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Abstract

This Ph.D. thesis aims to describe all the research works conducted for the design, develop-
ment and evaluation of intelligent frameworks for supporting the diagnosis in several clinical
units of the healthcare system with respect to the precision medicine approach.

The presented work focuses on the innovative aspects of Computer-Aided Diagnosis
Systems employed in the radiological area and pathological field, and on Decision Support
Systems in the neurological and psychological area. Systems for supporting the physiatrics
activities for performing and supporting the rehabilitation of people affected by neurodegen-
erative diseases are also investigated and discussed.

The first chapter introduces the importance of having an objective assessment of patholo-
gies by the support of automatic systems in order to reduce both diagnostic errors and the time
to obtain an accurate diagnosis. The importance of Decision Support Systems for precision
medicine is also presented by describing the advantages of using their clinical outcomes,
integrated with radiogenomics data, or genetic information in general, for performing targeted
therapies.

In the second chapter, there is a description of Computer-Aided Diagnosis systems by
introducing the traditional workflow historically implemented by such systems; subsequently,
a classification of these systems is described from the Machine Learning perspective. Af-
terwards, the novelty from using Deep Learning methodologies for supporting diagnosis is
described, also detailing the way of working of these new classifiers. Finally, the last section
describes the contribution of using Virtual Reality for supporting diagnosis and rehabilitation,
including cognitive and physiological assessment and implementation of protocols allowing
the de-hospitalization of rehabilitation treatments.

The third chapter introduces all the research contributions for improving the state of the art
about Decision Support Systems in the clinical areas of radiology and pathology. Innovative
and intelligent frameworks for the radiological assessment are described, including both
classification and segmentation approaches. Specifically, chapter three reports the research
contribution about the design and development of Computer-Aided Diagnosis systems for
breast cancer diagnosis, liver tumour staging and segmentation of kidneys affected by
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Autosomal Dominant Polycystic Disease. The pathological support, instead, is detailed
in nephrological and haematological areas, describing both Machine Learning and Deep
Learning approaches. Specifically, novel approaches for the segmentation of vessels and
tubules in kidney biopsies and for automatically counting white blood cells are investigated.

The fourth chapter describes the works for designing and developing intelligent frame-
works for assessing different neurophysiological disorders, including Alzheimer’s Disease
and Fibromyalgia, or supporting elderly people in their living environments for improving
their living conditions. Finally, a research work about Machine Learning methodologies for
support staging the Parkinson’s Disease progression is also described.

Chapter five reports the conclusions, highlighting the great importance of integrating
these intelligent frameworks in the clinical practice, combining information coming from
different sources, in order to proceed toward the real new era of precision medicine.
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Chapter 1

On the Importance of an Accurate
Clinical Diagnosis

Health care delivery has been going on with a blind spot for decades: diagnosis errors and
inaccurate, or delayed, results persist in all care settings and affect an excessive number of
patients. Getting the right diagnosis, also on time, is a crucial aspect of health care, as it
allows to describe the health status of a person and influences the future clinical decisions
about the treatment of the pathology affecting a subject [1].

Errors in diagnosis can result in negative health outcomes, psychological distress, and
financial costs. If a medical error occurs, a patient may receive inadequate or unnecessary
cares, or potentially life-saving treatments may be postponed or delayed. To date, however,
efforts have been mostly limited to systematically recognising and minimising diagnostic
errors. In the absence of a spotlight to highlight this critical problem, the reliability and
patient safety campaigns have generally failed to appreciate diagnostic errors. The effect of
this inattention is important: many people are likely to experience at least one diagnostic error
in their lifetime, with probably devastating consequences for all the actors of the healthcare
system.

The topic of clinical diagnosis raises a number of clinical, personal, cultural, ethical,
and even political issues that commonly capture the public interest. Members of the general
public are concerned about diagnosis, and many have reported experiencing diagnostic errors.
Recent data analysis and literary reviews found that medical errors could be identified as the
third leading cause of death in the US, and approximately half of these errors were diagnostic
errors [2, 3].
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Despite a large number of deaths due to diagnostic errors, there is still limited awareness
of the possibility of reducing mortality and morbidity by investing in improving diagnostic
accuracy and speed [4].

1.1 Precision Medicine

The advances in Information Technology (IT) and healthcare performed in the last decades
allowed to create more Electronic Medical Records (EMR); in fact, seventy to eighty per cent
of the digitalised and structured clinical information includes laboratory data and biomedical
signals [5]. The likelihood of performing a diagnosis using information from one or more
of the associated diagnostic areas of anatomic pathology and radiology is extremely high in
industrialised countries. In fact, recent advances made information readily available thanks to
more efficient devices and, in some cases, low costs for acquiring the biomedical signals [4].

Also, recent biotechnological advances have led to an explosion of disease-relevant molec-
ular information, with the potential for greatly advancing patient care. Coupling established
clinical-pathological indexes with state-of-the-art molecular profiling to create diagnostic,
prognostic, and therapeutic strategies precisely tailored to each patient’s requirements lead to
the so-called Precision Medicine (PM) [6].

According to the Precision Medicine Initiative (PMI), a long-term research endeavour,
involving the National Institutes of Health (NIH) and multiple other research centres, Preci-

sion Medicine is "an emerging approach for disease treatment and prevention that takes into
account each person’s variability in genes, environment, and lifestyle" [7].

This modern approach will allow doctors, researchers, and clinical staff, to predict more
accurately which treatment and prevention strategies for a particular disease will work better,
and in which group of people. This way to consider the patient as a unique individual,
with its own specificity, is in contrast to the currently used one-size-fits-all approach. In
fact, traditionally, the disease treatments, or disease prevention strategies, are studied and
developed for the average person, with less consideration for the specific differences between
individuals.

Precision medicine is a young and growing field, even though it is not a new concept.
There are some precursor approaches, or rather primitive forms, of precision medicine, e.g.
blood typing has been using to guide blood transfusions for more than a century. However,
many of the technologies needed to meet the goals of the PMI currently are in the early
stages of development, or, unfortunately, have not yet been developed.
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The Precision Medicine Initiative also raises ethical, social, and legal issues. It will be
critical to find ways to protect participants’ privacy and the confidentiality of their health
information. Participants will need to understand the risks and benefits of participating in
such research, which means researchers will have to develop a rigorous process of informed
consent.

Cost is also an issue with precision medicine, including the management, technological
and development costs. In fact, drugs developed to target a person’s genetic or molecular
characteristics are likely to be expensive. Reimbursement from third-party payers (such
as private insurance companies) or National Healthcare System for these targeted drugs is
also likely to become an issue to be handled by specific laws. In addition, the design and
development of strategies for implementing targeted diagnosis and therapies will require
incredible efforts by the scientific community in doing research in this sense, also requiring
the collaboration with industrial partners for developing performing processing hardware.

Finally, if precision medicine approaches are to become part of routine healthcare,
doctors and other healthcare providers will need to know more about molecular genetics and
biochemistry, thus they need to study and train in this sense. They will increasingly find
themselves needing to interpret the results of genetic tests, understand how that information
is relevant to treatment or prevention approaches, and convey this knowledge to patients.

1.2 Improving Diagnosis in Specific Clinical Settings

Although it has a noble goal aimed at improving the living conditions of people with different
diseases, to date precision medicine has a series of limitations that, in practice, limit its usage
in the current clinical practice. Its current applications, in fact, are very experimental and
used only in cases where traditional clinical treatment has failed.

Much research is in progress, but even more must still be done in this regard, especially in
the field of bioinformatics for the identification of specific and accurate tumour markers, also
allowing to reduce the invasiveness of such diagnosing. In fact, the key concepts of radiomics

and molecular imaging are becoming more and more widespread in research contexts, thanks
to the efforts of several research groups [8, 9].

Radiomics refers to the process of extracting mineable, high-dimensional data from the
routine, standard-of-care, Computed Tomography (CT), Magnetic Resonance (MR), Positron
Emission Tomography (PET) images, or from other imaging techniques, using automatic
or semi-automatic algorithms for computing and extracting characterising features [10, 11].
Along with genomics, also radiomics shows great promise in the era of precision medicine.
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Quantitative imaging data, e.g. imaging features extracted after the tumours segmentation,
such as shape, size, volume, signal intensity, CT attenuation, maximum standardised uptake
value, together with CT and MR textural analysis, are valuable information for supporting
clinical diagnoses. Recent studies, in fact, reported that such information might constitute
innovative biomarkers in tumour prognosis, thus predicting the response to therapy and the
patient outcome [12–18].

Molecular imaging, defined as visualisation, characterisation, and measurement of bi-
ological processes at the molecular and cellular levels in humans and other living systems,
is elegantly poised to become an invaluable tool in the era of precision medicine [19]. By
enabling disease imaging at the cellular level, molecular imaging may help to identify disease
in preclinical states, classify which group of patients might or not benefit from a particular tar-
geted therapy, and accurately evaluate response to therapy. Numerous endogenous molecules
and exogenous molecular imaging agents are currently available, including radio-labelled,
fluorescently labelled, and nanoparticle-based molecular imaging probes.

Image-guided biopsies will play an increasing role in precision medicine, not only for the
initial diagnosis of a disease but also in the evaluation of treatment resistance. Tissue from
selectively targeted biopsies will provide substrates for genetic and molecular characterisation.
Obtaining such up to now unavailable genetic information might have a positive impact on
the pursuit of individualised therapy.

The following sections will investigate the importance of a quantitative assessment of
diseases in different clinical fields, namely radiology, pathology, neurology and physiatry.
In will be analysed how quantitative and objective measurements may be fundamental for
the new era of precision medicine, in order to extract fundamental information for the
genetic characterisation of diseases, thus leading to even more patient-targeted diagnosis and
therapeutic interventions.

1.2.1 Radiology

Imaging will play a pivotal role in precision medicine for different aspects, including screen-
ing, early diagnosis, guiding treatment, evaluating response to therapy, and assessing the
likelihood of disease recurrence [20]. For precision medicine to succeed, it is critically
essential that imaging be able to help identify and classify patients in different subgroups that
have identical disease characteristics and share similar responses to treatments and prognosis.
This new precision will require an ever better characterisation of patients and their diseases
through new applications of genomics and improved methods of phenotyping, to define
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Fig. 1.1 A representation of the radiogenomics approach in the precision medicine context.
Image from [23].

progressively smaller sub-populations of patients with similar disease characteristics who
would benefit from similar therapies [21].

To realise this vision, all disciplines of medicine must work together to develop a more
precise taxonomy of disease rooted in molecular biology. Biomedical imaging speaks directly
to this requirement by virtue of its ability to provide a multi-parametric characterisation
of disease and represents a key component in the infrastructure supporting the concept of
precision medicine.

In this sense, radiogenomics assumes a key position in the context of precision medicine.
Although the term radiogenomics is perceived by radiation oncologists to refer to the study
of the correlation of genetic variation with the response to radiation therapy, it has a dif-
ferent meaning in the radiology community. In radiology, the term radiogenomics (also
called imaging genomics) refers to the correlation of imaging phenotypes with genotypic
expressions [22]. Radiogenomic studies that help determine statistically significant linkages
between imaging features and gene expressions may help create models that predict patient
outcomes based on imaging features (Fig. 1.1). Radiogenomics has already attracted major
interest in the radiology community, with research undertaken in various cancers such as
glioblastoma, breast carcinoma, and renal cell carcinoma [23].

Historically, imaging has provided morphologic information about diseases by localising,
measuring, and characterising abnormalities. Currently, the increasingly diverse arsenal of
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modern imaging tools and imaging-based biomarkers are valuable instruments needed to
define the imaging phenotype of the disease. The integration of functional, molecular and
metabolic information provided by radiologic techniques has greatly increased the ability
to segment patient populations into phenotypic subsets that share similar prognoses and are
likely to respond similarly to therapies. Classification and scoring in imaging studies will
likely provide the phenotypic information necessary to improve clinical trial design and
assess therapy response.

An impressive example of the potential value of imaging phenotyping for patient care
consists of using a scoring system for ranking the severity of intracranial haemorrhage.
Romero et al. graded intracranial haemorrhage based on the appearance of contrast material
within the site of active haemorrhage [24]. The authors also revealed that the grade generated
by their "spot sign" scoring system, which can also be thought of as a phenotyping system,
was associated with a risk for haematoma expansion and poor clinical outcome [24]. With
this system, they were able to define a subpopulation that was most likely to benefit from
engagement in a specific clinical trial, allowing non-members of this subpopulation to be
spared the adverse effects of therapy [25]. Thus, imaging phenotyping provided the filtering
mechanism to enhance the design of the clinical trial and improve patients care.

Precision medicine and precision imaging necessitate the development of interactive
clinical Decision Support Systems (DSS), or Computer-Aided Diagnosis (CAD) systems,
that assist physicians with decision making at the point of care. The increasing utilisation
of these systems will be catalysed by the implementation and standardisation of Electronic
Health Records (EHR), including both advantages and disadvantages. In fact, integrating
data and outcomes from intelligent systems into the EHR could improve the quality of
care, reduce medical errors, and lead to other improvements in patient - level measures
that describe the appropriateness of care. However, some authors have identified potential
disadvantages associated with this technology. These include financial issues, changes in
workflow, temporary loss of productivity associated with EHR adoption, privacy and security
concerns, and several unintended consequences [26].

Given the volume and complexity of data that are now available, and the expectation
of exponential increases in available data in the future, decision support tools designed
to intelligently filter patient data are already essential for optimising the entire clinical
workflow [6].
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Fig. 1.2 Integration between radiological and pathological outcomes to correlate genotypes
and phenotypes.

1.2.2 Pathology

Like radiology, pathology is a crucial area for precision medicine. Oncologists need the
correct histological diagnosis and information on underlying gene mutations to offer the right
personalised medication. Pathologists play a vital role in this respect since they make the
diagnosis and also offer information about the mutations present in a tumour. Also, pathology
is strictly linked to radiology, as they contribute to inferring more accurate and significant
relationships among genotypes and phenotypes.

Over the last decade, the advent and subsequent proliferation of whole slide digital slide
scanners have resulted in a substantial amount of clinical and research interest in digital
pathology, the process of digitisation of tissue slides (Fig. 1.2) [27].

Digitisation of tissue glass slides facilitates telepathology, i.e. using the telecommuni-
cation technology to facilitate the transfer of image-rich pathology data between distant
locations for research, diagnosis, and education purposes. Telepathology can now be enabled
more easily and seamlessly between multiple different remote sites and more critically con-
necting top academic centres with pathology labs in low-resource settings. Telepathology
is particularly convenient for solicitation of "second opinions" on challenging cases or the
ability to do remote pathology consults without the need to ship the slides around physically.
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Digital pathology also has the potential to help improve clinical workflows, reducing the need
for storing glass slides on-site and reducing the risk of physical slides getting broken or lost
over time. Additionally, access to large digital repositories of tissue slides is a huge-potential
educational resource for medical students and pathology residents. Further, in conjunction
with smart analytics like content-based image retrieval algorithms [28], students could be
trained to identify and recognise pathology slides in a dynamic fashion.

Apart from the education of medical students and residents, and clinical adoption, of
course, digital pathology has been transformative for computational imaging research. With
digital slide archives, such as The Cancer Genome Atlas (TCGA, https://www.cancer.gov/
tcga), several thousands of slides are now freely available online; this resulted in a very large
number of digital pathology image analysis related publications, confirming the growing
interest in this research area. Also, computer-based image analysis is already available
in commercial diagnostic systems, but further advances in image analysis algorithms are
required in order to fully realise the benefits of digital pathology in medical discovery and
patient care [29].

The abilities to quantitatively characterise disease classification and to process from
multiple biological scales and dimensions have the potential to enable the development
of preventive strategies and medical treatments precisely targeted to each class of patients,
implementing the hoped for precision medicine. The advances in pathology imaging technolo-
gies, along with comparably dramatic advances in the "-omics" and radiology domains, are
revolutionising the medical professionals’ ability to rapidly capture and exploit vast amounts
of multi-scale, multi-dimensional data on each patient’s genetic background, biological
function, and structure.

In the past, pathologists classified tissues by manually-recognised patterns. In recent
years, many researchers demonstrated that, in some cases, image analysis algorithms could
reproduce the pathologist-rendered diagnoses [30]. High-resolution and high-throughput
instruments are being employed routinely at an accelerating rate, not only in medical science
but also in healthcare delivery settings. As this decade progresses, significant advances
in medical information technologies will transform very large volumes of multi-scale and
multi-dimensional data into actionable information to drive the discovery, development, and
delivery of new mechanisms of preventing, diagnosing and healing complex diseases. In the
current practice, molecular information and human-generated pathology interpretation guide
the treatments’ administration for handling several diseases. Tumour subtypes have crucial
treatment implications and play increasingly crucial roles in the development of successful

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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targeted therapeutic regimens. For instance, in current neuro-oncologic practice, pathology
classification and molecular subtyping are used together to guide the choice of treatment.

1.2.3 Neurology and Psychology

The application of the precision medicine paradigm to the treatment and prevention of
neurodegenerative disorders appears to be highly promising in contrast to the traditional "one-
drug-fits-all" approach. In fact, neurodegenerative pathologies can present variable clinical
features even in patients with the same disease who therefore are very unlikely to benefit from
assuming single drug. In this context, the development of a precision medicine approach
could represent an excellent possibility to identify preclinical stages of the disease, allowing
making an adequate differential diagnosis and providing timely and optimal treatments
instead of the traditional ones, normally utilised at a later stage of the disease [31–33].

Genes, neuroepigenetic modifiers, non-genetic factors (dietary, smoking habits, physi-
cal/mental exercise, microbiome) and drugs impact the susceptibility to neurodegenerative
disorders. Prominent attention should be given to the dynamics of neuroepigenetic changes
occurring at the inter- and intra-individual levels. In fact, neuroepigenetic features are
characterised by a high plasticity degree during the lifespan which ultimately modulates
the function of specific genes in response to ageing and specific environmental pressure,
influencing thereby the likelihood to develop neurodegenerative disorders [34]. The combi-
nation of the overall data can be utilised to generate omic profiles and provide a complete
overview of patients. The resulting omic profiles can be exploited by precision medicine
to create a stratified medicine able to assign patients to specific treatment classes, such as
high-, intermediate- or low-risk individuals, good, intermediate or poor responders, high-,
intermediate- or low-dosage receivers. The translation of the theoretical concept of preci-
sion/stratified medicine into the clinical practice can be achieved by developing, or even
accommodating, the computational facilities already in use to integrate the omic informations
into a single algorithm, able to predict the patient’s disease course and to support the clinical
and therapeutic decisions toward a more participatory and preventive medicine [34, 35].

The availability of social networks allowing the simultaneous sharing of huge amounts of
data across the world closed the gap due to geographical distance and difficulties in getting
access to information about the psychological and neurological spheres. In this context,
the realisation of a web-based network for neurodegenerative disorders can be decisive
for the implementation of precision medicine strategies across different specialised centres.
Such networks can contribute to accumulate and share the overall information derived from
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the combination of patients’ participation (participative medicine) and the broad medical
expertise provided by physicians. On this subject, an excellent example of a multidisciplinary,
web-based platform is the Italian IRCSS Network of Neuroscience and Neurorehabilitation,
whose aim includes standardising and optimising patients’ clinical care and the therapeutic
strategies applied to neurodegenerative disorders [36].

1.2.4 Physiatry

Nowadays, all the population knows the health benefits of a physically active lifestyle, from
clinicians to ordinary people [37]. Such a lifestyle goes together with lower risks of morbidity
and mortality from a great number of chronic diseases, such as coronary artery disease,
diabetes, and colon cancer. In addition, for people with a physical disability, a physically
active lifestyle could improve everyday functioning, reduce disability, and decrease the risk
of secondary health problems [38–43]. However, people with disabilities are, in general, less
physically active than people without inabilities [44].

The World Health Organization (WHO) defines disability as problems that an individual
may experience in functioning. The relation between functioning, disability, physical activity,
and determinants of physical activity is described in more detail in the "Physical activity for
people with a disability", from Van der Ploeg et al. [45].

In 1997, only 12 % of US adults with a disability aged more than 17 participated in
moderate physical activity for at least 30 minutes per occasion for at least five days per week,
compared with the 16 % of people without a disability [44]. For leisure-time physical activity,
the difference between people with and without disabilities is even larger: 56 % and 36 %
respectively did not engage in leisure-time physical activity [44]. Consequently, persuading
people with disabilities to become more physically active is probably even more important
than it is for the general population.

For two reasons, rehabilitation provides an excellent opportunity to start promoting a
physically active lifestyle. Firstly, for many people, rehabilitation is the start of learning to
live with a disability. It may thus be an effective strategy to integrate physical activity into
the new everyday routine after rehabilitation. Secondly, sports and other physical activities
are often a component of rehabilitation programmes. It is probably easier to integrate these
activities directly into everyday life than to become physically active when sedentary [45].

Physical rehabilitation of people affected by some diseases should also be personalised
and tailored while allowing a patient to obtain objective indices for assessing the progress.
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Although it may seem out of context with respect to the canonical meaning of precision
medicine, objectifying the measurements and grades of disabilities, and addressing the right
rehabilitation treatment according to the patient’s physical capabilities, is fully part of the
precision medicine scope.

1.3 Objective and Research Question

Based on preceding paragraphs, the adoption of precision medicine in the current clinical
practice is far from being practically realised. In fact, despite the considerable effort made by
the scientific community, which made the Computer-Aided Diagnosis (CAD) systems an
established and rapidly growing field of research, the proposed architectures are not yet used
in the current clinical practice, from a precision medicine perspective and a diagnostic one.

In fact, CAD systems have to meet and satisfy several demands to be used widely in
everyday activities. According to literature, the four major requirements, especially for the
radiologists’ practice [46], are:

• CAD system should improve clinicians’ performance;

• CAD systems should allow clinicians to save time;

• CAD systems must be seamlessly integrated into the workflow of the diagnostic
procedures;

• CAD systems should not impose liability concerns and the incremental costs should
be negligible or reimbursed, thus sustainable for the healthcare system.

Unfortunately, most CAD systems today do not meet all these requirements, and this is
why most applications described in the rapidly growing body of scientific literature on CAD
systems are not widely used in the clinical practice. The requirements mentioned above are
only partially satisfied having sufficient performance, no increase in reading time, seamless
workflow integration, regulatory approval, and efficiency in terms of costs. Performance is
still the major bottleneck for many CAD systems due to unavailable performing processing
systems or badly designed algorithms.

Novel ways of using CAD systems, extending the traditional paradigm of displaying
markers for a second look, could be the key for using the technology effectively. Also, the
most promising strategy to improve CAD development is the creation of publicly available
databases for training and validating the algorithms. The solution to these open problems
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can identify the most fruitful new research directions, and provide a platform to combine
multiple approaches for a single task to create superior algorithms. Finally, the advent of
Deep Learning strategies is leading diagnosis support to a profound change with respect to
the traditional way of dealing with this task.

Also, considering the precision medicine scenario, accurate and reliable systems for
supporting the clinical diagnosis are necessary for the current clinical practice and in all
the fields included in the healthcare system. Moreover, Decision Support Systems (DSS)
in medicine are also included into the Health Technology Assessment (HTA), which is a
multidisciplinary approach for the systematic assessment of medical technologies regarding
their effectiveness, appropriateness, efficiency, and social and ethical aspects and implications;
thus they actually contribute to the global evaluation of the healthcare system [47]. Improving
the performance of such systems is of fundamental importance.

Since CAD systems are shown to be compelling tools for supporting clinicians in per-
forming more accurate diagnosis, the objective of this research work has been to investigate
and develop innovative methodologies and approaches for further improving the state-of-
the-art performance in such systems, focusing on both classification and segmentation tasks
considering different body districts. Also, each methodology has been applied to real-world
cases in order to test and validate the proposed algorithms working on biomedical signals.

Furthermore, the treatment of ageing-related disorders and neurodegenerative diseases
need innovative solutions for supporting the objective assessing of the clinical course over
time, making available systems for de-hospitalising the treatment and the monitoring of the
disease.

1.4 Contribution

The main contributions of this thesis regard the analysis, design and development of in-
novative procedures to support diagnosis in order to allow the quantitative and objective
assessment of pathologies, ranging from diagnosing in the radiological area to rehabilitation
support using innovative devices.

Specifically, the design of diagnosis support systems based on biomedical signals and
images is investigated following both the traditional methodologies and those based on Deep
Learning strategies.

Concerning the systems for supporting rehabilitation, instead, Virtual and Augmented
Reality, as well as, low-cost and wearable devices are examined, with the aim to develop
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smart systems for remotely monitoring and assessing the disease course and rehabilitation
efficacy and progresses.

1.5 Part Outline

After providing an introduction reporting the reference context in this Chapter, the following
Chapter 2 describes the state-of-the-art of the tools and methods for CAD systems for
supporting clinical diagnosis, and methodologies for assessing the clinical evaluation of
cognitive status and physical rehabilitation. Chapter 3 reports the original contribution beyond
the existing literature for the clinical area of radiology and pathology, focusing on Decision
Support Systems based on image analysis. Chapter 4, instead, shows the research works
conducted in the neurology, psychology and physiatry areas, focusing on the applications for
supporting diagnosis and assessment of different pathologies. Finally, the conclusions of the
research work described in this thesis are reported in Chapter 5.



Chapter 2

Decision Support Systems

As evidenced in the previous Chapter, precision medicine necessitates the development of
clinical Decision Support Systems (DSS) that assist physicians with the decision-making
process at the point of care, independently from the clinical domain or clinical area under
investigation.

Computer-Aided Diagnosis (CAD) systems are powerful tools for assisting doctors
in the interpretation of biomedical signals, supporting them in making clinical decisions.
Biomedical signals, including mono and multi-dimensional signals, yield a great deal of
information that the medical professional has to analyse, correlate with data from other
domains, and evaluate comprehensively and, possibly, in a short time. CAD systems process
digital signals in order to make evident some interesting sections or areas, also suggesting
possible diseases or clinical outcomes, in order to offer input to support a decision made by
the professional clinician.

Several alternative terms have been used for identifying and describing CAD systems
over time, mainly based on the CAD specific purpose; these include expert systems (ES),
computer-aided evaluation or diagnosis, computerised sound analysis (e.g., Computerised
Lung Sound Analysis (CLSA) and Computerised Heart Sound Analysis (CHSA)), comput-
erised biomedical signal analysis [48–52].

Also, there are many ways in which CADs may work. An automatic system may emulate
the decision workflow of a human expert for making a diagnosis by means of diagnostic rules.
Advanced CAD systems, based on intelligent algorithms, may have learning capabilities,
meaning that these systems can analyse clinical data and infer new knowledge [53]. In turn,
this new knowledge can enhance current diagnostic rules and enable such systems to improve
their performance over time. However, in order to infer new knowledge correctly, these
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systems must implement feedback mechanisms with the aim of allowing the human expert to
assess and validate the new knowledge.

The increasing amount and complexity of data produced during the modern clinical
practice led to investigate intelligent CAD systems making use of Artificial Intelligence (AI),
Data Mining algorithms and Machine Learning (ML) approaches for supporting decision
making. In addition, knowledge about human anatomy and physiology increased significantly
during the last century, as well as the technological improvements of the human body
examination tools, including X-rays devices, ultrasounds, or Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT), have improved dramatically.

All these improvements led to developing CAD systems offering great support in making
and supporting diagnostics decisions for a considerable number of diseases and clinical
conditions [54–56]. This aspect is of fundamental importance, also considering that, in recent
years, the study of diseases progressed considerably, making, in some cases, more complex
and challenging the medical diagnosis.

2.1 A Brief History of Decision Support Systems in Medicine

In the late 1950s, researchers started using computers to investigate problems in several
fields, including medicine and biology. Several works of that period deal with medical diag-
nosis performed by computerised systems [57–59]. In the beginning, automatic diagnostic
systems, known as expert systems in medicine, were based on production rules generating
the diagnostic results using a knowledge base containing the associations between patients’
symptoms and laboratory test outcomes [60, 61].

However, starting from the 1970s, all the limitations in performing accurate diagnosis
by means of such "simple" systems emerged. Although those systems introduced some
automatisms in clinical diagnosis, the intelligent module was too simple for dealing with
complex and delicate problems as a clinical diagnosis. In fact, simple flow charts, statistical
pattern matching or association rules did not satisfy at all the requirements from the medical
area [62–66]. These analyses revealed that the proposed systems were too far from being
automatic and accurate approaches to introduce them in the daily clinical practice.

Thanks to the limitations of the current algorithmic approaches evidenced by Karp [67],
the research work conducted in the field of automatic systems for supporting the clinical
diagnosis changed perspective. In fact, some researches started to investigate the possibility
to employ artificial intelligence and specialised computer algorithms (i.e., pattern recognition
and classification algorithms) to support the diagnosis of diseases based on the data acquired
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from patients [68]. Today, a CAD system is considered as an important part of a diagnostic
process which also actively involves human experts [69].

Besides the previous developments, during the 1960s several radiologists had also started
working on building an early form of CAD systems for automatically detecting abnormalities
in medical images [70–72]. Today diagnostic radiology and medical image analysis are some
of the most active research and application areas in CAD development [69].

In the meantime, medical malpractice litigation has significantly increased since the
mid-1980s [73]. Rising medical malpractice liability insurance costs had a negative effect
on the healthcare industry, and thus the cost of healthcare has increased dramatically for
ordinary users [74, 75]. One of the motivations to develop CAD included helping physicians
to avoid medical malpractice cases and thus to reduce medical healthcare costs.

Today, more and more real-world applications employed in the current clinical practice are
CAD systems supporting clinicians in everyday diagnostic procedures, offering a cheap and
suitable alternative to double reading as a mean for reducing diagnostic errors [76]. Double
reading is a procedure in which two readers read and interpret an imaging examination, that,
in general, reduces errors and increases sensitivity [77]. The shortage of clinical staff and
overwork may reduce physician’s availability to offer a "second opinion" about risky (or
doubtful) cases. Having automatic systems doing this may be crucial for improving the
overall diagnostic performance for the healthcare system in general.

2.2 Modern Systems for Computer-Aided Diagnosis

Based on the previous premises, CAD systems have become very popular in the academic
literature of the last decades. In fact, the most common search engines about academic
research show that this topic reached more than one thousand papers indexed by from
2008 to 2019. As an example, Fig. 2.1 shows the number of papers per year dealing with
Computer-Assisted Diagnosis systems applied to Medical Imaging only.

As evidenced in the previous section, from the late 1970s, CAD systems have been
going on supporting the clinical diagnosis in the different clinical areas. Research activities
allowed to develop intelligent systems based on signal processing algorithms, procedures
for extracting features from input data, and machine learning algorithms for developing
intelligent classifiers for the different clinical objectives, from detection to segmentation.
Designing performing CAD systems requires the contribution of several professionals, from
domain experts to system developers.
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Fig. 2.2 The steps of the pipeline usually implemented by traditional CAD systems.

A traditional CAD system requires designing, developing and integrating at least the
modules reported in Fig. 2.2, which include: signal acquisition, data processing, feature
extraction and classification. Furthermore, some clinical problems require the CAD system
to perform the segmentation of specific areas of interest of the input signals, thus requiring
specific modules dedicated to this task. The following section investigates all the features
characterising each module of the described pipeline.

From the end-user point of view, CAD systems could be considered as "black-boxes",
taking data as input and providing the desired output; however, these are very complex
systems composed of sub-modules dedicated to specific tasks. Based on the specific clinical
domain interested by the decision support system, each module specialises its specific
working methodology and procedures. For example, the signal acquisition module may work
on one- or multi-dimensional data or the classifier may be linear or not linear, based on the
features pattern complexity and dimensionality. Although all the steps are crucial for accurate
detection and classification, or segmentation, of the pathology and areas under investigation,
the extraction of sets of significant features, able to describe the input for classifying the
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phenomenon under investigation, strongly influences the performances of the CAD system.
In fact, the way of extracting features from input data has been changing significantly during
the last years, thanks to the widespread of Deep Learning methodologies.

Finally, in order to assess the performance of the decision support systems, the design of
CAD systems requires validation procedures aimed at verifying the correct functioning of
the automatic system during the normal working conditions [69, 78, 79].

2.3 The Traditional Pipeline of Modern CAD Systems

To better understand the way of working of CAD systems, it is necessary to organise them
in order to accent the peculiarities for each specific domain. As already discussed in the
previous paragraph, modern decision support systems in medicine are complex architectures
based on machine learning approaches for making decisions. From the perspective of the
clinical objective, CAD systems may be divided between those aimed at classifying, i.e.
detection or diagnosis suggestion, and system for segmentation purposes, i.e. quantification
or objectification of measurements.

From the methodological point of view, instead, the training of the intelligent system
may be afforded in supervised or unsupervised methods. Before proceeding to detail the
characteristics of each category, it is necessary to describe the pipeline for traditional CAD
systems aimed at classifying or performing the segmentation fo interesting areas. As already
reported in Fig. 2.2, the workflow of traditional CAD systems includes the following steps:

• Data Processing

• Segmentation

• Extraction of Features

• Classification

Data Processing After deciding the clinical domain, developing CAD systems requires
a campaign for collecting and organising data, based on which decisions can be taken.
Since data may be heterogeneous, e.g. come from different sources, different modalities
of acquisition or different clinical facilities with different protocols, data need to be pre-
processed in order to have an homogeneous knowledge base in the design phase. Also,
processing data is fundamental in order to obtain clean data to be used in the subsequent
phases [80].
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Automatic systems tend to be misled by differences that humans can readily and easily
ignore. If a CAD system is trained with and tested only on data from one kind of source, as
is commonly the case for studies reported in the scientific literature, pre-processing may not
be necessary, but the results may not be generalised and may not be consistent with different
settings.

Based on the defects affecting data, there are a lot of strategies and algorithms to apply in
order to clean and uniform them [81, 82]. For example, images may need to be calibrated,
data may have to be resampled, or noise removal algorithms, or other filtering procedures,
may have to be applied. The goal of applying pre-processing procedures to the input data is to
remove differences between data from different sources or obtained with different protocols,
in order to allow the training algorithms to work on comparable data for making decisions.

For example, in case of CAD systems working on images, a pre-processing phase is
needed after the acquisition of the input data; this step is fundamental for improving the
quality of the images and removing possible artefacts [83]. This is a crucial step in order
to reach an optimal result in subsequent phases, since the output of this phase affects the
performance of the whole workflow. As far as medical imaging is concerned, in literature
there is a huge number of useful algorithms for pre-processing images [84–88].

Segmentation In the case of images, a further step allowing to segment the input data may
be required. In fact, the Regions of Interest (ROI) to be described by means of features could
include only a limited section of the image; thus, the ROIs need to be segmented.

Segmentation is the most important step in processing medical imaging, aiming at
separating images into regions that are meaningful for a specific task, such as the detection
of organs or the computation of some metrics. Further details will be given in Section 2.4.3.

The detected ROIs could be then processed in the subsequent step. More in detail, a
further step for the extraction of features could be necessary for implementing intelligent
systems supporting the clinical decision.

Feature Extraction After processing the input data, some candidate regions of the input
signals are selected for being subsequently classified. In order to use automatic systems, the
selected regions need to be described by extracting some features. Almost all systems use
the vector space paradigm for describing Regions of Interest (ROI). This means that for each
candidate region, a fixed number of characteristics are computed. Traditionally, the set of
features generated for each ROI depended on hand-crafted procedures for evaluating some
characteristics of the input signal; in very recent years, this approach has been changing since
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Fig. 2.3 Flowchart shows the process of radiomics and the use of radiomics in decision
support. Image from [96]

the set of features is computed automatically by Deep Learning (DL) architectures [89, 90],
as further described in Section 2.5. Traditional features may include be the mean value over
the region, the standard deviation of the values, the border gradient (in case of images), or
other more complex mathematical descriptors of the candidate region and its surroundings.

According to literature, there are several sets of features that could be used to characterize
regions of interest starting from input images. From a general point of view, the features may
be distinguished between global and local, based on the localisation of the information used
to compute them: global features are computed from information extracted from the whole
image, whereas local features are a function of a local area of the image. Among global
features, the most used characteristics are those from Haralick [91] (reported in Table 2.1),
Local Binary Patterns (LBP) [92] and Threshold Adjacency Statistics (TAS) [93]. Regarding
local features, the most famous set of local features are the Speeded-Up Robust Features
(SURF) [94].

Describing neoplasias or lesions based on shape descriptors, computed from Regions of
Interest, revealed to be fundamental in the Precision Medicine context [95, 96]. Extracting
discriminative features, in conjunction with the information from clinical domains other than
radiology, can be correlated with clinical outcomes data and used for evidence-based clinical
decision support (Fig. 2.3). Fig. 2.4 shows some examples of tumour classification between
benign and malignant, based on the shape of the lesion. Border sharpness description and
quantification is fundamental for making such a classification.

Regardless of the nature of the features extracted, the number of such descriptors may be
too high, or generally may exceed the number effectively required for the subsequent step
of decision making. This high dimensionality of the created dataset could lead to relevant
problems in the subsequent classification phase, seriously affecting the performance both
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Table 2.1 The 14 statistics that can be calculated from the co-occurrence matrix with the
intent of describing the texture of the image.

Name Description
Angular Second Moment ∑i ∑ j p(i, j)2

Contrast ∑
Ng−1
n=0 n2{∑

Ng
i=1 ∑

Ng
j=1 p(i, j)}, |i− j|= n

Correlation ∑i ∑ j(i j)p(i, j)−µxµy
σxσy

where µx,µy,σx and σy

are the means and std. deviations of px and py
the partial probability density functions

Sum of Squares: Variance ∑i ∑ j(i−µ)2 p(i, j)

Inverse Difference Moment ∑i ∑ j
1

1+(i− j)p(i, j)

Sum Average ∑
2Ng
i=2 ipx+y(i) where x and y are the coordinates

(row and column) of an entry in the co-occurence matrix,
and px+y(i) is the probability of co-occurence matrix
coordinates summing to x+ y

Sum Variance ∑
2Ng
i=2(i− f8)

2 px+y(i)

Sum Entropy −∑
2Ng
i=2 px+y(i)log{px+y(i)}= f8

Entropy −∑i ∑ j p(i, j)log(p(i, j))

Difference Variance ∑
Ng−1
i=0 i2 px−y(i)

Difference Entropy −∑
Ng−1
i=0 px−y(i)log{px−y(i)}

Info. Measure of Correlation 1 HXY−HXY 1
max{HX ,HY}

Info. Measure of Correlation 2 (1− exp−2(HXY 2−HXY ))
1
2 where

HXY =−∑i ∑ j p(i, j)log(p(i, j)),
HX, HY are the entropies of px and py,
HXY 1 =−∑i ∑ j p(i, j)log{px(i)py( j)},
HXY 2 = ∑i ∑ j px(i)py( j)log{px(i)py( j)}

Max. Correlation Coeff. Square root of the second largest eigenvalue of Q where
Q(i, j) = ∑k

p(i,k)p( j,k)
px(i)py(k)



2.3 The Traditional Pipeline of Modern CAD Systems 23

b b b b b b b b

b b b b b b b m

m b b m m m b m

b b m b m m b m

m b m b m m m m

m m b m m b m m

m b m m m b

Fig. 2.4 Tumour diagnosis from contours of breast masses: (b) benign masses, (m) malignant
tumours.
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during the design phase (for both time and computational resources) and in the classification
phase. For these reasons, before proceeding to the design phase of the most appropriate
classifier for a given classification task, the obtained dataset is further processed to identify
a new feature space. Following this approach, the new dataset is reduced, or generally
transformed, with respect to the previous one, while maintaining the same informative
content of the extracted data. In this regard, several techniques allow to properly process a
dataset in order to reduce its dimensionality, leading to a general increase in the performance
of the subsequent classifier; these include feature selection methods, e.g. Information
Gain [97], or feature reduction methods, e.g. Principal Component Analysis or Independent
Component Analysis [98–106].

Designing good sets of features is a crucial step in developing CAD systems; the design
of the classification phase and, thus, the performance reachable by the classification methods,
depends on the information described and extracted by the designed set of features.

Classification After describing the areas of interest by means of features, the aim of the
classification step is making a decision based on the obtained specific values, e.g. discriminate
between benign and malignant tumour or determine the grade of a tumour. In pattern
recognition, the problem of identifying regions in a feature space where different kinds of
candidates are to be discriminated is solved by training a classifier. Generally speaking,
training a classifier for making a decision requires a training set, a validation set and a test set.
The first one, used for training the classifier, consists of correctly classified candidates, the
so-called Ground Truth. The validation set, instead, is used for validating the classifier during
the training phase. A test set is composed of samples used to evaluate the generalisation
performance of the classifier, typically constituted by samples not used during the training.
The training set is usually created by asking a human expert to provide a reference standard
with correct classifications, for example by indicating lesions on chest radiographs with
prior knowledge of their location on computed tomography (CT) scans. More details about
classifiers supporting decision used in CAD systems are reported in the following Section.

2.4 Machine Learning for CAD Systems

Based on the workflow reported in the previous section (Fig. 2.2), the classification is the
last step of the operating workflow for CAD systems. After taking the input data, CAD
systems make decisions about a pathology, compute a score for the quantitative classification
of tumours, or provide other forms for staging the degree of progression of a disease.
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Based on the model designed for making the decision, different kinds of CAD systems
can be differentiated based on the training techniques employed. In particular, there are
CAD systems based on supervised learning, and other based on unsupervised learning. In
the following, some details about the two families of decision support systems will be given.

2.4.1 CAD Systems based on Supervised Learning

Decision Support Systems based on supervised learning are automatic architectures producing
a decision by performing classification or regression tasks starting from a knowledge base of
annotated samples, meaning that it is known the label (or class) of each sample. Specifically,

• a classification problem implies the output variable is discrete, or categorical, such as
"presence" and "absence" of disease, or "benign" and "malignant" tumour;

• a regression problem implies the output variable is a real value, such as "amount of
dollars" or "people weight".

In the last years, a relevant number of studies in the clinical area have been proposed,
based on supervised learning approaches, performing classification tasks for supporting
the decision making process. In most cases, the architecture designed for performing
classification employed Artificial Neural Networks (ANN) or Support Vector Machines
(SVM), as well as Swarm Intelligence or Linear Discriminant Analysis (LDA) classifiers
built on the radiologists’ gold standard labelling [107–123].

Since Artificial Neural Networks have been used in several works described in the
following Chapter, detailing the research contribution of this thesis, we focus on this robust
machine learning algorithm.

In literature, there are several ways for classifying ANNs, i.e. based on:

• the function that the ANN is designed to serve, e.g. pattern association or clustering (in
fact, some implementations are employed also for unsupervised learning approaches;
more details in Section 2.4.2);

• the degree of connectivity of the neurons in the network architecture; it may be fully-
connected, when all the neurons of a layer are connected with all the neurons of the
subsequent layer; partially-connected, where a dropout procedure, for preventing over-
fitting during the training, delete some connections between consecutive layers [124]
(Fig. 2.5);
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Fig. 2.5 ANN models; Left: A traditional neural network with 2 hidden layers. Right: the
same neural network after dropout, where some connections are missing.

• the direction of flow of information within the network, identifying recurrent and
feed-forward neural networks [125];

• the type of learning algorithm, which represents a set of systematic equations that use
the outputs obtained from the network, along with an arbitrary performance measure,
to update the internal structure of the ANN, in terms of connection weights;

• the learning rule, also known as the driving engine of the learning algorithm;

• the degree of learning supervision needed for ANN training.

In general, supervised learning involves the training of an ANN with the correct answer
(i.e, target outputs) being given for every sample, and using the deviation error of the ANN
solution from the corresponding target values to determine the required amount by which
each weight should be adjusted.

The development of an ANN requires the partitioning of the available data (dataset) into:

• training set: it should include all the available data belonging to the problem domain
and is used in the training phase to update the weights of the network;

• validation set: used after selecting the best network to further examine the network or
confirm its accuracy before the network is implemented in the neural system and/or
delivered to the end user;
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• test set: is used at the end of the learning process to check the degree of generalisation
of the network on data that have not been used during the training phase.

The data used in each set (training, validation and test) should be different. There are no
mathematical rules for the determination of the required sizes of the training, validation and
test sets. However, there are some rules of thumb derived from the designer experience and
the analogy between ANNs and statistical regression [126].

For correctly training an Artificial Neural Network, Cross-Validation (CV) is a popular
strategy for algorithm selection. The main idea is to resample the input dataset, once
or several times, thus training the neural architecture considering each subset of training
and validation sets. The popularity of CV mostly comes from the "universality" of the
data splitting heuristics. Nevertheless, some CV procedures have been proved to fail for
some model selection problems, depending on the goal of model selection, estimation or
identification. Furthermore, many theoretical questions about CV remain widely open, as
reported in [127–133].

Concerning with the topology of Artificial Neural Networks, in literature, two different
classes of ANNs could be identified on the basis of the number of hidden layers: Shallow
and Deep Neural Networks. In details, ANNs with few hidden layers are named Shallow
Neural Networks, whereas a Deep architecture has grater number of hidden layers, typically
three or more (Fig. 2.6).

Recent studies have evaluated the performance differences between shallow and deeper
neural networks by highlighting the strengths and weaknesses of both architectures [134, 135].
According to the literature, there is not an real motivation to prefer Deep or Shallow Neural
Networks. In fact, both the architectures could approximate any (reasonable) function, where
the quality of the final generalisation properties strictly depends on the significance and
classes-balance of the available training data. However, Shallow Neural Networks could
reach an extremely high number of neurons in their hidden layers, leading to very wide
architectures, thus making the number of parameters to be tuned during the training phase
considerably high, with the risk of data overfitting [136]. On the other side, the introduction
of multiple layers makes ANNs able to learn features at different levels of abstraction,
leading to stronger capabilities of generalisation if compared to a shallow architecture with
the same computing power, in terms of the number of neurons and connections. But, also
deeper architectures requires the introduction of different strategies for preventing overfitting,
including dropout or other regularisation methodologies [137].
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Fig. 2.6 Architectural differences between (a) shallow and (b) deep neural networks.
.



2.4 Machine Learning for CAD Systems 29

2.4.2 CAD Systems based on Unsupervised Learning

Differently from supervised learning, the unsupervised learning does not require the labelling
of the training samples, i.e. does not require a knowledge base with annotated data. Instead,
the network arranges examples into clusters based on their similarity or dissimilarity [126],
by exploring the structure underlying the data and the correlation between the examples [138–
140].

Typically, medical applications performing visual recognition and classification tasks use
labelled data, as required by all algorithms belonging to the approaches based on supervised
learning. However, for tasks where manually generating labels corresponding to large
datasets is laborious and expensive, the use of unsupervised learning methods can be of
significant value.

The use of unsupervised learning approaches requires the knowledge of some complemen-
tary information provided with the data to improve learning, which, differently from other
domains, may not be available for several classification tasks in medical imaging [141–143].

Although the approach based on supervised learning seems to be the ideal one in problems
of medical interest, several works based on unsupervised learning deal with medical detection
and diagnosis cases, even though these are less frequently used for CAD systems than
supervised algorithms [144].

Some of the most common algorithms used in unsupervised techniques include Clustering,
e.g. k-means or or hierarchical clustering, Artificial Neural Networks, e.g. autoencoders,
Generative Adversarial Networks (GAN) or Self-Organizing Maps (SOM), and methods for
learning latent variable model, e.g. Principal Component Analysis (PCA) or Independent
Component Analysis (ICA).

The widespread of Deep Learning methodologies in the last years, as described in Sec-
tion 2.5, allowed to return to make use of unsupervised methodologies to solve medical
problems, especially autoencoders architectures and GANs. In fact, autoencoders, by design,
reduce data dimensions by learning how to ignore the noise in the data. This make autoen-
coders particularly suitable to solve tasks linked to medical imaging. The typical architecture
of an autoencoder is represented in Figure 2.7.

Several works dealing with unsupervised architecture have been proposed in the literature
so far [145]. The approach by Shin et al. used stacked autoencoders for multiple organ
detection in MRI scans [146]. Vaidhya et al. presented a brain tumor segmentation method
with a stacked denoising autoencoder evaluated on multi-sequence MRI images [147]. In a
work by Sivakumar et al., the segmentation of lung nodules is performed with unsupervised
clustering methods [148]. In another study, Kumar et al. used features from an autoencoder
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Fig. 2.7 Representation of an autoencoder.

for lung nodule classification [149]. These auto-encoder approaches, however, did not yield
satisfactory classification results. Other than these, unsupervised deep learning has also
been explored for mammographic risk prediction and breast density segmentation [150].
Unsupervised feature learning remains an active research area for the medical imaging
community, more recently tackled with Generative Adversarial Networks (GAN) [151].

2.4.3 CAD Systems for the Segmentation of Images

Alongside classification purposes, segmentation is one of the main objectives for which
CAD systems processing biomedical images can be employed in the daily clinical practice.
Although segmentation and classification systems may be considered different, in terms of
algorithms or purposes, they are strictly linked together. In fact, the segmentation process
always includes a classification procedure, meaning that the segmentation pipeline, in the
end, allows assigning a label to each pixel of the input image.

As well as the classification tasks may be performed following different approaches
(e.g., supervised or unsupervised), there are plenty of algorithms allowing to perform the
segmentation of images, from the simplest ones to more complex pipelines. There are
different categories of segmentation approaches; this classification is mainly based on the
features involved in discriminating the different parts of the images, in terms of type and
processing methods. It has to be noticed that features of interest may include pixel intensities,
gradient magnitudes, or measures of texture. Focusing on the segmentation techniques
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dealing with these features, they can be broadly classified into three categories: region-
based, edge-based, or classification-based [87]. Specifically, region-based and edge-based
segmentation techniques explore intra-region similarities and inter-region differences among
features in order to assign a label to each pixel. Classification techniques, instead, label
individual pixels or voxels based on the values of the features, considering 2D or 3D space,
respectively.

In some cases, depending on the domain of the problem under investigation, grey-
level thresholding could be a simple but effective segmentation method [152]. Concerning
thresholding, it may be performed at a global or local level, i.e., thresholds can be selected
equal to a constant value throughout the image, or can vary spatially by computing different
values for each subsection of the image. Thresholding methods can also be categorized
as point-based or region-based techniques. Region-based methods compute the value of
a proper threshold based on the grey-level of an individual pixel and the properties of its
neighbourhood. Whether local or global, point-based or region-based, thresholds are typically
estimated from the intensities histogram using different approaches.

In other cases, a priori knowledge could be necessary to perform a good segmentation.
Noise, artefacts or other kinds of interferences could make the segmentation a tricky task,
not simply achievable using only information coming from the grey levels of the input image.
To overcome such kinds of problems, deformable and active models or atlas-based methods
have been employed over time, depending on the task to address [153–156].

Finally, more complex approaches, including Region Growing, Bayesian approaches,
Clustering or Deformable models are segmentation techniques used for performing the
segmentation of medical images [157–159].

There are segmentation approaches based on classification algorithms, too. The classifi-
cation approach for segmentation, based on supervised learning, requires training data from
users (i.e., the labelled ground truth) enabling classifiers to learn how to label each pixel
of the input images. On the other side, unsupervised classifiers, starting from unlabelled
data, perform cluster analysis to discriminate natural structures in the input images. In
recent years, however, segmentation methods based on Deep Learning strategies have been
introduced [157, 160–162]. Section 2.5 deal with a detailed discussion about Deep Learning
architectures used also for segmentation purposes.

Regardless of the segmentation method, the output from the segmentation task is, in the
most cases, a binary (or multi-labelled) mask allowing to filter out all the undesired regions of
the input image [163], in order to perform the subsequent actions, such as 3D reconstruction
of areas of interest or organs. An example of a CAD system developed for the segmentation
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Table 2.2 Confusion Matrix

True Condition

Positive Negative

Predicted Condition Positive TP FP
Negative FN TN

of MR images from patients affected by Autosomal Dominant Polycystic Kidney Disease
(ADPKD) [164] is reported in Fig. 2.8. Specifically, starting from input MR slices, kidneys
are automatically segmented. The implemented CAD system also allows superimposing the
ground truth segmentation to those obtained with the automatic approach in order to compare
and evaluate the segmentation error.

2.4.4 Evaluating the Performance of a CAD System

In order to evaluate the performance of CAD systems, several metrics are considered in
the literature, which depend on the aim of each specific CAD. In the following sections,
the metrics for evaluating both the classification and the segmentation approaches will be
investigated.

2.4.4.1 Classification Performance

For the sake of the definiteness, let us consider a binary classification task, with Positive (P)
and Negative (N) classes. The results obtained from a classification system may be organised
in the so-called Confusion Matrix, as the one reported in Table 2.2.

Specifically, True Positive (TP) indicates the number of instances labelled as Positive,
and correctly classified as Positive; True Negative (TN) refers to the number of instances
labelled as Negative and correctly classified as Negative; False Positive (FP) refers the
number of instances labelled as N but misclassified as Positive; False Negative (FN) indicates
the number of instances labelled as P but classified as Negative.

Starting from the confusion matrix, several metrics could be computed in order to
evaluate the performance of a CAD system. Equations 2.1, 2.2 and 2.3 report how to compute
Accuracy, Specificity and Sensitivity, which are the metrics most used in the subsequent
chapters to compare the results obtained with the state of the art.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)
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(a) (b)

(c)

Fig. 2.8 The representation of a CAD system for the segmentation and 3D reconstruction of
Polycystic Kidney Disease from MR Images, (a) input MR images; (b) the output obtained
from a fully-automated segmentation procedure; (c) the superimposition of the ground truth
to the obtained 3D volume.
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Speci f icity =
T N
N

=
T N

FP+T N
(2.2)

Sensitivity (or Recall) =
T P
P

=
T P

T P+FN
(2.3)

Precision =
T P

T P+FP
(2.4)

Although a correctly designed classifier should maintain TPs and TNs higher than FPs
and FNs, real applications may produce prediction errors. A false positive error is a result
that indicates a given condition exists, when it does not; a false positive error is a type I error
where the test is checking a single condition, and wrongly gives an affirmative (positive)
decision. A false negative error, on the contrary, is a test result that indicates that a condition
does not hold, while in fact it does. In other words, erroneously, no effect has been inferred;
a false negative error is a type II error occurring in a test where a single condition is checked
for and the result of the test indicates erroneously that the condition is absent [165].

Based on the final aim of the decision support system, type I or type II errors should be
avoided respectively. In fact, test for screening the population, aimed at identify pathologies
in people without any symptoms, should avoid type II errors, increasing, as much as possible,
the Sensitivity of the system. As a result many of the positive results are false positives. This
is acceptable, particularly if the screening test is not harmful or expensive. On the contrary,
diagnostic tests, aimed at providing a definitive diagnosis, should avoid both type I and II
errors, increasing the specificity of the test, with more weight given to diagnostic precision
and accuracy than to the acceptability of the test to patients [166].

The advent of new competitive imaging modalities for the same diagnostic problem has
led to performing many studies involving comparisons among the information obtained from
the different imaging techniques, especially in radiology [167]. Several of these comparisons
have used Receiver Operating Characteristic (ROC) curves [168–171]. The main goal
of these studies is to judge the discrimination ability of various statistical methods that
combine different clues and test results for predictive purposes. A ROC curve is a graphical
plot that illustrates the diagnostic ability of a binary classifier system as its discrimination
threshold is varied. The ROC curve is created by plotting the True Positive Rate (TPR), or
Sensitivity, against the False Positive Rate (FPR), obtained as in Equation 2.5, at various
threshold settings. The Area Under the ROC Curve (AUC), ranging from 0 to 1, allows at
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Fig. 2.9 Four ROC curves with different values of the area under the ROC curve. A perfect
test (A) has an area under the ROC curve of 1. The chance diagonal (D, the line segment
from 0, 0 to 1, 1) has an area under the ROC curve of 0.5. ROC curves of tests with some
ability to distinguish between those subjects with and those without a disease (B, C) lie
between these two extremes. Test B with the higher area under the ROC curve has a better
overall diagnostic performance than test C. Image from [167]

discriminating the test performing better. A perfect test has AUC equal to 1, while the chance
has an AUC equal to 0.5. Some examples are reported in Fig. 2.9.

False Positive Rate (FPR) =
FP
N

=
FP

FP+T N
= 1−Speci f icity (2.5)

2.4.4.2 Segmentation Performance

Regarding the segmentation tasks, the Confusion Matrix should also be considered, but the
metrics reported in Equations 2.6, 2.7 and 2.8 have to be used for evaluating the segmentation
performance. In particular, the Boundary F1 Score (BF) measures how closely the predicted
boundary of an object matches the corresponding ground truth; it is defined as the harmonic
mean of the Precision (Eq. 2.4) and Recall (Eq. 2.3) values. The resulting score spreads in
the range [0, 1], from a bad to a good match. The Jaccard Similarity Coefficient, instead, is
the ratio between the number of pixels belonging to the Positive class classified correctly
(TP) and the sum of the number of pixels belonging to the Positive class (P = T P+FN) and
the Negative pixels wrongly predicted as Positive (FP). Since, in some research work, the
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object detection problem has also been investigated, the Average Precision (Eq. 2.4) and the
logAverageMissRate were evaluated, considering the Miss Rate (MR) according to Eq. 2.8.

Boundary F1 Score =
2∗Precision∗Recall

Precision+Recall
(2.6)

Jaccard Similarity Coe f f icient =
T P

T P+FP+FN
(2.7)

Miss Rate =
FN

FN +T P
(2.8)

2.5 Deep Learning: A New Perspective for CAD Systems

The development of hardware technology, such as general-purpose computing GPUs, enabled
performing complex operations in shorter computation time. For example, training a Deep
Neural Network (DNN), or more complex architectures, for classification or segmentation
purposes, became a more manageable task than in the past. Deep learning models now
can generate more meaningful and powerful features after analysing a large amount of
uncategorised data and training the model for accurate prediction by using these features.
This process, implemented by some deep architectures, is surprisingly similar to the self-
organization of humans for obtaining or discovering knowledge. These breakthroughs have
led to relevant improvements in performances in various research fields, such as speech
recognition, image classification, and face recognition, also thanks to the scientific community
which made available several open-source deep learning libraries such as Caffe, Microsoft
Cognitive Toolkit (CNTK), Tensorflow, Theano, and Torch [172–176].

Different learning strategies and architectures have been introduced in the literature so
far. Nowadays, these automatic learning systems have tremendous success, mainly thanks to
the use of (deep) Convolutional Neural Networks (CNNs) and Deep Learning algorithms in
the field of image processing, classification and also segmentation. In fact, these kinds of
architectures are able to take a decision (i.e. classify, detecting objects or segment) working
directly on the raw images given as input to the network [177–179].

Unlike traditional neural architectures, a Convolutional Neural Network may have differ-
ent kinds of layers, which are generally combined in several ways depending on the specific
implementation and the task for which have been designed [172]. Specifically, the three
main types of layers to build these architectures are Convolutional Layer, Pooling Layer,
and Fully-Connected Layer. Fig. 2.10 reports an example of the implementation of a CNN



2.5 Deep Learning: A New Perspective for CAD Systems 37

Fig. 2.10 The implementation of Alexnet CNN combined with SVM classifier. This archi-
tecture is composed of 5 convolutional layer, some of them coupled with max-pooling and
normalization layers, and 2 fully-connected layers. Finally, the SVM classifiers is used for
class discrimination.

Fig. 2.11 Architecture of convolutional neural networks, including input, Convolutional
Layers, and Fully Connected layers.

.

architecture, showing the well-known AlexNet CNN architecture combined with a final SVM
classifier [180] as classification layer. The representation of another CNN architecture is re-
ported in Fig. 2.11, which clearly shows the composition of the network about convolutional,
pooling layers and fully connected layers. These kinds of DL architectures are specifically
designed for image classification tasks.

More in details, the primary purpose of a convolutional layer is to detect distinctive
local motif-like edges, lines, and other visual elements. The parameters of specialized filter
operators, termed as convolutions, are learned. This mathematical operation describes the
multiplication of local neighbours of a given pixel by a small array of learned parameters
called a kernel (Fig. 2.12A). By learning meaningful kernels, this operation mimics the
extraction of visual features, such as edges and colours, similar to those noted for the visual
cortex.
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Fig. 2.12 Illustration of convolution and pooling methods.

The network performs this process by using filter banks. Each filter is a square-shaped
object that travels over the given image. The image values on this moving grid are summed
using the weights of the filter. The convolutional layer applies multiple filters and generates
multiple feature maps. Convolutions are crucial components of CNNs and are vital for suc-
ceeding in image processing tasks such as segmentation and classification. In order to capture
an increasingly large field of view, feature maps are progressively and spatially reduced
by pooling the pixels together (Fig. 2.12B). By propagating only the maximum or average
activation through a layer of max or average pooling, convolutional layers subsequently
become less sensitive to small shifts or distortions of the target object in the extracted feature
maps. The pooling layer is used to effectively reduce the dimensions of feature maps, and
is robust to shape and position changes of the detected semantic features within the image.
Choosing max-pooling, average-polling, or other forms of downsampling the feature map
depends on the task performed by the CNN, e.g. natural language processing or computer
vision tasks. As reported in Fig. 2.10 and Fig. 2.11, the global architecture of the classifier
shows convolutional and pooling layers repeated several times before the fully connected
layers. This architecture allows computing feature spaces at different levels, from lower ones
(e.g. edges and gradients) to higher abstraction levels. The Fully Connected (FC) layers are
incorporated to integrate all the feature responses from the entire input image and provide
the final results [178].

A CNN, thus, has the capability to automatically extract some descriptors, or features,
from an image, thanks to the so-called "feature learning capability", eliminating the need to
design and develop image processing algorithms aiming to the extraction of hand-crafted

features, necessary to a traditional feature-based classifier, such as an ANN or SVM, to
perform the classification task [172, 177, 178].
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By using deep CNN architectures to mimic the natural neuromorphic multi-layer network,
deep learning can automatically and adaptively learn a hierarchical representation of patterns,
from low- to high-level features, and subsequently identify the most significant features for a
given task (Fig. 2.11) [178].

Because deep CNN architecture generally involves many layers in the neural network,
there may be millions of weight parameters to estimate, thus requiring many data samples
for model training and parameter tuning. In general, the minimum requirement of data size
depends on the specific application. For example, more than 1000 cases per class could be
needed to train deep learning architecture from scratch in classification tasks. However, there
are alternative methods to get around the data size criteria. One is data augmentation, and
the other is the reuse of a pre-trained network. By using these methods, a smaller number of
cases per class could provide a reasonable outcome.

According to literature, Convolutional Neural Networks are powerful architectures that
may be used in three different ways [172, 178, 181]:

• Training from scratch: as for ANNs, Convolutional Neural Networks may be created
from scratch, designing the overall architecture and providing enough samples as input
for training. Generally, this process takes a lot of time and computational resources
using large datasets with several classes.

• Transfer Learning or Fine-Tuning: this approach consists in using an available
pre-trained model for classification purposes different from the original target classes.
In details, it is possible to fine-tune the classification layer of a CNN to predict new
classes given as input. Thanks to the power and versatility of these architectures, it is
possible to fine-tune all the layers of the network, or just some of them, maintaining
the weights of the other layers. In particular, some authors suggest fine-tuning the
higher levels of networks, namely the layers closer to the output, due to the higher
generality of the features respect to those computed in the lower levels [172].

• Features Extractors: in addition to the previous ways for implementing a CNN, it
is possible to get the output at a specific level of a CNN and use it as automatically-
generated descriptors of the input data. Since this process is iterative, it is possible to
intercept the output at the desired level, based on the desired level of abstraction of the
features.

The choice of how to use the CNN depends on the problem under consideration, but
is also strictly related to the available amount of data for training the architecture and the
computational resources available.
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Fig. 2.13 U-net: a CNN architecture performing semantic segmentation.

Convolutional Neural Networks are also employed as intelligent systems for the automatic
segmentation of images. Semantic Segmentation could be intended as image classification
at a pixel level. A general semantic segmentation architecture can be broadly thought of
as an encoder network followed by a decoder network, where the encoder could also be
a pre-trained classification network, like VGG/ResNet, followed by a decoder network
(Fig. 2.13). The task of the decoder is to semantically project the discriminative features
(lower resolution) learnt by the encoder onto the pixel space (higher resolution) to get a dense
classification.

Unlike classification, where the end result of the very deep network is the only important
thing, semantic segmentation not only requires discrimination at pixel level but also a
mechanism to project the discriminative features learnt at different stages of the encoder onto
the pixel space. Different approaches employ different mechanisms as a part of the decoding
mechanism.

Semantic segmentation demonstrated to be a consistent approach for medical images seg-
mentation, thanks to very powerful architectures performing segmentation also considering
three-dimensional data inputs [182–184].
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In the following Chapter 3, all the considered methodologies have been employed for
different case studies in order to support clinical decisions in several units of the healthcare
system.

2.6 Virtual Reality Systems for Clinical Assessment

Virtual Reality (VR) is an artificial, computer-generated simulation or recreation of a real-life
environment or situation. It is capable of generating an immersive experience for the users
by making them feel like they were experiencing the simulated reality firsthand, primarily
by stimulating their vision and hearing. Alongside with Augmented Reality (AR), which
includes technologies for adding computer-generated content to the real-world environment,
VR constitutes the group of the so-called Mixed Reality (MR) technologies, more general
techniques allowing to merge both real and virtual worlds to produce new environments and
visualizations.

A Virtual Reality platform is a combination of hardware and software aimed at building
VR applications for researchers and developers. In such a system, the hardware components
accept input from user-controlled devices and relay multi-sensory feedback to create a virtual
world’s illusion. Generally speaking, in VR applications, the virtual world may be either a
model of a real-world entity, such as a house, or an abstract world that does not exist in a real
sense, but is understood by humans, such as a chemical molecule or a data set representation,
or it may be part of a completely imaginary reality. Typically, a VR system comprises [185]:

• the graphic rendering system that generates and render the virtual environment at
20–30 frames per second, for avoiding the so-called "motion sickness";

• the database construction and virtual object modelling software for building and
maintaining detailed and realistic models of the virtual world. In particular, the system
should be able to handle the properties of the models, including geometry, texture, and
physical characteristics. Also, intelligent behaviours of the objects should be modelled
and included in the virtual world;

• the input tools (trackers, gloves or mice) that continually report the position and
movements of the users;

• the output tools (visual, aural and haptic) that immerse the user into the virtual envi-
ronment.
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The correct combination and integration of all the components constituting the generation
and presentation systems will allow obtaining more performing systems, suitable for being
also used in more serious contexts, other than gaming or ludic applications.

Based on the hardware and software included in a VR system, it is possible to distinguish
among:

• Fully Immersive VR: with this type of solution the user appears to be fully immersed
in the computer-generated environment. This illusion is produced by providing im-
mersive output devices (head-mounted display, force feedback robotic arms, etc.) and
a system of head and/or body tracking to guarantee the exact correspondence and
coordination of users’ movements with the feedback of the environment.

• CAVE: this is a room where a computer-generated world is projected on the front and
side walls. This solution is particularly suitable for collective VR experiences because
it allows different people to share the same experience at the same time.

• Telepresence: users can influence and operate in a world that is real but in a different
location. The users can observe the current situation with remote cameras and achieve
actions via robotic and electronic arms.

• Augmented: the user’s view of the world is supplemented with virtual objects, usually
to provide information about the real environment. For instance, in military applica-
tions, vision performance is enhanced by pictograms that anticipate the presence of
other entities that are currently out of sight.

• Desktop VR: uses subjective immersion on a standard PC screen. The feeling of
immersion can be improved through stereoscopic vision. Interaction with the virtual
world can be made via mouse, joystick or typical VR peripherals such as a data glove.

In the last years, VR systems were shown to be transversal tools in the clinical field, al-
lowing researchers and clinicians to perform different tasks, from cognitive and physiological
assessment to the implementation of protocols allowing the de-hospitalization of rehabilita-
tion treatments [186–188]. Several VR applications for the understanding, assessment and
treatment of mental health problems have also been developed in the last years [189–191].
Also, in VR, patients learn to manipulate problematic situations related to the problem afflict-
ing them. For this reason, the most common application of VR in this area is the treatment of
anxiety disorders [192].
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In this context, Virtual Reality can be described as an advanced form of a human –
computer interface allowing the user to interact with and become immersed in a computer -
generated environment in a naturalistic fashion. In addition, VR can also be considered as an
advanced imaginal system, a medium that is as effective as reality in inducing emotional and
cognitive responses. This is achieved through its ability to induce a feeling of "presence" in
the computer - generated world experienced by the user [193, 194].

With regard to the psychological aspect of using VR technologies to perform such
tasks, it has now been established that VR technology can offer enough capabilities to
influence the shape of psychological therapy profoundly. For most clinical applications the
key characteristics of virtual environments are the high level of control of the interaction
with the device and the enhanced patient experience [195]. Emerging applications of VR in
psychotherapy include post-traumatic stress disorder, sexual disorders, pain management,
stress management and eating disorders and obesity [196–201].

In fact, immersive VR can be considered an embodied technology for its effects on body
perceptions [202]. VR users become aware of their bodies during virtual navigation; for
example, their head movements alter what they see, or they could perceive the reproduction
of the movement of their limbs. The sensorimotor coordination of the moving head with
visual displays produces a much higher level of sensorimotor feedback and first-person
perspective (egocentric reference frame). For example, through the use of immersive VR,
it is possible to induce a controlled sensory rearrangement that facilitates the update of the
biased body perceptions. This allows the differentiation and integration of new information,
leading to a new sense of cohesiveness and consistency in how the self represents the body.
The results of this approach are very promising; in fact, different experimental researches
showed that VR is effective in producing fast changes in body experience [203] and in body
dissatisfaction [204].

Another medical field in which VR has been successfully applied is neuropsychological
testing and rehabilitation. Here, the advantage of VR over traditional assessment and
intervention is provided by three key features: the capacity to deliver interactive 3D stimuli
within an immersive environment in a variety of forms and sensory modalities; the possibility
of designing safe testing and training environments; and the provision of cueing stimuli or
visualisation strategies designed to help guide successful performance to support an error-free
learning approach [186, 187, 205, 206].

Future VR clinical applications will also include online virtual worlds (such as Second
Life, There or Active Worlds): computer-based simulated environments characterised by the
simultaneous presence of multiple users within the same simulated space, who inhabit and
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interact via avatars [207]. Online virtual worlds can be considered as 3D social networks,
where people can collaboratively create and edit objects, besides meeting each other and
interacting with existing objects [208]. Over the last few years, the number of virtual worlds’
users has dramatically increased and today Second Life, the largest 3D online digital world,
counts about 12 million subscribers.

Beyond clinical applications, VR has been revealed to be a powerful tool for behavioural
neuroscience research. Using VR, researchers can carry out experiments in an ecologi-
cally valid situation, while still maintaining control over all potential intervening variables.
Moreover, VR allows us to measure and monitor a wide variety of responses made by
subject [209].



Chapter 3

Case Studies: Computer Aided Diagnosis
Systems based on Medical Imaging

After the introduction about the clinical context highlighting the importance of having
accurate diagnosis systems in the precision medicine era, and the description of both method-
ologies and technologies for achieving the set goals, this Chapter reports the research works
conducted in the field of interest of this thesis during the Ph.D. activities, focusing on studies
concerning the medical imaging.

In details, as well as the importance of a quantitative and objective assessment of different
diseases has been investigated for several clinical fields in Chapter 1, the designed and
implemented decision support systems and the technological frameworks for objectively
assessing different pathological conditions will be analysed in the clinical areas of radiology
and pathology. In all cases, we will point out the importance of quantitatively and objectively
measuring pathological indexes and how it may be fundamental for the new era of precision
medicine.

3.1 Motivations

In the last decades, the amount of deaths due to cancer has significantly increased, overcoming
the number of deaths caused by heart attacks and stroke, as emphasized in the reports of the
World Health Organization (WHO) [210, 211].

More in detail, in industrialised countries, several kinds of neoplasias exist with a high
incidence. An early, and possibly non-invasive, diagnosis and staging could luckily prevent
unfavourable prognosis, reducing the risk of clinical complications in some cases, also
improving the life expectancy of people affected by such diseases.
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Fig. 3.1 Top fifteen tumours for incidence cases and deaths worldwide in 2020.

In this thesis, four cancer sites have been considered and evaluated among the top fifteen
in the world for estimated number of incident cases and deaths [211], namely the breast,
liver, blood neoplasias and kidneys. This can be well noticed in Fig. 3.1, where the number
of people affected by forms of the liver tumour was estimated at the sixth position all over
the world in 2018; the incidence of breast cancer is at the first position all over the world. In
addition, leukaemia and kidney tumours show lower incidence with respect to the previous
ones, but they still figure among the most diffuse tumoural forms. It can be noticed that the
same malignant forms are among the top fifteen in Europe too, making breast cancer the
most diffused tumour form, as reported in Fig. 3.2.

Medical imaging is a fundamental methodology for representing the internal organs of the
human body; it permits the non-invasive and accurate diagnosis of several diseases, including
also neoplasias [212], and to assess the course of the disease over time.

It should be pointed out that there are different imaging techniques able to highlight the
characteristics of the human body, on the basis of the sensors used to acquire information and
produce the representation of each internal organ or body structure [213]. Moreover, besides
the diagnostic capabilities, medical imaging is also crucial for staging and monitoring the
clinical course of each disease under investigation [214–216].

The rest of this Chapter is organised as follows: Section 3.2 shows the contribution to the
state of the art in the radiological field reporting the designed and implemented innovative
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Fig. 3.2 Top fifteen tumours for incidence cases and deaths in Europe in 2020.

CAD systems, whereas the researches in the field of pathology, focusing on nephrology and
haematology, are reported in Section 3.3.

3.2 Radiology

Concerning the radiological area, several works have been conducted in order to support the
clinical diagnosis of different pathologies. In this section, we will investigate three different
sites of the body, namely breast, liver and kidneys. Breast cancer and liver carcinoma will
be described and analysed from the classification point of view, in order to detect and stage
the tumours. Kidneys, instead, will be investigated considering a genetic disorder, namely
the Autosomal Dominant Polycystic Kidney Disease (ADPKD), using diagnostic imaging
techniques, thus intelligent algorithms for image processing and segmentation, in order to
assess and estimate the volume occupied by the diseased organs.

Specifically, breast acquisitions included images from Magnetic Resonance (MR) and
Digital Breast Tomosynthesis (DBT), whereas the liver acquisitions and analysis included
images from Computed Tomography (CT) using Contrast Medium for implementing a
triphasic protocol. Kidney images, instead, were obtained from MR imaging protocols,
without any contrast medium for image enhancing.
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3.2.1 Breast Cancer

The high incidence of breast cancer in women (more than 25 % of cancers affecting women
is breast cancer [211]) and the ever-increasing life expectancy of the population require an
accurate assessment of the breast glands with imaging techniques. In this field, mammography
still represents the gold standard imaging tool [217]; in fact, mammographic examinations are
currently employed in several screening programs all over the world, thanks to their capability
to perform a very early detection; Magnetic Resonance (MR), Computer Tomography (CT)
or Digital Breast Tomosynthesis (DBT) techniques, instead, become necessary to perform a
more in-depth analysis of risky subjects in diagnostic tests, or for the follow-up of treated
patients [218].

Although over the years the detection and classification of breast lesions have been
accomplished with traditional image processing techniques and Machine Learning algorithms,
several works have been presented dealing with breast lesions characterisation considering
innovative Deep Learning (DL) strategies, especially using Convolutional neural Networks
(CNN) for classify images or Regions of Interest (ROI).

In [219] Samala et al. designed a DL-CNN architecture for breast micro-calcification
classification. The authors compared a DL-CNN architecture, whose optimal structure was
obtained by varying among 216 combinations of parameters in the network (e.g., the number
of filters and the filter kernels) and analysing the effects of their variation in the parameter
space, and a previously designed Artificial Neural Network (ANN) performing convolutions
on the input images. The results reported in the work using the approach based on Deep
Learning showed a statistically significant improvement since the Area Under the Curve
(AUC) improved from 0.89 for the ANN approach to 0.93 obtained with the DL-CNN.

Kallenberg et al. presented a method capable of learning from features, at multiple
scales hierarchy, using unlabelled data, addressing two different tasks: (i) breast density
segmentation and (ii) scoring of mammographic texture [150]. The authors reported that the
scores obtained by performing the proposed approach, based on automatic learning, have a
high correlation with those obtained with the investigated manual approach making use of
cumulative thresholds set by expert users. Furthermore, the features scores learned by the
automatic systems texture revealed to be also predictive of breast cancer.

3.2.1.1 Research Contribution

In this section, two different strategies designed and implemented for detecting and classi-
fying breast lesions will be analysed and discussed. In particular, a supervised approach
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Fig. 3.3 Workflow for breast lesion classification.

for the detection and classification of breast lesions from MR images will be introduced in
the first paragraph, whereas a supervised approach based on Deep Learning architectures
for the extraction of automatically-computed features which allow one to classify using
simpler non-neural strategies will be discussed in the subsequent one. In this latter case,
some comparisons with neural approaches and classifiers working on hand-crafted features
will also be reported.

Classification based on Magnetic Resonance Images
This section describes a Decision Support System for detecting and classifying breast lesions
in images acquired via Magnetic Resonance. This work has been published in [107]. The
workflow implemented in this work is reported in Fig. 3.3. After the acquisition of images,
there are four different steps in order to allow discriminating between benign and malignant
breast lesions, namely preprocess of the input images, extraction of features describing some
regions of interest, detection of lesions among candidate regions and classification of the
lesions.

The acquisition phase was conducted following the diagnostic protocol for breast cancer
diagnosis, which consists in the following procedure:

• Transverse short T1 inversion recovery (STIR) turbospin-echo (TSE) sequence (TR/TE/TI
= 3.800/60/165 ms, field of view (FOV) = 250x450 mm (APxRL), matrix 168x300,
50 slices with 3-mm slice thickness and without gaps, 3 averages, turbo factor 23,
resulting in a voxel size of 1.5 x 1.5 x 3.0 mm3; acquisition time: 4 minutes);

• Transverse T2-weighted TSE (TR/TE = 6.300/130 ms, FOV = 250x450 mm (APxRL),
matrix 336x600, 50 slices with 3-mm slice thickness and without gaps, 3 averages,
turbo factor 59, SENSE factor 1.7, resulting in a voxel size of 0.75x0.75x3.0 mm3;
acquisition time: 3 minutes);
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Fig. 3.4 Algorithm output for thorax masking. The reference points for parabola generation
are A, B and C.

• Three-dimensional dynamic, contrast-enhanced (CE) T1-weighted high resolution
isotropic volume (THRIVE) sequences (TR/TE= 4.4/2.0 ms, FOV = 250x450x150 mm
(APxRLxFH), matrix 168x300, 100 slices with 4-mm slice thickness, spacing between
slices: 2 mm; turbo factor 50, SENSE factor 1.6, 6 dynamic acquisitions, resulting in
1.5 mm3 isotropic voxels, a dynamic data acquisition time of 1 min 30 s, and a total
sequence duration of 9 min).

In details, the first step of the research work consisted in preprocessing the acquired
images; after rescaling the grey levels of the pixels, an algorithm for masking the thorax in
all the slices was performed, thus filtering out all the structures external to the breasts. As
reported in Fig. 3.4, three points were computed to generate a parabola with the vertex on the
sternum (point A) and passing through the side edges of the chest (points B and C).

A segmentation phase, necessary for the removal of all the uninteresting parts of the
image, was subsequently performed. In particular, a thresholding operation was executed,
considering the 95th percentile of the grey levels histogram of the images acquired without
contrast medium (CM), considering the Transverse T2-weighted TSE sequence. Then, areas
with diameter below 5 mm were removed and the obtained mask was applied to the starting
image in order to extract the regions of interest. The remaining areas, candidate regions to be
lesions, were characterised considering 10 features, which were:

• F1: size in mm2 of the suspicious lesion;
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• F2, F3: average value of the grey levels of images with and without CM in the ROIs,
to determine areas with the grey intensities different from the standard ones;

• F4, F5: standard deviation value of the grey levels of images with and without CM in
the ROIs, respectively;

• F6: circularity expressed as 4π( A
p2 ) where A = ROIarea and p = ROIperimeter;

• F7: aspect ratio, intended as ma jorAxis
minorAxis ;

• F8: eccentricity of the ellipse whose second order moments coincide with those of
each ROI;

• F9: solidity, defined as ratio of the area of the ROI and the area of convex hull;

• F10: convexity (or edge roughness), given by the ratio between the perimeter of the
convex hull and the one of the ROI.

After the extraction of the features, two different Artificial Neural Networks (ANN) were
designed using the evolutionary strategy reported in a previous work [108]. The first ANN
was designed to discriminate among lesions and other structures (e.g., vessels) for detecting
lesions among all the candidate regions identified after the image processing steps. The
second classifier, instead, was used to discriminate benign and malignant lesions, taking as
input the same set of features of the regions classified as lesions in the previous step.

Regarding the first classifier, the image processing and segmentation pipeline revealed
more candidate regions (i.e., False Positives) respect to the real lesions, generating an
unbalanced dataset for adequately training a neural classifier. Using the Synthetic Minority
Over-sampling Technique (SMOTE), input dataset was balanced by increasing the number of
patterns characterising lesions up to the same amount of negative cases, in order to achieve
better classifier performance. [220]. For both the implemented classifiers, performances
were measured in terms of Accuracy, Sensitivity and Specificity, according to the equations
reported in Section 2.4.4.

The results obtained in the two classifications steps of the pipeline are reported in
Table 3.1, and 3.2, respectively. In details, the reported tables show Accuracy, Sensitivity and
Specificity as mean values obtained performing 100 repetitions of the training, validation
and test of the ANN, considering a different random permutation of the input dataset at each
iteration.

The reported results show that a supervised machine learning approach for the detection
of breast lesions from MR images and the subsequent classification between benign and
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Table 3.1 Results obtained in for the discrimination between ROIs with and without lesions.

Min Max Mean

Accuracy 0.9624 0.9849 0.9736 ± 0.0044
Sensitivity 0.9592 0.9958 0.9791 ± 0.0075
Specificity 0.9459 0.9892 0.9684 ± 0.0075

Table 3.2 Results obtained for the discrimination between benign and malignant lesions.

Min Max Mean

Accuracy 0.7308 1 0.8977 ± 0.0584
Sensitivity 0.6923 1 0.8908 ± 0.1021
Specificity 0.7692 1 0.9046 ± 0.0875

malignant is consistent, and shows good performance, especially from the False Negative
reduction perspective.

Classification based on Digital Tomosynthesis Images
Digital Breast Tomosynthesis (DBT) has been recently introduced for breast cancer screening
and detection, and is a promising innovative radiological technique for early diagnosis and
staging [221]. DBT produces a limited angle cone-beam tomosynthesis of the breast glands
and has demonstrated to have a higher accuracy if compared to the most commonly used
bi-dimensional imaging techniques, such as mammography, CT or MR [217, 222–224].
After the acquisition of multiple thin and high-resolution images, a 3D model of the breast is
created, also reducing the effect of tissue superimposition with respect to the other imaging
techniques [225]. DBT also improves the visualisation of masses and architectural distortions.
In particular, the edges of the breast lesions are better defined, thus leading to an improvement
of the final diagnosis performance [226].

Starting from DBT images, a CAD system to support the detection and classification of
three different kinds of lesions was designed and developed. The workflow implemented,
allowing to discriminate among different kinds of breast lesions, is represented in Figure 3.5.
Specifically, the workflow includes a pre-processing images phase, fundamental for extract-
ing regions of interest, a step for extracting features and, lastly, the classifier design for
discriminate the different lesions. This research work has been published in [227].

As for the approach based on MR images reported in the previous paragraph, a preliminary
processing step performing the segmentation of images was needed to extract candidate
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Fig. 3.5 Workflow for breast lesion classification.

regions of interest containing suspicious areas. In details, the extracted ROIs were labelled
according to the classification by radiologists in four classes:

1. None: segmented ROI not containing any kind of lesion (Fig. 3.6 (a));

2. Ori: segmented ROI containing an irregular opacity (Fig. 3.6 (b));

3. Oro: segmented ROI containing a regular opacity (Fig. 3.6 (c));

4. Ost: segmented ROI containing a stellar opacity (Fig. 3.6 (d)).

Differently from the work described in the previous paragraph, the classification of
lesions was investigated following two different approaches:

• Using several pre-trained models of Convolutional Neural Networks as automatic
generator of features. The extracted pattern of features was then classified by means of
non-neural algorithms.

• Morphological and textural features were computed, by analysing the Grey Level
Co-occurrence Matrix (GLCM) [91, 228, 229]. In this case, the features extracted
were classified by Artificial Neural Networks.

Both the investigated approaches have been implemented and compared.

Hand-Crafted Features and ANN Classification Concerning with the approaches
using Artificial Neural Networks as classifiers, the ROIs extracted were described us-
ing both morphological and textural features computed by means of the Grey Level Co-
occurrence Matrix (GLCM). In fact, these features are very frequently used in similar research
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(a) (b)

(c) (d)

Fig. 3.6 Images extracted after the segmentation phase: (a) ROI with no lesions; (b) ROI
with irregular opacity; (c) ROI with regular opacity; (d) ROI with stellar opacity.
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Fig. 3.7 PCA explained variance of the principal components computed from the initial
dataset. Bars show the variance for each component, whereas the black line indicate the
cumulative variance for each principal component.

works [163, 230]. In particular, 26 different features were computed and the arithmetic mean
of pixels’ grey levels in the region was also considered.

In order to reduce the number of features to be considered for the classification, di-
mensionality reduction was performed using the eigen-decomposition Principal Component
Analysis (PCA) [231, 232]; finally, a set of 13 features in the new subspace was selected to
cover an overall variance of 99.3 %, as could be seen in Fig. 3.7.

Two different Artificial Neural Networks were designed, by adopting an evolutionary
approach, to discriminate among the four classes. In a first step, Ori, Oro and Ost classes
were grouped as a single class (labelled as Positives - P), while None was the second class
(labelled as Negative - N). In this case, a binary classifier was used obtaining the performance
reported in Table 3.3.

Subsequently, a second ANN was employed to discriminate among the four classes, but
the obtained Accuracy was lower than those obtained with the binary classifier, reaching
74.84 % ± 4.89.

Analysing the obtained results, this behaviour was predictable and reasonable, considering
the way in which ANNs were designed and optimised: the extraction process of the most
discriminant features heavily influenced the overall capabilities of the classifier. In this
case, the features used as inputs achieved good results in discriminating samples between
two classes, while they did not provide enough information to correctly describe, thus
discriminate, all the different kinds of lesions in the multi-class approach.
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Table 3.3 Results obtained for binary classification.

Accuracy Sensitivity Specificity

Mean 84.19 % 85.90 % 82.82 %
Standard Deviation 3.06 5.33 5.17

CNN-based Features and Non-Neural Classification As already reported in Sec-
tion 2.5, Deep Learning strategies, specifically Convolutional Neural Networks, are often
employed for automatically generating features from input images [233]. Regarding CNNs
as feature extractors, in this work several pre-trained models were considered, namely
GoogLeNet, ResNet, AlexNet, VGG-verydeep, VGG-F, VGG-M and VGG-S [178, 234–
240].

In this approach, the dataset for classifying lesions was constituted by the set of features
extracted using the CNN models. The output of the CNN models (in other words, their final
activations) was used to train several non-neural learners, which were: Linear Support Vector
Machine (Linear SVM), K-Nearest Neighbor (KNN), Naïve Bayes, Decision Tree and Linear
Discriminant Analysis (LDA) [241–246].

Final tests were performed considering all the investigated CNN architectures. In order to
improve the overall classification performance, several tests for processing the dataset before
training were performed. Specifically, Activation Normalization and Dataset Augmentation
were both explored leading to a slight improvement in all the architectures employing
both the strategies. In fact, normalization allows each layer of a network to learn by itself
a little bit more independently of other layers, whereas the dataset augmentation allows
enriching the dataset with generated samples, increasing the generalisation capabilities of
the architecture [247, 248]. Finally, since VGG-F, VGG-M and VGG-S achieved the higher
mean accuracies and the lowest processing time, they were considered for the final evaluation.

The results are represented in Table 3.4 and show that the Naïve Bayes classifier is
not recommended in this classification task; Decision Trees allowed to improve the mean
accuracy in comparison to Naïve Bayes, but it was still far to be considered as a reliable
classifier for this problem. The linear classifiers (SVM and LDA) further increased the
performance, but better results were obtained from the KNN classifier. In this case, the mean
performance reached very good levels of accuracy, specificity and sensitivity, also with low
variability among the training and test repetitions. Furthermore, to substantiate the high level
of performance in terms of accuracy, it is worth to mention that sensitivity and specificity
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Table 3.4 Results of the selected pre-trained CNNs used as features extractor, training several
learners with normalization and augmented images.

KNN LDA LINEAR
SVM

NAÏVE
BAYES

DECISION
TREES

VGG-F 91.63 ± 0.41 64.57 ± 0.66 67.29 ± 2.02 43.82 ± 0.59 59.68 ± 1.07
VGG-M 90.74 ± 0.48 66.25 ± 0.60 69.50 ± 2.16 42.85 ± 0.57 57.03 ± 0.98
VGG-S 92.02 ± 0.48 65.24 ± 0.80 68.84 ± 1.89 44.89 ± 0.60 56.16 ± 0.93

Table 3.5 Sensitivity and Specificity for the lesions evaluated through 1-vs-all approach.

Ori vs all Oro vs all Ost vs all

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
VGG-F 98.67 % 97.07 % 96.01 % 95.98 % 97.24 % 96.93 %

VGG-M 98.14 % 96.64 % 95.00 % 95.76 % 97.18 % 96.62 %
VGG-S 98.36 % 97.13 % 95.61 % 96.33 % 96.67 % 97.25 %

for positive samples were higher than 95 %, as reported in Table 3.5, where the results were
calculated using a 1-vs-all approach.

3.2.2 Liver Carcinoma

As for breast cancer, liver carcinoma shows an extremely high mortality worldwide [211]. In
recent years, several works have been presented dealing with detection and classification of
hepatic tumours considering different strategies for their discrimination. In fact, segmentation
of liver is crucial for several clinical procedures, including radiotherapy, volume measurement
and computer - assisted surgery.

The design and implementation of a CAD system consisting of both liver and tumour
segmentation, feature extraction and classification modules was presented in [249], char-
acterising the liver tumour from CT images between haemangioma and hepatoma. The
experimental results showed that the classification accuracy of a Fast Discrete Curvelet
Transform (FDCT)-based feature extraction and classification approach was higher than a
previously investigated wavelet based method. Performance measurements could also be
improved by increasing the number of considered samples. In the considered work, a pattern
recognition network was used, a feed-forward network with tan-sigmoid transfer functions in
both the hidden layer and the output one. The performance of the classifier was evaluated by
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calculating accuracy (93.3 %), sensitivity (90 %) and specificity (96 %) from the obtained
confusion matrix.

A Computer Aided Diagnosis system based on texture features and a multiple clas-
sification scheme for the characterisation of four types of hepatic tissue from Computed
Tomography images has been presented in [250]. The proposed system achieved a total
classification performance of about 97 %. Regions of Interest corresponding to normal
liver, cyst, haemangioma, and hepatocellular carcinoma were drawn by an experienced
radiologist on abdominal non-enhanced CT images, for labelling the ground truth. For each
ROI, five distinct sets of texture features were extracted using the following methods: first
order statistics, spatial grey level dependence matrix, grey level difference method, Laws
texture energy measures, and fractal dimension measurements. Since the dimensionality
of some feature sets was high, a feature selection strategy, based on a Genetic Algorithm
(GA), was applied to extract the optima subset of features. Classification of the ROI was
carried out by a system of five neural networks, each using as input one of the above feature
sets. The members of the ANN system (primary classifiers) are 4-class ANNs trained by the
back-propagation algorithm with adaptive learning rate and momentum. The final decision
of the CAD system was based on the application of a voting scheme across the outputs of the
individual ANNs. The multiple classification scheme using the five sets of texture features
resulted in significantly enhanced performance.

A pilot study for hepatocellular carcinoma grading and the evaluation of microscopic
vascular invasion was proposed in [251], where a shallow artificial neural network was com-
pared to linear models. The results obtained from the ANN, in terms of AUC and Accuracy,
were higher than the ones obtained from the linear logistic model in both Hepatocellular
Carninoma grading and Microvascular Invasion presence evaluation.

In [252], biorthogonal wavelet based texture features were extracted and used to train
the Probabilistic Neural Network (PNN) to classify the liver tumour, cholangio-carcinoma,
hepatocellular adenoma and haemangioma with better performance to help radiologists and
medical specialists during their medical decision process.

In [253], 164 liver lesions (80 malignant tumours and 84 haemangiomas) were evaluated.
The suspicious tumour region in the digitised CT image was manually selected and extracted
as a circular sub image. The proposed pre-processing adjustments for sub-images were used
to equalize the information needed for a differential diagnosis. The auto-covariance texture
features of sub-images were extracted, and a support vector machine classifier identified
the tumour as benign or malignant. The Accuracy of the proposed diagnosis system for
classifying malignancies was 81.7 %, the Sensitivity was 75 %, the Specificity was 88.1 %,
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the Positive Predictive Value (PPV) was 85.7 % and the Negative Predictive Value (NPV) was
78.7 %, where PPV and NPV were evaluated according to Equations 3.1 and 3.2 respectively,
considering the Confusion Matrix reported in Table 2.2.

Positive Predictive Value (PPV ) =
T P

T P+FP
(3.1)

Negative Predictive Value (NPV ) =
T N

T N +FN
(3.2)

Also for liver classification and segmentation, several Deep Learning approaches have
been investigated in the last years, after the problem have been investigated following
the traditional methodologies of image processing and Machine Learning [254–259]. For
instance, a recent survey by Kumar et al. [260] on the topic of CAD systems for diagnosing
livers affected by some pathologies does not consider the modern approaches based on deep
learning classification techniques, but limit its analysis to traditional methodologies [261–
271]

A method to segment liver and lesions automatically in CT and MR abdomen images
was proposed in [272] by using Cascaded Fully Convolutional Neural Networks (CFCNNs),
which enabled the segmentation of large-scale medical trials and quantitative image analyses.
In particular, the authors focused on CT images and applied a CFCNN on CT slices for
segmenting liver and lesions, leading to a significantly higher segmentation quality and
showing interesting performance on a public challenge dataset.

Moreover, a Deep Convolutional Neural Network (DCNN) was developed to segment
the liver in CT slices via an automatic procedure also in [273]. The same model was
subsequently employed for the classification of lesions, by considering images from the
previous classification as inputs. The developed models were evaluated using the Liver
Tumour Segmentation Challenge dataset (LiTS) for the liver segmentation tasks. From the
performance point of view, a DICE coefficient equal to 0.67 was reached, but the lesion
classification performance was still low, as reported by the author himself.

A new method for the automatic detection and segmentation of unknown cancers in
longitudinal liver CT studies and for a burden quantification of tumours has been presented
in [274]. The considered inputs were the baseline/follow-up CT scans, the baseline delin-
eation of tumours, and a tumour appearance prior model. The outputs, instead, were the
new segmentations of tumours in the follow-up scan, tumour burden quantification in both
scans, and the tumour burden change. The method developed in [274] aimed at finding new
neoplasias by integrating information from the scans, the baseline tumours delineation, and
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a tumour appearance prior model in the form of a global CNN classifier. Reported results
showed that this method was superior to existing stand-alone/follow-up methods, with both
high true positive rate and precision of about 86 % on a dataset with 37 longitudinal liver CT
studies including the labelling of 246 tumours, among which 97 new ones.

A fully automatic framework for segmentation of the liver along with its tumour on
contrast enhanced abdominal CT scans was developed in [275], based on three steps: i) liver
localization by a simple CDNN model; ii) liver fine segmentation via a deeper CDNN model
with reduced kernel sizes; iii) a tumour segmentation by a CDNN model with enhanced liver
region as an additional input feature. The considered CDNN models were fully trained in an
end-to-end mode with minimum pre- and post-processing efforts.

Furthermore, two CNNs were used for liver segmentation and metastases detection in
CT examinations by Ben-Cohen et al. [276]. Authors used CNN architectures based on a
VGG 16-layer net as in [237]. In particular, the final classification layer was removed and
substituted with a [1×1] convolution, with channel dimension equal to 2, in order to predict
scores for lesion or liver at each of the coarse output locations, followed by a deconvolution
layer to upsample the coarse outputs to pixel-dense outputs, whereas all the intermediate
fully connected layers were substituted with convolutional layers. Starting from the previous
architectures, two variants were obtained linking lower layers to the final layer, which were
FCN-8s DAG and FCN-4s DAG, respectively; 3D information was also considered by giving
adjacent slices as input to the network. Moreover, regarding the segmentation phase, Dice
index, Sensitivity and Positive Predictive Values were used to evaluate the segmentation
performance. In particular, higher values for all three indexes were reached using the FCN-8s
DAG combining information from the 2 adjacent CT slices of the considered one. Regarding
the detection of metastases, instead, the True Positive Rate (TPR) and False Positive per Case
(FPC) metrics were used for performance evaluation. In this case, 3D information allowed
the authors to reach the highest performance with the FCN-4s architecture. Although the
results obtained in this work were very promising, the dataset considered was too small for
the algorithm to be considered robust and accurate.

A novel application of Convolutional Neural Networks was presented in [277] to segment
liver tumours. In the considered work, CNNs architectures were tested on 30 CT images
using leave-one-out cross validation. The reported experiments showed that the CNN model
produced an accurate and robust liver tumour segmentation, if compared to traditional
machine learning methods, such as AdaBoost and SVM. Limitations of CNNs were still
found on segmenting tumours with inhomogeneous density and unclear boundary, especially
noticing an under-segmentation in the tumour adjacent to structures with similar densities.



3.2 Radiology 61

3.2.2.1 Research Contribution

In the following sections, two specific works for detecting and classifying hepatocellular
carcinoma (HCC) will be analysed and discussed. In particular, a supervised approach based
on the extraction of hand-crafted features for the detection and classification of HCCs from a
triphasic CT protocol will be introduced in the first paragraph, whereas a second approach
based on a supervised Convolutional Neural Network will be discussed in the subsequent
one.

Hepatocellular carcinoma is the most common type of primary liver cancer in adults, and
is the most common cause of death in people with cirrhosis [278]. As with any cancer, the
treatment and prognosis of HCC vary depending on the specifics of tumour histology, size,
how far the cancer has spread, and overall health. Methods of diagnosis in HCC have evolved
with the improvement in medical imaging. The evaluation of both asymptomatic patients
and those with symptoms of liver disease involves blood testing and imaging evaluation.
Although historically a biopsy of the tumour was required to prove the diagnosis, imaging
(especially MRI and CT) findings may be conclusive enough to obviate histopathologic
confirmation.

In the considered approaches for HCC staging, the acquisition system was based on
Computer Tomography, a medical imaging technique that is widely used for Hepatocellular
Carcinoma detection. In fact, CT, as well as MR, are always required to determine the disease
extension. Both techniques are considered as the gold standard for non-invasive evaluation
of focal and diffuse diseases of the liver and the biliary tract [279, 280].

The CT scans were acquired with a 320 slices Scanner (Toshiba Aquilion One) after
an automated injection of 1.5 ml/kg of iodinated contrast medium (Iomeprole 400 mgI/ml)
through a 16G Needle in antecubital vein at a flow rate of 4ml/sec with the following protocol:

1. arterial dominant phase acquired 20 seconds after the aortic peak calculated by a
bolus tracking system with a ROI positioned in the abdominal aorta at a trigger density
of 150 Hounsfield Units (HU) (Fig. 3.8 (a));

2. portal phase acquired 70 seconds after contrast injection;

3. equilibrium phase acquired 180 seconds after contrast injection (Fig. 3.8 (b)).

Detection and Segmentation Considering Hand-Crafted Features
In this work, published in [281], a double-step segmentation was carried out, after an image
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(a) (b)

Fig. 3.8 CT images acquired in the different phases: (a) Arterial phase; (b) Equilibrium phase.
The square indicates the lesion in both phases.

pre-processing phase performed through contrast enhancement, in order to improve the
contrast of the CT images, and a cropping phase to reduce the amount of data to be processed.
In particular, liver and HCC segmentations were performed.

Concerning liver segmentation, the histogram of the slice with the largest connected
portion of the liver was analysed to identify the typical liver grey intensity. By means of this
evaluation, local thresholding and morphological operations were performed, allowing to
remove all the structures external to the liver. The segmentation result of the first CT slice
was dilated and used as a binary mask for the previous and the following slices. Those slices
were further segmented, and the method was iteratively propagated in both directions until
the final slices were reached. Representation of the segmentation steps is reported in Fig. 3.9.

A similar procedure was performed also for the HCC segmentation. Hepatocellular carci-
nomas were subsequently segmented using an innovative two-dimensional region growing
algorithm which took into account images from both arterial and equilibrium phases. The
description of the implemented algorithm is reported in Fig. 3.10. Some morphological
operation were performed to refine the obtained Regions of Interest. The output of the HCC
segmentation procedure is reported in Fig. 3.11

Textural features were then extracted using grey level co-occurrence matrices, as proposed
by Haralick et al. [91] and derived from his works [228, 229] to describe the ROIs. Each
HCC was texturally described considering the information from the two corresponding slices
in both the arterial and the delayed phases.

Three different subsets of features were generated from the dataset:

1. 44 features obtained considering ROIs extracted from the two phases (specifically, 22
features extracted from each phase);
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Fig. 3.9 Output of liver segmentation steps: (a) Local thresholding; (b) Largest connected
component extraction; (c) Hole filling; (d) Erosion; (e) Largest connected component extrac-
tion, dilation and closing; (f) Segmented liver.
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Fig. 3.10 The Developed Region Growing Algorithm.
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Fig. 3.11 Output of HCC segmentation steps: (a) Segmented liver; (b) Median filtering; (c)
Region growing; (d) Closing, dilation and opening.
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Table 3.6 Results obtained for HCC classifier

Dataset Accuracy Sensitivity Specificity

44 Features 0.758 ± 0.062 0.755 ± 0.122 0.739 ± 0.141
22 Features 0.763 ± 0.063 0.824 ± 0.089 0.698 ± 0.156
10 Features 0.799 ± 0.073 0.795 ± 0.015 0.804 ± 0.126

2. 22 features coming from a ranking algorithm based on the relative entropy, also known
as Kullback-Leibler distance or divergence [97];

3. 5 features in Haralick et al. (Contrast, Correlation, Energy, Homogeneity and En-
tropy) which have been used in similar previous work for blood vessels and tubules
classification [163] and have shown good discrimination capabilities.

HCC grades, which could be classified into four classes (from grade 1 to grade 4) [282],
have been grouped into two classes: grade 1/2 were addressed as Negative Class, while grade
3/4 were addressed as Positive Class.

Since the optimisation of classifiers, especially Artificial Neural Networks training and
topology, was quite common in literature [283–289], in the considered work a binary classifier
was designed to discriminate the two groups mentioned above using a single-objective genetic
algorithm (GA) [108]. Results, which are expressed in terms of mean values (± standard
deviation), considering 100 repetitions of training validation and test of the ANN classifier,
for accuracy, specificity, and sensitivity, are reported in Table 3.6.

The results obtained in this work show that HCC classes can be discriminated by using
the proposed set of extracted features: the HCC wash-in and wash-out dynamic suggests that
this type of lesion can be characterized by processing textural differences considering the
two fundamental phases in the HCC dynamic.

The Deep Learning Approach
The Deep Learning approach was investigated considering the images acquired with the

acquisition protocol as described in paragraph 3.2.2.1.
To better understand the grading process, the following block diagram of the approach,

proposed in [290] is reported in Fig. 3.12.
Regarding liver and HCC segmentations, the same procedures described in the previous

section were applied, thus obtaining binary masks that were applied to the CT images
acquired during the arterial phase. A Convolutional Neural Network, specifically the Google
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this purpose, in this work  a two-dimensional region growing algorithm is developed due to its easiness 
and interesting performance; one initial seed for each series of slices is selected. Successive once are 
derived by  computations.

The block  diagram of the proposed approach for hepatocellular carcinoma grading with samples 
of output images at each step is reported in Figure 2. Every  step of the suggested approach is described 
in detail in the following section.

3.1. CT Liver Image Preprocessing
After the acquisition phase, all original images are preprocessed. Contrast enhancement is particularly  
important for a correct segmentation and feature extractions, because CT images are scarcely  

Figure 2. Block diagram of the proposed approach for hepatocellular carcinoma grading with samples of output images at each step

Fig. 3.12 Block diagram of the proposed approach for hepatocellular carcinoma grading with
samples of output images at each step.
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Table 3.7 Results obtained for CNN classification.

Accuracy Sensitivity Specificity

Mean 0.928 0.935 0.921
Standard Deviation 0.055 0.075 0.089

Inception v3 implementation reported in [291], was used by re-training the model in order to
classify using the created dataset of images as input.

The implemented CNN has been trained, validated and tested 100 times considering
different permutations of the input dataset. The results reported in Table 3.7 show that
the implemented approach reached high generalization performance regardless of the input
permutation; in fact, Accuracy, Sensitivity and Specificity were higher than 90 % with low
standard deviation.

3.2.3 Autosomal Dominant Polycystic Kidney Disease

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a hereditary disease charac-
terised by the onset of renal cysts that lead to a progressive increase of the Total Kidney
Volume (TKV) over time. Specifically, ADPKD is a genetic disorder in which the renal
tubules become structurally abnormal, resulting in the development and growth of multiple
cysts within the kidney parenchyma [292]. The mutation of two different genes characterises
the disease. The ADPKD type I, which is caused by the PKD1 gene mutation, involves 85 -
90 % of the cases, usually affecting people older than 30 years. The mutation of the PKD2
gene, instead, leads to ADPKD type II (affecting 10 - 15 % of the cases), which mostly
regards children developing cysts already when in the maternal uterus and dying within a
year. However, the clinical features of patients with PKD1 or PKD2 mutations are the same,
but the latter is associated with a milder clinical phenotype and a later onset of End-Stage
Kidney Disease (ESKD). In all cases, the size of cysts is extremely variable, ranging from
some millimetres to 4 - 5 centimetres [293]. Currently, there is no specific cure for ADPKD
and the TKV estimation over time allows one to monitor the disease progression. Tolvaptan
has been reported to slow the rate of cysts enlargement and, consequently, the progressive
kidney function decline towards ESKD [294, 295]. However, as all the pharmacological
treatments aimed at slowing the growth of the cysts, a non-invasive and accurate assessment
of the renal volume is of fundamental importance for the estimation of the ADPKD severity
over time.
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There are several methods in the literature performing TKV estimation; traditional
methodologies, requiring medical image acquisitions, such as Computed Tomography and
Magnetic Resonance, include stereology and manual segmentation [296, 297]. Also, several
studies tried to correlate this metric with body surface and area measurements in order to
have a non-invasive estimation of TKV [298, 299].

Stereology consists in the superimposition of a square grid, with specific cell positions
and spacing, on each volume slice; the TKV estimation is obtained merely counting all the
cells which contain parts of the kidneys to get the bi-dimensional area on each slice, and
interpolating all the slices considering the thickness of acquisition to get the final volume.
Manual segmentation, instead, requires manual contouring of the kidney regions contained
in every slice; several tools supporting this task have been developed, introducing digital
free-hand contouring tools or interactive segmentation systems to assist the clinicians while
delineating the region of interest.

Considering both the phenotyping of the disease and the introduced approaches, the
segmentation of biomedical images of kidneys is a tricky and troublesome task, strictly
dependent on the human operator performing the segmentation, requiring expert training. In
fact, co-morbidities and the presence of cysts in neighbouring organs or contact surfaces make
challenging achieving an accurate assessment of the TKV. To overcome the limitations of the
manual methodologies, several approaches to perform the semi-automatic segmentation of
kidneys and TKV computation have been investigated, such as the mid-slice or the ellipsoid
methods, allowing to estimate the TKV starting from a reduced number of selected slices [300–
302]. Although the reported methodologies are faster and more compliant than the previous
ones, these are far from being accurate enough to be used in clinical protocols [303, 304].

In recent years, innovative approaches based on Deep Learning strategies have been intro-
duced for the classification and segmentation of images. In details, deep architectures, such
as Deep Neural Networks or Convolutional Neural Networks, allowed image classification
tasks, detection of Regions of Interest or semantic segmentation to be performed [56, 305–
307], reaching higher performance than traditional approaches [308]. The architecture of
DL classifiers avoids the need to design of procedures for extracting hand-crafted features,
as the classifier structure itself computes the most characteristic features automatically for
each specific dataset. These peculiarities let DL approaches be investigated in different fields,
including medical imaging, signal processing or gene expression analysis [309–313].

Recent studies suggested that MR images should be preferred to other imaging techniques
for assessing the risk of ADPKD [314]. However, several research works allowed estimating
TKV starting from CT images thanks to the higher availability of the acquisition device, the
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more accurate and reliable measurement of TKV and cysts volume. On the other side, CT
images are always contrast-enhanced using a contrast medium that is harmful for the patient
under examination. On these premises, it is necessary to work on the segmentation of images
from MR acquisition for improving the TKV estimation capabilities.

Starting from a preliminary work performed on a small set of patients [164], in the
following paragraph two different approaches based on DL architectures to perform the
automatic segmentation of polycystic kidneys starting from MR acquisitions are presented.
Subsequently, a fully-automated pipeline for the detection and segmentation of areas contain-
ing kidney in MR images is presented, including a preliminary step for filtering images not
containing the kidney.

ADPKD Segmentation: Semantic Segmentation and R-CNN Approaches
In the first section of this paragraph, several Convolutional Neural Networks, designed and
evaluated for classifying the images pixelwise are presented according to the workflow
proposed in Fig. 3.13. Subsequently, we describe the object detection approach using the
Regions with CNN (R-CNN) technique [315] to automatically detect ROIs containing parts of
the kidneys, with the aim to subsequently perform a semantic segmentation on the extracted
regions. The latter approach is described by the workflow proposed in Fig. 3.14.

Analyses were conducted on MR images acquired from February to July 2017, on 18
patients affected by ADPKD (mean age 31.25 ± 15.52 years) which underwent Magnetic
Resonance examinations for assessing the TKV. The acquisition protocol was carried out by
the physicians from the Department of Emergency and Organ Transplantations (DETO) of
Bari University Hospital.

MR examinations and images acquisition were performed on a 1.5 TMR device (Achieva,
Philips Medical Systems, Best, The Netherlands) by using a four-channel breast coil. The
protocol did not use contrast material intravenous injection and consisted of:

• Transverse and coronal short T1 inversion recovery (STIR) turbo-spin-echo (TSE)
sequences (TR/TE/TI = 3.800/60/165 ms, field of view (FOV) = 250 x 450 mm (AP
x RL), matrix 168 x 300, 50 slices with 3-mm slice thickness and without gaps, 3
averages, turbo factor 23, resulting in a voxel size of 1.5 x 1.5 x 3.0 mm3; sequence
duration of 4.03 minutes);

• Transverse and coronal T2-weighted TSE (TR/TE = 6.300/130 ms, FOV = 250 x 450
mm (AP x RL), matrix 336 x 600, 50 slices with 3-mm slice thickness and without
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Kidney Segmentation

Input Images

Segmentation Masks

Segmented Images

Fig. 3.13 Workflow for the semantic segmentation starting from the full image.



3.2 Radiology 72

Detection of 
Regions of Interest

Input Images

Segmentation of
Regions of Interest

Segmented
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Fig. 3.14 Workflow for the semantic segmentation of ROIs automatically detected with
R-CNN.



3.2 Radiology 73

gaps, 3 averages, turbo factor 59, SENSE factor 1.7, resulting in a voxel size of 0.75 x
0.75 x 3.0 mm3; sequence duration of 3.09 minutes);

• Three-dimensional (3D) T1-weighted high resolution isotropic volume (THRIVE)
sequence (TR/TE = 4.4/2.0 ms, FOV = 250 x 450 x 150 mm (AP x RL x FH), matrix
168 x 300, 100 slices with 1.5 mm slice thickness, turbo factor 50, SENSE factor 1.6,
data acquisition time of 1 min 30 s).

Although patients performed the complete protocol, only the coronal T2-weighted TSE
sequence was considered for the processing and classification strategies. In order to have the
segmentation ground truth for all the acquired images, a dedicated framework was developed
allowing the radiologists to manually draw contours of all the ROIs using a digital tool
specifically designed and implemented.

Two different approaches based on DL techniques were investigated to perform a fully-
automated segmentation of polycystic kidneys without needing to design any procedure for
the extraction of hand-crafted features. In details, the first approach performed the semantic
segmentation of the MR images, classifying each pixel as belonging to the kidney or not;
the second methodology, instead, performed the detection of reduced areas containing the
kidneys before their semantic segmentation.

According to different architectures designed in previous works, such as SegNet [316]
and Fully Convolutional Network (FCN) [317], the CNNs performing semantic segmentation
tasks featured an encoder-decoder design (as represented in Fig. 3.15). Usually, this kind of
architecture includes several encoders interspersed with pooling layers for downsampling
the input; each encoder includes sequences of Convolutional layers, Normalisation layers
and Linear layers. Based on the encoding part, there are specular decoders with up-sampling
layers for reconstructing the input size. Finally, there are fully-connected neural units before
the final classification layer able to label each pixel of the input image.

Regarding the first approach, several architectures based on CNNs were designed and
tested, varying the number of encoders (and decoders), the number of layers for each encoder,
the number of convolutional filters for each layer and the learner used during the training (i.e.,
SGDM - stochastic gradient descent with momentum, or ADAM [318]). All the investigated
architectures included convolutional layers with kernels [3x3], stride [1x1] and padding
[1 1 1 1] allowing to keep unchanged the dimensions of the input across each encoder;
downsampling (and upsampling) was performed only in the max-pooling layers (upsampling
layers for the decoder) having stride [2x2] and dimension [2x2]. To classify each pixel of the
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Fig. 3.15 Encoder–Decoder architecture for SegNet.

Table 3.8 Configurations designed and tested for the semantic segmentation of the full image.
Each layer is a sequence of a convolutional layer, a batch normalization layer and a ReLu
layer.

Network ID Number of Number of Learner
layers per encoder convolutional filters per layer

VGG-16 [2 2 3 3 3] [64 128 256 512 512] ADAM
S-CNN-1 [3 2 3 3 3] [64 128 256 512 512] ADAM
S-CNN-2 [3 2 3 3 3] [96 128 256 512 512] ADAM

images, the semantic segmentation was performed considering two classes: "Kidney" and
"Background".

For training the classifiers, augmentation of the dataset was also performed according to
recent works demonstrating the effectiveness of this procedure for improving the classification
performance [319–321]. The following image transformations were considered for data
augmentation, randomly generated:

• horizontal shift in the range [-200; 200] pixels;

• horizontal flip;

• scaling with scale factor ranging in [0.5; 4].

Table 3.8 shows the configurations designed and tested for this task, reporting the number
of layers per encoder, the number of convolutional filters per layer and the learner employed.
The table reports only the three configurations that reached the highest performance among
all the investigated architectures.

Due to the presence of cysts in the organs near the kidneys and of very similar structures
near the area of interest, which may affect segmentation, a second approach based on the
object detection strategy using R-CNN was investigated. In this way, the classifier was able
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Table 3.9 Configurations designed and tested for the CNN in the ROI detector. Each layer is
a sequence of a convolutional layer, and a ReLu layer.

Network ID Number of Number of Learner
layers per encoder convolutional filters per layer

R-CNN-1 [3 3] [32 32] SGDM
R-CNN-2 [1 1] [16 32] SGDM
R-CNN-3 [3 3] [64 32] SGDM

to detect smaller regions inside each image which were subsequently segmented according
to the approach described in the previous part of the paragraph.

Object detection is a technique for finding instances of specific classes in images or
videos. Like semantic segmentation, object detection is also a well-established process in
literature employed in different fields [322, 323]. The CNNs for object detection include a
region proposal algorithm, often based on EdgeBoxes or Selective Search [324, 325], as a
pre-processing step before running the classification. In literature, traditional R-CNN and
Fast R-CNN are the most frequently used techniques [315, 326]. Recently, Faster R-CNN
was also introduced, addressing the region proposal mechanism using the CNN itself, thus
making the region proposal a part of the CNN training and prediction steps [327].

For tuning the optimal CNN topology also for this task, several networks for detecting
areas containing the kidney were investigated, considering the Fast R-CNN approach. The
manual contour of each kidney was enclosed in a rectangular bounding box and used for
training the network. In this case, the considered CNNs had only the encoding part, where
each encoder included the concatenation of Convolutional layers and ReLu layers. Each
encoder ended with a max-pooling layer to perform image sub-sampling (size [3x3] and
stride [2x2]). At the end of the encoding part, two fully-connected layers were inserted
before the final classification layer. Table 3.9 reports the configurations designed and tested
for detection (in this case, too, the table reports only the three configurations showing the
highest performance).

After the automatic detection of ROIs, the same architectures designed for the segmenta-
tion of the whole images, reported in Table 3.8, were considered for performing the semantic
segmentation of the ROIs. Since the detected ROIs could have different sizes, a rescaling
procedure was performed to adapt all the ROIs to the size required by the CNN for the
segmentation task. Image augmentation was performed, as well, considering the image
transformations as follows:

• horizontal shift in the range [-25; 25] pixels;
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• vertical shift in the range [-25; 25] pixels;

• horizontal flip;

• scaling with scale factor ranging in [0.5; 1.1].

In the end, a fully-automated pipeline for the detection and segmentation of areas con-
taining kidney in MR images from subjects affected by ADPKD has been designed and
developed, including a former classification step for the detection of images containing the
kidney and a subsequent segmentation phase identifying the areas containing the pixels
belonging to the kidney (Fig. 3.16). Specifically, since the detection of slices containing
kidneys were shown to be crucial for improving the segmentation performance in the sub-
sequent phase, the design of the CNN architecture to perform the classification task has
been optimised through a mono-objective Genetic Algorithm finding the optimal subset of
parameters for defining the different layers of the CNN classifier. Based on the architecture
obtained for the classification task, a CNN for the segmentation step has been designed by
properly creating the respective decoding part of the network for reconstructing the input
image.

A two-steps classification strategy made it possible to obtain the final segmentation of
images representing kidneys affected by ADPKD. Both steps relied on deep Convolutional
Neural Networks. In details, the first classification step was concerned with the detection
of the MR slices containing parts of the kidney; the second step, instead, dealt with the
segmentation of the images showing the kidney. The following paragraphs report a detailed
description of the designed classification approaches.

The first step of the automated pipeline included a CNN for detecting the MR slices rep-
resenting the kidney. Since the design of a classifier architecture may affect its performance,
there are several strategies based on optimisation algorithms allowing one to numerically
search for the optimal set of parameters for its design, configuration and tuning [108, 119].
A single-objective genetic algorithm (GA) allowed us to design an optimised topology of the
CNN for the classification task [56]. Each genotype described convolutional architectures
composed of at least one encoder, up to three; each encoder included up to three groups of the
following operators: Bi-dimensional Convolution Layer (conv2d layer), Batch Normalisation
Layer, Rectified Linear Unit (ReLU) layer. The chromosome also modelled the number of
kernels and the filter size for each convolutional layer. Finally, up to two fully connected
layers (with a maximum of 512 neurons per layer) were allowed to precede the softmax
layer for the final classification between the two classes. The training algorithm for all
the CNNs was ADAM [318], showing more limited memory usage with respect to other
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Fig. 3.16 Representation of the implemented automatic pipeline for the segmentation of
images containing the kidney
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Fig. 3.17 The representation of a Convolutional Neural Network candidate solution in the
Genetic Algorithm. Each encoder can have up to 3 sequences of bi-dimensional convolutional
layers, batch normalisation layers and Rectified Linear Unit (ReLU) layers. Between two
consecutive encoders, there is a max pooling layer with kernel size [4 4].

algorithms. In addition, a max pooling layer (filter size [4x4], stride [4x4]) was included
to perform subsampling from one encoder to the subsequent. The training procedure also
included dataset augmentation for improving the overall classification performance and the
generalisation capabilities of the classifier [308]. The evolutionary optimisation started from
an initial random population of 100 individuals. The crossover probability was 0.8 whereas
the mutation operator was an adaptive feasible mutation function randomly generating direc-
tions adaptive with respect to the last successful or unsuccessful generation (the mutation
chooses a direction and step length that satisfies bounds and linear constraints). Fig. 3.17
shows a complete representation of a candidate solution of the GA; Table 3.10 reports the
representation of the CNN parameters included in the GA chromosome.

Each individual within the search space was trained, validated and tested on a random
permutation of the dataset dividing it into a training set, a validation set and a test set with
percentages of 60-20-20, respectively. Each input image was then classified and labelled
as Positive (P) if it contained at least one pixel belonging to the kidney, Negative (N)
otherwise. The fitness function for evaluating the genotypes was the classification Accuracy
(Eq. 2.1) computed considering the performance on the test set. For designing the CNN
for segmentation purposes, the optimised CNN topology obtained in the previous step was
replicated in the encoding section of the semantic classifier. The decoding part was also
generated from it. All images containing at least one pixel of the kidney class constituted
the dataset used for the semantic segmentation. Specifically, each image was split into a
left and right part, increasing both the number and variety of the sample size. As for image
classification, the input dataset was randomly divided into a training set, a validation set and
a test set with percentages of 60-20-20, respectively.

Concerning the results obtained in the investigated approaches, several metrics were
considered for evaluating the classifiers, including those reported in Section 2.4.4.



3.2 Radiology 79

Table 3.10 Representation of the parameters optimised by the GA for designing the CNN
performing image classification.

Network Configuration

Layers GA Parameters

Number of Layers Number of Filters Filter Dimension
Image Input - - -

Encoder 1 [1 – 3] [8 – 256] [1 – 7]
max-pooling - - -

Encoder 2 [0 – 3] [8 – 256] [1 – 7]
max-pooling - - -

Encoder 3 [0 – 3] [8 – 256] [1 – 7]
max-pooling - - -

Number of Neurons
Fully-Connected 1 [0 – 512]
Fully-Connected 2 [0 – 512]

Softmax 2

For each R-CNN architecture reported in Table 3.9, we show the Precision-Recall plot,
showing the Precision obtained at different Recall values, and the logAverageMissRate plot,
reporting how the miss rate varies at different levels of FP per image. Specifically, Fig. 3.19,
Fig. 3.20 and Fig. 3.21 show the plots for R-CNN-1, R-CNN-2 and R-CNN-3 respectively.
Fig. 3.18 shows the result obtained considering a sample image.

As represented in the plots, R-CNN-1 and R-CNN-3 showed an average precision higher
than 0.75, maintaining low the log-average miss rate. Since the aim of detecting ROIs was
the identification of regions for the semantic segmentation step, R-CNN-1 was the best
candidate among the analysed architectures. In fact, it reached a Recall value of about
0.8 with Precision higher than 0.65, meaning that the classifier was able to detect 80 % of
the Positive ROIs, but with a high number of False Positives. However, this problem was
overcome in the subsequent step by the semantic segmentation of the detected ROIs.

Concerning the semantic segmentation, Table 3.11 shows the results for each CNN
architecture performing semantic segmentation of the MR image. As reported in the table,
the architecture performing better for the semantic segmentation of the full image is S-CNN-1,
reaching an accuracy above 88 %, higher than the other investigated architectures.

The introduction of an additional layer into the first encoder of VGG-16 allowed the
net to create a more significant set of features with respect to a simpler architecture, thus
leading to a more accurate classification of the pixels. Conversely, increasing the number
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Fig. 3.18 Results from R-CNN classifier. Input image is on the left; the image on the right
contains squares on the detected ROIs, each one is associated with a score.

Fig. 3.19 Precision – Recall plot and log Average Miss rate for R-CNN-1.

Fig. 3.20 Precision – Recall plot and log Average Miss rate for R-CNN-2.
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Fig. 3.21 Precision – Recall plot and log Average Miss rate for R-CNN-3.

Table 3.11 Performance indices for the classifiers working on MR images.

Network ID Mean Accuracy Weighted IoU Mean BF Score
VGG-16 0.88076 0.75288 0.41117
S-CNN-1 0.88359 0.76294 0.38205
S-CNN-2 0.79824 0.52781 0.38643

of convolutional filters in the first layer of the first encoder did not improve the overall
performance. Table 3.12 reports the normalised confusion matrices obtained for the three
cases, whereas Fig. 3.22 shows an example of the semantic segmentation output.

As for the segmentation of the MR images, Table 3.13 reports the performance indices for
the semantic segmentation of the ROIs automatically detected by R-CNN-1, which showed
an optimal trade-off in detecting ROIs. As in the previous case, the best performance on the
semantic segmentation of the ROIs was obtained by S-CNN-1. The normalised confusion
matrices for all classifiers are reported in Table 3.14. Fig. 3.23 shows the result obtained for
the semantic segmentation of ROI extracted from an image sample.

Finally, concerning the automatic pipeline, the optimised individual found by the GA
showed a topology made up of three encoders: the first one included two convolutional

Table 3.12 Normalized Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 segmenting
the MR images for the test set.

VGG-16 S-CNN-1 S-CNN-2
True Condition True Condition True Condition

Positive Negative Positive Negative Positive Negative
Predicted Positive 0.96629 0.20477 0.96146 0.19428 0.96595 0.21611
Condition Negative 0.03371 0.79523 0.03854 0.80572 0.03405 0.78389
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Fig. 3.22 Result of the semantic segmentation considering a sample image. Top left: the MR
slice represented in greyscale; top right: the segmentation result; bottom left: the ground-truth
mask; bottom right: superimposition of the segmentation result onto the ground-truth mask.

Table 3.13 Performance indices of the classifiers working on the ROIs.

Network ID Mean Accuracy Weighted IoU Mean BF Score
VGG-16 0.86016 0.75426 0.34828
S-CNN-1 0.8726 0.8540 0.4332
S-CNN-2 0.8550 0.82931 0.41515

Table 3.14 Normalised Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 segmenting
the ROIs detected by R-CNN-1 from the MR images of the test set.

VGG-16 S-CNN-1 S-CNN-2
True Condition True Condition True Condition

Positive Negative Positive Negative Positive Negative
Predicted Positive 0.88781 0.16749 0.79742 0.05213 0.77762 0.06762
Condition Negative 0.11219 0.83251 0.20258 0.94787 0.22238 0.93238
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Fig. 3.23 Example result for ROI detection and semantic segmentation. Top left: the MR
slice represented in greyscale; top right: the R-CNN detection result; middle left: one of
the detected ROIs; middle right the segmentation result; bottom left: the ground-truth mask
for the considered ROI; bottom right: superimposition of the classification result onto the
ground-truth mask.
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Table 3.15 Confusion Matrix computed on the test set for the best individual found by the
genetic algorithm.

True Condition

Positive Negative

Predicted Condition Positive 69 2

Negative 3 29

Table 3.16 Confusion Matrix computed on the test set for the best individual found by the
genetic algorithm.

True Condition

Positive Negative

Predicted Condition Positive 0.9441 0.1229

Negative 0.0559 0.8771

layers (11 kernels with size [2x2]); the second encoder included two convolutional layers
(182 kernels with size [5x5]); the last encoder included one convolutional layer (32 kernels
with size [5x5]). The two fully-connected layers included 56 and 232 neurons, respectively.
Table 3.15 reports the confusion matrix of the classification results on the test set for the
best genotype. As shown, 95.15 % Accuracy is obtained, whereas Sensitivity and Specificity
reach 95.83 % and 93.55 %, respectively. Figure 3.24 shows the results obtained for some
image samples.

The segmentation task of the pipeline was evaluated considering different metrics. Ta-
ble 3.16 reports the normalised confusion matrix of the classification performance for the
segmentation task. Moreover, the overall performance shows Accuracy reaching 91.06 %,
whereas IoU and BF Score reach 0.8296 and 0.5234, respectively.
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Fig. 3.24 The output of the kidney segmentation by a CNN. (A) Some input images. (B)
Superimposition of the output of the segmentation onto the input image: the red pixels
are "kidney", whereas the others belong to the background. (C) Superimposition of the
segmentation output (purple) onto the ground truth obtained by manual segmentation of the
kidney (green); the black pixels are the True Positives.
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3.3 Pathology

Concerning the area of pathology, several works have been conducted in order to support
the clinical diagnosis. In this section, the analysis of histological images for assessing the
suitability for transplant of a kidney, and segmentation and classification of haematological
images for supporting white cell counting are described.

3.3.1 Histological Images Analysis

Histological evaluation is a clinical practice of many organ transplant centres when donor
age is higher than 60 years or when there are comorbidities affecting the patient, such as
diabetes or hypertension, that could have compromised the renal functionality. In these cases,
histological analysis of renal biopic tissue is useful to assess whether kidneys are suitable
for single or double transplant, or rather have to be discarded. The Karpinski score is an
histological evaluation that assesses the degree of chronic lesions in each compartment of
the renal parenchyma, by analysing glomeruli, tubules, interstitium and vessels [328]. A
semi-quantitative score, from 0 to 3, is assigned to the degree of glomerulosclerosis, tubular
atrophy, interstitial fibrosis and vascular sclerosis with narrowing of vascular lumina. High
values of these parameters are associated with poor, early and late graft outcomes [329].

3.3.1.1 Research Contribution

Starting from the work in [230], where vessels were segmented by using a procedure for
detecting the lumen position and a metric to remove False Positives (FPs), the research work
here reported improves on the proposed approach proposing a new procedure to evaluate the
relevance of the presence of nuclei in the membrane, making it possible to further reduce
the number of FPs. The procedure for classifying blood vessels versus tubules follows the
pipeline reported in Fig. 3.25.

Kidney Biopsy Slide (KBS) preparation and digital acquisition have been conducted at the
Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro
(Bari, Italy). All KBSs have been prepared by expert lab technicians of DETO according to
the Renal Biopsy Guidelines of the Ad Hoc Committee appointed by the Renal Pathology
Society [330]. Following these guidelines, once it is ready, the KBS can be analysed at the
microscope by a nephropathologist and digitally acquired. In details, each KBS was digi-
tally scanned using the Aperio ScanScope CS microscope (http://www.leicabiosystems.com/

http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
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Fig. 3.25 Pipeline architecture.

http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
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digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/) fea-
turing a 20x optical zoom. The acquired RGB images have the following characteristics:

• Resolution: 0.50 µm/pixel;

• Compression Standard: JPEG.

The image file size and the acquisition time depend on the amount of area selected with
the ScanScope acquisition interface. All the acquisitions were performed using the automatic
focus in order to keep the acquisition durations low [331]. But, at the same time, due to
the automatic focus, some areas resulted out of focus. For the evaluation of vessel, the
protocol included the Periodic acid–Schiff (PAS) staining slide, which is a staining method
used to detect polysaccharides such as glycogen, and mucosubstances such as glycoproteins,
glycolipids and mucins in tissues. The reaction of periodic acid oxidises the vicinal diols in
these sugars, usually breaking up the bond between two adjacent carbons not involved in the
glycosidic linkage or ring closure in the ring of the monosaccharide units that are parts of the
long polysaccharides, and creating a pair of aldehydes at the two free tips of each broken
monosaccharide ring. The oxidation condition has to be sufficiently regulated so as to not
oxidize the aldehydes further. These aldehydes then react with the Schiff reagent to give a
purple-magenta color. PAS staining of kidney tissues typically appear as in Fig. 3.26a.

The first step in the segmentation process was to detect the lumen position in the acquired
image. In order to identify the position of each lumen, the RGB image was converted into a
grey-scale image. Lumens were detected using a combination of a thresholding process and a
morphological evaluation [332]. In particular, all the pixels with a value greater than or equal
to a threshold were labelled as lumen components. A new black and white mask was created,
with white pixels corresponding to lumen pixels, black otherwise. In order to obtain a final
lumen mask with a number of connected components equal to the number of lumens, some
morphological operations were executed. The result of these steps is shown in Fig. 3.26.

After detecting lumen positions, the mask was processed to remove FPs lumen. In general,
a FPs consisted in lumen of tubules.

A metric M has been developed considering 3 factors :

1. Number of the closest connected components found by the previous procedure;

2. Distance among the closest connected component, where the distance between different
connected components is the distance between their centroid;

3. Pixel Area ratios with the closest connected components.

http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
http://www.leicabiosystems.com/digital-pathology/aperio-digital-pathology-slide-scanners/details/product/aperio-cs2/
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(a) Original RGB Image. (b) Sub-ROI of RGB Image (a).

(c) Gray scale image. (d) Lumen mask obtained after the step 3.

Fig. 3.26 Steps of the procedure for the labelling of connected components.
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The designed metric M was based on a specific characteristic of the kidney tissue: tubules
are very close to each other while the vessels are reciprocally distant. Thus, this metric
allowed to find a feature to remove tubules from the mask while preserving the near vessels
defined as follows:

M =
NDC +NCCSA −NVCCSA

NCN
, M ∈ [0,1]. (3.3)

where:

• NDC: Distant Components Number, is the number of components that have a distance
equal to 65 pixels. The bigger the number of distant components, the more likely the
membrane is thicker.

• NCCSA: Number of Close to each other Components with a Small Area, is the number
of components that have a distance in the range [30,65[ pixels and that have a small
area compared to one of the component under evaluation (i.e., ≤ 20 %). It is most
likely that tubules with small lumen are near the vessels.

• NVCCSA: Number of Very Close to each other Components with a Similar Area, is
the number of components that have a distance < 30 pixels and which have an area
comparable to the component under evaluation (i.e.,≥ 60 %). This parameter is used
to compensate the rare situations in which two vessels are close and have a lumen with
similar area.

• NCN : Number of Components in the Neighborhood, is the number of components in
the neighborhood of the component under evaluation.

The result of the application of this metric is shown in Fig. 3.27.
Both tubules and vessels show dark nuclei on their membranes. However, the nuclei of

the tubules, unlike those of the vessels, are generally placed uniformly along the centreline,
between external and internal edges. For this reason, it was possible to evaluate this feature.
Fig. 3.28 and 3.29 clarify the disposition of nuclei and the centreline position.

A Seeded Region Growing (SRG) procedure was developed for extracting the membrane
and, for each image, a set of 20 features was computed. Since each histological image was
constituted by 5 images, a 101 features pattern was used, including an index of saturation of
the membrane itself.

The Vessel vs Tubule classification step was performed by means of a Back Propaga-
tion Neural Network (BPNN) [333]. The classifier was trained using all the 101 features
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(a) (b)

Fig. 3.27 (a) Mask of Fig. 3.26. (b) Lumen Mask obtained after processing images according
to the defined metric.

Fig. 3.28 Tubule representation. Membrane, nuclei and centerline.

Fig. 3.29 Centerline detection: Membrane, Skeleton and Centerline.
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previously extracted from a data set randomly divided in three parts: Training Set (50 %),
Validation Set (30 %) and Test Set (20 %).

The classification performance of the validation set showed that the ANN was able to
classify Vessels and Tubules with a Precision greater than 88 %, Accuracy greater than
93 % and Recall greater than 95 %. Analysing the performance also on the Test Set, the
Neural Network assured also good performance in terms of Precision (91 %) and Recall (91
%), the classifier allowed to achieve good results. It is worth noting that the precision and
recall levels have been reached having a small number of examples available for training and
validation.

3.3.2 Haematological Images Analysis

The design of CAD systems for supporting clinical diagnosis of blood neoplasias is of
fundamental importance since, in the most of cases, the invasiveness of the procedures for
their diagnosis can be considerably reduced [334–340].

In the haematological field, the analysis of peripheral blood images is fundamental and
should be performed even in case of low resolution images. In fact, thanks to deep learning
approaches, several works dealing with the reconstruction of images from low-resolution
acquisitions have been introduced. For example, Dong et al. propose a deep learning
method for single image super-resolution (SR), learning an end-to-end mapping between
the low/high-resolution images, represented as a deep convolutional neural network taking
the low-resolution image as the input and producing the high-resolution one as output [341].
Then, in a subsequent work [342], different network structures are also investigated, together
with parameter settings, to achieve an optimal trade-off between performance and speed.

An SVM classifier performing White Blood Cell (WBC) classification has been presented
by Habibzadeh et al. [343]. In their work, the authors were particularly interested in
classifying and counting five main types of white blood cells (as those in https://github.com/
zxaoyou/segmentation_WBC [344]) in a clinical setting, where the quality of microscopic
imagery may be poor. The proposed approach was mainly composed of three steps:

1. Image acquisition and discrimination of WBCs from RBCs (Red Blood Cells);

2. Feature extraction by Dual-Tree Complex Wavelet Transform (DT-CWT);

3. Classification by means of a Support Vector Machine (SVM) of the five WBC types.

https://github.com/zxaoyou/segmentation_WBC
https://github.com/zxaoyou/segmentation_WBC
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The reported experimental results indicated that the developed analysis presents re-
markable recognition accuracy even in the presence of poor quality samples and multiple
classes.

3.3.2.1 Research Contribution

In the following paragraphs, a comparison between two approaches for detecting and classi-
fying white blood cells (leukocytes) from Peripheral Blood Smears (PBS) will be analysed
and discussed. In particular, the approach reported in the following paragraph is based on
the extraction of hand-crafted features for a subsequent neural classifier making decisions,
whereas the second approach, described in the subsequent paragraph, considered CNNs as
feature extractors for subsequent classifiers. Also, a comparison between SVM classification
and CNN classification considering images as inputs is shown.

Leukocytes Classification: Hand-crafted Features vs Deep Learning Approaches
Observation of PBS under the microscope is fundamental in haematology, as an analysis

both of leukocyte formula and of morphological characteristics of blood cells (red blood
cells, white blood cells, and platelets) provides useful information from a clinical point
of view. The morphological evaluation of the WBC can help specialists diagnose haema-
tological pathologies such as leukaemia and non-haematological ones such as infectious
mononucleosis.

In [345], Bevilacqua et al. investigated and designed image processing techniques with
low computational requirements, together with a CAD system able to recognize all five types
of leukocytes (Fig. 3.30), namely Neutrophils, Lymphocytes, Monocytes, Eosinophils and
Basophils, improving the work by Hiremath et al. [346], who considered only a subset of
cell types. The implemented workflow is represented in Fig. 3.31.

The leukocytes segmentation consisted in three main steps able to detect their position,
the plasma and the leukocyte edge, respectively. In details, a colour space conversion into a
Hue Saturation Value (HSV) space, a thresholding operation, and a morphological dilatation
allowed us to generate a mask for the detection of nuclei positions in the images under
consideration (Figures3.32 and 3.33).

Then, a thresholding operation considering the grey-scale histogram of each window
containing a leukocyte could separate plasma (background) from the cell; finally, leuko-
cytes edges were detected performing morphological operations on a mask obtained after
a thresholding operation considering the blue channel of the RGB window. According to
the literature [346–349], geometric, chromatic and texture-based features for blood cells
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Fig. 3.30 The five types of leukocytes to be classified: (a) Neutrophils, (b) Eosinophils, (c)
Basophils, (d) Lymphocytes, (e) Monocytes
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Fig. 3.31 Work flow for leukocytes classification considering hand-crafted features

Fig. 3.32 A representation of the steps of the method used to obtain the nuclei mask; (a)
Sub-image extraction. (b) S channel of HSV sub-image. (c) Obtained Nuclei mask.
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Fig. 3.33 Leukocyte’s ROI and window extraction in one sub-image

Table 3.17 Accuracy, Sensitivity and Specificity of leukocyte classification using a 1-vs-all
approach.

Accuracy Sensitivity Specificity

Neutrophils vs all 96.78 % 95.55 % 99.73 %
Lymphocytes vs all 96.78 % 98.81 % 96.06 %

Monocytes vs all 99.61 % 92.59 % 99.76 %
Eosinophils vs all 99.45 % 90 % 99.53 %

Basophils vs all 100 % 100 % 100 %

representation have been firstly extracted; an Artificial Neural Network and a Decision
Tree have been then designed to discriminate among the five classes of leukocytes. Results
described in [345] are reported in Table 3.17, expressed in terms of values of Accuracy,
Sensitivity and Precision on the test set only for the implemented ANN classifier, because
the value of Accuracy for the Decision Tree reported in [345] is almost equal to 70 %, that is
much lower than the Accuracy obtained by the ANN classifier.

The reported results show that the proposed approach was suitable for a white blood cell
classification; it has to be noted that performance was very good, even though the developed
image processing procedure was quite simple.

In a subsequent work, Convolutional Neural Networks have been proposed to perform
leukocyte discrimination by means of two approaches based on Deep Learning.

Firstly, a pre-trained Convolutional Neural Network has been deployed to extract features
from the same set of segmented images of the previous work [345] and it was subsequently
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Fig. 3.34 Workflow for leukocyte classification considering CNNs as feature extractors

Fig. 3.35 Workflow for a leukocyte classification using a CNN as a classifier

combined with an SVM classifier to perform the desired discrimination. The workflow
followed in this approach is represented in Fig. 3.34.

Then, the classification capabilities of the CNN have been investigated to classify leuko-
cytes using the segmented images as inputs. In this work, the considered model is the AlexNet
by Krizhevsky et al. [178]. Differently from the previous approaches, which included a step
for computing features, hand-crafted or automatically computed using the CNN kernels, the
workflow represented in Fig. 3.35, where the CNN is used for classification, shows that the
feature extraction step is skipped.

As for the previous work, Table 3.18 and Table 3.19 report all the obtained results
expressed in terms of Accuracy, Sensitivity and Precision on the test set.
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Table 3.18 Values of Accuracy, Sensitivity and Specificity for leukocyte classification evalu-
ated via a 1-vs-all approach using an SVM classifier.

Accuracy Sensitivity Specificity

Neutrophils vs all 97.89 % 98.78 % 95.76 %
Lymphocytes vs all 98.59 % 97.93 % 98.83 %

Monocytes vs all 98.67 % 48.15 % 99.76 %
Eosinophils vs all 99.38 % 66.67 % 99.61 %

Basophils vs all 100 % 100 % 100 %

Table 3.19 Accuracy, Sensitivity and Specificity for leukocyte classification evaluated via a
1-vs-all approach using a CNN classifier

Accuracy Sensitivity Specificity

Neutrophils vs all 97.73 % 97.12 % 99.20 %
Lymphocytes vs all 97.73 % 99.70 % 97.03 %

Monocytes vs all 98.67 % 48.15 % 99.76 %
Eosinophils vs all 99.61 % 66.67 % 99.84 %

Basophils vs all 100 % 100 % 100 %

The results reported show that both the proposed approaches based on CNNs seem to be
very promising; in fact, the reported values of Accuracy are always higher than 95 %. At the
same time, the Sensitivity and Specificity values for both approaches considered fluctuate
depending on the type of cells. However, this result is understandable by considering that the
amount of samples for particular cells, such as Neutrophils and Lymphocytes, was greater
than the number of the other kinds of cells.



Chapter 4

Case Studies: Decision Support Systems
based on Signal Processing

After the description of case studies regarding Decision Support Systems supporting the
clinical diagnosis based on imaging systems reported in Chapter 3, this Chapter describes the
research works conducted in the field of interest of this thesis during the Ph.D. activities, fo-
cusing on studies concerning the signal processing for diagnosing and assessing neurological
disorders.

In details, the designed and implemented decision support systems and the technological
framework for objectively assessing and monitoring different pathological conditions will be
analysed in the clinical areas of neurology, psychology and physiatry. These works will deal
with classification methodologies based on non-invasive biomarkers for early diagnosis, but
also will investigate how innovative frameworks making use of Virtual Reality (VR) could
improve the living conditions for older people.

4.1 Motivations

Along with tumoral diseases, whose pervasiveness and diffusion have been discussed in
the previous Chapter, ageing is becoming a serious problem for modern society, especially
in industrialised countries. In fact, according to a 2015 United Nations report on world
population ageing, the number of people aged sixty and older worldwide is projected to more
than double in the next thirty-five years, reaching almost 2.1 billion people [350]. Figure 4.1
shows the exponential growth of people older than sixty-five all over the world, from Sixties
to today. Most of this growth will come from developing regions of the world, although the
oldest old, people having more than eighty years of age, are the fastest-growing segment
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Fig. 4.1 Number of people older than sixty-five all over the world from 1960 to 2018. Data
from

of the population in developed regions. Despite these improvements in life expectancy,
dementia and related neurodegenerative conditions have arguably become the most dreaded
maladies of older people. Furthermore, recent studies evidenced how the two phenomena,
ageing and widespread diffusion of cancers, are strictly correlated with each other [351, 352],
thus making ageing a severe, and steady, problem to deal with.

Based on these premises, the research works reported in this thesis come from the needs
of the healthcare system to support clinical diagnosis and objectively assess the pathological
conditions in order to improve the diagnostic accuracy and the therapeutic, or rehabilitation,
efficacy for increasing the life expectancy of subjects and, at the same time, improve their
wellness state.

The rest of this Chapter is organised as follows: Section 4.2 shows the innovative
works for assessing the neurophysiological and cognitive status of different classes of
subjects, considering the Alzheimer’s Disease, Fibromyalgia and Mild Cognitive Impairment.
Section 4.3, instead, reports the contributions about rehabilitation and assessment of physical
deficits due to neurodegenerative disorders, focusing on the Parkinson’s Disease.
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4.2 Neurology and Psychology

As for areas related to, or dealing with, images, the assessment of the cognitive status, or
the evaluation of other kinds of pathologies, are of fundamental importance, in order to
decide the correct therapy for the patient. In fact, neurodegenerative diseases have different
courses on subjects, e.g. based on the pathology itself, the genotypes of the subject and
environmental factors.

This section describes all the research works conducted in the fields of neurology and
psychology; in all cases, the research contribution aimed at discriminating the presence
or absence of pathologies (e.g., Alzheimer’s Disease vs Normal Ageing), or assessing the
cognitive status due to ageing or traumatic conditions.

4.2.1 Artificial Neural Networks for Discriminating Alzheimer’s Dis-
ease from Normal Ageing based on EEG Biomarkers

Alzheimer’s Disease (AD) is the most prevalent neurodegenerative disorder affecting aged
people. In AD, a progressive neurodegeneration leads to dementia, characterized by severe
cognitive deficits, behavioural symptoms, and loss of autonomy in the daily life activi-
ties [353].

In the past years, the International Working Group (IWG) and the US National Institute on
Ageing–Alzheimer’s Association (NIA-AA) have proposed an algorithm for the diagnosis of
AD based on in vivo biomarkers and clinical phenotypes of disease [354–358]. For example,
the cerebrospinal fluid (CSF) offers a window to the brain as the brain’s metabolism and
pathology is reflected in the CSF that could easily be collected through a lumbar puncture,
which is a safe and well-tolerated procedure. However, it is still an invasive procedure having
the risk of complications during its execution.

The last IWG guidelines encourage the use of topographic markers for evaluating the
pathology, even if they are not diagnostic at all. These markers are quite useful for mapping
structural and functional impairment of the brain over time, especially in elderly subjects with
initial objective evidence of Mild Cognitive Impairment (MCI) including memory and other
cognitive domains but with preserved independence in the daily activities. The topographic
markers include maps of brain hypo-metabolism [359], as revealed by fluorodeoxyglucose
(FDG) - PET, and maps of brain atrophy and abnormalities of structural and functional brain
connectivity, as revealed by structural and functional magnetic resonance imaging (MRI). All
those methodologies can capture several processes of disease, but their use is limited because
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of low availability of the instruments, cost or invasiveness, especially for serial recordings
over time for monitoring purposes.

Keeping the intrinsic limitations of CSF, MRI and PET in mind, several independent
research groups tested indexes of resting state eyes-closed electroencephalographic (rsEEG)
rhythms as candidate topographic markers of AD [360]. EEG rhythms are the most important
features of the collective behaviour of brain neural populations and are very relevant for
assessing human cognition. Furthermore, EEG procedures are largely available in any
country, well tolerated by patients, not affected by subjects’ anxiety or task difficulty, and
can be repeated over time without habituation effects [360].

Previous studies in AD patients and elderly subjects with amnesic MCI have shown that
rsEEG may have promising markers for a neurophysiological evaluation of disease status
as topographic markers. When compared to groups of normal elderly (Nold) subjects, AD
groups have been characterized by the high energy of widespread delta and theta rhythms, as
well as by the low energy of posterior alpha and/or beta rhythms [361–365].

In literature, the use of rsEEG variables as neurophysiologic topographic markers of AD
implies that these variables could classify Nold and AD individuals at least with a moderate
classification accuracy of 75 – 80 %.

In previous studies, cortical sources of rsEEG rhythms in MCI, AD, and control groups
of subjects were estimated by the freeware low-resolution brain electromagnetic tomography
(LORETA). Loreta analysis of limited frequency bands can be used to determine which
regions of the brain are activated during different states or mental tasks, helping to determine
if the brain is operating in an electrical optimal way. There are multiple implementations of
LORETA:

• sLORETA: standardized low resolution brain electromagnetic tomography [366]. It
has no localization bias in the presence of measurement and biological noise.

• eLORETA: exact low resolution brain electromagnetic tomography [367]. The first
ever 3D, discrete, distributed, linear solution to the inverse problem of EEG/MEG with
exact localization (zero localization error).

The aim was to enhance the spatial information content of scalp-recorded EEG data and
to unveil topography of EEG abnormalities associated with AD from prodromal to overt
clinical stages [360, 368–371]. It was reported that temporal, parietal, and occipital cortical
sources of delta and alpha rhythms were altered in AD groups compared with control groups
as a function of cognitive deficits and abnormalities in brain integrity [360, 368–371].
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In a previous work, the same research group tested the hypothesis that Nold and AD
individuals with dementia can be discriminated with moderate accuracy using topographic
markers of source current density and functional connectivity of the rsEEG [360]. Results
showed a classification accuracy of 75.5 % in the discrimination of 120 AD patients with
dementia from 100 matched Nold subjects based on cortical source current density.

4.2.1.1 Research Contribution

In this research work, it was tested whether a multivariate classification with Artificial
Neural Networks (ANNs) cold improve the classification accuracy, obtained in [360], of
those original rsEEG markers in AD and Nold individuals. The main issue was whether the
combined use of cortical source current density and functional connectivity (lagged linear
connectivity - LLC) as inputs of a trained ANN would provide more accurate classifications
than those obtained with the two classes of spectral EEG markers considered separately.
LLC is a linear measure of rsEEG coherence that overcomes the problem of the high
phase synchronization and the zero-lag coherence possibly introduced by the procedure of
eLORETA source estimation. LLC is also expected to minimize the influence of a third
rsEEG source having an influence on the instantaneous coherence between two rsEEG
sources not dependent each other (the so-called "common feeding" issue).

In the considered study, the ANNs for the classification of the Nold and AD individuals
were set-up according to the optimised approach reported in [372]. Each investigated ANN
worked on a different set of features. The experimental design aimed at computing the
sensitivity, specificity, and accuracy of the classifications of the Nold and AD individual
datasets for the following input data:

1. The 4 most discriminant markers of eLORETA source current density (SCD), namely
parietal, temporal, and occipital theta/alpha 1 and the occipital delta/alpha 1;

2. The 4 most discriminant markers of eLORETA source functional connectivity, namely
inter-hemispherical occipital delta/alpha 1, intra - hemispherical left occipital-temporal
theta/alpha1, right parietal-limbic alpha1, and right occipital - temporal theta/alpha 1;

3. The combination of the mentioned 8 most discriminant markers of eLORETA source
current density (SCD) and the functional connectivity (LLC).

The scalp areas related to the features analysed and classified by the ANN are reported in
Figure 4.2.
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Fig. 4.2 A topographical representation of the following best 4 discriminant markers of
the rsEEG SCD for the classification of Nold and AD individuals. These markers are the
following (from the top to the bottom): parietal theta/alpha 1, temporal theta/alpha 1, occipital
theta/alpha 1, and occipital delta/alpha 1. (Right): A topographical representation of the
following best 4 discriminant markers of the rsEEG LLC for the classification between
Nold and AD individuals. These markers are the following (from the top to the bottom):
inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1,
intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-
temporal theta/alpha 1.



4.2 Neurology and Psychology 105

Table 4.1 Accuracy, sensitivity (true positive rate), and specificity (true negative rate) of the
ANNs proposed, expressed as a percentage (mean ± standard deviation).

Feature set
4 SCD 4 LLC 4 SCD + 4 LLC

Sensitivity (mean % ± std) 79.3 ± 10.6 74.2 ± 11.4 80 ± 10.8
Specificity (mean % ± std) 74.3 ± 13.2 68.9 ± 14.6 72.7 ± 12.9
Accuracy (mean % ± std) 77 ± 5 71.6 ± 6.5 76.7 ± 5.2

Figure 4.3 shows the peculiar architectures of the ANNs used for the above three sets of
features (they were optimised by the single objective genetic algorithm reported in [108, 119]).
For a given session of training, validation of test of the ANN, the mean and standard deviation
of the classification accuracy were computed performing 500 repetitions of the session,
randomly permuting the input dataset.

Among the above sessions of ANN classification of the Nold and AD individuals, the
best 4 discriminant markers of the rsEEG source current density reached the following classi-
fication rate: sensitivity of 79.3 %, specificity of 74.3%, and accuracy of 77 %. Furthermore,
the best 4 discriminant markers of the rsEEG source lagged linear connectivity showed
sensitivity of 74.2 %, specificity of 68.9 %, and accuracy of 71.6 %. Finally, the combination
of the above best 8 discriminant markers of the rsEEG source current density and linear
lagged connectivity exhibited sensitivity of 80 %, specificity of 72.7 %, and accuracy of 76.7
%. Table 4.1 reports these values associated with their standard deviations.

The Shapiro-Wilk normality test (p < 0.05) showed that the accuracy values in the
500 iterations of any classification session (i.e., the best 4 discriminant markers of the
rsEEG source current density; the best 4 discriminant markers of the rsEEG linear lagged
connectivity; the above best 8 discriminant markers) did not follow a Gaussian distribution.
From these distributions, the Kruskal-Wallis test disclosed a statistically significant effect
(p < 0.0001) while Dunn’s post-hoc test revealed some interesting statistically significant
differences in the classification accuracy between session pairs. Specifically, the classification
accuracy was higher for the best 4 discriminant markers of rsEEG source current density than
the for best 4 discriminant markers of rsEEG source linear lagged connectivity (p < 0.0001).
Furthermore, this accuracy was lower for the best four discriminant markers of rsEEG source
linear lagged connectivity than the best eight discriminant markers of the rsEEG source
current density and linear lagged connectivity (p < 0.0001). In contrast, no difference in the
classification accuracy was found between the best four discriminant markers of the rsEEG
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Fig. 4.3 Structures of the three artificial neural networks (ANNs) used to classify Alzheimer’s
disease patients with dementia (AD) from Normal elderly subjects (Nold). EEG markers are
given as inputs in the first layer (input layer); every node of every successive layer (i.e., the
hidden layers and the output layer) is characterized by an activation function: A non-linear
function to decide, in analogy with biological neurons, the output of the node (0 or 1). The
output node (O) provides the classification result (AD or Nold). Legend for the input markers:
(top) the four best Lagged Linear Connectivity (LLC) markers; (bottom left) the four best
LLC markers together with the four best Source Current Density (SCD) markers; (bottom
right) the four best SCD markers. Legend for the activation functions: log-sigmoid (logsig),
linear (purelin), and tan-sigmoid (tansig).
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source current density and the best eight discriminant markers of the rsEEG source current
density and linear lagged connectivity (p > 0.05).

These results suggest that a non-linear (ANN) multivariate classification cross-validated
the results obtained in the previous work using a linear univariate classifier [360]. Although
the linear rsEEG markers of cortical current density and connectivity probe different relevant
neurophysiological mechanisms underpinning cortical arousal and vigilance in AD patients,
they provide quite redundant information for classification purposes. In future AD studies,
inputs to ANNs should combine the markers considered here with other linear (i.e., directed
transfer function, phase lag index) and non-linear (i.e., chaos, entropy, synchronization
likelihood) rsEEG markers to improve the moderate classification accuracy these markers
can achieve (about 75 - 80 %).

4.2.2 Chronic Pain Modulation by Motor Cortex Activation

Fibromyalgia (FM) is a condition of chronic pain whose etiopathogenetic mechanisms are not
yet known [373]. The most typical symptom of FM disease is the widespread skeletal muscle
pain, with associated fatigue, alteration of mood, sleep disturbance, cognitive dysfunction and
poor quality of life [374, 375]. Several experimental studies have found an analgesic effect
on pain induced by non-invasive brain stimulation techniques such as repetitive transcranial
magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on the motor
areas [376–380]. The activation of the primary motor cortex seems to interact with the
cortical regions responsible for pain processing and have a modulation function on the
tM1-thalamic inhibitory networks (thalamus is the major source of cortical inputs shaping
sensation, action and cognition) [381]. Recent evidence indicates an altered functional
organization of the primary motor cortex in subjects suffering from chronic pain [382].

Researchers suggest that motor activity leads to an improvement in the quality of life of
patients [383, 384] so exercise is recommended for the treatment of fibromyalgia symptoms.
Moreover, FM patients have a peculiar limitation to the movement that can manifest itself
with dysfunctions in muscle coordination, difficulty in postural control and reduced speed
of motor performance [385]. However, patients suffering from chronic pain are unlikely to
exercise because they fear their painful condition may worsen [386]. The exploration of
the functional basis of motor cortical areas may be an interesting field to investigate in FM
disease.
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4.2.2.1 Research Contribution

The research work conducted in this context aimed to explore the complex mechanisms of
interaction between motor activity and pain, which have not been yet clearly understood.
In order to evaluate the interaction between these two conditions, cortical responses have
to be measured and analysed from both cognitive and functional point of views. The co-
recording of EEG and functional Near-Infrared Spectroscopy (fNIRS) has been demonstrated
to be a very promising technique to explore both the electrical and metabolic activities
during multimodal stimulations condition [387]. In a preliminary study by Gentile et al., the
concomitant recording of fNIRS and laser evoked potentials (LEPS) allowed to explore the
complex mutual interference between motor cortex activation and the processing of painful
stimuli in FM patients and healthy subjects [388]. The choice of the multimodal method
of EEG-fNIRS simultaneous recording was aimed at exploring the electrophysiological
and functional mechanisms underlying the voluntary activation of cortical areas involved
in movement and in pain processing. The advantage of co-registration lies also in being
able to obtain functional and electrical data at low cost and with good tolerance to motion
artefacts [389]. Moreover, the light emission in the near-infrared does not contaminate the
electro-physiological signal and vice versa [390].

The principal aim of this research work was to investigate the motor cortical metabolism
and changes of LEPs parameters in FM patients and healthy subjects, testing whether
there were possible changes induced in motor cortex activation by laser stimulation and
modifications in LEPs during movement tasks. The FM patients showed reduced modulation
of cortical motor activity during movement as a probable effect of chronic inhibition. The
LEPs amplitude decreased during movement task both in patients and controls, though the
FM group showed greater internal variability.

The specific aims of the described work were:

• To compare the changes of haemoglobin activity recorded in the motor cortical regions
during slow and fast finger tapping task between patients and controls;

• To compare LEPs changes during slow and fast motor activity between patients and
controls;

• To verify the effects of laser stimulation of the moving hand and contralateral non-
moving hand on haemoglobin activity

• To correlate FNIRs/LEPs changes with clinical data in the FM group.
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Thirty-eight patients with fibromyalgia diagnosis and twenty-one healthy subjects served
as participants. All the subjects were right-handed, as confirmed by Edinburgh Handedness
Inventory [391]. The experimental procedures of the study were approved by the Ethics
Committee of Bari Policlinic General Hospital. All the participants signed a written informed
consent before inclusion in the study. The exclusion criteria for the recruitment of the study
were: less than eight years of education, any peripheral or central nervous system (CNS)
diseases, including spinal cord diseases and radiculopathies, psychiatric diseases, diabetes,
active and/or positive history of thyroid insufficiency, renal failure, auto-immune diseases,
inflammatory arthritis, systemic connective tissue disease, present or previous history of
cancer, as well as use of drugs acting on the CNS or chronic opioid therapy. The FM patients
were admitted to the study after their first visit at the Applied Neurophysiology and Pain
Unit of Bari University, and before taking the suggested treatment.

Participants lied on a comfortable chair in a relaxed state. Before the beginning of the
experiment the researcher explained the experimental protocol to each subject. Subjects were
invited to perform a finger tapping task, pressing a push-button panel with the right-hand
thumb in 2 modalities, one in a slow way at a defined rhythm, and one pressing as fast
as possible. The experimental procedure was based on nine sessions for each subject, as
reported in Fig. 4.4.

Preliminarily we recorded 2 minutes of resting state, during which the participant was
requested to stay relaxed with open eyes, fixing on a point on the computer monitor. The
subsequent experimental conditions were randomised, and each pre-task baseline was one
minute in duration. In the laser stimulation condition the participant received laser stimuli on
the right- or left-hand dorsum. To keep the participant’s attention active, the experimenter
asked him to count the perceived laser stimuli. Participants were asked to concentrate on
the motor task while keeping the rest of their body motionless. The slow finger tapping
(SFT) task consisted of pressing a button with the right thumb every 5 seconds following the
indications of the experimenter. The fast finger tapping (FFT) task consisted of clicking a
button as quickly as possible. We used the controlled-slow-speed and the maximal-fast-speed
the subjects could reach to evaluate the net effect of the movement or of the maximal motor
performance on the cortical metabolism.

Both SFT and FFT procedures were repeated during laser stimulation of the right hand
(moving hand) and the left–non-moving—hand (subjects performed motor task with the right
hand while stimulated on the left one). The laser stimulation of the inactive-left hand served
to evaluate the net effect of movement as distractor from painful stimulation.
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Fig. 4.4 Experimental Design: Randomised sequence of experimental conditions after two
minutes of resting-state

The speed of the finger tapping tasks was calculated as the number of times per second
in which the subject clicked the button on the panel. The interstimulus interval between the
experimental conditions was fixed at 60 seconds.

The experiment was performed with a co-recording fNIRS-EEG by a compatible cap
and a black over-cap to mitigate a possible interference generated by ambient light on the
fNIRS signal. We used a continuous wave NIRS system (NIRSport 8X8, Nirx Medical
Technologies LLC, Berlin, Germany). The fNIRS instrument included LED sources and
photosensitive detectors. Each source employed two LEDs emitting a near-infrared light
at 760 nm and 850 nm. The fNIRS signal sampling rate was 7.81 Hz. The arrangement of
sources and detectors resulted in a total of 20 fNIRS measurement channels, 10 for each
side of hemisphere (Fig. 4.5). Probes were placed on the motor areas. The inter-optode
distance was fixed at 30 mm since in was demonstrated to be the optimal to measure the
haemodynamic activity variations over the cerebral surface [392]. Each recording was
preceded by a calibration procedure to verify that a good fNIRS signal acquisition was
guaranteed. During the calibration procedure the NIRSport instrument determines the signal
amplification for each source-detector combination.

EEG data, instead, were recorded and amplified using Micromed System Plus (Mogliano
Veneto, Italy) at a sampling frequency of 256 Hz. We used a montage with 61 scalp electrodes
positioned according to 10 - 20 International System with reference to the nasion and the
ground electrode at the Fpz. Two additional electrodes located above the eyebrows served
for electro-oculogram recording. The impedance was kept below 5 kΩ. During the EEG
recording, we used digital filters in the 0.1 - 70 Hz range and a 50 Hz notch filter to allow
signal inspection.

Regarding laser stimulation, nociceptive stimuli consisted of laser pulses delivered by a
CO2 laser (wavelength, 10.6 mm; beam diameter, 2 mm, Neurolas Electronic Engineering
Florence, Italy). The interval between each laser stimulus was fixed at 10 seconds. Patients
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Fig. 4.5 Channels and optodes configuration. Filled red circles indicate sources. Filled blue
circles represent detectors. The numbered green lines show the recording channels.

and controls were stimulated on the back of the hand by laser stimuli of 30 msec duration.
The laser intensity was adjusted based on the patient’s specific pain perception threshold [393,
394].

The fNIRS signal processing included the baseline subtraction, removal of discontinu-
ities and motion artefacts. Raw data were digitally filtered in the band-pass 0.005 - 0.2
Hz to remove low oscillations, like respiratory and cardiac frequencies from fNIRS signal.
Optical intensity measurements were converted to oxyhaemoglobin (∆HbO2) and deoxy-
haemoglobin (∆Hb) concentration by the modified Beer-Lambert law [395, 396]. The unit
of haemoglobin concentration is measured in mmol per liter (mmol/liter). The mean values
of the haemoglobin concentration were subtracted to calculate the changes in ∆HbO2 and
∆Hb during the experimental tasks.

To analyse the EEG signal, an open-source Matlab toolbox, namely Letswave 6 (André
Mouraux, Brussels, Belgium; www.letswave.org). The pre-processing signal method con-
sisted of frequency filtering, bad electrodes interpolation, segmentation in epochs, artefact
rejection, independent component analysis (ICA) decomposing method for ocular artifacts.
The Butterworth IIIR filter was applied for bandpass filtering in the 0.01 - 30 Hz range. Bad
channels were removed with subsequent interpolation. The motor artefacts were visually
inspected and removed. We applied ICA method to remove ocular and motor artefacts
from the EEG signal. EEG epochs were averaged in the 100 msec preceding and 1000

www.letswave.org
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msec following laser stimuli. In this study, the N1, an early component detected on the
contralateral temporal regions at the stimulation side (T3 or T4 channel), and the N2 and
P2 vertex waves (late component) recorded on the Cz electrode were considered [394, 397].
The waves amplitude was computed from the baseline. Latencies were measured from the 0
time to the maximal amplitude of each wave.

Finally, statistical data analysis was performed. For all statistical tests, a p-value lower
than 0.05 was considered statistically significant. A two-way analysis of variance (ANOVA)
corrected for age was used for the comparison of finger tapping speed between groups.

A statistical parametric mapping was performed for fNIRS data [398]. The F-contrast
between groups plotting the F-values for all the channels during the baseline condition,
FFT and SFT conditions, for both ∆HbO2 and ∆Hb. Results are reported in Fig. 4.6 where
F-contrast comparisons between the FM and control groups are represented for the different
experimental conditions. The significant changes in oxyhaemoglobin levels between groups
were on the channel 10 for ∆HbO2 for the resting state condition. Concerning FFT, the
higher difference between the groups is located on channels 4, 6 and 10 for ∆HbO2. During
FFT with concomitant laser stimulation on the left-hand condition, the higher difference
between the groups was located on channel 4, 6 and 10 for ∆HbO2 and on channel 6 for
∆Hb. Considering SFT condition, the higher difference between the groups was located on
channel 6 for ∆Hb. Finally, the higher difference between the groups was located on channel
6 for ∆Hb during the SFT condition.

Group-level average LEPs in the experimental conditions with laser stimulation on the
right and left hands are shown in Figure 4.7 and Figure 4.8, respectively. For most of the
investigated LEPs parameters both in the patient group and in the control group there were
no statistically significant changes between the different experimental conditions. However,
the N1 and N2P2 amplitude was significantly smaller in patients than controls when the
stimulation was on the right hand. Moreover, we observed a significant difference in N1
latency between groups for experimental condition of FFT task during laser stimulation
on the right hand. We also observed no significant changes in LEPs parameters when the
stimulation was on the left hand independent from experimental condition.

The main results of this study partly confirmed previous findings reported in [388].
Patients suffering from FM had a reduced motor performance as tested by finger tapping
task, and a reduced tone of cortical motor areas, especially evident during fast movement.
Concurrent phasic pain stimulation had limited effect on motor cortex metabolism in both
groups, nor the motor activity changed the laser evoked responses in a relevant way. The
reduced tone of motor areas activation was independent of FM duration and severity.
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Fig. 4.6 F-statistic values of ∆HbO2 and ∆Hb during different conditions. FM and Control
groups activation maps using canonical HRF model. The higher difference between control
subjects and patients’ activations is represented with the red colour. (a) F-statistic values
of ∆HbO2 during the resting state condition; (b) F-statistic values of ∆HbO2 during the
FFT condition; (c) F-statistic values of ∆HbO2 and ∆Hb during the FFT + LASER ON
THE LEFT-HAND condition; (d) F-statistic values of ∆Hb during the SFT condition; (e)
F-statistic values of ∆HbO2 and ∆Hb during the SFT + LASER ON THE RIGHT-HAND
condition.



4.2 Neurology and Psychology 114

Fig. 4.7 Grand average of LEPs by right hand stimulation in patients and controls. (a) laser
on the right hand, (b) SFT task during concomitant stimulation on the right hand, (c) FFT
task during concomitant stimulation on the right hand both in patients and controls.
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Fig. 4.8 Grand average of LEPs by left hand stimulation in patients and controls. (a) laser
on the left hand, (b) SFT task during concomitant stimulation on the left hand, (c) FFT task
during concomitant stimulation on the left hand) both in patients and controls.
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Reduced motor performance and motor cortical areas activation in FM patients.
The slow motor performance expressed by FM patients during finger tapping was present in
all the experimental conditions that requested a rapid movement and independently of the
laser stimulation on the active or on the inactive hand. We hypothesize that FM patients had
a lower speed of finger tapping task than controls due to the interaction of several factors
linked to pain condition. The low motor performance of FM patients could be due to fear of
movement or cognitive problems with impaired motor programming [399]. It is possible that
the reduced speed of information processing which often characterizes patients with chronic
pain can also affect the control and speed of motor responses [400]. The motor impairment
could be a constitutional tract in FM, as it seemed independent from disease severity and
duration.

As expected, the spatial distribution of brain activity during the movement of the right
hand involved the left prefrontal regions, corresponding to the primary and supplementary
motor cortex. In the resting state, patients and controls showed a significantly different
activation in channel 10, with a trend toward a greater level of concentrations of ∆HbO2 in
healthy subjects. Furthermore, results indicated that there were significant differences in
motor cortical activation between patients and controls during the fast movement condition
on channels 4, 6, 10. We did not observe a compensatory activity of right hemisphere in
FM patients, as generally occurs in unilateral motor cortex dysfunction. Also, no-relevant
correlation between the motor speed and haemodynamic responses was found, either in
patients or in controls. The results of haemodynamic responses suggest that FM patients could
have a dysfunction in supplementary and primary motor cortex modulation. In this regard,
a possible altered cortical motor function could characterize the chronic pain syndrome.
Patients did not show any modulation of haemoglobin levels during the concurrent laser
stimulation, confirming a rigid modality of motor cortical activation. In fact, scientific
evidences suggest a complex mechanism of reorganization of the motor cortex in conditions
of chronic pain, whose functioning is not yet clear [401].

Effects of movement on laser evoked responses. The obtained results indicated that the
amplitude of the LEPs components was different between FM patients and healthy subjects,
independently of the different experimental conditions. According to previous studies [394,
402], patients with chronic pain can present alteration in expression of nociceptive responses.
Fibromyalgia is characterised by a complex interaction of peripheral and central neuronal
factors with a dysfunction of small fibres coexisting with central amplification of pain. These
phenomena could lead to variable group results, depending upon the prevailing phenotypical
expression. In the present results, FM patients showed in basal, i.e. conditions without
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motor activity, with smaller LEP responses as compared to controls. In general, movement
seemed to affect LEPs in a not relevant way either in patients or in controls. Healthy subjects
exhibited an increase of N1 latency during the execution of the fast finger tapping task.
Probably this result is due to a possible movement–related somatosensory interference on
cortical areas receiving multimodal somatosensory stimuli [403]. The features of N1 wave
were unchanged during the other experimental conditions, suggesting that this interference
could emerge only during fast movement. This phenomenon was absent in FM patients, as
the reduced tone of motor cortex activation and the low motor performance could exert slight
interference on concurrent cortical pain processing networks. If the lack of modulation effect
of the finger tapping task on the amplitude of the laser cortical responses could be reasonable
in FM for the low motor efficiency, the same phenomenon occurring in healthy subjects
deserves further comments. The N2P2 reduction occurred in the phase prior to the motor
execution, when the laser stimulus was delivered on the hand that was supposed to move. In
this case the process of movement preparation generated an inhibition of the vertex LEPs
that was independent from a pure cognitive distraction effect.

4.2.3 Virtual Reality to Improve Wayfinding in Ageing People

The progressive extension of human survival in the occidental society generates new prob-
lems in the organization of daily living activities and optimal environmental contexts, where
the residual capabilities may be facilitated and even promoted in the presence of cognitive
dysfunction. In normal ageing, visual recognition of daily life stimuli is impaired with
respect to young people, depending upon the intrinsic characteristics of the object and the
context in which the old person is embedded [404–406]. Spatial recognition is a fundamental
element to achieve a good orientation in different environments, like a house, hospitals,
and health facilities, in order to facilitate activities in daily living. Spatial disorientation
and reducing wayfinding abilities is an early and invalidating symptom of dementia. Archi-
tectural wayfinding for old people and dementia were also studied with regard to nursing
homes, where structural design, as well as furniture, light, and colors, may be adapted to
dementia - friendly environment models [407]. However, the prevention of progressive loss
of functional capability may be reached through the adaptation of the environment to the
sensory and cognitive dysfunctions, caused by ageing and dementia, in order to prolong
the permanence at home and avoid institutionalization. Moreover, wayfinding would be
improved also in hospitals, where aged people are often disoriented and prone to incongruent
behaviors. Some easy modifications of ambient color and luminance may be obtained by
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home automation, which may improve wayfinding by enabling the remote control of site
lights and luminance [408].

In order to design the best conditions to be applied for site recognition improvement,
Virtual Reality (VR) techniques may efficaciously reproduce home, hospital or nursing house
ambients, enabling the extraction of cognitive response to environment features changes. In
fact, there are recent evidences on the reliability of cognitive-related responses obtained by
oddball paradigms realized in VR frames [409–412], which seems to be a solid method to
explore the capacity to recognize a target place during virtual wayfinding [411]. In theory,
VR might test the real environment’s impact on cognitive capacities in aging and dementia,
as well as any change easily produced by home automation control to improve wayfinding
even in unknown places. So far, the main aims of the described research study have been:

1. The validation of a VR model consisting in the reproduction of a real house environment
modified by home automation as a reliable stimulus to obtain a P3b response similar to
that resulted from standard visual oddball paradigm [412].

2. The preliminary testing of this novel model in a cohort of young and old healthy
subjects, in order to prove possible age-related changes of target places recognition
in response to ambient condition changes obtained by home automation techniques.
This has been done in view of a possible application to mild cognitive impairment and
dementia, to make changes of home or hospital environment easy and rapid for a better
cognitive impact and facilitation of daily living activity.

4.2.3.1 Research Contribution

In order to immerse the user in the VR scenes, an Oculus Rift DK2 was used, which is
a virtual reality head-mounted display headset developed by Oculus VR. For the purpose
of this project, when the user wore the device, he saw the virtual scene through which the
visual stimulation occurred. Binocular vision is the way in which we see two views of the
world simultaneously; the view from each eye is slightly different and our brain combines
them into a single three-dimensional stereoscopic image, an experience known as stereopsis.
The Oculus Rift presents two images, one for each eye, generated by two virtual cameras
separated by a short distance (Fig. 4.9). The Oculus Rift DK2 employs an OLED panel for
each eye, with a resolution of 960x1080 and a refresh rate of 75 Hz (it globally refreshes,
rather than forming the image line by line). The panels have low persistence, meaning that
each frame is displayed only for 2 ms. This combination of higher refresh rate, global refresh,
and low persistence let the user experience none of the motion blurring or judders that are
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Fig. 4.9 The Oculus Rift used in the experiments.

experienced on a regular monitor. It uses high-quality lenses to allow for a wide field of
view. The separation of the lenses is adjustable by a dial on the bottom of the device, in
order to accommodate a wide range of inter-pupillary distances. In order to work, the Rift
was connected by a cable to a PC equipped with a powerful GPU, at least equivalent to
an NVIDIA GeForce GTX 970 or AMD R9 290, and a CPU at least equivalent to an Intel
i5-4590.

The P3b paradigm was designed in order to test the best features of a target site to be
recognised in a virtual ambient reproducing a real house. The bathroom door was selected
as the target stimulus, for its presence in all houses and health facilities, where an elderly
subject could have difficulty in moving toward this room essential for daily living.

In the virtual environment that simulates a home, all rooms that were different from the
bathroom were identified as frequent stimuli (F) while the rare stimulus was assigned to
the bathroom room itself. To differentiate the target stimulus from the frequent ones, and
to understand which features are better for target room doors recognition, bathroom doors
were semi-opened, in order to permit the recognition of the typical furniture. In addition,
different colour and light conditions, easily obtained in the real ambient from a remote home
automation control, were applied. Bathroom doors were illuminated in white, like the other
non-target doors (W), or coloured with a green (G) or red spotlight (Fig. 4.10). Subjects were
informed that they would perform a virtual walking through an apartment, looking for the
bathroom door, and were requested to press a button as soon as the bathroom door appeared
in the field of view. To make the experiment easier, navigation inside the environment was
automatically controlled and had a fixed duration; in this way, rare and frequent stimuli were
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Fig. 4.10 Different ways for representing the target stimulus

proposed in succession and in a controlled number. In order to examine the best position for
the bathroom to be recognised within the virtual house, three different Virtual Environments
(VE) were depicted, where the bathroom was designed in the aisle (A), living room (L) and
bedroom (B), respectively. Each VE constituted a single block, where each block included
30 rare stimuli (10 for each color spotlight) and 120 frequent ones (all other rooms doors).
Thanks to the anchors inserted in the VE, the system computed random virtual paths that,
alternatively, started from the bathroom, ending up in another place of the house and vice
versa, in order to have a rare stimulus followed by a certain number of frequent ones. During
the automated navigation in VE, whenever an open door entered the field of view of the
virtual camera, a trigger was sent to the EEG recording system according to the door type;
in particular, bathroom door throws a rare trigger, with different values depending on the
spotlight colours, while the doors of the remaining three rooms launched the same frequent
trigger value.

During the experiment, a virtual agent, equipped with a virtual camera that reproduced
its visualization on the user’s head-mounted display, followed the route. In order to allow the
health technicians to supervise the experiment evolution, an operating mode of the application
was developed. In this modality, the operator saw the same virtual environment visualization
of the patient and other information related to the acquisition protocol. A monitor, used
exclusively by the operator, was in fact employed. In the operator display, trigger information
showed which type of stimulus was visible in the field of view and, accordingly, which trigger
code was sent to the EEG recording system. Other information provided to the operator were
the number of stimuli sequence blocks, and the next destination, e.g. "bathroom" or "other
place" (Fig. 4.11).
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Fig. 4.11 The stimulation apparatus, connected with the EEG amplifiers.

A reliable P3b response was obtained in 22 cases. In single subjects, the amplitudes and
latency values of the P3b obtained in VR condition did not exceed a 10 % difference from
those obtained in the fixed - position condition by the standard visual oddball paradigm.

P3b Latency P3b latency was not significantly changed as an effect of the group and the
different visual stimulations (Table 4.2).

P3b amplitude The MANOVA analysis showed a significant effect of group, stimulus type
and for the interaction group x stimulus (MANOVA test: effect of group (DF = 1), F (Roy
radix) = 2.009, DF = 57, p = 0.007; stimuli (DF = 3), F = 2.46, DF = 57, p = 0.001; groups x
stimuli (DF = 4), F = 1.94, DF = 57, p = 0.009). The effect of the Virtual Environment was
also significant as regards to P3b amplitude of target stimuli, but the interaction groups x VE
was not significant though it closely approached significance (MANOVA group (DF = 1), F
(Roy Radix) = 2.46, DF = 57, p = 0.016; VE (DF = 2), F = 2.080, DF = 57, p = 0.036; groups
x VR (DF = 3), F = 1.83, DF = 57, p = 0.068 n.s.). In the Young group, the P3b amplitude
did not appear clearly different in different VE conditions, while in the Old group the P3b
appeared more diffused over the parietal and central derivations during the vision of target
stimuli into the Aisle and Bedroom Virtual Environments (Figs. 4.12, 4.13).

However, the Bonferroni test did not show any significant differences among the different
virtual context in any group. In the Young group, all target stimuli determined a significant
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Table 4.2 ANOVA test: group F = 0.56 (DF = 1) n.s.; VE (DF = 2), F = 0.65 n.s.; stimuli (DF
2), F = 0.58, n.s.; group x stimuli (DF = 2), F = 0.67 n.s.; group x VE (DF = 2), F = 0.06 n.s.;
group x stimulus x VE (DF = 4), F = 0.52 n.s

Old Group Young Group

VE stimulus Mean (ms) SD Mean (ms) SD

Aisle
White 430.04 30.32 409.83 29.03
Red 411.46 33.52 366.86 29.03
Green 382.81 30.32 400.72 29.03

Living Room
White 391.02 31.80 393.23 29.03
Red 424.22 31.80 396.48 29.03
Green 391.02 31.80 402.70 30.32

Bedroom
White 356.58 38.01 360.03 29.03
Red 413.09 35.55 381.51 29.03
Green 362.85 33.52 351.56 33.52

Fig. 4.12 Mean and standard errors of P3b amplitude on Pz EEG channels in the Young
and Old groups under different stimulation conditions. (Right) The P3b amplitude averaged
across target stimuli is reported A = aisle; L = living room; B = bedroom. (Left) The P3b
amplitude obtained by target stimuli are reported in W white, R red, and G green conditions,
as well as the amplitude of the positive response in the 300–600 ms time interval after F -
frequent stimuli.
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Fig. 4.13 The grand average of P3b response amplitude by target stimuli in the different
virtual environments are represented by a scalp map model provided by ASA software.

increase in P3b amplitude compared to the Frequent stimuli condition, whatever was the
color of the target door (Figs. 4.12, 4.14, 4.15, 4.16).

The Bonferroni test showed that the P3b was significantly increased on the parietal,
occipital and central electrodes in W, R and G conditions, compared to F (Fig. 4.17). The
Bonferroni test showed also that in the elderly group the P3b obtained by the green and red
colours were significantly different from the frequent stimulus, on the parietal, occipital, and
central derivations, while the White stimulus did not evoke a significantly larger P3b with
respect to frequent stimulus (Figs. 4.12, 4.14, 4.15, 4.16, 4.17). In addition, the P3b evoked
by the White door was significantly different from that obtained in the G and R conditions
(W vs. G p < 0.05 on P3, O1, P7, T6, C7 derivations; W vs. R p < 0.01 on P3, O1, P7, T6,
C7, CP3, < 0.01 on Pz, Cp1, Cpz derivations).

The results of this study may confirm in a preliminary way the reliability of a VR model
for extracting a P3b component and evaluate the possible age-related cognitive impact of
simulated architectural context changes, which are easily applicable to a real setting.
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Fig. 4.14 The grand average of the P3b response amplitude of the target and frequent stimuli
are represented by a scalp map model provided by ASA software.

Fig. 4.15 The grand average of the P3b response obtained by the target and frequent stimuli are
represented for 20 representative channels in the two groups. In the old subjects, the response
by the target stimulus in the White condition, represented in gray, is hardly distinguished
from the response to frequent stimuli (represented in black), while the P3b evoked by target
stimuli in Red and Green conditions (represented with these colors) is clearly different from
the response to the standard one. In the young subjects, the P3b evoked by all target stimuli
is clearly recognizable from the response evoked by the standard one.
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Fig. 4.16 A detailed example of the P3b responses in 2 representative subjects (Pz channel).
In the old subject, male, 75 years old, the response by the target stimulus in the White
condition, is reduced in amplitude with respect to the response in red and green conditions
(represented with these colors). In the young subject, male, 30 years old, the target P3b
waves have similar amplitude, independently of the colour of the stimulus.

Fig. 4.17 Statistical Probability Maps representing the results of the Bonferroni test comparing
the P3b amplitude by the different target stimuli with the response obtained by standard
stimuli in single groups. The red shades represent the significant p-values.
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4.2.4 Virtual Reality for Training Functional Living Skills on Persons
with Major Neurocognitive Disorder

The innovative use of technology-based interventions for people with early or prodromal
dementia is a growing area of study and offers many possibilities for improving the inde-
pendence and the quality of life of people with acquired neurocognitive disorders. In the
Desktop Visual Display Systems (DVDS) the person interacts with a monitor displaying 3D
objects and environments, along with auditory and visual stimuli, making such environments
even more similar to the real one. Using such a kind of system is simple, requires limited
instrumentation and short training for new users. Only a few studies focusing on func-
tional living skills used Virtual Training (VT) with patients affected by dementia [413–415].
Functional living skills include complex activities of daily life, such as cooking, phoning,
cleaning, washing laundry, shopping, taking medicines, and using transportation. When
these skills deteriorate, the patient loses his/her self-sufficiency and, consequently, his/her
self-esteem and well-being. These skills require a great neuropsychological organisation and,
in patients with Major NeuroCognitive Disorder (M-NCD), progressively deteriorate as a
result of the cognitive decline. Therefore, the interventions for slowing down this decline are
of fundamental importance.

In this context, for assessment and rehabilitation purposes, serious games in Augmented
(AR) or Virtual Reality (VR) could be a good alternative to the traditional approach to interact
with patients, collect statistics, recognise and classify patterns, and design unsupervised
machine learning algorithms for clustering their cognitive skills and performance [186–188].
The results of earlier studies on Virtual Reality applied to the empowerment or evaluation of
functional living skills are encouraging, and it appears that VT has the same effectiveness of
rehabilitation approaches carried out in the natural environment. The study by Hoffmann et
al. [413] showed improvements in a shopping task, with decreased errors and times; a follow-
up after three weeks showed that people maintained their skills; the participants in the study
also appreciated the proposed interactive modality. Van Schaick et al. [414] investigated both
facilitators and barriers for a walk in a city centre, highlighting a performance improvement
in this task. Foloppe et al. [415] used VR with a patient with Alzheimer’s disease to relearn
cooking activities, suggesting that VR can produce improvements in the same way as real-life
relearning.
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4.2.4.1 Research Contribution

This study aimed at verifying the feasibility of a non-immersive Virtual Training (VT)
on daily living skills for patients with Major NeuroCognitive Disorder (M-NCD) and to
verify the possible generalisation of improved skills repeating the same tasks in the natural
environment, by administering the in vivo tests before (T1) and after (T3) the VT.

A digital system was set up with a server connecting a database to the apps installed on a
touch TV. The database was developed in PostgreSQL with an interface implemented as a
C# Dynamic-Link Library (DLL); the system contains a suite of apps created with Unity 3D,
a cross-platform real-time game engine, often employed for developing VR scenarios for
rehabilitation purposes [416]. Four apps were developed, focusing on four functional skills,
and namely:

1. to provide information (or information): 30 questions in verbal and written form,
including general knowledge, personal, family, spatial and temporal orientation, and
with multiple-choice answers appearing on the screen in written form;

2. taking medicines (or medicines): at appropriate times, the scene presents five medicine
boxes placed on a kitchen table (Fig. 4.18D); a set of instructions explains when each
drug should be taken; the implemented task consists in choosing the appropriate box
by touching one of the shown medicine boxes, for 10 times, as a response to 10 verbal
questions, presented randomly during each session;

3. preparing the suitcase for a weekend away from home (or suitcase): a single scene,
with shelves containing clothes to be placed into a suitcase on a sofa (Fig. 4.18C);

4. shopping at the supermarket following a shopping list (or supermarket): the shopping
list includes five products and remains available on the screen. The first scene is
a kitchen, with the shopping list, money and a wallet; the second scene includes a
supermarket shelf with different products and a shopping cart (Fig. 4.18A). The third
scene includes the cash counter to pay for products (Fig. 4.18B); the application also
requires the user to pay the right (or enough) amount due to the cashiers, and check
the possible change returned.

In addition, a fifth app, not yet included in the suite of games, has been developed:

5. Preparing a juice for two persons (or juice): a single scene with a kitchen (Fig. 4.19)
showing several kinds of fruit on a shelf. When the scene starts, the user is asked to
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Fig. 4.18 App’s scenes (A-B-C-D) and examples of the in vivo test (E-F-G-H-I-L).

choose two types of fruit, randomly selected, and must complete all the steps required
for making the juice, serve it and clean the dishes.

Supermarket, suitcase and juice offered the possibility of a video demonstration before
starting the task. The apps were developed based on some principles and procedures of
Applied Behaviour Analysis, including:

• verbal reinforcement after the correct response (i.e., good!, ok!, congratulations!, well
done!);

• correction after the wrong response, consisting of question repetition and use of the
least-to-most prompting (up to a maximum of three prompts), i.e., the prompting
system starts with the least intrusive prompt, then suggest to the next with major
assistance;

• task analysis and total task chaining for the supermarket and suitcase apps, where total
task chaining is completing the entire task following the steps which is composed of in
the right order.

The first instruction, concerning how to perform the task, was given simultaneously
in a verbal and written manner. The application of the procedures previously reported is
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Fig. 4.19 Scene from Preparing a juice app.

fundamental for encouraging and stimulating people to perform the rehabilitative sessions in
the desired way over time.

The first aim of this study was to verify the feasibility of a non-immersive virtual training
(VT) on functional living skills (providing information, taking medicines, preparing a suitcase,
and shopping to the supermarket) applied to patients with mild to moderate M-NCD. With
reference to the VT sessions administered to EG, results showed improvements in the number
of correct responses and a decrease in the number of missed responses, as well as prompts and
total execution times. In the in vivo test, Experimental Group (EG) also showed decreased
execution times and increased correct responses, and statistically significant differences were
found in comparison with the Control Group (CG). This last result seems to suggest the need
for specific training to improve the functional skills of everyday life; indeed, the CG, despite
having benefited from a group cognitive stimulation training, did not improve performances
in the in vivo tests at T3 compared to T1.

The second aim was to verify the eventual generalisation in the natural environment
of the skills improved during the VT. Results reported in Table 4.3 showed improvements
in three of the four skills performed in the natural environment. This generalisation was
spontaneous since it took place without specific naturalistic training. This result encourages
the continuation of the study since it will be possible to recover many different functional
living skills, by developing various and appropriate apps, and then administering the VT.
This new technological way for recovering and maintaining daily living skills also appears to
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Table 4.3 Statistical significance of the differences between T1 and T3 in vivo test.

EG CG p=

Information, N of correct answers, median
(interquartile range)

1.5 (1/2.75) -1 (-1/1) ns

Information, total time execution in sec-
onds, median (interquartile range)

-54 (-58.75 /-40.25) -18 (-62/-4) ns

Suitcase, N of correct answers, median
(interquartile range)

4 (1.75/4.75) 0 (-2/0) 0.008

Suitcase, total time execution in seconds,
median (interquartile range)

-0.5 (-2075/28.75) -92 (-212/-13) ns

Medicines, N of correct answers, median
(interquartile range)

2 (2/3) 0 (0/0) 0.032

Medicines, total time execution in seconds,
median (interquartile range)

-57 (-71/-41) 37 (26-58) 0.008

Supermarket, N of correct answers, me-
dian (interquartile range)

2.5 (1.25/3.75) 0 (-1/1) 0.05

Supermarket, total time execution in sec-
onds, median (interquartile range)

-84.5 (-186.5/11.5) -55 (-92/-2) ns

be able to reduce rehabilitation costs of the healthcare service and might be used as a remote
tele-rehabilitation tool, with decreased rehabilitation costs and saving time for patients and
their caregivers.

4.3 Physiatry

Parkinson’s Disease (PD) is one of the most widely spread neurodegenerative disorders. In
detail, it is a degenerative brain disorder characterized by a loss of midbrain dopamine (DA)
neurons [417]. The main clinical PD symptoms involving body movements are: tremor,
rigidity, bradykinesia, and gait abnormalities. Commonly physicians’ evaluations are based
on historical information from the patient, regarding the motor function during activities of
daily living and clinical observations, using a clinical rating scale such as the Unified PD
Rating Scale (UPDRS) [418] and Hoehn and Yahr staging scale [419]. The UPDRS scale
is a numeric scale widely used to assess PD severity. Even if nowadays there are several
scientific results supporting its validity, subjectivity and low efficiency are inevitable, as
most of the diagnostic criteria use descriptive symptoms, which cannot provide a quantified
diagnostic basis. In particular, the main problems regard the evaluation of the severity of
specific symptoms such as freezing of gait [420–422], dysarthria [423], tremor [424–427],
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bradykinesia [428–430] and dyskinesia [431–435].Therefore, the development of computer-
assisted diagnosis and computer expert system is very important.

Another interesting research field focuses on the analysis of different common life tasks
such as handwriting. Handwriting is a highly over-learned fine and complex manual skill
involving an intricate blend of cognitive, sensory and perceptual-motor components [436].
For these reasons, the presence of abnormalities in the handwriting process is a well-known
and well-recognized manifestation of a wide variety of neuromotor diseases. There are two
main difficulties related to handwriting and affecting Parkinson’s Disease (PD) patients: (i)
the difficulty in controlling the amplitude of the movement, i.e., decreased letter size (microg-
raphy) and failing in maintaining stroke width of the characters as writing progresses [437],
and (ii) the irregular and bradykinetic movements, i.e., increased movement time, decreased
velocities and accelerations, and irregular velocity and acceleration trends over time [438].
For these reasons, in literature, there are several works investigating the possibility of a differ-
entiation between PD patients and healthy subjects by means of computer-aided handwriting
analysis tools.

4.3.1 Machine Learning for Assessing the Progression of Parkinson’s
Disease

The main goal of this study was to provide a toolbox to support clinicians in the objective
assessment of the typical PD motor issues and alterations. The assessment has been done
by means of an overall integration of different information sources (i.e., the integration of
different features coming from different tasks). Analyses were performed focusing on the
independent analysis of three main source of information: two common tasks usually used
by the physician to evaluate the motor impairment of the patients and a novel approach based
on handwriting analysis. As a result, an objective description of the patients status can be
made and classified, so that the patients can be monitored during the disease progress. The
main novel contributions with respect to the state of the art is the design, the development
and the evaluation with both healthy subjects and PD patients of two systems: a vision-based
system able to capture specific movements of different main UPDRS scale exercises and a
handwriting analysis tool able to extract biometric signals related to pen movements and to
muscular activity.

Furthermore, several classifiers able to assess and rate the movement impairment of PD
patients were developed and compared using a specific set of features extracted from the
previous system set-up.
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Fig. 4.20 The left image shows a healthy subject wearing the two passive finger markers.
The images reported on the right show the foot of a subject doing the foot tapping exercise
while he is wearing a passive marker on the toes.

4.3.1.1 Research Contribution

This research work shows two parallel analyses: a first one focused on the analysis of the
motor tasks according to UPDRS scale and a second one base on handwriting analysis.

Regarding the assessment of the UPDRS scale tasks, a system able to reproduce and
record two tasks was designed and developed; the tasks were: Finger Tapping and Foot
Tapping. Two separate vision-based systems able to acquire the movement of the thumb, the
index finger and the toes were also designed and developed. Both acquisition systems were
based on passive markers made of reflective material and the Microsoft Kinect One RGBD
camera. A brief and detailed description of two acquisition systems follows (Fig. 4.20):

• Finger Tapping exercise set-up (Fig. 4.20 left): this test considers the examination
of both hands separately. The tested subject is seated in front of the camera and is
instructed to tap the index finger on the thumb ten times as quickly and as widely as
possible. During the task the subject wears two thimbles made of a reflective material
on both the index finger and the thumb.

• Foot Tapping exercise set-up (Fig. 4.20 right): the feet are tested separately. The tested
subject sits in a straight-backed chair in front of the camera and has both feet on the
floor. He is then instructed to place the heel on the ground in a comfortable position
and then tap the toes ten times as widely and as fast as possible. A system of stripes
with a reflective material are positioned on the toes.

For the handwriting analysis, instead, the system set-up for data acquisition includes
two main sensors: (i) the Myo Gesture Control Armband that allows one to synchronously
acquire eight different sEMG sources of the forearm, and (ii) the WACOM Cintiq 13” HD,
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Fig. 4.21 The system setup used for the experimental tests to validate the proposed approach
(left). The paper sheet template, replicated on the tablet with two (vertical) visual marker size
references of 2 cm and 5 cm, respectively, for writing WPs 2 and 3, and three (horizontal) 1
cm markers used for spatial mapping needed to extract the execution average linear speed
feature for all three writing tasks.

a graphics tablet providing visual feedback for acquiring pen tip planar coordinates and
pressure, and the tilt of the pen with respect to the writing surface.

For the experiments, whose setup is represented in Fig. 4.21, we used three writing
patterns (WPs) leading to as many writing tasks, these are: a five-turn spiral drawn in
anticlockwise direction (WP 1), a sequence of eight Latin letters "l" with a size of 2.5 cm
(WP 2) and with a size of 5 cm (WP 3). Since the last two WPs were size-constrained,
a visual marker was provided as reference. In the experiment, we asked each subject to
perform the three writing tasks four times each for a total of twelve tasks: the first time for
familiarisation purposes, whereas the other three outcomes were acquired and stored for
subsequent feature extraction and processing. An example of the writing tasks executions is
reported in Fig. 4.22 for both an healthy subject and a PD patient.

The subject was also asked to rest between two subsequent handwriting tasks for at least
three seconds. The beginning of the task signal acquisition was triggered by a positive pen
pressure applied on the graphic tablet. The processing of the acquired raw signals led to the
extraction of several features.
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Fig. 4.22 Two samples of a repetition of all three writing tasks respectively performed by a
healthy subject (left) and by a PD patient (right).

Also for the handwriting analysis, starting from the biometric signals acquired during
the handwriting tasks, several features were extracted. As a result, three different feature
datasets were created:

• the first dataset including only the features extracted from writing pattern 1 (41 fea-
tures);

• the second dataset including only the features extracted from writing pattern 2 (43
features);

• the third dataset including only the features extracted from writing pattern 3 (43
features);

The first part of the study investigated on the capabilities of discrimination by means
of two different machine learning approaches, one for each study, in order to classify PD
patients from Healthy subjects. For the motor tasks, three different binary support vector
machine (SVM) classifiers were trained, based on the following three set of features: (i)
all the finger tapping features; (ii) all the foot tapping features; (iii) both finger and foot
tapping features. The handwriting features, instead, have been used to train a classifier
based on an Artificial Neural Network (ANN) whose optimal topology was found using a
Single-Objective Genetic Algorithm (GA) [108].

In the second part of the study the "Mild PD patients vs Moderate PD patients" classifica-
tion was performed. As for the previous approach, two different classification approaches,
one for each reported study, were investigated.

Regarding the classification of Healthy subjects vs PD patients, for the UPDRS based
tasks, the following results were obtained:
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• Finger tapping features set: the best classifier was the Gaussian SVM with an accuracy
of 71.0 %, a sensitivity of 75.7 % and a specificity of 65.5 %.

• Foot tapping features set: the best classifier was the Gaussian SVM with an accuracy
of 85.5 %, a sensitivity of 91.0 % and a specificity of 79.0 %.

• Both finger and foot tapping feature sets: the best classifier was the Quadratic SVM
with an accuracy of 87.1 %, a sensitivity of 87.8 % and a specificity of 86.0 %.

For the handwriting datasets, instead:

• Dataset with all 41 features extracted from writing pattern 1: the optimal topology for
the ANN featured 2 hidden layers (respectively composed of 186 and 15 neurons), and
2 neurons for the output layer. The activation function found by the GA was logsig for
the hidden layers. For the output layer, the softmax function was preliminarily selected
as activation function. Accuracy: 90.76 % (std = 0.0764), specificity: 0.8530 (std =
0.1553), sensitivity: 0.9389 (std = 0.0720).

• Dataset with all 43 features extracted from writing pattern 2: the optimal topology for
the ANN featured 2 hidden layers (respectively composed of 44 and 10 neurons), and
2 neurons for the output layer. The activation function found by the GA was logsig for
the hidden layers. For the output layer, the softmax function was preliminarily selected
as activation function. Accuracy: 92.98 % (std = 0.0523), specificity: 0.8970 (std =
0.1212), sensitivity: 0.9486 (std = 0.0587).

• Dataset with all 43 features extracted from writing pattern 3: the optimal topology for
the ANN featured 3 hidden layers (respectively composed of 232, 82 and 7 neurons),
and 2 neurons for the output layer. The activation function found by the GA was logsig
for the hidden layers. For the output layer, the softmax function was preliminarily
selected as activation function. Accuracy: 95.95 % (std = 0.0479), specificity: 0.9425
(std = 0.0831), sensitivity: 0.9691 (std = 0.0575).

Concerning with the Mild PD patients vs Moderate PD patients classification, for the
UPDRS based tasks the following results were obtained:

• Finger tapping features set: Gaussian SVM classifiers were not able to adequately
discriminate between the two classes.

• Foot tapping features set: the best classifier was the Gaussian SVM with accuracy of
81.0 %, sensitivity of 84.0 % and specificity of 78.0 %.
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• Both finger and foot tapping feature sets: the best classifier was the Gaussian SVM
with accuracy of 78.0 %, sensitivity of 89.0 % and specificity of 64.0 %.

For the handwriting datasets, instead, the results were:

• Dataset with all 41 features extracted from writing pattern 1: the optimal topology for
the ANN featured 3 hidden layers (respectively composed of 59, 65 and 2 neurons),
and 2 neurons for the output layer. The activation function found by the GA was logsig
for the hidden layers. For the output layer, the softmax function was preliminarily
selected as activation function. Accuracy: 94.34 % (std = 0.0626), specificity: 0.9595
(std = 0.0763), sensitivity: 0.9220 (std = 0.1158).

• Dataset with all 43 features extracted from writing pattern 2: the optimal topology for
the ANN featured 3 hidden layers (respectively composed of 133, 18 and 1 neurons),
and 2 neurons for the output layer. The activation function found by the GA was logsig
for the hidden layers. For the output layer, the softmax function was preliminarily
selected as activation function. Accuracy: 87.26 % (std = 0.0850), specificity: 0.8720
(std = 0.1206), sensitivity: 0.8733 (std = 0.1544).

• Dataset with all 43 features extracted from writing pattern 3: the optimal topology for
the ANN featured 3 hidden layers (respectively composed of 65, 36 and 7 neurons),
and 2 neurons for the output layer. The activation function found by the GA was logsig
for the hidden layers. For the output layer, the softmax function was preliminarily
selected as activation function. Accuracy: 91.86 % (std = 0.0830), specificity: 0.9169
(std = 0.1167), sensitivity: 0.9220 (std = 0.1286).

The results of the classification between mild and moderate PD patients indicated that
the foot tapping features are more representative than the finger tapping ones. In fact, the
SVM classifier based on the foot tapping features reached the best score in terms of accuracy
and specificity. The results obtained from the handwriting analysis, instead, showed that
healthy subjects can be differentiated from PD patients and that mild PD patients can be
differentiated from moderate PD patients both with high classification accuracy (over 90 %).

According to the results obtained, both approaches could lead to a comprehensive tool
suite for evaluating and grading Parkinson’s disease which is, at the same time, able to
synthesise different aspects of subject symptoms by means of the analysis of different sources
of information.



Chapter 5

Conclusion

The studies conducted in this Ph.D. work aimed to design, develop and evaluate intelligent
systems to support clinical diagnosis through a quantitative and objective assessment of
pathologies, ranging from diagnosis in radiology to rehabilitation support using innovative
devices.

After the introduction highlighting the importance of having an objective evaluation of
pathological conditions with the support of automatic systems, the methodological approaches
and technologies concerning with Computer Aided Diagnosis systems have been introduced
in Chapter 2. The innovative methodological approach based on Deep Learning algorithms
for both classification and segmentation has also been described.

All studies have been conducted in the context of precision medicine, an ongoing scenario
allowing doctors and researchers to perform diagnosis more accurately than in the past, also
allowing clinicians to prescribe drugs, therapies and rehabilitation treatments based on the
specific genetic makeup of the subjects, or based on the specific mutation of the pathology
affecting the patients. As already reported in Chapter 1, this new approach is in contrast to a
one-size-fits-all, in which disease treatment and prevention strategies are developed for the
average person, with less consideration for the differences between individuals.

In fact, all the frameworks designed and implemented during this Ph.D. aimed to detect
and extract pattern of features which allowed to classify, or segment, biomedical signals for
supporting a clinical diagnosis otherwise obtainable with more invasive procedures. Thus,
such biomarkers, if integrated with the -omic data, in addition to make the clinical decision,
they also could specify the pathology based on specific patient characteristic, guiding the
possible treatment, assessment and monitoring over time.

The other side of the coin, however, is not only related to clinical aspects but includes
the healthcare costs which will increase with precision medicine, including management,
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technology and development costs. Developing targeted drugs is likely to be expensive
and not accessible to everybody. In addition, much research is still needed to reach the
performance required for commercialising such drugs, but also to introduce the automatic
decision support systems in the clinical practice.

In order to overcome the previous limitations and, at the same time, continue the research
towards precision medicine, developing Computer Aided Diagnosis systems for making
quantitative assessments or objective evaluations of investigated diseases could help physi-
cians in moving toward the precision medicine. In fact, obtaining the same (or very close)
levels of accuracy in discriminating pathologies as the genetic approach, i.e., classifying the
mutation of a tumour based on image analysis, will certainly reduce the costs of genetic tests,
as well as reduce the time for formulating a diagnosis.

Research in the field of Radiomics, an emerging translational field of research aiming
to extract mineable high-dimensional data from clinical images, is going toward precision
medicine. However, this should not be limited to diagnosis, but future research in this sense
should include precision medicine features also for prognosis, therapy and rehabilitation.



My Publications

In the following, it is reported a complete list of the works published during the Ph.D.

1. Eleonora Gentile, Antonio Brunetti, Katia Ricci, Marianna Delussi, Vitoantonio
Bevilacqua and Marina de Tommaso. Mutual interaction between motor cortex ac-
tivation and pain in fibromyalgia: EEG-fNIRS study. PLOS ONE 15(1): e0228158.
doi:10.1371/journal.pone.0228158

2. Gianpaolo Francesco Trotta, Roberta Pellicciari, Antonio Boccaccio, Antonio Brunetti,
Giacomo Donato Cascarano, Vito Modesto Manghisi, Michele Fiorentino, Antonio
Emmanuele Uva, Giovanni Defazio and Vitoantonio Bevilacqua. A neural network-
based software to recognise blepharospasm symptoms and to measure eye closure time.
Computers in Biology and Medicine, Volume 112 (2019), 103376.
doi:10.1016/j.compbiomed.2019.103376

3. Leonarda Carnimeo, Gianpaolo Francesco Trotta, Antonio Brunetti, Giacomo Donato
Cascarano, Domenico Buongiorno, Claudio Loconsole, Eugenio Di Sciascio and
Vitoantonio Bevilacqua. A Proposal of a Healthcare Network based on Big Data
Analytics for Parkinson’s diseases. Journal of Engineering, Volume 2019, Issue 6., pp.
4603 – 4611. doi:10.1049/joe.2018.5142

4. Claudio Loconsole, Giacomo Donato Cascarano, Antonio Brunetti, Gianpaolo Francesco
Trotta, Giacomo Losavio, Vitoantonio Bevilacqua, and Eugenio Di Sciascio. A model-
free technique based on computer vision and sEMG for classification in Parkinson’s
disease by using computer-assisted handwriting analysis. Pattern Recognition Letters,
Volume 121, 2019, Pages: 28-36, doi:10.1016/j.patrec.2018.04.006

5. Antonio Brunetti, Leonarda Carnimeo, Gianpaolo Francesco Trotta, and Vitoantonio
Bevilacqua. Computer-Assisted Frameworks for Classification of Liver, Breast and
Blood Neoplasias via Neural Networks: a Survey based on Medical Images. Neuro-

computing, Volume 335, 2019, Pages: 274-298, doi:10.1016/j.neucom.2018.06.080



140

6. Domenico Buongiorno, Ilaria Bortone, Giacomo Donato Cascarano, Gianpaolo Francesco
Trotta, Antonio Brunetti, and Vitoantonio Bevilacqua. A low-cost vision system based
on the analysis of motor features for recognition and severity rating of Parkinson’s
Disease. BMC Medical Informatics and Decision Making, Volume 19, 243 (2019),
doi:10.1186/s12911-019-0987-5

7. Vitoantonio Bevilacqua, Antonio Brunetti, Andrea Guerriero, Gianpaolo Francesco
Trotta, Michele Telegrafo, and Marco Moschetta. A performance comparison between
shallow and deeper neural networks supervised classification of tomosynthesis breast
lesions images. Cognitive Systems Research 53 (2019) pp: 3–19
doi:10.1016/j.cogsys.2018.04.011

8. Vitoantonio Bevilacqua, Antonio Brunetti, Giacomo Donato Cascarano, Andrea Guer-
riero, Francesco Pesce, Marco Moschetta, and Loreto Gesualdo. A comparison between
two semantic deep learning frameworks for the autosomal dominant polycystic kidney
disease segmentation based on magnetic resonance images. BMC Medical Informatics

and Decision Making, Volume 19, 244 (2019), doi:10.1186/s12911-019-0988-4

9. Giacomo Donato Cascarano, Claudio Loconsole, Antonio Brunetti, Antonio Lattarulo,
Domenico Buongiorno, Giacomo Losavio, Eugenio Di Sciascio, and Vitoantonio
Bevilacqua. Biometric handwriting analysis to support Parkinson’s Disease assessment
and grading. BMC Medical Informatics and Decision Making, Volume 19, 252 (2019),
doi:10.1186/s12911-019-0989-3

10. Antonio Brunetti, Domenico Buongiorno, Gianpaolo Francesco Trotta, and Vitoantonio
Bevilacqua. Computer Vision and Deep Learning Techniques for Pedestrian Detection
and Tracking: A Survey. Neurocomputing, Volume 300, 26 July 2018, Pages: 17-33,
doi: 10.1016/j.neucom.2018.01.092

11. Sara Invitto, Antonio Calcagnì, Arianna Mignozzi, Rosanna Scardino, Giulia Piraino,
Daniele Turchi, Irio De Feudis, Antonio Brunetti, Vitoantonio Bevilacqua, and Marina
de Tommaso. Face Recognition, Musical Appraisal, and Emotional Crossmodal Bias.
Frontiers in Behavioural Sciences, Volume 11 (144), 2 August 2017, ISSN 1662-5153,
doi: 10.3389/fnbeh.2017.00144



141

12. Vitoantonio Bevilacqua, Antonio Brunetti, Gianpaolo Francesco Trotta, Leonarda
Carnimeo, Francescomaria Marino, Vito Alberotanza, Arnaldo Scardapane. A Deep
Learning Approach for Hepatocellular Carcinoma Grading. International Journal

of Computer Vision and Image Processing (IJCVIP), Volume 7 (2), Pages 1-18,
doi:10.4018/IJCVIP.2017040101

13. Vitoantonio Bevilacqua, Nicola Pietroleonardo, Vito Triggiani, Antonio Brunetti, Anna
Maria Di Palma, Michele Rossini, and Loreto Gesualdo. An innovative neural network
framework to classify blood vessels and tubules based on Haralick features evaluated
in histological images of kidney biopsy. Neurocomputing, Volume 228, 8 March 2017,
Pages 143-153, ISSN 0925-2312, doi:10.1016/j.neucom.2016.09.091

14. Marina de Tommaso, Katia Ricci, Marianna Delussi, Anna Montemurno, Eleonora
Vecchio, Antonio Brunetti, and Vitoantonio Bevilacqua. Testing a novel method for
improving wayfinding by means of a P3b Virtual Reality Visual Paradigm in normal
aging. SpringerPlus, (2016), volume 5 (1), art no.1297.
doi:10.1186/s40064-016-2978-7

15. Antonio Ivano Triggiani, Vitoantonio Bevilacqua, Antonio Brunetti, Roberta Lizio,
Giacomo Tattoli, Fabio Cassano, Andrea Soricelli, Raffaele Ferri, Flavio Nobili,
Loreto Gesualdo, Maria Rosaria Barulli, Rosanna Tortelli, Valentina Cardinali, An-
tonio Giannini, Pantaleo Spagnolo, Silvia Armenise, Grazia Buenza, Gaetano Scia-
natico, Giancarlo Logroscino, Giordano Lacidogna, Francesco Orzi, Carla Buttinelli,
Franco Giubilei, Claudio Del Percio, Giovanni B. Frisoni, Claudio Babiloni. Clas-
sification of healthy subjects and Alzheimer’s disease patients with dementia from
cortical sources of resting state EEG rhythms: A study using artificial neural net-
works. Frontiers in Neuroscience, Volume 10 (604), January 2017, ISSN 1662-453X,
doi:10.3389/fnins.2016.00604

16. Antonio Brunetti, Giacomo Donato Cascarano, Irio De Feudis, Marco Moschetta,
Loreto Gesualdo, and Vitoantonio Bevilacqua. Detection and Segmentation of Kidneys
from Magnetic Resonance Images in Patients with Autosomal Dominant Polycystic
Kidney Disease. In: Huang DS., Jo KH., Huang ZK. (eds) Intelligent Computing

Theories and Application. ICIC 2019. Lecture Notes in Computer Science, vol 11644.
Springer, Cham. doi: 10.1007/978-3-030-26969-2_60



142

17. Simonetta Panerai, Valentina Catania, Francesco Rundo, Vitoantonio Bevilacqua,
Antonio Brunetti, Claudio De Meo, Donatella Gelardi, Claudio Babiloni, and Raffaele
Ferri. Feasibility of a non-immersive virtual reality training on functional living skills
applied to person with major neurocognitive disorder. In: Huang DS., Huang ZK.,
Hussain A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in

Computer Science, vol 11645. Springer, Cham. doi. 10.1007/978-3-030-26766-7_63

18. Giacomo Donato Cascarano, Francesco Saverio Debitonto, Ruggero Lemma, Antonio
Brunetti, Domenico Buongiorno, Irio De Feudis, Andrea Guerriero, Michele Rossini,
Francesco Pesce, Loreto Gesualdo, Vitoantonio Bevilacqua. An Innovative Neural
Network Framework For Glomerulus Classification Based On Morphological And
Texture Features Evaluated In Histological Images Of Kidney Biopsy. In: Huang
DS., Huang ZK., Hussain A. (eds) Intelligent Computing Methodologies. ICIC 2019.

Lecture Notes in Computer Science, vol 11645. Springer, Cham. doi:10.1007/978-3-
030-26766-7_66

19. Domenico Buongiorno, Giacomo Donato Cascarano, Antonio Brunetti, Irio De Feudis,
Vitoantonio Bevilacqua. A Survey on Deep Learning in Electromyographic Signal
Analysis. In: Huang DS., Huang ZK., Hussain A. (eds) Intelligent Computing Method-

ologies. ICIC 2019. Lecture Notes in Computer Science, vol 11645. Springer, Cham.
doi: 10.1007/978-3-030-26766-7_68

20. Giacomo Donato Cascarano, Antonio Brunetti, Domenico Buongiorno, Gianpaolo
Francesco Trotta, Claudio Loconsole, Ilaria Bortone, and Vitoantonio Bevilacqua.
A Multi-modal Tool Suite for Parkinson Evaluation and Grading. In: Esposito A.,
Faundez-Zanuy M., Morabito F., Pasero E. (eds) Neural Approaches to Dynamics of

Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer,
Singapore. doi: 10.1007/978-981-13-8950-4_24

21. Gianpaolo Francesco Trotta, Sergio Mazzola, Giuseppe Gelardi, Antonio Brunetti,
Nicola Marino, and Vitoantonio Bevilacqua. Reconstruction, Optimisation and Quality
Check of Microsoft HoloLens-acquired 3D Points Clouds. In: Esposito A., Faundez-
Zanuy M., Morabito F., Pasero E. (eds) Neural Approaches to Dynamics of Signal

Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore.
doi: 10.1007/978-981-13-8950-4_9



143

22. Marina de Tommaso, Eleonora Gentile, Katia Ricci, Anna Montemurno, Marianna
Delussi, Eleonora Vecchio, Giancarlo Logroscino, Antonio Brunetti, and Vitoantonio
Bevilacqua. Bioelectrical Correlates of Emotional Changes Induced by Environmental
Sound and Colour: from Virtual Reality to Real Life. In: Masia L., Micera S., Akay
M., Pons J. (eds) Converging Clinical and Engineering Research on Neurorehabili-

tation III. Proceedings of the 4th International Conference on NeuroRehabilitation

(ICNR2018) ICNR 2018. Biosystems & Biorobotics, vol 21. Springer, Cham, 2019.
doi: 10.1007/978-3-030-01845-0_197

23. Claudio Del Percio, Vitoantonio Bevilacqua, Antonio Brunetti, Roberta Lizio, Andrea
Soricelli, Roberto Ferri, Flavio Nobili, Loreto Gesualdo, Giancarlo Logroscino, Ma-
rina De Tommaso, Antonio Ivano Triggiani, Giovanni Battista Frisoni, and Claudio
Babiloni. Classification of Healthy Subjects and Alzheimer’s Disease Patients with
Dementia from Cortical Sources of Resting State EEG Rhythms: Comparing Different
Approaches. In: Masia L., Micera S., Akay M., Pons J. (eds) Converging Clinical

and Engineering Research on Neurorehabilitation III. Proceedings of the 4th Interna-

tional Conference on NeuroRehabilitation (ICNR2018) ICNR 2018. Biosystems &
Biorobotics, vol 21. Springer, Cham, 2019. doi:10.1007/978-3-030-01845-0_196

24. Vitoantonio Bevilacqua, Claudio Loconsole, Antonio Brunetti, Giacomo Donato Cas-
carano, Antonio Lattarulo, Giacomo Losavio, and Eugenio Di Sciascio. A model-free
computer-assisted handwriting analysis exploiting optimal topology ANNs on bio-
metric signals in Parkinson’s disease research. In: Huang, D., Jo, K., Zhang, X.
(eds.) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in

Computer Science, vol. 10955, pp. 650-655. Springer, Cham, 2018. doi:10.1007/978-
3-319-95933-7_74

25. Vitoantonio Bevilacqua, Antonio Brunetti, Giacomo Donato Cascarano, Flavio Palmieri,
Andrea Guerriero, and Marco Moschetta. A Deep Learning Approach for the Auto-
matic Detection and Segmentation in Autosomal Dominant Polycystic Kidney Disease
based on Magnetic Resonance Images. In: Huang, D., Jo, K., Zhang, X. (eds.) Intel-

ligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer

Science, vol. 10955, pp. 643-649. Springer, Cham, 2018. doi:10.1007/978-3-319-
95933-7_73



144

26. Vitoantonio Bevilacqua, Antonio Brunetti, Gianpaolo Francesco Trotta, Domenico
De Marco, Marco Giuseppe Quercia, Domenico Buongiorno, Alessia D’Introno,
Francesco Girardi, and Attilio Guarini. A Novel Deep Learning Approach in Haema-
tology for Classification of Leucocytes. In: Esposito A., Faundez-Zanuy M., Morabito
F., Pasero E. (eds) Quantifying and Processing Biomedical and Behavioral Signals.

WIRN 2017. Smart Innovation, Systems and Technologies, vol 103. Springer, Cham.,
2018 doi:10.1007/978-3-319-95095-2_25

27. Ilaria Bortone, Gianpaolo Francesco Trotta, Giacomo Donato Cascarano, Paola Regina,
Antonio Brunetti, Irio De Feudis, Domenico Buongiorno, Claudio Loconsole, and
Vitoantonio Bevilacqua. A Supervised Approach to Classify the Status of Bone Mineral
Density in Post-Menopausal Women through Static and Dynamic Baropodometry. In:
Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018 doi:10.1109/IJCNN.2018.8489205

28. Claudio Loconsole, Giacomo Donato Cascarano, Antonio Lattarulo, Antonio Brunetti,
Gianpaolo Francesco Trotta, Domenico Buongiorno, Ilaria Bortone, Irio De Feudis,
Giacomo Losavio, Vitoantonio Bevilacqua, and Eugenio Di Sciascio A comparison
between ANN and SVM classifiers for Parkinson’s disease by using a model-free
computer-assisted handwriting analysis based on biometric signals. In: Proceedings of

the 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018
doi:10.1109/IJCNN.2018.8489293

29. Vitoantonio Bevilacqua, Gianpaolo Francesco Trotta, Antonio Brunetti, Nicholas Ca-
porusso, Claudio Loconsole, Giacomo Donato Cascarano, Francesco Catino, Pantaleo
Cozzoli, Giancarlo Delfine, Adriano Mastronardi, Andrea Di Candia, Giuseppina Lelli,
and Pietro Fiore. A Comprehensive Approach for Physical Rehabilitation Assessment
in Multiple Sclerosis Patients Based on Gait Analysis. In: Duffy V., Lightner N. (eds)
Advances in Human Factors and Ergonomics in Healthcare and Medical Devices.

AHFE 2017. Advances in Intelligent Systems and Computing, vol 590, pp. 119-128.
Springer, Cham, 2018. doi:10.1007/978-3-319-60483-1_13



145

30. Vitoantonio Bevilacqua, Gianpaolo Francesco Trotta, Claudio Loconsole, Antonio
Brunetti, Nicholas Caporusso, Giuseppe Maria Bellantuono, Irio De Feudis, Donato
Patruno, Domenico De Marco, Andrea Venneri, Maria Grazia Di Vietro, Giacomo
Losavio, and Sabina Ilaria Tatò. A RGB-D sensor based tool for assessment and
rating of movement disorders. In: Duffy V., Lightner N. (eds) Advances in Human

Factors and Ergonomics in Healthcare and Medical Devices. AHFE 2017. Advances

in Intelligent Systems and Computing, vol 590, pp. 119-128. Springer, Cham, 2018.
doi:10.1007/978-3-319-60483-1_12

31. Nicholas Caporusso, Luigi Biasi, Giovanni Cinquepalmi, Gianpaolo Francesco Trotta,
Antonio Brunetti, and Vitoantonio Bevilacqua. Enabling Touch-based Communication
in Wearable Devices for People with Sensory and Multisensory Impairments. In:
Ahram T., Falcão C. (eds) Advances in Human Factors in Wearable Technologies and

Game Design. AHFE 2017. Advances in Intelligent Systems and Computing, vol 608,
pp. 149-159. Springer, Cham, 2018. doi:10.1007/978-3-319-60639-2_15

32. Nicholas Caporusso, Luigi Biasi, Giovanni Cinquepalmi, Gianpaolo Francesco Trotta,
Antonio Brunetti, and Vitoantonio Bevilacqua. A Wearable Device Supporting Multiple
Touch- and Gesture-based Languages for the Deaf-blind. In: Ahram T., Falcão C. (eds)
Advances in Human Factors in Wearable Technologies and Game Design. AHFE 2017.

Advances in Intelligent Systems and Computing, vol 608, pp. 32-41. Springer, Cham,
2018. doi:10.1007/978-3-319-60639-2_4

33. Vitoantonio Bevilacqua, Antonio Brunetti, Gianpaolo Trotta, Giovanni Dimauro, Kata-
rina Elez, Vito Alberotanza, and Arnaldo Scardapane. A Novel Approach for Hepa-
tocellular Carcinoma Detection and Classification Based on Triphasic CT Protocol.
In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 – Proceedings, pp.
1856-1863. IEEE, 2017. doi:10.1109/CEC.2017.7969527

34. Sara Invitto, Giulia Piraino, Arianna Mignozzi, Simona Capone, Giovanni Montagna,
Pietro Aleardo Siciliano, Andrea Mazzatenta, Gianbattista Rocco, Irio De Feudis,
Gianpaolo Francesco Trotta, Antonio Brunetti, and Vitoantonio Bevilacqua. Smell and
Meaning: an OERP study. In: In: Esposito A., Faudez-Zanuy M., Morabito F., Pasero E.
(eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems

and Technologies, vol 69, pp. 289-300. Springer, Cham, 2017. doi:10.1007/978-3-319-
56904-8_28



146

35. Vitoantonio Bevilacqua, Marco Riezzo, Antonio Brunetti, Francesco Russo, Benedetta
D’Attoma, and Giuseppe Riezzo. Analysis and optimization of the 13C octanoic acid
breath test. In: 2017 Proceedings of the International Joint Conference on Neural Net-

works (IJCNN 2017), pp. 4528-4533. IEEE; 2017. doi:10.1109/IJCNN.2017.7966430

36. Sara Invitto, Arianna Mignozzi, Giulia Piraino, Gianbattista Rocco, Irio De Feudis,
Antonio Brunetti, and Vitoantonio Bevilacqua. Artificial Neural Network Analysis
and ERP in Intimate Partner Violence. In: Esposito A., Faudez-Zanuy M., Mora-
bito F., Pasero E. (eds) Multidisciplinary Approaches to Neural Computing. Smart

Innovation, Systems and Technologies, vol 69, pp. 247-254. Springer, Cham, 2017.
doi:10.1007/978-3-319-56904-8_24

37. Ilaria Bortone, Gianpaolo Francesco Trotta, Antonio Brunetti, Giacomo Donato Cas-
carano, Claudio Loconsole, Nadia Agnello, Alberto Argentiero, Giuseppe Nicolardi,
Antonio Frisoli, and Vitoantonio Bevilacqua. A Novel Approach in Combination of 3D
Gait Analysis Data for Aiding Clinical Decision-Making in Patients with Parkinson’s
Disease. In: Huang DS., Jo KH., Figueroa-García J. (eds) Intelligent Computing

Theories and Application. ICIC 2017. Lecture Notes in Computer Science, vol 10362,
pp. 493-503. Springer, Cham, 2017. doi:10.1007/978-3-319-63312-1_43

38. Claudio Loconsole, Gianpaolo Francesco Trotta, Antonio Brunetti, Joseph Trotta,
Angelo Schiavone, Sabina Ilaria Tatò, Giacomo Losavio, and Vitoantonio Bevilacqua.
Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkin-
son’s Disease. In: Huang DS., Jo KH., Figueroa-García J. (eds) Intelligent Computing

Theories and Application. ICIC 2017. Lecture Notes in Computer Science, vol 10362,
pp. 504-514. Springer, Cham, 2017. doi:10.1007/978-3-319-63312-1_44

39. Vitoantonio Bevilacqua, Daniele Altini, Martino Bruni, Marco Riezzo, Antonio
Brunetti, Claudio Loconsole, Andrea Guerriero, Gianpaolo Francesco Trotta, Rocco
Fasano, Marica Di Pirchio, Cristina Tartaglia, Elena Ventrella, Michele Telegrafo
and Marco Moschetta. A Supervised Breast Lesion Images Classification from To-
mosynthesis Technique. In: Huang DS., Jo KH., Figueroa-García J. (eds) Intelligent

Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science,
vol 10362, pp. 483-489. Springer, Cham, 2017. doi:10.1007/978-3-319-63312-1_42



147

40. Vitoantonio Bevilacqua, Sergio Simeone, Antonio Brunetti, Claudio Loconsole, Gian-
paolo Francesco Trotta, Salvatore Tramacere, Antonio Argentieri, Francesco Ragni,
Giuseppe Criscenti, Andrea Fornaro, Rosalina Mastronardi, Serena Cassetta and
Giuseppe D’Ippolito. A Computer Aided Ophthalmic Diagnosis System Based on To-
mographic Features. In: Huang DS., Hussain A., Han K., Gromiha M. (eds) Intelligent

Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science, vol 10363,
pp. 508-609. Springer, Cham, 2017. doi:10.1007/978-3-319-63315-2_52

41. Vitoantonio Bevilacqua, Antonio Emmanuele Uva, Michele Fiorentino, Gianpaolo
Francesco Trotta, Maurizio Dimatteo, Enrico Nasca, Attilio Nicola Lino Nocera, Gia-
como Donato Cascarano, Antonio Brunetti, Nicholas Caporusso, Roberta Pellicciari,
and Giovanni Defazio. A comprehensive method for assessing the blepharospasm
cases severity. In: Santosh K., Hangarge M., Bevilacqua V., Negi A. (eds) Recent

Trends in Image Processing and Pattern Recognition. RTIP2R 2016. Communications

in Computer and Information Science, vol 709, pp. 369-381. Springer, Singapore,
2017. doi:10.1007/978-981-10-4859-3_33

42. Vitoantonio Bevilacqua, Leonarda Carnimeo, Antonio Brunetti, Andrea De Pace, Pietro
Galeandro, Gianpaolo Francesco Trotta, Nicholas Caporusso, Francescomaria Marino,
Vito Alberotanza, and Arnaldo Scardapane. Synthesis of a Neural Network Classifier
for Hepatocellular Carcinoma Grading based on triphasic CT images. In: Santosh K.,
Hangarge M., Bevilacqua V., Negi A. (eds) Recent Trends in Image Processing and

Pattern Recognition. RTIP2R 2016. Communications in Computer and Information

Science, vol 709, pp. 356-368. Springer, Singapore, 2017. doi:10.1007/978-981-10-
4859-3_32



References

[1] Eric S Holmboe and Steven J Durning. Assessing clinical reasoning: moving from in
vitro to in vivo. Diagnosis, 1(1):111–117, 2014.

[2] Hardeep Singh and Mark L Graber. Improving diagnosis in health care–the next
imperative for patient safety. The New England journal of medicine, 373(26):2493,
2015.

[3] Martin A Makary and Michael Daniel. Medical error—the third leading cause of
death in the us. Bmj, 353:i2139, 2016.

[4] Molla S Donaldson, Janet M Corrigan, Linda T Kohn, et al. To err is human: building
a safer health system, volume 6. National Academies Press, 2000.

[5] Mike J Hallworth. The ‘70% claim’: what is the evidence base? Annals of Clinical
Biochemistry, 48(6):487–488, 2011. doi: 10.1258/acb.2011.011177.

[6] Reza Mirnezami, Jeremy Nicholson, and Ara Darzi. Preparing for precision medicine.
New England Journal of Medicine, 366(6):489–491, 2012.

[7] Francis S. Collins and Harold Varmus. A new initiative on precision medicine. New
England Journal of Medicine, 372(9):793–795, 2015. doi: 10.1056/NEJMp1500523.

[8] Hugo JWL Aerts. The potential of radiomic-based phenotyping in precision medicine:
a review. JAMA oncology, 2(12):1636–1642, 2016.

[9] Pohchoo Seow, Jeannie Hsiu Ding Wong, Azlina Ahmad-Annuar, Abhishek Mahajan,
Nor Aniza Abdullah, and Norlisah Ramli. Quantitative magnetic resonance imaging
and radiogenomic biomarkers for glioma characterisation: a systematic review. The
British journal of radiology, 91(1092):20170930, 2018.

[10] Virendra Kumar, Yuhua Gu, Satrajit Basu, Anders Berglund, Steven A Eschrich,
Matthew B Schabath, Kenneth Forster, Hugo JWL Aerts, Andre Dekker, David
Fenstermacher, et al. Radiomics: the process and the challenges. Magnetic resonance
imaging, 30(9):1234–1248, 2012.

[11] Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, Sara Carvalho,
Ruud GPM Van Stiphout, Patrick Granton, Catharina ML Zegers, Robert Gillies,
Ronald Boellard, André Dekker, et al. Radiomics: extracting more information from



References 149

medical images using advanced feature analysis. European journal of cancer, 48(4):
441–446, 2012.

[12] Carlo N De Cecco, Maria Ciolina, Damiano Caruso, Marco Rengo, Balaji Ganeshan,
Felix G Meinel, Daniela Musio, Francesca De Felice, Vincenzo Tombolini, and Andrea
Laghi. Performance of diffusion-weighted imaging, perfusion imaging, and texture
analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal
cancer patients studied with 3t mr: initial experience. Abdominal Radiology, 41(9):
1728–1735, 2016.

[13] Karoline Skogen, Anselm Schulz, Johann Baptist Dormagen, Balaji Ganeshan, Eirik
Helseth, and Andrès Server. Diagnostic performance of texture analysis on mri in
grading cerebral gliomas. European journal of radiology, 85(4):824–829, 2016.

[14] Andrew D Smith, Mark R Gray, Sara Martin Del Campo, Darya Shlapak, Balaji
Ganeshan, Xu Zhang, and William E Carson III. Predicting overall survival in patients
with metastatic melanoma on antiangiogenic therapy and recist stable disease on initial
posttherapy images using ct texture analysis. American Journal of Roentgenology,
205(3):W283–W293, 2015.

[15] Koichi Hayano, Fang Tian, Avinash R Kambadakone, Sam S Yoon, Dan G Duda,
Balaji Ganeshan, and Dushyant V Sahani. Texture analysis of non-contrast enhanced
ct for assessing angiogenesis and survival of soft tissue sarcoma. Journal of computer
assisted tomography, 39(4):607, 2015.

[16] Carlo N De Cecco, Balaji Ganeshan, Maria Ciolina, Marco Rengo, Felix G Meinel,
Daniela Musio, Francesca De Felice, Nicola Raffetto, Vincenzo Tombolini, and Andrea
Laghi. Texture analysis as imaging biomarker of tumoral response to neoadjuvant
chemoradiotherapy in rectal cancer patients studied with 3-t magnetic resonance.
Investigative radiology, 50(4):239–245, 2015.

[17] Haowei Zhang, Caleb M Graham, Okan Elci, Michael E Griswold, Xu Zhang, Majid A
Khan, Karen Pitman, Jimmy J Caudell, Robert D Hamilton, Balaji Ganeshan, et al.
Locally advanced squamous cell carcinoma of the head and neck: Ct texture and
histogram analysis allow independent prediction of overall survival in patients treated
with induction chemotherapy. Radiology, 269(3):801–809, 2013.

[18] Karoline Skogen, Balaji Ganeshan, Catriona Good, Giles Critchley, and Ken Miles.
Measurements of heterogeneity in gliomas on computed tomography relationship to
tumour grade. Journal of neuro-oncology, 111(2):213–219, 2013.

[19] David A Mankoff. A definition of molecular imaging. Journal of Nuclear Medicine,
48(6):18N–21N, 2007.

[20] Christian J Herold, Jonathan S Lewin, Andreas G Wibmer, James H Thrall, Gabriel P
Krestin, Adrian K Dixon, Stefan O Schoenberg, Rena J Geckle, Ada Muellner, and



References 150

Hedvig Hricak. Imaging in the age of precision medicine: summary of the proceedings
of the 10th biannual symposium of the international society for strategic studies in
radiology. Radiology, 279(1):226–238, 2015.

[21] Christian J. Herold, Jonathan S. Lewin, Andreas G. Wibmer, James H. Thrall, Gabriel P.
Krestin, Adrian K. Dixon, Stefan O. Schoenberg, Rena J. Geckle, Ada Muellner, and
Hedvig Hricak. Imaging in the age of precision medicine: Summary of the proceedings
of the 10th biannual symposium of the international society for strategic studies in
radiology. Radiology, 279(1):226–238, 2016. doi: 10.1148/radiol.2015150709.

[22] Maciej A Mazurowski. Radiogenomics: what it is and why it is important. Journal of
the American College of Radiology, 12(8):862–866, 2015.

[23] Robin W Jansen, Paul van Amstel, Roland M Martens, Irsan E Kooi, Pieter Wesseling,
Adrianus J de Langen, Catharina W Menke-Van der Houven, et al. Non-invasive tumor
genotyping using radiogenomic biomarkers, a systematic review and oncology-wide
pathway analysis. Oncotarget, 9(28):20134, 2018.

[24] Javier M Romero, H Bart Brouwers, JingJing Lu, Josser E Delgado Almandoz, Hillary
Kelly, Jeremy Heit, Joshua Goldstein, Jonathan Rosand, and R Gilberto Gonzalez.
Prospective validation of the computed tomographic angiography spot sign score for
intracerebral hemorrhage. Stroke, 44(11):3097–3102, 2013.

[25] Thomas Mirsen. Acute treatment of hypertensive intracerebral hemorrhage. Current
treatment options in neurology, 12(6):504–517, 2010.

[26] Karl F Schmitt and David A Wofford. Financial analysis projects clear returns from
electronic medical records: Demonstrating the economic benefits of an electronic
medical record is possible with the input of staff who can identify the technology’s
benefits. Healthcare Financial Management, 56(1):52–58, 2002.

[27] Anant Madabhushi and George Lee. Image analysis and machine learning in digital
pathology: Challenges and opportunities. Medical Image Analysis, 33:170 – 175,
2016. doi: 10.1016/j.media.2016.06.037.

[28] Xin Qi, Daihou Wang, Ivan Rodero, Javier Diaz-Montes, Rebekah H Gensure, Fuyong
Xing, Hua Zhong, Lauri Goodell, Manish Parashar, David J Foran, et al. Content-based
histopathology image retrieval using cometcloud. BMC bioinformatics, 15(1):287,
2014.

[29] L. A. D. Cooper, A. B. Carter, A. B. Farris, F. Wang, J. Kong, D. A. Gutman,
P. Widener, T. C. Pan, S. R. Cholleti, A. Sharma, T. M. Kurc, D. J. Brat, and J. H.
Saltz. Digital pathology: Data-intensive frontier in medical imaging. Proceedings of
the IEEE, 100(4):991–1003, April 2012. doi: 10.1109/JPROC.2011.2182074.

[30] Yukako Yagi and John R Gilbertson. Digital imaging in pathology: the case for
standardization, 2005.



References 151

[31] Nataliya Titova and K Ray Chaudhuri. Personalized medicine in parkinson’s disease:
time to be precise. Movement Disorders, 32(8):1147, 2017.

[32] Haydeh Payami. The emerging science of precision medicine and pharmacogenomics
for parkinson’s disease. Movement disorders, 32(8):1139–1146, 2017.

[33] R Cascella, C Strafella, M Ragazzo, S Zampatti, P Borgiani, S Gambardella, A Pi-
razzoli, G Novelli, and E Giardina. Direct pcr: a new pharmacogenetic approach for
the inexpensive testing of hla-b* 57: 01. The pharmacogenomics journal, 15(2):196,
2015.

[34] John S Satterlee, Andrea Beckel-Mitchener, A Roger Little, Dena Procaccini, Joni L
Rutter, and Amy C Lossie. Neuroepigenomics: resources, obstacles, and opportunities.
Neuroepigenetics, 1:2–13, 2015.

[35] Abhijeet Pataskar and Vijay K Tiwari. Computational challenges in modeling gene
regulatory events. Transcription, 7(5):188–195, 2016.

[36] E Giardina and CF Caltagirone. The irccs network of neuroscience and neurorehabili-
tation: the italian platform for care and research about neurodegenerative disorders. In
EUROPEAN JOURNAL OF NEUROLOGY, volume 25, pages 209–209. WILEY 111
RIVER ST, HOBOKEN 07030-5774, NJ USA, 2018.

[37] Russell R Pate, Michael Pratt, Steven N Blair, William L Haskell, Caroline A Macera,
Claude Bouchard, David Buchner, Walter Ettinger, Gregory W Heath, Abby C King,
et al. Physical activity and public health: a recommendation from the centers for
disease control and prevention and the american college of sports medicine. Jama,
273(5):402–407, 1995.

[38] Rory A Cooper and Louis A Quatrano. Research on physical activity and health
among people with disabilities: a consensus statement. Journal of Rehabilitation
Research & Development, 36(2), 1999.

[39] J Larry Durstine, Patricia Painter, Barry A Franklin, Don Morgan, Kenneth H Pitetti,
and Scott O Roberts. Physical activity for the chronically ill and disabled. Sports
Medicine, 30(3):207–219, 2000.

[40] Gregory W Heath and Peter H Fentem. Physical activity among persons with
disabilities–a public health perspective. Exercise and sport sciences reviews, 25:
195–234, 1997.

[41] JAMES H Rimmer, DAVID Braddock, and KENNETH H Pitetti. Research on physical
activity and disability: an emerging national priority. Medicine and science in sports
and exercise, 28(11):1366–1372, 1996.

[42] James H Rimmer. Health promotion for people with disabilities: the emerging
paradigm shift from disability prevention to prevention of secondary conditions.
Physical therapy, 79(5):495–502, 1999.



References 152

[43] Roy J Shephard. Benefits of sport and physical activity for the disabled: implications
for the individual and for society. Scandinavian journal of rehabilitation medicine, 23
(2):51–59, 1991.

[44] Yinong Chong, Richard J Klein, Christine Plepys, and Richard Troiano. Operational
definitions for year 2000 objectives: priority area 1: physical activity and fitness.
Healthy people statistical notes, (18), 1998.

[45] Hidde P Van der Ploeg, Allard J Van der Beek, Luc HV Van der Woude, and Willem
van Mechelen. Physical activity for people with a disability. Sports medicine, 34(10):
639–649, 2004.

[46] Bram van Ginneken, Cornelia M. Schaefer-Prokop, and Mathias Prokop. Computer-
aided diagnosis: How to move from the laboratory to the clinic. Radiology, 261(3):
719–732, 2011. doi: 10.1148/radiol.11091710.

[47] Clifford S Goodman and Roy Ahn. Methodological approaches of health technology
assessment. International Journal of Medical Informatics, 56(1):97 – 105, 1999. ISSN
1386-5056. doi: 10.1016/S1386-5056(99)00049-0.

[48] Edward Hance Shortliffe and Bruce G Buchanan. Rule-based expert systems: the
MYCIN experiments of the Stanford Heuristic Programming Project. Addison-Wesley
Publishing Company, 1985.

[49] Donald Waterman. A guide to expert systems. 1986.

[50] Shu-Hsien Liao. Expert system methodologies and applications—a decade review
from 1995 to 2004. Expert systems with applications, 28(1):93–103, 2005.

[51] Arati Gurung, Carolyn G Scrafford, James M Tielsch, Orin S Levine, and William
Checkley. Computerized lung sound analysis as diagnostic aid for the detection of
abnormal lung sounds: a systematic review and meta-analysis. Respiratory medicine,
105(9):1396–1403, 2011.

[52] Fabian J Theis and Anke Meyer-Bäse. Biomedical signal analysis: Contemporary
methods and applications. MIT Press, 2010.

[53] Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future—big data, machine
learning, and clinical medicine. The New England journal of medicine, 375(13):1216,
2016.

[54] Wenqing Sun, Bin Zheng, and Wei Qian. Computer aided lung cancer diagnosis
with deep learning algorithms. In Medical imaging 2016: computer-aided diagnosis,
volume 9785, page 97850Z. International Society for Optics and Photonics, 2016.

[55] Maryellen L Giger. Machine learning in medical imaging. Journal of the American
College of Radiology, 15(3):512–520, 2018.



References 153

[56] Antonio Brunetti, Leonarda Carnimeo, Gianpaolo Francesco Trotta, and Vitoantonio
Bevilacqua. Computer-assisted frameworks for classification of liver, breast and blood
neoplasias via neural networks: A survey based on medical images. Neurocomputing,
335:274–298, 2019. doi: 10.1016/j.neucom.2018.06.080.

[57] Harry Weinrauch and Albert W Hetherington. Computers in medicine and biology.
Journal of the American Medical Association, 169(3):240–245, 1959.

[58] Robert S Ledley. Digital electronic computers in biomedical science. Science, 130
(3384):1225–1234, 1959.

[59] Steven G Vandenberg. Medical diagnosis by computer: Recent attempts and outlook
for the future. Behavioral Science, 5(2):170, 1960.

[60] Robert S Ledley and Lee B Lusted. Reasoning foundations of medical diagnosis.
Science, 130(3366):9–21, 1959.

[61] Sholom M Weiss, Casimir A Kulikowski, Saul Amarel, and Aran Safir. A model-based
method for computer-aided medical decision-making. Artificial intelligence, 11(1-2):
145–172, 1978.

[62] William B Schwartz. Medicine and the computer: the promise and problems of change.
In Use and Impact of Computers in Clinical Medicine, pages 321–335. Springer, 1970.

[63] Howard L Bleich. Computer-based consultation: electrolyte and acid-base disorders.
The American journal of medicine, 53(3):285–291, 1972.

[64] Robert A Rosati, J Frederick McNeer, C Frank Starmer, Brant S Mittler, James J
Morris, and Andrew G Wallace. A new information system for medical practice.
Archives of Internal Medicine, 135(8):1017–1024, 1975.

[65] G Anthony Gorry, Jerome P Kassirer, Alvin Essig, and William B Schwartz. Decision
analysis as the basis for computer-aided management of acute renal failure. The
American journal of medicine, 55(4):473–484, 1973.

[66] Peter Szolovits, Ramesh S Patil, and William B Schwartz. Artificial intelligence in
medical diagnosis. Annals of internal medicine, 108(1):80–87, 1988.

[67] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[68] Mark A Musen, Blackford Middleton, and Robert A Greenes. Clinical decision-
support systems. In Biomedical informatics, pages 643–674. Springer, 2014.

[69] Kunio Doi. Computer-aided diagnosis in medical imaging: historical review, current
status and future potential. Computerized medical imaging and graphics, 31(4-5):
198–211, 2007.



References 154

[70] Gwilym S Lodwick, Cosmo L Haun, Walton E Smith, Roy F Keller, and Eddie D
Robertson. Computer diagnosis of primary bone tumors: A preliminary report.
Radiology, 80(2):273–275, 1963.

[71] Phillip H Meyers, Charles M Nice Jr, Hal C Becker, Wilson J Nettleton Jr, James W
Sweeney, and George R Meckstroth. Automated computer analysis of radiographic
images. Radiology, 83(6):1029–1034, 1964.

[72] Fred Winsberg, Milton Elkin, Josiah Macy Jr, Victoria Bordaz, and William Weymouth.
Detection of radiographic abnormalities in mammograms by means of optical scanning
and computer analysis. Radiology, 89(2):211–215, 1967.

[73] James C Mohr. American medical malpractice litigation in historical perspective.
Jama, 283(13):1731–1737, 2000.

[74] David M Studdert, Michelle M Mello, Troyen A Brennan, et al. Medical malpractice.
New England Journal of Medicine, 350(3), 2004.

[75] Brian V Nahed, Maya A Babu, Timothy R Smith, and Robert F Heary. Malpractice
liability and defensive medicine: a national survey of neurosurgeons. PloS one, 7(6):
e39237, 2012.

[76] SM Astley and Fiona Jane Gilbert. Computer-aided detection in mammography.
Clinical radiology, 59(5):390–399, 2004.

[77] LGBA Quekel, R Goei, AGH Kessels, and JMA van Engelshoven. Detection of lung
cancer on the chest radiograph: impact of previous films, clinical information, double
reading, and dual reading. Journal of clinical epidemiology, 54(11):1146–1150, 2001.

[78] Kunio Doi. Current status and future potential of computer-aided diagnosis in medical
imaging. The British journal of radiology, 78(suppl_1):s3–s19, 2005.

[79] Maciej A Mazurowski, Piotr A Habas, Jacek M Zurada, Joseph Y Lo, Jay A Baker,
and Georgia D Tourassi. Training neural network classifiers for medical decision
making: The effects of imbalanced datasets on classification performance. Neural
networks, 21(2):427–436, 2008.

[80] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study.
Artificial intelligence review, 22(3):177–210, 2004.

[81] Robert Nisbet, John Elder, and Gary Miner. Chapter 4 - data understanding and
preparation. In Robert Nisbet, John Elder, and Gary Miner, editors, Handbook of
Statistical Analysis and Data Mining Applications, pages 49 – 75. Academic Press,
Boston, 2009. ISBN 978-0-12-374765-5. doi: 10.1016/B978-0-12-374765-5.00004-8.

[82] Davide Chicco. Ten quick tips for machine learning in computational biology. BioData
mining, 10(1):35, 2017.



References 155

[83] Vitoantonio Bevilacqua, A. Aulenta, E. Carioggia, Giuseppe Mastronardi, Filippo
Menolascina, G. Simeone, Angelo Paradiso, Antonio Scarpa, and Diego Taurino.
Metallic artifacts removal in breast CT images for treatment planning in radiotherapy
by means of supervised and unsupervised neural network algorithms. In De-Shuang
Huang, Laurent Heutte, and Marco Loog, editors, Advanced Intelligent Comput-
ing Theories and Applications. With Aspects of Theoretical and Methodological
Issues, Third International Conference on Intelligent Computing, ICIC 2007, Qingdao,
China, August 21-24, 2007, Proceedings, volume 4681 of Lecture Notes in Com-
puter Science, pages 1355–1363. Springer, 2007. ISBN 978-3-540-74170-1. doi:
10.1007/978-3-540-74171-8_138.

[84] Muna O Al-Hatmi and Jabar H Yousif. A review of image enhancement systems and
a case study of salt &pepper noise removing. International Journal of Computation
and Applied Sciences IJOCAAS, 3(2):217–223, 2017.

[85] B Suneetha and A JhansiRani. A survey on image processing techniques for brain
tumor detection using magnetic resonance imaging. In Innovations in Green Energy
and Healthcare Technologies (IGEHT), 2017 International Conference on, pages 1–6.
IEEE, 2017.

[86] G Niranjana and M Ponnavaikko. A review on image processing methods in de-
tecting lung cancer using ct images. In Technical Advancements in Computers and
Communications (ICTACC), 2017 International Conference on, pages 18–25. IEEE,
2017.

[87] King-Sun Fu and JK Mui. A survey on image segmentation. Pattern recognition, 13
(1):3–16, 1981.

[88] Hui Zhang, Jason E Fritts, and Sally A Goldman. Image segmentation evaluation: A
survey of unsupervised methods. computer vision and image understanding, 110(2):
260–280, 2008.

[89] Ruikai Zhang, Yali Zheng, Tony Wing Chung Mak, Ruoxi Yu, Sunny H Wong,
James YW Lau, and Carmen CY Poon. Automatic detection and classification of
colorectal polyps by transferring low-level cnn features from nonmedical domain.
IEEE journal of biomedical and health informatics, 21(1):41–47, 2016.

[90] Venkatesh N Murthy, Subhransu Maji, and R Manmatha. Automatic image annotation
using deep learning representations. In Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval, pages 603–606. ACM, 2015.

[91] Robert M Haralick, Karthikeyan Shanmugam, et al. Textural features for image
classification. IEEE Transactions on systems, man, and cybernetics, (6):610–621,
1973.



References 156

[92] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Transactions
on pattern analysis and machine intelligence, 24(7):971–987, 2002.

[93] Nicholas A Hamilton, Radosav S Pantelic, Kelly Hanson, and Rohan D Teasdale. Fast
automated cell phenotype image classification. BMC bioinformatics, 8(1):110, 2007.

[94] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[95] Elaine Johanna Limkin, Sylvain Reuzé, Alexandre Carré, Roger Sun, Antoine Sch-
ernberg, Anthony Alexis, Eric Deutsch, Charles Ferté, and Charlotte Robert. The
complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape
features. Scientific reports, 9(1):1–12, 2019.

[96] Robert J Gillies, Paul E Kinahan, and Hedvig Hricak. Radiomics: images are more
than pictures, they are data. Radiology, 278(2):563–577, 2016.

[97] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[98] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality
reduction: a comparative. J Mach Learn Res, 10:66–71, 2009.

[99] Bo Li, Chao Wang, and De-Shuang Huang. Supervised feature extraction based on
orthogonal discriminant projection. Neurocomputing, 73(1-3):191–196, 2009.

[100] De-Shuang Huang and Jian-Xun Mi. A new constrained independent component
analysis method. IEEE transactions on neural networks, 18(5):1532–1535, 2007.

[101] Zhan-Li Sun, De-Shuang Huang, Chun-Hou Zheng, and Li Shang. Optimal selection
of time lags for tdsep based on genetic algorithm. Neurocomputing, 69(7-9):884–887,
2006.

[102] Chun-Hou Zheng, De-Shuang Huang, Zhan-Li Sun, Michael R Lyu, and Tat-Ming
Lok. Nonnegative independent component analysis based on minimizing mutual
information technique. Neurocomputing, 69(7-9):878–883, 2006.

[103] Chun-Hou Zheng, De-Shuang Huang, Kang Li, George Irwin, and Zhan-Li Sun.
Misep method for postnonlinear blind source separation. Neural computation, 19(9):
2557–2578, 2007.

[104] Chun-Hou Zheng, De-Shuang Huang, and Li Shang. Feature selection in independent
component subspace for microarray data classification. Neurocomputing, 69(16-18):
2407–2410, 2006.

[105] Imola K Fodor. A survey of dimension reduction techniques. Technical report,
Lawrence Livermore National Lab., CA (US), 2002.



References 157

[106] De-Shuang Huang and Wen Jiang. A general cpl-ads methodology for fixing dy-
namic parameters in dual environments. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(5):1489–1500, 2012.

[107] Vitoantonio Bevilacqua, Maurizio Triggiani, Maurizio Dimatteo, Giuseppe Bellan-
tuono, Antonio, Leonarda Carnimeo, Francescomaria Marino, Michele Telegrafo, and
Marco Moschetta. Computer assisted detection of breast lesions in magnetic reso-
nance images. In De-Shuang Huang, Vitoantonio Bevilacqua, and Prashan Premaratne,
editors, Intelligent Computing Theories and Application - 12th International Confer-
ence, ICIC 2016, Lanzhou, China, August 2-5, 2016, Proceedings, Part I, volume
9771 of Lecture Notes in Computer Science, pages 306–316. Springer, 2016. ISBN
978-3-319-42290-9. doi: 10.1007/978-3-319-42291-6_30.

[108] Vitoantonio Bevilacqua, Antonio Brunetti, Maurizio Triggiani, Domenico Magaletti,
Michele Telegrafo, and Marco Moschetta. An optimized feed-forward artificial neural
network topology to support radiologists in breast lesions classification. In Friedrich
et al. [372], pages 1385–1392. ISBN 978-1-4503-4323-7. doi: 10.1145/2908961.
2931733.

[109] Shubhi Sharma and Pritee Khanna. Computer-aided diagnosis of malignant mammo-
grams using zernike moments and svm. Journal of Digital Imaging, 28(1):77–90, Feb
2015. ISSN 1618-727X. doi: 10.1007/s10278-014-9719-7.

[110] J Dheeba, N Albert Singh, and S Tamil Selvi. Computer-aided detection of breast
cancer on mammograms: A swarm intelligence optimized wavelet neural network
approach. Journal of biomedical informatics, 49:45–52, 2014.

[111] Ismail Saritas. Prediction of breast cancer using artificial neural networks. Journal of
Medical Systems, 36(5):2901–2907, 2012.

[112] Vitoantonio Bevilacqua, Paolo Pannarale, Mirko Abbrescia, Claudia Cava, Angelo Par-
adiso, and Stefania Tommasi. Comparison of data-merging methods with svm attribute
selection and classification in breast cancer gene expression. BMC bioinformatics, 13
(7):S9, 2012.

[113] Hui-Ling Chen, Bo Yang, Jie Liu, and Da-You Liu. A support vector machine classifier
with rough set-based feature selection for breast cancer diagnosis. Expert Systems
with Applications, 38(7):9014–9022, 2011.

[114] Jianmin Jiang, P Trundle, and Jinchang Ren. Medical image analysis with artificial
neural networks. Computerized Medical Imaging and Graphics, 34(8):617–631, 2010.

[115] RR Janghel, Anupam Shukla, Ritu Tiwari, and Rahul Kala. Breast cancer diagnosis
using artificial neural network models. In Information Sciences and Interaction
Sciences (ICIS), 2010 3rd International Conference on, pages 89–94. IEEE, 2010.



References 158

[116] Dustin Newell, Ke Nie, Jeon-Hor Chen, Chieh-Chih Hsu, Hon J. Yu, Orhan Nalcioglu,
and Min-Ying Su. Selection of diagnostic features on breast mri to differentiate
between malignant and benign lesions using computer-aided diagnosis: differences in
lesions presenting as mass and non-mass-like enhancement. European Radiology, 20
(4):771–781, Apr 2010. ISSN 1432-1084. doi: 10.1007/s00330-009-1616-y.

[117] Y Rejani and S Thamarai Selvi. Early detection of breast cancer using svm classifier
technique. arXiv preprint arXiv:0912.2314, 2009.

[118] Mehmet Fatih Akay. Support vector machines combined with feature selection for
breast cancer diagnosis. Expert systems with applications, 36(2):3240–3247, 2009.

[119] Vitoantonio Bevilacqua, Giuseppe Mastronardi, Filippo Menolascina, Paolo Pannarale,
and Antonio Pedone. A novel multi-objective genetic algorithm approach to artifi-
cial neural network topology optimisation: The breast cancer classification problem.
In Proceedings of the International Joint Conference on Neural Networks, IJCNN
2006, part of the IEEE World Congress on Computational Intelligence, WCCI 2006,
Vancouver, BC, Canada, 16-21 July 2006, pages 1958–1965. IEEE, 2006. ISBN
0-7803-9490-9. doi: 10.1109/IJCNN.2006.246940.

[120] Hussein A Abbass. An evolutionary artificial neural networks approach for breast
cancer diagnosis. Artificial intelligence in Medicine, 25(3):265–281, 2002.

[121] De-Shuang Huang. Systematic theory of neural networks for pattern recognition.
Publishing House of Electronic Industry of China, Beijing, 201, 1996.

[122] De-shuang Huang. Radial basis probabilistic neural networks: Model and application.
International Journal of Pattern Recognition and Artificial Intelligence, 13(07):1083–
1101, 1999.

[123] De-Shuang Huang and Ji-Xiang Du. A constructive hybrid structure optimization
methodology for radial basis probabilistic neural networks. IEEE Transactions on
Neural Networks, 19(12):2099–2115, 2008.

[124] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[125] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representa-
tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[126] IA Basheer and M Hajmeer. Artificial neural networks: fundamentals, computing,
design, and application. Journal of microbiological methods, 43(1):3–31, 2000.

[127] Eric B Baum and David Haussler. What size net gives valid generalization? In
Advances in neural information processing systems, pages 81–90, 1989.



References 159

[128] Farid U Dowla and Leah L Rogers. Solving problems in environmental engineering
and geosciences with artificial neural networks. Mit Press, 1995.

[129] Simon Haykin and Neural Network. A comprehensive foundation. Neural Networks,
2(2004):41, 2004.

[130] Timothy Masters. Practical neural network recipes in C++. Morgan Kaufmann, 1993.

[131] Carl G Looney. Advances in feedforward neural networks: demystifying knowledge
acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering, 8(2):
211–226, 1996.

[132] Kevin Swingler. Applying neural networks: a practical guide. Morgan Kaufmann,
1996.

[133] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model
selection. Statistics surveys, 4:40–79, 2010.

[134] David A Winkler and Tu C Le. Performance of deep and shallow neural networks, the
universal approximation theorem, activity cliffs, and qsar. Molecular informatics, 36
(1-2), 2017.

[135] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[136] PG Benardos and G-C Vosniakos. Optimizing feedforward artificial neural network
architecture. Engineering Applications of Artificial Intelligence, 20(3):365–382, 2007.
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