawangalo Creek at Tantawangalo Mountain (dam) 
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AEP 1 in Y Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence Limits 

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 33.71 6.31 83.4 

LP3 28.09 8.21 73.8 

GEV 22.89 7.95 67.4 

10 

TCEV 173.09 91.16 320.1 

LP3 189.74 78.07 937.8 

GEV 282.15 65.63 5138.1 

50 

TCEV 295.28 165.59 567.8 

LP3 443.39 179.47 8902.4 

GEV 2379.63 206.23 253310.7 

100 

TCEV 346.93 195.74 679.4 

LP3 569.93 227.48 22021 

GEV 5846.92 284.52 1373512 

 

Table 6.8 - Comparison of Selected Quantiles with 90% Confidence Limits  

for Tantawangalo Creek at Tantawangalo Mountain (dam) 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.03366 1.06605 0.08914 4.30386 

Std Dev 0.27446 0.31098 0.19683 0.16346 

 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 3.12041 0.58862 -0.72165 

Std Dev 0.23891 0.10915 0.29827 

 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 13.416 3.007 -1.287 

Std Dev 3.516 0.253 0.261 
 

Tables 6.9 – Comparison of estimates parameters for Tantawangalo Creek 
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Queensland: Bell Creek at Craiglands 

 

 
 

figure 6.25– TCEV, LP3 and GEV expected quantiles probability plots for Bell Creek at Craiglands 
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figure 6.26 – TCEV, LP3 and GEV probability plots for Bell Creek at Craiglands 
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figure 6.27 – TCEV posterior parameters plots for Bell Creek at Craiglands 
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AEP 1 in Y Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence 

Limits 5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 26.6 10.71 133.1 

LP3 35.66 4.98 173.9 

GEV 29.32 8.77 85.6 

10 

TCEV 440.42 59.1 1741.5 

LP3 449.76 153.51 2754.6 

GEV 526.26 98.62 44462.5 

50 

TCEV 944.4 361.57 3371.8 

LP3 920.54 434.43 21008 

GEV 6220 337.47 11662496 

100 

TCEV 1157.47 451.23 4061 

LP3 1071.66 567.09 39524.4 

GEV 17642.79 558.29 122842976 
 

Table 6.10 - Comparison of Selected Quantiles with 90% Confidence Limits for Bell Creek at 

Craiglands 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 0.88025 2.5211 -0.80711 5.72082 

Std Dev 0.19384 0.18106 0.28366 0.25625 
 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 2.88243 1.12842 -1.38957 

Std Dev 0.44031 0.14375 0.26173 
 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 15.934 3.312 -1.493 

Std Dev 5.022 0.295 0.324 
 

Tables 6.11 – Comparison of estimates parameters for Bell Creek at Craiglands 
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Queensland: Albert River at Bromfleet 

 

 
 

figure 6.28– TCEV, LP3 and GEV expected quantiles probability plots for Albert River at Bromfleet 
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figure 6.29 – TCEV, LP3 and GEV probability plots for Albert River at Bromfleet 
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figure 6.30 – TCEV posterior parameters plots for Albert River at Bromfleet 
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AEP 1 in Y Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence Limits  

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 330.38 161.69 527.2 

LP3 280.08 141.17 571.4 

GEV 259.73 135.32 438.6 

10 

TCEV 921.65 635.74 1376.2 

LP3 1034.6 690.58 1941.7 

GEV 1077.17 594.77 4058.4 

50 

TCEV 1440.01 985.01 2182.5 

LP3 1667.38 1134.72 5358.4 

GEV 2995.95 1041.19 34782.9 

100 

TCEV 1659.15 1132.67 2524.6 

LP3 1886.23 1287.22 7958.4 

GEV 4522.54 1258.92 90590 
 

Table 6.12 - Comparison of Selected Quantiles with 90% CL for Albert River at Bromfleet 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 2.29427 1.85065 0.68613 5.74895 

Std Dev 0.6083 0.32589 0.12776 0.09951 

 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 5.39685 0.3243 -1.05255 

Std Dev 0.14672 0.09799 0.2214 

 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 179.028 5.290 -0.563 

Std Dev 26.272 0.132 0.156 
 

Tables 6.13 – Comparison of estimates parameters for Bell Creek at Albert River at Bromfleet 
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Queensland: Liverpool Creek at Upper Japoonvale 

 

 
 

figure 6.31– TCEV, LP3 and GEV expected quantiles probability plots for Liverpool Creek at Upper Japoonvale 
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figure 6.32 – TCEV, LP3 and GEV probability plots for Liverpool Creek at Upper Japoonvale 
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figure 6.33 – TCEV posterior plots for Liverpool Creek at Upper Japoonvale 
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AEP 1 in 
Y 

Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence Limits 

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 212.91 141.77 313.4 

LP3 207.47 136.45 323.5 

GEV 207.23 136.03 311.6 

10 

TCEV 397.08 286.71 696.4 

LP3 433.97 278.92 1077.7 

GEV 431.64 283.64 1129.5 

50 

TCEV 558.54 394.18 9280.7 

LP3 655.15 399.89 3673.7 

GEV 694.78 389.81 5292.4 

100 

TCEV 626.8 438.16 14167.5 

LP3 753.33 445.91 5963.8 

GEV 829.49 428.69 10683.5 
 

Table 6.14 - Comparison of Selected Quantiles with 90% CL for Liverpool Creek at Upper 

Japoonvale 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.81129 4.58255 -26.0782 7.03624 

Std Dev 0.24569 0.14919 17.97398 5.41288 
 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 5.31364 -0.5038 -0.21199 

Std Dev 0.09498 0.12219 0.39099 
 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 171.109 4.560 -0.165 

Std Dev 17.101 0.145 0.141 
 

Tables 6.15 – Comparison of estimates parameters for Liverpool Creek at Upper Japoonvale



 152 

Northern Territory: Elizabeth River - Stuart Hwy 

 

 
 

figure 6.34– TCEV, LP3 and GEV expected quantiles probability plots for Elizabeth River - Stuart Hwy 
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figure 6.35– TCEV, LP3 and GEV probability plot for Elizabeth River - Stuart Hwy 
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figure 6.36– TCEV posterior plots for Elizabeth River - Stuart Hwy 
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AEP 1 in Y Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence Limits  

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 60.82 36.05 118 

LP3 65.43 31.15 164.5 

GEV 65.08 31.95 131.1 

10 

TCEV 275.14 107.91 1001.6 

LP3 278.34 143.06 2352.9 

GEV 261.64 127.21 1376.8 

50 

TCEV 617.93 253.24 3261.8 

LP3 577.6 280.7 26441.1 

GEV 731.41 243.73 18635.2 

100 

TCEV 763.02 304.42 4252 

LP3 729.59 337.65 67407.2 

GEV 1109.35 302.81 56052.7 
 

Table 6.16 - Comparison of Selected Quantiles with 90% CL for Elizabeth River - Stuart Hwy 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.22352 3.34517 -0.9283 5.33658 

Std Dev 0.20165 0.16801 0.44713 0.32791 

 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 4.08458 0.23374 -0.45916 

Std Dev 0.16823 0.10482 0.2826 

 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 45.929 3.849 -0.574 

Std Dev 7.347 0.158 0.154 

 

Tables 6.17 – Comparison of estimates parameters for Elizabeth River - Stuart Hwy
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Northern Territory: Finniss River - Gitchams Xng 

 

 
 

figure 6.37– TCEV, LP3 and GEV expected quantiles probability plots for Finniss River - Gitchams Xng 
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figure 6.38– TCEV, LP3 and GEV probability plot for Finniss River - Gitchams Xng 
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figure 6.39– TCEV posterior plot for Finniss River - Gitchams Xng 
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AEP 1 in Y Distribution  
Expected 

Parameters 
Quantile 

Quantile 
Confidence Limits 

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 356.81 216.85 535.4 

LP3 335.35 187.24 546.9 

GEV 351.43 201.68 523.8 

10 

TCEV 733.64 504.34 1134.3 

LP3 813.73 477.08 1863.1 

GEV 772.12 504.37 1979.4 

50 

TCEV 1064.01 709.15 247499232 

LP3 1210.71 718.41 4645.8 

GEV 1194.61 732.39 7434.5 

100 

TCEV 1203.68 795.73 523175296 

LP3 1362.62 820.25 6648.3 

GEV 1390.01 815.39 12895.5 

 

Table 6.17 - Comparison of Selected Quantiles with 90% CL for Finniss River - Gitchams Xng 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.41724 5.29848 -227.612 -103.92 

Std Dev 0.18827 0.11616 190.1551 76.1064 

 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 5.71822 -0.18447 -0.70488 

Std Dev 0.1226 0.11941 0.23246 

 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 276.436 5.307 -0.077 

Std Dev 33.212 0.127 0.114 

 

Tables 6.18 – Comparison of estimates parameters for Finniss River - Gitchams Xng
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Plots from 6.16 to 6.39 are a very precious source of information. Relatively to 

the three New South Wales sites reported (Apsley River at Apsley Falls, 

Rutherford Creek at Brown Mountain, Tantawangalo Creek at Tantawangalo 

Mountain, figs. 6.16-6.24) it should to be noted the extraordinary ability of TCEV 

distribution in fitting the particular “S-shape” of observed data. This behavior is 

also confirmed by the observation that there is an inversion in curvature in 

quantile curves when shifting from low to high AEP 1 in Y. LP3 distribution, which 

adequateness in describing flood data in NSW has been pointed out in some 

studies (Micevski et al., 2006; Franks and Kuczera, 2002), gives good fits too, but 

behavior is different if compared with TCEV’s.  Log-Pearson 3 distribution, in fact, 

denote an inadequate fit to data in the left tail, which is not able to model 

changes in shape from low to high values. However, 90% limits indicate that 

ability of TCEV in modulating the left tail is unbalanced by a relevant decreasing 

in uncertainty for AEP 1 in Y lower than 1.5. Instead, for high AEP 1 in Y (from 20 

to 100) performances of TCEV and LP3 in expected quantiles are comparable, 

giving a good fit to data, but TCEV shows a relevant reduction in related 

uncertainty. This is clearly indicated by the divergence in 90% limits showed in 

LP3 cases.  

For those sites, is of relevance noticing the poor fit of GEV. This distribution is, in 

fact, unable to fit the right tail, leading to a marked overestimation of quantiles. 

A similar framework can be reported for sited in Queensland located below the 

latitude of 23° south (fig. 6.25-6.30). For Bell Creek at Craiglands (figs. 6.25-6.27) 

performances of TCEV are surprisingly better than those of LP3, but some 

investigations are needed to PILFs, that seems affecting more LP3 than TCEV.  

Figs. 6.28-6.30 (Albert River at Bromfleet) show, instead, how tendency of TCEV 

in giving a double curvature to expected quantile, sometimes can led to 

misleading results. In this case, in fact, LP3 is the preferable distribution.  

As for NSW, also in this zone of Queensland GEV gives poor fits to data. 

However, the presence of an “S-shape” in data, that emphasizes skills of TCEV 

compared to those of LP3, is not always well pronounced, and is often influenced 
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by the presence of PILFs. In those cases, LP3 and TCEV give comparable results to 

expected quantiles fitting. Uncertainty in quantile estimates can be retained an 

affordable measure in model selection, and generally led to give preference to 

TCEV distribution.  

Analysis of sites located in the northern part of Queensland confirms the general 

inappropriateness of TCEV in modeling their data (except for some exceptions). 

Liverpool Creek at Upper Japoonvale (figs. 6.31-6.33) is an interesting example. 

In fig. 6.26 can be observed that TCEV estimates in upper quantiles has high 

uncertainty, which reflect the structure of its posterior density (fig. 6.33). LP3 and 

GEV, instead, have comparable fits to higher quantiles, also when looking at 90% 

limit. 

Two sites are, finally, reported for Northern Territory. In the first case (Elizabeth 

River - Stuart Hwy, figs. 6.34-6.36) a good fit of TCEV has to be noticed, also if low 

flows seem to affect in a significant part its ability to model the “S-shape”. 

However, TCEV fits is much better than those of PL3 and GEV. 

The second case (Finniss River - Gitchams Xng, figs. 6.37-6.39) is similar to 

Liverpool Creek at Upper Japoonvale, with TCEV showing am high uncertainty for 

high 1 in Y AEP. Can be observed the good fit of GEV, that shows a shape 

parameter close to zero: this can subtend the opportunity of using a two-

parameter distribution (e.g. Gumbel). 

 

Summarizing, visual inspection of probability plots confirmed previous findings 

arose from analysis of L-Moments Ratio Diagram and 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 plots about the 

possibility of using a four-parameter TCEV distribution in modelling at-site time 

series of annual maximum of peak flows. In addition, the ability of Bayesian 

analysis in reliable quantification of connected uncertainty, provided additional 

support of TCEV in at-site flood frequency analysis for several sites in New South 

Wales and Queensland. 
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6.3.1.4 – AIC and BIC criteria 
 

The use of these two criteria (described in paragraph 3.2.2.1) for model selection 

in Australia was proposed by Rahman et al. (2013). In this study were applied also 

for a comparison on previous work on the same subject and dataset.  

Figs. from 6.40 to 6.42 show, respectively, a graphical representation of AIC, AICc 

and BIC tests, while tables 6.19-21 present a summary of outputs of these tests. 

 

 New South Wales 

 AIC AICc BIC 

LP3 75.00% 58.33% 75.00% 

TCEV 25.00% 41.67% 25.00% 

GEV 0.00% 0.00% 0.00% 

N.C. 0.00% 0.00% 0.00% 

 

Table 6.19 – AIC, AICc and BIC results for NSW 

 

 Queensland 

 AIC AICc BIC 

LP3 66.67% 62.16% 65.77% 

TCEV 23.42% 31.53% 24.32% 

GEV 8.11% 4.50% 8.11% 

N.C. 1.80% 1.80% 1.80% 

 

Table 6.20– AIC, AICc and BIC results for Queensland 

 

 Northern Territory 

 AIC AICc BIC 

LP3 63.16% 62.16% 75.00% 

TCEV 15.79% 31.53% 25.00% 

GEV 10.53% 4.50% 0.00% 

N.C. 10.53% 1.80% 0.00% 
 

Table 6.21 – AIC, AICc and BIC results for Northern Territory 
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fig. 6.40 – Akaike Information Criterion results (N.C. stands for Not Computable) 
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fig. 6.41 – Corrected version of Akaike Information Criterion results (N.C. stands for Not 

Computable) 
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fig. 6.42 – Bayesian Information Criterion results (N.C. stands for Not Computable) 

 

 

Results highlighted that AIC and BIC gave similar results, with a marked 

preference in the selection of LP3. Modified version of AIC, AICc, led to an 

increasing in the number of sites for which TCEV is the most suitable distribution. 

However, it is a not surprising result. Laio et al. (2009) documented that both AIC 

and BIC give preferences to log-transformed variables. This characteristic can 

affect the ability of these tests in detecting TCEV as the best performant, giving 
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preference to LP3. Finally, the role of parsimony principle must be taken into 

account for selecting a three-parameter distribution with respect to TCEV and 

Kappa. 

 

6.3.2 – The role of uncertainty 
 

Although important, a satisfactory fit to observed data can be regarded just a 

conditio sine qua non for judging adequate the choice of a certain distribution. 

One of the main advantages in performing a Bayesian analysis relies in its ability 

of accounting explicitly for uncertainty. In sub-paragraph 6.3.1.3 probability plots 

for different distribution were attached. Focusing the attention only on sites in 

the macro-region composed by New South Wales and the part of Queensland 

below the latitude of 23° south, it was noticed how TCEV and LP3 expected 

probability quantiles gave good results in fitting observed data. On the contrary, 

GEV distribution failed in interpreting upper quantiles. These statements can find 

confirmation by the figures 6.43-6.46, that illustrate boxplots of expected 

quantiles for different 1 in Y AEP for the above-mentioned macro region. 

As emerges from figs. 6.43 and 6.44, the median of all boxplots does not show 

relevant mutual differences. When moving to 1 in Y AEP equal to 50 (fig. 6.55) 

and 100 (fig. 6.46) this quality is kept constant only by TCEV and LP3 distributions, 

while an overestimation for GEV is denounced.  

These results give additional confirmations to the findings of previous paragraph. 
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fig. 6.43 – Boxplot of expected parameter quantile for 1 in 2 AEP 

 

  
 

fig. 6.44 – Boxplot of expected parameter quantile for 1 in 10 AEP 
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fig. 6.45 – Boxplot of expected parameter quantile for 1 in 50 AEP 

 

 

 
fig. 6.46– Boxplot of expected parameter quantile for 1 in 100 AEP 
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The substantially equivalence between TCEV and LP3 in fitting data in this macro 

region needs further investigations. This reflect all considerations about model 

selection, that in this case is reflected in the choice between a three- and a four- 

parameter probability distribution. Parsimony principle would suggest to opting 

for the less parametrized distribution, i.e. LP3. However, the role of uncertainty 

in estimates, above all of quantiles, cannot be neglected in this phase.  

Quantifying uncertainty as the amplitude of the 90% confidence limits for each 1 

in Y AEP, figs. 6.47-6.50 gave a clear summary its distribution. 

 

 

 
 

fig. 6.47 – Boxplot of quantile uncertainty for 1 in 2 AEP 
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fig. 6.48 – Boxplot of quantile uncertainty for 1 in 10 AEP 

 

 

 
fig. 6.49 – Boxplot of quantile uncertainty for 1 in 50 AEP 
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fig. 6.50 – Boxplot of quantile uncertainty for 1 in 100 AEP 

 

These boxplots give a relevant contribute to the discussion. In fact, also in this 

case a confirmation of findings of visual analysis emerged. For small 1 in Y AEP, 

TCEV shows the highest uncertainty with respect to LP3 and GEV (fig. 6.47). This 

state dramatically changes moving from 10 to 100 1 in Y AEP, where TCEV is 

generally characterized by the lowest uncertainty.  

 

6.4 – An Italian case study: Venosa River at Ponte Sant’Angelo (Basilicata 
region, Southern Italy) 
 

Venosa River flows in Basilicata, a region of Southern Italy. Interest in application 

of the above illustrated procedure to this case study arise from some studies 

conducted on the topic of theoretically derived distributions of floods. In this 

respect, Gioia et al. (2008) proposed a scheme for flood frequency derived 

distributions that includes two different threshold driven mechanisms of runoff 
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generation. Each of these mechanisms is responsible for ordinary and 

extraordinary events: the first is characterized by frequent occurrences while the 

second one produces rare events and higher average of exceedances. These 

concepts were summarized by the authors in the TCIF (Two Component Iacobellis 

and Fiorentino, TCIF, distribution). One of the sites for with they found a good 

correspondence to this theoretical behavior was Venosa at Ponte Sant’Angelo. 

It seems coherent with the aim of this thesis to investigate the fit of TCEV 

distribution. As for the Australian cases study, TCEV, Kappa, LP3 and GEV 

distributions were fitted. Results are shown in figs. 6.51-6.53, while fig. 6.54 

reports the outcome of 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 measure. Due to numerical complications, plots 

for Kappa distribution are omitted. 
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figure 6.51 – TCEV, LP3 and GEV expected quantiles probability plots for Venosa at Ponte Sant’Angelo 

 



 174 

 

 
figure 6.52 – TCEV, LP3 and GEV probability plot for Venosa at Ponte Sant’Angelo 
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figure 6.53 – TCEV parameters probability plot for Venosa at Ponte Sant’Angelo
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figure 6.54 – 𝑇𝐶𝑟𝑎𝑡𝑖𝑜  diagram for Venosa at Ponte Sant’Angelo 

 

It is interesting to note how, according to the theoretical behavior of this basin, 

two components are effectively detected by the TCEV distribution, showing 

another quality of this model. 

 

 

Tables 6.19-20 show, finally, how for AEP 1 in 50 TCEV provides lowest 

uncertainty with respect to the other distributions. 
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AEP 1 in Y Distribution  
Expcted 

Parameters 
Quantile 

Quantile 
Confidence Limits 

5% Limit 

Quantile 
Confidence Limits 

95% Limit 

2 

TCEV 30.41 17.34 80.3 

LP3 32.85 15.42 80.9 

GEV 32.79 16.87 73.8 

10 

TCEV 134.75 38.14 1731.3 

LP3 123.04 53.3 946.3 

GEV 125.85 50.57 1321.8 

50 

TCEV 319.61 72.39 4619.7 

LP3 318.1 92.83 10035.9 

GEV 391.46 96.38 22043.4 

100 

TCEV 397.78 112.47 5840.8 

LP3 457.84 109.88 29795.6 

GEV 629.76 118.37 74788 

 

Table 6.19- Comparison of Selected Quantiles with 90% CL for Venosa at Ponte Sant’Angelo 

 

 TCEV 

 ln(Λ1) ln(θ1) ln(Λ2) ln(θ2) 

Mean 1.88393 2.40764 -1.04715 4.71812 

Std Dev 0.35783 0.22835 0.58784 0.45799 

 

 LP3 

 
Mean (ln flow) 

loge [Std dev 
(ln flow)] 

Skew (ln flow) 

Mean 3.58222 -0.07628 0.58673 

Std Dev 0.16314 0.14128 0.36238 

 

 GEV 

 Location ζ ln(Scale σ) Shape ε 

Mean 24.857 2.948 -0.676 

Std Dev 3.803 0.220 0.192 

 

Tables 6.20 – Comparison of estimates parameters for Venosa at Ponte Sant’Angelo 
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6.5 – Discussion 
 

Goal of this chapter was to evaluate the suitability of the use of TCEV and Kappa 

four-parameter distributions for flood frequency analysis in three regions of 

Australia, i.e. New South Wales, Queensland and Northern Territory. Results 

shown a good fit of TCEV for most of sites located in New South Wales and in 

Queensland, except for the northern part of this latter state, where, together 

with Northern Territory, LP3 shows the better fit.  

The TCEV ability in modelling “S-shape” behavior (that cannot be handled by a 

three-parameter distribution) in observed data is relevant, Usually, a practical 

approach for dealing with this issue is to censor some values (using the multiple 

Grubbs Beck). However, it is not surprising that GEV distribution do not provide 

good results for most sites: L-Moments ratio diagram showed that sample points 

on this diagram lies far from related line. 

Some notes are required for describing and justifying analytical problems for 

Kappa distribution. In most cases, the implemented algorithm did not provide 

solutions. More in detail, was often impossible to compute the covariance matrix 

needed for implementing the Metropolis-Hastings algorithm. Only for some sites 

it was possible to obtain a result. An example is illustrated in fig. 6.55-6.56. In 

these figures, the problems in fitting the observed series can be noted. This is a 

common behavior for all sites for which Kappa was evaluated. 
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figure 6.55 – Kappa probability plot for Sandy Creek at Clermont (Qld) 
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figure 6.56 – Kappa parameters probability plot for Sandy Creek at Clermont (Qld) 
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As noted in sub-paragraph 6.3.1.2, sites that show a good fit to TCEV distribution 

and that provide successful outcome to 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 test, are clustered in a wide area 

of eastern Australia, which comprehend the whole NSW and a part of 

Queensland below the latitude of 23° south. This macro-region was recognized 

also in the work of Micevski et al. (2006) on multidecadal variability of floods in 

eastern Australia.  

Moving into the framework that can be traced back to the works of Erskine and 

Warner (1988), Franks and Kuczera (2002) and Micevski et al. (2006) is 

fundamental for understanding the underlying mechanism to flood data. In fact, 

Franks and Kuczera (2002) showed how in these cases the classical hypothesis of 

independent and identical distributed annual maximum floods is questionable. 

Although floods are independent, a modulation of the Pacific Interdecadal 

Oscillation (IPO) on flood risk in New South Wales was detected. Quae cum ita 

sint, annual maximum floods cannot be considered anymore to be identically 

distributed. This can lead to relevant issues when dealing with short-term flood 

risk (Franks and Kuczera, 2002).  

The characteristic of TCEV distribution of contemplating two different population 

can make this distribution eligible for interpreting the marginal distribution of the 

two populations. Results seems confirm this statement. 

Furthermore, the Italian case study demonstrated the ability of TCEV in fitting 

samples characterized by the presence of different populations, each one linked 

to a precise condition of runoff generation. These conclusions can confirm an 

important ability of TCEV distribution in fitting particular series of flood data. 

 

6.6 – Final remarks 
 

Goal of this chapter was the evaluation of the applicability of TCEV and Kappa 

four-parameter distributions at-site analysis of annual maxima of peak flows for 

New South Wales, Queensland and Northern Territory (Australia). There is much 
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literature on flood frequency analysis in Australia, but no previous studies were 

found on the explicit use of TCEV and Kappa in this country for FFA. 

The first step was to define an L-Moments Ratio Diagram, on which plotting also 

the area corresponding to TCEV distribution. This visual assessment of finding the 

candidate distributions was confirmed to be reliable, because of detected the 

presence of numerous sites in New South Wales and Queensland suitable for 

being in the TCEV “domain of attraction”. 

The second step was to apply the 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 measure for discerning the presence of 

two different populations in a sample. There were two main results in this 

analysis: 

 

1. 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 revealed to be an affordable tool for detecting the presence of 

two components of different nature into a single population; 

2. a cluster similar to that found by Micevski et al. (2006) was found in 

Queensland and New South Wales. 

 

Visual inspection of probability plots corroborated the achievements of the first 

two phases of this preliminary analysis for this cluster. In fact, TCEV showed a 

great ability in fitting the “S-shape” of observed data, plotted with Cunnane’s 

plotting position formula. Usually, such made data, when fitted with LP3 or GEV, 

require the censoring of part of the sample, that for TCEV seems to be not 

necessary. However, in some cases PILF produced a decrease in the skills of all 

distributions, TCEV included. While LP3 confirmed its goodness-of-fit (very similar 

to TCEV), GEV was considered inadequate for fitting data.  

In Northern Queensland and Northern Territory, LP3 and GEV are the candidate 

distributions, where TCEV loses its abilities. 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 test confirmed these 

conclusions. 

In order to adopt also some parametric criteria widely used in literature, and 

increase the content of information on this analysis, Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) were computed for all sites. These 
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criteria showed a marked tendency in preferring LP3 distribution, also in TCEV 

was chosen for a not negligible number of sites.  This result is in accordance with 

Laio et al. (2009), which denoted a particular behavior of these tests in preferring 

log-transformed distributions (LP3 in this case). 

 

Focus was, then, moved only to the macro-region defined in 6.3.1.2. Comparative 

evaluation of uncertainty between TCEV, LP3 and GEV showed that TCEV has 

expected quantiles comparable with LP3, but lower uncertainty for 1 in Y AEP 

greater than 10. This result is really remarkable, because can led to an 

improvement of flood frequency analysis, were at-site approach to TCEV 

distribution was neglected since its introduction. 

 

Floods in the eastern coast of Australia were investigated in different studies 

during last decades. For integrating this analysis, the conclusions of Franks and 

Kuczera (2002) and Micevski et al. (2006) are fundamental. These authors found 

that the assumptions of being independent and identically distributed of annual 

maximum flood for New South Wales (and, more in general, eastern Australia) is 

inconsistent, because of the modulation of Interdecadal Pacific Oscillation on 

flood risk. In those cases, the use a non-homogeneous probability models can be 

investigated. However, TCEV seems to represent the marginal distribution quite 

well, because of its ability in contemplating the presence of two different 

populations. 

Finally, TCEV distribution showed a good fitting in basins characterized by two 

different mechanisms for runoff generation. This is an expected quality, because 

arises in the spite of its original formulation. 
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7- CONCLUSIONS 
 

7.1 – Introduction 
 

One of the main goals of this thesis was to implement a Bayesian estimation 

method that allows to perform an at-site analysis of TCEV and Kappa distributions 

with an appropriate quantification of uncertainty in parameters and quantiles 

estimates. It was a preparatory phase for testing the applicability of these 

distribution in a flood frequency analysis framework. In this conclusive chapters, 

the main findings of this thesis will be highlighted, with a final proposal for future 

research developments. 

 

7.2 – The role of Kappa and TCEV distributions in the Extreme Value Theory 
 

In chapter 2 the theoretical framework of extreme value theory was illustrated, 

with respect to two different theoretical derivations. The theory formulated by 

Todorovic and Zelenhasic, in particular, represents the basis for understanding 

the physical context in which these distributions were derived. TCEV distribution 

was indeed introduced considering the possibility that floods can be generated 

by two different mechanisms, one responsible for frequent events and the other 

of the rare. There two components were considered be composed by a 

Poissonian distribution of the number of occurrences in an annual interval, whilst 

their magnitude is defined by an exponential distribution. 

In the case of Kappa, this distribution can be derived combining the hypothesis 

that the number of events in a year follows a binomial distribution, while the 

number of occurrences can be described by a Generalized Pareto.  

It is thus clear the phenomenologically different underlying nature between 

these two distributions. 
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7.3 – A review on the frequentist use of TCEV and Kappa 
 

All the most diffused findings about TCEV and Kappa distributions were derived 

in the framework of the frequentist inference. While for Kappa can be found in 

literature some reviews and investigations of its at-site estimations in terms of 

maximum likelihood, probability weighted moments and L-moments, for TCEV 

distribution the state of the art in more fragmented. In fact, although at-site 

estimation in very rare, it is difficult to find a complete and exhaustive review of 

its characteristics.  

In Chapter 3 the theoretical background of classical estimation methods is 

provided, in order to be propaedeutic to the discussion about their 

implementation for the analysed distributions, illustrated in Chapter 4. In this 

latter section, after the descriptions of the theoretical aspects of these 

distributions, a focus on L-moments is given, particularly for TCEV. A description 

of is implementation is illustrated, and finally this distribution was introduced in 

the L-Moment Ratio Diagram. This allowed a clearer visual comparison with 

traditional candidate distributions in flood frequency analysis. 

 

7.4 – The use of Bayesian inference for estimating and quantifying uncertainty 
 

In chapter 5 the main concepts for describing Bayesian inference were discussed. 

Moving from the assumption that this way of making inference allows to an 

appropriate quantification to the uncertainty in parameter and quantile 

estimation, a Bayesian approach for their evaluation for at-site TCEV and Kappa 

was implemented. This goal was obtained modifying the source code of the 

software FLIKE (a software for Bayesian inference realized by prof. George 

Kuczera), and introducing all constraints and theoretical aspects of these 

distributions. Furthermore, this software was integrated with a MCMC 

Metropolis-Hastings algorithm for sampling the posterior distribution. 

Comparison with Importance Sampling (default method in FLIKE) allowed a 
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better discrimination between some particular degenerate cases. For example, 

when analysing a Gumbel distributed sample with TCEV distribution, a reliable 

interpretation for diagnose the parent distribution was recognized. In this way, 

was set an efficient analytical tool with a user-friendly interface able to give a 

useful interpretation of our results. 

Sampled posterior distribution was exploited in order to define a visual tool able 

to discerning the presence of two different population in the same time series, 

𝑇𝐶𝑟𝑎𝑡𝑖𝑜. Based on the ratio between the first and the sum of the two components 

of TCEV distribution, 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 revealed to be an efficient tool for concluding its 

proposal objective. 

 

7.4 – Investigation of at-site flood frequency analysis for eastern and northern 
Australia 
 

In chapter 6 an at-site frequency analysis for annual maximum of peaks flows was 

conducted for sites located in Australia, in particular in the regions of New South 

Wales, Queensland and Northern Territory. Four distributions were compared: 

GEV, LP3, TCEV and Kappa.  

A first investigation for searching the candidate distribution was conducted with 

a visual analysis of L-Moments ratio diagram, that showed how TCEV seems a 

candidate distribution for fitting number of sites in NSW and in Queensland. In 

Northern Territory, instead, only a couple of records looked suitable for a good 

TCEV-fit. For the same reasons, Kappa denoted some problems in recognizig the 

underlying distribution.  

The second step consisted in performing the visual test using 𝑇𝐶𝑟𝑎𝑡𝑖𝑜 measure 

for discriminating the presence of two populations into a single sample. This 

measure showed that for sites below the latitude of 23° south in the eastern 

Australia the presence of two different populations seems to be justifiable. 

Then, a visual inspection of probability and posterior distribution plots showed 

how below the above-mentioned latitude TCEV fits in a comparable way with 
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LP3, which was considered advisable for that zone. This increasing in 

performances can be easily showed by the ability of TCEV in describing the “S-

shape” of plotting position data. It was relevant to note that Kappa distribution 

denoted computational problems for most sites, making not possible a wide 

comparison with others distribution. Further investigations are required to fix 

this issue. 

According with some authors that employed Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) for model selection, these likelihood-

based criteria were applied. From this analysis emerged that LP3 should be 

considered the preferable distribution for most of the analyzed sites, while TCEV 

has only a low percentage of acceptance as the best fit distribution. GEV was 

chosen only in some cases. Those results are not in conflict with previous findings, 

because these criteria were recognized choice more frequently log-transformed 

distributions.  

Finally, because of differences in quantile estimates for all sites between TCEV 

and LP3 were not so evident, a comparison with connected uncertainty was 

conducted. As a result, it emerges how, for an assigned 1 in Y AEP, TCEV 

distribution presents systematically a considerable low uncertainty for the above 

defined macro-region. 

In conclusion, TCEV seems to show the best fit performances for sites of NSW and 

Queensland below the latitude of 23° south in the eastern Australia. This region 

is surprisingly similar to that found by Micevski et al. (2006). This latter study was 

a consequence of a previous work of Franks and Kuczera (2002), that 

demonstrated how floods for NSW are sensible to long-term climate variations, 

modulated by El Nino Southern Oscillation, and explainable by values assumed 

by the Interdecadal Pacific Oscillation. As a consequence, authors stated that 

flood series cannot be considered homogeneous and composed by identically 

distributed floods. 

In the spite of these works, the good fit of TCEV could be explained with its ability 

in interpreting the marginal distribution of this composite populations. 
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Finally, a single Italian case study was proposed. Also in this case, TCEV gave the 

best performances. This can be explained by the presence of floods that are 

generated by different runoff mechanisms. An interpretation of these 

phenomena in the framework of Theoretically derived distributions of floods was 

provided by Gioia et al. (2008) 

 

7.5 – Future works 
 

The development of a Bayesian approach for computation of parameters and 

quantile estimates, in the light of the findings about TCEV gave lots of suggestions 

for future works. The simplest idea that can be implemented is to study how at-

site uncertainty can be reduced introducing into the analysis both regional and 

historical information. Furthermore, an application of TCEV in the regional 

frequency analysis framework can lead to relevant progresses in the 

management of flood risk to wide areas, with benefits detectable especially in 

ungauged basins. 

Another purpose that should be explored is to extend analysis to New Zealand 

(were a good fit of TCEV was documented) and to Pacific areas for which LP3 

distribution was considered giving an adequate fit to observed annual maxima.  

The role of PILFs if TCEV distribution is also susceptible of investigations, 

searching for an analytical comparison with results derived by applying statistical 

tests as the multiple. Grubbs-Beck test. 

Finally, insights can be found in problems arising with the estimation of Kappa 

distribution. A reliable solution could be the reduction of the feasible space in its 

parameter domain, in order to give to this distribution a more physical 

interpretation. 

 

 

 

 



 189 

REFERENCES 
 

Adams, C. A. and McMahon, T. A.: ESTIMATION OF FLOOD DISCHARGE FOR 

UNGAUGED RURAL CATCHMENTS IN VICTORIA., in National Conference 

Publication - Institution of Engineers, Australia., 1985. 

 

Akaike, H.: A New Look at the Statistical Model Identification, IEEE Trans. 

Automat. Contr., doi:10.1109/TAC.1974.1100705, 1974. 

 

Aldrich, J.: R. A. Fisher and the making of maximum likelihood 1912 - 1922, Stat. 

Sci., doi:10.1214/ss/1030037906, 1997. 

 

Ames, W. F. and Brezinski, C.: Numerical recipes in Fortran 77, Volume 1., 1993. 

 

Arnell, N. W. and Gabriele, S.: The performance of the two‐component extreme 

value distribution in regional flood frequency analysis, Water Resour. Res., 

doi:10.1029/WR024i006p00879, 1988. 

 

Arnell, N., & Beran, M. (1988). Probability-weighted moments estimators for 

TCEV parameters. 

 

Asquith, W.H., 2018, lmomco---L-moments, censored L-moments, trimmed L-

moments, L-comoments, and many distributions. R package version 2.3.2, 

Texas Tech University, Lubbock, Texas. 

 

Bačová-Mitková, V. and Onderka, M.: Analysis of extreme hydrological Events on 

the Danube using the Peak Over Threshold method, J. Hydrol. 

Hydromechanics, doi:10.2478/v10098-010-0009-x, 2010. 

 



 190 

Balkema, A. A. and de Haan, L.: Residual Life Time at Great Age, Ann. Probab., 

doi:10.1214/aop/1176996548, 1974. 

 

Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, 

(Editors) (2019). Australian Rainfall and Runoff: A Guide to Flood Estimation, 

© Commonwealth of Australia (Geoscience Australia). 

 

Beran, M., Hosking, J. R. M. and Arnell, N.: Comment on “Two‐Component 

Extreme Value Distribution for Flood Frequency Analysis” by Fabio Rossi, 

Mauro Florentino, and Pasquale Versace, Water Resour. Res., 

doi:10.1029/WR022i002p00263, 1986. 

 

Blum, A. G., Archfield, S. A. and Vogel, R. M.: On the probability distribution of 

daily streamflow in the United States, Hydrol. Earth Syst. Sci., 

doi:10.5194/hess-21-3093-2017, 2017. 

 

Bobée, B. and Rasmussen, P. F.: Recent advances in flood frequency analysis, Rev. 

Geophys., doi:10.1029/95RG00287, 1995. 

 

Bobée, B.: The Log Pearson type 3 distribution and its application in hydrology, 

Water Resour. Res., doi:10.1029/WR011i005p00681, 1975. 

 

Bortkiewicz, L., von (1922). Variationsbreite und mittlerer Fehler, Sitzungsber. 

Berli. Math. Ges. 21, 3-11. 

 

Buishand, T. A.: Statistics of extremes in climatology, Stat. Neerl., 

doi:10.1111/j.1467-9574.1989.tb01244.x, 1989. 

 



 191 

Burnham, K. P. and Anderson, D. R.: Multimodel inference: Understanding AIC 

and BIC in model selection, Sociol. Methods Res., 

doi:10.1177/0049124104268644, 2004. 

 

Castellarin, A, Kohnová, S, Gaal, L, Fleig, A, Salinas, JL, Toumazis, A, Kjeldsen, TR 

& MacDonald, N (2012), Review of applied statistical methods for flood 

frequency analysis in Europe: WG2 of COST Action ES0901. (NERC) Centre 

for Ecology & Hydrology. 

 

Castellarin, A., Camorani, G. and Brath, A.: Predicting annual and long-term flow-

duration curves in ungauged basins, Adv. Water Resour., 

doi:10.1016/j.advwatres.2006.08.006, 2007. 

 

Castillo, E.: Asymptotic Distributions of Maxima and Minima (I.I.D. Case), in 

Extreme Value Theory in Engineering., 1988. 

 

Chauvenet, W.: A manual of spherical and practical astronomy., 1863. 

 

Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R. and 

Lamontagne, J. R.: A generalized Grubbs-Beck test statistic for detecting 

multiple potentially influential low outliers in flood series, Water Resour. 

Res., doi:10.1002/wrcr.20392, 2013. 

 

Coles, S. (2001). An introduction to statistical modeling of extreme values (Vol. 

208, p. 208). London: Springer. 

 

Connell, R. J. and Pearson, C. P.: Two-component extreme value distribution 

applied to Canterbury annual maximum flood peaks, J. Hydrol. New Zeal., 

2001. 



 192 

Conway, K.M. (1970), Flood frequency analysis of some NSW coastal rivers, Thesis 

(M. Eng. Sc.), University of New South Wales, Australia. 

 

Cunnane, C. (1989). Statistical distributions for flood frequency analysis. 

Operational hydrology report (WMO). 

 

Cunnane, C.: Factors affecting choice of distribution for flood series, Hydrol. Sci. 

J., doi:10.1080/02626668509490969, 1985. 

 

Cunnane, C.: Review of statistical models for flood frequency estimation., 1987. 

 

Duan, Q., Sorooshian, S. and Gupta, V. K.: Optimal use of the SCE-UA global 

optimization method for calibrating watershed models, J. Hydrol., 

doi:10.1016/0022-1694(94)90057-4, 1994. 

 

Dupuis, D. J. and Winchester, C.: More on the four-parameter kappa distribution, 

J. Stat. Comput. Simul., doi:10.1080/00949650108812137, 2001. 

 

Erskine, W. D. and Warner, R. F.: Geomorphic effects of alternating flood and 

drought-dominated regimes on NSW coastal rivers, Fluv. Geomorphol. 

Aust., 1988. 

 

Fisher, R. A. and Tippett, L. H. C.: Limiting forms of the frequency distribution of 

the largest or smallest member of a sample, Math. Proc. Cambridge Philos. 

Soc., doi:10.1017/S0305004100015681, 1928. 

 

Franks, S. W. and Kuczera, G.: Flood frequency analysis: Evidence and 

implications of secular climate variability, New South Wales, Water Resour. 

Res., doi:10.1029/2001wr000232, 2002. 

 



 193 

Fréchet, M. (1927). Sur la loi de probabilité de l'écart maximum, in Ann. Soc. 

Polon. Math., vol. 6, pp. 93-116. 

 

Gabriele, S. and Arnell, N.: A hierarchical approach to regional flood frequency 

analysis, Water Resour. Res., doi:10.1029/91WR00238, 1991. 

 

Gabriele, S., & Iiritano, G. (1994). Alcuni aspetti teorici ed applicativi nella 

regionalizzazione delle piogge con il modello TCEV. GNDCI–Linea, 1 (in 

Italian) 

 

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B.: Bayesian Data Analysis 

Second Edition.PDF, Wiley Interdiscip. Rev. Cogn. Sci., doi:10.1002/wcs.72, 

2004. 

 

Gilleland, E. and Katz, R. W.: ExtRemes 2.0: An extreme value analysis package in 

R, J. Stat. Softw., doi:10.18637/jss.v072.i08, 2016. 

 

Gioia, A., Iacobellis, V., Manfreda, S. and Fiorentino, M.: Runoff thresholds in 

derived flood frequency distributions, Hydrol. Earth Syst. Sci., 

doi:10.5194/hess-12-1295-2008, 2008. 

 

Gnedenko, B.: Sur La Distribution Limite Du Terme Maximum D’Une Serie 

Aleatoire, Ann. Math., doi:10.2307/1968974, 1943. 

 

Gradshteyn, L., Y., and Ryzhik, I. M. (2007). Table of Integrals, Series and 

Products., Math. Comput., doi:10.2307/2007757. 

 

Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R.: Probability 

weighted moments: Definition and relation to parameters of several 



 194 

distributions expressable in inverse form, Water Resour. Res., 

doi:10.1029/WR015i005p01049, 1979. 

 

Griffis, V. W. and Stedinger, J. R.: Log-Pearson type 3 distribution and Its 

application in flood frequency analysis. I: Distribution characteristics, J. 

Hydrol. Eng., doi:10.1061/(ASCE)1084-0699(2007)12:5(482), 2007. 

 

Griffis, V. W. and Stedinger, J. R.: Log-pearson type 3 distribution and its 

application in flood frequency analysis. II: Parameter estimation methods, 

J. Hydrol. Eng., doi:10.1061/(ASCE)1084-0699(2007)12:5(492), 2007. 

 

Gumbel, E. J. (1958). Statistics of extremes. Columbia University Press. 

 

Gumbel, E. J.: The Return Period of Flood Flows, Ann. Math. Stat., 

doi:10.1214/aoms/1177731747, 1941. 

 

Haddad K, Rahman A (2008) Investigation on at-site flood frequency analysis in 

south-east Australia. IEM J Inst Eng Malays 69(3):59–64 

 

Haddad, K. and Rahman, A.: Selection of the best fit flood frequency distribution 

and parameter estimation procedure: A case study for Tasmania in 

Australia, Stoch. Environ. Res. Risk Assess., doi:10.1007/s00477-010-0412-

1, 2011. 

 

Hastings, W. K.: Monte carlo sampling methods using Markov chains and their 

applications, Biometrika, doi:10.1093/biomet/57.1.97, 1970. 

 

Hosking, J. R. M. (2019). Regional Frequency Analysis using L-Moments. R 

package, version 3.2. URL: https://CRAN.R-project.org/package=lmomRFA. 

 

https://cran.r-project.org/package=lmomRFA


 195 

Hosking, J. R. M. and Wallis, J. R.: Parameter and quantile estimation for the 

generalized pareto distribution, Technometrics, 

doi:10.1080/00401706.1987.10488243, 1987. 

 

Hosking, J. R. M. and Wallis, J. R.: Some statistics useful in regional frequency 

analysis, Water Resour. Res., doi:10.1029/92WR01980, 1993. 

 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F.: Estimation of the generalized 

extreme-value distribution by the method of probability-weighted 

moments, Technometrics, doi:10.1080/00401706.1985.10488049, 1985. 

 

Hosking, J. R. M., Wallis, J. R., Hosking, J. R. M. and Wallis, J. R.: Regional 

frequency analysis, in Regional Frequency Analysis., 1997. 

 

Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using 

Linear Combinations of Order Statistics, J. R. Stat. Soc. Ser. B, 

doi:10.1111/j.2517-6161.1990.tb01775.x, 1990. 

 

Hosking, J. R. M.: Research Report Fortran routines for use with the method of, 

Mathematics, 2005. 

 

Hosking, J. R. M.: The theory of probability weighted moments, Res. Rep. 

RC12210, New York., 1986. 

 

Houghton, J. C.: Birth of a parent: The Wakeby Distribution for modeling flood 

flows, Water Resour. Res., doi:10.1029/WR014i006p01105, 1978. 

 

Institution of Engineers Australia (I.E. Aust.) (1987) Australian rainfall and runoff: 

a guide to flood estimation ARR (1987) In: Pilgrim HD (ed) The Institute of 

Engineers Australia, Canberra (Version 3) 



 196 

 

Interagency Advisory Committee on Water Data (IACWD), 1982. Guidelines for 

determining flood flow Frequency. Bulletin 17B of the Hydrology 

Subcommittee, OWDC, US Geological Survey, Reston, VA. 

 

Jenkinson, A. F.: The frequency distribution of the annual maximum (or 

minimum) values of meteorological elements, Q. J. R. Meteorol. Soc., 

doi:10.1002/qj.49708134804, 1955. 

 

Katz, R. W., Brush, G. S. and Parlange, M. B.: Statistics of extremes: Modeling 

ecological disturbances, Ecology, doi:10.1890/04-0606, 2005. 

 

Kendall, M. G.: Studies in the History of Probability and Statistics: XI. Daniel 

Bernoulli on Maximum Likelihood, Biometrika, doi:10.2307/2333125, 1961. 

 

Kendall, M., & Stuart, A. (1977). The advanced theory of statistics. Vol. 1: 

Distribution theory. London: Griffin, 1977, 4th ed. 

 

Kotz, S. and Nadarajah, S.: Extreme Value Distributions: Theory and Applications, 

J. Zhejiang Univ. Sci., doi:10.1142/p191, 2000. 

 

Koutsoyiannis, D. (2003, October). On the appropriateness of the Gumbel 

distribution for modelling extreme rainfall. In Proceedings of the ESF LESC 

Exploratory Workshop held at Bologna (pp. 24-25). 

 

Koutsoyiannis, D., Mamassis, N., Efstratiadis, A., Zarkadoulas, N., & Markonis, I. 

(2012). floods in Greece. Changes of flood risk in Europe, 238-256. 

 



 197 

Koutsoyiannis, D., Zarkadoulas, N., Angelakis, A. N. and Tchobanoglous, G.: Urban 

water management in ancient Greece: Legacies and lessons, J. Water 

Resour. Plan. Manag., doi:10.1061/(ASCE)0733-9496(2008)134:1(45), 2008. 

 

Kuczera, G.: Comprehensive at-site flood frequency analysis using Monte Carlo 

Bayesian inference, Water Resour. Res., doi:10.1029/1999WR900012, 

1999. 

 

Laio, F., Di Baldassarre, G. and Montanari, A.: Model selection techniques for the 

frequency analysis of hydrological extremes, Water Resour. Res., 

doi:10.1029/2007WR006666, 2009. 

 

Landwehr, J. M., Matalas, N. C. and Wallis, J. R.: Probability weighted moments 

compared with some traditional techniques in estimating Gumbel 

Parameters and quantiles, Water Resour. Res., 

doi:10.1029/WR015i005p01055, 1979. 

 

Lang, M., Ouarda, T. B. M. J. and Bobée, B.: Towards operational guidelines for 

over-threshold modeling, J. Hydrol., doi:10.1016/S0022-1694(99)00167-5, 

1999. 

 

Loeve, M. (1977). Notions of Measure Theory. In Probability Theory I (pp. 53-

147). Springer, New York, NY 

 

Madsen, H., Rasmussen, P. and Rosbjerg, D.: Comparison of annual maximum 

series and partial duration series for modelling exteme hydrological events: 

1. At sit modelling, Water Res. Res., 1997. 

 

Matalas, N. C. and Wallis, J. R.: Eureka! It fits a Pearson type: 3 distribution, Water 

Resour. Res., doi:10.1029/WR009i002p00281, 1973. 



 198 

 

Matalas, N. C., Slack, J. R. and Wallis, J. R.: Regional skew in search of a parent, 

Water Resour. Res., doi:10.1029/WR011i006p00815, 1975. 

 

Mays, L. W., Koutsoyiannis, D. and Angelakis, A. N.: A brief history of urban water 

supply in antiquity, Water Sci. Technol. Water Supply, 

doi:10.2166/ws.2007.001, 2007. 

 

McCabe, G. J. and Wolock, D. M.: Climate change and the detection of trends in 

annual runoff, Clim. Res., doi:10.3354/cr008129, 1997. 

 

McMahon, T. A. and Srikanthan, R.: Log Pearson III distribution - Is it applicable 

to flood frequency analysis of Australian streams?, J. Hydrol., 

doi:10.1016/0022-1694(81)90100-1, 1981. 

 

Merz, B. and Thieken, A. H.: Separating natural and epistemic uncertainty in flood 

frequency analysis, J. Hydrol., doi:10.1016/j.jhydrol.2004.11.015, 2005. 

 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.: 

Equation of state calculations by fast computing machines, J. Chem. Phys., 

doi:10.1063/1.1699114, 1953. 

 

Micevski, T., Franks, S. W. and Kuczera, G.: Multidecadal variability in coastal 

eastern Australian flood data, J. Hydrol., doi:10.1016/j.jhydrol.2005.11.017, 

2006. 

 

Mielke, P. W.: Another Family of Distributions for Describing and Analyzing 

Precipitation Data, J. Appl. Meteorol., doi:10.1175/1520-

0450(1973)012<0275:afodfd>2.0.co;2, 1973. 

 



 199 

Montanari, A., Shoemaker, C. A. and Van De Giesen, N.: Introduction to special 

section on uncertainty assessment in surface and subsurface hydrology: An 

overview of issues and challenges, Water Resour. Res., 

doi:10.1029/2009WR008471, 2009. 

 

Morgan, E. C., Lackner, M., Vogel, R. M. and Baise, L. G.: Probability distributions 

for offshore wind speeds, in Energy Conversion and Management., 2011. 

 

Murshed, M. S., Seo, Y. A. and Park, J. S.: LH-moment estimation of a four 

parameter kappa distribution with hydrologic applications, Stoch. Environ. 

Res. Risk Assess., doi:10.1007/s00477-013-0746-6, 2014. 

 

Nathan RJ and Weinmann PE (1991) Application of at-site and regional flood 

frequency analyses. In: Proceedings International Hydrology Water 

Resources Symposium, Perth, 2–4 October, 769:774 

 

National Research Council (2000), Risk Analysis and Uncertainty in Flood Damage 

Reduction Studies, Natl. Acad., Washington, D. C. 

 

Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions : A 

global survey on extreme daily rainfall, Water Resour. Res., 

doi:10.1029/2012WR012557, 2013. 

 

Pappenberger, F. and Beven, K. J.: Ignorance is bliss: Or seven reasons not to use 

uncertainty analysis, Water Resour. Res., doi:10.1029/2005WR004820, 

2006. 

 

Parida, B. P.: Modelling of Indian summer monsoon rainfall using a four-

parameter Kappa distribution, Int. J. Climatol., doi:10.1002/(SICI)1097-

0088(199910)19:12<1389::AID-JOC435>3.0.CO;2-T, 1999. 



 200 

Park, J. S. and Park, B. J.: Maximum likelihood estimation of the four-parameter 

Kappa distribution using the penalty method, Comput. Geosci., 

doi:10.1016/S0098-3004(01)00069-3, 2002. 

 

Park, J. S. and Yoon Kim, T.: Fisher information matrix for a four-parameter kappa 

distribution, Stat. Probab. Lett., doi:10.1016/j.spl.2007.03.002, 2007. 

 

Parkes, B. and Demeritt, D.: Defining the hundred year flood: A Bayesian 

approach for using historic data to reduce uncertainty in flood frequency 

estimates, J. Hydrol., doi:10.1016/j.jhydrol.2016.07.025, 2016. 

 

Paul, H., Rahman, A. and Haque, M.: Application of arr flike for at-site flood 

frequency analysis: A case study in New South Wales, Australia, in 37th 

Hydrology and Water Resources Symposium 2016: Water, Infrastructure 

and the Environment, HWRS 2016., 2016. 

 

Peirce, B.: Criterion for the rejection of doubtful observations, Astron. J., 

doi:10.1086/100273, 1852. 

 

Penta, A., Rossi, F., Silvagni, G., Veltri, M., & Versace, P. (1980). Un modello 

stocastico per l'analisi delle massime piogge giornaliere in presenza di 

grandi nubifragi (A stochastic model for analysis of daily rainfall maxima in 

presence of disastrous storms). Atti del XVII Convegno di Idraulica e 

Costruzioni Idrauliche (in italian) 

 

Pickands, J. I.: Statistical Inference Using Extreme Order Statistics, Ann. Stat., 

doi:10.1214/aos/1176343003, 1975. 

 



 201 

Rahman, A. S., Haddad, K., & Rahman, A. (2014). Impacts of outliers in flood 

frequency analysis: A case study for Eastern Australia. J. Hydrol. Environ. 

Res, 2(1), 17-13. 

 

Rahman, A. S., Rahman, A., Zaman, M. A., Haddad, K., Ahsan, A. and Imteaz, M.: 

A study on selection of probability distributions for at-site flood frequency 

analysis in Australia, Nat. Hazards, doi:10.1007/s11069-013-0775-y, 2013. 

 

Ramachandra Rao, A., Hamed, K. H., Ramachandra Rao, A. and Hamed, K. H.: 

Parameter and Quantile Estimation, in Flood Frequency Analysis., 2000. 

 

Rasmussen, P. F., & Rosbjerg, D. (1991). Prediction uncertainty in seasonal partial 

duration series. Water resources research, 27(11), 2875-2883. 

 

Rasmussen, P. F.: Generalized probability weighted moments: Application to the 

generalized Pareto distribution, Water Resour. Res., 

doi:10.1029/2001WR900014, 2001. 

 

Reis, D. S. and Stedinger, J. R.: Bayesian MCMC flood frequency analysis with 

historical information, in Journal of Hydrology., 2005. 

 

Rider, P. R. (1933). Criteria for rejection of observations. Washington University 

Studies (New Series), Science and Technology, 8  

 

Rossi, F., Fiorentino, M. and Versace, P.: Two‐Component Extreme Value 

Distribution for Flood Frequency Analysis, Water Resour. Res., 

doi:10.1029/WR020i007p00847, 1984. 

 

Rossi, F., Versace, P. (1981): Criteri e metodi per l'analisi statistica delle piene. 

Pubbl.del P.F.Conservazione del Suolo "Analisi delle piene" (in italian) 



 202 

 

Schwarz, G.: Estimating the Dimension of a Model, Ann. Stat., 

doi:10.1214/aos/1176344136, 1978. 

 

Shane, R. M., & Lynn, W. R. (1964). Mathematical model for flood risk 

evaluation. Journal of the Hydraulics Division, 90(6), 1-20. 

 

Singh, K.P. and Sinclair, R.A.: Two- distribution method for flood- frequency 

analysis, ASCE J Hydraul Div, 1972. 

 

Singh, V. P. and Deng, Z. Q.: Entropy-based parameter estimation for Kappa 

distribution, J. Hydrol. Eng., doi:10.1061/(ASCE)1084-0699(2003)8:2(81), 

2003. 

 

Singh, V. P. and Strupczewski, W. G.: On the status of flood frequency analysis, 

Hydrol. Process., doi:10.1002/hyp.5083, 2002. 

 

Snyder, D. L., & Miller, M. I. (2012). Random point processes in time and space. 

Springer Science & Business Media 

 

Stedinger, J. R., Vogel, R. M. and Foufoula-Georgiou, E.: Frequency Analysis of 

Extreme Events, Handb. Hydrol., 1993. 

 

Sugiura, N.: Further Analysis of the Data by Akaike’ S Information Criterion and 

the Finite Corrections, Commun. Stat. - Theory Methods, 

doi:10.1080/03610927808827599, 1978. 

 

Tingsanchali, T.: Urban flood disaster management, in Procedia Engineering., 

2012. 

 



 203 

Todhunter, I.: A history of the mathematical theory of probability from the time 

of Pascal to that of Laplace / by I. Todhunter., 1865. 

 

Todorovic, P. and Zelenhasic, E.: A Stochastic Model for Flood Analysis, Water 

Resour. Res., doi:10.1029/WR006i006p01641, 1970. 

 

Todorovic, P., & Yevjevic, V. (1969). Stochastic process of 

precipitation. Hydrology papers (Colorado State University); no. 35. 

 

Todorovic, P.: Stochastic models of floods, Water Resour. Res., 

doi:10.1029/WR014i002p00345, 1978. 

 

Totaro, V., Gioia, A. and Iacobellis, V.: Power of parametric and non-parametric 

tests for trend detection in annual maximum series, Hydrol. Earth Syst. Sci. 

Discuss., doi:10.5194/hess-2019-363, 2019. 

 

Van Gelder, P. H. A. J. M.: Statistical estimation methods in hydrological 

engineering, in Analysis and Stochastic Modeling of Extreme Runoff in 

Eurasian Rivers Under Conditions of Climate Change, edited by W. M. L. L.M. 

Korytny, pp. 11–57, Irkutsk., 2004. 

 

Velickov, S.: Nonlinear Dynamics and Chaos with Applications to Hydrodynamics 

and Hydrological Modelling., 2014. 

 

Vicens, G. J., Rodriguez‐Iturbe, I. and Schaake, J. C.: A Bayesian framework for the 

use of regional information in hydrology, Water Resour. Res., 

doi:10.1029/WR011i003p00405, 1975. 

 



 204 

Vogel, R. M., McMahon, T. A. & Chiew, F. H. S. (1993a): Floodflow frequency 

model selection in Australia, J. Hydrol., doi:10.1016/0022-1694(93)90288-

K. 

 

Vogel, R. M., Thomas Jr, W. O., & McMahon, T. A. (1993b). Flood-flow frequency 

model selection in southwestern United States. Journal of Water Resources 

Planning and Management, 119(3), 353-366. 

 

von Mises, R.: La distribution de la plus grande de n valeurs, Am. Math. Soc., 1936. 

 

Wallis, J. R., Matalas, N. C. and Slack, J. R.: Just a moment!, Water Resour. Res., 

doi:10.1029/WR010i002p00211, 1974. 

 

Winchester, C. (2000). On estimation of the four-parameter kappa distribution. 

Dalhousie University. 

 

Wood, E. F. and Rodríguez‐Iturbe, I.: A Bayesian approach to analyzing 

uncertainty among flood frequency models, Water Resour. Res., 

doi:10.1029/WR011i006p00839, 1975. 

 

Wood, E. F. and Rodríguez‐Iturbe, I.: Bayesian inference and decision making for 

extreme hydrologic events, Water Resour. Res., 

doi:10.1029/WR011i004p00533, 1975. 

 

Zelenhasic, E.: Theoretical probability distributions for flood peaks, Colo State 

Univ (Fort Collins), Hydrol Pap 42, 1970. 

 

 

 

 



 205 

APPENDIX A: L-Moments for Kappa distribution 
 

Case 1: 휀 ≠ 0 

 

Case 1.a: ℎ > 0, 휀 > −1 

 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
1 ∙ 𝛽0 = 휁 +

𝜎

휀
[1 −

Γ(1 + 휀)Γ (
1
ℎ
)

ℎ(1+𝜀)Γ (1 + 휀 +
1
ℎ
)
]

2 ∙ 𝛽1 = 휁 +
𝜎

휀
[1 −

2Γ(1 + 휀)Γ (
2
ℎ
)

ℎ(1+𝜀)Γ (1 + 휀 +
2
ℎ
)
]

3 ∙ 𝛽2 = 휁 +
𝜎

휀
[1 −

3Γ(1 + 휀)Γ (
3
ℎ
)

ℎ(1+𝜀)Γ (1 + 휀 +
3
ℎ
)
]

4 ∙ 𝛽3 = 휁 +
𝜎

휀
[1 −

4Γ(1 + 휀)Γ (
4
ℎ
)

ℎ(1+𝜀)Γ (1 + 휀 +
4
ℎ
)
]

 

 

 

System (4.10), because of (3.22-3.25), become: 
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
휁 +

𝜎

휀
[1 −

Γ(1 + 휀)Γ (
1
ℎ
)

ℎ(1+𝜀)Γ(1 + 휀 +
1
ℎ
)
] = ℓ1                                                                                  

𝜎

휀

Γ(1 + 휀)

ℎ(1+𝜀)
[

Γ (
1
ℎ
)

Γ (1 + 휀 +
1
ℎ
)
− 2

Γ (
2
ℎ
)

Γ (1 + 휀 +
2
ℎ
)
] = ℓ2                                                         

[−6
Γ (
3
ℎ
)

Γ (1 + 휀 +
3
ℎ
)
+ 6

Γ (
2
ℎ
)

Γ (1 + 휀 +
2
ℎ
)
−

Γ (
1
ℎ
)

Γ (1 + 휀 +
1
ℎ
)
]

[
Γ (
1
ℎ
)

Γ (1 + 휀 +
1
ℎ
)
−

2Γ (
2
ℎ
)

Γ (1 + 휀 +
2
ℎ
)
]

= 𝑡3                                        

[−20
Γ (
4
ℎ
)

Γ (1 + 휀 +
4
ℎ
)
+ 30

Γ (
3
ℎ
)

Γ (1 + 휀 +
3
ℎ
)
− 12

Γ (
2
ℎ
)

Γ (1 + 휀 +
2
ℎ
)
+

Γ(
1
ℎ
)

Γ (1 + 휀 +
1
ℎ
)
]

[
Γ (
1
ℎ
)

Γ (1 + 휀 +
1
ℎ
)
−

2Γ (
2
ℎ
)

Γ (1 + 휀 +
2
ℎ
)
]

= 𝑡4

 

 

Case 1.b: ℎ = 0, 휀 > −1 

 

{
 
 
 
 
 

 
 
 
 
 1 ∙ 𝛽0 = 휁 +

𝜎

휀
[1 − Γ(1 + 휀)]

     

2 ∙ 𝛽1 = 휁 +
𝜎

휀
[1 − 2−𝜀Γ(1 + 휀)]

3 ∙ 𝛽2 = 휁 +
𝜎

휀
[1 − 3−𝜀Γ(1 + 휀)]

4 ∙ 𝛽3 = 휁 +
𝜎

휀
[1 − 4−𝜀Γ(1 + 휀)]

 

 

System (4.10), because of (3.22-3.25), become: 
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{
 
 
 
 
 

 
 
 
 
 휁 +

𝜎

휀
[1 − Γ(1 + 휀)] = ℓ1            

𝜎

휀
Γ(1 + 휀)Γ(1 − 2−𝜀) = ℓ2               

−2 ∙ 3−𝜀 + 3 ∙ 2−𝜀 − 1

1 − 2−𝜀
= 𝑡3              

−5 ∙ 4−𝜀 + 10 ∙ 3−𝜀 − 2−𝜀 + 1

1 − 2−𝜀
= 𝑡4

 

 

Case 1.c: ℎ < 0,−1 < 휀 > −1 휀⁄  

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

1 ∙ 𝛽0 = 휁 +
𝜎

휀
[1 −

Γ(1 + 휀)Γ (−휀 −
1
ℎ
)

(−ℎ)(1+𝜀)Γ (1 −
1
ℎ
)
]

2 ∙ 𝛽1 = 휁 +
𝜎

휀
[1 −

2 ∙ Γ(1 + 휀)Γ (−휀 −
2
ℎ
)

(−ℎ)(1+𝜀)Γ (1 + 휀 +
2
ℎ
)
]

3 ∙ 𝛽2 = 휁 +
𝜎

휀
[1 −

3Γ(1 + 휀)Γ (−휀 −
3
ℎ
)

(−ℎ)(1+𝜀)Γ (1 −
3
ℎ
)
]

4 ∙ 𝛽3 = 휁 +
𝜎

휀
[1 −

4Γ(1 + 휀)Γ (−휀 −
4
ℎ
)

(−ℎ)(1+𝜀)Γ (1 −
4
ℎ
)
]

 

 

System (4.10), because of (3.22-3.25), become: 
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𝜎

휀
[1 −
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1
ℎ
)
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1
ℎ
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3
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ℎ
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4
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Case 2: 휀 = 0 

 

Case 2.a: ℎ > 0 
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 1 ∙ 𝛽0 = 휁 +

𝜎

휀
[𝛾 + ln(ℎ) + 𝜓 (1 +

1

ℎ
)]

2 ∙ 𝛽1 = 휁 +
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[𝛾 + ln(ℎ) + 𝜓 (1 +
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System (4.10), because of (3.22-3.25), become: 
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 휁 +

𝜎

휀
[𝛾 + ln(ℎ) + 𝜓 (1 +

1

ℎ
)] = ℓ1
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Case 2.b: ℎ = 0 
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1 ∙ 𝛽
0
= 휁 + 𝛼𝛾

2 ∙ 𝛽
1
= 휁 + 𝛼[𝛾 + ln(2)]

3 ∙ 𝛽
1
= 휁 + 𝛼[𝛾 + ln(3)]

4 ∙ 𝛽
1
= 휁 + 𝛼[𝛾 + ln(4)]

 

 

System (4.10), because of (3.22-3.25), become: 
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{
 
 
 
 
 

 
 
 
 
 
휁 + 𝛼𝛾 = ℓ1

𝛼 ln(3) = ℓ2

ln (
32

23
)

ln 2
= 𝑡3

ln (
216

310
)

ln 2
= 𝑡4

 

 

Case 2.c: ℎ < 0 

 

{
 
 
 
 
 

 
 
 
 
 1 ∙ 𝛽0 = 휁 +

𝜎

휀
[𝛾 + ln(−ℎ) + 𝜓 (−

1

ℎ
)]

2 ∙ 𝛽1 = 휁 +
𝜎

휀
[𝛾 + ln(−ℎ) + 𝜓 (−

2

ℎ
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3 ∙ 𝛽1 = 휁 +
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ℎ
)]

4 ∙ 𝛽1 = 휁 +
𝜎

휀
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4

ℎ
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System (4.10), because of (3.22-3.25), become: 
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ℎ
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APPENDIX B: Dataset 
 

B.1 – New South Wales 
 

 
 

figure B.1 – Available sites for New South Wales 
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figure B. 2 – L-Moments Ratio Diagram for available catchments of NSW 
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Station ID Station Name River Name Gauge Lat Gauge Lon Period of Record 

201005 Boat Harbour No.20.55 cm Rous -28.3217 153.3467 1958-1985 

202001 Durrumbul (Sherrys Crossing) Brunswick -28.5333 153.4567 1972-2011 

203005 Wiangaree Richmond -28.5067 152.9667 1982-2011 

203010 Rock Valley Leycester -28.7383 153.1633 1986-2011 

203014 Eltham Wilsons -28.7583 153.3950 1987-2011 

204008 Ebor Guy Fawkes -30.4050 152.3450 1983-2011 

204017 Dorrigo No.2 & No.3 Bielsdown Ck -30.3067 152.7133 1972-2011 

204031 Shannon Vale Mann -29.7217 151.8450 1992-2011 

204033 Billyrimba Timbarra -29.1950 152.2500 1979-2011 

204034 Newton Boyd Henry -29.7633 152.2117 1972-2011 

204043 Bonalbo Peacock Ck -28.7367 152.6733 1961-2011 

204067 Fine Flower Gordon Brook -29.4033 152.6533 1983-2011 

205002 Thora Bellinger -30.4267 152.7800 1983-2011 

205006 Bowraville Nambucca -30.6417 152.8550 1972-2006 

205007 Woolgoolga Woolgoolga Ck -30.1183 153.1633 1961-1982 

205014 Gleniffer Br Never Never -30.3883 152.8800 1983-2006 

206001 Jeogla Styx -30.5900 152.1617 1979-2011 

206014 Coninside Wollomombi -30.4783 152.0267 1955-2011 

206017 Causeway (Hatchery) Serpentine Ck -30.4783 152.3183 1962-1985 

206018 Apsley Falls Apsley -31.0517 151.7683 1961-2011 

206034 Abermala Mihi Ck -30.7000 151.7067 1985-2010 

207013 D/S Bunnoo R Junction Ellenborough -31.4817 152.4483 1976-2011 

207014 Avenel Wilson -31.3333 152.7400 1985-2011 
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207015 Mount Seaview Hastings -31.3717 152.2450 1985-2011 

208006 Forbesdale (Causeway) Barrington -32.0383 151.8700 1973-2011 

208007 Nowendoc Nowendoc -31.5183 151.7150 1974-2011 

208009 Barry Barnard -31.5817 151.3133 1986-2011 

208015 Landsdowne Landsdowne -31.7883 152.5133 1986-2011 

208024 D/S Back R Jctn Barnard -31.5600 151.3433 1983-2011 

208026 Jacky Barkers Myall -31.6417 151.7350 1985-2011 

208027 Measuring Weir Barnard -31.6583 151.5033 1988-2011 

210018 Moonam Dam Site Hunter -31.9183 151.2150 1974-2011 

210069 Pokolbin Site 4 Muggyrang Ck -32.8083 151.2717 1965-1992 

210084 The Rocks No.2 Glennies Ck -32.3650 151.2383 1973-2010 

210095 Vacy Bucks Ck -32.5233 151.5600 1976-1997 

211008 Avondale Jigadee Ck -33.0667 151.4667 1975-2011 

211010 U/S Wyong R (Durren La) Jilliby Ck -33.2483 151.3900 1985-2011 

211014 Yarramalong Wyong -33.2167 151.2667 1977-2011 

212011 Lithgow Coxs -33.5367 150.0933 1962-2011 

212013 Narrow Neck Megalong Ck -33.7300 150.2433 1988-2010 

212042 Mount Walker Farmers Ck -33.4983 150.0967 1985-2011 

212045 Island Hill Coxs -33.7583 150.1967 1983-2011 

212320 Mulgoa Rd South Ck -33.8783 150.7683 1972-2011 

213004 Parramatta Hospital Parramatta -33.8133 151.0000 1984-2003 

213200 Wedderburn O'Hares Ck -34.1633 150.8383 1979-2011 

214003 Albion Park Macquarie Rivule -34.5767 150.7050 1979-2011 

215008 Kadoona Shoalhaven -35.7900 149.6400 1972-2010 

215014 Bungonia Bungonia Ck -34.8200 149.9883 1984-2011 
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216002 Brooman Clyde -35.4700 150.2383 1961-2011 

216004 Falls Ck Currambene Ck -34.9700 150.5983 1971-2010 

216008 Kioloa Butlers Ck -35.5417 150.3667 1986-2010 

216009 Buckenbowra No.3 Buckenbowra -35.7150 150.0333 1986-2011 

218003 Yowrie Yowrie -36.3067 149.7283 1959-1984 

219001 Brown Mountain Rutherford Ck -36.5967 149.4417 1949-2010 

219004 Tantawangalo School Tantawangalo Ck -36.7617 149.6233 1944-1973 

219006 Tantawangalo Mountain (Dam) Tantawangalo Ck -36.7817 149.5417 1952-2010 

219010 Brown Mountain (U/S Divers Bonar Ck -36.5500 149.4667 1955-1974 

219013 North Brogo Brogo -36.5367 149.8267 1962-1982 

219015 near Bermagui Nutleys Ck -36.4317 150.0050 1966-1988 

220002 Rocky Hall (Whitbys) Stockyard Ck -36.9450 149.4967 1961-1984 

221010 Imlay Rd Br Imlay Ck -37.2317 149.6983 1982-2011 

401016 The Square Welumba Ck -36.0350 148.1183 1984-2011 

401017 Yarramundi Mannus Ck -35.7717 147.9300 1984-2011 

410107 Mountain Ck Mountain Ck -35.0283 148.8300 1980-2011 

410141 Michelago Micaligo Ck -35.7050 149.1483 1983-2011 

410149 Nottingham Rd Br Nottingham Ck -35.2150 148.6733 1983-2011 

410152 Edwardstown Stony Ck -35.1383 148.1100 1985-2009 

410156 Book Book Kyeamba Ck -35.3533 147.5517 1986-2011 

410160 White Hill Williams Ck -34.9550 149.1883 1990-2010 

412076 Cudal Bourimbla Ck -33.3300 148.7133 1980-1999 

412090 Cudal No.2 Boree Ck -33.2867 148.7383 1970-1989 

412096 Kennys Ck Rd Pudmans Ck -34.4467 148.7917 1976-2002 

412110 U/S Giddigang Ck Bolong -34.3017 149.6250 1981-2001 
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419035 Timbumburi Goonoo Goonoo Ck -31.2733 150.9150 1982-2011 

419044 Damsite Maules Ck -30.5333 150.3000 1969-1992 

419047 Woodsreef Ironbark Ck -30.4100 150.7267 1989-2011 

419076 Old Warrah Warrah Ck -31.6600 150.6433 1983-2011 

420010 Bearbung Wallumburrawang Ck -31.6667 148.8667 1980-2001 

420012 Neilrex Butheroo Ck -31.7350 149.3483 1980-2001 

421034 Dam Site Slippery Ck -33.6733 149.9117 1980-2000 

421048 Obley No.2 Little -32.7083 148.5517 1987-2011 

421055 Rawsonville Coolbaggie Ck -32.1450 148.4550 1981-2011 

421066 Hill end Green Valley Ck -32.9500 149.4567 1977-1998 

421068 Saxa Crossing Spicers Ck -32.2000 149.0167 1978-2002 

421076 Peak Hill No.2 Bogan -32.7233 148.1300 1981-2011 

421101 U/S Ben Chifley Dam Campbells -33.6133 149.6967 1979-2002 

421104 Stromlo Brisbane Valley -33.6850 149.7000 1980-2000 

421106 Wiagdon Cheshire Ck -33.2467 149.6550 1981-2001 
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B.2 – Queensland 
 

 
 

 
figure B.3 – Available sites for Queensland 
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figure B.4 – L-Moments Ratio Diagram for available catchments of Quuensland 
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Station ID Station Name River Name Gauge Lat Gauge Lon Period of Record 

102101 Fall Ck Pascoe -12.88 142.98 1968-2011 

104001 Telegraph Rd Stewart -14.17 143.39 1970-2011 

105105 Developmental Rd East Normanby -15.77 145.01 1970-2011 

105106 Mount Sellheim West Normanby -15.76 144.98 1971-2005 

107001 Flaggy Endeavour -15.42 145.07 1959-2011 

107002 Mount Simon Annan -15.65 145.19 1970-1989 

108002 Bairds Daintree -16.18 145.28 1969-2011 

108003 China Camp Bloomfield -15.99 145.29 1971-2011 

108008 U/S Little Falls Ck Whyanbeel Ck -16.39 145.34 1991-2012 

110003 Picnic Crossing Barron -17.26 145.54 1926-2011 

110004 Malones Emerald Ck -16.99 145.49 1942-1962 

110018 Railway Br Mazlin Ck -17.23 145.55 1992-2012 

110101 Freshwater Freshwater Ck -16.94 145.70 1922-1958 

111001 Gordonvale Mulgrave -17.10 145.79 1917-1972 

111003 Aloomba Behana Ck -17.13 145.84 1943-1970 

111005 The Fisheries Mulgrave -17.19 145.72 1967-2011 

111007 Peets Br Mulgrave -17.14 145.76 1973-2011 

111104 Powerline Russell -17.42 145.92 1967-1987 

111105 The Boulders Babinda Ck -17.35 145.87 1967-2011 

112001 Goondi North Johnstone -17.53 145.97 1929-1967 

112002 Nerada Fisher Ck -17.57 145.91 1929-2011 

112003 Glen Allyn North Johnstone -17.38 145.65 1959-2011 
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Station ID Station Name River Name Gauge Lat Gauge Lon Period of Record 

112004 Tung Oil North Johnstone -17.55 145.93 1967-2011 

112101 U/S Central Mill South Johnstone -17.61 145.98 1917-2011 

112102 Upper Japoonvale Liverpool Ck -17.72 145.90 1971-2012 

113004 Powerline Cochable Ck -17.75 145.63 1967-2011 

113007 Ebony Rd Koolmoon Ck -17.74 145.56 1986-2012 

114001 Upper Murray Murray -18.11 145.80 1971-2011 

116005 Peacocks Siding Stone -18.69 145.98 1936-1971 

116008 Abergowrie Gowrie Ck -18.45 145.85 1954-2004 

116010 Blencoe Falls Blencoe Ck -18.20 145.54 1961-2011 

116011 Ravenshoe Millstream -17.60 145.48 1963-2011 

116012 8.7KM Cameron Ck -18.07 145.34 1962-2011 

116013 Archer Ck Millstream -17.65 145.34 1962-2011 

116014 Silver Valley Wild -17.63 145.30 1962-2011 

116015 Wooroora Blunder Ck -17.74 145.44 1967-2011 

116017 Running Ck Stone -18.77 145.95 1971-2011 

117002 Bruce HWY Black -19.24 146.63 1974-2011 

117003 Bluewater Bluewater Ck -19.18 146.55 1974-2011 

118003 Hervey Range Rd Bohle -19.32 146.70 1986-2012 

118004 Middle Bohle R Junctio Little Bohle -19.33 146.68 1986-2005 

118101 Gleesons Weir Ross -19.32 146.74 1916-1960 

118106 Allendale Alligator Ck -19.39 146.96 1975-2011 

119004 Bomb Range Bullock Ck -19.71 146.92 1972-1991 

119006 Damsite Major Ck -19.67 147.02 1979-2011 

120014 Oak Meadows Broughton -20.18 146.32 1971-1998 
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Station ID Station Name River Name Gauge Lat Gauge Lon Period of Record 

120102 Keelbottom Keelbottom Ck -19.37 146.36 1968-2011 

120120 Mt. Bradley Running -19.13 145.91 1976-2011 

120204 Crediton Recorder Broken -21.17 148.51 1957-1987 

120206 Mt Jimmy Pelican Ck -20.60 147.69 1961-1987 

120216 Old Racecourse Broken -21.19 148.45 1970-2011 

120307 Pentland Cape -20.48 145.47 1970-2011 

121001 Ida Ck Don -20.29 148.12 1958-2011 

121002 Guthalungra Elliot -19.94 147.84 1974-2011 

122004 Lower Gregory Gregory -20.30 148.55 1973-2011 

124001 Caping Siding O'Connell -20.63 148.57 1970-2011 

124002 Calen StHelens Ck -20.91 148.76 1974-2011 

124003 Jochheims Andromache -20.58 148.47 1977-2011 

125002 Sarich's Pioneer -21.27 148.82 1961-2011 

125004 Gargett Cattle Ck -21.18 148.74 1968-2011 

125005 Whitefords Blacks Ck -21.33 148.83 1974-2011 

125006 Dam Site Finch Hatton Ck -21.11 148.63 1977-2011 

126003 Carmila Carmila Ck -21.92 149.40 1974-2011 

129001 Byfield Waterpark Ck -22.84 150.67 1953-2011 

130004 Old Stn Raglan Ck -23.82 150.82 1964-2011 

130108 Curragh Blackwater Ck -23.50 148.88 1973-2005 

130207 Clermont Sandy Ck -22.80 147.58 1966-2011 

130208 Ellendale Theresa Ck -22.98 147.58 1965-2003 

130215 Lilyvale Lagoon Crinum Ck -23.21 148.34 1977-2011 

130319 Craiglands Bell Ck -24.15 150.52 1961-2011 
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130321 Mt. Kroombit Kroombit Ck -24.41 150.72 1964-2004 

130335 Wura Dee -23.77 150.36 1972-2011 

130336 Folding Hills Grevillea Ck -24.58 150.62 1973-2011 

130348 Red Hill Prospect Ck -24.45 150.42 1976-2011 

130349 Kingsborough Don -23.97 150.39 1977-2011 

130413 Braeside Denison Ck -21.77 148.79 1972-2011 

130503 Wyseby Stn Carnarvon Ck -24.97 148.53 1967-1987 

130507 Planet Downs Planet Ck -24.54 148.91 1973-1992 

133003 Marlua Diglum Ck -24.19 151.16 1969-2004 

135002 Springfield Kolan -24.75 151.59 1966-2011 

135004 Dam Site Gin Gin Ck -24.97 151.89 1966-2011 

136006 Dam Site Reid Ck -25.27 151.52 1966-2011 

136102 Meldale Three Moon Ck -24.69 150.96 1949-1980 

136108 Upper Monal Monal Ck -24.61 151.11 1963-2011 

136110 The Gorge Baywulla Ck -25.09 151.38 1965-1986 

136111 Dakiel Splinter Ck -24.75 151.26 1966-2011 

136112 Yarrol Burnett -24.99 151.35 1966-2011 

136202 Litzows Barambah Ck -26.30 152.04 1921-2011 

136203 Brooklands Barker Ck -26.74 151.82 1941-2011 

136301 Weens Br Stuart -26.50 151.77 1936-2011 

137001 Elliott Elliott -24.99 152.37 1949-2011 

137003 Dr Mays Crossing Elliott -24.97 152.42 1975-2011 

137101 Burrum HWY Gregory -25.09 152.24 1967-2011 

137102 Eureka Sandy Ck -25.34 152.14 1967-1987 
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137201 Bruce HWY Isis -25.27 152.37 1967-2011 

137202 Childers Oaky Ck -25.29 152.29 1967-1987 

138002 Brooyar Wide Bay Ck -26.01 152.41 1910-2011 

138003 Glastonbury Glastonbury Ck -26.22 152.52 1979-2011 

138009 Tagigan Rd Tinana Ck -26.08 152.78 1975-2011 

138010 Kilkivan Wide Bay Ck -26.08 152.22 1910-2011 

138101 Kenilworth Mary -26.60 152.73 1921-1973 

138102 Zachariah Amamoor Ck -26.37 152.62 1921-2011 

138103 Knockdomny Kandanga Ck -26.40 152.64 1921-1954 

138104 Kidaman Obi Obi Ck -26.63 152.77 1921-1963 

138106 Baroon Pocket Obi Obi Ck -26.71 152.86 1941-1986 

138107 Cooran Six Mile Ck -26.33 152.81 1948-2011 

138110 Bellbird Ck Mary -26.63 152.70 1960-2011 

138111 Moy Pocket Mary -26.53 152.74 1964-2011 

138113 Hygait Kandanga Ck -26.39 152.64 1972-2011 

138120 Gardners Falls Obi Obi Ck -26.76 152.87 1987-2012 

138903 Bauple East Tinana Ck -25.82 152.72 1982-2012 

141001 Kiamba South Maroochy -26.59 152.90 1938-2011 

141003 Warana Br Petrie Ck -26.62 152.96 1959-2011 

141004 Yandina South Maroochy -26.56 152.94 1959-2011 

141006 Mooloolah Mooloolah -26.76 152.98 1972-2011 

141008 Kiels Mountain Eudlo Ck -26.66 153.02 1983-2012 

141009 Eumundi North Maroochy -26.50 152.96 1983-2012 

142001 Upper Caboolture Caboolture -27.10 152.89 1966-2011 
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142201 Cashs Crossing South Pine -27.34 152.96 1918-1963 

142202 Drapers Crossing South Pine -27.35 152.92 1966-2011 

143010 Boat Mountain Emu Ck -26.98 152.29 1967-2011 

143011 Raeburn Emu Ck -27.07 152.01 1966-1985 

143015 Damsite Cooyar Ck -26.74 152.14 1969-2011 

143033 New Beith Oxley Ck -27.73 152.95 1989-2012 

143101 Mutdapily Warrill Ck -27.75 152.69 1915-1953 

143102 Kalbar No.2 Warrill Ck -27.92 152.60 1913-1970 

143103 Moogerah Reynolds Ck -28.04 152.55 1918-1953 

143107 Walloon Bremer -27.60 152.69 1962-2011 

143108 Amberley Warrill Ck -27.67 152.70 1962-2011 

143110 Adams Br Bremer -27.83 152.51 1972-2011 

143113 Loamside Purga Ck -27.68 152.73 1974-2011 

143203 Helidon Number 3 Lockyer Ck -27.54 152.11 1927-2011 

143208 Dam Site Fifteen Mile Ck -27.46 152.10 1957-1985 

143209 Mulgowie2 Laidley Ck -27.73 152.36 1958-2011 

143212 Tenthill Tenthill Ck -27.56 152.39 1984-2012 

143219 Spring Bluff Murphys Ck -27.47 151.99 1986-2012 

143229 Warrego HWY Laidley Ck -27.56 152.39 1991-2012 

143303 Peachester Stanley -26.84 152.84 1928-2011 

143306 U/S Byron Ck Junct Reedy Ck -27.14 152.64 1976-2005 

143307 Causeway Byron Ck -27.13 152.65 1976-2009 

143921 Rosentretters Br Cressbrook Ck -27.14 152.33 1987-2012 

145002 Lamington No.1 Christmas Ck -28.24 152.99 1910-1954 
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145003 Forest Home Logan -28.20 152.77 1918-2011 

145005 Avonmore Running Ck -28.30 152.91 1922-1952 

145007 Hillview Christmas Ck -28.22 153.00 1955-1974 

145010 5.8KM Deickmans Br Running Ckreek -28.25 152.89 1966-2011 

145011 Croftby Teviot Brook -28.15 152.57 1967-2011 

145012 The Overflow Teviot Brook -27.93 152.86 1967-2009 

145013 Rudd's Lane Christmas Ck -28.17 152.98 1968-1987 

145018 Up Stream Maroon Dam Burnett Ck -28.22 152.61 1971-2011 

145020 Rathdowney Logan -28.22 152.87 1974-2011 

145101 Lumeah Number 2 Albert -28.06 153.04 1911-2011 

145102 Bromfleet Albert -27.91 153.11 1919-2011 

145103 Good Dam Site Cainbable Ck -28.09 153.08 1963-2011 

145104 32.2KM Canungra Ck -28.06 153.12 1966-1987 

145107 Main Rd Br Canungra Ck -28.00 153.16 1974-2011 

146002 Glenhurst Nerang -28.00 153.31 1920-2011 

146003 Camberra Number 2 Currumbin Ck -28.20 153.41 1928-1982 

146004 Neranwood Little Nerang Ck -28.13 153.29 1927-1961 

146005 Chippendale Tallebudgera Ck -28.16 153.40 1927-1953 

146007 Pump House Tallebudgera Ck -28.15 153.40 1936-1962 

146010 Army Camp Coomera -28.03 153.19 1963-2011 

146011   Nerangwhipbird -28.09 153.26 1966-1985 

146012 Nicolls Br Currumbin Ck -28.18 153.42 1971-2011 

146014 Beechmont Back Ck -28.12 153.19 1972-2011 

146020 Springbrook Rd Mudgeeraba Ck -28.09 153.35 1990-2012 
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146095 Tallebudgera Ck Rd Tallebudgera Ck -28.15 153.40 1971-2011 

416303 Clearview Pike Ck -28.81 151.52 1935-1987 

416305 Beebo Brush Ck -28.69 150.98 1969-2011 

416312 Texas Oaky Ck -28.81 151.15 1970-2011 

416410 Barongarook Macintyre Brook -28.44 151.46 1968-2011 

422210 Tabers Bungil Ck -26.41 148.78 1967-2011 

422302 Killarney Spring Ck -28.35 152.34 1910-1955 

422303 Killarney Spring Ck South -28.36 152.34 1910-1955 

422304 Elbow Valley Condamine -28.37 152.16 1916-1972 

422305 Gillespies Emu Ck -28.22 152.28 1924-1945 

422306 Swanfels Swan Ck -28.16 152.28 1920-2011 

422307 Kings Ck Kings Ck -27.90 151.91 1921-1966 

422313 Emu Vale Emu Ck -28.23 152.23 1948-2011 

422317 Rocky Pond Glengallan Ck -28.13 151.92 1954-1991 

422319 Allora Dalrymple Ck -28.04 152.01 1969-2011 

422321 Killarney Spring Ck -28.35 152.33 1960-2011 

422326 Cranley Gowrie Ck -27.52 151.94 1970-2011 

422334 Aides Br Kings Ck -27.93 151.86 1970-2011 

422338 Leyburn Canal Ck -28.03 151.59 1975-2011 

422341 Brosnans Barn Condamine -28.33 152.31 1977-2011 

422394 Elbow Valley Condamine -28.37 152.14 1973-2011 

915011 Mt Emu Plains Porcupine Ck -20.18 144.52 1972-2011 

917104 Roseglen Etheridge -18.31 143.58 1967-2011 

917107 Mount Surprise Elizabeth Ck -18.13 144.31 1969-2011 
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919005 Fonthill Rifle Ck -16.68 145.23 1969-2011 

919013 Mulligan HWY McLeod -16.50 145.00 1973-2011 

919201 Goldfields Palmer -16.11 144.78 1968-2011 

919305 Nullinga Walsh -17.18 145.30 1957-1992 

922101 Racecourse Coen -13.96 143.17 1968-2011 

926002 Dougs Pad Dulhunty -11.83 142.42 1971-2011 
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B.3 – Northern Territory 
 

 

 

 
 

figure B.5 – Available sites for Northern Territory
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figure B. 6 – L-Moments Ratio Diagram for available catchments of Northern Territory 
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Station ID Station Name River Name Gauge Lat Gauge Lon Period of Record 

G8100189 Victoria HWY Moriarty Ck -16.065 129.1933 1967 - 1985 

G8110004 Victoria HWY East Baines -15.7667 130 1963 - 2008 

G8110014 U/S Fig Tree Yard Sullivan's Ck -15.565 131.285 1970 - 1992 

G8110110 V.R.D. Rd Crossing Surprise Ck -16.0783 130.8967 1960 - 2003 

G8110263 1.5 Miles D/S Bore Bullock Ck -17.1317 131.4517 1971 - 1992 

G8140008 Old Railway Br Fergusson -14.07 131.9767 1958 - 2011 

G8140061 Blue Hole Copperfield Ck -13.9933 131.9033 1958 - 1977 

G8140063 D/S Old Douglas H/S Douglas -13.7967 131.3383 1958 - 2011 

G8140086 D/S Stuart HWY King -14.6283 132.5883 1964 - 1986 

G8140152 Dam Site Edith -14.1683 132.075 1962 - 2008 

G8140158 Dam Site McAdden Ck -14.3483 132.3383 1964 - 2011 

G8140159 Waterfall View Seventeen Mile C -14.2833 132.4 1963 - 2008 

G8140161 Tipperary Green Ant Ck -13.7383 131.1033 1966 - 2011 

G8140166 Gorge Fish -14.2367 130.9 1963 - 1985 

G8150010 Batchelor Damsite Finniss -13.025 130.9533 1975 - 2011 

G8150018 Stuart HWY Elizabeth -12.605 131.0733 1955 - 2011 

G8150096 Cox Peninsula Carawarra Ck -12.5317 130.6683 1966 - 2011 

G8150097 Rum Jungle +Ansto Eb4 East Finniss -12.965 130.9683 1966 - 2009 
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G8150098 Tumbling Waters Blackmore -12.77 130.9483 1960 - 2010 

G8150127 D/S McMillans Rd Rapid Ck -12.3933 130.8717 1964 - 2011 

G8150151 U/S Darwin R Dam Celia Ck -12.91 131.0533 1972 - 2010 

G8150180 Gitchams Finniss -12.97 130.7617 1961 - 2007 

G8150200 Rum Jungle Rd Crossing East Finniss -12.99 131 1982 - 2007 

G8150233 McArthur Park Palmerston Catch -12.4883 130.975 1984 - 2003 

G8160235 Damsite Takamprimili -11.7817 130.775 1967 - 1986 

G8170002 Railway Br Adelaide -13.2417 131.1083 1954 - 2007 

G8170020 Dirty Lagoon Adelaide -12.91 131.235 1963 - 2011 

G8170062 Eighty-Seven Mile Jump Up Burrell Ck -13.415 131.1517 1958 - 1985 

G8170066 Stuart HWY Coomalie Ck -13.0133 131.1233 1958 - 2010 

G8170075 U/S Manton Dam Manton -12.8783 131.13 1965 - 2010 

G8170084 Tortilla Flats Adelaide -13.09 131.235 1960 - 2011 

G8170085 Stuart HWY Acacia Ck -12.7833 131.12 1964 - 2011 

G8180026 El Sherana Rd Crossing Mary -13.6017 132.22 1962 - 2011 

G8180069 near Burrundie McKinlay -13.5317 131.7183 1959 - 2009 

G8180252 D/S El Sherana Rd Harriet Ck -13.6767 131.9867 1965 - 2010 

G8190001 U/S Arnhem HWY West Alligator -12.7917 132.175 1977 - 2010 
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G8200045 El Sherana (C) South Alligator -13.5233 132.52 1958 - 2009 

G8200046 Coljon (C Part) Deaf Adder Ck -13.0983 133.0183 1972 - 1991 

G8200049 near Nourlangie Rock Koongarra Ck -12.8767 132.83 1978 - 2005 

G8200112 Kakadu HWY Nourlangie Ck -12.8183 132.7417 1962 - 2006 

G8210001 Nimbuwah (C) Cooper Ck -12.1867 133.3483 1971 - 1992 

G8210009 D/S Jabiru Magela Ck -12.6417 132.9 1972 - 2011 

G8210012 George Town Crossing Gulungul Ck (Bog -12.69 132.8933 1972 - 1992 

G8210016 Mt. Borradaile Cooper Ck -12.08 132.9733 1980 - 2006 

G8210017 Jabiluka Billabong Magela Ck Plains -12.4617 132.875 1974 - 2006 

G8210019 Outflow Main Channel Magela Plains -12.2967 132.8217 1976 - 2004 

G8210024 D/S Nabarlek Cooper Ck -12.2933 133.34 1979 - 2006 

G8260053 above Tidal Reach Lower Latram -12.3083 136.7783 1964 - 1984 

G9030089 Rd Br Waterhouse -14.5617 133.1067 1973 - 2011 

G9030090 Wattle Hill Chambers Ck -14.5 133.3633 1974 - 1992 
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