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Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that
precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s
cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at
their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD
method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle,
bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To
validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective
markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first
translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG
computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of
interests: 0 (4-7 Hz), « (8-12Hz), S I, B II, B III rthythms (13-15Hz, 16-20 Hz, and 21-28 Hz). The slope of the linearized trend
identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the
proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and
specificity). The discrimination process requests, on average, 370.6ms. This value could be considered suitable for the
implementation of countermeasures aimed at restoring the balance of the subject.

1. Introduction

The World Health Organization (WHO) statistics demon-
strated that falls are a common occurrence and a serious
health issue for the general population. In fact, in 2019, only
in the United States, 29 million of falls have been recorded,
resulting in 7 million of invalidating injuries. Moreover, it
has been estimated that every 19 minutes an older adult die
from a fall, while every 11 seconds an older adult is treated
in the emergency room for the same reason. According to
the Centers for Disease Control (CDC), falls are the leading
cause of fatal injury among old adults and the most frequent
reason for nonfatal trauma as well [1, 2]. These statistics sup-
port the clinical evidence according to which the natural
aging process would alter the abilities to face the unexpected
perturbations of the balance through the compensatory and

anticipatory countermeasures [3, 4]. In this respect, the fall
detection (FD) context arises with the main objective of cre-
ating systems, or devices, capable of detecting the fall events
automatically in a short time and with good accuracy.

The first classification of FD strategies divides the algo-
rithms into two macroareas: Postfall Mobility Detection
(PFMD) and Preimpact Fall Detection (PIFD) algorithms.

The algorithms from the first macroarea (i.e., PFMD)
detect the fall events when they already occurred. Typically,
they assess the posthumous state of the subject mobility.
The paradigm of these systems is as follows: (1) identify the
fall, (2) evaluate the user mobility, and (3) call the assistance
to avoid death due to “long-lie” phenomenon [5, 6] (the
“long-lie” concerns the inability of elderly people to get up
again after a fall event). The PFMD architectures present an
intrinsic limitation: falls can only be detected as a result of
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body-ground impacts; thus, it is not possible to prevent inju-
ries directly caused by impacts. This limit can be overcome by
using PIFD strategies [7, 8]. The PIFD architectures exploit
techniques capable of recognizing the fall event before the
body impacts in a disruptive manner with the ground [7].

Different from the PEMD techniques, the PIFD strategies
require very short time to detect a fall event, trying to keep
high accuracies in the fall recognition. Indeed, these strate-
gies are designed and developed to be integrated into a
closed-loop control system with on-demand fall protection
devices or support for postural control. Although these sys-
tems are still under investigation and not already available
on the market (if not for research purposes), the idea of
merging PIFD strategies and protection countermeasures is
considered a promising solution in the field of fall prevention
[8]. Table 1 provides a detailed overview of PIFD strategies
and solutions at the state of the art. The table shows, for each
considered articles, the technology used to collect data for the
fall detection implementation, the fall indicators, the classifi-
cation method, the type of analyzed falls, and the perfor-
mance in terms of sensitivity (Se), specificity (Sp), and
average detection time (DT).

The devices used to detect fall early can be classified as
context-aware devices or wearable devices. Among the works
analyzed in Table 1, three studies [9-11] are based on
context-aware technologies and coincide with those related
to the recognition of falls from induced slipping. These studies
use motion capture systems (MCS) as the main acquisition
devices. MCS analyze kinematic determination by means of
reflective markers placed on specific anatomical reference
points of the human body. The trajectories of the markers
are therefore traced by cameras mounted in fixed positions.
The main pros of using MCS are that the fall indicators can
be determined with extreme precision [7, 8, 12], while the
main cons are the costs and the limited operating volume that
can be framed by the cameras.

Table 1 presents some studies in which the detection of
falls is made using a single type of wearable sensor [13-15].
The use of a single type of sensor has the advantage of signif-
icantly reducing the complexity and the computational
request of the PIFD system [8]. Nevertheless, it has been
demonstrated that, at present, the only acceleration signals
do not allow to discern the phenomena of loss of equilibrium
from activities like falls (e.g., running or jumping) [16]. Iner-
tial measurement units (IMUs) solve the problem thanks to
the simultaneous embedding of triaxial accelerometers and
gyroscopes. Another interesting PIFD strategy is the one pro-
posed in [17-22]. The authors propose a fully physiological
signal-based cyber-physical system for fall detection. It con-
sists of a wearable and wireless acquisition interface that
exploits data from EEG and EMG.

The classification methods in Table 1 can be divided into
the following: single and multiple threshold-based algo-
rithms, machine learning-based approaches, or statistical
models. Among the analyzed methods, the threshold algo-
rithms are certainly the simplest in many aspects.
Threshold-based algorithms are generally computationally
efficient, suitable in real-time PIFD applications. Despite a
fast detection, in most cases, these approaches provide accu-
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racy below the 90%. To improve the PIFD strategy discrimi-
nation capability, realizing more efficient threshold-based
systems, several solutions use ML methodologies [10, 14,
23]. Nevertheless, the ML algorithms request for a prolonged
classifier training period. The authors in [17] analyze EEG
and EMG signals by means of a logic-based matchmaking
algorithm, which allows fast classification of the no voluntary
movements. It is noteworthy that most of the solutions in
Table 1 analyze simulated falls (SF), in which the subjects
were asked to fall voluntarily or with specific postures. How-
ever, most real-life fall events occur due to unexpected per-
turbations and are characterized by an involuntary nature.

The performance of a PIFD strategy can be expressed in
terms of accuracy and efficiency. The accuracy is defined by
two parameters: sensitivity and specificity. Commonly, the
sensitivity parameter is defined by the ratio between the
number of correctly recognized fall events and the total num-
ber of evaluated falls. Similarly, the specificity can be defined
as the ratio between the amount of successfully detected
activities not identifiable as falls (e.g., walking steps) and
the total number of these activities. The strategy efficiency
is, instead, evaluated in terms of detection time, which is
the time range from the perturbation initiation and the fall
event recognition.

Ultimately, in terms of performance, Table 1 shows that
the sensitivity of the proposed solutions ranges between
88% and 100% (95.21 +4.81%), while the specificity one
between 88.5% and 100% (94.59 + 5.14%). Data shows that
the greatest problem of the proposed solutions (in term of
accuracy) is related to the high number of false alarms, which
reduce the specificity of the PIFD systems. It leads to overall
system accuracies of 94.9 +4.01%. Since the compensating
actions related to the output of the PIFD strategy must be
designed to avoid the falls, the detection times must be accu-
rately estimated to demonstrate the temporal compliance of
the system. In this respect, the authors in [24] set a detection
time of 550 ms as the maximum intervention limit for the
implementation of countermeasures aimed at restoring the
balance of the subject. Data in Table 1 show that the detec-
tion time settles at around 559 + 153.77 ms and, among the
evaluated works, only the systems proposed in [10, 11, 15]
provide detection times lower than the threshold of 550 ms,
paving the way to their possible use in strategies for postural
recovery. Other solutions are, instead, typically used to trig-
ger total body or hip airbag-based protection systems, which
can reduce the extent of the body-ground impact (that
evolves in 700 ms-1000 ms).

In this context, the here proposed work is aimed at
addressing the following challenges:

(i) To create a low compute-intensive algorithm that
can analyze in time and frequency domain the reac-
tive cortical dynamics (at the scalp-level) involved in
balance adjustments when the steady walking is sud-
denly perturbed by slippages

(ii) To design a method to reach high values of accuracy
(>95%), while maintaining detection time under the
limit imposed by authors in [24]: 550 ms
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TaBLE 1: Overview PIFD strategies at the state of the art.

Ref. Technology Fall indicators Class. Algorithm Fall type Performance
Trunk- . . Se (%) = 100
[13]  positioned 3D Trunk v(e:;'[\lfc{afl) velocity Single Thr: TVV > 1.3 m/s n.B?) SFF.SFdVI\;F) Sp (%) =98.27
ACC W DT (ms) = 577.00
- Se (%) = 100
Waist-positioned Waist vertical velocity Single Thr: [WVV| > max WVV in nonfall n. 4 SF: FwF, (00) _
[25] 3D GYR and (WVV) tiviti BwE. SAF. OrF Sp (%) =100
ACC achivities WESEL VI DT (ms) = 675.15
ODOFIMU by . leration and angular Multiple Thr: Se (%) = 89.5
Xsens Tech. . 5 n. 3 SF: FwF, o\ _
[26] itioned velocity of the chest (1) acc.>7 m/s BwE. SdF Sp (%) =91.6
postﬁ:; on segment (2) ang.velocity > 3°/s W DT (ms) =617.35
ML:
- Se (%) =100
Tf.runk Acceleration Time Series (1) The extracted ATS trains a HMM n. 2 SF: FwF, g 0)_
[14]  positioned 3Dy 1) f the chest  (2) The HMM outcome i d with a singl SdF 5p (%) =88.75
ACC of the ches e ou com(frlﬁrcompare with a single DT (ms) = 598.40
n. 4 SF: FwF,
Waist-positioned Acceleration and angular (1) Mean and Variﬁ/gée of the x. v. 2 axis ffl;i\,:) sfflfr’n Se (%) =93.5
[23] 3D GYRand velocity of the waist . o4 8 Sp (%) = 85.6
ACC seoment acceleration and angular velocity sit DT (ms) = 775.20
& (2) Classification by SVM IF: slip- '
induced fall
Multiple Thr: Se (%) =90
H i i . A
EEG wireless EEG Power Spectrum (1) The EMG is used as a trigger for cortical n. 1 SF: BwF Sp (%) =87
[17] headset+surface Density (PSD) level in BP analysis IF: loss of DT (ms) =168
EMG Y B thythms > (2) The EEG PSD is evaluated in BP, y, 8 bands balance on (from
# vt (3) The levels are compared with history-based ~ weighbridge gastrocnemius
thresholds contraction)
i i Se (%) = 88.5
MCS: total body Accele.ratlon and vertical Multiple Thr+statistical model: threshold based IF: slip- (00) _
] monitorin velocity of upper arms, on a ARIMA model based on data histo induced fall Sp (%) =92.9
& trunk, tibia, and head ry DT (ms) = 680.00
. _ ML: , Se (%) =92.7
MCS: total body  Acceleration of all the (1) The accelerations are analyzed by ICA IF: slip- o7y —
[10] ot . ! zed by . Sp (%) =98
monitoring  monitored body segments (2) A neural network is used to distinguish walk  induced fall _
- DT (ms) = 351.00
from perturbations
. Se (%) =100
M_C;S+trunk Sagittal angle and angular ~Multiple Thr+statistical model: threshold based IF: slip- (OO) _
(1] positioned IMU 0o ity of the trunk AR model based on data hist induced fall 5P (%) =963
sensor velocity of the trun on a AR model based on data history induced fall 1 (ms) = 355.00
Hip encoder on Single Thr: increment of the error function . Se (%) =92.7
[15]  active pelvis Hip angle between the current hip angles (from encoder) IF: slip- Sp (%) =98
orthosis and the ones provided by a pool of adaptive induced fall

. DT (ms) = 403.00
oscillators

Technology acronyms—ACC: accelerometer; GYR: gyroscope; MCS: motion capture system; IMU: inertial measurement unit; DoF: degree of freedom. Class.
algorithm acronyms—Thr: threshold; ML: machine learning; HMM: Hidden Markov Model; SVM: support vector machine; BP: Bereishaft potential (EEG);
ARIMA: autoregressive integrated moving average; ICA: independent component analysis; AR: autoregression. Type of fall acronyms—SF: simulated fall;
IF: involuntary fall (unexpected); FwF: forward fall; BwF: backward fall; SAF: lateral fall; OrF: fall from orthostatic position.

(iii) To realize a first-of-a-kind fully wearable sensor-
based PIFD strategy in slippage recognition, which
is typically entrusted to MCS

In this respect, the proposed study investigates changes in
the cortical involvement when subjects were actively manag-
ing unexpected slippages delivered during steady walking.
The proposed method synchronously records electrophysio-

logical signals from 2 EMG electrodes placed bilaterally on
the gastrocnemii and 13 EEGs along motor, sensory-motor,
and parietal areas. The EMG signals from the lateral gastroc-
nemii are the first 1-bit digitized and then used as a trigger for
the EEG analysis. During the cortical analysis, the system
extracts the variation in the EEG power spectrum density
for five bands of interest (i.e., 0 (4-7Hz), « (8-12Hz), 1,
I1, and BIII rhythms) (13-15, 16-20, and 21-28 Hz) by using



the sliding window Fast Fourier Transform (FFT). The trend
is then approximate by using a linear data fitting. The slope of
the resulting linearized trend, m, identifies an approximate
version of the clinical cortical responsiveness parameters.

Experimental results from six young and healthy subjects
revealed a nonlateralized sharp increment of m just after the
onset of the perturbation. Furthermore, the results show an
interesting and concrete possibility of detecting the loss of
balance induced by slips with good precision (96.02%) and
with detection times shorter than the average of the state of
the art (370.62 + 60.85 ms).

The paper is organized as follows: Section 2 briefly
defines the medical background, to facilitate the understand-
ing of the detailed methodological bases of the algorithm.
Section 3 discusses the experimental results providing a com-
plete comparison with the state of the art, and Section 4 con-
cludes the paper, presenting future perspectives.

2. Materials and Methods

2.1. Medical Background: Reactive Cortical Dynamics. Recent
studies [27-36] have shown how the cerebral cortex regu-
lates the excitability of subcortical postural centers to main-
tain the postural stability according to environmental
demands [28]. Several studies on EEG signals [27-35] ana-
lyzed the cortical involvement in balance control. Typically,
they focused on the study of event-related potentials (ERPs)
elicited by mechanical perturbations of the subjects’ balance.
The proposed studies treated cortical reactions when the
perturbations are provided to orthostatic posture [28, 29].

Few studies provided results about the reactive control
spectral analysis [30-35]. They revealed important correla-
tions among specific oscillatory rhythms, cognitive functions,
and sensorimotor ones. Briefly, it has been proved [32, 33]
that low-frequency cortical rhythms (<13 Hz) are related to
perception and cognitive control. In a fall event context, the
modulation of these oscillatory rhythms can be related to
the visual field stabilization and active decoding of data com-
ing from the vestibular system. Typically, these rhythms start
oscillating in the first phase of the fall, involving the bands of
interest: 6 and .

In a chronological order, the cortical involvement pro-
ceeds with the modulation of high-frequency cortical
rhythms (>13 Hz). The latter are related to motor functions
and in particular to the active concentration of the subject in
muscle firing operations for the compensatory actions [34,
35]. According to the application-specific bands of interest,
in this category, we consider the 3 bands (i.e, I, S1II, and
BIII). The power increase in the above-mentioned bands
must be analyzed carefully. In fact, even during walking,
cortical dynamics present significant impulses in the motor
cortex side opposite to the leg muscles in the swing phase.
Nevertheless, it is expected that the responsiveness of corti-
cal activity observed during walking is, in any case, lower
than the one expected during the postural recovery phase.
Moreover, since the 3 bands are linked to the planning of
sudden and precise changes, they are expected to not inter-
vene in situations of unperturbed walking. Under this
hypothesis, the power level in these bands could be consid-
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ered one of the most discriminating parameters in the con-
text of fall recognition.

2.2. Experimental Setup. The main goal of the study is to ana-
lyze the subjects’ cortical reactive dynamics when during a
steady walk (at their preferred speed) the balance is suddenly
perturbed by unexpected bilateral slippages. In this respect,
during the experimental trials, participants wore a 32-
channel wireless EEG headset (g.Nautilus Research by
g.Tec) and 2 wireless EMG surface electrodes (Cometa Wave
Plus by Cometa Systems) as shown in Figure 1.

Table 2 provides information about the adopted acquisi-
tion equipment (i.e., EEG and EMG). For each device, the
table reports the number of monitored nodes or channels,
equipment features such as the size and weight, and the elec-
trode characteristics and acquisition parameters: resolution
and sampling frequency.

Thirteen EEG sites were monitored: F3, Fz, F4, C3, Cz,
C4, Cp5, Cpl, Cp2, Cp6, P3, Pz, and P4, according to the
international 10-20 system [37]. The O2 electrode was used
for noise suppression, AFz as ground, and A2 (right earlobe)
as the reference electrode. The EEG data were sampled at
500 Hz with 24-bit resolution [37].

Ten surface EMG channels were monitored from the
following bilateral muscle groups: anterior tibialis, lateral
gastrocnemius, vastus medialis, rectus femoris, and biceps
femoris. The EMG signals were recorded with a sample rate
of 2048 Hz and down sampled to 500 Hz (16-bit resolution)
to match the EEG signal sampling frequency [22]. In this
study, only EMG signals related to the lateral gastrocnemius
were retained (two EMG surface electrodes).

Both EEG and EMG were transmitted via Bluetooth Low
Energy (BLE) protocol to a dedicated gateway and collected
by a Simulink model.

Figure 1, supported by data in Table 2, demonstrates the
low encumbrance of the final architectures. The choice of fully
wireless and light acquisition devices makes the preimpact fall
detection architecture wearable. Despite this, since the use of
gel-based or pregelled electrodes could not be considered
comfortable, different solutions are still under investigation.

Figure 1 also shows a set of 23 reflective markers for the
3D kinematics reconstruction placed on the subjects’ lower
limbs and 8 cameras. Specifically, spherical markers
(d =14 mm) were mounted bilaterally on anterior superior
iliac spines, sacrum, prominence of the greater trochanter
external surface, lateral and medial epicondyle of the
femurs, heads of fibula, lateral and medial malleolus, calca-
neus, and first and fifth metatarsal heads. Additional
markers were rigidly placed on wands over the midfemurs
and midshaft of the tibia. It is important to stress that the
MCS-oriented markers are only used for temporal coher-
ence validation of the EEG/EMG signals and they are not
part of the proposed architecture. In fact, kinematic records,
electrophysiological signals, and the onset of the perturba-
tion were synchronized offline on the same timeline for
the system validation.

2.3. Experimental Protocol. During the experimental trials,
subjects were asked to manage unexpected slippages while
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F1GURE 1: Experimental setup. The perturbation platform (SENLY) and a subject under test. On the figure, labels refer to the following: the
wireless EEG headset (red: #1), the wireless surface EMG electrodes (red: #2), the set of markers (blue: #3), the motion analysis system camera
(blue: #4), the perturbation platform SENLY (green: #5), and a safety harness (green: #6).

TasLE 2: EEG/EMG acquisition device features.

. . Electrode . Sampling
Sig. Num. Equipment features Size (mm) Type Resolution frequency
EEG headset station:
70 x 55 x 30 mm Active
EEG 1 Weight: 1458 16X 10 x 5 Gel based 24 bits 500 Hz
channels Wireless Sintered Ag/AgCl probe
10 h continuous acquisition at gastip
500 Hz
EMG single node:
33x23x19mm Active
Weight: 12¢g . . 2048Hz |
1 12
EMG 2 nodes Wireless 8x12x5 Pregelled smterreitlil Ag/AgCl holder 16 bits 500 Hz
12 h continuous acquisition at &
2048 Hz

walking at their self-selected speed on a mechatronic plat-
form named SENLY [38] (Figure 1—Ilabel #5). For safety rea-
sons, the volunteers were secured by a harness attached to an
overhead track.

SENLY is a platform designed to destabilize the balance
control during motor tasks [38-40]. It consists of a split-
belt treadmill, in which belts can be moved in the horizontal
plane, both longitudinally and transversally. The platform is
equipped with force sensors to identify the phases of the gait
cycle during walking [40].

In the present study, the perturbations provided by
SENLY consisted of sudden forward movements toward the
anterior-posterior direction. Specifically, the selected belt
was accelerated and decelerated up to the belt stop with a tri-
angular speed profile (slope 8 m/s” for a total displacement of

0.15m). The belt movement was triggered by detecting the
heel strike of the foot appointed for the perturbation.

After the first acclimation phase (~5min), the protocol
consisted of a series of 10 consecutive trials in which the sub-
ject gait was perturbed by a slippage. The slippages were
equally delivered alternating right foot-related belt and the
left foot one.

2.4. The Preimpact Fall Detection Strategy. The work pro-
poses an innovative solution in the field of PIFD strategies,
whose primary goal is the real-time detection of a loss of bal-
ance through the synchronized analysis of physiological sig-
nals (i.e., EEG and EMQG).

The block diagram in Figure 2 provides a general over-
view of the implemented architecture.
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FIGURE 2: Overview of the proposed PIFD architecture. The block diagra
PSD linear fitting extraction, which leads to final discrimination.

As shown in the figure, the system is composed of the
three main parts: the acquisition system, the perturbation
protocol, and the computing unit. The latter can be further
divided in the EMG processing (i.e., Muscle-based Trigger)
and the cortical analysis block that comprises the sliding
window FFT, the band multiplexing process, and the ordi-
nary least square (OLS) estimation of the power spectrum
density trend.

From Figure 2, it is possible to notice how this architec-
ture has been optimized and validated for the recognition
of balance losses induced by SENLY as unexpected slippages
(perturbation protocol—Figure 2).

As detailed in Section 2.2, the acquisition system in
Figure 1 consists of an architecture that acquires and syn-
chronizes EEG and EMG signals. Specifically, the system
monitors 2 surface EMG surface electrodes placed on the lat-
eral gastrocnemii (R(L)_LG—Figure 1) and thirteen EEG
channels distributed between motor, sensorimotor, and pari-
etal cortex. The acquired physiological signals (i.e., EEG and
EMG) are then wirelessly transmitted to a common gateway
that deals with synchronizing, in real time, the data coming
from the two different acquisition systems.

In this work, the gateway consists of a receiving station
connected, via USB, to a laptop on which a dedicated real-
time Simulink-MATLAB®2017a model is running.

The Computing System working principle can be
described as follows: The collected EMG signals are wire-
lessly sent to the first block (i.e., the Muscle-based Trigger)
that translates the electrophysiological activity into binary

m recaps all the main procedure steps from signal acquisition to the

signals. The trigger algorithm analyzes sample-by-sample
the EMG, associating the value “1” to a contracted muscle,
otherwise the value “0,”

This process of muscle activity digitization is entrusted to
a moving average approach, which is able to adapt to changes
in the subject’s muscle tone [22]. These two binary wave-
forms are then used to independently trigger the cortical
analysis. In this context, it was useful to identify a specific
phase of the step cycle in which to activate the cortical anal-
ysis. This choice allows the system to exclude, from the total
computation, the cortical activity that is not strictly linked to
the specific movement, reducing the amount of data to be
analyzed and possible occurrences of false alarms in the elec-
troencephalographic profile. The trigger associated with this
muscle is named Master Trigger (MT) in the following. We
selected lateral gastrocnemius as MT because it uniquely
identifies the double support phase of the gait cycle.

As previously stated, the rising edge of the MT enables
the cortical analysis at every step (i.e., right and left gastroc-
nemius contraction independently). The EEG computing
block quantifies the rate of variation in the power of brain
signals, considering five interest bands by means of a sliding
window FFT. Each window returns a power value in each
evaluated band, building five vectors of measurements,
named—for the reasons of generality—“y” in Figure 2. Then,
the algorithm extracts, for each vector y a linear approxima-
tion of the PSD via ordinary least square (OLS) estimation.
These models allow the system to extract, from the PSD mea-
surement (y), two parameters (p) via the matrix of base
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function (A): the intercept and the slope of the resulting lin-
earized PSD trend. The EEG responsiveness parameter prac-
tically consists in the slope. The EEG responsiveness
parameters, extracted via linear models, contribute to the sys-
tem calibration phase. In this stage, the system defines
statistics-based models to identify the “standard” cortical
behaviors.

During this phase, the implemented algorithm extracts a
sequence of thresholds. The latter are then used to identify
and classify all the statistically “nonstandard” behaviors
(including the potential loss of balance) during the real-
time operations. This classification phase is carried out by
relating, among each other, the thresholds through a network
of logical conditions. The network closes the processing, pro-
viding in the output the result of the binary classification:
unperturbed step or potential loss of balance. If the output
of the logical network is supplied in a time that is consistent
with the fall dynamics, the system alert can be used to enable
postural recovery strategies.

2.4.1. Data Preprocessing. The here-proposed system online
treats the electrophysiological signals (i.e., EEG and EMG)
following the following guidelines:

(1) EMG. Surface EMGs were on-line high-pass filtered with
an 8th order Butterworth filter with cut-off frequency at
10 Hz to reject movement artifacts.

(2) EEG. According with the main studies in the field [28,
29, 36], the EEGs were progressively band-filtered between
1Hz and 40Hz by using an 8th order Butterworth filter
before the transmission.

During every trial, an impedance check of all EEG elec-
trodes was carried out in order to ensure a value lower than
40kQ.

A numeric notch filter (48-52 Hz) was implemented for
both EEG and EMG signals.

(4) Special Precautions. EEG artifacts can be classified, in gen-
eral, as physiological or non-physiological [41]. The former
type includes eye movement (blinking, lateral and vertical
movement), muscle contraction (tightening of the jaw, con-
traction of the neck muscle), and cardiac artifacts. The non-
physiological artifacts include line noise, impedance shift,
and interference from cable movement [41]. The acquisition
of EEG signals during the gait increases the influence of these
artifacts. Although there is no way to permanently delete all
the above-mentioned artifacts, special precautions were
taken during the recording sessions to limit their effects.

The use of active preamplified wet electrodes, with
impedance check and fixing procedures of the electrode by
PCB connection lines, guaranteed the attenuation of non-
physiological artifacts. Moreover, in the experimental tests,
the subjects were asked to fix their gaze on a frontal area at
the eye level and to relax neck muscles during the experi-
ment, avoiding, as far as possible, turning or swinging the
head while walking.

To limit further confounding effects, the ambient lighting
was kept constant, the ambient noise was reduced, and
recording equipment and operators were kept out of the field
of view.

The remaining artifacts will be rejected in the cortical
analysis phase by embedding in the Simulink model an arti-
fact rejection stage: the Riemannian Artifact Subspace Repre-
sentation (rASR) method [42].

2.4.2. Muscle-Based Trigger Generation. As shown in
Figure 2, the Muscle-based Trigger block is used to identify
the onset of the contraction event for a specific muscle. For
the particular application, in-depth knowledge of the EMG
signal level is not as useful as knowing its binary approxima-
tion (e.g., ON/OFF). Although the ON/OFF condition con-
ceptually and computationally simplifies the analysis of
EMG signals, the algorithm of extraction of muscle triggers,
presented in principle in Figure 3, must be able (i) to adapt
to the characteristics of the muscle tone of the subject under
test (intersubject variability) and (ii) to follow muscle tone
changes during the trial.

In this respect, for this application, we refer to a method
proposed in our previous works [22, 43] previously used in
gait analysis applications. Briefly, it consisted of a dynamic
threshold approach, in which each EMG signal (16-bit)
was converted in a binary signal (named trigger). It assumes
a logic value HIGH if the muscle is contracted, low other-
wise (relaxed muscle). Figure 3 shows all the steps for the
trigger generation.

The method, here, described in principle, compares the
average of the signal power on a large time span of M =500

ms (PM) and the signal power average on a shorter time
span of N =250 ms (i.e., the last 250 ms of the M register,
PN). The process was refreshed sample-by-sample.

For the ith sample, PN was compared with the PM. If

PN > PM, the trigger goes 1, otherwise 0.

2.4.3. The Cortical Analysis System. In this context, it has
been experimented that the selected MTs (lateral gastrocne-
mii) typically react in 323.19 +52.38ms to the slippages.
From literature [36], we know that 6 is the faster band (tem-
porally) in intervening with a power variation (peak detect-
able at ~185ms from perturbation onset) and therefore the
most critical to be reconstructed, in the perspective of a fit-
ting with a linear model enabled by MT.

In this respect, in this study, the system extracts an EEG
time window that starts at 800 ms (i.e., 400 samples) before
and ends at the MT contraction onset. As previously stated,
the EEG subsets undergo the first stage of artifact rejection
via rASR. The artifact-free EEG subset is then split in 20
overlapped (10-sample step) 200-sample long time windows.

On each evaluated time window, the system operates an
FFT with a spectral resolution of 2.5Hz (f ;. =500 samp-
les/s, L, = 200 samples). The spectral behavior is then eval-
uated according to

. ’FFT(sw)

—>S=2-Y(2 : L‘;"), (1)

'win
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FIGURE 3: Overview of the muscle trigger extraction technique: (a)
the Master Trigger (MT) is extracted from the raw EMG data; (b)
detail of MT onset (red arrow).

where s, is the 200-sample long sliding window to be evalu-
ated and L, is the number of samples that composes the
analyzed data series. Once the spectral power S € Rivin’? for
each window has been extracted, the system starts with the
band multiplexing phase according to Figure 2 [44, 45]. Dur-
ing the band multiplexing stage, the system extract the
behaviors of 6 (4-7Hz), o (8-12Hz) bands and the 51, 8
II, and BII (13-15, 16-20, and 21-40 Hz) rhythms taking
into the account the spectral resolution. In this respect,
for every analyzed window, the system extracts the vector
Spor € R with nBol = 5, the number of bands involved
in the multiplexing. This vector (i.e., Sg,;) consists of the
sum of all the spectral contributions falling within the
range of the analyzed band, according to

r 3

0— ;(S(i))

dB
5

a— Y (S(i)

3

dB
7

BI— X (8()

6

Spor = € R"M, (2)

dB
10
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8

dB

BIII - %:(S(i))

dB

Ultimately, in correspondence of the MT contraction,
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(1) The system extracts the vector Sy ; (equation (2)) for
all the 20 sliding widows composing the EEG chunk
to be analyzed

(2) All the vectors are embedded in a 2D matrix with a
size of 20 x nBol. Each column of this matrix recaps,
in 20 points, the power spectrum measurements of a
specific Bol in the 800 ms preceding the MT onset

(3) The computation is then extended to the monitored

channel (nCh = 13), resulting in a 3D matrix MSg;
€ R20,nBoI,nCh

Considering, for the sake of clarity, a single band of inter-
est and a channel, the measurements related to the 20 win-
dows are finally sent to a computation unit that deals with
extracting linear models by means of least-square fitting
(i.e., OLS estimation). In particular, this stage of cortical
responsiveness computation is based on the simplified
approximation that the brain response, described by 20
points, could be considered a straight line x(¢t) =m -t + q.

Figure 4 shows a demonstrative and emphasized compar-
ison (by referring to experimental basis), between a linear
model extracted during walking (Figure 4(a)—blue) and a
linear model from a reactive response to a perturbation
(Figure 4(b)—red). Both the panels refer to channel F3 and
the same band of interest (i.e., «). Data related to walking
(Figure 4(a)) refer to MT onset #16 of the Sub. 4-Trial 2.
The MT associated with the selected contraction was left gas-
trocnemius (ipsilateral to F3).

As the final step, system discards the information con-
sidered useless in this context, such as the estimated inter-
cept, deriving a matrix that contains only the estimated
slopes, . For each MT contraction, a 2D matrix is defined:

M e R*BoLnCh - whose elements m; = ﬁft\j,h « are the slope

Bol>"Ch
estimation of the above-described OLS-based model in the
jth band of interest and ith channel. For example, in
Figure 4, the degree of cortical responsiveness was extracted
by the system in the case of unperturbed gait (MT #16) is
|, p3 = 0.0125 dB/ms; similarly, in the case of perturbation
(MT #41), this parameter is 77, ; = 0.25 dB/ms. Note that
the x-axis reports the window number, and each window
consists of a 20 ms step.

2.4.4. Logical Classifier. As stated in Section 2.4.3, the cortical
analysis system extracts the cortical responsiveness matrix M
for each evaluated contraction of the MT.

In the first calibration phase, the system collects several
M matrices from unperturbed walking steps. Thus, it builds
a statistic of the “standard” cortical behavior for the subjects
under test.

More in detail, the system calibration requires the storage
of the M matrices for a number, Nc, of unperturbed MT
contractions. Once this data collection is over, a 3D matrix
MC € RBoLnCh.Ne g available for further computation. The
general MC element, m_(j, k, i), represents the 7 value in
the jth band of interest and kth channel extracted in corre-
spondence of a generic ith MT contraction. By isolating the
channel and band of interest data from the 3D cortical
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FIGURg 4: Comparison between OLS estimates of the sum of the
powers in the « band in case of fluid walking (a) and perturbed
one (b). Data refer the F3 channel.

response matrix (i.e., by selecting the kth channel and the jth
band), it is possible to extract 65 vectors of size {1 x Nc}. The
65 vectors extracted from the EEG branch of the architecture
are then subjected to a generalization step, in which the sys-
tem averages, on several channels, the values of 7 in a spe-
cific band. The resulting average constitutes groups of EEG
channel called functional cortical groups. There are four
functional cortical groups that roughly identify the moni-
tored macroareas:

(i) Supplementary Motor Area. There are nBol =5 vec-
tors, one per each band of interest, that include the
i value averaged on the channels: {F3, Fz, F4}

(ii) Motor Area. There are nBol =5 vectors, one per each
band of interest, that include the 7/ value averaged
on the channels: {C3, Cz, C4}

(iii) Sensory-Motor Area. There are nBol =5 vectors, one
per each band of interest, that include the 7 value
averaged on the channels: {Cp5, Cp1, Cp2, Cp6}

(iv) Parietal Area. There are nBol=5 vectors, one per
each band of interest, that include the 7 value aver-
aged on the channels: {P3, Pz, P4}

This step of generalization allows the system to obtain
an immediate control on the general subject’s cortical
involvement status. Once the control structure has been
made unambiguous by the generalization step, the calibra-
tion algorithm must statistically analyze only 20 vectors
(5Bol * 4 functional groups). From these vectors, the system
extracts the same number of thresholds based on percentile

analysis. Specifically, all the thresholds coincide with the
95" percentiles of the analyzed vector. These thresholds
are used to determine the initial state of the system (calibra-
tion). At the first contraction of the MT, the threshold will
be updated by discarding the first value (the oldest in chro-
nological order) and replacing it with the new one. In
consideration of this last vector, the thresholds will be cycli-
cally updated. Once the system is progressively recalibrated,
the classifier analyzes the contribution of each functional
group to the overall involvement.

The pseudocode in Pseudocode 1 summarizes and widely
comments the routines of classification and the calibration
considering a single band of interest.

More in details, according to row 1 the system compares
the 711 values of each functional group (imX, with X acronym
of the group) with the dedicated threshold (ThrX, with X
acronym of the group). Then, if >50% of the evaluated
groups are interested in a power increase in the cortical activ-
ity, a generalization flag (Gen_flag) is set to 1. The condition
opens a second nested routine, the lateral_check one (row 5).
This routine evaluates if the power increment interests only
one side of the cortex (by means of the difference among
values from left side channels and right side ones). If the dif-
ference is below a certain tolerance, the lateralization flag
(Lat_flag) is set to 1, indicating that the increase is wide-
spread. If both the generalization and lateralization flags are
set the system call the Alarm_on_Bol routine. It means that
on the specific band of interest (e.g., &) the cortical activity
is abnormal. If at least 3 bands of interest are interested in
the widespread increase, the classification releases a global
alarm, asking for an external intervention to restore the bal-
ance (potential fall detected).

3. Experimental Results

3.1. Participants. The fall detecting system has been validated
on six young and healthy subjects, whose personal data and
anthropometric measurements (mean + std) are reported in
Table 3.

No falls were reported during the trials. All participants
were able to recover their balance.

Before starting the experimental sessions, all participants
signed an informed consent. Research procedures were in
accordance with the Declaration of Helsinki and was
approved by the Local Ethical Committee (Prot. no.
0028266/2019).

3.2. PIFD Algorithm Performance. As introduced in Section 1,
the metrics commonly used to quantify the performance
of a PIFD strategy are the accuracy, in terms of sensitiv-
ity and specificity, and efficiency through the detection
time [7, 8].

In the present study, the above-mentioned performance
has been experimentally extracted by means of the protocol
described in Section 2.3, asking the subject to carry out ten
consecutive trials, with an intertrial time of 2 minutes (rest).
The performance is computed on a final dataset of 60 pertur-
bations (10 for each analyzed subject).
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Routine: Logic Network Classification

Alarm_on_BolI ();
/* Body Program LogicNetwork_Classifier */

1

2

3 if (CG_Sum>0.5) {

4 Gen_Flag=1;

5. Lat_flag=lateral_check ();
6. if (Lat_flag == 1) {
7. — call Alarm_on_BolI ();
8 }

9 }

1

1

1.}
/*Example Calibration Step */

percentile-based thresholds for every cortical group.

15. *MSMA(0) = [J;
16.}

*MSMA=[*MSMA imSMA]; -+

Inputs:

MSMA; imSMA;  //MSMA: Vector of Nc m, values from cortical group “Supplementary Motor Area”
/HimSMA: 1 values from cortical group SMA @ ith MT contraction

MM1; imM1; //IMML1: Vector of Nc m, values from cortical group “Motor Area”
/AmM1: i values from cortical group M1 @ ith MT contraction

MS1; imS1; //IMSMA: Vector of Nc m, values from cortical group “Sensory-motor area”
/AmSMA: 1 values from cortical group S1 @ ith MT contraction

MPPC; imPPC;  //MMI1: Vector of Nc m, values from cortical group “Parietal area”
/AmM1: fn values from cortical group PPC @ ith MT contraction

Outputs:

Gen_Flag; //Generalization Flag. It identifies a general cortical activity increment

Lat_Flag; //Lateralization Flag. It identifies a NOT lateralized cortical involvement

//The function is used to activate a warning flag on the specific evaluated Bol

[Class] LogicNetwork_Classifier (imSMA, imM1, imS1, imPPC){
CG_Sum = [imSMA>ThrSMA imM1>ThrM1 imS1>Thrsl imPPC>ThrPPC]/4;

0. calibration (imSMA, imM1, imS1, imPPC); //refresh calibration values

12. [ThrSMA, ThrM1, ThrS1, ThrPPC] calibration(imSMA, imM1, imS1, imPPC) {
13. //In the first calibration section, the system embeds the extraction of the 95th

ThrsMA = prctile (*MSMA, 95); --+; ThrPPC = prctile (*MPPC, 95);
14. //In the second one, the vector is automatically updated with the new “im” value, preparing the system for the next contraction.
“MPPC(0)=[];

*MPPC=[*MPPC imPPC]

Pseubpocobk 1: Pseudocode of logic network classifier routine and system calibration.

TaBLE 3: Data and anthropometric measurements of the analyzed
subjects.

Features Value

Age 28.3 +5.1 years
Height 1.72+0.06 m
Weight 65.2+9.4kg
Gender distribution 83% M, 17% F
Walking speed 1.11 £0.07 m/s

3.2.1. PIFD Algorithm Performance: Accuracy. Table 4
summarizes the system performance in terms of the follow-
ing: muscular response side, number of active cortical
groups, number of false alarms, and, finally, sensitivity and
specificity. The “response side” column identifies the lateral
gastrocnemius which first intervenes to try avoiding the fall.
The experimental results show that in the presence of a bal-
anced perturbation delivery (50% on the life side, 50% on
the right one), subjects react the 57.22% of the cases by con-
tracting the left gastrocnemius. This value does not consider
the missing data (MD) due to misclassifications. The report

shows how three subjects (Subs 1, 5, and 6) potentially react
according to the medical literature [12, 36] by contracting the
gastrocnemius of the unperturbed leg to restore balance. In
the remaining cases, an anomalous stiffness on the right limb
was recorded.

The “active cortical groups” column identifies the num-
ber of functional cortical groups usually above the thresholds,
averaged on the 5 bands of interest. In this respect, Table 4
shows how, on average, a “nonstandard” neural behavior is
detected on the 3.24 £ 0.73 cortical groups (mean and stan-
dard deviation on 5 bands of interest) in the presence of per-
turbation (F—Table 4). Similarly, the cortical groups actively
involved in the steady walking (W—Table 4) are, on average,
1.66 £ 0.37. The results support the theoretical hypothesis
behind the logical network classification: a widespread (not
lateralized) and general cortical activity increment could
identify a possible loss of balance.

Table 4 also shows how the proposed system can reach an
overall sensitivity of Se (%) = 93.33 + 5.16% and a specificity
of Sp (%) = 98.91 + 0.44%, fully competitive with the state of
art. A quantitative comparison with the above detailed state-
of-the-art solutions is shown in Figure 5.
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TaBLE 4: PIFD performance report: accuracy.

11

Sub. Response side Active cortical groups False alarms Se (%) Sp (%)
R: 50%
F:3.22+0.83
1 L: 40% W: 1.70 + 0.82 3 90.00 (9/10) 99.22 (386/389)
10% MD*!
R: 40% F:3.10+0.73
2 L: 60% W: 150 + 1.17 5 100.00 (10/10) 98.32 (292/297)
. 0,
3 N 3O°A) F:3.10:+0.73 4 90.00 (9/10 98.71 (308/312
L: 60% W: 1.80+0.83 00 (9710) 71 )
10% MD*'
. 0,
4 N ZOOA) I 3.20:+0.78 5 90.00 (9/10 98.55 (339/344)
L: 70% W:230+1.15 00 (9/10) :
10% MD*'
. [V
5 N 500/0 F:3.20£0.78 2 90.00 (9/10 99.46 (370/372
L: 40% W:1.20+1.22 00 (9/10) : )
10% MD*!
R: 50% F:3.10+0.73
6 L 20% W 1502097 3 100.00 (10/10) 99.20 (374/377)
R: 42.77% F:3.14 £ 0.06
Average 1t0 6 L: 57.22% + 13.40% W: 1.67 + 0.37 3.67+1.21 93.33+5.16 98.91 +£0.44

*!MD: missing data due to misclassification; F: fall; W: steady walking,
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FiGURe 5: State-of-the-art
parameter of PIFD strategy.

comparison about the accuracy

3.2.2. PIFD Algorithm Performance: Efficiency. The efficiency
of a PIFD strategy is typically evaluated in terms of time
interval to reliably detect a loss of balance. This parameter
can be derived as the time interval between the perturbation
onset and the loss of balance status recognition. In this con-
text, the proposed system has been validated by a motion
capture system (MCS) to obtain, with proper precision, the
perturbation onset provided by the SENLY platform in
anterior-posterior direction on the selected limb.

The detection time, extracted during the experimental
tests, is summarized in Table 5. They are computed consider-
ing the perturbation onset instant as the voltage step supplied

TaBLE 5: PIFD performance report: efficiency.

Sub. ID ?I}:f/e:)i Operzz;[ilrg time Detec(tIiI(l)sr; time
1 1.05 21.753 £0.015 369.83 +£97.49
2 1.10 21.744 +£0.012 436.72 + 86.66
3 1.00 21.739£0.008  299.76 + 107.99
4 1.15 21.751+0.014  355.85+151.38
5 1.18 21.750£0.012  446.72+112.89
6 1.17 21.654+0.011 314.82 £ 105.34

Average1to6 1.11+0.07

21.732+0.035

370.62 £ 60.85

to SENLY via Vicon Nexus software programming (MCS).
The time resolution of this rising edge is <10 ms, but conser-
vatively, we considered it in the detection time.

In Table 5, the “operating time” column shows the
computation time associated with the complete Computing
System (Figure 2) working flow, which comprises (i) mus-
cle trigger activation, (ii) sliding window FFT, (iii) band
multiplexing, (iv) generalization and lateralization step,
(v) logic network based classification, and (vi) recalibration
of thresholds.

More generally, the report in Table 5 shows that, on six
analyzed subjects, the implemented system requires, on aver-
age, 370.62 + 60.85ms to detect the induced fall. More in
detail, the only Computing System (Figure 2) demands, on
average, for 21.732+0.035ms to conclude the above-
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F1GURE 6: Implemented system detection times assessed on each trial and for each subject involved in the study.

defined six operations from muscle trigger activation to
recalibration of thresholds.

The remaining time (~350 ms on average), with its high
variability, is strictly related to the selected muscle bundle
for the MT function (i.e., lateral gastrocnemius). In fact, it
is better to remember that the system starts working from
the contraction of the gastrocnemius (right or left indepen-
dently). The times related to this physiological process
remain not determinable with certainty. In this respect, the
response times of the gastrocnemius constitute unavoidable
delays in recognizing losses of balance and largely determine
the efficiency of the system.

To provide a more complete overview of the efficiency,
Figure 6 shows the trial-by-trial response times of the imple-
mented system. In the worst case (i.e., Sub 2 and Trial 5), the
system takes about 634 ms to intervene, while in the best case
(i.e., Sub 6 and Trial 4), the system recognizes the loss of bal-
ance in about 160.4 ms.

The achieved detection times are competitive with
respect to the state-of-the-art solutions, highlighting the sys-
tem applicability in contexts of postural recovery strategy
implementation.

A final comparative plot with the state-of-the-art solu-
tions is provided in Figure 7. The plot shows the detection
time versus the overall accuracy (i.e., mean between Se (%)
and Sp (%)), providing an interesting metric for the perfor-
mance assessment of the PIFD algorithm. Ideally, the algo-
rithms should tend to the bottom-right corner.
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FIGURE 7: State-of-the-art comparison: detection time (ms) versus
accuracy (%).

4. Conclusions

In this paper, a novel methodology that early discriminates
an unexpected loss of balance event from ordinary life
movements, by analyzing the subjects’ cortical signal modi-
fications (at the scalp level) in the time-frequency domain
has been presented.

The system was successfully tested and optimized for the
early detection of balance losses when unexpected slippages
occur during the walking, realizing a first-of-a-kind wearable
sensor-based recognition system for induced slippages.
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Experimental validation on six young adults demon-
strated that the system recognizes a loss of balance with a
sensitivity of 93.33% and a specificity of 98.91%. In terms of
efficiency, the system asks for 370.62 ms to recognize a bal-
ance perturbation.

The here-proposed PIFD strategy has been designed to be
low compute intensive and thus suitable for the implementa-
tion on a microcontroller or FPGA.

The performance (accuracy and detection time) suggest
the technique for real-time applications. Despite this, future
perspectives concern the application of the PIFD methodol-
ogy to a catchment area more relevant to the objective (group
of persons 65+), as well as the identification of the proper
protection or mitigation strategies (e.g., by using wearable
robotic platforms) and the improvement of the acquisition
system wearability.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the project AMICO (Assistenza
Medicale In COntextual awareness, AMICO Project ARS01_
00900) by the National Programs (PON) of the Italian Min-
istry of Education, University and Research (MIUR) (Decree
no. 267).

References

[1] J. Massion, “Postural control system,” Current Opinion in
Neurobiology, vol. 4, no. 6, pp. 877-887, 1994.

[2] M. P. Murray, A. A. Seireg, and S. B. Sepic, “Normal postural
stability and steadiness: quantitative assessment,” The Journal
of Bone & Joint Surgery, vol. 57, no. 4, pp. 510-516, 1975.

[3] D. S. Marigold and J. E. Misiaszek, “Whole-body responses:
neural control and implications for rehabilitation and fall pre-
vention,” The Neuroscientist, vol. 15, no. 1, pp. 36-46, 2009.

[4] J. E. Misiaszek, “Neural control of walking balance: if falling
then react else continue,” Exercise and Sport Sciences Reviews,
vol. 34, no. 3, pp. 128-134, 2006.

[5] N. Noury, T. Herve, V. Rialle et al., “Monitoring behavior in
home using a smart fall sensor and position sensors,” in Ist
Annual International IEEE-EMBS Special Topic Conference
on Microtechnologies in Medicine and Biology. Proceedings
(Cat. No.OOEX451), pp. 607-610, Lyon, France, 2000.

[6] O. P. Ryyninen, S. L. Kiveld, R. Honkanen, and P. Laippala,
“Falls and lying helpless in the elderly,” Zeitschrift fiir Geronto-
logie, vol. 25, no. 4, pp. 278-282, 1992.

[7] S. Chaudhuri, H. Thompson, and G. Demiris, “Fall detection
devices and their use with older adults: a systematic review,”
Journal of Geriatric Physical Therapy, vol. 37, no. 4, pp. 178—
196, 2014.

13

[8] X.HuandX. Qu, “Pre-impact fall detection,” BioMedical Engi-

neering OnLine, vol. 15, no. 1, p. 61, 2016.

X. Hu and X. Qu, “An individual-specific fall detection model

based on the statistical process control chart,” Safety Science,

vol. 64, pp. 13-21, 2014.

[10] D. Martelli, F. Artoni, V. Monaco, A. M. Sabatini, and
S. Micera, “Pre-impact fall detection: optimal sensor position-
ing based on a machine learning paradigm,” PLoS One, vol. 9,
no. 3, article €92037, 2014.

[11] J. Liu and T. E. Lockhart, “Development and evaluation of a
prior-to-impact fall event detection algorithm,” IEEE Transac-
tions on Biomedical Engineering, vol. 61, no. 7, pp. 2135-2140,
2014.

[12] D. A. Winter, Biomechanics and Motor Control of Human
Movement, John Wiley & Sons, 2009.

[13] A.K. Bourke, K. J. O’'Donovan, and G. OLaighin, “The identi-
fication of vertical velocity profiles using an inertial sensor to
investigate pre-impact detection of falls,” Medical Engineering
& Physics, vol. 30, no. 7, pp. 937-946, 2008.

[14] L.Tong, Q. Song, Y. Ge, and M. Liu, “HMM-based human fall
detection and prediction method using tri-axial accelerome-
ter,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1849-1856, 2013.

[15] V. Monaco, P. Tropea, F. Aprigliano et al., “An ecologically-
controlled exoskeleton can improve balance recovery after
slippage,” Scientific Reports, vol. 7, no. 1, article 46721, 2017.

[16] N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Auto-
matic fall monitoring: a review,” Sensors, vol. 14, no. 7,
pp- 12900-12936, 2014.

[17] D.De Venuto, V. F. Annese, M. de Tommaso, E. Vecchio, and
A. L. Sangiovanni Vincentelli, “Combining EEG and EMG sig-
nals in a wireless system for preventing fall in neurodegenera-
tive diseases,” in Ambient Assisted Living, B. Ando, P. Siciliano,
V. Marletta, and A. Monterill, Eds., vol. 11 of Biosystems &
Biorobotics, Springer, Cham, Switzerland, 2015.

[18] V. F. Annese and D. De Venuto, “Fall-risk assessment by
combined movement related potentials and co-contraction
index monitoring,” 2015 IEEE Biomedical Circuits and Sys-
tems Conference (BioCAS), 2015, pp. 1-4, Atlanta, GA,
USA, 2015.

[19] D. de Venuto, D. T. Castro, Y. Ponomarev, and E. Stikvoort,
“0.8 W 12-bit SAR ADC sensors interface for RFID applica-
tions,” Microelectronics Journal, vol. 41, no. 11, pp. 746-751,
2010.

[20] V.F. Annese and D. De Venuto, “The truth machine of invol-
untary movement: FPGA based cortico-muscular analysis for
fall prevention,” in 2015 IEEE International Symposium on Sig-
nal Processing and Information Technology (ISSPIT), pp. 553—
558, Abu Dhabi, United Arab, 2015.

[21] D. De Venuto, M. J. Ohletz, and B. Ricco, “Digital window
comparator DfT scheme for mixed-signal ICs,” Journal of Elec-
tronic Testing, vol. 18, no. 2, pp. 121-128, 2002.

[22] D.De Venuto and M. J. Ohletz, “On-chip test for mixed-signal
ASICs using two-mode comparators with bias-programmable
reference voltages,” Journal of Electronic Testing, vol. 17,
no. 3/4, pp. 243-253, 2001.

[23] O. Aziz, C. M. Russell, E. J. Park, S. Member, and S. N. Robino-
vitch, “The effect of window size and lead time on pre-impact
fall detection accuracy using support vector machine analysis
of waist mounted inertial sensor data,” in 2014 36th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 30-33, Chicago, IL, USA, 2014.

9

—



14

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Y. Lajoie and S. P. Gallagher, “Predicting falls within the
elderly community: comparison of postural sway, reaction
time, the Berg balance scale and the Activities-specific Balance
Confidence (ABC) scale for comparing fallers and non-fallers,”
Archives of Gerontology and Geriatrics, vol. 38, no. 1, pp. 11-
26, 2004.

G. Wu and S. Xue, “Portable preimpact fall detector with iner-
tial sensors,” IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, vol. 16, no. 2, pp. 178-183, 2008.

G. Zhao, Z. Mei, D. Liang et al., “Exploration and imple-
mentation of a pre-impact fall recognition method based
on an inertial body sensor network,” Sensors, vol. 12, no. 11,
pp. 15338-15355, 2012.

D. De Venuto, V. F. Annese, and G. Mezzina, “An embedded
system remotely driving mechanical devices by P300 brain
activity,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2017, pp. 1014-1019, Lausanne, Swit-
zerland, 2017.

J. P. Varghese, R. E. MclIlroy, and M. Barnett-Cowan, “Pertur-
bation-evoked potentials: significance and application in
balance control research,” Neuroscience ¢ Biobehavioral
Reviews, vol. 83, pp. 267-280, 2017.

E. Wittenberg, J. Thompson, C. S. Nam, and J. R. Franz, “Neu-
roimaging of human balance control: a systematic review,”
Frontiers in Human Neuroscience, vol. 11, p. 170, 2017.

A. Mierau, B. Pester, T. Hiilsdiinker, K. Schiecke, H. K. Strii-
der, and H. Witte, “Cortical correlates of human balance con-
trol,” Brain Topography, vol. 30, no. 4, pp. 434-446, 2017.

S. Makeig, K. Gramann, T.-P. Jung, T. J. Sejnowski, and
H. Poizner, “Linking brain, mind and behavior,” International
Journal of Psychophysiology, vol. 73, no. 2, pp. 95-100, 2009.
J. E. Cavanagh and M. J. Frank, “Frontal theta as a mechanism
for cognitive control,” Trends in Cognitive Sciences, vol. 18,
no. 8, pp. 414-421, 2014.

W. Klimesch, R. Fellinger, and R. Freunberger, “Alpha oscilla-
tions and early stages of visual encoding,” Frontiers in Psychol-
ogy, vol. 2, p. 118, 2011.

A. K. Engel and P. Fries, “Beta-band oscillations — signalling
the status quo?,” Current Opinion in Neurobiology, vol. 20,
no. 2, pp. 156-165, 2010.

C. Neuper and G. Pfurtscheller, “Event-related dynamics of
cortical rhythms: frequency-specific features and functional
correlates,” International Journal of Psychophysiology, vol. 43,
no. 1, pp. 41-58, 2001.

T. Solis-Escalante, J. van der Cruijsen, D. de Kam, J. van Kor-
delaar, V. Weerdesteyn, and A. C. Schouten, “Cortical dynam-
ics during preparation and execution of reactive balance
responses with distinct postural demands,” Neurolmage,
vol. 188, pp. 557-571, 2019.

D. De Venuto and J. Rabaey, “RFID transceiver for wireless
powering brain implanted microelectrodes and backscattered
neural data collection,” Microelectronics Journal, vol. 45,
no. 12, pp. 1585-1594, 2014.

L. B. Luciani, V. Genovese, V. Monaco, L. Odetti, E. Cattin,
and S. Micera, “Design and evaluation of a new mechatronic
platform for assessment and prevention of fall risks,” Journal
of Neuroengineering and Rehabilitation, vol. 9, no. 1, p. 51,
2012.

F. Aprigliano, D. Martelli, P. Tropea, G. Pasquini, S. Micera,

and V. Monaco, “Aging does not affect the intralimb coordina-
tion elicited by slip-like perturbation of different intensities,”

(40]

[41]

(42]

(43]

(44]

(45]

Journal of Sensors

Journal of Neurophysiology, vol. 118, no. 3, pp. 1739-1748,
2017.

D. Martelli, F. Aprigliano, P. Tropea, G. Pasquini, S. Micera,
and V. Monaco, “Stability against backward balance loss:
age-related modifications following slip-like perturbations of
multiple amplitudes,” Gait & Posture, vol. 53, pp. 207-214,
2017.

M. Sazgar and M. G. Young, “EEG Artifacts,” in Absolute Epi-
lepsy and EEG Rotation Review, pp. 149-162, Springer, Cham,
Switzerland, 2019.

S. Blum, N. S. J. Jacobsen, M. G. Bleichner, and S. Debener, “A
Riemannian modification of artifact subspace reconstruction
for EEG artifact handling,” Frontiers in Human Neuroscience,
vol. 13, p. 141, 2019.

V. F. Annese and D. De Venuto, “Gait analysis for fall predic-
tion using EMG triggered movement related potentials,” in
2015 10th International Conference on Design and Technology
of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, Naples,
Italy, 2015.

M. Blagojevic, M. Kayal, M. Gervais, and D. De Venuto, “SOI
hall-sensor front end for energy measurement,” IEEE Sensors
Journal, vol. 6, no. 4, pp. 1016-1021, 2006.

S. Carrara, M. D. Torre, A. Cavallini, D. De Venuto, and G. De
Micheli, “Multiplexing pH and temperature in a molecular
biosensor,” in 2010 Biomedical Circuits and Systems Confer-
ence (BioCAS), pp. 146-149, Paphos, Cyprus, 2010.



International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal ——  Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of ) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration


https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

