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Abstract

Pervasive computing deals with heterogeneous mobile agents attached to
ubiquitous micro-devices. In such scenarios, what one agent knows about the
environment is based on perception components it uses or has access to, and
it can be significantly different from another agent’s knowledge. Furthermore,
transient conditions and uncertainty affect perceptions and communication,
aggravating the need to cope with the lack of complete and reliable informa-
tion. Current solutions in the Internet of Things (IoT) are mostly based on
centralized data collection and analysis and on top-down agent orchestration,
with obvious limitations in latency, connection availability and data confiden-
tiality. This thesis proposes a novel distributed knowledge-based framework
named object (b)logging to tackle the above issues. The approach is con-
ceived as a general-purpose evolution of the IoT, able to associate semantic
annotations to real-world objects and events as well as to trigger complex
objects choreography through advanced resource discovery. It envisions sev-
eral smart entities organized in social networks, interacting autonomously
and sharing information, cooperating and orchestrating resources through a
published micro-blog. Ontology-referred context annotations produced and
shared by individual smart objects in mobile ad-hoc networks are merged
by means of novel Concept Fusion and enhanced Concept Integration rea-
soning services in Description Logics, specifically devised for context-aware
multi-agent systems and tailored to resource-constrained devices. Manage-
ment of incomplete information, reconciliation of inconsistencies in context
descriptions, quick adaptation to changes and robustness against spurious or
inaccurate information allow to progressively enrich a node’s core knowledge
in a private micro-log. Then it becomes able to identify on-the-fly the task(s)
needed to change its own configuration or the environment state and auto-
matically infer what useful capabilities it can provide to or needs from other
entities in order to enact them, in a decentralized and collaborative fashion.
A novel semantic-enhanced blockchain infrastructure underlies the dissemi-
nation, discovery and selection of services and resources. These tasks have
been revisited as smart contracts with opportunistic and distributed execu-
tion, exploiting validation by consensus. The introduced paradigm ideally
applies to pervasive cyber-physical systems, where several mobile hetero-
geneous micro-devices cooperate to connote and modify appropriately the
environment they are dipped in, as demonstrated by relevant case studies
and extensive experimental evaluations.



Chapter 1

Introduction

The Internet of Things (IoT) [8] vision is increasingly enabled by the minia-
turization of microelectronic devices, enabling the deployment of relatively
large numbers of heterogeneous micro-components capable of storing and
exchanging not-negligible amounts of information. A significant limitation
of current IoT lies in a limited compatibility of devices and software stacks
from different manufacturers. This forces the design of single-purpose ob-
ject networks and solutions, impairing a wider usefulness of the empoloyed
technologies. The interoperability in –and relevance of– the IoT could be
enhanced by embedding semantically rich and easily accessible information
into the physical world. This vision has been called Semantic Web of Things
(SWoT) [108] as the convergence of the Semantic Web [16] and the Internet of
Things paradigms. The SWoT improves intelligence of embedded objects and
autonomic information management in pervasive contexts, in order to better
support user activities and provide general-purpose innovative services.

In pervasive computing, information is scattered in the form of atoms
which deeply permeate the context [30]. Heterogeneous data streams are
continuously retrieved and locally processed by mobile ad-hoc networks of
smart objects dipped in the environment, in order to detect events of in-
terest in observed areas and achieve objects cooperation. This gives rise to
distributed cyber-physical systems, able to make decisions and interventions
on the environment according to the detected context and events in a fully
automated fashion. A smart object [9] is an intelligent agent running on a
device equipped with embedded sensors, actuators, communication ports as
well as (usually constrained) computation, storage and energy resources. For
effective interaction, each smart object should describe itself and the context
where it operates toward a variety of external devices and IoT applications.
In order to improve flexibility and interoperability, Semantic Web standard
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technologies [16] can be adopted for rich and unambiguous semantic-based
information exchange. The essential benefit for smart entities concerns the
integration of Knowledge Representation and Reasoning (KRR) capabilities
into objects to automatically extract and process implicit useful information
starting from explicit event and context detection.

This work proposes object (b)logging, a novel semantic-based framework
for high-level knowledge discovery, integration and sharing within smart ob-
ject networks in the Semantic Web of Things. Borrowing core relationships
and structure from popular Social Networking Services (SNSs), devices en-
able specific interaction patterns for information dissemination and coopera-
tive decentralized service/resource discovery. This selective choreography is
triggered autonomously, based on the kind of managed resources and other
contextual factors; this capability enhances interoperability across heteroge-
neous platforms and scalability in dense multi-agent environments.

Each object equipped with an embedded reasoning micro-engine can per-
form automated inference procedures to derive previously implicit knowledge
out of information gathered from the environment or other smart entities.
Detected and received information must be integrated in a coherent view by
autonomous agents in order to recognize and annotate the context they are
in. A novel knowledge fusion inference services is needed in order to merge
different perspectives of heterogeneous entities over situations, suitable to
robust distributed context monitoring even in the presence of incomplete
and/or inaccurate information. In this way, starting from a basic descrip-
tive core, smart objects continuously enrich their knowledge according to
detected events and phenomena and offer advanced and semantically unam-
biguous descriptions of their state and context perspective toward the rest
of the world in a self-contained fashion. Environment, process, subject and
any other entities of interest in a cyber-physical system are expressed in Web
Ontology Language (OWL 2) annotations [93]. According to the monitored
and detected context, an agent must be able to take decisions on-the-fly,
dynamically adapting its behavior and acting on the surrounding environ-
ment in order to suitably modify it by exploiting reaction and enforcement
capabilities. This is achieved by means of available actuators encapsulated
as resources/services, provided either by the agent itself or by other entities.
These features are enabled by an advanced resource discovery facility sup-
porting non-exact matches and providing a ranked list of discovered resources
or services, suitable to accomplish the needed interventions. Computational
limitations and resource volatility featuring mobile and pervasive computing
contexts must be considered as well.

For this purpose, the proposal includes a framework redesigning semantic
resource discovery thanks to an underlying blockchain infrastructure, ensur-
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ing robustness, scalability and trust management. Basic resource/service reg-
istration, discovery, selection and finalization operations have been revisited
as smart contracts in order to comply with an opportunistic and distributed
execution leveraging validation by consensus. In this way, blockchain-based
discovery acquires logic-based outcome explanation capabilities, obtained
through non-standard inference for matchmaking among request and re-
sources.

The overall approach results in a general-purpose, cross-domain semantic-
based context detection, knowledge discovery and sharing facility among per-
vasive smart devices, supporting intelligent machine-to-machine interactions

Several prototypes were implemented and tested in simulation campaigns,
basically devoted to assess feasibility, correctness and sustainability of the
proposed solutions. Performance evaluation was carried out with reference to
selected case studies, highlighting strengths and weaknesses of the approach.

The remainder of this dissertation is organized as in what follows.
Chapter 2 recalls the technological background for the research and

provides a survey of related work.
Chapter 3 provides in detail functional and architectural description of

the proposed object (b)logging framework and the novel knowledge fusion
algorithms. An illustrative case study is presented to allow a better under-
standing of the proposal, along with performance evaluation experiments.

Chapter 4 describes the knowledge sharing and discovery framework
underpinning social object interactions, along with a brief case study. Details
about experimental results are provided.

Chapter 5 focuses on the semantic-enhanced blockchain infrastructure.
The implemented software prototype and the experimental evaluation results
are presented to assess the feasibility of the approach.

Chapter 6 concludes the dissertation by summarizing the main contri-
butions and outlining open research perspectives.
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Chapter 2

Background

This chapter presents an overview of the state of the art trends in the ubiq-
uitous and pervasive computing: in these contexts, several heterogeneous
mobile micro-devices embedded in the environment collect, process and ex-
change information cooperatively and autonomously, in order to adapt their
behavior. Afterwards, a discussion of the languages and tools for Knowledge
Representation and Reasoning in the Semantic Web is provided. Its vision
and foundational technologies are described, in order to provide a theoretical
and technical background for the subsequent chapters. Limitations of the
state of the art are finally analyzed, in order to outline the problems tackled
in the research work for this thesis.

2.1 The Social Internet of Things

Modern Cyber-Physical Systems (CPS) are smart complex systems engi-
neered through a deep integration of embedded information processing sub-
systems and physical sub-systems. The convergence of the cyber and the
physical worlds in this paradigm leverages technological progress in the In-
ternet of Things, where everyday objects are augmented with communication
and computation capabilities. In a CPS, a large number of sensors, actuators,
and control devices is connected by a network to acquire, process, calculate,
and analyze context information and to apply the results to the physical
environment. Managing complexity calls for smart objects capable of com-
municating and coordinating autonomously, making decisions dynamically
based on manifold factors, including the state of surrounding objects and
places, as well as user activities and profiles if human-computer interaction
is required. Flexible and meaningful relationships among smart devices in a
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given environment should be established automatically to support articulate
orchestration and coreography patterns.

Recent research in the so-called Social Internet of Things (SIoT) [9] is ex-
ploring models and architectures to reach this goal. Paradigms are often bor-
rowed from Social Networking Services for human users. If properly adapted
to the peculiarities and requirements of Multi-Agent Systems (MAS), they
can support powerful approaches. SIoT offers several benefits and interest-
ing perspectives for the IoT/CPS. The adoption of a social model for object
information interchange gives structure (to some extent) to the intrinsically
unpredictable interaction in the IoT/CPS, and therefore it gives an added
value in terms of interoperability, autonomicity, versatility and coordination.
This is not enough, however, for really cohesive CPSs: versatile cooperation,
organization and integration can be achieved only if connected things can
represent, discover and share information and services described in an artic-
ulate way by means of machine-understandable formalisms. Semantic Web
technologies are candidates for such a role, as they can grant interoperability
grounded on formal logic semantics [125].

2.1.1 Smart objects

The Internet of Things term refers to a loosely coupled, decentralized, and
dynamic system in which large numbers of everyday objects are globally in-
terconnected and endowed with smartness, becoming active participants in
business, logistics, information, and social processes [149]. Such things can be
commonly defined as smart objects (SOs) and, if supported by an “anywhere,
anytime, and anything connection” [8], they represent the fundamental build-
ing blocks for the IoT [68], as well as for the derived CPS paradigms. In fact,
smart objects are able to provide highly pervasive cyber-physical capabilities
and services to both humans and machines thanks to their communication,
sensing, actuation, embedded processing, and even reasoning abilities.

In literature, a smart object [141] is defined as an intelligent agent run-
ning on a device equipped with embedded sensors, actuators, communication
ports as well as (usually constrained) computation, storage and energy re-
sources. Smart objects are able to gather data streams for internal and
external parameters, to adapt themselves to the environment and/or to act
in order to modify it.

Basically, four kinds of information are managed, as shown in Figure 2.1:

• Context Information: a description of the environment where the object
operates, according to data collected through built-in sensors;
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Figure 2.1: Smart object descriptions

• Capabilities : smart object sensing and actuation features, respectively
called perception and operation capabilities;

• Constraints : limits and features, imposed by itself or by other entities,
modelling the desired state of the environment. They influence the
smart object’s behavior so that it is in charge of driving adaptation
honoring them;

• Adaptation/Behavior Profiles : context-aware reactive patterns in the
smart object, declared using a rule-like form comprising two sections:

– Preconditions : existing requirements about the present state of
the environment that must be met for the profile to be activated;

– Postconditions : desired patterns in the future state of the envi-
ronment that must be accomplished by the agent in order to honor
the profile. Smart objects should decide how to meet the postcon-
dition requirements, depending on their internal logic and built-in
actuators.

The approach explored in this work adopts the previous definitions and
devises them in a novel way, as detailed in Chapter 3. Particularly, informa-
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tion is expressed in a semantically rich and structured formalism grounded
on the Attributive Language with unqualified Number restrictions (ALN )
Description Logic, which is a subset of the Web Ontology Language (OWL)
2 [93] standard adopted for modelling ontologies and annotating resources
in the Semantic Web. A background on knowledge representation languages
and technologies is provided in Section 2.2. In the proposed object (b)logging
paradigm, each smart object is also equipped with a reasoning engine per-
forming automated inference procedures to derive implicit knowledge out of
semantic-based information gathered from the environment. In this way, an
object becomes able to identify on-the-fly the task(s) needed to change its
own configuration or to act on the environment, also exposing information
possibly useful to nearby objects in a micro-blog, which acts as a medium for
social interactions.

2.1.2 State of the art

In latest years, social networking services have changed personal interaction
habits and relationships management on a global scale. Members of SNSs
create personal profiles with basic information about themselves; connect
with other users in either bidirectional (e.g., friendship, group) or unidirec-
tional (e.g., follower) relationships; post text and/or multimedia items on
their wall (i.e., log) for sharing with their contacts; flag (tag) some contacts
to associate them and draw their attention to a certain element; respond to
content published by other users with comments and reactions (e.g., like).
SNS adopters generally manifest an intention to continue using them [78], be-
cause SNSs provide both utility (extrinsic value) and gratification (intrinsic
value). Their usefulness also grows as they connect more users, and partic-
ularly complementary ones [78], since opportunities increase for discovering
unforeseen information and services.

In the Social Internet of Things [9], objects engage with one another
independently from direct user interactions and human SNS. Things act as
autonomous agents, building networks of social relationships and exploiting
them to share information and services more effectively. Research on SIoT is
very active and covers a wide range of related topics, as surveys in [90] and
[129] show.

Several classifications of things relationship types exist in literature. In
[11] and subsequent works, parental (same manufacturer), co-location (same
environment), co-work (cooperation), co-ownership (same owner) and social
(sporadic or frequent contact) were identified as basic object relationships.
The analysis in [142] was inspired by literature on human SNS, instead, and
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resulted in an ontology allowing objects to manage their policies, friends and
reputation. The ontology model developed in [72] included social relation-
ships among events, people and objects in IoT environments.

The SIoT aims at extended device collaboration. Service-oriented archi-
tectures are one of the dominant paradigms, where intelligent service/resource
discovery is a core capability. Most SIoT approaches rank services/resources
w.r.t. a request/profile specification based on a combination of (i) object so-
cial connectivity, (ii) object mobility patterns, and (iii) preference similarity.
This work exploits (i) and (iii), while (ii) is taken into account implicitly
through dynamic relationship set-up and tear-down. In [75] a cosine similar-
ity was computed combining metrics (ii) and (iii), improving results w.r.t.
each single method, although preferences and resources were described by
means of a simplistic set of keywords, lacking formal meaning.

Semantics-based approaches improve both context-awareness and discov-
ery capabilities in multi-agent systems. In [98] distributed OWL Knowledge
Base (KB) management supported machine-to-machine social interactions in
control networks. Every connected object proactively discovered other nodes
in the network; requesters were then able to distribute queries automati-
cally among known devices equipped with reasoning engines. Unfortunately,
supported inferences were very basic, limiting the applicability of the pro-
posal. In [52] semantics-based situation detection and goal retrieval were
exploited for matchmaking with task profiles for recommending activities
to users, based on their current context. Nevertheless, social interactions
occurred only between devices and users; furthermore, adopted rule-based
reasoning could not retrieve approximate matches when exact ones did not
exist. Likewise, [51] focused on activities of daily living in smart homes, gen-
erating task-oriented recommendations for user’s situational goals. In [77]
Near Field Communication (NFC) technology mediated social interactions
between everyday objects and agents running on mobile devices. Ontology-
based representations supported context-awareness, enabling both reactive
and proactive agents behaviors, exploiting rule-based reasoning for planning
toward situation-dependent goals. Though interesting, the approach does
not appear general enough to support a wide range of SIoT scenarios.

Recent SIoT proposals increasingly adopt cloud-assisted architectures,
where social objects are virtualized, i.e., functionalities are mapped to soft-
ware agents managed by Platform as a Service (PaaS) infrastructures. Rel-
evant examples include Paraimpu [95], Lysis [42], Smartbuddy [94] and the
platforms in [51], [145] and [70]. Notably, the ASSIST framework [57] ex-
ploited semantics-based rules to implement social network primitives. While
granting higher scalability, availability and robustness, cloud-assisted ap-
proaches can exhibit non-negligible drawbacks, including longer delays, higher
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network load and greater energy usage for pervasive devices [39]. As such, it
seems appropriate essentially for scenarios and applications where a depend-
able global networking infrastructure is available. Although SIoT research
trends take this kind of connectivity more and more for granted, many IoT
technologies in the present and near future cannot provide it [10]. The ap-
proach explored in this thesis, instead, is based on Edge Computing models
[128] and is compatible with mobile ad-hoc networks (MANETs), not re-
quiring a stable connectivity infrastructure. This makes it suitable for chal-
lenging scenarios such as disaster recovery or environmental monitoring and
surveillance.

Among challenging scenarios, the SIoT paradigm is being increasingly ap-
plied to Vehicular Ad-hoc NETworks (VANETs) and urban mobility [129],
like the case study proposed in Section 4.2. The fast motion of nodes (i.e.,
vehicles) leads to highly volatile network topologies as well as strict com-
putation and communication latency constraints for safety-related services.
Furthermore, situation awareness in such environments requires information
fusion from multiple heterogeneous sources. Social interaction paradigms in
VANETs –often denominated Social Internet of Vehicles (SIoV) [3]– have
been demonstrated to be effective in improving information discovery [111]
and resource allocation [148].

Trust management is one of the most relevant issues in the SIoT [146].
As discussed in Chapter 4, this work focuses on application-level trust, par-
ticularly in social objects relationships. Trust metrics can be retrieved from
friends (recommendation), reliable intermediaries (reputation) or direct knowl-
edge [32]. In [85] both a subjective and an objective (i.e., shared) model were
introduced, exploiting techniques mutuated from peer-to-peer networks. The
collaborative Cognitive Radio framework in [86] leveraged the SIoT relation-
ship types described above in [11] to improve both the reach of channel status
queries and the trustworthiness of information through weights depending on
the degree of friendship. A refinement was proposed in [26], where trust was
defined as a function of reputation on past transactions, relationship type
and energy status. Reputation combined direct and friend recommendation
scores, while the relationship type between two devices was derived from
a correlation of trustworthiness w.r.t. mutual friends. Similarly, in [56] a
honesty model was composed out of spatial (object proximity), temporal
(frequency and duration of interactions), relationship and credibility (coop-
erativeness and penalties) metrics. The credibility aspect is the closest to the
proposal in this work. A similar approach was adopted in [25], albeit in that
case honesty referred to the absence of malicious behaviors: the main goal
was, in fact, to devise a robust trust model against attacks to service discov-
ery and management. For this purpose, a trust propagation and aggregation
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scheme was introduced, conceptually similar to the objective trust model in
[85]. The above works, however, aimed only at improving transaction success
and did not consider dynamic social relationships. That issue was tackled in
[92], exploiting Bayesian belief propagation networks.

As a final remark, all the above works focused either on service discovery
and composition or on dynamic trust management, disregarding or trivially
simulating the other aspect.

2.2 Knowledge Representation and Reason-

ing in pervasive contexts

In ubiquitous and pervasive contexts, intelligence is integrated into objects
and physical locations by means of a relatively large number of heterogeneous
micro-devices. Each conveys a small amount of useful data, which should
be processed and exchanged by smart objects in order to enable adaptive
context-aware behaviors in a range of applications. Agents must be able to
integrate detected and received information in a coherent view by fusing par-
tial and redundant information, and by retracting consequences when new
conflicting knowledge becomes available. Furthermore, high degrees of au-
tonomic capability are required in order to trigger actions or make interven-
tions on the environment according to the detected context without human
interaction. Knowledge Representation and Reasoning (KRR) techniques
and technologies allow information modelling based on formal and rigorous
interpretation of its meaning (semantics). This enables not only greater in-
teroperability across different HW/SW platforms, but also reasoning tasks
i.e., inferences, to derive new implicit insight from information explicitly as-
serted in a Knowledge Base. Among the many available KRR languages and
tools, those born from the Semantic Web initiative enjoy global adoption
and high optimization of algorithms and implementations. In the following
subsections, Description Logics (DLs) family and non-monotoning reasoning
tasks relevant for this work are recalled in detail.

2.2.1 The Semantic Web of Things

In latest years, the Semantic Web of Things [108] vision is merging the Se-
mantic Web and the Internet of Things. Its goal is to exploit semantic
annotations conveyed by heterogeneous micro-components to embed intelli-
gence into real-world objects, locations and events. Large numbers of smart
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devices interact autonomously to achieve context awareness and provide high-
level services to users, via decision support and task automation. In order
to enable such vision, approaches have to deal with pervasive computing
constraints, i.e., unpredictability, dependence on context, severe resource
limitations.

This work is grounded on the general framework for the SWoT named
ubiquitous Knowledge Base (u-KB) [108]. Basically it can be envisioned as
an evolution of classic KB paradigms, also providing information storage,
communication and processing capabilities to bridge the gap between phys-
ical and digital worlds. As sketched in Figure 2.2 in terms of functional
architecture, a u-KB is defined as a distributed knowledge base whose indi-
viduals (assertional knowledge) are physically tied to micro-devices on the
objects disseminated in an environment, without centralized coordination.
Each annotation refers to an ontology providing the conceptual model for
the particular domain. Current identification and sensing technologies are
extended by a semantic adaptation micro-layer for application-level proto-
cols, defining data formats and storage schemes to host annotated fragments,
while keeping backward compatibility with standard technologies and appli-
cations. Furthermore, specialized compression algorithms [105][121] are de-
fined for ontology languages, to properly store and transmit annotations on
tiny embedded mobile devices such as RFID tags or wireless sensors. The
benefits of compression apply to the whole ubiquitous computing environ-
ment, as decreasing data size means shorter communication delays, efficient
usage of bandwidth and reduced battery drain for mobile devices.

Novel application models are possible, enabling a direct interaction with
objects by-passing centralized information repositories: such approaches refer
to really pervasive environments where agents –human or not– can directly
dialog with objects without intermediaries. The u-KB model is supported
by an advanced matchmaking where inference tasks are distributed among
mobile computing devices which provide minimal computational capabilities.
Such an approach enables objects to describe themselves toward the rest of
the world in a self-contained fashion. The u-KB layer provides common access
to information embedded into semantic-enhanced micro-devices populating
a smart pervasive environment, while information processing and reasoning
tasks can be performed either by local hosts (so enabling semantic-enhanced
ubiquitous applications) or by a remote entity through a gateway exposing a
high-level interface (so integrating the local environment with the WWW).
Reuse of Semantic Web standards is the key to simplify the integration of
u-KBs in larger information infrastructures. Notice that, the u-KB approach
is more focused on allowing semantic-based dynamic resource dissemination
and discovery in mobile ad-hoc contexts, without necessarily linking to the
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Figure 2.2: Semantic Web Of Things framework

Internet to provide useful services (even though connection can be exploited
when available), so being more inclined to really pervasive computing.

The proposed object (b)logging model is a u-KB specialization, where
smart objects dynamically build a u-KB as a private micro-log and dissemi-
nate information in their mobile ad-hoc network as a public micro-blog.

2.2.2 Description Logics

Description Logics (DLs) are a family of Knowledge Representation (KR)
languages in a fragment of First Order Logic (FOL) [19, 35]. DLs allow to
represent knowledge by means of:

• concepts a.k.a. classes, representing sets of objects;

• roles a.k.a. properties, representing relationships between pairs of con-
cepts;

• individuals, i.e., named instances of classes.

These elements can be combined via constructors to create DL expressions,
whose formal semantics is specified by means of an interpretation I = (∆, ·I)
associating each term to a subset of the universe of discourse (the domain ∆).
Concept conjunction is interpreted as set intersection: (C u D)I = CI ∩ DI .
Concept disjunction is interpreted as set union: (C t D)I = CI ∪ DI .
The connector ¬, if present, is interpreted as complement.

An ontology (a.k.a. terminology, terminological box, TBox) is composed
by two types of assertions : inclusion, which allows to define is-a relationships
between classes; equivalence, which allows to give a name to a particular
concept expression.

DLs are distinguished by the constructors they provide. The Attributive
Language(AL) has been introduced in [118] as a minimal language that is of
practical interest. Constructs of AL are reported in what follows:
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• >, universal concept. All the objects in the domain.

• ⊥, bottom concept. The empty set.

• A, atomic concepts. All the objects belonging to the set A.

• ¬A, atomic negation. All the objects not belonging to the set A.

• C uD, intersection. The objects belonging to both C and D.

• ∀R.C, universal restriction. All the objects participating in the relation
R whose range are all the objects belonging to C.

• ∃R, unqualified existential restriction. There exists at least one object
participating in the relation R.

In order to increase the expressiveness, the AL language can be extended
with additional constructs such as:

N : (≥ nR)1, (≤ nR), (= nR)2, unqualified number restrictions. Respec-
tively the minimum, the maximum and the exact number of objects
participating in the relation R.

U : C tD, concept union. The objects belonging to C or D.

E : ∃R.C, full existential quantification. Existential restrictions that have
fillers other than >.

C : complex concept negation. Negation of concepts that are are com-
prised of other concepts.

I : R−, inverse roles. Refer to the inverse of a binary relation.

The formula AL[N ][U ][E ][C][I] is used to indicate the AL language exten-
sions.

This work adopts the Attributive Language with unqualified Number re-
strictions (ALN ) DL as reference. It provides adequate expressiveness while
keeping polynomial complexity, both for standard and non-standard infer-
ences. Table 2.1 summarizes syntax and semantics of constructors and as-
sertions in ALN .

1Notice that ∃R is equivalent to (≥ 1R)
2Notice that (= nR) is a shortcut for (≥ nR) u (≤ nR)
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Table 2.1: Syntax and semantics of ALN

Name Syntax Semantics

Top > ∆I

Bottom ⊥ ∅
Intersection C uD CI ∩DI

Atomic negation ¬A ∆I\AI
Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

Number restrictions
≥ nR {d1 | ]{d2 | (d1, d2) ∈ RI} ≥ n}
≤ nR {d1 | ]{d2 | (d1, d2) ∈ RI} ≤ n}

Inclusion A v D AI ⊆ DI

Equivalence A ≡ D AI = DI

Web Ontology Language (OWL)

Web Ontology Language (OWL) [93] is a W3C Recommendation extending
RDF Schema for creating ontologies and expressing metadata on resources
in the Semantic Web. OWL uses the Internationalized Resource Identifier
(IRI) to for unique resource naming and is based on the Resource Description
Framework (RDF) [120] knowledge model. OWL branches into three different
levels of complexity, from the least to the most expressive:

• OWL Lite: allows very basic taxonomy and constraints definition;

• OWL DL: enables a fairly wide expressiveness while retaining com-
putational tractability. The name indicates a direct correspondence
between OWL and Description Logics;

• OWL Full : provides the highest level of flexibility and expressiveness,
sacrificing computational tractability.

OWL Lite is a subset of OWL DL, which is in turn a subset of OWL Full. The
subset of OWL DL elements allowing to express the ALNDL is presented in
Table 2.2 in RDF/XML syntax [119].

In pervasive scenarios featured by volatile nodes interacting in an oppor-
tunistic fashion in order to achieve a common goal, OWL Full is not suitable
because of its intractability, while suitable fragments of OWL DL provide
a good trade-off between expressiveness and complexity. In this work the
domain of interest was modeled using the latest specification of OWL lan-
guage, i.e., OWL 2 [93]. It supports a variety of syntaxes to read, store and
exchange knowledge conceptualization among applications. OWL 2 includes
three sublanguages, named profiles: (i) OWL 2 EL, a fragment that has
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Table 2.2: Correspondence between OWL RDF/XML and DL syntax

OWL RDF/XML syntax DL syntax

<owl:Thing> >
<owl:Nothing> ⊥

<owl:Class rdf:ID=“C”> C
<owl:ObjectProperty rdf:ID=“R”> R

<rdfs:subClassOf> v
<owl:equivalentClass> ≡
<owl:disjointWith> ¬
<owl:intersectionOf> u
<owl:allValuesFrom> ∀
<owl:someValuesFrom> ∃
<owl:maxCardinality> ≤
<owl:minCardinality> ≥
<owl:cardinality> =

polynomial time reasoning complexity; (ii) OWL 2 QL, designed to enable
easier access and query to data stored in databases and (iii) OWL 2 RL, a
rule subset of OWL 2. Each profile applies for specific use cases and offers
a different trade-off between expressiveness and reasoning efficiency. Unlike
early OWL sublanguages, OWL 2 profiles are mutually unrelated.

2.2.3 Reasoning services

Polynomial-complexity structural reasoning algorithms [122] for ALN con-
cept descriptions can be exploited in order to enable a distributed information
aggregation and discovery in agent networks and MASs.

To this aim, when an ALN KB is loaded, it is preprocessed performing
the unfolding and Conjunctive Normal Form (CNF) normalization [106].
Particularly, given a TBox T and a concept C, the unfolding procedure
recursively expands references to axioms in T within the concept expression
itself. In this way, T is not needed any more when executing subsequent
inferences. The CNF translation in then obtained by applying a set of pre-
defined substitutions. Any concept expression C in CNF can be expressed
as:

C ≡ CCN u C≤ u C≥ u C∀

where
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• CCN : conjunction of (possibly negated) concept names;

• C≤: conjunction of maximum cardinality restrictions, at most one per
role;

• C≥: conjunction of minimum cardinality restrictions, at most one per
role;

• C∀: conjunction of universal restrictions, at most one per role; fillers
are recursively in CNF.

Normalization preserves semantic equivalence with respect to models induced
by the TBox; furthermore, CNF is unique (up to commutativity of conjunc-
tion operator) [34]. The normal form of an unsatisfiable concept is simply
⊥.

The following definition adapted from [103] will be used in the rest of the
work:

Definition 1 (Concept Components) Let C be an unfolded and CNF-

normalized concept expression satisfiable w.r.t. a TBox T in a DL L, for-

malized as C ≡ CCN u C≤ u C≥ u C∀: then

– each concept name or negated concept name in CCN is a Concept Compo-

nent of C;

– each maximum cardinality restriction in C≤ is a Concept Component of C;

– each minimum cardinality restriction in C≥ is a Concept Component of C;

– ∀R.Dk is a Concept Component of C for each ∀R.D in C∀ and for each

Dk Concept Component of D.

Given a DL ontology T and S, D two satisfiable concepts in T , the
satisfiability and subsumption standard inference services provided by DL-
based systems [14] can be formalized as follows:

• Subsumption: checks if S is more specific than D w.r.t. the ontology
T , i.e., T |= S v D.

• Satisfiability : verifies if the conjunction of S and D is satisfiable w.r.t.
the ontology T , i.e., T 6|= S uD v ⊥.

In real-world application scenarios featuring articulated and –often– con-
flicting descriptions, standard inference services like Subsumption and Sat-
isfiability are often inadequate, as they provide just a boolean answer. An
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outcome explanation is required in more advanced settings, dealing with het-
erogeneous information from several independent sources. Non-monotonic
reasoning tasks originally defined for belief revision are needed. The follow-
ing non-standard inferences are particularly relevant for the purposes of this
work:

• Concept Contraction [106]: if T |= S u D v ⊥, i.e., S and D are
not compatible with each other, Concept Contraction (CC) is able to
determine a pair of concepts 〈G,K〉 such that T |= D ≡ G u K,
and K u D is satisfiable in T . Then K is called a contraction of
D according to S and T . G (for Give up) is the explanation about
what in D is incompatible with S and must be retracted to obtain an
expression K (for Keep) such that K u S is satisfiable in T . Hence,
Concept Contraction Problem (CCP) amounts to an extension of a
(in)Satisfiability one.

• Concept Abduction [106]: if T |= S u D 6v ⊥ and T |= S 6v D then
Concept Abduction (CA) finds a concept H (for Hypothesis) such that
T |= S uH v D. Basically, H represents what is in D but is missing
from S. In particular, solving a Concept Abduction Problem (CAP)
provides an explanation when Subsumption does not hold.

• Concept Difference [136]: if T |= S v D, then the difference S −D is
a concept E such that S ≡ D u E.

• Bonus [28]: extracts a concept B from S which denotes something that
S provides even though not specified in D. It is basically computed via
Concept Abduction between contracted versions of D and S. Bonus
can also be seen as an extension of Concept Difference, which remains
valid if T |= S 6v D and even if T |= S uD v ⊥.

• Concept Covering [97]: Given D and a set of semantic descriptions
R = {S1, S2, ..., Sk}, where D and S1, S2, ..., Sk are satisfiable in T , the
Concept Covering Problem (CCoP) aims to find a pair 〈RC , H〉 where
RC contains concepts in R (partially) covering D with respect to T
and H is the (possible) part of D not covered by concepts in RC .

For both Concept Abduction and Concept Contraction , minimality cri-
teria are defined –since one usually wants to hypothesize or give up as little
as possible– which induce numerical distance (penalty) functions, based on
thbe norm of expressions H and G respectively. These penalties can be com-
bined through a utility function such as 2.1, in order to evaluate goodness of
match approximation and are studied and applied in semantic matchmaking
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problems [28]. Semantic matchmaking is basically the process of finding best
matches of a request (named D in the above definitions) among available
resource ads (named S above), where both the request and the ads are se-
mantically annotated w.r.t. a reference ontology [28]. In such scenarios, the
result is a list of ads ranked by semantic proximity, computed as the inverse
of the semantic distance p:

p(D,S) =
w · penalty(c) + (1− w) · penalty(a)

penalty(a),max

(2.1)

where 2.1 penalty(c) is the penalty calculated by Concept Contraction
between D and S, while penalty(a) is the penalty value of the Concept Ab-
duction procedure between D and the consistent part K of S. The value of p
is normalized w.r.t. the maximum possible semantic distance penalty(a),max

which is the one between D and the most generic concept >, and depends
only on axioms in the reference domain ontology [106]. The parameter w
ranges from 0 to 1 and determines the relative weight of explicitly conflicting
elements w.r.t. unspecified ones.

The principles underpinning semantic matchmaking are:

• Open World Assumption. The absence of a characteristic in a descrip-
tion should not be interpreted as a constraint of absence, but as un-
known or irrelevant information.

• Non-symmetric evaluation. A matchmaking system may give differ-
ent evaluations to the match between a resource S and a request D,
depending on whether it is trying to match S with D, or D with S.

Five different match classes (categories) [73] reported in Table 2.3 are
originated by matchmaking process. The most desired match is obviously
the exact one, but from the viewpoint of a requester full match is equally
acceptable. However, potential and partial matches are the most common in
real complex scenarios. By means of Concept Contraction and Concept Ab-
duction it is possible to move from a partial match to a full one by exploiting
a query refining process:

partial → potential → full

2.2.4 State of the art

Pervasive and mobile computing have peculiarities such as highly volatile con-
nectivity, unexpected disconnections, location-dependency, reduced energy,
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Table 2.3: Match classes

Match class Description Semantics

Exact

S ia semantically equivalent to D. All
the requirements expressed in D are
in S and S does not expose any addi-
tional feature w.r.t. D.

T |= D ≡ S

Full

S is more specific than D. All the
requirements expressed in D are pro-
vided by S and S exposes further char-
acteristics both not required by D and
not in conflict with the ones in D.

T |= S v D

Plug-in

D is more specific than S. All the
characteristics expressed in S are re-
quested by D and D exposes also other
requirements both not exposed by S
and not in conflict with characteristics
in S.

T |= D v S

Potential
D is compatible with S. Nothing in D
is logically in conflict with anything in
S and vice-versa.

T 6|= S uD v ⊥

Partial
D is not compatible with S. At least
one requirement in D is logically in
conflict with some characteristic in S.

T |= S uD v ⊥
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storage and computational availability among others, making them different
from traditional wired and dependable computing contexts. Mobile agents
endowed with quick decision support, query answering and stream reason-
ing capabilities are required [38, 74] supporting user activities and providing
general-purpose innovative services. In these contexts, reasoning engines are
exploited as decisional and organizational systems: specific non-standard in-
ference services may be more suitable than standard ones [123]. Furthermore,
mobile and embedded devices are basically resource-constrained, so they can
run properly only optimized inference engines, while common reasoners gen-
erally impose non-trivial hardware and software constraints.

Due to architectural constraints and computational complexity of De-
scription Logics reasoning, the majority of early mobile inference engines
provided only rule processing for entailment materialization in a KB. Propos-
als include 3APL-M [65], COROR [135], MiRE4OWL [63], Delta-Reasoner
[83] and the system in [124], that results unsuitable to support applications
requiring non-standard inference tasks and extensive reasoning over ontolo-
gies [83].

More expressive languages could be used by adapting tableaux algorithms
–whose variants are implemented in reasoners running on PCs– to mobile
computing platforms, but an efficient implementation of reasoning services is
still an open problem. Several techniques [49] allow to increase expressiveness
or decrease running time at the expense of main memory usage, which is
precisely the most constrained resource in mobile systems.

Pocket KRHyper [130] was the first reasoning engine specifically designed
for mobile devices. It supported the the ALCHIR+ DL and was built as
a Java ME (Micro Edition) library. Pocket KRHyper was exploited in a
DL-based matchmaking framework between user profiles and descriptions of
mobile resources/ services [64]. However, frequent “out of memory” errors
strongly limited the size and complexity of manageable logic expressions. To
overcome these constraints, tableaux optimizations to reduce memory con-
sumption were introduced in [133] and implemented in mTableaux, a modified
version of Java Standard Edition (SE) Pellet reasoner [131]. Comparative
performance tests were performed on a PC, showing faster turnaround times
than both unmodified Pellet and Racer [44] reasoner. Nevertheless, the Java
SE technology is not expressly tailored to the current generation of handheld
devices. In fact, other relevant inference engines cannot run on common mo-
bile platforms, since they rely on Java class libraries incompatible with most
widespread mobile OS (e.g., Android). In [147] four Semantic Web reasoners
were successfully ported to the Android platform (Pellet, CB [58], Hermit
[126] and JFact, a Java port of Fact++ [138]), albeit with significant rewrit-
ing or restructuring effort in some cases. Similarly, in [59] the ELK reasoner
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was optimized and evaluated on Android. Nevertheless, all ported systems
were designed mainly for batch jobs over large ontologies and/or expressive
languages. This makes mobile device usage less suitable due to computation
and memory constraints.

Furthermore, the above reasoners only support standard inference services
such as satisfiability and subsumption, which are not enough for pervasive
scenarios. Non-monotonic reasoning tasks are needed in order to enable the
creation of software agents able to provide quick decision support and/or
on-the-fly organization in such intrinsically unpredictable environments.

In latest years, the bad worst-case complexity of OWL language stim-
ulated a different approach to implement reasoning tools. It was based on
simplifying both the underlying logic languages and admitted KB axioms,
so that structural algorithms could be adopted, while maintaining expres-
siveness enough for broad application areas. In [12], the basic EL DL was
extended to EL ++, a language deemed suitable for various applications, char-
acterized by very large ontologies with moderate expressiveness. A structural
classification algorithm was also devised, which allowed high-performance
EL ++ ontology classifiers such as CEL [13], Snorocket [71] and ELK [60].
OWL 2 profiles definition complies with this perspective, focusing on lan-
guage subsets of practical interest for important application areas rather
than on fragments with significant theoretical properties. The µOR reasoner
[4] for Ambient Intelligence distinguishes itself for adopts a resolution al-
gorithm on the OWL-Lite− language, while LOnt [69] works on DL Lite,
a subset of OWL-Lite. The mobile OWL 2 RL engine in [139] exploits an
optimization of the classic RETE algorithm for rule systems. In a parallel ef-
fort motivated by similar principles [104], an early approach was proposed to
adapt non-standard logic-based inferences to pervasive computing contexts.
By limiting expressiveness to the AL language, acyclic, structural algorithms
were adopted reducing standard (e.g., subsumption) and non-standard (e.g.,
abduction and contraction) inference tasks to set-based operations [34]. KB
management and reasoning were then executed through a data storage layer,
based on a mobile RDBMS (Relational DBMS). Such an approach was fur-
ther investigated in [101] and [106], by increasing the expressiveness to ALN
DL and allowing larger ontologies and more complex descriptions, through
the adoption of both mobile OODBMS (Object-Oriented DBMS) and per-
formance optimized data structures. Finally, in [102] expressiveness was
extended to ALN (D) DL with fuzzy operators.

The current implementation of Mini-ME - the Mini Matchmaking En-
gine [122] provided a standards-compliant implementation of most common
inferences (both standard and non-standard) for Android and Java Standard
Edition (SE). More recently, a Mini-ME Swift reenginering was released for
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iOS devices [109]. In this work a next-generation Mini-ME reasoning engine
currently being developed in C has been integrated.

2.3 Distributed transactional systems

IoT suffers from unpredictability of node and resource availability, due to the
volatility of actors and appliances. This makes trust and coordination man-
agement difficult and these limits are inevitably inherited by the SWoT: their
burden is particularly evident when reliable and trustworthy applications are
needed. Distributed transactional systems and specifically blockchain tech-
nology are interesting from this perspective. By integrating blockchain with
SWoT approaches interesting possibilities can rise for large-scale distributed
trustless systems. In what follows some relevant background and related
state-of-the-art works are surveyed.

2.3.1 Blockchain basics

Blockchain is a data structure and protocol for trustless distributed transac-
tional systems. In traditional distributed databases, a trusted intermediary
is needed to guarantee irreversibility (i.e., no committed transaction can be
reverted or altered) and preventing censorship (i.e., all valid transactions are
committed). Blockchain systems avoid intermediaries by approving transac-
tions through a distributed consensus protocol, which guarantees no single
node or small group of colluding nodes can force the addition, removal or
modification of data. The minimum percentage of colluding nodes among
participating peers needed to subvert a blockchain depends on the particular
consensus mechanism. Transactions approved in a given time period –again,
the window size depends on the particular blockchain system– are grouped
in blocks. As depicted in Figure 2.3, for each block a hash is appended,
computed not only on the contents of the block, but also on the hash of the
previous block, thus forming a chain of blocks. This prevents tampering even
with old blocks without consensus among the nodes.

Building on previous theoretical results on Proof-of-Work consensus al-
gorithms [143], blockchain technology was born with Bitcoin, an open source
platform for electronic currency. Bitcoin uses blockchain as a ledger to store
currency transfer transactions. After the success of Bitcoin, many other
blockchain-based electronic currency platforms have been introduced. At
the same time, it has been realized that the underlying blockchain technol-
ogy is an inherently general-purpose distributed database, enabling trustless
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collaboration of Decentralized Autonomous Organizations (DAOs). This fea-
ture enables practical implementations of the Smart Contract (SC) idea [134],
i.e., programs encoding and enforcing cooperative processes among two or
more parties. Originally, SCs required a trusted mediator, restraining a large
development of the approach. Indeed, consensus about SCs in a blockchain
is reached through a parallel execution in the network, effectively making ev-
ery SC-enabled blockchain a general-purpose application platform based on a
distributed virtual machine (VM). Many proposals have emerged, including
proprietary platforms (Ethereum3 is perhaps the most popular) and stan-
dardization efforts, such as the Hyperledger 4 initiative guided by the Linux
Foundation. SC-based blockchains are being experienced in several financial
and industry sectors.

Several types of blockchain systems exist, based on the following key
design decisions:

• Access policy. A blockchain network is permissionless (a.k.a. public) if
any node can join the consensus protocol –even anonymously– at any
time, or permissioned (a.k.a. private) if a white-list of admitted nodes
exists and nodes are uniquely identified. This choice has a deep impact
on the blockchain design: permission-less chains usually have to reward
participants for their computational effort, e.g., Bitcoin allows nodes to
generate (mine) and keep new currency for the validation of transaction
blocks. Permissioned chains are instead adopted in more controlled
collaboration contexts, where access itself is a reward, as it enables
selling and buying services or resources. Consortium blockchains follow
an intermediate model, where all nodes can use the blockchain but only
a particular subset is able to validate transactions through consensus.

• Consensus algorithm. Permission-less systems require stricter consen-
sus methods, such as Proof-of-Work, which guarantee data security

3Ethereum Project: https://www.ethereum.org/
4Hyperledger: https://www.hyperledger.org/
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Table 2.4: Typical blockchain features for e-currency and IoT solutions

Feature E-currency IoT

Access policy Permission-less Permissioned
Consensus algorithm Proof-of-Work BFT-like
Transaction model UTXO Account-based
Smart contracts No Yes
Programmable No Yes
General purpose No Yes
Transaction latency Lower Higher

unless a large portion of nodes is colluding to subvert the blockchain.
Permissioned systems –where each node is identifiable and accountable–
may relax consensus constraints in order to reduce the computational
load, by selecting simpler algorithms; Byzantine Fault Tolerance (BFT)
variants [143] are often adopted.

• Transaction model. In blockchain systems, assets can be registered
and exchanged. At any time, each node typically owns some assets in a
certain quantity. In the unspent transaction outputs (UTXO) model, a
transfer from A to B is modeled as consuming (i.e., deleting) records for
A’s spent assets and producing (i.e., adding) new ones for B’s received
assets. In the account-based model, instead, every node has an account
reporting all its assets, which is updated by transactions. The UTXO
model is similar to a bank statement of account; it allows simpler re-
construction of current state from a transaction log and is typically
adopted by e-currency systems. The account-based model is more gen-
eral, but it can make transaction processing slower; nevertheless, it is
the only practical choice for general-purpose SC-based blockchains.

• Smart contract language. Blockchains can adopt any formalism for SC
specification and execution, such as procedural (imperative) languages
or logical (declarative) languages or automata [53]. Industry proposals
mostly adopt computationally complete programming languages, either
existing or created for the purpose (e.g., Ethereum’s Solidity).

Table 2.4 summarizes blockchain features in typical e-currency and IoT
solutions. A wider discussion of blockchain technology is e.g., in [27].
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2.3.2 State of the art

The transparent trustless peer-to-peer models enabled by blockchain tech-
nologies are emerging as a viable path for the current and future expansion of
reliable Internet of Things networks and application [96]. Several blockchain-
based proposals, with various levels of maturity, already exist in smart man-
ufacturing, smart energy, smart home, smart city and information-intensive
marketplaces [91, 99]. Emerging distributed file systems, billing services
and other blockchain-based tools can be leveraged as an application-agnostic
machine-to-machine middleware layer for running IoT resource/service mar-
ketplaces with minimal or no human intervention [27].

Due to its standards-based approach and economic relevance, Industry
4.0 (I4.0) is a prominent blockchain use case [37]. Asset tracking and supply
chain are among the most popular applications, due to the widely recog-
nized benefits of trustless DAO collaboration [67, 81, 82] and the easy fit of
blockchain solutions in existing industry standards for information-sharing
distributed infrastructures, most notably the Electronic Product Code Infor-
mation Services (EPCIS) [61]. The simplest approaches rely on transactional
ledgers for asset transfer, which grant high troughput with low costs [27].
Blockchain networks based on SCs enable more flexible systems, allowing
any application logic to be implemented and embedded in the blockchain
[27], and also supporting discoverable, composable and verifiable multi-step
business processes in multi-party service-oriented architectures (SOA) [87].
The Reference Architecture Model Industry 4.0 (RAMI 4.0) [54] specifica-
tion outlines a SOA for facilitating cross-organizational interoperability and
cooperation along the full lifecycle of objects and processes in industrial
cyber-physical systems. It can exploit existing results on service discovery
and composition, like those demonstrated by case studies in [17, 113].

Unfortunately, the benefits of smart contracts come at a not-negligible
cost in terms of concurrent execution of transactions and, consequently, sys-
tem throughput [27]. This occurs because in the general case, before execut-
ing a smart contract, a node cannot know what computing resources it will
need –even possibly including other smart contracts– and what its effects
will be on the system state. That makes it impossible to run all transac-
tions in a block in parallel. In Bitcoin-style asset transfer blockchains, on the
contrary, transaction have a fixed inherent semantics: conditions for trans-
action dependencies and ordering are simpler and known in advance, leading
to the possibility to execute (usually most of) the transactions in a block
concurrently and thus achieve higher throughput and scalability. This is a
significant barrier to advanced blockchain applications in the IoT, which re-
quire freely specifiable business logic and low-latency high-throughput trans-
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actions at the same time. Research on blockchain scalability is very active,
mainly by optimizing performance of consensus protocols [143] and by in-
troducting parallelism in a blockchain through sidechains and/or sharding
[29]. Basically, the use of sidechains will transform the chain structure in a
direct acyclic graph. On the other hand, sharding is a parallelization tech-
nique borrowed from Database Management Systems, consisting in splitting
data elements (e.g., rows in relational databases) horizontally across node
subsets in a cluster. Research results, however, are not mature enough [144]
for building efficient, robust, large-scale IoT-oriented blockchains. In this
respect, the approach proposed in this work aimed to mitigate scalability is-
sues by providing a semantic-enabled SOA above contract-based blockchains:
while enabling general-purpose service/resource discovery and retrieval, this
layer has a finite set of smart contracts as primitives, which do not have
recursive calls.

Many opportunities exist for exploiting KRR technologies in blockchains.
In [37] a prototypical ontology was proposed to annotate transactions with
Linked Data [46] in order to make contents of the blockchain easier to ex-
plore for humans through semantic-enabled user agents. The ontology-based
smart contract design of a proof-of-concept blockchain system in [62] enabled
traceability in supply chains. Besides acting as design guidelines, logical lan-
guages can be used to specify formally and execute smart contracts. Several
logical frameworks have been applied to the problem of SC specification and
execution. The work in [53] used defeasible reasoning, a well-known approach
to formalize legal regulations and contracts. On the other hand, [50] endorsed
the usage of Linear Temporal Logic (LTL), which is implemented in a large
number of model checking systems. This allows formal verification that the
behavior of a SC satisfies specific conditions. The need for formal verification
of SCs in business-oriented blockchains was also highlighted in [87]. In [113]
the first semantic-based discovery approach for blockchain systems was pro-
posed. However, that approach presents some limitations mainly due to the
adopted blockchain framework Hyperledger Iroha5. Analogously, in [137] a
blockchain-based framework uses smart contracts to mediate robot coalition
formation, where both robot sensors/actuators and environmental parame-
ters are exposed as resources annotated w.r.t. an ontology; implementation
details and experimental results are not available yet.

The proposal detailed in Chapter 5 improves the previous work [113] by
exploiting the more IoT-oriented blockchain substratum Hyperledger Saw-
tooth6 blockchain framework. Sawtooth design is particularly suitable for

5Hyperledger Iroha: https://www.hyperledger.org/projects/iroha
6Hyperledger Sawtooth: https://www.hyperledger.org/projects/sawtooth
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IoT scenarios, due to the high decoupling between components, which allows
to distribute request management, transaction processing and validation on
different kinds of devices. Furthermore, Sawtooth adopts the Proof of Elapsed
Time (PoET) consensus protocol, which requires lower computational and
energy resources than PoW and most BFT-like protocols [91].

2.4 Current issues and limitations

Basically, operations of context-aware systems (CAS) are arranged accord-
ing a so-called context information life cycle, defining where information is
produced and where it is consumed [1]. As Figure 2.4 shows, it comprises
four stages:

• Context acquisition: perception components (e.g., embedded sensors,
network interfaces) collect low-level data from the cyber-physical envi-
ronment: data is possibly preprocessed and/or stored to make it avail-
able to further processing;

• Context modeling : this step concerns multi-sensor fusion and semantic-
based annotation of perceived data w.r.t. reference domain ontologies,
in order to obtain a formal model of the perceived context;

• Context reasoning : inference procedures to derive implicit knowledge
from available annotations are executed at this stage to achieve a better
understanding of the context and enable decision-making.

• Context distribution: at this stage, context knowledge is shared; differ-
ent dissemination models exist, which can be basically classified in pull -
based (e.g., request/response) and push-based (e.g., publish/subscribe).

The research line investigated in this thesis concerns the integration of in-
telligence in micro-devices deployed in pervasive environments and wirelessly
interconnected within unstructured settings in MANETs. Accordingly to the
CAS general framework, cognitive smart objects should have the ability to:

• automatically extract and process environmental data;

• generate semantically rich and compact descriptions about themselves
and the context they operate in;

• reach a steady state with a coherent situation awareness by integrating
high-level self-detected and received information in a micro-log ;
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Figure 2.4: Context information life cycle [1]

• make the gained knowledge easily accessible by other network nodes
through publishing it to a micro-blog.

Objects behave like autonomous social agents, interacting and coordinat-
ing automatically as new information about the environment is available.
Pervasive scenarios deal with heterogeneous mobile micro-devices: what one
agent knows about the environment, based on perception components it uses
or has access to, can be significantly different from another agent’s knowl-
edge. Furthermore, uncertain conditions governing sensor-originated data,
such as unreliable sensor technology or frequent wireless communication dis-
connections, require agents to cope with imposed incomplete or incoherent
information. Agents evidently hold a partial view of the environment and
wish to obtain a more reliable and complete context snapshot, by also consid-
ering other agents’ perspectives. Enabling such fusion capability in a smart
object calls for an ability to merge ontology-referred self-generated and re-
ceived context annotations by dealing with resolution of inconsistencies and
resilience against spurious information. By doing so, a smart object becomes
able to identify on-the-fly the task(s) needed to change its own configuration

28



or the environment state and automatically infer what useful capabilities it
can provide or it needs from other entities in order to act accordingly, in a
decentralized and collaborative fashion. The history and the inferred con-
text is published in a mobile ad-hoc network –and on the Web, if Internet
connection is available– in order to foster intelligent cooperation.

A basic distinction in literature exists between High-Level Information
Fusion (HLIF) and Low-Level Information Fusion (LLIF) [18]. Both types
deal with error reconciliation and information enrichment, but at two fun-
damentally distinct levels and with different tools and techniques. In detail,
the above Context modeling step exploits LLIF, while Context reasoning is
strictly related to HLIF.

LLIF deals with numerical data collected from physical phenomena and it
is typical of multi-sensor fusion for identification, tracking and classification
applications. In this area, aggregation functions [21, 66, 23] provide a way to
fuse measurements of individual devices and to reduce the size of exchanged
data. Similarly, in [23] a cooperative surveillance MAS allows coalitions of
agents with overlapping fields of view. After receiving data converted in a
common reference system, a local fusion agent can track moving objects and
also identify inconsistencies within the coalition. Distributed particle filtering
[47] is one of the most popular and versatile techniques for environment state
estimation, especially suited to large-scale, nonlinear systems. The subfamily
of Aggregation Chain methods has two similarities with the approach pro-
posed here: (i) only estimated probability distributions are exchanged, not
raw measurements and (ii) probability estimations are merged iteratively, in
a chain. Nevertheless, the purely statistical nature of the method makes it
quite different from semantic-based ones, since managed data have no high-
level formal meaning.

Conversely, HLIF processes abstract symbolic information and it is gen-
erally adopted for knowledge refinement and situation awareness.

The fusion framework proposed in Chapter 3 refers specifically to HLIF:
according to the classification of knowledge fusion patterns in [132], it can
be described as “fusing knowledge of knowledge workers and knowledge accu-
mulated in repositories”, since the semantic annotations produced by inde-
pendent pervasive smart objects is aggregated and reconciled with respect to
clashes detected, leveraging a core of domain knowledge encoded in a refer-
ence ontology. Therefore sensor data fusion is beyond the scope of the thesis,
supposing smart agents are equipped with on-board sensing and data mining
capabilities for LLIF to produce logic-based annotated descriptions of their
perceptions, like e.g., in [110, 116].

Semantic-based information fusion relies on operators and inference ser-
vices on formulas expressed in a logical language. Epistemic logic was adopted
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for peer-to-peer (P2P) information integration in [20], which however focused
on schema mappings for queries on a heterogeneous P2P system as a single
entity, rather than distributed intelligence. The belief merging framework
in [24] has theoretical similarities with the approach proposed in this work.
In particular, both works exploit the so-called weak disagreement –i.e., in-
formation neither confirmed nor contradicted by different agents– in order
to enrich knowledge toward a better overall truth approximation. However,
[24] focused on majority agreement among several peers, whereas the work
proposed here aims to eliminate explicit disagreements rather than to reach
a majority agreement. For this reason, it considers all arguments as having
equal importance, which is typical of logical arbitration [76], unlike methods
in the area of belief revision [41], where latest arguments are considered as
more important. An example of the latter type is in [112], which is nonethe-
less a decentralized iterative knowledge fusion approach like the one proposed
here.

Data management and analytics in the IoT are surveyed in [2]. In latest
years the cloud-based computation centralization trends have been shifting
toward more distributed paradigms like Fog Computing [33] and Edge Com-
puting [128], which move storage and processing closer to data sources. The
proposed approach is oriented to these architectures, as they enable lower
processing latency, higher scalability and better privacy, particularly in very
large application scenarios. In these contexts, semantic data aggregation of-
ten refers to approximate techniques or lossy compression to summarize data
from multiple sources in the IoT and wireless sensor network literature. Some
works, however, exploit semantic-based knowledge representation formalisms
to improve not only queries, but also data aggregation [117, 5].

Relevant applications of semantic-based information fusion include am-
bient intelligence [88], home and building automation [114] wireless sensor
networks [31] and vehicular networks [112]. For these scenarios, other popu-
lar approaches are based on Bayesian [100] or Dempster-Shafer (a.k.a. belief
function) theory. Unfortunately, they cannot be integrated easily with se-
mantically explicit formalisms for context modeling. A relevant attempt is
found in [43] for situation awareness in vehicular networks, adopting Multi-
Entity Bayesian Networks, which extend entities in a Bayesian network with
semantic relationships, in order to improve probabilistic event evaluation.

The HLIF proposal of this work was devised starting from the knowledge-
fusion approach in [112]. The designed Concept Integration (CI) inference
service aims to merge perspectives of different independent entities into a
single context observation. The individual knowledge is the result of a local
CI process on detected and received semantic annotations about the current
environment state. It is structured as a 4-tuple of annotations, each providing
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a particular point of view on the context:

• C (Confirmed): elements detected in both the local and other agents’
observations;

• X (Clash): local observation, not consistent with observations of oth-
ers;

• M (My): elements detected in the local observation, but not by other
agents;

• E (External): elements observed by other agents, but not locally.

This approach is suitable for MAS like vehicular networks, featured by
mostly homogeneous mobile agents with relatively ample computational re-
sources. The goal of this work is to provide a more simplified knowledge
management approach, which can be both general-purpose architecture-wise
and oriented toward large-scale IoT scenarios and/or resource-constrained
devices performance-wise.

Semantics-based approaches enable interoperability between heteroge-
neous devices, allowing high-level situation description, assessment and in-
ference. Nevertheless, trust and reliability issues remain basically unsolved.
Decentralized and dynamic IoT infrastructures suffer from the unpredictabil-
ity of nodes ensuing from the volatility of actors and appliances. Scalability
is a further problematic aspect to be faced on when trust and coordina-
tion among smart objects are needed. From these standpoints, blockchain
technology could incorporate SWoT approaches providing an interesting po-
tential.
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Chapter 3

Object (b)logging: framework,

technology, implementation

This chapter describes in detail the paradigms, architectures and methods
defined and developed for the object (b)logging vision. Each task of the
proposed framework is analyzed in order to provide a clear picture of the
whole approach designed for high-level descriptions of the environment and
the object itself, knowledge discovery, fusion and sharing in distributed sce-
narios populated by smart objects. In order to assess the benefits of the
proposed framework, a software prototype has been implemented and per-
formance evaluations were carried out with reference to a case study in the
smart agriculture field.

3.1 Architecture

The object (b)logging vision relies on both ideas and technologies of dis-
tributed knowledge-based systems [108] discussed in Section 2.2.1, whose
individuals (a.k.a. assertional knowledge) are physically tied to objects in
a given environment, not requiring centralized coordination. In the above
SWoT vision, object (b)logging provides means to make an object capable
of sensing the environment and detecting events, describing itself and what
surrounds it in a fully automatic way, finally exposing its descriptions to
the outside world and acting appropriately in cooperation with other objects
deployed in the environment.

The paradigm is based on the design, development and optimization of
knowledge representation and reasoning techniques in pervasive contexts in
order to build and exchange a structured and formal representation of an
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environment, process, subject or any other entity of interest in a cyber-
physical system. The overall goal is to enable the development of autonomous
smart objects complying with the definition in Section 2.1.1: they are capable
to produce and annotate high-level descriptions about themselves and the
environment they are located in –i.e., Context Information– as in a micro-
log). Each annotation refers to an ontology providing the conceptualization
for the particular domain. According to this vision, smart objects are able to
continuously enrich an initial logical descriptive core, which models ground
knowledge about their own features and capabilities as well as about concepts
and relationships with general validity in the domain. Annotations evolve
during the object’s lifetime and are exposed toward external devices and
applications in a self-contained fashion like in a micro-blog.

In detail, the proposed approach envisions an object log as the integrated
and comprehensive view of all the information a smart object has learned
first-hand or received from peers. Exploiting the log, a smart object is able
to identify on the fly the available Capabilities according to the task(s) needed
to change its own configuration or to act on the environment in order to reach
the desired state i.e., Constraints. More formally, a log is composed by the
semantic annotations referred to a domain ontology progressively enriched
during the object’s lifetime. It is based on the logical descriptive core and
is used for intelligent interpretation of retrieved information. The Concept
Fusion approach described in Section 3.2 is exploited in order to dynamically
update the log by merging partial perspectives of different nodes into a single
high-level situation description.

Objects are equipped with a reasoning engine performing automated in-
ference procedures to derive implicit knowledge, which is used to trigger
actions, take decisions and make interventions on the environment by lever-
aging semantic-based matchmaking between available effectors (i.e., services
in what follows) and required goals. Each actuation capability is envisioned
in term of semantically annotated preconditions to take into account for the
activation and effects produced. A service is considered available only if it
could be correctly activated according to the environment and device state,
i.e., its preconditions are satisfied. The smart object’s KB encapsulates also
its behavior in the form of trigger conditions, which require specific actions
on the environment, as per the classical Behaviour Profile interpretation out-
lined in Section 2.1.1.

The object (b)logging activity is a continuous process, composed of the
main steps depicted in Figure 3.1 in reference to the precision agriculture
case study scenario:

1. When a smart object completes data gathering at the end of each time
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Figure 3.1: Architecture of the object (b)logging paradigm

window, (1a) it generates a semantic annotation, representing fresh
detected information about the context it is in and its internal state
while (1b) incoming “blogged” packets from other entities are cached;

2. Each agent fuses locally gathered knowledge with the one collected from
nearby nodes in the last time window, eliminating inconsistencies. A
semantic-based coherent view is obtained, which is reported in the log
along with the internal status of the device;

3. The smart object infers and caches available services provided (3a)
by itself –according to their activation preconditions and the detected
state and context– and (3b) by others as stated in shared blogs;

4. According to the detected event and conditions, decisions about the
needed intervention on the environment are taken.

5. The best available cached services are selected;

6. Each agent (6a) activates the selected services directly provided, and
(6b) asks for the activation of the ones exposed by peers;
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7. Machine-understandable knowledge and provided capabilities are shared
through blog.

Further details about each step are provided in Section 3.3. The key as-
pect of object (b)logging is sharing the information possibly useful to nearby
objects through the blog. Autonomous objects cooperation is achieved: all
actors become able to exchange information, discover new services, start new
acquaintances, connect to external services, share knowledge, exploit other
objects’ capabilities opportunistically and collaborate toward a common goal
in a decentralized way.

It can be noticed this form of cooperation requires preliminary ontology
agreement among participating agents. Since the problem has been tackled
in literature [107], it is deemed as outside the scope of the thesis work.

3.2 Knowledge fusion in pervasive contexts

Considering n collected observations C1, C2, . . . Cn, n ≥ 1 satisfiable in
ALN w.r.t. acyclic TBox T , the basic idea behind the newly proposed Con-
cept Fusion inference service is to eliminate every concept component in any
Ci which clashes with another concept component in a Cj. In an adaptation
of logical arbitration to DLs this is accomplished by adopting the same prin-
ciples as non-standard, non-monotonic Concept Contraction inference service
in Section 2.2.3, but implemented in an innovative and more efficient way.
The conjunction of the remaining concept components is taken as the result.
The approach is grounded on the above Open World Assumption (OWA),
which is well suited for pervasive computing multi-agent CASs featured by
volatile nodes and incomplete information. Furthermore the Concept Com-
ponent definition recalled in 2.2.3 is exploited. Concept Fusion inference
service is formally defined as follows:

Definition 2 (Concept Fusion Problem) Let L be a DL, T a set of

axioms in L, and C1, C2, . . . Cn n concept descriptions (with n ≥ 2) satisfiable

in L. A Concept Fusion Problem (CFP) for given 〈L, T , (C1, C2, . . . Cn)〉
is finding a concept F ∈ L such that F ≡

dn
i=1 Ki where T |= F 6v ⊥ and

∀i = 1, . . . , n : T |= Ci ≡ Gi u Ki. F is called a fusion of C1, C2, . . . Cn

according to T .

The CFP can be deemed as an extension of the Concept Contraction Problem
in Section 2.2.3 to n concept descriptions; Gi and Ki represent the Give-up
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and Keep parts of Ci, respectively. Informally, Concept Fusion drops every
concept component in any Ci which clashes with another concept component
in a Cj; the conjunction of the remaining concept components is taken as the
result F . Several remarks apply to CFP as well as to CCP.
Remark 1. Intuitively, each Gi represents “why” Ci is not compatible with
the conjunction of the other n − 1 concept descriptions, thus providing an
explanation of the unsatisfiability of the conjunction of all collected knowl-
edge.
Remark 2. The definition rules out having any unsatisfiable Ci, because
that would lead to counterintuitive results [34].
Remark 3. In general, several solutions exist to a CFP. The trivial solution
〈G1, G2, . . . , Gn, K1, K2, . . . Kn〉 = 〈C1, C2, . . . , Cn,>1,>2, . . .>n〉 is always
possible, corresponding to giving up everything. Conversely, if

dn
i=1Ci is sat-

isfiable in T , the most desirable solution has 〈G1, G2, . . . , Gn, K1, K2, . . . Kn〉 =
〈>1,>2, . . .>n, C1, C2, . . . , Cn〉, i.e., keep everything.
Remark 4. Since one wants to merge as much knowledge as possible, a
maximality criterion for selecting the best solution to a CFP must be defined.
For DLs admitting a CNF, a conjunction-minimality criterion can be adopted
on Gi as defined in [34].

Nevertheless, there are also significant differences between CFP and CCP.
Remark 5. The order of concept descriptions Ci is basically irrelevant in
a CFP, i.e., a permutation of Ci would yield the corresponding permutation
of Gi and Ki concepts and the solution F would not change due to the
commutativity of conjunction. Conversely, CCP is asymmetrical and not
commutative, as it retracts a concept from one of the two input descriptions
w.r.t. the other; switching the inputs would change the outcome. This is
why CFP is akin to logical arbitration while CCP belongs to belief revision
algorithms.
Remark 6. CCP is defined only for incompatible (i.e., clashing) concept de-
scriptions, because otherwise it would yield counterintuitive results. On the
other hand, a set of n descriptions all compatible with each other is supported
by the definition and the implementation of CFP, yielding F consisting in
the conjunction of all descriptions.

Furthermore, Concept Fusion is different from Concept Integration [112]
–introduced in Section 2.4– in two aspects.
Remark 7. While the repeated application of Concept Integration allows
merging knowledge with reconciliation of inconsistencies [112], Concept Fu-
sion just grants the elimination of inconsistencies. This is a simplified ap-
proach, aimed specifically at general-purpose large-scale deployments of very
resource-constrained IoT nodes.
Remark 8. Differently from Concept Integration, a straightforward applica-
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Require: DL L = ALN , acyclic TBox T , C1, . . . , Cn n ≥ 1 concept
descriptions in L satisfiable w.r.t. T

Ensure : F concept description satisfiable in L w.r.t. T , G cache of
discarded concept components

F := > ;1

G := (GCN , G≤, G≥, G∀) ;2

GCN := ∅; G≤ := ∅; G≥ := ∅; G∀ := ∅ ;3

〈F, G〉 := merge((C1, . . . , Cn), F, G) ;4

return 〈F, G〉5

Algorithm 1: 〈F,G〉 = fusion(L, T , (C1, . . . , Cn))

Require: C1, . . . , Cn, F (n ≥ 1) concept descriptions in
ALN satisfiable w.r.t. T , and G = (GCN , G≤, G≥, G∀)
4-tuple of sets of concept components in ALN

Ensure : F updated concept description, G updated cache of
discarded concept components

for i := 1 to n do1

processConceptNames(Ci,CN , F, G) ;2

processLessThanRestrictions(Ci,≤, F, G) ;3

processLessGreaterRestrictions(Ci,≥, F, G) ;4

end5

F := normalize(F ) ;6

for i := 1 to n do7

processUniversalRestrictions(Ci,∀, F, G) ;8

end9

Algorithm 2: merge((C1, . . . , Cn), F,G)

tion of Concept Fusion in a multi-agent CAS regards information produced
by the local and remote agents in the same way. In realistic scenarios –where
a more fine-grained information categorization is needed– a hybrid approach
is possible: the object (b)logging overall framework proposed in this work
applies Concept Fusion only to semantic annotations received from remote
agents, and finally an enhanced version of Concept Integration is used to
merge outside knowledge with endogenous one preserving the different view-
points.

Within the scope of the ALN DL, the Concept Fusion inference service is
implemented by the recursive Algorithm 1 and its subroutines. Throughout
computation, F contains the current state of the fusion of concept descrip-
tions C1, C2, . . . Cn. Additionally, G is a cache collecting all given-up concept
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Require: Ci,CN conjunction of (possibly negated) concept names in
TBox T ,
F concept description satisfiable in ALN w.r.t. T , and
G = {GCN , G≤, G≥, G∀} 4-tuple of sets of concept

components in ALN
Ensure : F and G are properly updated
foreach (possibly negated) concept name CN in Ci,CN do1

if there exists ¬CN in F then2

remove ¬CN from F ;3

GCN := GCN ∪ {CN, ¬CN} ;4

else if {CN} 6∈ GCN then5

F := F u CN ;6

end7

end8

Algorithm 3: processConceptNames(Ci,CN , F, G)

Require: Ci,≤ set of maximum cardinality role restrictions in TBox T ,
F concept description satisfiable in ALN w.r.t. T , and
G = {GCN , G≤, G≥, G∀} 4-tuple of sets of concept

components in ALN
Ensure : F and G are properly updated
foreach ≤ x R in Ci,≤ do1

clash := false ;2

foreach ≥ y R in F with y ≥ x+ 1 do3

clash := true ;4

remove ≥ y R from F ;5

addGreaterThanRestriction(≥ y R, G) ;6

end7

if clash = true or ({≥ y R} ∈ G≥ and y ≥ x+ 1) then8

addLessThanRestriction(≤ x R, G) ;9

else10

F := F u ≤ x R ;11

end12

end13

Algorithm 4: processLessThanRestrictions(Ci,≤, F, G)
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Require: Ci,≤ set of maximum cardinality role restrictions in TBox T ,
F concept description satisfiable in ALN w.r.t. T , and
G = {GCN ,G≤,G≥,G∀} 4-tuple of sets of concept components

in ALN
Ensure : F and G are properly updated
foreach ≥ x R in Ci,≥ do1

clash := false ;2

foreach ≤ y R in F with y ≤ x− 1 do3

clash := true ;4

remove ≤ y R from F ;5

addLessThanRestriction(≤ y R,G) ;6

end7

if clash = true or ({≤ y R} ∈ G≤ and y ≤ x− 1) then8

addGreaterThanRestriction(≥ x R,G) ;9

else10

F := F u ≥ x R ;11

end12

end13

Algorithm 5: processGreaterThanRestrictions(Ci,≥, F, G)

components: it is necessary to track them in the main loop of the algorithm,
in order to avoid inserting in F concept components which have been already
detected as clashing in previous iterations. It is important to note that G is
not a concept description but just a 4-tuple of sets of concept components,
where conflicting elements can coexist (e.g., G can contain both A and ¬A).
On the other hand, G does not contain duplicates by construction. After F
and G are initialized in lines 1-3, they are progressively updated in the merge
subprocedure in Algorithm 2 for each Ci. Finally, G is returned alongside F
to allow keeping track of discarded concepts. This may be useful for exploit-
ing the cache in further inferences if Concept Fusion is used as a service in
larger knowledge management frameworks.

The detection of semantic inconsistencies exploits basic concept clash
checks, in the same way as Concept ContractionALN implementations [122],
but rearranged for greater efficiency when managing multiple concept de-
scriptions. The algorithm further maintains concept components in F and G
normalized in CNF to avoid redundancies. The recursive merge procedure in
Algorithm 2 performs knowledge fusion. For each Ci, i = 1, . . . , n, lines 1-5
compute the fusion of (possibly negated) atomic concepts, less-than (≤) and
greater-than (≥) number restrictions, by calling the subroutines explained
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hereafter.
The processConceptNames procedure works on Ci,CN as outlined in Al-

gorithm 3: for each (possibly negated) concept name CN , the algorithm
checks whether its negation is in F : in that case a clash occurs and both CN
and ¬CN must be added to the cache GCN of discarded concept components
(lines 2-4); otherwise, the absence of CN from GCN must be checked, and in
that case CN can be added to FCN (lines 5-7).

The processLessThanRestrictions and processGreaterThanRestrictions pro-
cedures, specified in Algorithms 4 and 5 respectively, work in perfectly dual
fashion, therefore just the former is explained here. If Ci,≤ contains a less-
than restriction on a role R (≤ x R, line 1), a clash occurs with every ≥
number restriction on R already in F with a disjoint number interval (lines
3-4): in that case, both number restrictions must be moved into G (lines 5-9).
If a clash is found with an element of G≥, then ≤ x R is added to G (lines
8-9). Only if no clash occurs, ≤ x R can be safely added to F (lines 10-11).
Subprocedures addLessThanRestriction and addGreaterThanRestriction, re-
ported in the Appendix A, are called to insert number restrictions into G in
an optimized fashion: they work like CNF normalization, by keeping no more
than one number restriction per type per role (the minimum and maximum
value for ≤ and ≥ restrictions, respectively). This minimizes the number of
checks on G≤ and G≥ in further iterations of the main loop in Algorithm 2.
Furthermore, it must be noticed that at this stage F must not be normalized
in CNF yet, in order to store all compatible number restrictions (not just one
per type per role), in order to discard all and only the ones that are found
clashing with other concept components: this approach ensures processing
order independence of Ci concept descriptions. F is normalized just once
(Algorithm 2, line 6), before processing universal restrictions; the classical
CNF normalization algorithm is in [106].

Lines 7-9 in Algorithm 2 loop over universal restrictions, which must be
processed after number restrictions in order to take into account the inter-
play between the two types of constructors in the detection of clashes. The
processUniversalRestriction subroutine, outlined in Algorithm 6, first checks
whether the partially merged F contains ≤ 0 R and ∀R.⊥ for a given role R:
this is typically a consequence of the CNF normalization of an unsatisfiable
role filler, and in this case any further universal restriction on R found in the
Ci descriptions becomes irrelevant (lines 2-3). Otherwise, if either F or G
contain a minimum cardinality restriction with value at least 1 on R, a re-
cursive merge is computed on the fillers of the universal restriction in Ci and
the possibly pre-existent one in F , taking into account previously discarded
concepts in G: lines 4-10 do this if a universal restriction already exists in F
(updating F and G accordingly in lines 11-14), otherwise lines 15-17 check
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Require: Ci,≤ set of maximum cardinality role restrictions in TBox T ,
F concept description satisfiable in ALN w.r.t. T , and
G = {GCN ,G≤,G≥,G∀} 4-tuple of sets of concept components

in ALN
Ensure : F and G are properly updated
foreach ∀R.D in Ci,∀ do1

if there exists ≤ 0 R u ∀R.⊥ in F then2

/* nothing to be done */3

else if there exists ∀R.E1 in F and ( ( there exists ≥ x R in F4

and x ≥ 1) or ({≥ y R} ∈ G≥ and y ≥ 1)) then
/* merge D into E1, inserting clashing concept5

components in G∀ */

if {∀R.E2} ∈ G∀ then6

〈F ′, G ′〉 := merge((D), E1, {E2,CN , E2,≤, E2,≥, E2,∀}) ;7

else8

〈F ′, G ′〉 := merge((D), E1, {∅, ∅, ∅, ∅}) ;9

end10

remove ∀R.E1 from F ;11

F := F u ∀R.F ′ ;12

/* G ′ ‘‘flattened’’ as conjunctive expression becomes13

the filler of R */

addUniversalRestriction(∀R.(
d

components G ′), G) ;14

else if {∀R.E2} ∈ G∀ and ((there exists ≥ x R in F and x ≥ 1)15

or ({≥ y R} ∈ G≥ and y ≥ 1)) then
/* take D, inserting clashing concept components in16

G∀ */

〈F ′, G ′〉 := merge((D), >, {E2,CN , E2,≤, E2,≥, E2,∀}) ;17

F := F u ∀R.F ′ ;18

addUniversalRestriction(∀R.(
d

components G ′), G) ;19

else20

if no ∀R.E1 exists in F or D u E1 is satisfiable w.r.t. T then21

F := F u ∀R.D ;22

else23

remove ∀R.E1 from F ;24

if there exists ≤ x R in F then25

remove ≤ x R from F ;26

end27

F := F u ∀R.⊥ u ≤ 0 R ;28

end29

end30

end31

Algorithm 6: processUniversalRestrictions(Ci,∀, F, G)
41



the new universal restriction just against the cache of discarded concepts
(updating F and G in lines 18-19 as needed). The addUniversalRestriction
support subroutine, reported in the Appendix A, is adopted as an optimiza-
tion to merge the given-up fillers of universal restrictions recursively, in order
to minimize the number of concept components in G∀ and consequently the
amount of checks when processing further Ci descriptions. Conversely, if no
minimum cardinality restriction with value at least 1 is found, then if a pre-
existent universal restriction in F does not exist or is compatible with the
new one, we just add the latter to F (lines 21-22); otherwise (lines 23-28) the
outcome of clash is just ∀R.⊥ and this implies a ≤ 0R must also be added
to F to keep the result of fusion in CNF [106]. Notice that ≤ 0R can be
added directly in this case, due to the non-existence of clashing greater-than
number restrictions.

3.3 Autonomous decision-making

The proposed object (b)logging approach refers to a swarm of independent
smart and mobile entities exchanging –“blogged”– semantically annotated
packets. Each packet contains the sender’s current knowledge of the en-
vironment and context, as well as a description of its provided actuation
capabilities, expressed in OWL 2 language w.r.t. a shared reference ontology.

Whenever an agent N completes a data gathering and annotation round,
it generates a semantic annotation CIN representing fresh detected context
information along with SN describing its internal state. A 1-hop broad-
cast data dissemination protocol enables agents to receive, store, augment
and forward knowledge, increasing accuracy of situation awareness progres-
sively. In the same time window (broadcast period (BP) in what follows),
incoming packets from other entities Bi = 〈Pi, AvlCapi〉 i = 1, . . . , n,
are cached. Pi is a 〈C,M,E〉 3-tuple of annotations, each providing a
point of view on the context of the i-th node, according to the definitions
introduced in [112] and detailed in Section 2.4. AvlCapi lists all the si
currently available services supplied by i-th node AvlCapi,1, . . . , AvlCapi,si .
Each available j-th j = 1, . . . , si service is further structured as a tuple
〈IPi, effCapi,j, timestamp, TTL〉 i = 1, . . . , N . Moreover, si consists in (i)
the address of the service owner, (ii) the semantic description of the effects
provided by the actuator, (iii) the current timestamp, (iv) the time to live
(TTL) i.e., the time before considering the cached service expired/no longer
available. Different services could have different TTL values. Smart objects
continuously enrich their initial logical descriptive core, which models ground
knowledge about their own features and capabilities as well as about concepts

42



START

L, T 

 CI
 

N , S
 

N , Cap
 

N , Int 
 

N , AvlCap
 

cache
B1 = áP1 , AvlCap

 

1ñ
...

Bn = áPn , AvlCap
 

nñ

STOP

log ¬ C ⊓ M ⊓ E ⊓ S
 

N

i £ h 
YES

NO

log ⊓ precCap
 

N,i Ë ^
YES

AvlCap
 

N = f
int i ¬ 1

AvlCap
 

N ¬ AvlCap
 

N 
+ áipN , effCap

 

N,i, 
timestamp, TTL ñ

i++

NO

i ¬ 1

i £ n 
YES

AvlCap
 

i,j
 Ï 

AvlCap
 

cacheYES

AvlCap
 

cache ¬ 
AvlCap

 

cache + AvlCap
 

i,j

j++

NO

i++

cache eviction TTL
(AvlCap

 

cache )

áC, X, M, Eñ ¬ 
integrate(CI

 

N , (P1,...,Pn))

int j ¬ 1

j £ s 

i 

YES

átrigInt 
 

best ,actInt 
 

best  ñ ¬ 
semantic matchmaking

(log, (trigInt 
 

N,1 ,...,trigInt 
 

N,k )

NO

NO

 á(selCap
 

1,...,selCap
 

m ), actInt best,uncovered    ñ = 
covering(actInt 

 

best , AvlCap
 

N
 + AvlCap

 

cache

i £ m 
YES

NO

i ¬ 1

selCap
 

i ÎAvLCap
 

N
YES

i++

NO

send unicast message 
(ip

 

i, activate(selCap
 

i)
activate(selCap

 

i)

blog ¬ ááC,M,Eñ,AvlCap
 

N ñ

send MAC broadcast message
(blog)

Figure 3.2: Object (b)logging workflow

43



START

L, T , D

P1 = áC1, M1, E1ñ
...

Pn = áCn, Mn, Enñ

áF,Gñ ¬ Fusion(L,T, (Q1,...,Qn))

áK1, G1ñ ¬ Contract(D, F)
áK2, G2ñ ¬ Contract(D,G)

X ¬ G1 ⊓ G2

V ¬ D - X
M ¬ Abduce(V, F)

C ¬ V - M
E ¬ Bonus(D, F)

O = áC, X, M, Eñ

STOP

i £ n 
YES

NO

i++

int i ¬ 1

Qi = Ci ⊓ Mi ⊓ Ei

Figure 3.3: 〈C,X,M,E〉 = integrate(L, T , N, (P1, . . . , Pn))

44



and relationships with general validity in the domain. Particularly, a generic
agent N keeps the set of equipped effectors CapN = (CapN,1, . . . , CapN,h),
that according to the environment and device state could be available i.e.,
active or inactive. In what follows, preconditions and effects are denoted as
a pair of annotations CapN,i = 〈precCapN,i, effCapN,i〉 i = 1, . . . , h. The
basic descriptive core also allows the smart object to take autonomous deci-
sion and behave in the appropriate way depending on the detected situations.
Each node (i.e., agent) is endowed with a set of IntN = (IntN,1, . . . , IntN,k)
reactive behaviors, each modeled as a pair IntN,i = 〈trigIntN,i, actIntN,i〉 i =
1, . . . , k; trigger conditions trigIntN,i represent existing requirements about
the environment state that must be met in order to require the corresponding
actions actIntN,i.

The object (b)logging workflow in Figure 3.2 shows the tasks required to
implement the high-level steps of Figure 3.1. At the end of each broadcast
period, a new processing and (b)logging round starts, articulated as follows
for each generic node N in the scenario:

1. N is able to summarize the information gathered via its sensing in-
terfaces into a semantically annotated description of the environment
CIN and internal state SN . The logical descriptive core is initialized
with: the domain conceptualization T , the set of device built-in effec-
tors CapN and the desired context-aware reactivity IntN . AvlCapcache
consists in the cached available services of other smart objects re-
trieved in the previous (b)logging rounds. Meanwhile, incoming pack-
ets Bi i = 1, . . . , n collected during the current broadcast period are
stored until the end of the round.

2. The modified version of the Concept Integration algorithm [112] (CI-v2)
showed in Figure 3.3 is exploited in order to integrate the cached knowl-
edge referring to the current time window Pi i = 1, . . . , n along with
the self-detected CIN . The depicted approach leverages the ontology-
based HLIF presented in Section 3.2 in order to get a new annotation
F summarizing the knowledge in received observations. Robustness
against spurious or inaccurate information is granted. The new X field
is simply the conjunction of the incompatible fragments of the self-
observed D with F and the collected given-up concept components G,
computed by Concept Contraction Ṫhe new M field is determined by
solving a Concept Abduction Problem between the semantically con-
sistent fragments V and F obtained from D and G, respectively; this
represents what only the node N has detected. To determine what in-
formation is common to the self-detected and the received observations,
it is needed to subtract M from V via Concept Difference. Finally, the
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Bonus of E w.r.t. F is computed in order to compute what other agents
have seen but N has not. The log definition is grounded on the above
Concept Integration outcome and is envisioned as the conjunction of
the field C, M and E and the internal status SN . The X part is dis-
carded, coherently to how conflicting fragments in Pi are treated, due to
the fact that it is dangerous to take a decision based on low-confidence
information.

3. This task concerns the detection of the currently available services and
is made up by two sub-tasks. The first one (3a) aims to find the services
which can be activated on request among the h self-provided ones.
For each i-th (i = 1, . . . , h)) service, a Satisfiability check is run
between its precondition precCapi and the log (i.e., the conjunction of
inferred context and internal status): if confirmed, the effect effCapi is
added to the AvlCapN list along with the owner’s address, the current
timestamp and the TTL value. The second subtask (3b) updates the
cached services AvlCapcache which can be provided by other agents. A
cache eviction policy is necessary in order to discard expired services as
probably no longer available from the owner, based on their generation
timestamp and TTL value. Then, for each i-th (i = 1, . . . , n) received
packet, the si listed services are checked: the j-th (j = 1, . . . , si)
element is added only if not already cached in previous rounds.

4. Semantic matchmaking is leveraged to give decision capabilities to
smart objects. It produces k ranked semantic similarity measures by
comparing each trigger condition trigIntN,i (i = 1, . . . , k) of smart
object behaviors with the log annotation. The needed interventions
〈trigIntbest, actIntbest〉 are determined as the ones with the lowest dis-
tance: a semantic relevance threshold could be set in order to discard
results with a score below this value, as deemed irrelevant for decision-
making.

5. The N agent reaches the final opportunistic decisions and take actions
accordingly, by computing the Concept Covering task on the local set of
available actuation capabilities AvlCapN and the other cached services
AvlCapcache. The list of selected services selCapi (i = 1, . . . ,m) and
an explanation of which part of the required intervention is not satisfied
by the composite resource set actIntbest,uncovered are returned.

6. According to the previous outcome, each selected service selCapi
i = 1, . . . ,m owned by the agent N (i.e., in the AvlCapN set) is directly
activated. Furthermore, unicast activation requests are sent to the
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owners’ addresses ipi along with the specification of the desired services,
in order to take advantage of distributed cooperation.

7. The 〈C,M,E〉 compact, high-level logical descriptions about the en-
vironment computed in task 2, enriched with additional information
available from other peers and the available services AvlCapN com-
pose the blog, which is published toward external devices and systems
through wireless ad-hoc links. Specifically, MAC broadcasts messages
are sent to one-hop neighbors. The X part of the Concept Integra-
tion output is not shared due to the fact that in the object (b)logging
framework it is not useful to others agents, so it would be an unjustified
network overload. Other multi-agent CAS approaches could consider
also the conflicting fragments and X could be included in the shared
knowledge.

The main purpose of the proposed framework is to achieve distributed
collective cooperation. Smart agents execute locally the above steps in order
to detect the relevant features of the current situation and trigger actions or
make interventions accordingly, starting from integrated and comprehensive
high-level knowledge inferred by considering additional information available
from other entities at run time.

3.4 Case study

An illustrative example is discussed to highlight the capabilities of the pro-
posed object (b)logging framework in dynamic environments, also demon-
strating the induced benefits. It is extracted from a case study focused on
the autonomous interaction of devices in precision agriculture. Agricultural
processes can be automated to reduce effort and improve efficiency of resource
management. In the reference scenario, several products –characterized by
a set of features– are farmed in different fields, managed by a team of het-
erogeneous robots with different perception and actuation capabilities. The
robots are agents able to (i) produce and share useful and comprehensive
knowledge for finding out the needed interventions in the field, (ii) formulate
plans to reach the mission goals and (iii) act accordingly. Annotations of field
context and robots states, required interventions and provided capabilities
refer to the ONTAgri [6] ontology, which has been selected and extended.
The TBox is organized in two main parts, as shown in Figure 3.4: (i) agri-
culture concepts like soil characteristics, crop stages and service descriptions,
(ii) system concepts such as sensors and effectors. In the case study, crop-
specific actions or services are described by means of context-aware features,
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using conjunctive expressions related to measured soil parameters, crop type,
growth stage and weather conditions. The actuation capabilities, e.g., irri-
gation and fertilization, are expressed as subclasses of the Service class, each
having further subclasses. In order to relate services to actuator devices,
their descriptions are annotated as a conjunctive expression of the actuation
capabilities (usually independent from the specific crop type) needed to fulfill
the service.

Let us consider the following example:

Heterogeneous farmer robots are employed in a wheat field in order to
carry out a cyclical process of observation, data analysis, sharing and decision
of actions to be performed. At the end of its last cycle, a rover robot N
computes the semantic-based annotations CIN and SN from the collected raw
data in the field and about itself respectively. Furthermore N also cached B1,
B2, B3 incoming packets shared by a nearby drone, another rover and an
hybrid robots respectively.

Figure 3.5 depicts the self-detected descriptions1 CIN and SN annotated
in OWL 2 Manchester syntax [48]. Notice that the AvlCapcache cached in
the previous (b)logging rounds is currently empty.

Figure 3.6 and Figure 3.7 show a part of the logical descriptive core of
N , modelling ground knowledge about its features and capabilities, as well
as decision-making criteria and self-adaptation strategies. For brevity, only
few intervention samples among those modelled in the knowledge base are
reported, along with their trigger preconditions and required actions.

Figure 3.8 reports the Bi (i = 1, 2, 3) cached packets, retrieved from
heterogeneous neighborhood. Multiple points of view over the context are
provided thanks to the different sensing equipment owned by the various
kinds of farming robots. For example drones are equipped with cameras
used for recording field images and inferring the crop type and growth stage,
while rovers are able to extract information about soil parameters.

Rover N merges personal and neighbourhood context viewpoints into a
consistent and richer representation of the current situation. This output
and its internal status are stored as a log.

The Concept Fusion inference service in Section 3.2 is exploited in order
to merge the received and cached knowledge referring to the current time
window, in order to get a new comprehensive annotation F and the detected

1For the sake of compactness and readability, all the reported concept expressions are
simplified w.r.t. the ones actually used for the case study. In particular, for each universal
restriction of the form role only concept, the reader should assume a corresponding
role some owl:Thing existential restriction is present in conjunction.
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Figure 3.4: Precision agriculture domain ontology
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CIN EquivalentTo: (hasSoilMoistureLevel only BelowThreshold)

and (hasSoilNitrogenFertilizerLevel only Low NitrogenLevel) and

(hasSoilPotassiumFertilizerLevel only Normal PotassiumLevel) and

(hasSoilPhosphorusFertilizerLevel only High PhosphorusLevel)

SN EquivalentTo: hasResidualPower only Low Residual Power

AvlCapcached = ∅

Figure 3.5: Rover N self-description

CapN = (〈 MediumThrow WaterSprinkler-Prec, MediumThrow WaterSprinkler 〉)

MediumThrow WaterSprinkler-Prec EquivalentTo: hasResidualPower only (not

(Low Residual Power))

MediumThrow WaterSprinkler EquivalentTo: (hasWaterCapacity only

Medium WaterCapacity) and (hasIrrigatedArea only Medium IrrigatedArea) and

(hasWaterJetLenght only Medium WaterJetLenght) and (hasWaterNozzleDiameter

only Medium WaterNozzleDiameter) and (hasWaterPressure only

Medium WaterPressure) and (hasWaterRainfallPerHour only

Medium WaterReinfallPerHour)

Figure 3.6: Subset of rover N ’s services

conflicting elements G. The approach enables management of incomplete
information and elimination of inconsistencies. Figure 3.9 shows the Concept
Fusion output: in particular conflicting information about the phosphorus
level in soil is reabsorbed. Subsequently, the CI-v2 algorithm presented in
Section 3.3 is exploited in order to merge N ’s personal viewpoint about the
context CIN and the external one, in a 4-tuple of annotations. Only the non-
conflicting fields C, M , E are joined together with rover residual power level
SN in the log, while the –potentially inaccurate– phosphorus level detection
is discarded.

Rover N identifies all farming services required in its area and detects
the most suitable actuators among those available for each needed service.
N residual power level is insufficient to turn on its water sprinkler, which
cannot be used to act on the environment directly. However, N could take
advantages of actuators available from other robots cached in AvlCapcache
and request their activation in a fully autonomous and collaborative fashion.
The acquired knowledge is shared like a blog with nearby farmer robots.

As depicted in Figure 3.10, the Satisfability check between N ’s actuator
precondition MediumThrow WaterSprinkler−Prec and the registered log
is unsuccessful: AvlCapN remains empty. Instead AvlCapcached is initialized
with the services in Bi (i = 1, 2, 3) shared by nearby robots. Semantic
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IntN,fertilization = ( 〈 High NitrogenFertilization Wheat-Trig,

High NitrogenFertilization Wheat-Act 〉, 〈 Low NitrogenFertilization Rice-Trig,

Low NitrogenFertilization Rice-Act 〉, ...)

High NitrogenFertilization Wheat-Trig EquivalentTo: (hasCropStage

only GrainDevelopment Wheat) and (hasCropType only Wheat) and

(hasSoilNitrogenFertilizerLevel only Low NitrogenLevel)

High NitrogenFertilization Wheat-Act EquivalentTo: (hasNitrogenQuantity

only High NitrogenQuantity) and (hasPhosphorusQuantity only

Low PhosphorusQuantity) and (hasPotassiumQuantity only

Low PotassiumQuantity)

Low NitrogenFertilization Rice-Trig EquivalentTo: (hasCropStage

only GrowthStage Rice) and (hasCropType only Rice) and

(hasSoilNitrogenFertilizerLevel only High NitrogenLevel)

Low NitrogenFertilization Rice-Act EquivalentTo: (hasNitrogenQuantity

only Low NitrogenQuantity) and (hasPhosphorusQuantity only

Medium PhosphorusQuantity) and (hasPotassiumQuantity only

Low PotassiumQuantity)

IntNirrigation = ( 〈 Light Irrigation Wheat-Trig, Light Irrigation Wheat-Act

〉, 〈 Moderate Irrigation Wheat-Trig, Moderate Irrigation Wheat-Act 〉, ...)

Light Irrigation Wheat-Trig EquivalentTo: (hasCropStage only

Flowering Wheat) and (hasCropType only Wheat) and (hasSoilMoistureLevel

only Normal) and (hasWeatherCondition only (not (Rain)))

Light Irrigation Wheat-Act EquivalentTo: Watering and (hasWaterCapacity

only Low WaterCapacity) and (hasWaterNozzleDiameter only

Low WaterNozzleDiameter) and (hasWaterRainfallPerHour only

Low WaterReinfallPerHour)

Moderate Irrigation Wheat-Trig EquivalentTo: (hasCropStage

only GrainDevelopment Wheat) and (hasCropType only Wheat) and

(hasSoilMoistureLevel only BelowThreshold) and (hasWeatherCondition only

(not (Rain)))

Moderate Irrigation Wheat-Act EquivalentTo: Watering and (hasWaterCapacity

only Medium WaterCapacity) and (hasWaterNozzleDiameter only

Medium WaterNozzleDiameter) and (hasWaterRainfallPerHour only

Medium WaterReinfallPerHour)

Figure 3.7: Subset of rover N ’s intervention KB

matchmaking process, as described in Section 2.2.3, is carried out to detect
possibly needed irrigation and fertilization actions on the field, by consid-
ering the trigger conditions annotated in the KB and the log description.
High NitrogenFertilization Wheat and Moderate Irrigation Wheat are
deemed as necessary in order to improve the wheat crop status. Now N is
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B1 = 〈〈C1,M1, E1〉, ShortThrow WaterSprinkler 〉

Q1 = C1 u M1 u E1 EquivalentTo: (hasWeatherCondition only Clear) and

(hasCropType only Wheat) and (hasCropStage only GrainDevelopment Wheat)

ShortThrow WaterSprinkler EquivalentTo: (hasWaterCapacity only

Low WaterCapacity) and (hasIrrigatedArea only Low IrrigatedArea) and

(hasWaterJetLenght only Low WaterJetLenght) and (hasWaterNozzleDiameter

only Low WaterNozzleDiameter) and (hasWaterPressure only

Medium WaterPressure) and (hasWaterRainfallPerHour only

Low WaterReinfallPerHour)

B2 = 〈〈C2,M2, E2〉, MediumShortThrow WaterSprinkler 〉

Q2 = C2 u M2 u E2 EquivalentTo: (hasWeatherCondition only Cloudy)

and (hasCropType only Wheat) and (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel) and (hasSoilPhosphorusFertilizerLevel only

Low PhosphorusLevel)

MediumShortThrow WaterSprinkler EquivalentTo: (hasWaterCapacity only

Low WaterCapacity) and (hasIrrigatedArea only Low IrrigatedArea) and

(hasWaterJetLenght only Low WaterJetLenght) and (hasWaterNozzleDiameter

only Medium WaterNozzleDiameter) and (hasWaterPressure only

Medium WaterPressure) and (hasWaterRainfallPerHour only

Medium WaterReinfallPerHour)

B3 = 〈〈C3,M3, E3〉, HighNitrogen FertilizerDispenser 〉

Q3 = C3 u M3 u E3 EquivalentTo: (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel) and (hasSoilPhosphorusFertilizerLevel only

High PhosphorusLevel)

HighNitrogen FertilizerDispenser EquivalentTo: (hasNitrogenQuantity

only High Nitrogen) and (hasPhosphorusQuantity only Low Phosphorus) and

(hasPotassiumQuantity only Low Potassium)

Figure 3.8: Rover N ’s retrieved packets
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〈F,G〉 = fusion(L, T , (Q1, Q2, Q3)) = 〈 (hasWeatherCondition only

(Clear and Cloudy)) and (hasCropType only Wheat) and (hasCropStage

only GrainDevelopment Wheat) and (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel) ,

{ (hasSoilPhosphorusFertilizerLevel only Low PhosphorusLevel),

(hasSoilPhosphorusFertilizerLevel only High PhosphorusLevel) } 〉

〈C,X,M,E〉 = integrate(L, T , CIN , 〈F,G〉) = 〈 (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel),

(hasSoilPhosphorusFertilizerLevel only High PhosphorusLevel),

(hasSoilMoistureLevel only BelowThreshold),

(hasWeatherCondition only (Clear and Cloudy)) and (hasCropType only Wheat)

and (hasCropStage only GrainDevelopment Wheat) 〉

log = C u M u E u SN EquivalentTo: (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel)and (hasSoilMoistureLevel only BelowThreshold) and

(hasWeatherCondition only (Clear and Cloudy)) and (hasCropType only Wheat)

and (hasCropStage only GrainDevelopment Wheat) and (hasResidualPower only

Low Residual Power)

Figure 3.9: Rover N ’s log derived by means of Concept Fusion and Integra-
tion

able to identify the set of available actuators best covering the requested in-
terventions –along with the possibly uncovered part of the request– by means
of the greedy Concept Covering process described in Section 2.2.3. As shown
in Figure 3.10, selected services are HighNitrogen FertilizerDispenser and
MediumShortThrow WaterSprinkler; their activation is requested via uni-
cast messages to service owner robots. It can be noticed that the selec-
tion of MediumShortThrow WaterSprinkler is a suboptimal choice, as the
best service MediumThrow WaterSprinkler is currently unavailable. The
adoption of non-standard inference services enables support for approximate
matches, resource ranking and formal explanation of outcomes: the reported
uncovered part is an example. The conjunction of deemed reliable knowl-
edge C, M , E and the (empty) AvlCapN make up the blog, which is shared
towards the external world through 1-hop broadcast messages.

The example was intentionally kept simple for explanatory purposes. In
real scenarios, a smart object could expose more services and more complex
descriptions about context, capabilities and decision-making criteria. Never-
theless, the basic interaction sequence and mechanisms are the same.
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AvlCapN = ∅

AvlCapcached = (ShortThrow WaterSprinkler, MediumShortThrow WaterSprinkler,

HighNitrogen FertilizerDispenser)

covering(High NitrogenFertilization Wheat-Act, AvlCapN u AvlCapcached) =

(HighNitrogen FertilizerDispenser, > )

covering(Moderate Irrigation Wheat-Act, AvlCapN u AvlCapcached)
= (MediumShortThrow WaterSprinkler, hasWaterCapacity only

Medium WaterCapacity)

blog = 〈 C u M u E, AvlCapN 〉 = 〈 (hasSoilNitrogenFertilizerLevel

only Low NitrogenLevel) and (hasSoilPotassiumFertilizerLevel only

Normal PotassiumLevel)and (hasSoilMoistureLevel only BelowThreshold) and

(hasWeatherCondition only (Clear and Cloudy)) and (hasCropType only Wheat)

and (hasCropStage only GrainDevelopment Wheat), ∅ 〉

Figure 3.10: Rover N Concept Covering task(s) and blog

3.5 Experiments

This section provides a detailed description about prototypical implementa-
tions of the proposed framework and an assessment of its feasibility through
experimental results. Tests aimed to assess intra- and inter-node perfor-
mance. Intra-node experiments are focused on evaluating efficiency and scal-
ability of the Concept Fusion inference service on a real resource-constrained
computing platform. Inter-node tests refer to the evaluation of the over-
all devised semantic-enabled object (b)logging framework, by considering
a plethora of heterogeneous simulated nodes interacting autonomously and
sharing information, cooperating and orchestrating services in a MANET.

3.5.1 Concept Fusion

A complete implementation of the Concept Fusion inference service defined
in Section 3.2 has been developed in C language, integrating a prototypical C
port of the Mini-ME (Mini Matchmaking Engine) semantic matchmaker and
reasoner [122] under development at the Information Systems Laboratory of
the Polytechnic University of Bari. Early experiments assessing efficiency and
scalability on a real resource-constrained computing platform are reported
hereafter. Performance evaluation has been carried out on a Raspberry Pi
Model B single-board computer, equipped with a single-core ARM11 CPU
at 700 MHz, 512 MB RAM (shared with GPU), 32 GB storage memory on
SD card, Raspbian Stretch OS2. Turnaround time and peak memory usage

2http://www.raspbian.org/
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of Concept Fusion have been considered: reported results are the average
of ten repeated runs. Memory peak values represent the maximum resident
set size (MRSS) for the process during its lifetime, extracted via GNU time
command (version 1.7).

Experiments have taken into account (i) an increasing number of resources
undergoing Concept Fusion and (ii) a growing complexity of individual re-
sources, in terms of the nesting level of property restrictions (depth) and the
number of conjuncts in nested properties (breadth). The semantic annota-
tions have been randomly generated by configuring the following parameters:
resources = {10, 100, 1000, 10000}, depth = {1, 2}, breadth = {3, 7}, for a to-
tal of 16 tests. For each universal restriction ∀R.D in generated expressions,
an existential restriction has been associated in order to simulate the detec-
tion of an attribute (∃R) with a specific value (∀R.D) by an agent’s sensor
in a realistic collaborative sensing scenario. Results are reported hereafter.

Time. Figure 3.11(a) and Figure 3.11(b) show the Concept Fusion in-
ference service provides acceptable performance, also with the worst stress
tests involving 10000 resources. As expected, Figure 3.12(a) demonstrates
that in all the experiments time increases significantly with higher resources
number. Furthermore, processing times tend to rise at higher resource com-
plexity, as the Concept Fusion task has to work on a larger number of con-
cept components, as evidenced in Figure 3.12(b). The fusion time among
7-breadth resource dominates that with 3-breadth resources in both 1-depth
and 2-depth experiments. Obviously 2-depth resources fusion takes more
time than 1-depth resources fusion, for the same reasons. Growth exhibits
linear trends in both analyzed perspectives, suggesting adequate scalability
of the proposed approach and demonstrating sustainability for the target
scenarios.

Memory. Max RSS memory usage is shown in Figure 3.13(a) and Fig-
ure 3.13(b). Also in this case, the number and the complexity of involved
resources influenced memory consumption, as demonstrated in Figure3.14(a)
and 3.14(b) respectively. Memory consumption can be deemed as low in the
10-, 100-, and 1000-resource scenarios, while dealing with 10000 2-depth re-
sources, it reached 186 MB of memory peak mainly due to large number
and complexity of resources loaded in memory. It should be noted that the
prototypical Concept Fusion implementation keeps in memory all the input
resources along with support data structures, and discards them only at the
end of fusion process. Memory usage improvements could be introduced
by unloading resources immediately after they are processed. In this way
the gradual memory freeing of resource annotations will compensate for the
growth of Concept Fusion data structures.
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Figure 3.11: Concept Fusion turnaround time
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Figure 3.12: Time performance comparison
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Figure 3.13: Concept Fusion peak memory usage
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Globally, experimental outcomes show the approach is computationally
sustainable on computing devices for IoT. Time performance is well suited
to real-time context detection and action planning, while memory load needs
some improvements in order to fit properly the strict constraints of pervasive
objects.

3.5.2 Logging and blogging

Implementation and performance evaluation of the object (b)logging frame-
work detailed in Section 3.3 has been carried out exploiting the Omnet++
network simulator [140] with the INETMANET 3 framework [7]. OMNeT++
is an event-based network simulator featuring a collection of frameworks to
support specific types of networks. The INETMANET fork of the INET 4

framework 3.x branch provides important additional components to simulate
mobile ad-hoc network families such as IEEE 802.15.4 (ZigBee), including
models for PHY and MAC layers, battery, and application protocols.

The developed testbed simulates a MANET for cooperative monitoring
of fields in precision agriculture, where each agent runs on a robot with dif-
ferent sensing and actuation capabilities. The three types of robot agents
defined in Section 3.4 have been modelled and are able to infer and share
concept expressions referred to the ontology e.g., soil parameters, crop type,
growth stage, weather conditions, as well as available services e.g., fertiliza-
tion, irrigation. Specifically, Type 0 hybrid robots are capable of sensing all
the above features, Type 1 rover robots detect only the soil parameters, and
Type 2 drone robots gather only aerial data about crop type, growth stage
and weather. Multiple kinds of irrigation services with different characteris-
tics in water capacity, pressure, jet length, irrigated area and nozzle diameter
are randomly assigned to robot types.

The reference farmland scenario is described in Table 3.1: checkerboard
arrangement of 9 fields has been adopted, each having peculiar crop features
and weather characteristics. The north-east map zones are characterized by
clear weather conditions while in south-east there are clouds. Furthermore
two fields on the west side of the map have a different beans growth stage
and almost all map zones have a low nitrogen level except the two on the
south side. Pre-defined annotations pertaining to the different map zones
simulated the environmental conditions extraction. The different actions in
Table 3.2 are needed in each field according to the modelled situations.

The proposed framework has been developed by extending the INET

3INETMANET: https://github.com/aarizaq/inetmanet-3.x
4INET framework for OMNeT++:https://inet.omnetpp.org/
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Table 3.1: Scenario environment description

x/y (m) y ≤ 200 200 < y ≤ 400 400 < y ≤ 600

x ≤ 200

Clear, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

Clear, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

Cloudy, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

200 < x ≤ 400

Clear, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

Cloudy, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

Cloudy, Beans,
Seeding Vegetation

Growth Pod
Maturation, Below

Threshold, Low
Nitrogen, Normal

Potassium, Normal
Phosphorus

400 < x ≤ 600

Cloudy, Beans,
Flowering Pod

Development, Below
Threshold, Low

Nitrogen, Normal
Potassium, Normal

Phosphorus

Cloudy, Beans,
Flowering Pod

Development, Below
Threshold, Normal
Nitrogen, Normal

Potassium, Normal
Phosphorus

Cloudy, Beans,
Seeding Vegetation

Growth Pod
Maturation, Below
Threshold, Normal
Nitrogen, Normal

Potassium, Normal
Phosphorus

Table 3.2: Actions required on scenario environment

x/y (m) y ≤ 200 200 < y ≤ 400 400 < y ≤ 600

x ≤ 200
Moderate

Irrigation Beans
Moderate

Irrigation Beans
Moderate

Irrigation Beans

200 < x ≤ 400
Moderate

Irrigation Beans
Moderate

Irrigation Beans
Light Irrigation

Beans

400 < x ≤ 600
Moderate

Irrigation Beans
Moderate

Irrigation Beans
Light Irrigation

Beans
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UDPBasicBurst5 modules. Dynamic On-demand MANET routing protocol6

(DYMO) has been adopted. Non-standard inference services provided by
the C port of Mini-ME mobile reasoner [122] enhanced with the Concept
Fusion and CI-v2 algorithms (Section 3.2) are invoked to implement all the
object (b)logging workflow tasks. The reasoner is integrated directly within
the agent software module. Google Protocol Buffers7 is used to serialize the
high-level structured data to a platform-independent binary format.

In order to obtain a quantitative analysis of the performance, the metrics
in Table 3.3 have been measured and evaluated. They can be grouped as
follows:

• Blogging load : network load generated by blog messages is measured as
bytes and as packets. Specifically, out of the total incoming bandwidth
usage, the useful bandwidth is extracted, corresponding to messages
which do not have an expired TTL and are not out of order : in IN-
ETMANET each packet has a progressive ID and a node will mark an
incoming packet as out-of-order if it has received another packet from
the same sender with higher ID value. Outgoing bandwidth usage is
also measured and the bandwidth gain is computed as the ratio between
outbound and inbound data usage, representing the capability of the
proposed fusion approach to summarize knowledge.

• Activation load : network usage due to activation messages exchanged
among nodes is measured, focusing on overall incoming, useful incoming
and outgoing data.

• Reasoning time: specifically time required for the CI-v2 algorithm and
the overall object (b)logging workflow are measured. In order to rep-
resent a realistic performance profile of resource-constrained agents, in
the simulation the reasoning time is delayed by an order of magni-
tude. This proportional factor has been estimated by comparing the
reasoning time taken by a single node in the Omnet++ simulation en-
vironment and a Raspberry Pi Model B single-board computer on the
same set of resources.

• Fusion performance: this set of metrics concerns the quality the results
of Concept Fusion for context detection. Annotations computed by
each node are compared with the ground truth on the state of the
simulation area the agent is located in at the end of the BP.

5UDPBasicBurst documentation: https://doc.omnetpp.org/inet/api-current/

neddoc/inet.applications.udpapp.UdpBasicBurst.html
6DYMO: https://tools.ietf.org/html/draft-ietf-manet-dymo-26
7Google Protocol Buffers: https://github.com/google/protobuf
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• Decision performance: the quality of service activation decision ob-
tained from semantic matchmaking is analyzed w.r.t. the theoretically
optimal decision in for the simulation area configuration the agent is
located in at the end of the BP.

Simulation parameters reported in Table 3.4 determine the different operat-
ing conditions in the various scenarios. A total of 96 experiments, as summa-
rized in Table 3.5 and Table 3.6, have been carried out with 3 runs and the
mean values have been considered. Furthermore, the following settings have
been adopted: (i) simulation time fixed to 300 s, (ii) weights for Concept
Abduction an Concept Contraction penalties in semantic matchmaking set
to 0.3 and 0.7 respectively, in order to penalize more the explicitly conflict-
ing features, and (iii) minimum semantic relevance for decision-making set to
0.8. Performance evaluation has been executed on a VMware vSphere virtual
machine running on a server blade8. In what follows the reported results are
referred to the weighted average of the values collected over the simulation
time. For each set of metrics, experimental analysis are provided.

Blogging Load

The blogging load results in long BP scenarios, i.e., experiments from #1 to
#48, are reported in Figure 3.15(a) and 3.16(a), considering respectively the
byte size and the number of packets. Basically, it is possible to observe that
the adoption of IEEE 802.15.4 protocol with IEEE 802.11g is the optimal
choice if compared with the usage with IEEE 802.11a. More total data (in
bytes and packets) are collected in these scenarios, as well as useful (i.e.,
not expired, not out-of-order) information. As expected, blogging load is
affected by the number of involved nodes. In 2000 nodes scenarios the above
values are higher than 500 and 1000 nodes scenarios, reaching over 12000 B
and 40 packets. It can be further noticed that performance in experiments
with both IEEE 802.11g and IEEE 802.11a protocols drastically worsens in
high-density scenarios, due to a growing number of collisions. Furthermore,
slight differences exist between high and low detection probability experi-
ments. In the latter case, scenarios must cope with an increased number of
conflicting (and therefore discarded) fragments, and consequently less shared
information. Concerning blog output, nodes broadcast a single packet of ap-
proximately 300 bytes. In heterogeneous nodes scenarios this size is slightly
lower due to limited sensing capabilities per node and consequently decreased

8Intel Xeon E5-2650 v3 CPU –8 cores/16 threads at 2.30 GHz–, 96 GB of RAM and
Ubuntu 16.04 (64bit) operating system.
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size of shared information. This can also explains why in these experiments
the input bytes are less than homogeneous nodes scenarios.

Similar trends can be observed in Figure 3.15(b) and 3.16(b), showing
results of experiments from #49 to #96 with short BP. It is important to
recognize that in these experiments, size and number of incoming informa-
tion are quite similar, regardless of the node density. Incoming packets per
broadcast period are always below 18 and total size below 6500 B, obviously
lower than those collected over a longer BP.

Bandwidth gains are plotted in Figure 3.17(a) and 3.17(b) and confirm
what highlighted above. The gain is between 3.5 and 7 thanks to the Concept
Fusion algorithm ensuring the nodes output significantly shorter than the
input data in all scenarios. Heterogeneous node scenarios are characterized
by lower gain values because in these experiments less input information
is managed, for the reasons explained above. The same conclusion can be
reached for low detection probability experiments, as well as those adopting
802.11a and 802.11g protocols together.

Activation Load

Activation Load input packets are strictly related to the provided actua-
tors. Obviously nodes without actuation capabilities can only send unicast
messages for service activation, without receiving any. The weighted aver-
age values are reported by byte and packet perspective in Figure 3.18(a)
and Figure 3.19(a) respectively for long BP, and in Figure 3.18(b) and Fig-
ure 3.19(b) for short BP. Results show Activation Load is closely correlated
with the detection probability configuration: with low detection probability,
reaching decisions is harder for agents and fewer service requests are sent and
received. This is presumably the reason why the incoming bytes and pack-
ets are lower than in other experiments. It can be observed that among all
scenarios the worst performance occurs when 802.11a and 802.11g protocols
are combined and low detection probability is set. Furthermore, the total
incoming requests decrease for scenarios with larger numbers of nodes. This
is related to an increased number of available services in the environment,
and so a decreased likelihood to be selected as provider. There are no sub-
stantial differences in number and total size of managed packets between long
and short BP scenarios. In this last case, experiments report higher values
of incoming bytes and packets, mainly due to an increased packets sending
rate. The output activation load follows a similar behaviour showing that a
node on average sends 0.6 activation requests corresponding to 15 bytes.
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Figure 3.15: Blogging Load (bytes)
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(b) Experiments from #49 to #96

Figure 3.16: Blogging Load (packets)
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Figure 3.17: Bandwidth gain
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Figure 3.18: Activation Load (bytes)
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(b) Experiments from #49 to #96

Figure 3.19: Activation Load (packets)
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Reasoning Time

As expected, Figure 3.20(a) and Figure 3.20(b) show that reasoning times
are closely related to number and size of collected packets, as well as to
node density in the environment. In long BP scenarios, both CI-v2 and
overall blogging time are affected by the adoption of IEEE 802.15.4 or 802.11a
protocols. Indeed, in the latter case times are lower due to the fact that a
lower number of packets is managed. It is also possible to observe that
heterogeneous node scenarios involve less information and so time is slightly
lower. A similar behaviour can be observed in short BP scenarios, where
times are lower in all experiments because time windows in which each node
can collect packets are shorter, therefore less information is cached. CI-v2
time can be deemed as low, being always below 1.5 ms and 0.7 ms in the worst
case respectively for long and short BP. Analogously, the overall blogging
time requires always less than 3 ms and 2 ms respectively demonstrating the
sustainability of the approach.

Fusion Performance

In order to evaluate the Concept Fusion performance, an overview of the
detected and received knowledge covering w.r.t. the real environment de-
scription is provided in Figure 3.21(a) and Figure 3.21(b). As expected, in
all scenarios with low detection probability, the detected knowledge covering
is lower, while the conflicting percentage is higher. Furthermore, hetero-
geneous nodes gather only a subset of the context features: in those most
realistic scenarios the related knowledge covering is limited.

It can be noticed the overall detected knowledge is mainly kept in the
C and/or E fields of the cached packets, according to the similarity of the
involved nodes. However, a non-negligible percentage is associated to the M
description. C and E also store the highest conflicting knowledge percent-
ages, which further grows in the C field of heterogeneous node experiments
due to a slight increased number of erroneous fusion. These results are en-
couraging, because they confirm the effectiveness of the integration approach.
Moreover, in short BP experiments there is less knowledge in the M field than
in the long BP ones, and the percentages of covering of C and E are better.
The shared conflicting knowledge is also lower, suggesting a better fusion
effectiveness in those scenarios.

Figure 3.22(a) and Figure 3.22(b) show the Concept Integration v2 out-
comes. As depicted, the log i.e., the conjunctions of C, M , and E, covers
over 90% of ground truth knowledge. Values are closely related to the detec-
tion probability settings. It can be observed that the performance is good
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Figure 3.20: Reasoning Time
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also in experiments involving heterogeneous nodes, and it further improves
in short BP scenarios, confirming the capability of the proposed approach
to merge several seemingly dissimilar perspectives. The integrated knowl-
edge is mainly associated to the C field, while E takes greater relevance in
heterogeneous node experiments, compensating for the decreased percentage
of confirmed observations. A small knowledge percentage is stored in M
field. Furthermore, it can be observed that the integrated knowledge could
be erroneously interpreted as incorrect and stored in the X field, but related
percentage can be deemed as very low and it further improves in short BP
experiments.

Conversely, the integrated conflicting knowledge covering results is plot-
ted in Figure 3.23(a) and Figure 3.23(b). As expected, the discarded field
X reports the biggest conflicting knowledge percentage. Unfortunately, in
experiments involving heterogeneous nodes, less information is collected and
detecting conflicting observations is quite difficult. For this reason, E field
keeps a non-negligible percentage of incorrect knowledge, though always be-
low 2% in long BP tests and 1.5% in short BP ones. Non-zero quotas are as-
sociated also to C and M . It can be noticed that performance improves with
larger node density scenarios, thanks to an increased amount of managed in-
formation allowing to correctly integrate the knowledge. Furthermore, short
BP experiments demonstrate a better resilience against conflicting informa-
tion with bigger percentage of conflicting knowledge properly discarded in
the X field. The short time window grants quick adaptation to changes and
robustness against spurious or inaccurate information by managing updated
and comprehensive knowledge in fewer cached packets.

Decision Performance

Figure 3.24(a) and Figure 3.24(b) depict the decision performance in long
and short BP tests, respectively. The best results have been reached in the
latter case, with a covering percentage w.r.t. the description of the needed
action always over 90%. Even in the worst cases in long BP, it is never
below 80%. Furthermore, decisions in contrast with the required action are
nearly 0 in all experiments. Nodes avoid to reach –potential wrong– resolu-
tion after matchmaking if all the KB interventions have semantic relevance
scores lower than the given threshold. This demonstrates the capability of
each node to enable adaptive context-aware behavior triggering intervention
and/or making the right decision according to the inferred knowledge of the
environment.
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(b) Experiments from #49 to #96

Figure 3.21: Integration Performance - Input Knowledge Covering
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(b) Experiments from #49 to #96

Figure 3.22: Integration Performance - Integrated Knowledge Covering
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Figure 3.23: Integration Performance - Integrated Conflicting Knowledge
Covering
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Figure 3.24: Reasoning Time
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Chapter 4

Social capabilities for smart

objects

This chapter outlines the proposal for social things intelligence and knowledge-
based cooperation. A service-oriented architecture is defined, where every
device can expose and request services (i.e., functionalities). Both device
and service profiles are semantically annotated w.r.t. ontologies. According
to the high-level SIoT architecture outlined in [114], each device manages
both social relationships with peers on the network and context information
obtained through data mining on embedded sensor readings. When a device
detects a context change which requires a reconfiguration, it issues a request
on the social network. Then a collaborative discovery process starts, exploit-
ing semantic matchmaking to retrieve the best available services from the
network for covering the request.

4.1 Social awareness in the Semantic Web of

Things

The envisioned approach aims at object self-organization in complex contexts
through interaction paradigms borrowed from social networks. Both inter-
action protocol and object self-awareness give devices extensive agency and
autonomy capabilities, enabling them to share information, publish requests,
and receive responses in a controlled interchange.

A decentralized service-oriented architecture underlies the whole proposed
social network model, where shared knowledge fragments about devices, func-
tional profiles and context represent annotated service/resource advertise-

81



ments. They are described exploiting both several well-known RDFS vocab-
ularies and an additional ontology, named Semantic Web of Social Things
(SWST)1, developed within this work to model basic elements of a social
network. The inference services depicted in Section 2.2.3 are used to regu-
late the interactions between the nodes (i.e., things). Among them, we can
distinguish (i) Smart devices, able to execute inference tasks; (ii) Basic de-
vices, endowed with low memory and processing capabilities, only providing
sensing/acting services without performing autonomous reasoning.

The way people interact and cultivate relationships through Social Net-
work Services was adapted to social objects as follows:

1. A social object posts on its wall an individual profile, describing its
basic characteristics (device type, location, hardware details) and the
resources/services it is able to provide, e.g., different functional profiles
and configurations it can take.

2. A pair of social objects can establish two basic kinds of social relation-
ships:

• Friend, a bidirectional relationship where nodes Ni and Nj can
exchange both information and services. In particular, a device
Nj sends a friendship request; since the receiver Ni accepts it,
they became able to: (i) read and write on each other’s wall; (ii)
request the friend’s service descriptions; (iii) activate or deactivate
the friend’s services. A basic node, when becoming friend with a
smart node, can also select it as semantic facilitator i.e., reasoning
supporter.

• Follower, a unidirectional relationship where a node Nk is inter-
ested only in receiving the updates published by Ni on its wall.
In other words, if Nk sends a follower request to Ni, Nk becomes
an observer of Ni’s behavior. This kind of relationship is useful
in case of the information produced by Ni can be useful to Nk

to characterize its own context but there is low utility in a direct
interaction, e.g., the two devices are deeply different.

This mechanism grants effortless system configuration and high scala-
bility since enabled interactions are neither decided a priori nor by a
centralized entity.

1Semantic Web of Social Things (SWST) Ontology: http://sisinflab.poliba.it/

swottools/onto/swst/
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3. Each social object posts updates on its wall when its settings or capa-
bilities change, as well as information produced through context sensing
and analysis. A post on a friend’s wall is interpreted as a request, in-
stead, triggering a reconfiguration of the friend device in order to best
adapt to the new situation.

4. Tagging is used to ask a device to activate or deactivate a specific
service.

5. A like is used as confirmation to a post at the end of the reorganization
process

At the application layer, the proposed framework is implemented through
the Linked Data Notifications (LDN) protocol [22], on top of the Linked Data
Platform (LDP) [80] mapping [79] for the Constrained Application Protocol
(CoAP) [127], a lightweight HTTP-like protocol for the Web of Things. Each
agent in the social network is modeled as an LDP-CoAP node exposing the
interface detailed in Table 4.1.

A notable aspect of the framework is that the social network is completely
distributed. No central platform is needed to mediate interactions. Every
object stores locally: the list of its friends, each characterized by identity
and addressing information; its own wall; a cache of posts on friends’ walls.
Likes are stored along with the post they refer to.

Cooperative service/resource discovery

The adopted service discovery and composition is grounded on semantic
matchmaking, exploiting the non-standard inference services recalled in Sec-
tion 2.2.3. Whenever a device requires new services or changing current
settings, its request is formalized as a DL annotation R. The proposed
framework does not constrain when a device should issue a request, neither
how to derive a proper request annotation. As outlined in Section 2.1.1,
smart objects are expected to execute data mining and inference on percep-
tions collected from on-board or nearby sensors in order to characterize the
environment and detect relevant events and changes. When the request is
formulated, a cooperative multi-hop discovery process starts, using Concept
Covering to satisfy it as much as possible through aggregation of available
services/resources associated to the same reference ontology as the request.

Service discovery is collaborative and recursive, exploiting service descrip-
tions shared between friends and the possibility to write posts and comments
on each other’s wall as the example reported in Figure 4.1 clarifies. Three
devices are considered: D1 is the requester and D2 is friend to both D1 and
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D3. When D1 generates its request R1, it will post it on its wall (post P1). A
local covering process starts, where D1 exploits its embedded matchmaking
engine to cover R1 as much as possible with the services it can access: this
set is formed by D1’s own services and the ones belonging to D1’s friends,
which were read via LDP-CoAP at friendship establishment: the CoAP Ob-
serve option [45] is adopted to notify the device whenever a friend’s service
set changes. The covering result consists in a set of selected services and
possibly the uncovered part U1 of the request. This information is appended
to P1 as comment C1 on D1’s wall; furthermore, the covering degree –in [0, 1]
range, with 0 denoting “no cover” and 1 “full cover”– is associated to P1 as
the like value L1.

If L1 < 1 (hence, there is some uncovered part U1), then D1 picks some
friends to help find further services. Selection criteria include the number
of friend’s services referring to the same ontology of the request and his-
torical performance data concerning the number and relevance of retrieved
services, as well as communication latency and bandwidth. In the reference
figure, D1 picks D2 and POSTs a new post P2 on D2’s wall, attaching U1

as the new request. D2 computes semantic matchmaking using its friends’
service descriptions, while excluding its own services as they have already
been considered by D1. The new covering process yields (possibly) further
selected services, a new (smaller) uncovered part U2 and an updated (higher)
like value. D2 adds this result as a comment to P2. Complying with LDN,
this update is notified to D1 through the Observe CoAP pattern2. Then D1

GETs the content of the comment updates the like value associated to its
own original request on its own wall. Supposing the request has not been
fully covered yet, D2 repeats the process recursively, writing a new post P3

on its friend D3’s wall (which is not a friend of D1). D3 executes matchmak-
ing with cached service descriptions of its friends (except D2). The outcome
leads to a comment and updated like value on P3: they are notified to D2,
which GETs the content of the comment and reports it as a new comment C2

on post P2 in its own wall. This in turn activates notification for D1, which
GETs the comment. Finally, it updates its original post P1 with the updated
set of selected services, uncovered part and like value. The process can go on
until (a) the request is fully covered, or at least reaches a minimum threshold
lmin of like (i.e., satisfaction) value, or (b) a maximum distance dmax from
the request source is reached in the social graph. Both lmin and dmax are

2Actually, a node writing a post on a friend’s wall is automatically added to the list
of CoAP observers for the post, so that it is notified when a comment is added. This is
an extension of the standard CoAP Observe pattern, which is normally available for GET
requests only; otherwise, after a POST on a friend’s wall, a further GET request would
be needed to start observing.
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Figure 4.1: Distributed service discovery
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tunable parameters.
Selected services are activated at the end of each discovery step by tag-

ging them. A discovery session produces, for each participating device D,
exactly one wall post, with a number of comments equal to the devices D
has directly or indirectly involved in the matchmaking process. Devices can
exploit them as a log to adapt their relationships dynamically, calculating
metrics of usefulness for each friend.

Managing dynamic social relationships among objects

This work extends the framework described in [115] to endow social objects
with proactive adaptivity to environmental modifications in order to improve
self-organization through social relationships refinement. Based on past ex-
perience (i.e., previous interactions over the social network), each object is
able to adapt its relationships dynamically according to context changes, in
order to improve not only the processing on the single node but also the
overall network performance. Removing unnecessary relationships aims to
reduce network traffic e.g., less messages will be forwarded during a service
discovery process. Conversely, new meaningful interactions can increase the
network effectiveness and reduce the relative computational load per node:
a request could be satisfied with lower processing time and activating the
minimum set of services. The following models are proposed to suggest and
remove friendship relationships based on the experience of each social object.

Suggestion. After every time period T , each smart device queries its
wall to retrieve the list of devices that sent a comment to or were tagged in
a post. For each such device D, the Suggest function is computed as follows:

Suggest(D) = [w · C(D) + (1− w) · U(D)] · X − 1

X
with

C(D) =

Nc(D)∑
i

X(ti−T ) U(D) =

Nu(D)∑
j

X(tj−T )

The following symbols are used in the above formulae: (i) Nc(D), number of
comments created by D; (ii) Nu(D), number of useful services provided by
D, i.e., D’s services tagged as result of Concept Covering; (iii) w (between
0 and 1), used to weigh the contribution of U(D), considering a device as
direct provider of useful services, and C(D), representing the ability of D to
contribute to service discovery by acting as a “bridge” toward other useful
devices: (iv) T , timestamp at which all functions are evaluated; (v) ti/j ≤ T ,
timestamp at which a comment/post was created; (vi) X > 1, decay rate
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coefficient, weighing the past history of a device: the higher the value, the
lower the relevance of older contributions. Finally, division by X

X−1
normalizes

S(D) w.r.t. the theoretical convergence value of the geometric series with
ratio 1

X
, implying that 0 ≤ S(D) ≤ 1. According to the proposed model,

a device will be suggested as a good candidate friend if it either provides
services frequently or it is a friend of many useful devices. New friendship
requests will be sent to devices with an S score higher than a reference
threshold (TH-suggest). Considering the example in Figure 4.2(a), if device
D1 frequently activates services of D5 through intermediate friends D2 and
D4, it will learn and ask for D5’s direct friendship as in Figure 4.2(b).

Retraction. Along with the suggestion of new friends, a retraction score
R(D) is calculated for each friend deviceD to identify worthless relationships:

R(D) = S(D)− P (D)

P (D) = [

Ni(D)∑
k

X(tk−T ) · Pk(D)] · X − 1

X

where P (D) exploits past results of local Concept Covering processes. In
detail, Ni(D) is the number of D’s services, detected as incompatible w.r.t.
the requests received in the period T ; tk ≤ T is the timestamp at which
the covering process was performed and the incompatibility was identified;
Pk(D) ∈ [0, 1] is the penalty score measured by Concept Contraction. For
each friend device, if R(D) (which is always in [−1, 1]) is less than a TH-
retract threshold, the friendship will be removed: the meaning is that D
often provides conflicting services (wasting processing and communication
resources) and/or it does not have a useful impact in satisfying received re-
quests. The example in Figure 4.2(c) shows device D1 breaking its friendship
with D2.

Satisfaction. In loosely connected networks, social devices could be
without any friends, e.g., due to a “cold start” configuration (as shown in
Figure 4.2(a)) or frequent friendships retractions. In the protocol described
above isolated objects are unable to both establish new friendship relations
and cooperate. In order to overcome this problem, a satisfaction indicator,
based on likes, identifies and solves object deadlocks. Periodically, each de-
vice D evaluates its satisfaction degree w.r.t. received or generated requests
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Figure 4.2: Sample network with loosely connected nodes

by means of the formula:

Sat(D) = [

Np(D)∑
h

X(th−T ) · likeh(D)] · X − 1

X

where Np(D) is the number of posts (i.e., requests) on D’s wall and th ≤ T
represents the timestamp at which the likeh(D) value related to the post was
calculated. Also in this case, Sat(D) is compared with a reference threshold
(TH-satisfaction) and devices with a lower score will perform a further device
discovery process, as during the device initialization. In Figure 4.2(b), iso-
lated device D3 finds D6 and they establish friendship; then in Figure 4.2(c)
D6, still having a Sat(D6) < TH-satisfaction, links to D5 too.

4.2 Illustrative example

A case study regarding power management of plug-in electric taxis (PETs) in
a smart grid is discussed to highlight capabilities of the proposed framework
in dynamic environments. Let us consider the following example:
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Figure 4.3: Social smart grid scenario

A 2017 BMW i3 plug-in electric taxi usually serves district A of a large
city. It has friendship relations with vehicles of its PET fleet company and
some of the charging stations in the smart grid.

Figure 4.3 depicts the envisioned scenario: each taxi and charging point
is a social object, which exposes toward its friends an individual profile,
describing its basic features and the services it can provide.

Figure 4.4 depicts a possible formalization of electric vehicle power man-
agement aspects (reported in OWL 2 Manchester syntax for the sake of
readability) w.r.t. the reference domain ontology. A relevant excerpt of the
main concept taxonomy defined for the case study is in Figure 4.5; in addi-
tion to hierarchical relationships, concepts and role expressions are exploited
to build the complex definitions in the following figures.

BMW i3 2017 SubClassOf: ElectricVehicle and (hasACCompatiblePlug only

VDE-AR-E2623-2-2Type2Plug) and (hasDCCompatiblePlug only CCSCOMBO2Plug)

and (hasEVSEProfile only ((hasOutputRate only (daW max 74)) and

(hasCurrent only (Ampere max 32)) and (hasVoltage only (Volt max 230))))

and (hasACCompatiblePlug some) and (hasDCCompatiblePlug some)

ElectricVehicle SubClassOf: (hasEVSEProfile some) and (hasEVSEProfile only

((hasOutputRate some) and (hasVoltage some) and (hasCurrent some)))

Figure 4.4: Electric taxi profile semantic description

Notice 2017 BMW i3 electric car model adopts a standard VDE-AR-E
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Figure 4.5: Smart grid domain ontology
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2623-2-2 (Type 2) a.k.a. Mennekes connector and receptacle for AC charg-
ing, incompatible with SAEJ1772 (Type 1). Also Fast DC charging currently
has many standard connectors. CHAdeMO, CCS Combo1 or CCS Combo2
receptacles can be found on different chargers and are incompatible with
each other; i3 supports CCS Combo2 plug only. Figure 4.6 shows modeled
charging profiles, according to existing solutions for electric vehicle supply
equipment (EVSE).

EVSEProfile SubClassOf: (hasCurrent some) and (hasCurrentType some) and

(hasOutputRate some) and (hasVoltage some) and (isSuggestedForUse some)

and ElectricVehicleSupplyEquipment

ACProfile SubClassOf: EVSEProfile and (hasCurrentType only

AlternateCurrentAC)

ACLevel1 SubClassOf: ACProfile and (hasCurrent only (Ampere max 20)) and

(hasOutputRate only (daW max 17)) and (hasVoltage only (Volt max 120)) and

(isSuggestedForUse only ResidentialUse)

ACLevel2 SubClassOf: ACProfile and (hasCurrent only (Ampere max 100)) and

(hasOutputRate only (daW max 192)) and (hasVoltage only (Volt max 240))

and (isSuggestedForUse only CommercialUse)

DCProfile SubClassOf: EVSEProfile and (hasCurrentType only

DirectCurrentDC)

DCLevel1 SubClassOf: DCProfile and (hasCurrent only (Ampere max 80)) and

(hasOutputRate only (daW max 400)) and (hasVoltage only (Volt max 500))

and (isSuggestedForUse only CommercialUse)

DCLevel2 SubClassOf: DCProfile and (hasCurrent only (Ampere max 200)) and

(hasOutputRate only (daW max 1000)) and (hasVoltage only (Volt max 500))

and (isSuggestedForUse only CommercialUse)

Figure 4.6: EVSE charging profile classes in the ontology

A customer requests to be taken to district Z, seldom frequented by the
taxi. After leaving the customer, PET informs taxi driver that battery level
is below 50% and recharge is needed.

The taxi formulates the semantic-based recharge request depicted in Fig-
ure 4.7, corresponding to a charging rate of at least 25 km per charging hour,
minimum available energy of 20 kWh at charging station and maximum dis-
tance of 15 km between taxi and charging station and 30 km between charg-
ing station and dispatcher, and maximum price of 50 cents per kWh. This
is used in a Concept Covering task (Section 2.2.3) on the locally cached set
of services, i.e., functionalities exposed by all direct friends of the taxi. Un-
fortunately those service instances have some conflicting features, as shown
in Figure 4.8, and cannot be selected. In detail, ChargingStationdistrictA is
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too far from the current taxi position (hasDistance), because it is located in
district A, and it is too much expensive (hasFeePerkWh). In ChargingSta-
tiondistrictZ, DC charger equipment is CHAdeMO (hasDCCompatiblePlug)
which is not suitable to charge i3 taxi. Furthermore the price per kWh
and the distance between charging station and dispatcher exceed the de-
sired one. According to Section 4.1, taxi periodically computes Retract R(D)
scores for each friend. If ChargingStationdistrictZ service of device D still
remains incompatible with taxi needs, D’s score will progressively decrease
until friendship breaks up when it becomes less than the given TH-retract
threshold.

TaxiRechargeRequest EquivalentTo: BMWi32017 and (hasChargingRatePerHour

some) and (hasAvailablePower some) and (hasDispatcherDistance some) and

(hasDistance some) and (hasFeePerkWh some) and (hasChargingRatePerHour

only (km min 25)) and (hasAvailablePower only (kWh min 20)) and

(hasDispatcherDistance only (km max 30)) and (hasDistance only (km max

15)) and (hasFeePerkWh only (cents max 50))

Figure 4.7: Semantic annotation of taxi request

ChargingStationdistrictA EquivalentTo: ChargingStation and

(hasACCompatiblePlug only VDE-AR-E2623-2-2Type2Plug) and

(hasChargingRatePerHour only (km exactly 45)) and (hasAvailablePower

only (kWh exactly 500)) and (hasDispatcherDistance only (km exactly 25))

and (hasDistance only (km exactly 70)) and (hasEVSEProfile only ACLevel2)

and (hasFeePerkWh only (cents exactly 55))

ChargingStationdistrictZ EquivalentTo: ChargingStation and

(hasDCCompatiblePlug only CHAdeMoPlug) and (hasChargingRatePerHour only

(km exactly 200)) and (hasAvailablePower only (kWh exactly 100)) and

(hasDispatcherDistance only (km exactly 45)) and (hasDistance only (km

exactly 5)) and (hasEVSEProfile only DCLevel1) and (hasFeePerkWh only

(cents exactly 60))

ChargingStation SubClassOf: (hasChargingRatePerHour some) and

(hasAvailablePower some) and (hasDispatcherDistance some) and

(hasFeePerkWh some) and (hasEVSEProfile some)

Figure 4.8: Semantic annotations of friends’ services

The request cannot be satisfied directly. So taxi fleet agents autonomously
cooperate in order to share useful information about electricity suppliers among
their friends and suggest the services they offer.

ChargingStationdistrictZNew service, summarized in Figure 4.9, is se-
lected by a friend and tagged (i.e., suggested). Notice that service descrip-
tion has a dispatching distance higher than the desired maximum: non-exact
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match is tackled by means of non-standard reasoning services for semantic
matchmaking recalled in Section 2.2.3. Furthermore, the experience factor
Suggest S(D) described in Section 4.1 is exploited to refine social relation-
ships. Let us suppose that taxi become a frequent visitor of district Z and
here it often needs charging. If ChargingStationdistrictZNew service of de-
vice Dnew is frequently tagged, S(Dnew) value will increase during the social
object’s lifetime. If this score becomes higher than TH-suggest threshold, a
new friendship relation is established, so that the taxi will be able to directly
retrieve and use the services of that charging station.

ChargingStationdistrictZNew EquivalentTo: ChargingStation and

(hasDCCompatiblePlug only CCSCombo2Plug) and (hasChargingRatePerHour

only (km max 150)) and (hasAvailablePower only (kWh exactly 300)) and

(hasDispatcherDistance only (km exactly 40)) and (hasDistance only (km

exactly 6)) and (hasEVSEProfile only DCLevel1) and (hasFeePerkWh only

(cents exactly 45))

Figure 4.9: Semantic description of selected service

This is just a small example of the benefits of the proposed semantic-based
framework, capable of autonomic and proactive configuration through inter-
action paradigms mutuated from social networks. Furthermore, semantic
annotations in the case study have been simplified for the sake of under-
standability. In real smart grid scenarios, more complex requests and service
descriptions are expected, and non-standard inference services will be even
more useful for service ranking and composition to satisfy requests.

4.3 Experimental evaluation

Performance evaluation of the dynamic social relationship framework has
been carried out testing social objects with 18 different network configura-
tions, generated by combining the parameters reported in Table 4.2. A pre-
liminary phase has been performed to empirically validate values (the same
for all devices) of parameters used by the experience functions described
in Section 4.1: decay rate X = 2, ensuring an adequate and not excessive
decay for older elements of the time series; w = 0.3, to favor devices ex-
posing tagged (i.e., selected) services over objects only sending comments;
TH-suggest = 0.5, TH-retract = -0.1 and TH-satisfaction = 0.2, aiming to
remove friendships only if really needed (in volatile contexts devices should
be able to exploit availability opportunistically) and to suggest new rela-
tionships appropriately, while limiting the network overhead. Maximum hop
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Table 4.2: Network configuration parameters
Parameter Value Description

Generation
algorithm

RND
Randomly generated nodes with mean number of friends set to 1.
Loosely connected network with frequent isolated objects.

BA

Nodes generated exploiting the preferential attachment rule
of the Barabási-Albert model [15]. Each node has 2 friends on average.
Hierarchical topology similar to a sensor network with several edge nodes
and one or more sinks.

DM
Nodes generated using the Dorogovtsev-Mendes algorithm [36].
Strongly connected network with nodes having 4 friends on average.

Nodes
10 Small-size network
100 Medium-size network
1000 Large-size network

Request
rate

20
20% of nodes identifies a new event and posts a message in each period.
Network with few device requests.

70
70% of nodes identifies a new event and posts a message in each period.
Network with frequent device requests.

count of cooperative service discovery process –detailed in Section 4.1– has
been set to 2 for all devices.

For each configuration, tests have been repeated 20 times (corresponding
to 20 random initial topologies) monitoring the network evolution during 10
periods of 60 seconds. Experiments have been conducted exploiting three sets
of 10, 100 and 1000 device descriptions, respectively. Every device exposes
5 services, each associated to an OWL annotation generated as the logical
conjunction of 10 OWL classes (also including negated classes) randomly
selected from a total of 168 classes in the reference ontology. After each
period, the following output values have been computed to identify specific
behaviors characterizing the social network and in particular to evaluate
the capability to adapt social relationships dynamically according to context
changes: (i) number of friends per node; (ii) like value received by a post;
(iii) number of forwarded messages (i.e., how many devices are contacted
to satisfy a request); (iv) number of activated services per request; (v) size
of payload data exchanged on the network to satisfy a request (including
uncovered part of requests forwarded to friends and comments retrieved from
the wall of contacted objects). Obtained results have been averaged in order
to filter out the bias deriving from conditions of single runs. Devices have
been initialized at the beginning of each test whereas requests have been
generated at random instants, with uniform probability distribution within
the simulation time.

Small-size networks. Figure 4.10 shows test results for scenarios with
10 nodes. For loosely connected networks (RND), like values are very low
(below 0.35) in the first period, as reported in Figure 4.10(b), due to the few
friendship relationships (Figure 4.10(a)). For each request, a device starts
a local covering process with few available services, so it is only partially
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satisfied through a minimal set of useful functionalities (Figure 4.10(d)) and
a large amount of data (corresponding to the uncovered part of the request)
is forwarded to friends (Figure 4.10(f)). Thanks to the Satisfaction and Sug-
gestion indexes described in Section 4.1, unsatisfied devices (e.g., isolated
nodes) promptly look for useful friendships. In the second period, it is possi-
ble to notice both a considerable increase of the like value and a reduction of
the data exchanged on the network. Having more friends, each device is able
to locally satisfy a request in a better way and to forward a smaller uncovered
part. A similar trend can be also identified for BA and DM network con-
figurations; in these cases, however, the network starts with a high degree
of connectivity in the first period generating higher like values –as shown
in Figure 4.10(c)– which increase more slowly w.r.t. the previous scenario.
Nevertheless, semantic-based experience factors allow satisfactory like val-
ues, reducing at the same time the network traffic. In fact, introducing more
useful friendships and removing useless ones allows social things to select the
most suitable services at each hop of the cooperative covering process, con-
verging faster to the final result. Moreover, the request rate mainly affects
the behavior of social networks with few connections: device relationships
are modified more frequently, leading to lower like values and less efficient
cooperative covering. Few messages are forwarded to friends, as reported in
Figure 4.10(e), due to the more variable social network configuration. On the
contrary, social devices are able to establish stable relationships after about
4 periods for all other configurations.

Medium-size networks. Also in scenarios with 100 nodes (results de-
tailed in Figure 4.11) loosely connected networks take quickly advantage
of dynamic relationship adaptivity, increasing average like values (Figure
4.11(b)) and reducing transmitted data (Figure 4.11(f)), but also BA and
DM scenarios improve their performance over the periods. The presence of
many devices facilitates the discovery of additional useful friends, as reported
in Figure 4.11(a). As a consequence, higher like scores have been obtained:
all network parameters tend to stable values in about three (friendships and
exchanged data) to five (activated services and forwarded messages) periods.

Large-size networks. Finally, results for scenarios with 1000 nodes are
reported in Figure 4.12. Large networks follow similar trends highlighted
for small and medium configurations. Main differences compared to medium
scenarios concern: (i) fewer friends per device (Figure 4.12(a)), as friendships
are removed more frequently in large networks, so the number of friends
grows more slowly; (ii) fewer activated services per request (Figure 4.12(d)),
as when nodes reach the stable configuration, the covering process is able to
select few services which largely satisfy a request, rather than many services
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each covering a small part.

Thanks to these optimized relationships, devices save storage space (acti-
vated functionalities are tagged and saved on the device wall) and reduce the
network overhead required to contact and activate remote services. This is a
clear benefit of the approach, envisioning good scalability: even on large net-
works, nodes establish a balanced number of high-quality friends and share
their resources without overloading the network.
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Figure 4.10: Test results for small-size networks. Legend denotes values of
parameters for each configuration.
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Figure 4.11: Test results for medium-size networks. Legend denotes values
of parameters for each configuration.
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Figure 4.12: Test results for large-size networks. Legend denotes values of
parameters for each configuration.
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Chapter 5

Decisional capabilities for

smart objects

This chapter provides a detailed description of the proposed semantic-enabled
blockchain framework for SWoT contexts. The Hyperledger Sawtooth1 frame-
work [89] has been extended with a fully decentralized service-oriented ar-
chitecture layer. Registration, discovery and selection of annotated ser-
vices/resources are implemented as smart contracts executed by nodes, allow-
ing distributed execution and trust. While semantic matchmaking enables
relevant resource retrieval with logic-based ranking and explanation features,
blockchain provides reliable transaction storage. Experimental tests on a
cluster of virtual nodes provide early insight on effectiveness, performance
and scalability.

5.1 Proposed framework

The Semantic Web of Things improves the Internet of Things power by in-
creasing resource representation capabilities through knowledge management
and reasoning technologies adapted from the Semantic Web. This promotes
information interoperability and decision autonomy. Nevertheless, trust and
reliability issues remain basically unsolved. Large-scale, decentralized and
dynamic infrastructures suffer from unpredictable volatility of nodes, which
compromises resource availability. Trust and coordination are still difficult.
Blockchain is increasingly used as a transactional data storage solution for
distributed ledgers. It enables trustless collaboration by enforcing smart

1Hyperledger Sawtooth: https://www.hyperledger.org/projects/sawtooth
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contracts and prevents data tampering by validating transactions through
consensus protocols.

This work introduces SeeSaw (SEmantic-Enhanced SAWtooth) semantics-
enabled SOA for trustless collaboration in pervasive computing, particularly
aimed at advanced Industrial IoT (IIoT) scenarios. It is based on the Saw-
tooth project [89] developed within the Hyperledger initiative by the Linux
Foundation and players in the information technology industry. The pro-
posal aims to overcome the limitations of the previous approach in [113] by
adopting a more IoT-oriented blockchain substratum articulated in several in-
dependent components with well-defined responsibilities. Enhanced requests
flexibility and improvement in scalability and computational resource usage
are also desired.

Figure 5.1 shows the overall architecture. Key elements are as follows:

• Producer (P): exposes resources by registering them on the blockchain
as assets.

• Consumer (C): requests resources through a semantic-based process
comprising Discovery, Explanation (optionally) and Selection transac-
tions, through smart contracts detailed as in what follows.

• Web Interface (WI): acts as gateway to the blockchain, collecting re-
quests from Producers and Consumers and forwarding them to a Val-
idator. A WI can communicate with multiple C and P instances; in the
current implementation the WebSocket protocol [40] is adopted, which
is suitable for resource-constrained IoT contexts for its bandwidth and
computational efficiency [84]. Further point-to-point or mesh protocols
for IoT could be implemented. On the other hand, a WI communicates
with exactly one Validator by means of ZeroMQ2 distributed messaging
protocol.

• Transaction Processor (TP): executes transactions at the edge of the
network by implementing smart contracts. Sawtooth supports Trans-
action Processors written in Python, C++, Go, Java, JavaScript or
Rust; C++ has been chosen in the SeeSaw implementation for effi-
ciency reasons. Each TP communicates with one Validator through
ZeroMQ.

• Validator : has access to the radix Merkle tree data structure of the
blockchain. It receives transaction requests from a WI and dispatches
them, balancing the load among all its connected TPs, according to

2ZeroMQ: http://zeromq.org/
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Figure 5.1: Framework architecture

the master/workers model. If TP load is full, a transaction is returned
as invalid: WI typically implements a backoff mechanism for waiting
before resubmission. Validators form a peer-to-peer network, communi-
cating through ZeroMQ for the replication of smart contract execution
and the consensus protocol. Sawtooth uses PoET as consensus proto-
col: a Validator is elected as leader through a lottery-like mechanism
and is allowed to add a new block of transactions to the chain. Saw-
tooth Validators are implemented in Python and use a gossip protocol
to allow new peers to join dynamically an existing network.

All exchanged messages are serialized in the Protocol Buffers format.
Transactions can be processed and validated individually or in batches, de-
pending on request parameters. A batch establishes a sequential dependency
relationship among transactions: if one fails, the subsequent ones are not
processed and the whole batch is invalidated.

Depending on target scenarios, several configurations are possible, based
on the following considerations.

• Producers and Consumers have minimal computational requirements,
being mainly aimed at nodes deployed in the field (e.g., mobile de-
vices or embedded in cyber-physical system). A device will run both
components if it needs to provide as well as request services.

• WI nodes can be either dedicated devices at the edge of the network
or integrated into Validators, as shown in Figure 5.1.
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• Due to blockchain storage and consensus, Validators require the largest
amounts of mass memory and bandwidth. For this reason, they are the
most suitable to be hosted on premises at the core of the organization’s
network.

• Conversely, TPs do not need large storage or bandwidth, as they pro-
cess one transaction at a time. They need relatively fast processing
capabilities, but with proper smart contract optimization even low-cost
single-board computers like Raspberry Pi may be a suitable platform.
Fog computing devices at the edge of the network are good candidates
for the TP role, or even mobile devices with moderate computational
and energy resources. For increasing transaction throughput, in fact,
scaling out (i.e., increasing the number of TPs) may be more beneficial
than scaling up (i.e., using more powerful devices), as studies suggest
[55].

Knowledge representation in smart contracts for complex service-

oriented architectures

The proposed approach defines a semantic resource/service discovery layer.
The IoT-oriented blockchain thus becomes a SOA, supporting basic tasks
of resource registration, discovery, and selection implemented as SCs, with
distributed execution and consensus-based validation. Discovery is based on
semantic matchmaking of descriptions of a request and a set of resources,
annotated as DL concept expressions in OWL 2 w.r.t. a shared ontology. For
each request-resource annotation pair, a 0− 100 semantic relevance score is
computed from a combination of penalties induced by Concept Contraction
and Concept Abduction, as recalled in Section 2.2.3. This enables a formally
founded relevance ranking of all available resources on the blockchain that
are described w.r.t. the same ontology as the request. The adopted inference
services also return a logical explanation of discovery outcomes. Transactions
are recorded on the blockchain for robustness, traceability and accountability
purposes. SOA primitives and corresponding SCs are reported as in what
follows.

Registration. Several resource domains can co-exist in the same blockchain.
Each domain is associated to a different ontology, which provides the refer-
ence conceptual vocabulary to annotate resources. Every ontology is identi-
fied by a unique Uniform Resource Identifier (URI), as per OWL specifica-
tions. Each node can own resource instances, characterized by:

• a URI identifying the resource unambiguously;
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• a semantic annotation in OWL language, modeling high-level descrip-
tive information of resource features;

• the URI of the reference ontology;

• a set of data-oriented attributes stored as a key-value pair, allowing
to integrate and extend logic-based inferences with application-specific
and context-aware information processing.

In order to make a resource available for discovery and usage, the owner
registers it as an asset on the blockchain storage. Ontologies are registered
in the same way. Through this SC a blockchain-backed u-KB is thus obtained.

Resource discovery. IoT applications vary widely in functional and
service level agreement (SLA) requirements. Some use cases need quick-
response resource discovery and best-effort recall is tolerated; this is typical
of pervasive computing contexts. Other applications require an exhaustive
search space exploration to guarantee that the best possible resources are
found. In order to cope with the widest range of scenarios, SeeSaw includes
two discovery modes, named fast and full. Supposing n annotated resources
are associated to an ontology, the whole set (i.e., the ABox of the u-KB) is
divided in pieces of size p: each of the first k = bn/pc pieces will contain
exactly p resources and the last piece the remaining n − kp ones. Any dis-
covery request will generate up to k + 1 SC transactions, one for each piece.
A transaction yields a hit if at least one of the resources in the piece has a
semantic relevance score higher than a given threshold, a miss otherwise. Hit
resources are returned to the requester. In full discovery, all k + 1 transac-
tions are submitted simultaneously and the receiving Validator will take care
of load balancing among Transaction Processors; the requester will receive
all resources above semantic relevance threshold. Furthermore, both hit and
miss transactions are committed to the blockchain for traceability purposes.
Conversely, fast discovery submits clusters of at most c ≤ k transactions at
a time; cluster size is a system configuration parameter. Furthermore, fast
discovery is limited by an overall timeout3. As soon as a cluster returns a hit
or when the timeout expires, remaining clusters are not submitted. More-
over, in fast discovery miss transactions are invalidated and not committed
to the chain, in order to reduce consensus stress of Validators. The adoption
of clusters aims at a trade-off between a completely serial and parallel piece
processing: the former minimizes blockchain load but may increase length

3In the current implementation, cluster size and timeout length are static system-wide
parameters. Studying dynamic adaptation strategies w.r.t. past performance and current
network status is an aspect of interest, but it is left for future work.
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and variability of hit latency, potentially incurring in more frequent timeouts;
the latter ensures that a hit is found if it exists in the chain, but places a
heavier computational burden and incurs in higher turnaround time.

Parameters of the discovery SC are as follows:

• mode: fast or full;

• URI of the reference ontology: this determines the resource domain
as well as the vocabulary used to express both the request and the
resources to be retrieved;

• semantic annotation of the request in OWL language, specifying desired
resource features and constraints;

• maximum acceptable value for the i th data-oriented attribute aimax

(e.g., the maximum price the requester is willing to pay). Resources
with at least one value higher than this threshold will be skipped from
matchmaking (thus reducing computational overhead);

• minimum semantic relevance threshold smin, as a floating-point num-
ber in the [0, 1] interval, with a value of 1 corresponding to a full match
and 0 to a complete mismatch (both rare situations in realistic scenar-
ios); after matchmaking, resources with a relevance score below this
threshold will not be returned, as deemed irrelevant to the requester.

Explanation. This SC is used to request a justification of the match-
making outcome for a specific resource among received results. This may be
useful for request revision and refinement [106] as well as post-hoc audit of the
discovery process. Explanation reinforces the overall trust in the blockchain
framework not only at data management level, but also at application level.
Parameters of the SC are (i) the semantic annotation of the request and
(ii) the URI of the discovered resource. SC result consists in the semantic
affinity score 0 ≤ si ≤ 1 and concept expressions of G and K from Concept
Contraction and of H from Concept Abduction.

Resource selection. After receiving all results exploiting full discovery,
or a subset with fast discovery, the requester can select the best discovered
resource with this SC. The complete registered resource representation is re-
trieved from the blockchain and returned. The proposal does not constrain
resource fruition in any way, leaving application-specific details –such as in-
terface endpoint or payment method– to resource annotations themselves.
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5.2 Experiments

In order to obtain a quantitative performance analysis, small, medium and
large scale chain scenarios have been considered, respectively with 100, 200
and 400 nodes. Nodes are split in three sets: Clients (20%), acting as
workload generators, e.g., Providers of annotated resources registered in the
blockchain and Consumers requesting resources; Validators (20%); Transac-
tion Processors (60%). The following experimental parameters have been set:
(i) duration of 300 s, after a preliminary resource registration phase (excluded
from the analysis as it is very lightweight); (ii) 6 randomly-generated anno-
tations per Producer; (iii) each Consumer sends a new randomly-generated
request every 8 s; (iv) the minimum threshold of semantic affinity is 0.85.
Each scenario has been executed in all the combinations of the following pa-
rameters: (i) discovery timeout (T) set to 2, 6 or 10 s; (ii) piece size (P),
described in Section 5.1, set to 10, 30 or 50 resources; (iii) either fast or full
discovery. For each combination, the average of two runs has been considered.

The experimental campaign has leveraged the Docker platform to deploy
the testbed, by performing the following steps: (i) each prototype compo-
nent has been compiled as a Docker image; (ii) each node has been executed
as a container instance of the corresponding compiled image; (iii) a Docker
Swarm mode cluster has been deployed on 10 VMware vSphere virtual ma-
chines running on two server blades (Intel Xeon E5-2650 v3 CPU –8 cores/16
threads at 2.30 GHz– and 96 GB of RAM per blade, Ubuntu 16.04 64bit op-
erating system), with an overlay network configured to allow communications
among nodes; (iv) the execution of experiments has been managed via the
Docker API SDK4. The following performance metrics have been measured:
(i) mean turnaround time and standard deviation for fulfilling requests, also
split into individual SCs of Discovery, Explanation and Selection; (ii) mean
hit ratio, i.e., the percentage of requests which retrieve at least one resource
satisfying semantic relevance constraint within the given timeout; (iii) mean
and standard deviation of memory and CPU load for Transaction Processor
and Validator nodes. No RAM and CPU constraints have been imposed in
the configuration of Docker to avoid affecting other performance metrics.

Fast discovery. Mean turnaround time can be deemed as very low in all
scenarios, as depicted in Figure 5.2. For T = 2s, the mean discovery time of
requests which retrieved results (hits) was low, while the others reached time-
out. Therefore the overall hit ratio and the standard deviation of turnaround
were lower. For higher timeout values, the hit ratio increased but turnaround
time had higher variability, possibly due to load fluctuations. As expected,

4A simple docker client for the JVM: https://github.com/spotify/docker-client
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hit ratio tends to decrease for higher number of nodes, but the trend appears
as regular and predictable. Significantly, in all the experiments the time of
discovery process was similar to the ones of explanation and selection phases.
This suggests that consensus is the longest task, while transaction processing
time is relatively short: this implies that the performance impact of the pro-
posed semantic SOA layer is low. As shown in Figure 5.3, the average CPU
and RAM usage per Validator increased for larger scenarios. Moreover, the
value of P slightly influenced the overall load. CPU and memory usage for
TPs are reported in Figure 5.4: the CPU load is higher for larger scenarios,
but on average it is below 2%; memory consumption is also very low.

Full discovery. Figure 5.5(a) shows average turnaround time is closely
related to the number of nodes and registered resources. The best results
were obtained in the 100 nodes scenario. Turnaround time decreases when P
is larger, because of the lower number of committed transactions. Moreover,
the standard deviation is higher when P is small, because discovery requests
generate more blocks which need to be committed by Validators, stressing the
consensus protocol. Figure 5.5(b) reports the average CPU and RAM usage
per Validator: also in this case higher values and higher variance are found
for larger scenarios, with practically no influence of Piece size. Figure 5.5(c)
shows average values for Transaction Processors, denoting similar trends.

The experimental results support the feasibility of the proposed approach.
Semantic matchmaking does not introduce significant overhead. Fast discov-
ery has stable times, best-effort hit ratio and graceful degradation at larger
scales, while full discovery guarantees the best semantic matchmaking results
with a linear turnaround time increase w.r.t. network scale. Overall, the See-
Saw architecture appears as amenable to MEC, where semantic blockchain
load can be sustained by Validators associated with relatively large numbers
of lightweight mobile and embedded devices, acting as semantic Transaction
Processors at the network edge and in the field.
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Figure 5.2: Fast discovery turnaround time and hit ratio; P: piece size; T:
timeout (s)
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Figure 5.3: Fast discovery Validator memory and CPU usage; P: piece size;
T: timeout (s)
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Figure 5.4: Fast discovery Transaction Processor memory and CPU usage;
P: piece size; T: timeout (s)
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Figure 5.5: Full discovery performance; P: piece size; N: nodes
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Chapter 6

Conclusions and perspectives

This thesis has introduced the object (b)logging paradigm, defining a novel
semantics-based framework for pervasive Cyber-Physical Systems. The main
goal is to enable smart objects to drive complex behaviors through swarm
intelligence, dealing with the intrinsically unpredictable nature of mobile and
pervasive scenarios. Devices act as social agents, capable of configuration,
coordination, and orchestration starting from the inferred high-level con-
text description. Interaction patterns inspired to Social Networking Services
(SNSs) enable objects to establish cooperation relationships, share informa-
tion, issue requests, and update their status and settings, in a fully dynamic
and decentralized fashion. Each object is equipped with an embedded rea-
soning micro-engine through which it is able to perform automated inference
in order to derive previously implicit knowledge out of information gathered
from the environment and/or other smart entities. Agents must integrate de-
tected and received information in a coherent view to recognize and annotate
in a micro-log the context they are in and their status.

A novel Concept Fusion inference service for ubiquitous MAS has been
developed in order to merge heterogeneous information sources, suitable for
robust distributed context monitoring even in the presence of incomplete
and/or inaccurate information. Early experiments devoted to assessing effi-
ciency and scalability on a realistic resource-constrained computing platform
have been carried out on a Raspberry Pi Model B. A novel general-purpose
variant of Concept Integration [111] algorithm has been also introduced. It
applies Concept Fusion only to observation shared by remote agents, and
finally merges this aggregated knowledge with the endogenous one, preserv-
ing the different viewpoints. In this way smart objects continuously enrich
their basic descriptive core according to detected events and phenomena, and
expose advanced and semantically unambiguous descriptions of their context
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and capabilities toward the rest of the world in a micro-blog. Via blog en-
tries (“posts”), objects can interact at the application layer with humans and
other entities in order to create an efficient service-oriented social network.
where all nodes are able to cooperate toward a common goal.

The object (b)logging vision has been implemented and tested via sim-
ulations built upon the INETMANET framework, embedding the Mini-ME
semantic matchmaker. Experimental evaluation has been carried out via Om-
net++ simulation in order to assess effectiveness, correctness and feasibility
of the proposal with reference to a possible exploitation on real large-scale
resource-constrained scenarios.

An extension of the framework described in [115] has been proposed to en-
dow social objects with proactive adaptivity to environmental modifications
in order to improve self-organization through social relationships refinement.
Based on past experience (i.e., previous interactions over the social network),
each object is able to adapt its relationships dynamically according to con-
text changes, in order to improve not only the processing on the single node
but also the overall network performance. Removing unnecessary relation-
ships with devices often providing conflicting services and/or not useful in
satisfying requests aims to reduce network traffic, i.e., less messages will be
forwarded during a service discovery process. Conversely, the suggestion of
new meaningful interactions with objects providing services frequently or in
relationship with many useful devices can increase the network effectiveness
and reduce the relative computational load per node: a request could be
satisfied with lower processing time and activating the minimum set of ser-
vices. Benefits of the proposal have been demonstrated in a case study on
the power management of electric vehicles in a Smart Grid and experimental
evaluations have been carried out.

Finally, in order to guarantee trust and transaction traceability in IoT
contexts, a semantic enhancement layer has been added on top of the Hy-
perledger Sawtooth blockchain framework. Sawtooth design is particularly
suitable for IoT scenarios, due to the high decoupling between components,
which allows to distribute request management, transaction processing and
validation on different kinds of devices. Results of early performance evalu-
ations have been provided, particularly targeted toward scenarios including
large numbers of resource-constrained nodes, and support the feasibility and
sustainability of the approach.

The overall proposed solution results as a general-purpose, cross-domain
semantic-based framework for context detection, knowledge discovery and
sharing among pervasive smart devices. The approach provides the means
to harness the flow of semantically annotated detected and received updates,
enabling context-aware adaptive behaviors in several application areas, which
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include urban search and rescue, power management in smart grid, personal
assistance, home automation, smart agriculture and many more.

Future work directions concern further performance optimization and
thorough comparison with state-of-the-art approaches. Several perspectives
are open for more advanced (b)logging work-flow, where an agent shares in
its blog also the uncovered part of the requested action as Constraint. When
nearby entities receive this packet they may try their best in order to satisfy
the request, discovering suitable services among their own actuation capabili-
ties and their peers’. Furthermore the expansion of the set of semantic Smart
Contracts with advanced SOA facilities like service composition, substitution
and negotiation, as well as with the support for ontology partitioning and
on-the-fly reconstruction to achieve a full blockchain-backed u-KB realization
is foreseeable. Finally, a wider experimental campaign involving implemen-
tation on real devices in order to perform further effectiveness evaluation
should be carried out.
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Appendix A

Concept Fusion support subroutines

Require: ≤ x R less than restriction in TBox T ,

G = {GCN , G≤, G≥, G∀} 4-tuple of sets of concept

components in ALN w.r.t. T
Ensure : G is properly updated

if {≤ z R} ∈ G≤ and z > x then1

G≤ := (G≤ \ {≤ z R}) ∪ {≤ x R} ;2

else if {≤ z R} 6∈ G≤ then3

G≤ := G≤ ∪ {≤ x R} ;4

end5

Algorithm 7: addLessThanRestriction(≤ x R, G)

Require: ≥ z R greater than restriction in TBox T ,

G = {GCN , G≤, G≥, G∀} 4-tuple of sets of concept

components in ALN w.r.t. T
Ensure : G is properly updated

if {≥ z R} ∈ G≥ and z < x then1

G≥ := (G≥ \ {≥ z R}) ∪ {≥ x R} ;2

else if {≥ z R} 6∈ G≥ then3

G≥ := G≥ ∪ {≥ x R} ;4

end5

Algorithm 8: addGreaterThanRestriction(≥ z R, G)
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Require: ∀R.B universal restriction with B satisfiable in T ,

G = {GCN , G≤, G≥, G∀} set of sets of concepts in ALN
w.r.t. T

Ensure : G is properly updated

if {∀R.E} ∈ G∀ then1

foreach (possibly negated) CN in B do2

if CN is not in ECN then3

ECN := ECN ∪ {CN} ;4

end5

end6

foreach {≤ x R} ∈ B≤ do7

addLessThanRestriction(≤ x R,E) ;8

end9

foreach {≥ xR} ∈ B≥ do10

addGreaterThanRestriction(≥ x R,E) ;11

end12

foreach {∀R.D} ∈ B∀ do13

addUniversalRestriction(∀R.D,E) ;14

end15

else16

G∀ := G∀ ∪ {∀R.B} ;17

end18

Algorithm 9: addUniversalRestriction(∀R.B, G)
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2. Attended International Workshop on Very Large Internet of Things

(VLIoT at VLDB 2017 held at Munich, Germany and presented the

paper Semantic Blockchain to Improve Scalability in the Internet of

Things

3. Attended Italian Conference on ICT for Smart Cities & Communities

(ICiTies 2017) held at Bari, Italy and presented the paper Semantic-

enhanced blockchain technology for smart cities and communities

4. Attended The 15th ACM Conference on Embedded Networked Sensor

Systems (SenSys 2017) held at Delft, The Netherlands and presented

the paper Supply Chain Object Discovery with Semantic-enhanced Blockchain

5. Attended 1st workshop of Poliba Phd Student Research (PHDAYS 2017)

held at Bari, Italy and joined the challenge PhD Student Research Com-

petition (SRC) by presenting the paper Integrating machines and ar-

tificial intelligence for predictive maintenance in advanced production

systems

6. Attended 26th Italian Symposium in Advanced Database Systems (SEBD

2018) held at Castellaneta Marina (Taranto), Italy and presented the

paper A Blockchain Infrastructure for the Semantic Web of Things

7. Session Chair at 2nd International Conference on Computational Biol-

ogy and Bioinformatics (ICCBB 2018) held at Bari, Italy
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8. Attended 2019 IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2019) held at Bari, Italy and presented the paper

Object (B)logging: a Decentralized Cognitive Paradigm for the Indus-

trial Internet of Things

Teaching Experience

1. Taught lectures for the Operating Systems courses (Bachelor’s Degree in

Computer and Automation Engineering and Master’s Degree in Telecom-

munications Engineering of Polytechnic University of Bari). They usu-

ally cover Linux operating system and shell bash, Android operating

system and Robot Operating System (ROS)

2. Taught lectures for the Embedded and Certified Software (Master’s De-

gree in Aerospace Engineering of University of Salento) course. They

usually cover Android operating system and Robot Operating System

(ROS)
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