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Abstract: When high-amplitude, short-duration electric pulses are applied to cells the permeability
of their membranes is increased. From the biological point of view, the phenomenon is quite
well understood, however, it is important to develop accurate numerical models to investigate the
electroporation effectiveness in terms of electrical, geometrical and physical parameters. To this aim,
in this paper, we illustrate a spatio–temporal, non-linear, and dispersive multiphysics approach to
study the electroporation in irregularly nucleated shaped cells. The model couples the Maxwell
equations with the partial differential equation describing the creation and closure of pores as
well as the evolution of the pore size. The dispersive properties of biological media and the
irregular geometries of the membranes have been described using the multi-relaxation Debye-based
relationship and the Gielis superformula, respectively. Numerical simulations highlight the
importance to include in the model the spatial and temporal evolution of the pore radius. In fact,
the obtained numerical results show significant discrepancies between our model and the one in
which the pore radius dynamics is negligible.

Keywords: electroporation; pulsed electric field; nucleated irregularly shaped cells; numerical model;
pore radius evolution

1. Introduction

Electroporation (EP) is a non-thermal electromagnetic phenomenon in which the cell membrane
permeability increases when exposed to a high voltage pulsed electric field (PEF). As a result,
exogenous molecules that usually cannot cross the membrane barrier can enter the cytoplasm
and nucleoplasm. EP is used in clinical and medical practice for various applications such as
electrochemotherapy, gene therapy, DNA vaccination and nonthermal ablation [1,2]. Electroporation
combined with chemotherapeutic drugs was found to be a very effective treatment both for killing
tumor cells in vitro and for treating cancer in humans [3]. The effectiveness of the electroporation
process depends on various physical and chemical parameters, such as the molecular composition
of the membrane, but above all, on the parameters of electric pulses such as duration, frequency,
rise and fall time, amplitude and number of pulses [4,5]. Conventional methods of electroporation
use pulses of micro-millisecond duration to electroporate the cells. In this case, only the plasma
membrane is electroporated since the cytoplasm and the extracellular medium act like good conductors.
PEF with duration from the sub-microsecond to the nanosecond induce the electroporation of the
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plasma membrane as well as the permeabilization of the intracellular membranes. Furthermore,
the electroporation process efficiency also depends on the type of cell [6], the mutual interaction
with other cells and the cell positioning with respect to the electrodes [7]. Although electroporation
is widely used in medical practice, EP protocols are very empirical as well as the electroporation
process is not completely known. However, the accuracy of the mathematical model adopted to
study the electroporation process has a considerable impact on the experimental analysis and on the
choice of the EP parameters. Several numerical models have been proposed in literature to study
the EP. Most of them use simplified geometric shapes to describe biological membranes as well as
consider cellular structures as non-dispersive media. Moreover, in order to simplify the numerical
calculation and to reduce the computational efforts, other methods do not take into account the
thinness of the membranes. Among the different models of EP, studies implementing the dynamics
of the pore radius have been also presented even if they were based on a simple cell geometry [8,9].
In view of these weaknesses, the present study is aimed at the evaluation of the transmembrane
voltage (TMV) and pore density in a nucleated irregular-shaped cell. To this aim, a non-linear and
dispersive numerical algorithm was developed. The dielectric response of cellular structures was
modeled by incorporating the multi-relaxation Debye-based equations. Furthermore, the irregular
shape of the cell was modeled by using the Gielis superformula. The Maxwell equations were solved
in conjunction with the asymptotic Smoluchowski equation and the partial differential equations
describing the spatial and time evolution of the size of the pores. Using the developed numerical
algorithm, the electroporation process has been evaluated exposing the biological cell to short and
long nanosecond pulses. Thus a comparison among models in which the pore radius dynamics are
taken into account and the one in which it is neglected has been performed.

2. Mathematical Formulation

2.1. Cell Geometry Model

As shown in Figure 1, the biological cell considered in the proposed study is the nucleated
cancer-like cell. The cell shape is modelled by using the Gielis superformula [4,6,7,10,11]. The relevance
of the Gielis superformula to model the cell membranes perimeter was previously highlighted in [4].
Contrary to the canonical spherical cell-based model, an unconventional behavior of irregularly shaped
cells was observed. In fact, the TMV does not have a conventional cosine type behavior and moreover,
non-homogeneous EP effects occur along the cell membrane perimeter. In particular, the radius vectors
r1 and r2 describing the plasma and nuclear membranes, respectively, are given by:

r1,2 = r̂1,2

√
x2

1,2 + y2
1,2 (1)

x1,2 = A1,2R1,2 (θ) cos θ (2)

y1,2 = B1,2R1,2 (θ) sin θ (3)

R1(θ) =

(∣∣∣∣cos (m1θ/4)
d1

∣∣∣∣n1

+

∣∣∣∣ sin (m2θ/4)
d2

∣∣∣∣n2
)−1/b1

(4)

R2(θ) =

[∣∣∣∣cos (m3θ/4)
d3

∣∣∣∣n3

+

∣∣∣∣ sin (m4θ/4)
d4

∣∣∣∣n4
]−1/b2

, (5)

where θ ∈ [−π/2, π/2], mi, ni, i = 1, . . . , 4 and b1,2 are positive real numbers, dj, j = 1, . . . , 4 are strictly
positive real numbers, A1,2 and B1,2 are appropriate scaling factors. The plasma membrane boundary of
the selected cell can be well-approximated by using the superformula parameters A1 = B1 = 16.8 µm,
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m1 = m2 = 6, d1 = d2 = 1, n1 = n2 = 1 and b1 = −2 as well as the nuclear membrane can be modelled
by using the following Gielis parameters A1 = B1 = 3 µm, m1 = m2 = 2, d1 = d2 = 1, n1 = n2 = 4
and b2 = 1. Moreover, to generate the cell membrane thinness, a particular extrusion operator
transformation has been suitably implemented. In particular, the following equations was implemented

xi = xe

(
1 +

h√
x2

e + y2
e

)
(6)

yi = ye

(
1 +

h√
x2

e + y2
e

)
, (7)

where (xi, yi) are the coordinates of the internal side of the membrane, (xe, ye) are the coordinates of
the external side of the membrane, h is the membrane thickness.
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Figure 1. Sketch of the nucleated irregular cell geometry.

2.2. Pores Radius Model

The EP has been attributed to the creation of transient pores within the lipid bi-layer of the cell
membrane when an external PEF is applied. This dynamic process can be modelled by Krassowska’s
asymptotic equation [12]. In particular, the temporal evolutions of pore densities for plasma NPm
and nuclear NNm membranes are calculated by solving the following first-order partial differential
equations:

∂NPm(x, y, t)
∂t

= αe
(

TMVPm
Vep

)2
[

1− NPm
N0

e
−q
(

TMVPm
Vep

)2
]

(8)

∂NNm(x, y, t)
∂t

= αe
(

TMVNm
Vep

)2
[

1− NNm
N0

e
−q
(

TMVNm
Vep

)2
]

, (9)

where N0 is the pore density in the resting membrane, α and q are EP parameters, Vep is the
characteristic voltage of EP, TMVPm and TMVNm are the TMV evaluated on plasma and nuclear
membrane, respectively. Pore density is proportional to the amplitude of the applied electric field
as well as the pores creation enhances the membrane conductivity. In particular, the membrane
conductivity increase that accompanies electroporation can be computed as follows:

σPm(x, y, t) = σ0,Pm +KPmNPm(x, y, t)σp,Pmπr2
p,Pm (10)

σNm(x, y, t) = σ0,Nm +KNmNNm(x, y, t)σp,Nmπr2
p,Nm, (11)
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where σ0,Pm and σ0,Nm are the membrane conductivity at rest, σp,Pm and σp,Nm are the conductivities of
the medium inside the pore and rp,Pm and rp,Nm the pore radius, respectively, for plasma and nuclear
membrane, and

KPm =
eνPm − 1

w0ew0−ηνPm − ηνPm
w0 − ηνPm

eνPm − w0ew0+ηνPm + ηνPm
w0 + ηνPm

(12)

KNm =
eνNm − 1

w0ew0−ηνNm − ηνNm
w0 − ηνNm

eνNm − w0ew0+ηνNm + ηνNm
w0 + ηνNm

, (13)

where w0 is the energy barrier inside the pore and η is the relative length of pore entrance area with

νPm = (qe/kT)TMVPm (14)

νNm = (qe/kT)TMVNm, (15)

where qe is the electron electric charge and k the Boltzmann constant.
The density and size of the pores depend on the intensity of the applied electric field. In stationary

conditions, a dynamic equilibrium among the steric repulsion of lipid heads, the line tension acting
on the pore perimeter and the surface tension of the cell membrane occurs [13]. When an external
electric field is applied, this balance is lost and the pores radius start to increase. The pores initially
created with radius rp,Pm (for plasma membrane) and rp,Nm (for nuclear membrane), change size to
minimize the energy of the entire lipid bilayer. So, the temporal evolution of pore radius for the plasma
membrane is calculated by solving the following differential equation [8]:

∂rp,Pm

∂t
=

D
kT

4

∑
i=1

Si,Pm rp,Pm ≥ rpm, (16)

with

S1,Pm =
F (TMVPm)

2

1 +
k1(

rp,Pm + k2
) (17)

S2,Pm = 4β

(
rpm

rp,Pm

)4 1
rp,Pm

(18)

S3,Pm = −2πγ (19)

S4,Pm = 2πTe,Pmrp,Pm, (20)

where Te,Pm is the effective tension of the membrane:

Te,Pm = 2Te2 −
2Te2 − Te1(

1− KaNPmπr2
p,Pm

)2 (21)

Similarly for the nuclear membrane, the temporal evolution of pore radius is determined as follow:

∂rp,Nm

∂t
=

D
kT

4

∑
i=1

Si,Nm rp,Nm ≥ rpm (22)
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with

S1,Nm =
F (TMVNm)

2

1 +
k1(

rp,Nm + k2
) (23)

S2,Nm = 4β

(
rpm

rp,Nm

)4 1
rp,Nm

(24)

S3,Nm = −2πγ (25)

S4,Nm = 2πTe,Nmrp,Nm, (26)

where Te,Nm is the effective tension of the membrane:

Te,Nm = 2Te2 −
2Te2 − Te1(

1− KaNNmπr2
p,Nm

)2 . (27)

In Equations (16) and (22), S1,Pm and S1,Nm account for the electric force induced by the local
TMV, S2,Pm and S2,Nm for the steric repulsion of lipid heads, S3,Pm and S3,Nm for the line tension acting
on the pore perimeter, S4,Pm and S4,Nm for the surface tension of the cell membranes [8]. This study
assumes that changes of cell area, volume, and shape can be ignored for pulses duration considered
here. In particular, the presented model evaluating the temporal evolutions of pore densities and pore
radius for plasma and nuclear membranes makes possible a quantitative evaluation of the membranes
permeability to specific molecules and ions.

2.3. Complex Permittivity Model

The interaction of the PEF with the dielectric medium of cell compartment can be investigated by
considering the electric polarization, i.e., the electric field induced disturbance of the charge distribution.
From the macroscopic point of view, such interaction is generally due to different phenomena as
the orientation of dipoles, ionic diffusion, interfacial polarization etc. Dielectric dispersion is the
corresponding frequency dependence of permittivity which typically display extremely high dielectric
constants at low frequencies, falling off in more or less distinct steps as the excitation frequency is
increased. Cell suspensions typically exhibit a significant β-dispersion in the radio frequency range.
This is due to the Maxwell–Wagner effect at the interface between the intra or extracellular solution
and the phospholipid membrane. They also display a large α-dispersion at low frequency caused by
the sarcoplasmic reticulum, gap junctions, and counterion relaxation on the cell surface. Moreover,
an additive β-dispersion coming from the dispersion of organelles appears as a small tail to the large
cell membrane β-dispersion [14]. In our numerical analysis, the following Debye-based relationship
has been used to model the dispersive behavior of each cellular compartment [4,7,10].

ε(ω) = ε∞ +
M

∑
i=1

∆εi
1 + jωτi

, (28)

where M is the order of Debye equation, ε∞ is the high frequency permittivity, ∆εi are the relaxation
amplitudes and τi are the relaxation times. As the dielectric relaxation of the plasma (Pm) and nuclear
(Nm) membrane takes place in the MHz region, a second order Debye equation has been used to
describe their dispersive properties. Instead, the dielectric relaxation of the extracellular medium (Ex),
the cytoplasm (Cp) and the nucleoplasm (Np) occurs in the GHz zone and thus a first order Debye
equation has been adopted to model the dispersive properties of these materials. The time domain
relations pertaining the polarization vector P1 and P2, corresponding to the first and the second order
Debye dispersion model, can be formulated as:
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τEx
∂P1,Ex

∂t
+ P1,Ex = (ε∞ − ε0)τEx

∂E
∂t

+ (∆εEx + ε∞ − ε0)E (29)

τCp
∂P1,Cp

∂t
+ P1,Cp = (ε∞ − ε0)τCp

∂E
∂t

+ (∆εCp + ε∞ − ε0)E (30)

τNp
∂P1,Np

∂t
+ P1,Np = (ε∞ − ε0)τNp

∂E
∂t

+ (∆εNp + ε∞ − ε0)E (31)

a2,Pm
∂2P2,Pm

∂t2 + a1,Pm
∂P2,Pm

∂t
+ P2,Pm = b2,Pm

∂2

∂Et2 + b1,Pm
∂

∂Et
+ b0,PmE (32)

a2,Nm
∂2P2,Nm

∂t2 + a1,Nm
∂P2,Nm

∂t
+ P2,Nm = b2,Pm

∂2E
∂t2 + b1,Nm

∂E
∂t

+ b0,NmE, (33)

where

a1,Pm = τ1,Pm + τ2,Pm (34)

a2,Pm = τ1,Pmτ2,Pm (35)

b0,Pm = ∆ε1,Pm + ∆ε2,Pm + ε∞ − ε0 (36)

b1,Pm = (∆ε2,Pm + ε∞ − ε0)τ1,Pm + (∆ε1,Pm + ε∞ − ε0)τ2,Pm (37)

b2,Pm = (ε∞ − ε0)τ1,Pmτ2,Pm, (38)

and

a1,Nm = τ1,Nm + τ2,Nm (39)

a2,Nm = τ1,Nmτ2,Nm (40)

b0,Nm = ∆ε1,Nm + ∆ε2,Nm + ε∞ − ε0 (41)

b1,Nm = (∆ε2,Nm + ε∞ − ε0)τ1,Nm + (∆ε1,Nm + ε∞ − ε0)τ2,Nm (42)

b2,Nm = (ε∞ − ε0)τ1,Nmτ2,Nm. (43)

2.4. Electromagnetic Model

The electromagnetic model is based on the Maxwell equations

∮
Γ

H · dl =
∂

∂t

∫
S

(
σE + ε0

∂E
∂t

+
∂P
∂t

)
· dS (44)∮

Γ
E · dl = − ∂

∂t

∫
S

B · dS. (45)

In particular, taking into account the small cell size and the microsecond/nanosecond electric
pulses, the rate of the magnetic flux can be neglected. So, the resulting Maxwell equations in the
differential form can be written in terms of the electric potential φ and the electric field E as

∇ ·
(

ε0
∂∇φ

∂t
+ σ∇φ− ∂P

∂t

)
= 0 (46)

E = −∇φ. (47)

Finally, the TMV for the Pm and Nm membrane is evaluated as the difference between the electric
potential inside (i) and outside (o) of each membrane:
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TMVPm(x, y, t) = φi,Pm(x, y, t)− φo,Pm(x, y, t) (48)

TMVNm(x, y, t) = φi,Nm(x, y, t)− φo,Nm(x, y, t). (49)

3. Results

Implementing the aforesaid computational algorithm, the EP process was studied in both the
cases characterized by variable and constant pore radius. The simulations were carried out considering
the nucleated cancer cell inserted into a 2D space domain having length L = 100 µm and width W =

100 µm (see Figure 1). Table 1 shows the geometric, electric and EP parameters used in the numerical
computations. Our computations and plots have been performed using MATLAB suite software.
In our calculations, the nuclear envelope consists of two membranes in near contact between them,
each one with a thickness equal to half the thickness of the entire nuclear envelope. Such hypothesis
can be justified taking into account that the voltage drop across the perinuclear space is negligible [6].
In particular, both the inner and outer membranes of the nuclear envelope have the same conductivity
σ0,Nm = 1× 10−4 S m−1. Thus, supposing that the transmembrane voltage is equally distributed
between the two lipid membranes, the TMV through the single membrane is calculated as half
of the voltage on the entire nuclear envelope [15]. Moreover, in the case of the numerical model
with a constant pore radius an appropriate validation was carried out in [6] using the experimental
results concerning real cancer cells electroporated by a unipolar rectangular pulse with duration of
100 µs. Firstly, the biological cell has been exposed to a PEF having rectangular shape with amplitude
E = 100 kV cm−1, duration T = 10 ns, rise time tr = 0.9 ns, and fall time t f = 0.9 ns. Moreover, a time
delay of 5 ns and a computational window for the time coordinate of 20 ns was considered. Figure 2a–c
highlight the dynamics versus the time of the TMV, pore density and conductivity of the membranes
at the top of the cancer-like cell (θ = 90◦), respectively, for the model with the pore radius variable,
rv

p, and the model with the pore radius constant and equal to rp = 0.8 nm, rc
p. The application of the

external pulse generates a rapid increase in the transmembrane voltage on the plasma and nuclear
membrane. The resulting pore creation, as well as the increase of the membrane conductivity, lead to a
decrease of the TMV reaching a negative peak value. For both models, the activation of electroporation
occurs at the same time instant. The subsequent decrease of TMV is more rapid in the model with a
variable pore radius compared to that with a constant pore radius. In fact, the enhancement of both
pore density and radius creates a rapid increment of membranes conductivity generating a reduction
of the transmembrane voltage. Moreover, Figure 2d displays the dynamics versus the time of pore
radius at the top of the cancer-like cell for the plasma and the nuclear membrane. As the applied pulse
is of short duration, the temporal dynamics of the pore radius is similar for the plasma and the nuclear
membrane, increasing from 0.51 nm (minimum radius of hydrophilic pores) to a maximum value of
about 0.64 nm. Therefore, given the temporal shortness of the applied pulse, the pore radius for both
the plasma and the nuclear membrane does not reach the value of rp0 = 0.8 nm which represents the
minimum energy radius at TMV = 0 V. In addition, the pore radius size assumes equal values for the
Pm and Nm membrane up to 5 ns, which denotes the time instant in which the applied pulse starts its
activation. Moreover, an appreciable difference between the temporal evolution of the pore radius
for each membrane is obtained starting by 10 ns. Furthermore, Figure 2e illustrates the pore density
along the membranes circumference at t = 20 ns for both models. As highlighted by the obtained
numerical results, the values of the pore density for the nuclear and the plasma membrane obtained
using the model with pore radius variable are higher than that evaluated with the model having pore
radius constant.



Electronics 2019, 8, 1477 8 of 12

Table 1. Polarization, electric, geometrical, and electroporation (EP) parameters.

Title 1 Title 2 Title 3

τ1,Pm 3× 10−9 s First relaxation time of plasma membrane [16]
τ1,Nm 3× 10−9 s First relaxation time of nuclear membrane [16]
τ2,Pm 4.6× 10−10 s Second relaxation time of plasma membrane [16]
τ2,Nm 4.6× 10−10 s Second relaxation time of nuclear membrane [16]
τEx 6.2× 10−12 s Relaxation time of extracellular medium [17]
τCp 6.2× 10−12 s Relaxation time of cytoplasm [17]
τNp 6.2× 10−12 s Relaxation time of nucleoplasm [17]

∆ε1,Pm 2.3× 10−11 F m−1 First relaxation amplitude of plasma membrane [16]
∆ε1,Nm 2.3× 10−11 F m−1 First relaxation amplitude of nuclear membrane [16]
∆ε2,Pm 7.4× 10−12 F m−1 Second relaxation amplitude of plasma membrane [16]
∆ε2,Nm 7.4× 10−12 F m−1 Second relaxation amplitude of nuclear membrane [16]
∆εEx 5.9× 10−10 F m−1 Relaxation amplitude of extracellular medium [17]
∆εCp 5.9× 10−10 F m−1 Relaxation amplitude of cytoplasm [17]
∆εNp 5.9× 10−10 F m−1 Relaxation amplitude of nucleoplasm [17]

ε∞ 13.9× 10−12 F m−1 High frequency permittivity [16]
ε0 8.85× 10−12 F m−1 Dielectric permittivity of vacuum

σEx 5 S m−1 Conductivity of the extracellular medium [8]
σ0,Pm 9.5× 10−9 S m−1 Passive Conductivity of the plasma membrane [16]
σCp 0.5 S m−1 Conductivity of cytoplasm [18]

σ0,Nm 1× 10−4 S m−1 Passive Conductivity of the nuclear membrane [15]
σNp 1 S m−1 Conductivity of nucleoplasm [18]

σp,Pm 0.65 S m−1 Conductivity of solution inside the pore for plasma membrane [15]
σp,Nm 0.43 S m−1 Conductivity of solution inside the pore for nuclear membrane [15]
rpm 0.51 nm Minimum radius of hydrophilic pores [8]
rp0 0.8 nm Minimum energy radius at TMV = 0 V [8]
q 2.46 Electroporation constant [8]
D 5× 10−14 m−2 s−1 Diffusion coefficient for pore radius [8]
β 1.4× 10−19 J Steric repulsion energy [8]
γ 1.8× 10−11 J m−1 Edge energy [8]

Te1 1× 10−6 J m−2 Tension of the bilayer without pores [8]
Te2 2× 10−2 J m−2 Tension of hydrocarbon-water interface [8]
F 0.7× 10−9 N V−2 Maximum electric force for TMV = 1 V [8]
k1 0.97× 10−9 m First costant for advection velocity [8]
k2 0.31× 10−9 m Second costant for advection velocity [8]
α 1× 10−9 m−2 s−1 Pore creation rate density [16]

Vep 258 mV Characteristic voltage of electroporation [8]
Neq 1.5× 109 m−2 Equilibrium pore density [8]
Np 4.07× 109 m−2 Equivalent pore density for one pore [8]
w0 3.2 Energy barrier inside the pore [16]
η 0.15 Relative length of pore entrance area [16]

Ka 7.82× 10−3 Costant used in Equations (19) and (25) [8]
qe 1.65× 10−19 C Electron electric charge
k 1.38× 10−23 J K−1 Boltzmann constant
T 310 K Temperature [8]

hPm 5 nm Plasma membrane thickness [15]
hNm 10 nm Nuclear membrane thickness [15]

For both models, the plasma and nuclear membrane are electroporated in the points facing the
electrodes. In particular, the plasma membrane is electroporated between the top points and an angle
of about 22◦ and in the equatorial zone. Furthermore, the plasma membrane is not electroporated at
θ = 0◦ due to its irregular perimeter. Moreover, the irregular perimeter of the plasma membrane creates
for both models peaks of pore density values at θ = 60◦. The nuclear membrane is characterized by
significant electroporation between the top points and an angle of about 35◦. A more evident difference
between the two models is further highlighted when the biological cell is exposed to longer pulses.
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Figure 2. Short ns rectangular pulse—temporal evolution of (a) transmembrane voltage (TMV), (b)
pore density, (c) membranes conductivity and (d) pore radius at the top of the cell (θ = 90◦). (e) Pore
density versus the polar angle at t = 20 ns. Pulse amplitude and duration equal to 100 kV cm−1 and
10 ns, respectively.

Figure 3a–c display the dynamics versus the time of the TMV, pore density and conductivity of
the membranes at the top of the cancer cell (θ = 90◦), respectively, for the model with the pore radius
variable and the model with the pore radius constant. In these simulations, the biological cell has
been electroporated using a rectangular pulse having amplitude E = 50 kV cm−1, duration T = 100 ns,
rise time tr = 0.1 ns and fall time t f = 0.1 ns. Moreover, the applied rectangular pulse starts at the time
instant tstart = 10 ns and the computational window for the time coordinate is 120 ns long. As reported
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in Figure 3a,b, the EP on the Nm membrane occurs about 1 ns faster than of Pm one. Furthermore,
the TMV on each membrane quickly increases to about 1.6 V. The subsequent decrease of TMV is more
rapid in the model with variable pore radius. In fact, for this model, the growing of the pore density
and radius creates a rapid increment of membranes conductivity generating a quickly reduction of the
TMV. Furthermore, as shown in Figure 3a the temporal dynamics of the TMV characterizing the two
models are quite different. In fact, in the case of the model with variable pore radius, the temporal
evolution of the TMV shows a significant gap between the peak value and the value that the curve
assumes in the central flat area. Instead, for the model with a constant pore radius, the value assumed
by the TMV in the central flat area is close to the value assumed by the peak. As shown in Figure 3d,
the pore radius initially increases from rpm to a maximum value of about 1.1 nm, for the Pm membrane,
and of about 1 nm, for the Nm one. In particular, for both membranes the maximum value of the
pore radius is reached at the time instant of 110 ns. Moreover, the pore radius reaches the value of
rp0 = 0.8 nm at the time instant of about 30 ns, for the plasma membrane, and at the time instant of
about 40 ns, for the nuclear membrane. In addition, the pore radius size assumes equal values for the
Pm and Nm membrane up to 10 ns, which is the pulse activation time instant. A relevant discrepancy
between the temporal evolution of the pore radius of each membrane is appreciated starting by 20 ns.
Finally, when the pulse is removed the pore radius starts to decrease. Moreover, Figure 3e illustrates
the pore density along the membranes circumference at t = 120 ns for both models. The EP for the
Pm membrane occurs in the angle range starting from 90◦ and ending at about 25◦ as well as in the
equatorial zone. In particular, it is not electroporated at θ = 0◦ due to its particular geometric shape.
Moreover, the proper perimeter of the plasma membrane creates for both models peaks of pore density
values at θ = 60◦. The nuclear membrane is characterized by significant electroporation between the
top points and an angle of about 35◦. As highlighted by the obtained numerical results, a higher level
of electroporation is obtained for the model in which the pore radius is assumed variable for both the
plasma and nuclear membrane.

4. Conclusions

In this paper, a nonlinear dispersive numerical algorithm of electroporation for irregularly
nucleated shaped cells including the variation of pore radius has been presented. The developed
algorithm solves simultaneously the Maxwell equations, the Smolouchouski equation and the equation
describing the dynamic of the pore radii evolution. In particular, the presented algorithm describes
the irregular perimeter of the Pm and Nm membranes using the Gielis superformula and it considers
the dielectric dispersion properties of cell compartments using a Debye formulation. With reference
to a nucleated cancer-like cell, a number of simulations have been carried out in order to compare
the model with the pore radius variable and the one characterized by a constant pore radius. The
performed analysis highlights a discrepancy between the two models underlining the importance to
take into account in the numerical algorithm the differential equation describing the variation of the
pore size.
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Figure 3. Long ns rectangular pulse—temporal evolution of (a) TMV, (b) pore density, (c) membranes
conductivity and (d) pore radius at the top of the cell (θ = 90◦). (e) Pore density versus the polar angle
at t = 120 ns. Pulse amplitude and duration equal to 50 kV cm−1 and 100 ns, respectively.
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Abbreviations

ECT Electrochemotherapy
EP Electroporation
NTIRE Nonthermal irreversible electroporation
PEF Pulsed electric field
TMV Transmembrane voltage
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