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Abstract

In the digital era, in which users are overwhelmed by information, it is
not easy for them to find what they are looking for. Recommender Systems
became a fundamental tool nowadays since they mitigate the information
overload problem by filtering relevant content in a personalized fashion to
the users. Many algorithms have been developed over the years to tackle
the recommendation problem by using different machine learning techniques.
Recently, in the past few years, we assisted at the rising of Deep Learning.
Many state-of-the-art machine learning algorithms have been outperformed
by deep learning techniques and every now and then, new deep learning
architectures outperform previous state-of-the-art deep learning techniques.
Deep Learning has proven its strength in several fields: Computer Vision,
Text-To-Speech, Automatic Machine-Translation, and many others. Very
recently, it has been adopted in Recommender Systems field. Even though
Deep Learning is effective in tackling the recommendation problem, it doesn’t
provide any explanation about the recommended items; it works as a black-
box. Users, on the other hand, would like to know the reason an item has
been recommended to them.

This thesis investigates a new technique that combines the representa-
tional power of Neural Networks with Knowledge-Graphs, to provide both
effective and explainable recommendations to the users. Specifically, we pro-
pose a new method to label hidden units by using a Knowledge-Graph and
train a not fully-connected Neural Network to extract users’ preferences that
are used to compute a recommendation within an explanation.

Experimental results showed, analyzed, and discussed in this thesis, sup-
port the validity of the proposed method.



Chapter 1

Introduction

1.1 Motivation

The first Web site can be dated on the 6th of August 1991 when Tim Berners-
Lee published for the very first time a web page, at the CERN of Ginevra,
where he worked as a researcher. The web was born as a solution to share
knowledge and scientific findings with other researchers across the world.
Since then, the web has been evolving: technologies and market changed and
user behavior as well. The evolution of the web can be summarized in three
phases: Web 1.0, Web 2.0, and Web 3.0.

Web 1.0 has been characterized by static generated content, produced and
published on web portals; the interaction is one-way between the visiting user
and the web site. The term Web 2.0 has been born during the first O’Reilly
Media Web 2.0 Conference on October 2004. It was just a ”slogan” to denote
a change in the web paradigm. It indicates a new way in which users and
web interact; the technologies which the web relies on was almost the same.
What is changed is that now, users became not only contents’ consumer, but
they produce new content. Prominent examples of this new paradigm are
blogs and social networks, in which the user interacts with other users and
moreover, the user begins to rate products on e-commerce web sites. Web
3.0, also known as Semantic Web, denotes a transformation of the World
Wide Web in which the published documents (HTML pages, files, images,
etc...) are associated to metadata that specifies the semantics context in a

1



CHAPTER 1. INTRODUCTION 2

format well-suited to be queried and interpreted by computer agents (web
search bots). Because of the massive proliferation of data on the Web, a new
issue has been raised, the Information Overload. The information overload
refers to the vast quantity of data available to the users that make them
hard to find what they are looking for. In order to mitigate this problem, a
new class of algorithms has been proposed to filter the information so that
users can find relevant content to them. These new techniques are called
Recommender Systems; they suggest items that users might be interested
in. Many companies have based their business around these systems, for
example: Amazon, Netflix, Spotify, and many others.

Recently, Deep Learning approaches are emerging, and several companies
leverage the representational power of neural networks to provide effective
recommendations to the users. Over the years, Deep Learning techniques out-
performed several machine learning state-of-the-art methods. Even though
Deep Learning leads to better accuracy, neural networks are black-boxes. In-
terpreting how the neural networks provide results is still an open question
in the research field. Nowadays, interpretability and explainability of neural
networks are gaining momentum. Many recommender systems are relying
on neural networks, and users want to know why a certain item has been
recommended.

The main contribution of this thesis is to provide a new architecture of a
particular neural network which turns out to be interpretable and explainable
to the users.

1.2 Overview

This thesis is organized as follows:

• Chapter 1 presents motivation, contributions and publications related
to the thesis.

• Chapter 2 presents Linked Open Data and Knowledge Graphs.

• Chapter 3 introduces recommender systems and describes the main
classes of recommendation approaches: content-based, collaborative fil-
tering, and hybrid method.

• Chapter 4 introduces Neural Networks and provides an overview on
Autoencoders Neural Networks.

• Chapter 5 presents a Semantics-Aware Autoencoder Neural Network
which combines the representational power of Autoencoders with Knowl-
edge Graphs in order to design a not fully-connected architecture which
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turns out to be both interpretable and explainable for recommendation
scenarios.

• Chapter 6 describes different explanation techniques in a recommen-
dation scenario and provides a method which relies on Semantics-Aware
Autoencoder to provide explanation to the users.

• Chapter 7 provides a qualitative analysis of Knowlege Graphs in Rec-
ommendation scenarios through Semantics-Aware Autoencoders.

• Chapter 8 describes the overall conclusions of the work presented in
this thesis and the potential future work.

1.3 List of publications

This thesis is based on the following publications produced during the Ph.D.
program:

• Semantics-Aware Autoencoder
Bellini, V., Di Noia, T., Di Sciascio, E. and Schiavone, A.
IEEE Access

• Computing recommendations via a Knowledge Graph-aware Autoen-
coder
Bellini, V., Schiavone, A., Di Noia, T., Ragone, A., and Di Sciascio, E.
Knowledge-aware and Conversational Recommender Systems Work-
shop 2018 (RecSys 2018)
CEUR Workshop Proceedings 2018

• Knowledge-aware Autoencoders for Explainable Recommender Systems
Bellini, V., Schiavone, A., Di Noia, T., Ragone, A., and Di Sciascio, E.
Proceedings of the 3rd Workshop on Deep Learning for Recommender
Systems

• Exploiting Knowledge Graphs for Auto-Encoding User Ratings in Rec-
ommender Systems
Bellini, V., Di Noia, T., Di Sciascio, E. and Schiavone, A.
IIR 2018 - 9th Italian Information Retrieval Workshop

• Auto-encoding user ratings via knowledge graphs in recommendation
scenarios
Bellini, V., Anelli, V.W., Di Noia, T., and Di Sciascio, E.
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Proceedings of the 2nd Workshop on Deep Learning for Recommender
Systems



Chapter 2

Linked Open Data

2.1 Introduction

The World Wide Web was born as a media for human beings; this means
that the data exchanged across it are unstructured, which in turn are hard to
understand by computer agents. The semantic web is an attempt to address
this issue. The idea behind the semantic web is to use structured data,
modeled by ontologies that computer agents or other software can handle,
interpret, and inference over them. Semantic web architecture is composed
of differentß levels, as depicted in Figure 2.1.

5
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Figure 2.1: Semantic Web architecture.

2.2 Architecture

The first layer contains URI1 and Unicode, which are technologies of the
WWW. Unicode is a standard to encode international characters, indepen-
dently from the language, platform, and software used. URI is an identifier
that allows identifying every resource of the web, such as documents or im-
ages. Moreover, a URI can be extended to a URL2 when it identifies not
only a resource of the web, but it also specifies the protocol used to ac-
cess the resource. The XML layer, the XML namespace, and XML schema
provide a standard syntax for the semantic web. XML forces structured
data to be uniform and independent from the application or manufactures.
XML is a language to represent document and structured data; its syntax
is rigid but flexible that allows representing very complex structured data.
An XML document contains elements that have attributes and data. Nev-
ertheless, elements, in turn, can be nested to represent complex data. The

1Uniform Resource Identifier
2Uniform Resource Locator
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XML namespace provides a method to avoid conflicts with elements’ name
by specifying the vocabulary of the markup. XML Schema is a set of formal
rules of an XML document which specify the name for elements and the ele-
ments that are allowed in the document, how they can be combined and their
values. The schema is defined in a DTD file (Document Type Definition).
An XML file is defined as valid if it is compliant with the rules defined in
the DTD file, otherwise, it is defined as a well-formed XML file. Another
way to represent structured data is RDF that allows representing resource
through graph data. RDF is based on triples of subject-object-predicate.
Nowadays, all the data in the semantic web are represented through RDF.
The above layer consists of ontologies, RDF schema, and query languages.
An ontology is a formal description of concepts and relations among them.
Ontologies are defined in OWL (Ontology Web Language); therefore, OWL
is a language for knowledge representation. RDFS (RDF Schema) allows us
to define taxonomies of classes and their properties to create ontologies. In
order to query data in the semantic web, a new query language has been
introduced, SPARQL (Simple Protocol RDF Query Language). It is a SQL-
Like W3C standard language to query RDF databases. Since RDFS and
OWL are both build atop RDF, SPARQL can be used to query ontologies
and knowledge-bases directly. Nevertheless, it represents a protocol to access
RDF data. In the Proof layer, the truthfulness of the new knowledge is de-
ducted from semantic relations through inference processes. Cryptography
is used in the Trust layer to mark assertions to the aim to guarantee their
authenticity and source.

2.3 RDF

Resource Description Framework is used to represent resources of any type;
it is a set of elements and formal rules to describe resources. Any resource
is identified by a URI, which might be a not accessible object of the web.
Properties are attributes to store within a resource (key-value pairs); ev-
ery property has its meaning and a set of allowed values can be associated
with each resource. Assertions, also known as statements, have a subject-
predicate-object resource, as shown in Figure 2.2. RDF statements represent
the association between a property and a resource. RDF Schema allows
validating values for properties. Differently from XML Schema, it doesn’t
force any constraints on the structure of the document; it provides a way to
interpret the meaning of the document itself.
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Subject Object
Predicate

Figure 2.2: RDF tripe example.

An RDF model is represented through an oriented graph in which nodes
and edges respectively denote resources and properties, as depicted in Figure
2.3.

Figure 2.3: RDF graph.

As stated above, an object can be a resource or a literal value. For exam-
ple, the resource http://www.example.org/~joe/contact.rdf#joesmith

(subject) through the predicate http://xmlns.com/foaf/0.1/family_name
specifies that ”Smith” is the last name (object). The literal value represents
a string and not a resource.

2.4 Linked Open Data

The term Linked Data has been coined by Tim Berners-Lee in 2009, to
which it followed the term Linked Open Data (LOD). According to Berners-
Lee, information has not only to be easily accessible but also structured and
interconnected to be automatically processed by a software agent. Through
a semantic structure, raw data gets a higher value and real meaning.

http://www.example.org/~joe/contact.rdf#joesmith
http://xmlns.com/foaf/0.1/family_name
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Figure 2.4: Linked Open Data cloud.

The idea of LOD is strictly related to the Semantic Web; even tough the
Semantic Web is much more than Linked Open Data, they can be seen as
a tool on which the Semantic Web is built upon. In order to use LOD for
building the Semantic Web, there are some rules to follow that allow the
creation of an accessible layer of content for automatic software agents.

Tim Berners-Lee, drawn up a list of principles in order to publish data
as Linked Data3. The Linked Data Principles are the followings:

• use URIs as names for things;

• use HTTP URIs so that people can look up those names;

• when someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL);

• include links to other URIs. so that they can discover more things.

The RDF language identifies resources through URI; resources can be
documents, real-world objects, or abstract concepts. In order to comply
with the Linked Data Principles, a way to represent resources is needed.
RDF alone doesn’t provide a mechanism to access those resources. HTTP,

3https://www.w3.org/DesignIssues/LinkedData.html

https://www.w3.org/DesignIssues/LinkedData.html
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on the other hand, represents a widely used mechanism to access resources
on the Web. Therefore, using URIs and HTTP protocol allow us to combine
a globally unique identification method with a simple and widely adopted
well-known mechanism to fetch resources. According to the second principle,
resources have to be identified by using URIs through the HTTP protocol, in
order to obtain a description of the object identified by the URI. The fourth
principle instead, requires the use of links to create interconnections among
resources. In this way, we can connect resources across different paths to
explore the graph. Ontologies define the types of resources and how they can
be connected to other resources according to the domain they belong to.

In the past few years, LOD had tremendous growth, as shown in Figure
2.4.

2.5 Knowledge Graph

Several definition for KGs have been proposed in the literature as summarized
in [1], in which authors propose the following new definition:

A knowledge graph acquires and integrates information into an
ontology and applies a reasoner to derive new knowledge.

Concerning the work presented in this thesis, we can state that Knowl-
edge Graphs (KGs) encode the human knowledge within graph structured
data in multiple domains by linking different domain-related KGs. In a rec-
ommendation scenario, KGs are a massive source of information that can
be leveraged to produce accurate recommendations. The publication and
spread of freely available Knowledge Graphs in the form of Linked Open
Data datasets, such as DBpedia [2], has paved the way to the development
of knowledge-aware recommendation engines in many application domains
and, still, gives the possibility to easily switch from a domain to another one
by just feeding the system with a different subset of the original graph.
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Figure 2.5: Example of Knowledge Graph in movie domain.

In the past few years, several works have been proposed to leverage the
side information coming from KGs to enhance the performance of recom-
mender systems. Most of them rely on the usage of DBpedia as KG. In [3],
authors leveraging the knowledge encoded in DBpedia, they show that it is
possible to build an accurate content-based recommender system. For the
very first time, in [4], a LOD-based recommender system is proposed to alle-
viate some of the major problems that affect collaborative techniques mainly
the high sparsity of the user-item matrix. The effectiveness of such an ap-
proach seems to be confirmed by a large number of methods that have been
proposed afterward. In [5], a detailed review of LOD-based recommender
systems is presented. It is worth noticing how KGs are recently being used
in lots of applications; they freely offer a large amount of structured data
which turned out to be very useful also in recommendation scenarios.



Chapter 3

Recommender Systems

3.1 Introduction

Recommender Systems (RSs) are techniques and algorithms that provide
users with personalized suggestions about items they might be interested
in [6]. The term item indicates what the system recommends to the users:
movies, songs, news articles or products to buy, to cite a few. RSs aim to
mitigate the information overload problem: they support users in the choice
of the next items to consume among a vast number of alternatives. In order
to generate a recommendation list for each user, RSs leverage the past users’
interaction with the system: ratings, consumed items, or implicit feedback in-
ferred by users’ actions (clicks, query searches, mouse movements, time spent
listening to a song). Different techniques exist to tackle the recommendation
problem; they are classified into three main categories:

• Content-Based: recommends items similar to items the user liked in
the past; the similarity is calculated considering the description of the
items (content).

• Collaborative Filtering: recommends items leveraging the users’ be-
havior and suggests items liked by other users with similar tastes; the
similarity is computed on the rating history of the users.

• Hybrid: combines both content-based and collaborative filtering tech-

12
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niques in order to get the best from the two and mitigate their respec-
tive weaknesses.

Several definitions for the recommendation problem have been proposed
in the literature, although the most adopted is [7]. Formally, the recom-
mendation task consists in estimating the rating r(u, i) for an unseen item
i to the user u through a recommendation function r∗ : U × I → R where
U and I are respectively the set of users and the set of items. Hence, the
problem consists in estimating for each user u ∈ U those items imax,u ∈ I
that maximize the utility function r∗, as formally described in Equation 3.1:

∀u ∈ U, imax,u = arg max
i∈I

r∗(u, i) (3.1)

As pointed out by [6], the user profile is represented by a set of feed-
back between users and the system. Feedback are explicit when they are
stated by the user (rates, likes), or they are implicit when acquired by ana-
lyzing clicks, search queries, or time spent on web pages. Explicit feedback
such as ratings are in different forms, many web site and e-commerce use
the 5-star scales. However, other forms of explicit feedback are binary feed-
back (e.g., like/dislike) or unary positive-only are becoming popular thanks
to social networks and content sharing websites. Implicit feedback, on the
other hand, are inferred by analyzing users’ behavior, and they are particu-
larly useful when explicit feedback are not available. Nevertheless, they can
be leveraged together with explicit feedback in order to provide even more
effective recommendations.

3.2 Content-Based

Content-Based (CB) recommender systems, recommend items similar to those
the user liked in the past. Therefore, a CB recommender system has to match
attributes in the user profile, which contains the user’s preferences, with the
item’s attribute, to recommend relevant items to the user.

3.2.1 Architecture

CB recommenders need specific techniques to represent items and to generate
the user profile, as shown in [5].
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Figure 3.1: High level architecture of a content base recommender.

A CB recommender process can be split in three different phases:

• Content Analyzer: pre-processes unstructured data such as the text
of a review, to extract relevant structured data; it provides as output
a representation that describes an item in terms of features which are
later used by the Profile Learner and the Filtering Component.

• Profile Learner: gets data that represent the user preferences and
generalizes over them in order to build the user profile; it leverages on
machine learning algorithms to infer a model by using preferences over
items given by the user.

• Filtering Component: leverages the user profile to recommend rele-
vant items by matching the representation of the user profile and items;
the most widely used similarity technique is the cosine similarity.

The very first step in a CB recommendation task is done by the Content
Analyzer which exploits Information Retrieval techniques to extract features
from the description of items, in order to generate a structured representation
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to store in the Represented Items component. In order to build and keep
the user profile updated for the user, her feedback for the recommended
items are stored in the Feedback repository. Feedback are exploited in the
learning phase of the model, which learns a function to predict the user’s
relevance for the suggested items. Usually, feedback are of two kinds: positive
and negative. Moreover, they can be explicit or implicit. Explicit feedback
consist of explicit item ratings given by the user; on the contrary, implicit
feedback don’t require the active involvement of the user, since they are
inferred by analyzing the user’s actions. Explicit feedback have the advantage
of simplicity, but they can not get the emotions of the user on an item, on
the other hand, implicit feedback have the advantage that they don’t require
active interactions.

In order to generate the user profile for the user ua, a training set TRa

for the user ua has to be defined. TRa is a set of pairs < Ik, rk > where rk
is the rating given by the user ua to the item Ik. The Profile Learner, using
supervised learning algorithms, builds a predictive model which is stored in
the profile repository. Given a representation for an item, the Filter Compo-
nent predicts whether the item can be of interest for the user ua. Generally,
this component uses different strategies to rank items by their relevance to
the user profile. Most relevant items are placed in the recommendation list
La, which is presented to the user ua. User’s tastes change over time; that
is the reason why the user profile has to keep updated in order to provide
effective recommendations.

3.2.2 Vector Space Model

The simplest and widely adopted way to represent items through features in
a CB recommender is to represent them in a Vector Space Model (VSM).
Each item is so represented by an n-dimensional vector, where each dimension
corresponds to a feature. Features are then weighed to indicate the relevance
of them with the item.

Let D = {d1, d2, . . . , dn} the set of items and T = {t1, t2, . . . , tn} the
vocabulary of all the features contained in D. Each item dj is represented as
a vector in a vector space of dimension n, so that dj = {w1,j, w2,j, . . . , wn,j}
where wk,j is the weight for the feature tk in the item dj.

In order to represent items in a VSM, it is important to define how to
weigh features and how to compute a similarity score between two vectors.
The most used technique to weigh feature is the TF-IDF (Term Frequency-
Inverse Document Frequency). It was born from two empirical observations
from the Information Retrieval field [8]:
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• rare terms (features) are not less important than frequent terms (IDF);

• multiple occurrences of a term (feature) in a document (item) are not
less important of a single occurrence (TF);

• long documents (items) should not be preferred to short document
(normalization).

More informally, features that frequently occur in an item (TF) but rarely in
all the other items (IDF) are probably the most important to discriminate
the item. Normalization helps to avoid giving too much consideration at
longest documents because the same features might be repeated over and
over. Formally, the TDF-IDF is described the following equation:

TF − IDF (tk, dj) = TF (tk, dj) log
N

Nk

TF (tk, dj) =
fk,j

maxz fz,j

where N and nk are respectively the number of items and number of items
that have the feature tk and maxz fz,j is computed on the frequencies fz,j for
all the features tz that occur in the item dj. Finally, weights are normalized
in the range [0, 1] according to the following equation:

wk,j =
TF − IDF (tk, dj)√︂∑︁|T |
s=1 TF − IDF (ts, dj)2

(3.2)

To determine a similarity score between two items, the most adopted
measure is the cosine similarity, described by Equation 3.3:

sim(di, dj) =

∑︁
k wk,iwk,j√︂∑︁

k w
2
k,i

∑︁
k w

2
k,j

(3.3)

Recommender Systems that are based on a VSM to represent both users
and items, leverage a distance measurement between users vector and items
vector to predict the relevance of an item for a user: the higher is the affinity,
the lower is the distance.

3.2.3 Advantages and Disadvantages

Information Retrieval and Artificial Intelligence have inspired research on
CB recommender systems. It gets techniques to extract items’ features from
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unstructured data from the Information Retrieval field. Conversely, it gets
from the Artificial Intelligence field, machine learning methods to build a
model starting from the users’ profile.

CB filtering has many advantages with respect to collaborative filtering
techniques:

• Independence from users: it leverages the ratings only to build the
user profile, on the contrary, collaborative filtering methods need to
keep track of the users’ ratings to find out similar users.

• Transparency: it easy to explain how the RS is working and why it
recommends items, since the recommendation it is based on the ex-
tracted features; on the other hand, collaborative filtering methods are
like black-boxes, the only explanation they can provide is that the item
is being recommended because similar users liked it.

• Cold Start: it recommends new items that haven’t already rated since
it is based on features and not on explicit ratings as the collaborative
filtering is; without a decent number of ratings, the collaborative filter-
ing methods are not able to recommend new items while content-based
techniques work well.

However, there are also some downsides:

• Feature Engineering: it requires knowledge on the recommender’s
domain of application; items have to be described by enough features
to allow the recommender to provide effective recommendations.

• Serendipity: CB recommenders are prone to overfitting; they provide
the same kind of recommendations over and over again with a limited
novelty and no serendipity at all because the recommendations are
computed on the features contained in the user profile.

• Cold users: it requires a decent number of ratings in order to correctly
model the user’s preferences; a user with few ratings gets inaccurate
recommendations.

CB recommenders are based on the features extracted from unstructured
data, but features suffer from polysemy and synonymy. The former indicates
a word with different meanings; the latter denotes different word with the
same meaning. Because of synonymy, relevant information might be lost
if the user profile doesn’t contain the exact keyword (feature); on the other
hand, because of polysemy, some items might be relevant even if they are not.
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In order to solve these problems, a new innovative approach is the Semantic
Analysis. The base idea is to exploit knowledge bases to annotate items, and
to obtain a semantic representation of the users’ profile.

3.3 Collaborative Filtering

The aim of Collaborative Filtering (CF) approaches is to predict the rele-
vance of the item i for the user u leveraging the ratings of similar users. More
formally, the relevance r(u, i) of the item i for the user u is computed on the
ratings r(uj, i) given by other users uj ∈ U on the item i. In a movie rec-
ommender system, in order to suggest a movie to the user u, a CF approach
finds peer users of u which are those users that share the same tastes of u
because they rated the same movies in a similar fashion. The predicted rat-
ing of the item i for user u is, therefore, a function of the rating that similar
users of u gave to the item i.

CF techniques have advantages over the CB methods:

• a description for items is not required;

• items are recommended on feedback received from other users and not
on the features of them;

• it provides serendipitous recommendations, a CF recommender system
might suggest very different items with respect to the ones the user is
used to like, it introduces a novelty in the recommended list.

CF algorithms are classified into two categories: memory-based (heuristic-
based) and model-based, as pointed out by [7, 9, 10, 11]. The former tech-
niques compute recommendations on-the-fly, those algorithms don’t need to
train and to store a model to provide recommendations; instead, the latter
methods, require to train a model.

3.3.1 Nearest-Neighbor

This approach is a memory-based method since it doesn’t require a model to
be trained in order to provide recommendations [10]. It exploits heuristics
to predict ratings of unseen items; hence, predictions depend on other user
ratings. Nearest-Neighbor approach are grouped in user-based and item-
based. User-based methods [12, 13, 14] exploit statistics on ratings to find
sets of users, also called neighbors, that have rated items similarly; they infer
the rating of the item i for user u by using rates that neighbors of u gave
to the item i. Item-based methods, on the other hand, predict the rating
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for the item i of a user u based on the ratings of u for items similar to i, as
shown in [11, 15].

Nearest-Neighbor methods are called k-Nearest-Neighbor (k-NN) where
k is the size of the neighborhood. In a user-based approach, the rate of user
u for the item i is predicted as described in Equation 3.4.

r̂(u, i) =
1

|Ni(u)|
∑︂

v∈Ni(u)

r(v, i) (3.4)

where N(u) is the set of the most similar users to the user u that have rated
the item i. A limit of Equation 3.4 is that it doesn’t take into account the
similarity among users. A widely adopted solution is to weigh the contribu-
tion of each user by its similarity to the user u, as described by Equation 3.5.
In this case, since weights might don’t sum to 1, it is necessary to normalize
these weights.

r̂(u, i) =

∑︁
v∈Ni(u)

wu,vrv,i∑︁
v∈Ni(u)

|wu,v|
(3.5)

Users may use different rating values for the same level of satisfaction
for an item. Unfortunately, Equation 3.5 doesn’t take it into account. To
address this issue, a common approach is to normalize neighbors’ rating rv,i
to h(rv,i) as shown in [10, 16]. The predicted rating is computed as follows:

r̂(u, i) = h−1(

∑︁
v∈Ni(u)

wu,vh(rv,i)∑︁
v∈Ni(u)

|wu,v|
) (3.6)

On the other hand, item-based approaches leverage the ratings given to
similar items, as investigated in [11, 15]. Let be Nu(i) the set of most similar
items to the item i rated by the user u. The rating of u for i is predicted as
weighted average of the ratings given by u on the items of Nu(i) as shown in
Equation 3.7.

r̂u,i =

∑︁
j∈Nu(i)wi,jru,j∑︁
j∈Nu(i)|wi,j |

(3.7)

Analogously to Equation 3.6, in order to take into account the differences
in the users’ individual rating scales, Equation 3.7 can be normalized as
follows:

r̂u,i = h−1(

∑︁
j∈Nu(i)wi,jh(ru,j)∑︁

j∈Nu(i)|wi,j |
) (3.8)
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Choosing between user-based or item-based method depends on different
aspects. Regarding the accuracy, item-based approaches produce more ac-
curate recommendations when the number of users is much greater than the
number of items, as shown in [17]. On the other hand, when the number of
items is greater than the number of users, user-based approaches work better,
as studied in [18]. Taking into account the efficiency, when the number of
users exceeds the number of items, item-based methods are faster than user-
based ones, since they require less memory and time to compute similarity
weights. Regarding the stability, if the catalog of items doesn’t change in
comparison to the users of the system, an item-based approach is preferable
since items’ similarities can be computed periodically saving both time and
computational costs. Justify a item-based recommendation is easier than a
user-based one, because the user, in this case, is aware that items are being
recommended because of they are similar to other items liked by the user;
conversely, a user-based recommendation is less amenable to be explained be-
cause the active user doesn’t know about other users served as neighborhood
in the recommendation process. Finally, user-based approaches turn out to
generate more serendipitous recommendation than item-based ones. Item-
based approaches rely on items’ similarity; hence, they recommend items
that are similar to those already liked by the users. For instance, in a movie
recommender, they might recommend items of the same genre or by the same
director. On the other hand, user-based methods are more likely to generate
serendipitous recommendations when a small number of neighbors k is used.

3.3.2 Model-Based

Memory-based approaches, differently from model-based ones, exploit the
ratings to learn a model that predicts the rate for the item i of user u. Several
approaches have been proposed in the literature, such as Latent Dirichlet
Allocation [19], Neural Networks [20], Factorization Machines [21] and many
others. Recently, Matrix Factorization (MF) models gain popularity after the
Netflix Prize1 competition. These models, get the inspiration from the SVD
applied in the Information Retrieval field, in which SVD is used to identify
latent semantic factors [22]. MF models map users and items together in a
latent factor space of dimensionality f in which user-item interactions are
modeled as inner products in the aforementioned space. In that space, latent
factors are learned automatically from user feedback. More formally, each
item i is represented with a vector qi ∈ Rf and each user u is represented
with a vector pu ∈ Rf such that the dot product of those vectors is the

1https://www.netflixprize.com

https://www.netflixprize.com
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expected rating:

r̂(u, i) = qTi pu (3.9)

Vectors qi and pu are learned in such a way that the squared error dif-
ference between their dot product and the actual rate (ground-truth) in the
user-item ratings matrix is minimum:

min(p, q) =
∑︂
u,i∈f

(r(u, i) − qTi pu)2 (3.10)

To reduce the error between the predicted and actual value, the algo-
rithm makes use of the baseline (biases) predictor which leverage some char-
acteristics of the dataset. In particular for each user-item (u, i) pair, three
parameters are being exploited:

• µ the overall average rating;

• bi the average rating of item i - µ;

• bu the average rating given by user u - µ.

Adding the baseline predictor to Equation 3.10, the final function to
minimize is the following:

min(p, q, bi, bu) =
∑︂
u,i∈f

(r(u, i) − qTi pu − µ− bi − bu)2 (3.11)

Typically, to minimize Equation 3.11, either stochastic gradient descent
[23, 20, 24] or alternating least squares are performed.

3.4 Hybrid

Content-Based and Collaborative Filtering techniques have complementary
strengths and weaknesses. Obtaining the best from the two methods is
achievable by combining them together. In a movie recommender system,
recommendations could be computed by taking into account both movies
that similar users liked (CF) and movies with features liked by the users
(CB).

Different hybridization techniques have been proposed and a comprehen-
sive survey is given in [25]:

• Weighted: it weigh the score given by different recommenders; the
simplest strategy consists in equally weighing both the CB and CF
scores and then adjust the weights depending on the users’ feedback;
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• Switching: the recommender choses which criteria to adopt in order to
compute the recommendation; it switches from CB to CF, for instance,
whether the recommendation is not enough accurate;

• Mixed: it combines together recommendations from several recom-
menders into the same list by means of a ranking or combination strat-
egy;

• Feature combination: it uses features derived from different knowl-
edge sources (e.g. content and collaborative features); this technique
allows using CF features without relying only on them so that the
system is less affected by the cold-start problem;

• Cascade: it leverages several recommenders to refine the ranking of the
recommendation list: the ranked list provided by the first recommender
is then re-ranked by the subsequent recommenders in order to produce
a more and more accurate ranking;

• Feature augmentation: the output of a recommender augments the
feature space of the subsequent recommender;

• Meta-level: the model generated by one recommender is used as input
by a principal recommender.

In this thesis, are of particular interest two types of methods: Feature
combination and Feature augmentation.

3.5 Evaluation

Evaluating a recommender system is a difficult task. The same algorithm
may perform better or worse, depending on the dataset. Different aspects
of a recommender require different settings and metrics for the evaluation.
Adopting a rigorous evaluation strategy is necessary to obtain correct results
and providing all the details about the experiments is crucial to compare dif-
ferent algorithms and for the reproducibility of experiments. A recommender
system can be evaluated either offline or online. In the former case, past data
are used to train and test the recommender. In this setting, the dataset is
partitioned in train and test set [26]. Usually, a spitting strategy is applied
for each user in the dataset, in order to split her ratings in both train and
test set. A common practice is to user 80% of the ratings for the train set
and the remaining 20% for the test set. The training set is used to train
a model, while the test set is performed only to evaluate the recommender
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system. Performance metrics are computed comparing recommendation lists
with test data. In an online evaluation, a recommender system is through an
A/B test. Users are split into two groups: the control group and the varia-
tion group. To the former, recommendations from the baseline are provided,
conversely, to the other group recommendations from the new algorithm are
provided. Several metrics are taken into account for the evaluation. In this
work, we focus on the offline evaluation that allows faster experimentation
without impacting the user experience on the production system.

3.5.1 Accuracy metrics

To evaluate the accuracy of a recommender, several metrics have been pro-
posed. In this thesis, we focus on Precision@N, Recall@N, F1-Score and
nDCG@N.

Precision@N represents the fraction of relevant items in a top-N recom-
mendation. Let rel(u, i) be a boolean function that represents the relevance
of item i for the user u, with the value of 1 for a relevant item and a value
of 0 for a non-relevant one. Precision@N is computed as follows:

Precision@N =

∑︁N
i=1 rel(u, i)

N
(3.12)

Recall@N denotes the fraction of relevant items from the test set that
occur in the top-N recommendation list. Being test(u) the set of relevant
items in the test set for the user u, Recall@N is defined as:

Recall@N =

∑︁N
i=1 rel(u, i)

|test(u)|
(3.13)

Precision and Recall can be combined with each other in the F1 measure
computed as the harmonic mean between them, as follows:

F1@N = 2
Precision@NRecall@N

Precision@N + Recall@N
(3.14)

Precision@N, Recall@N, F1-Score are not rank-sensitive. nDCG@N, dif-
ferently from the aforementioned metrics, takes into account the position of
a relevant item in the recommendation list. Formally, it is defined as follows:

nDCG@N =
1

iDCG

N∑︂
i=1

2rel(u,i) − 1

log2(i + 1)
(3.15)

where iDCG is a normalization factor that sets nDCG@N value to 1
when an ideal ranking is returned [27].
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Deep Learning

4.1 Introduction

Deep Learning (DL) is a field of Artificial Intelligence, based on a hierarchi-
cal representation on multiple layers, where concepts of a layer are defined
upon the previous layer. Even tough the term Deep Learning is relatively
new, its history can be traced back to 1943, when Walter Pitts and Warren
McCulloch created a computer model based on the neural networks of the
human brain. They used a combination of algorithms and mathematics they
called ”threshold logic” to mimic the thought process. Since that time, Deep
Learning has evolved steadily, with only two significant breaks in its devel-
opment. At that time, DL models were called Artificial Neural Networks
(ANNs) because they were intended to be computational models of biologi-
cal learning. The modern term Deep Learning goes beyond that, it is a more
general principle of learning multiple levels of composition (deep) which can
be applied in machine learning frameworks that are not necessarily inspired
by the human brain.

4.2 A single neuron

The basic unit of computation in a neural network is the neuron, also called a
node or unit. It receives input from some other neurons, or from an external

24
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source and computes an output. Each input has an associated weight w,
which is assigned on the basis of its relative importance to other inputs. The
node applies a function f to the weighted sum of its inputs as shown in Figure
4.1.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 4.1: Structure of a single neuron.

The output of the neuron depicted in Figure 4.1 is computed as follows:

y = f(w1x1 + w2x2 + w3x3 + b) (4.1)

The above network takes numerical inputs x1, x2 and x3 and has weights
w1, w2 and w3 associated with those inputs. Additionally, there is another
input 1 with weight b (bias) associated with it. The role of the bias term is
to allow the activation function f to shift to the left or right, which may be
critical for successful learning.

The output y from the neuron depicted in Figure 4.1 is computed as
shown in the Equation 4.1. The function f is non-linear and it is called the
Activation Function. The purpose of the activation function is to introduce
non-linearity into the output of a neuron. This is important because most
real world data is non linear and we want neurons to learn these non linear
representations.

Every activation function (or non-linearity) takes a single number and
performs mathematical operations on it. Different non-linearities have been
proposed over the years, as shown in Figure 4.2. The most common activation
functions are:

• Sigmoid:

σ(x) =
1

1 + exp−x
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• Hyperbolic Tangent:

tanh(x) = 2σ(2x) − 1

• Rectified Linear Unit:

relu(x) = max(0, x)

y = σ(x)
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y

(a) Sigmoid

y = tanhx
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−1
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y

(b) Hyperbolic Tangent

y = relu(x)
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−1

1

x

y

(c) Rectified Linear Unit

Figure 4.2: Activation functions.
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4.3 Neural Networks

An Artificial Neural Network is a computational model that is inspired by the
way biological neural networks in the human brain process information. Arti-
ficial Neural Networks have generated a lot of excitement in machine learning
research and industry, thanks to many breakthrough results in speech recog-
nition, computer vision and text processing.

The feedforward neural network was the first and simplest type of artificial
neural network devised. It contains multiple neurons arranged in layers.
Neurons from adjacent layers have connections or edges between them. All
these connections have weights associated with them, as shown in Figure 4.3.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 4.3: Structure of an Artificial Neural Network.

A feedforward neural network has three type of layers:

• Input layer: provides information from the outside world to the net-
work; no activation function is applied to the input nodes, they merely
pass on the information to the hidden layer;

• Hidden layer: it has no direct connection to the outside world (hence
the name ”hidden”), an activation function is applied on neurons in
this layer and the output is passed to the output layer;
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• Output layer: it is responsible for computations and transferring in-
formation from the network to the outside world.

The simplest feedforward neural network is the Single Layer Perceptron
which does not contain any hidden layer. On the other hand, a feedforward
neural network with one ore more hidden layer is called Multi Layer Percep-
tron. While a single layer perceptron can only learn linear functions, a multi
layer perceptron can also learn non-linear functions.

In this thesis we focus on Autoencoders Neural Networks.

4.4 Autoencoders

An autoencoder neural network is an unsupervised learning algorithm that
applies backpropagation, setting the target values to be equal to the inputs.
Basically, it tries to reconstruct at the output layer, the input data it is fed
with, by using a latent representation of the original input data which is
encoded in the hidden layer. In other words, it learns an approximation to
the identity function, so as to output x̂ that is similar to x.

Since an autoencoder reconstructs the input data at the output layer, it
means that the number of neurons in the input has to be the same as the
output layer, as depicted in Figure 4.4.
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Figure 4.4: Architecture of Autoencoder Neural Network.
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Learning an identity function to approximate the network’s input data
seems trivial; but by placing constraints on the network, such as by limiting
the number of hidden units, we can discover interesting structure about the
data. Suppose the input x is the pixel values from a 10 × 10 image (100
pixels) and there are 20 hidden units in the hidden layer. The network has to
reconstruct the input data at the output layer by using only 20 hidden units.
It turns out that the network is forced to learn a compressed representation
of the input. An autoencoder is able to discover correlations in the input
features; in fact, a simple autoencoder as the one shown in Figure 4.4 learns
a low-dimensional representation very similar to the PCA algorithm.

Usually, autoencoders are trained with only a single hidden layer even
though this is not a requirement. Nowadays, in the era of Deep Learning, it
is quite common to deal with Deep Autoencoders with several hidden layers.
The main advantage of using several hidden layers is that they approximate
better any mapping from input to latent representation, given enough hidden
units. Deep Autoencoders lead to better compression then corresponding
shallow, as investigated in [28].

4.4.1 Applications of Autoencoders

Autoencoder have been successfully applied to dimensionality reduction and
information retrieval task. Lower-dimensional representations are usually
obtained to improve performances on many tasks or barely to speed up the
computational time (e.g. using lower-dimensional input vector to train a NN
takes less time). Another task that benefits from dimensionality reduction
is Information Retrieval where search become efficient in low-dimensional
spaces.

Even tough Autoencoders are successfully used in several task, as all
neural network models, they work as black-boxes. Explaining the reason
behind their prediction is not an easy task.

4.5 Deep Learning for Recommender Systems

Several approaches have been proposed in the last few years, thanks to the
popularity Deep Learning is gaining. In Neural Network Matrix Factoriza-
tion (NNMF) [29], authors propose the old fashioned matrix factorization in
a deep learning re-visitation. In another work, DeepFM [30], the well-known
Factorization Machine (FM) has been proposed in an end-to-end model which
integrates factorization machines and multilayer perceptron. In DeepFM, FM
computes linear and pairwise interactions between features while MLP lever-
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age non-linearities and deep neural network structure to capture high-order
feature interactions. In a similar way, in Wide&Deep [31], the architecture
authors propose consists of two main components: the wide component and
the deep component. The wide component is a single layer perceptron which
can be seen as a linear model. The deep component is a multilayer percep-
tron. The idea behind Wide&Deep is to combines these two components
in order to capture both memorization(wide component) and generalization
(deep component). This model has been successfully implemented for App
recommendation in Google play. Collaborative Filtering is successfully per-
formed by Autoencoders, as shown in AutoRec [32, 33, 34, 35]. In Collab-
orative Deep Learning (CDL) [36], authors propose a hierarchical Bayesian
model which integrates stacked denoising autoencoder (SDAE) into proba-
bilistic matrix factorization. A session-based recommender based on Recur-
rent Neural Networks has been proposed in [37], in which authors propose
a short session-based data recommender instead of leveraging on long user
histories.

A complete survey about Deep Learning techniques applied to the rec-
ommendation problem has been proposed by [38].

4.6 Interpretability

Very recently, few attempts have been made in order to design interpretable
neural networks. A generic approach, Linear Proxy Models (LIME) has
been proposed by [39] in which a generic black-box system is explained by
perturbing the input data and then that data is used to construct a local
linear model that is leveraged as a simplified proxy for the full model in
the neighborhood of the input. Many works focus on Convolutional Neural
Networks for image classification. In [40], authors modify the CNN so that
each filter in a high convolutional layer represents a specific part of the object.
In [41], authors propose the use of attention mechanism combined with CNN
fed with reviews in order to predict user ratings. The attention mechanism
enables an interpretable representation of users and items. Attention-based
mechanisms learn functions that provide a weighting over inputs or internal
features to focus on a certain portion of the data, which turns out to be more
relevant. Attention approaches have shown remarkable success in the field of
Natural Language Processing, as shown in [42] and in imagine classification
tasks as presented in another work [43].

Even though the attention mechanism is effective in learning which part
of the data is the most relevant, it is not trained for the purpose of creating
human-readable explanations.
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Semantics-Aware Autoencoder

In the last years, deep learning has shown to be a game-changing technol-
ogy in artificial intelligence thanks to the numerous successes it reached in
diverse application fields. Among others, the use of deep learning for the
recommendation problem, although new, looks quite promising due to its
positive performances in terms of accuracy of recommendation results. In a
recommendation setting, in order to predict user ratings on unknown items a
possible configuration of a deep neural network is that of autoencoders typ-
ically used to produce a lower dimensionality representation of the original
data. In this paper we present SEMAUTO, an autoencoder that bases the
structure of its neural network on the semantics-aware topology of a knowl-
edge graph thus providing a label for neurons in the hidden layer that are
eventually used to build a user profile and then compute recommendations.
We show the effectiveness of SEMAUTO in terms of accuracy, diversity and
novelty by comparing with state of the art recommendation algorithms.

5.1 Introduction

Recommender systems (RS) have become pervasive tools we experience in
our everyday life. While browsing a catalog of items RSs exploit users’ past
preferences in order to suggest new items they might be interested in.

Knowledge Graphs have been recently adopted to represent items, com-
pute their similarity and relatedness [44] as well as to feed Content-Based
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(CB) and hybrid recommendation engines [45]. The publication and spread of
freely available Knowledge Graphs in the form of Linked Open Data datasets,
such as DBpedia [2], has paved the way to the development of knowledge-
aware recommendation engines in many application domains and, still, gives
the possibility to easily switch from a domain to another one by just feeding
the system with a different subset of the original graph.

Another technology that surely boosted the development of a new gen-
eration of smarter and more accurate recommender systems is deep learning
[46]. Starting from the basic notion of an artificial neural net (ANN), sev-
eral configurations of deep ANN have been proposed over the years, such as
autoencoders.

In this chapter, we show how autoencoders technology can benefit from
the existence of a Knowledge Graph to create a representation of a user
profile that can be eventually exploited to predict ratings for unknown items.
The main intuition behind the approach is that both ANN and Knowledge
Graph expose a graph-based structure. Hence, we may imagine building the
topology of the inner layers in the ANN by mimicking that of a Knowledge
Graph.

5.2 Related Work

Autoencoders and Deep Learning for RS. The adoption of deep learn-
ing techniques is for sure one of the main advances of the last years in the
field of recommender systems. In [33], the authors propose the usage of a
denoising autoencoder performs a top-N recommendation task by exploiting
a corrupted version of the input data.

A pure Collaborative-Filtering (CF) model based on autoencoders is de-
scribed in [32], in which the authors develop both user-based and item-based
autoencoders to tackle the recommendation task. Stacked Denoising Autoen-
coders are combined with collaborative filtering techniques in [47] where the
authors leverage autoencoders to get a smaller and non-linear representation
of the users-items interactions. This representation is eventually used to feed
a deep neural network which can alleviate the cold-start problem thanks to
the integration of side information. A hybrid recommender system is finally
built.

Wang et al. [48] suggest to apply deep learning methods on side in-
formation to reduce the sparsity of the rating matrix in collaborative ap-
proaches. In [49] the authors propose a deep learning approach to build
a high-dimensional semantic space based on the substitutability of items;
then, a user-specific transformation is learned in order to get a ranking of
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items from such a space. Analysis about the impact of deep learning on
both recommendation quality and system scalability are presented in [50],
where the authors first represent users and items through a rich feature set
made on different domains and then map them to a latent space. Finally, a
content-based recommender system is built.
Knowledge Graphs and Linked Open Data for RS. Several works have
been proposed exploiting side information coming from knowledge graphs
and Linked Open Data (LOD) to enhance the performance of recommender
systems. Most of them rely on the usage of DBpedia as knowledge graph.
In [4], for the very first time, a LOD-based recommender system is proposed
to alleviate some of the major problems that affect collaborative techniques
mainly the high sparsity of the user-item matrix. The effectiveness of such an
approach seems to be confirmed by a large number of methods that have been
proposed afterward. A detailed review of LOD-based recommender systems
is presented in [5]. By leveraging the knowledge encoded in DBpedia, it is
possible to build an accurate content-based recommender system [3].

5.3 Semantics-Aware Autoencoder for rating

prediction

The main idea of our approach is to map the connections in a knowledge
graph (KG) with those between units from layer i to layer i+1, as shown in
Figure 7.1. There we see that we injected only categorical information in the
autoencoder and we left out factual one. As a matter of fact, if we analyze
these two kinds of information in DBpedia we may notice that:

• the quantity of categorical information is higher than the factual one.
If we consider movies, the overall number of entities they are related
with is lower than the overall number of categories;

• categorical information is more distributed over the items than the
factual one. Going back to movies we see that they are more connected
with each other via categories than via other entities.

Hence, we may argue that for a recommendation task where we are looking for
commonalities among items, categorical data may result in more meaningful
than the factual one. The main assumption behind this choice is that, for
instance, if a user rated positively Cloud Atlas this may be interpreted as a
positive rating for the connected category Post-apocalyptic films.

In order to test our assumption, we mapped the autoencoder network
topology with the categorical information related to items rated by users.



CHAPTER 5. SEMANTICS-AWARE AUTOENCODER 34

As we build a different autoencoder for each user depending on the items
she rated in the past, the mapping with a KG makes the hidden layer of
variable length in the number of units, depending on how much categorical
information is available for items rated by the specific user.
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Figure 5.1: Architecture of a semantic autoencoder.

Let n be the number of items rated by u available in the graph and
Ci = {ci1, ci2, . . . , cim} be the set of m categorical nodes associated in the
KG to the item i. Then, F u =

⋃︁n
i=1 Ci is the set of features mapped into the

hidden layer for the user and the overall number of hidden units is equal to
|F u|. Once the neural network setup is done, the training process takes place,
feeding the neural network with ratings provided by the user, normalized in
the interval [0,1]. It is worth noticing that, as the autoencoder, we build
to mimic the structure of the connections available in the Knowledge Graph,
the neural network we build is not fully connected. Moreover, it does not
need bias nodes because these latter are not representative of any semantic
data in the graph.

Nodes in the hidden layer correspond to categorical information in the
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knowledge graph. At every iteration of the training process, backpropagation
will change weights accordingly on edges among units in the layers, such that
the sum of entering edges in an output unit will reconstruct the user rating
for the item represented by that unit. Regarding the nodes in the hidden
layer, we may interpret the sum of the weights associated to entering edges
computed at the end of the training process as the importance of that feature
in the generation of an output which, in our case, are the ratings provided
by the user.

5.3.1 User profiles

Once the network converges we have a latent representation of features as-
sociated with a user profile together with their weights. However, very in-
terestingly, this time the features represented by nodes in the hidden layer
also have an explicit meaning as they are in a one to one mapping with cat-
egories in a knowledge graph. Our autoencoder is, therefore, able to learn
the semantics behind the ratings of each user and weight them through back-
propagation. In our current implementation we used the well known sigmoid
σ(x) = 1

1+e−x activation function since we normalized the design matrix to be
within [0, 1]. We trained each autoencoder for 10,000 epochs with a learning
rate of r = 0.03; weights are initialized to zero close values as Xavier et al.
suggest in [51].

Starting from the trained autoencoder, we may build a user profile by
considering the categories associated to the items she rated in the past as
features and by assigning them a value according to the weights associated
to the edges entering the corresponding hidden units. Given a user u, the
weight associated to a feature c is then the summation of the weights wu

k(c)
associated to the edges entering the hidden node representing the Knowledge
Graph category c after training the autoencoder with the ratings of u.
More formally, we have:

ωu(c) =

|In(c)|∑︂
k=1

wu
k(c)

where In(c) is the set of the edges entering the node representing the feature
c. We remember that since the autoencoder is not fully connected, |In(c)|
varies depending on the related connections to the category c in the knowl-
edge graph.

By means of the weights associated with each feature, we can now model a
user profile composed by a vector of weighted categorical features. Given F u

as the set of categories belonging to all the items rated by u and F =
⋃︁

u∈U F u
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as the set of all features among all the users in the system we have for each
user u ∈ U and for each feature c ∈ F :

P (u) = {⟨c, ω⟩ | ω = ωu(c) if c ∈ F u}

Considering that users provide a different number of ratings, we have an
unbalanced distribution in the dimension of user profiles. Moreover, as a
user usually rate only a small subset of the entire catalog, we have a massive
number of missing features belonging to items not rated by u. In order to
compute values associated with missing features, we leverage an unsupervised
deep learning model inspired by the word2vec approach [?]. It is an efficient
technique originally conceived to compute word embeddings (i.e., numerical
representations of words) by capturing the semantic distribution of textual
words in a latent space starting from their distribution within the sentences
composing the original text. Given a corpus, e.g., an excerpt from a book,
it projects each word in a multidimensional space such that words similar
from a semantic point of view result closer to each other. In this way, we
are able to evaluate the semantic similarity between two words even if they
never appear in the same sentence. Given a sequence of words [x1, . . . , xn]
within a window, word2vec compute the probability for a new word x′ to be
next one in the sequence. More formally, it computes p(x′ | [x1, . . . , xn]).

In our scenario, we may imagine replacing sentences represented by se-
quences of words with user profiles represented by sequences of categories in
c ∈ F u and then use the word2vec approach to compute for a given user u
the weight of missing features c′ ̸∈ F u.

We need to prepare the user profiles P (u) to be processed by word2vec.
Hence, we first generate a corpus made of sequences of ordered features where
the order is given by ω. The very preliminary step is that of selecting an
order among elements c ∈ F u which results coherently for all u ∈ U thus
moving from the set P (u) to a representative sequence of elements s(u).

For each ⟨c, ω⟩ ∈ P (u) we create a corresponding pair ⟨c, norm(ω)⟩ with
norm being the mapping function

norm : [0, 1] ↦→ {0.1, 0.2, 0.3, . . . , 1}

that linearly maps1 a value in the interval [0, 1] to a real value in the set
{0.1, 0.2, 0.3, . . . , 1}. The new pairs form the set

P norm(u) = {⟨c, norm(ω)⟩ | ⟨c, ω⟩ ∈ P (u)}
1In our current implementation we use a standard minmax normalization.
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For each normalized user profile set P norm(u) we then build the corresponding
sequence

s(u) = [. . . , ⟨ci, norm(ωu
i )⟩, . . . ⟨cj, norm(ωu

j )⟩, . . .]

with ωu
i ≥ ωu

j .
Once we have the set S = {s(u) | u ∈ U} we can feed the word2vec

algorithm with this corpus in order to find patterns of features according to
their distribution across all users. In the prediction phase, by using each
user’s sequence of features s(u) as input for the trained word2vec model, we
estimate the probability of ⟨c′, norm(ω′)⟩ ∈

⋃︁
v∈U P norm(v) − P norm(u) to

belong to the given context, or rather to be relevant for u. In other words,
we compute p(⟨c′, norm(ω′)⟩ | s(u)).

It is worth noticing that given c′ ∈ F u we may have multiple pairs with
c′ as first element in

⋃︁
v∈U P norm(v)−P norm(u). For instance, given the cat-

egory dbc:Kung fu films we may have both ⟨dbc : Kung fu films, 0.2⟩ and
⟨dbc : Kung fu films, 0.5⟩, with the corresponding probabilities
p(⟨dbc : Kung fu films, 0.2⟩ | s(u)), p(⟨dbc : Kung fu films, 0.5⟩ | s(u)).
Still, as we want to add the category dbc:Kung fu films together with its
corresponding weight only once in the user profile we select only the pair
with the highest probability. The new user profile is then

P̂ (u) = P (u) ∪ {⟨c, ω⟩ | argmax
ω∈{0.1,...,1}

p(⟨c, ω⟩ | s(u)) and ⟨c, ω⟩ ̸∈ P norm(u)}

We point out that while the original P (u) is built by exploiting only content-
based information, the enhanced user profile P̂ (u) also considers collaborative
information as it based also on the set S containing a representation for the
profiles of all the users in U .

5.3.2 Computing Recommendations

Given the user profiles represented as vectors of weighted features, recom-
mendations are then computed by using a well-known k-nearest neighbors
approach. User similarities are found through projecting their user profile in
a Vector Space Model, and then similarities between each pair of users u and
v is computed using the cosine similarity.

For each user u we find the top-k similar neighbors to infer the rate r for
the item i as the weighted average rate that the neighborhood gave to it:

r(u, i) =

∑︁k
j=1 sim(u, vj) · r(vj, i)∑︁k

j=1 sim(u, vj)
(5.1)
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where r(vj, i) is the rating assigned to i by the user vj. We use then ratings
from Equation (5.1) to provide top-N recommendation for each user.

5.4 Experiments

In this section, we present the experimental evaluations performed on three
different datasets. We first describe the structure of the datasets used in the
experiments and the evaluation protocol and then we move to the metrics
adopted for the evaluation and the discussion of obtained results.

Our experiments can be reproduced through the implementation available
on our public repository2.

5.4.1 Dataset

In order to validate our approach we performed experiments on the three
datasets summarized in Table 7.1.

#users #items #ratings sparsity

MovieLens 20M 138,493 26,744 20,000,263 99.46%
Amazon Digital Music 478,235 266,414 836,006 99.99%
LibraryThing 7,279 37,232 626,000 99.77%

Table 5.1: Datasets

In our experiments, we referred to the freely available knowledge graph of
DBpedia3. The mapping contains 22,959 mapped items for MovieLens 20M4,
4,077 items mapped for Amazon Digital Music5 and 9,926 items mapped for
LibraryThing6. For our experiments, we removed from the datasets all the
items without a mapping in DBpedia.

5.4.2 Evaluation protocol

Here, we show how we evaluated the performances of our methods in recom-
mending items. We split the dataset using Hold-Out 80/20, ensuring that
every user has 80% of their ratings in the training set and the remaining

2https://github.com/sisinflab/SEMAUTO-2.0
3https://dbpedia.org
4https://grouplens.org/datasets/movielens/20m/
5http://jmcauley.ucsd.edu/data/amazon/
6https://www.librarything.com

https://dbpedia.org
https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/
https://www.librarything.com
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20% in the test set. For the evaluation of our approach we adopted the ”all
unrated items” protocol described in [52]: for each user u, a top-N recom-
mendation list is provided by computing a score for every item i not rated by
u, whether i appears in the user test set or not. Then, recommendation lists
are compared with the test set by computing both performance and diversity
metrics such as Precision, Recall, F-1 score, nDCG [53], aggregate diversity,
and Gini index as a measure of sales diversity [54].

5.5 Results Discussion

In our experiments, we compared our approach with three different states
of the art techniques widely used in recommendation scenarios: BPRMF,
WRMF and a single-layer autoencoder for rating prediction. BPRMF [55]
is a Matrix Factorization algorithm which leverages Bayesian Personalized
Ranking as the objective function. WRMF [56, 57] is a Weighted Regular-
ized Matrix Factorization method which exploits users’ implicit feedback to
provide recommendations. In their basic version, both strategies rely ex-
clusively on the User-Item matrix in a pure collaborative filtering approach.
They can be hybridized by exploiting side information, i.e. additional data
associated with items. In our experiments, we adopted categorical informa-
tion found on the DBpedia Knowledge Graph as side information. We used
the implementations of BPRMF and WRMF available in MyMediaLite7 and
implemented the autoencoder in Keras8. We verified the statistical signifi-
cance of our experiments by using the Wilcoxon Signed Rank test we get a
p-value very close to zero, which ensures the validity of our results.
In Table 5.3 we report the results gathered on the three datasets by applying
the methods discussed above. As for our approach SEMAUTO, we tested it
for a different number of neighbors by varying k.
In terms of accuracy, we can see that SEMAUTO outperforms our baselines
on both MovieLens 20M and Amazon Digital Music datasets, while on Li-
braryThing the achieved results are quite the same. In particular, on the
LibraryThing dataset, only the fully-connected autoencoder performs better
than our approach with regard to accuracy.
Concerning diversity, we get much better results on all the datasets. Further-
more, by analyzing the gathered results, it seems that our approach provides
very discriminative descriptions for each user, letting us identify the most
effective neighborhood and compute both accurate and diversified recom-
mendations. As a matter of fact, we achieve the same results in terms of

7http://mymedialite.net
8https://keras.io

http://mymedialite.net
https://keras.io
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accuracy as the baselines by suggesting much more items.

avg #features std avg #features/avg #items

Movielens 20M 1015.87 823.26 8.82
Amazon Digital Music 7.22 9.77 5.17
LibraryThing 206.88 196.64 1.96

Table 5.2: Summary of hidden units for mapped items only.

As shown in Table 5.2, SEMAUTO performs better on those datasets
whose items can be associated with a large amount of categorical informa-
tion, which implies the usage of many hidden units. This occurs because
very complex functions can be modeled by ANNs if enough hidden units are
provided, as Universal Approximation Theorem points out. For this reason,
our approach turned out to work better on MovieLens 20M dataset (whose
related neural networks have a high number of hidden units) rather than the
others. In particular, the experiments on LibraryThing dataset show that the
performances get worse as the number of the neurons decreases, i.e. available
categories are not enough.

5.6 Conclusion and future work

In this work, we have presented a recommendation approach that combines
the computational power of deep learning with the representational expres-
siveness of knowledge graphs. As for classical applications of autoencoders
to feature selection, we compute a latent representation of items but, in our
case, we attach an explicit semantics to selected features. This allows our
system to exploit both the power of deep learning techniques and, at the same
time, to have a meaningful and understandable representation of the trained
model. We used our approach to autoencode user ratings in a recommenda-
tion scenario via the DBpedia knowledge graph and proposed an algorithm
to compute user profiles then adopted to provide recommendations based on
the semantic features we extract with our autoencoder. Experimental results
show that we are able to outperform state of the art recommendation algo-
rithms in terms of accuracy and diversity. Furthermore, we will compare our
approach with other competitive baselines as suggested in more recent works
[58]. The results presented in this paper pave the way to various further
investigations in different directions. From a methodological and algorithmic
point of view, we can surely investigate the augmentation of further deep
learning techniques via the injection of explicit and structured knowledge
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k F1 Prec. Recall nDCG Gini aggrdiv

MOVIELENS 20M

AUTOENCODER − 0.21306 0.21764 0.20868 0.24950 0.01443 1587
BPRMF − 0.14864 0.15315 0.14438 0.17106 0.00375 3263
BPRMF + SI − 0.16838 0.17112 0.16572 0.19500 0.00635 3552
WRMF − 0.19514 0.19806 0.19231 0.22768 0.00454 766
WRMF + SI − 0.19494 0.19782 0.19214 0.22773 0.00450 759

SEMAUTO

5 0.18857 0.18551 0.19173 0.21941 0.01835 5214
10 0.21268 0.21009 0.21533 0.24945 0.01305 3350
20 0.22886 0.22684 0.23092 0.27147 0.01015 2417
40 0.23675 0.23534 0.23818 0.28363 0.00827 1800
50 0.23827 0.23686 0.23970 0.28605 0.00780 1653
100 0.23961 0.23832 0.24090 0.28924 0.00662 1310

AMAZON DIGITAL MUSIC

AUTOENCODER − 0.00060 0.00035 0.00200 0.00102 0.33867 3559
BPRMF − 0.01010 0.00565 0.04765 0.02073 0.00346 539
BPRMF + SI − 0.00738 0.00413 0.03480 0.01624 0.06414 2374
WRMF − 0.02189 0.01236 0.09567 0.05511 0.01061 103
WRMF + SI − 0.02151 0.01216 0.09325 0.05220 0.01168 111

SEMAUTO

5 0.01514 0.00862 0.06233 0.04365 0.03407 3378
10 0.01920 0.01091 0.07994 0.05421 0.05353 3449
20 0.02233 0.01267 0.09385 0.06296 0.08562 3523
40 0.02572 0.01460 0.10805 0.06980 0.14514 3549
50 0.02618 0.01486 0.10974 0.07032 0.17192 3549
100 0.02835 0.01608 0.11964 0.07471 0.24859 3448

LIBRARYTHING

AUTOENCODER − 0.01562 0.01375 0.01808 0.01758 0.07628 2328
BPRMF − 0.01036 0.00954 0.01134 0.01001 0.06764 3140
BPRMF + SI − 0.01065 0.00994 0.01148 0.01041 0.10753 4946
WRMF − 0.01142 0.01071 0.01223 0.01247 0.00864 439
WRMF + SI − 0.01116 0.01030 0.01217 0.01258 0.00868 442

SEMAUTO

5 0.00840 0.00764 0.00931 0.00930 0.13836 4895
10 0.01034 0.00930 0.01163 0.01139 0.07888 3558
20 0.01152 0.01029 0.01310 0.01248 0.04586 2245
40 0.01195 0.01073 0.01347 0.01339 0.02800 1498
50 0.01229 0.01110 0.01378 0.01374 0.02403 1312
100 0.01278 0.01136 0.01461 0.01503 0.01521 873

Table 5.3: Experimental Results
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coming from external sources of information. Giving an explicit meaning to
neurons in an ANN as well as to their connections can fill the semantic gap
in describing models trained via deep learning algorithms. Moreover, hav-
ing an explicit representation of latent features opens the door to a better
and explicit user modeling. We are currently investigating how to exploit
the structure of a Knowledge Graph-enabled autoencoder to infer qualitative
preferences represented by means of expressive languages such as CP-theories
[59]. Providing such a powerful representation may also result in being a
key factor in the automatic generation of explanation to recommendation
results.



Chapter 6

Explainability

Recommender Systems have been widely used to help users in finding what
they are looking for thus tackling the information overload problem. Af-
ter several years of research and industrial findings looking after better al-
gorithms to improve accuracy and diversity metrics, explanation services
for recommendation are gaining momentum as a tool to provide a human-
understandable feedback to results computed, in most of the cases, by black-
box machine learning techniques. As a matter of fact, explanations may
guarantee users satisfaction, trust, and loyalty in a system. In this paper, we
evaluate how different information encoded in a Knowledge Graph are per-
ceived by users when they are adopted to show them an explanation. More
precisely, we compare how the use of categorical information, factual one or a
mixture of them both in building explanations, affect explanatory criteria for
a recommender system. Experimental results are validated through an A/B
testing platform which uses a recommendation engine based on a Semantics-
Aware Autoencoder to build users profiles which are in turn exploited to
compute recommendation lists and to provide an explanation.

6.1 Introduction

In recent time we assisted to the rising of Deep Learning models in many fields
such as Computer Vision, Speech Recognition, Natural Language Processing
and, more recently, few attempts have also been made to solve the Recom-

43
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mendation problem. Deep Learning techniques have proven their strength
thus gaining the attention of both researchers and companies and they are
widely deployed in nowadays recommender systems. While research has
mainly focused on improving accuracy metrics in recommenders, under the
hood, their algorithms are becoming more and more complex thus making
extremely hard to understand the reasons behind model predictions for a
particular input. This recently led both researchers and companies to pay
more attention to explainable models. Indeed, it has been proven that show-
ing to users an explanation for the provided recommendation leads to better
interaction with the recommender system. Moreover, when users understand
how the system works, they can refine their preferences in order to get a
better recommendation according to their tastes. However, in many popular
recommenders such as Amazon or Netflix, the explanation provided is still
very poor, as it is essentially based on a popularity basis: it just tells that
users with similar tastes have enjoyed the suggested items. It turns out that
this kind of explanation is not perceived as a valid justification of why the
system is recommending certain items and it hardly improves users loyalty
in the system. On the other hand, a content-based explanation turns out to
be more engaging from the user’s point of view because it makes users aware
about item’s attributes that might be relevant for them.

Providing a content-based explanation seems to be much more difficult
because item descriptions are not always available and they are not easy to
maintain. Thus, some attempts have been made in order to exploit Knowl-
edge Graphs as data source for items’ content description.

In this work we propose to exploit a Semantics-Aware Autoencoders (SE-
MAUTO) [60] to compute explainable recommendations. Originally devel-
oped to cope with the cold start problem, in SEMAUTO the structure of
the DBpedia KG is injected within an Autoencoder Neural Network, whose
structure is built by mimicking the existing connections in the KG. Then, af-
ter feeding such a network with user ratings, weights associated to the hidden
neurons are extracted and then used to build knowledge-aware user profiles
which are eventually used to compute recommendations. In [61] we prove
that SEMAUTO can also be effectively used to compute recommendations
in non-cold situations reaching very competitive results in terms of accuracy
and diversity.

Here we show how the model built by SEMAUTO can also be adopted
to compute content-based explanations to recommended items. We evalu-
ated the effectiveness of our approach through an A/B testing platform with
892 volunteers and compared its results to two baselines. We tested both
a pointwise and a pairwise explanation style by exploiting different kinds of
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available information in DBpedia1 (categorical and factual), in order to inves-
tigate how the effectiveness of the proposed explanation changes according
to the selected properties. The main research questions we address in this
paper are then:

RQ1 Can we assume that the information encoded in the hidden layer of
the SEMAUTO autoencoder is representative of user preferences?

RQ2 Given a content-based explanation built upon the SEMAUTO model,
is a pairwise explanation better than a simple pointwise one for the
user?

6.2 Related works

Making a Recommender System (RS) transparent to users is getting more
and more relevance since it may lead to users retain [62]. Different studies [63,
64] have pointed out that introducing transparency in the recommendation
process may have lots of advantages because users appear to be more satisfied
with the recommendation if they are aware of the reasons why certain items
are suggested. Furthermore, the provided explanation may also convince
users to try items they would have normally ignored, thus improving users
confidence in the system.

Since the explanation may be decoupled from the recommendation pro-
cess, a distinction between transparency and justification has to be made
[65]. The explanation brings transparency to the system if it makes users
aware about how the recommender engine works, explaining somehow the
underlying algorithm behind the proposed suggestions. This is usually the
case of those explanations computed along with the recommendation. On the
other hand, justification implies an explanation which is not directly related
to the recommendation algorithm, thus it can be generated in a more freely
way. Such kind of explanations may be preferred to transparency because of
algorithms that are difficult to explain or have not to be spread.

The main advantages users may get from the explanation are described
in [66] and they include: transparency, scrutability, trust, effectiveness, per-
suasiveness, efficiency and satisfaction. In [67], the authors show how they
can be exploited as evaluation metrics for explanatory services. However,
providing effective explanations is not always a trivial task; RSs have surely
proven to be very accurate in accomplishing their tasks, but they usually
work just as black boxes, being not transparent at all. In order to overcome

1http://dbpedia.org

http://dbpedia.org
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this issue, new methods have been developed in order to generate an ex-
plainable recommendation ([64] provides an overview of the most successful
approaches proposed over the years) such as MoviExplain [68], which ex-
ploits movies metadata to justify its recommendation lists. Other interesting
works include: a RS based on Restricted Boltzmann Machines which looks at
the rating distribution to identify the most explainable items [69], a Latent
Factor Model leveraging users reviews to compute more transparent recom-
mendations [70] and, finally, a novel approach based on movies information
encoded in the Linked Open Data cloud which generates natural language
explanation for the computed recommendation presented in [71]. Looking
at the last mentioned method, it is worth noticing how Knowledge Graphs
(KG) are recently being used in lots of applications; they freely offer a large
amount of structured data which turned out to be very useful also in recom-
mendation scenarios [3, 5, 45]. In particular, in [60], the authors introduce
the idea of a Semantics-Aware Autoencoder which paves the way to compute
explanation by leveraging deep learning techniques.

As a matter of fact, all the approaches based on deep learning models
that have been proposed over the years, turned out to barely leverage latent
factors to which no meaning can be attached to. Among them, Autoencoder
Neural Networks have proven their effectiveness in CF settings as shown in
[32], in which the authors use an Autoencoder fed with user ratings in order
to predict missing value for users’ unseen items. In other works such as [48]
a stacked architecture made of Autoencoders is proposed to perform a gener-
alization over a higher set of latent features that every stacked autoencoder
is able to learn. More recently, in [72] the authors propose a hybrid archi-
tecture for Autoencoders in order to incorporate both users’ feedback and
content description about items. A similar approach has been proposed in
[73], in which they exploit side information in a CF setting by using Stacked
Autoencoders in order to overcome the cold start problem and data sparsity.

6.3 Background technologies

Our approach relies on two main technologies: Knowledge Graphs and Au-
toencoder Neural Networks. The proposed method shows how to use the
former to map KG’s connections to the topology of the latter, in order to
give an explicit meaning to the connections in the NN.
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6.3.1 Knowledge Graphs

In the past few years, we have assisted to the publication of freely ontologi-
cal data on the Web, thanks to diverse communities that began to develop
Knowledge Graphs as well-structured graph data encoding the human knowl-
edge. KGs are oriented graphs in which nodes identify resource entities and
edges provide labeled relationships between them. Some prominent examples
of KGs are DBpedia and Wikidata, which are community driven projects that
leverage on Wikipedia pages to automatically parse structured data. Mainly,
two kind of information exist in DBpedia: semantics-aware and factual one.
The former can be divided into categorical and ontological data. Categorical
information is encoded through the dct:subject predicate and represents
items categories parsed from Wikipedia infoboxes, such as Vigilante films

or Cyborg films. Categories in Wikipedia are collaboratively maintained by
community’s editors thus leading to a rich set of categories that reflects a hu-
man classification by encoding knowledge about classes attributes and other
semantic relations [74]. Ontological data basically captures entities types
(classes) and their hierarchy; it does not only represent their taxonomy but
extends it by using restrictions on its relationships to other classes or on the
properties a particular class is allowed to posses. Finally, factual knowledge
is merely made of facts ; it identifies items’ attributes, as it can be in the
movies domain that the actor Will Smith starred in the movie I, Robot,
as depicted in Figure 6.1. Differently from categorical information, factual
one is identified via different attributes/predicates connecting an item to
different entities as in the case of director, starring, etc..
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Figure 6.1: Part of a KG related to the movie domain.

dct:subject
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6.4 Semantics-Aware Autoencoder

Neural Networks model are generally made by one input layer, one or more
hidden layers and an output layer. Every layer contains neurons, and every
neuron of layer i is connected to all neurons of layer i + 1. In particular,
Autoencoders are a special kind of unsupervised learning Neural Networks
that learn a function able to reconstruct the original data available at the
output layer. In the training phase, autoencoders learn how to reconstruct
the input vector x through a latent representation encoded in the hidden
layers.

In a semantics-aware autoencoder, the hidden layers and their connec-
tions are substituted by the knowledge graph thus having an explicit rep-
resentation on the meaning associated both to hidden nodes and to their
mutual connections [60]. This means that each neuron represents an entity
in the adopted KG and the edge between two autoencoder nodes exist if the
corresponding KG entities are connected with a predicate (labeled edge).

In our implementation, we adopted three different configurations based
on a single hidden layer semantics-aware autoencoder (see Figure 7.1) which
exploits one of the following sets of information available in DBpedia: (i)
semantic data, or rather categorical attributes of items; (ii) factual data,
specific items properties (such as actors and directors in the movie do-
main); (iii) semantic and factual information, a mixture of the previous two.

Hence, the resulting autoencoder has three layers: input layer, hidden
layer and output layer where the input and output layers represent items in
the catalog while the middle hidden layer contains their DBpedia categories
and/or properties.

As previously said, in the training phase, an autoencoder learns how
to reconstruct the input vector (in our case user ratings) using the latent
representation encoded in the hidden layer. As we train an autoencoder
per user, once the model converges, in a semantics-aware autoencoder, for
each user we have a latent representation of item’s features which, actually,
result to be no more latent because every neuron corresponds to an entity in
the KG. It turns out that features belonging to positively rated items tend
to have a higher weight, differently from those of negatively rated items.
This behavior is quite understandable considering that a rating feeding an
input node (representing an item in the catalog) flows throughout the neural
network by crossing only features/nodes connected to it in the KG. We want
to stress here that, although each autoencoder is trained over a not huge
number of samples, in [61] we prove that recommendation results have very
good performance in terms of accuracy and diversity also compared to state-
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of-the-art algorithms2.
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Figure 6.2: Architecture of a semantic autoencoder.

To train such a kind of autoencoder, we inhibit the feedforward and back-
propagation step for those neurons which result to be not connected in the
KG by using a masking multiplier matrix M where rows and columns repre-
sent respectively items and features.

Mm,n =

⎛⎜⎝a1,1 a1,2 · · · a1,n
...

...
. . .

...
am,1 am,2 · · · am,n

⎞⎟⎠ (6.1)

The matrix in Equation (6.1) represents the adjacency matrix of the KG

2The code implementing SEMAUTO has been developed by using TensorFlow and is
available at https://github.com/sisinflab/SEMAUTO-2.0.

https://github.com/sisinflab/SEMAUTO-2.0
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where a generic entry is a binary value indicating whether a connection among
entities exists in it. In other words, we have

ai,j ∈ Mm,n =

{︄
1, if item i is connected to feature j

0, otherwise

Hence, hidden (h) and output (o) layers are computed by the following
two equations:

h = g(X × (W1 ◦M))

o = g(h× (W2 ◦MT ))

During the backpropagation step, gradients are computed as usually for
W2 and W1 with respect to a mean squared error loss E = 1

2

∑︁
i ∥ xi − yi ∥2

being xi and yi the elements of the input and output vector respectively.
The weights update step in SGD (Stochastic Gradient Descent) back-

propagation has been modified according to Equations (6.2) in order to take
into account the masking matrix:

W1 = (W1 ◦M) − r · ∂E

∂W1

W2 = (W2 ◦MT ) − r · ∂E

∂W2

(6.2)

Where E is the mean squared error loss while W1 and W2 represent the
weight matrices for the connections between the input and hidden layer (W1)
and between the hidden layer and the output layer (W2). They are both
initialized randomly using Xavier initialization [51]. In our experiments, we
trained the model for 1000 epochs with a learning rate r = 0.03 and we used
the well-known sigmoid σ(z) = 1

1+e−z as activation function. Since we train
one autoencoder per user and we want it to overfit on user ratings, we did
not use any form of regularization.
Computing user profiles. After training the autoencoder for each user u,
we extract the weights of the hidden neurons and use them to build a user
profile P (u):

P (u) = {⟨fu1, wu1⟩, . . . , ⟨fum, wum⟩}

being fu the label associated to the neuron and wu its corresponding
weight for u. Indeed, as each hidden neuron represents an entity in DBpe-
dia, we may assume that its weight after the training is an indicator of the
importance of the corresponding entity for u.
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6.5 Semantics-Aware Explanations

As previously said, in this work we explore the adoption of a semantic au-
toencoder to provide an explanation for top-N recommendations. In our
experimental setting aimed at evaluating the explainability of the trained
model, while building the structure of the SEMAUTO autoencoder we used
those KG entities reachable through the predicate dbo:subject as item cat-
egories, while we used the approach originally proposed in [75] to select the
top-3 factual movie properties: dbo:starring, dbo:director, dct:writer3.

In order to formulate a human-understandable explanation for the pro-
vided results, we rely on the weights associated to features in the user profile,
which also appear in the description of the recommended items. In particu-
lar, given a user u and a recommendation list rec(u) = [⟨i1, r̃u1⟩, . . . , ⟨in, r̃un⟩],
with r̃uk being a score/rating computed for the item ik by a recommendation
engine, we may compute a pointwise and a pairwise personalized explanation.

pointwise personalized. Given an item i = {f1i, f2i, . . . , fni} described by
a set of features fi, the pointwise explanation e1k(i) is computed by
considering the set of top-k highest weighted features in P (u) which
also appear in i.

pairwise personalized. Given two items i and j such that r̃ui > r̃uj , the
pairwise explanation e2k(i, j) is computed by evaluating both e1k(i)
and e1k(j). In case m features are in common between e1k(i) and
e1k(j), we compute e1k+m(j) and leave them only in e1k(i) thus avoid-
ing any overlap between the explanation for i and that for j.

To verify that the explanation generated through a Semantics-Aware Au-
toencoder is able to satisfy the main explanatory criteria of transparency,
persuasiveness, effectiveness, trust and satisfaction, we built a web platform4

that returns the top-5 recommendations and then asks for users’ feedback
about the provided explanation.

6.5.1 Explanation styles

We provided our platform with four different explanation styles: as in [71], we
used a popularity-based explanation and a non-personalized one as baselines

3We selected only the top-3 properties to reduce the dimension of the feature space
and then minimize the noise in the provided explanation. Finding the best number of
properties to compute explanations is not in the scope of this paper and is part of our
future work.

4Available at http://sisinflab.poliba.it/semanticweb/lod/recsys/

explanation

http://sisinflab.poliba.it/semanticweb/lod/recsys/explanation
http://sisinflab.poliba.it/semanticweb/lod/recsys/explanation
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[67] while as third and fourth style we provide our pointwise and pairwise
approaches. During the usage of the platform by a user, we randomly select
one of the four styles and show the associated explanation, which is generated
for the top-2 recommended items in a pairwise fashion. Hence, the user may
receive one of the following explanations:

popularity-based We suggest these items since they are very popular among
people who like the same movies as you.

(non-/pointwise) personalized We guess you would like to watch i and
j since they are about f̃u1, . . . f̃uk

pairwise personalized We guess you would like to watch i more than j
because you may prefer e1k(i) over e1k+m(j) (Example 6.5.1)

Example 6.5.1 In order to show the difference between a pointwise and a
pairwise personalized explanation, hereafter we report the two explanation
styles with reference to a recommendation having Terminator 2: Judgment
Day and Transformers: Revenge of the fallen as the first two items in the
recommendation list. The pointwise personalized explanation may look like:

We guess you would like to watch Terminator 2: Judgment Day (1991)
and Transformers: Revenge of the Fallen (2009) because you may prefer:

• (subject) 1990s science fiction films

• (subject) Science fiction adventure films

• (subject) Drone films

• (subject) Cyberpunk films

and:

• (subject) Science fiction adventure films

• (subject) Films set in Egypt

• (subject) Robot films

• (subject) Films shot in Arizona

• (subject) Ancient astronauts in fiction
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while the pairwise version (see also Figure 6.4) is a bit different:

We guess you would like to watch Terminator 2: Judgment Day (1991)
more than Transformers: Revenge of the Fallen (2009) because you may
prefer:

• (subject) 1990s science fiction films

• (subject) Science fiction adventure films

• (subject) Drone films

• (subject) Cyberpunk films

over:

• (subject) Films set in Egypt

• (subject) Robot films

• (subject) Films shot in Arizona

• (subject) Ancient astronauts in fiction

• (subject) IMAX films

The popularity-based explanation may be considered as the less mean-
ingful, since it justifies recommender choices by just leveraging the popu-
larity of suggested items among the users with similar tastes of the active
user u. The non-personalized explanation, instead, tries to explain the pro-
vided recommendation by using additional information about the suggested
items. In our experiments, we randomly select k = 5 features from the set
Fij = Fi∪Fj = {f1i, f2i, . . . , fni}∪{f1j, f2j, . . . , fn′j}. In a similar manner, in
a pointwise personalized explanation we selected the top-5 features from each
set Fi and Fj. The value k = 5 has been selected also to compute e2k(i, j)
in the pairwise personalized explanation.

Please notice that the considered set of features per item varies according
to the different configuration adopted for the SEMAUTO autoencoder; it
may include just item categories, factual data or both of them.
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Figure 6.3: Step 4. The user is asked
to rate the recommended items, even
if she has not watched them.

Figure 6.4: Step 5. The user is asked
to read the explanation and after
that to rate again the top-2 recom-
mended items.

6.5.2 Evaluation Protocol

During the online A/B testing phase, we fixed a sequence of steps in order
to measure the aforementioned explanatory criteria.

Steps 1-3. At the beginning of the experiment, the user u selects at least
15 movies she has watched among the ones randomly listed by the platform.
The movies belong to the well-known MovieLens 20M dataset 5. Then, she is
invited to rate each selected movie on a five-stars rating scale; data so gath-
ered are exploited to get both the user profile computed with the semantic
autoencoder and a top-5 recommendation list.
Step 4. Once the recommendation has been generated, the user is asked
to rate the suggested items, even if no explanation has been shown yet (see
Figure 6.3): these ratings will be relevant to determine the impact the ex-
planation has on the user (persuasiveness).
Step 5. The next step consists of showing to u one of the four randomly se-
lected explanation styles deployed within the application (see Figure 6.4). Af-
ter enjoying the explanation, the user has to re-rate the top-2 recommended
items, letting us measure how different is the items evaluation before and
after the explanation has been provided.

5https://grouplens.org/datasets/movielens/20m/

https://grouplens.org/datasets/movielens/20m/
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Step 6. Similarly, in the last part of the experiment, the user is asked to re-
rate the recommended movies after watching the related trailers. This phase
allows u to emulate the items consumption, and makes her more aware about
the topics of the suggested movies. In this way we can evaluate how much
effective the selected explanation style was (effectiveness).
Step 7. Finally, the user fills a questionnaire, aimed at measuring the ex-
planation transparency, trust and satisfaction (see Table 6.1).

6.6 Metrics

When evaluating an explanation system, the main characteristics to evaluate
are [64]:

• transparency, which refers to the capability of the explanation to make
users aware of how the system works;

• trust, or rather the confidence users have in the system;

• satisfaction, if users have an enjoyable experience in the usage of the
system;

• persuasiveness, which evaluates how much convincing is the proposed
explanation;

• effectiveness : the explanation is said to be effective if it helps users to
correctly estimate items relevance before the consumption.

The first three characteristics are evaluated by collecting answers from users
after filling the questionnaire at Step 7. As a final score for the first and
the second metric we used the percentage of users that answered positively
to the questions, while we exploited the average score assigned by users to
quantify the overall satisfaction.

In order to evaluate the persuasiveness of the proposed explanation, we
asked users to rate each recommended item before and after showing them
the explanation: if the rating provided after looking at the explanation is
higher than the original one, then the explanation has been able to persuade
the user to try the suggested item. More formally we measure persuasiveness
as [64]:

persuasiveness =
1

|U |
·
∑︂
u∈U

1

N
·
∑︂
i∈IuN

(reui − rui)
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where U stands for the collection of users; IuN represents the set of top-N
recommended items for u; rui and reui are, respectively, the ratings u assigns
to i just before and after the explanation is provided.

Analogously, we evaluated the effectiveness as the difference between two
ratings (see Equation (6.6) [64]), where rtui represents the rating the user
gives to the suggested movie after watching the related trailer (rtui).

effectiveness =
1

|U |
·
∑︂
u∈U

1

N
·
∑︂
i∈IuN

||reui − rtui||

The lower this value, the more effective the explanation, since it implies
that users have rated each item with very similar values before and after the
explanation has been provided.

METRIC QUESTION

transparency
I understood the reason why the two movies have
been ranked in the proposed order.

trust The explanation increased my trust in the system.

satisfaction

The provided explanation:
really captures my tastes.
partially captures my tastes.
does not capture my tastes.

Table 6.1: The final questionnaire.

6.7 Results Discussion

We conducted our experiment with the help of 892 volunteers6, with at least
73 subjects for each of the implemented settings. As stated in [76], 73 has
to be considered as the minimum acceptable sample size for such kind of
experiments. This assures the significance of our experimental results. Fur-
thermore, we verified the statistical significance of our experiment by using
Wilcoxon Rank-Sum Test, getting p ≪ 0.01.

As shown in Figure 6.5, a content-based explanation is always preferred
by users, since the popularity-based style gets the worst results in all the
considered explanatory criteria. The only exception is represented by per-
suasiveness : quite interestingly, the non-personalized explanation leveraging
semantic/categorical information gets negative values, as it happens when

6They were recruited both among our students and via Amazon Mechanical Turk.



CHAPTER 6. EXPLAINABILITY 57

users rate items with lower values after looking at the explanation than be-
fore, being not convinced to consume the suggested items at all. Hence,
users overestimate their interest in the recommended items or underestimate
it because of the provided explanation; this may be interpreted as users dis-
satisfaction for the shown categories, since they are chosen randomly without
taking into account users interests. As a matter of fact, the personalized ap-
proaches, which compute the explanation by leveraging users preferences,
outperform the two baselines. Furthermore, it is worth noticing how con-
vincing the categories are: by looking at the results, if the personalized style
exploits categorical features, then it performs very well in terms of persuasive-
ness if compared to others. It is worth noticing that when categorical features
are combined with factual information, they lead to a better persuasiveness,
in particular the pairwise approach gets better results than the pointwise one.
This may be explained by considering that we simulate item consumptions
through their associated trailers: in our experiments, users provide a certain
rating to a movie by just considering a few scenes, that are those shown in
the trailer. Therefore, users may get information about the movie topics,
subjects and how good or interesting an actor’s or a director’s performances
are. This condition may influence the way the explanation is perceived by
users, who demonstrated to find more convincing an explanation involving
both categorical and factual information rather than an explanation based
on item factual properties only.

On the other hand, still considering the pairwise personalized approach,
factual properties turn out to be more effective as concerning satisfaction,
trust and effectiveness ; we suppose that users feel more confident in specific
information such as actors or directors rather than just a set of movie cate-
gories. This trend is already confirmed by the pointwise approach, and the
pairwise one gets even higher score with those metrics. As a matter of fact,
the system transparency has the highest values when both semantic and fac-
tual properties are exploited; as these values are very close to those achieved
by just using factual properties, we can claim that it is the factual information
itself that improves the measured performances. Analogously, richer items
descriptions make more effective the explanation: when the system leverages
both categories and factual attributes, the effectiveness achieves its best re-
sults. Hence, providing more information about the suggested items surely
lets users better evaluate them before their consumption. By considering the
non-personalized style, it is quite interesting that by using both categorical
and factual attributes, the gathered results for all the adopted criteria are
usually the best, far from the performances measured by the other settings
based on the KG. Once again, as discussed above, this may depend on the
random aspect behind it: e.g., users may be more or less satisfied with the
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provided explanation according to the randomly shown features, which they
may like or dislike, know or ignore. Summing up, from the experimental
results, we may argue that the pairwise approach with factual information
gets better performance in users’ satisfaction, effectiveness and trust, while
it outperforms the pointwise one in persuasiveness and transparency when
both factual and categorical information are exploited.

To provide an answer to RQ1, examining the results, it turns out that
our SEMAUTO provides reliable users’ descriptions as evidenced in the effec-
tiveness metric which gets the lowest value by using a pairwise explanation.
This can be interpreted as a strong signal that the information encoded in the
autoencoder hidden layer is representative of the users’ preferences because
the users is less prone to change her ratings after she read the explanation.

As for RQ2, we can assert that the pairwise approach outperforms the
pointwise one in all metrics especially in transparency because it provides
a better justification on how the system ranks items according to the im-
portance of the features in the user profile. This lets the user to better
understand how her preferences are involved in the recommendation process.
In fact, this has an impact especially for the persuasiveness metric where
the pairwise approach has a higher score with respect to the pointwise ex-
planation, thus leading users in consuming an item after they have read the
provided explanation.

6.8 Conclusion and Future work

In this paper we present results on the capability for a semantics-aware au-
toencoder [60] to generate explanation to recommendation lists via the ex-
ploitation of data coming from the DBpedia knowledge graph. Online exper-
imental results show that a content-based explanation is preferred by users,
as it outperforms other baselines in terms of transparency, trust, satisfaction,
persuasiveness and effectiveness. As we can see in the satisfaction, effective-
ness and trust plots in Figure 6.5 for both pointwise and pairwise approaches,
an interesting point is that, in order to build an explanation, factual data
works better than the semantic/categorical one, achieving the same results
as when both semantic and factual data are exploited. A possible reason
for this behavior is that the probability for a user to know factual data and
accepts it as explanation is higher if compared to categorical one. Very in-
terestingly, a pairwise approach has the same trends for all the evaluation
metrics of the pointwise one but it outperforms the latter.

As future work it would be interesting to investigate about the system’s
scrutability, by allowing users to correct the recommender engine reasoning.
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Figure 6.5: Results comparison.
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Explanations here should be part of a continuous cycle where the user under-
stands how the system is working under the hood and takes control over the
type of recommendations made by the engine. This continuous loop could
pave the way to a new kind of conversational recommender systems in which
the user is allowed to explore and move in the feature space by knowing
which features relevant to her are involved in the recommendation process.



Chapter 7

Knowledge Graphs for RecSys

Knowledge-Graphs (KGs) have proven their strength as a source of high-
quality information for different tasks such as data integration, search, text
summarization, named entity disambiguation and personalization. One of
the most prominent examples is the Google Knowledge Graph, which can
be used in search engines to further explore the knowledge space related to
search results. Another prominent industrial and research field which has
been benefiting from the adoption of Knowledge Graphs is that of Recom-
mender Systems. In this paper, we report on an approach to the recom-
mendation that puts together the power of deep learning techniques with
the explicit semantic expressiveness of KGs by combining the topological
structure of a neural network (configured as an autoencoder) with that of
DBpedia and Wikidata. Supported by an extensive experimental evaluation,
we show how the selection of the knowledge source that feeds the semantics-
aware autoencoder affects the final results in terms of accuracy and diversity
of recommended items.

7.1 Introduction

Nowadays, we are overwhelmed by a large amount of available information
we can benefit from: e-commerce sites and entertainment web services usu-
ally offer thousands of different items among which users are invited to find
the ones they need or desire the most. In this direction, recommender sys-

61
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tems (RSs) have proved to be very helpful in suggesting appropriate items
to users according to their past choices and behaviors. A typical RS exploits
item ratings, either implicit or explicit, from users in a system to predict a
list of unseen items which are of potential interest to the user [77]. Over the
years, several strategies have been developed to build efficient recommen-
dation algorithms. They are generally divided into three main categories:
collaborative filtering (CF) techniques, content-based (CB) methods and hy-
brid approaches [25]. While CF techniques exclusively rely on the feedback
(rating, click, watch, listen) from the users on specific items without consid-
ering their description, either structured or unstructured, CB ones exploit
the data associated to an item to compute relevant recommendations to a
user. One of the main issues to tackle in adopting a CB approach is then
getting the right amount of meaningful information about items, which in
turns results necessary to model content-aware items and users descriptions.
Attributes inferred by gathering data about items rated by users can be used,
in principle, to model their profile and their preferences.
More recently, the technological wave related to deep learning techniques
and approaches also hit the field of recommender systems. A variety of new
approaches based on different configurations of Neural Networks (NNs) have
been proposed to compute personalized lists of items to be suggested to the
end users [46, 78, 50]. Among them, autoencoders have been proposed as
an interesting tool to mimic the user behavior in producing ratings and by
exploiting and modeling user preferences on latent item attributes [33]. Au-
toencoders are a particular configuration of artificial neural networks which
turned out to be very effective especially for dimensionality reduction and
feature selection tasks [79]. Indeed, in their mirrored structure, neurons of
the hidden layers can be interpreted as a projection of the input layer in a
different space. In [60], the authors presented semantics-aware autoencoders1

which leverage the common graph-based structure to encode the semantics
and the structure of a knowledge graph to enhance the representational power
of the underlying NN. One of the main advantages of such a hybrid structure
it that of giving an explicit semantics/label to the latent dimensions of the
new space.

Among the various and diverse KG freely available on the Web, for sure
DBpedia [2] and Wikidata [80] play a key role due to their encyclopedic
nature which makes them the ideal candidates to provide structured de-
scriptions on items in a recommender system. Although there is a partial
overlapping among the information sources to build DBpedia and Wikidata,
the data they encode is different under various aspects, such as the amount

1An implementation is available at: https://github.com/sisinflab/SEMAUTO-2.0

https://github.com/sisinflab/SEMAUTO-2.0
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of data and the way it is organized [81].
In this paper, we analyze how the selection of different information from

DBpedia and Wikidata may affect the results of a recommendation system
in terms of accuracy and diversity of results when using a semantics-aware
autoencoder. We tested different configurations of the semantics-aware au-
toencoder used to compute recommendations on three different datasets thus
showing how critical may be the selection of the right ontological knowledge
in a recommendation task. Main contributions of this work can be summa-
rized as:

• An extensive evaluation of a semantics-aware autoencoder fed by kn-
woledge coming from DBpedia and Wikidata;

• a comparison with state of the art approaches in terms of accuracy and
novelty of results;

• an analysis on how the structure and coverage of information encoded
on a KG may affect accuracy and novelty of recommendation.

7.2 Related work

Very few works exist about qualitative studies of Linked Open Data (LOD)
knowledge graphs. In [81] authors present an analysis of main Knowledge-
Graphs such as DBpedia, Wikidata, YAGO, underlining their differences in
coverage, identifying overlapping and complementary parts of KGs. They
assert that KGs are not easily interchangeable and each of them has its
strengths and weakness for a domain related task. Thus, using a specific
KG that is suitable for the task to accomplish leads to better performances
of the overall system. Authors in this work made a category-specific analy-
sis, asserting that even if DBpedia and YAGO come from the same source
(Wikipedia) and have a quite similar number of instances, there are notable
differences in coverage. YAGO has five times the number of events of DB-
pedia, while DBpedia has four times as many settlements (i.e., cities and
town) as YAGO; but Wikidata contains twice as many persons as DBpedia
and YAGO. They conclude their investigation by providing a coverage sum-
marization for some popular classes. A comparative survey of some popular
KGs is done in [82] in which authors propose a method to find the most
suitable KG for a given task setting. To achieve this result, authors iden-
tify a set of characteristics they found relevant to describe a KG and then
compare different KGs accordingly. Furthermore in [83] they provide a more
detailed analysis of quantitative information stored in KGs by using several
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statistics such as the number of triples and classes, distribution of classes and
corresponding instances, domain and classes coverage. Finally, to select the
KG that best fits task requirements, a novel method that takes into account
KG’s quantitative assessment is proposed.

In the last few years, thanks to increasing computational resources, new
techniques based on deep learning have been successfully adopted in the rec-
ommendation scenario [84]. This has led to the development of different
neural network models, each capable of getting interesting results [85]. In
particular, some of them turned out to be more effective for a specific recom-
mendation task than others; e.g. autoencoders have proved their strength in
collaborative filtering, outperforming state-of-the-art approaches [32], while
Recurrent Neural Networks seem to be more suitable in session-based recom-
mendation [37]. Among the several autoencoders extensions, denoising au-
toencoders have been efficiently used to address the recommendation problem
by improving users’ profile learning [33] or getting a smaller and non-linear
representation of the User-Item rating matrix [47]. Furthermore, [86] shows
how to build a hybrid RS by integrating side information in CF deep learn-
ing techniques, alleviating the sparsity problem and improving overall system
performances.

LOD are increasingly adopted in recommender systems because they pro-
vide more complex structured data that leverages relationships among enti-
ties in the graph and moreover they encode somehow semantics behind the
data, as shown in [3] and [5]. Recent works leveraged the data encoded in
KGs to represent items thus achieving interesting results in recommendation
scenarios [45, 87, 3]. Others approach as the one proposed by [88] uses kernel
graphs to compute item similarities by matching their local neighborhood
graphs. LODs have been also exploited for measuring semantic distances
between resources in order to provide top-N recommendations [89]. In [60] a
novel method that combines both deep learning techniques and KGs has been
presented in which authors model a semantics-aware neural network that ex-
plicitly computes user profiles for recommendation tasks. In particular, they
focus on cold-start scenarios using DBpedia as a source of information for
both users and items modeling. In [90], authors used the aforementioned
method to perform experiments in recommendation scenarios by using DB-
pedia KG on three different datasets and they compared their approach with
state-of-the-art algorithms. Furthermore, they investigated the effectiveness
of their method that leverages on a KG to provide an explanation in rec-
ommendation scenarios [91]. Another approach that uses KGs to represent
relationship among users and items is investigated in [?], in which authors
leveraged on language models to extract features from nodes sequences in
RDF graphs.
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7.3 Semantics-aware Autoencoders in Recom-

mendation Scenarios

Autoencoders are unsupervised neural networks that learn a function ca-
pable of reconstructing the network’s input at the output layer. They are
built on top of two main components which are the encoder and the de-
coder. The former is usually responsible of compressing the input data into
a lower dimensional representation, while the latter does the opposite job
and it then reconstructs the original input data starting from a lower dimen-
sional representation. Like every neural network configuration, autoencoders
are structured in layers which contain neurons. Every neuron in layer i is
connected through an edge to all the neurons of the following layer i + 1. In
other words, we have a fully connected network.
In a recommendation scenario, we may use all the items in a catalog as rep-
resentative of both the input and the output layer. We may then train the
NN by using user ratings as inputs to obtain similar values produced by the
output layers.
Starting from the observation that both NNs and KGs are directed graphs,
in [60] the authors propose to use the topology of the latter to model the
former. They keep input and output layers’ nodes as representative of the
items they want to recommend and substitute anonymous nodes in the hid-
den layers by labeled resources from a knowledge graph thus inheriting their
mutual semantic connections (see Figure 7.1). Differently from the generic
definition of autoencoder, we see here that the resulting neural network is
no more fully connected as nodes of the input layer are linked to neurons
in the hidden layer if and only if a corresponding connection exists in the
original knowledge graph. In such a semantics-aware autoencoder, we some-
how project the items in a space whose dimensions represent all the entities
(features) it is connected to.

A semantics-aware autoencoder is trained with user ratings and it learns
how to reconstruct them on the output layer. Considering that such a net-
work is not fully connected, user ratings are propagating only through those
nodes that represent features connected in the KG to items rated by the user.
According to neural network models, a generic neuron outputs a value that
results to be a non-linear function of the weights’ summation over incoming
edges. Then, in a recommendation scenario it turns out that positively rated
items tend to have connected neurons with higher output values than those
neurons connected with negatively rated items.
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Figure 7.1: Architecture of a semantics-aware autoencoder.

7.3.1 User Profiles

If we train one autoencoder per user, the resulting model may be interpreted
as an explicit representation of the user profile on items attributes. As a
matter of fact, at the end of training, hidden nodes encode a value that rep-
resents the relevance for the user in the node’s associated feature. Thus, sets
of pairs ⟨feature, value⟩ can be defined and used as a representation of the
user profile. A semantics-aware autoencoder is, therefore, a model that uses
deep learning techniques to extract weighted features from a KG according
to user ratings in order to build users profile for recommendation tasks. In
particular, given a user u, the weight of a feature c is the summation of the
weights wu

k(c) associated to the edges entering the hidden node representing
a KG entity c (see Figure 7.2).
More formally, we have:

ωu(c) =

|In(c)|∑︂
k=1

wu
k(c)

where In(c) is the set of the edges entering the hidden node representing the
feature c. As an example, if we consider the excerpt of the network in Figure
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Figure 7.2: An excerpt of the network in Figure 7.1 after the training.

7.2, for Barry Sonnenfeld we have:

ωu(Barry Sonnenfeld) = w11 + w12

Having weights associated to each resource coming from KG, we can now
model a user profile composed by a vector of weighted features. Given Su as
the set of features belonging to all the items rated by u and S =

⋃︁
u∈U Su as

the set of all features among all the users in the system we have that for each
user u ∈ U and for each feature c ∈ S, the user profile P (u) is represented
as:

P (u) = {⟨c, ω⟩ | ω = ωu(c) if c ∈ Su, ω = 0 otherwise} (7.1)

Recommendation. The vector representing a user profile computed with
Equation (7.1) results to be very sparse in the space representing the overall
number of features. In other words, many values are set to 0 as the corre-
sponding feature does not belong to any item the user rated in the past. Since
this may negatively affect the final result in a recommendation scenario, we
reduce the sparseness of the user profile by predicting a value to fill 0-valued
features in the vector through the word2vec-like approach as described in
[90].

Once we have a less sparse version of the user profile, we produce recom-
mendation performing a user-kNN (see Equation (7.3)) by computing how
close are users with each other through a cosine similarity as in Equation
(7.2).
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sim(u, v) =
P (u) · P (v)

||P (u)|| · ||P (v)||
(7.2)

r̂(u, i) =

∑︁k
j=1 sim(u, vj) · r(vj, i)∑︁k

j=1 sim(u, vj)
(7.3)

In Equation (7.3), given an unseen item i from user u, we predict a rating
r̂(u, i) for u on i by considering the ratings r(vj, i) assigned to i by the k
most similar user vj.

7.4 Experiments

As a direct consequence of relying on a knowledge graph, it stands to rea-
son that its structure, as well as the information it encodes, might affect
how user profiles are computed. Thus, it is crucial to investigate how KGs
structure impacts the recommendation accuracy. We strongly believe that
the better the data are engineered and well-curated, the more accurate a
recommendation is.

Given the recommendation model previously described, we performed an
experimental evaluation to verify the influence of a knowledge source in the
final recommendation task. In this paper, we focus on different aspects of
DBpedia and Wikidata due to the richness of information they encode in
different knowledge domains. DBpedia and Wikidata differ from each other
not only by their structure but as pointed out in [81], the choice of a KG
is domain dependent because different fields of knowledge are covered in
different ways among different KGs.

We first describe the structure of the datasets used in the experiments,
then we move on to the evaluation protocol for the recommendation, and
finally we discuss the results.

7.4.1 Dataset

We conducted our experiments on three different datasets as summarized in
Table 7.1. MovieLens 1M2 dataset stores information about users-items inter-
actions made on a 5-star scale and relates to the movie domain. Last.fm3 con-
tains information about music, bands and artists listenings; since in Last.fm
for each user we have the number of times a user has listened to a song,

2http://grouplens.org/datasets/movielens/
3http://www.lastfm.com
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#users #items #ratings sparsity

MovieLens 1M 6040 3952 1000209 95.81%
Last.fm 1892 17632 92834 99.72%
LibraryThing 7279 37232 626000 99.77%

Table 7.1: Datasets

we infer users’ preferences by scaling it within the range [1, ..., 10] (using
min-max normalization). Finally in LibraryThing4, which is a social web ap-
plication for book cataloging, rates are made on a 10-star scale with reference
to books. By relaying on these datasets, we have three different knowledge
domains which are covered both by DBpedia and by Wikidata.

In order to map items to resources in DBpedia we adopted a freely avail-
able mapping5 originally presentedin in [92] and then refined in [93]. Thus, we
retain 3549 mapped items for MovieLens 1M, 9781 for Last.fm and 9926 for
LibraryThing. Starting from DBpedia resources URI we obtained Wikidata
entities through owl:sameAs links.

7.4.2 Knowledge-Graphs: DBpedia vs Wikidata

In order to evaluate how KGs data may impact the quality of recommen-
dation, we performed experiments using DBpedia and Wikidata. In ad-
dition to this, we also evaluated how different kind of information from a
KG impacts the recommendation. If we look at the semantic knowledge
they encode, we may identify factual knowledge where we have facts
stated on a specific resource, e.g. dbr:Men_in_Black_(Film) dbo:director

dbr:Barry_Sonnenfeld, and ontological and categorical one which en-
code the semantics of an entity through classes and categories, such as
dbr:Men_in_Black_(Film) dct:subject dbc:Buddy_Film or
dbr:Men_in_Black_(Film) rdf:type dbo:Film. In DBpedia, categorical
information is reached through the following predicates:

• http://purl.org/dc/terms/subject

• http://www.w3.org/2009/08/skos-reference/skos.html#broader

The former allows us to explore categorical resources related to an item, while
the latter lets us discover a wider category in a hierarchical perspective.

4https://www.librarything.com/
5https://github.com/sisinflab/LODrecsys-datasets

http://purl.org/dc/terms/subject
http://www.w3.org/2009/08/skos-reference/skos.html#broader
https://github.com/sisinflab/LODrecsys-datasets


CHAPTER 7. KNOWLEDGE GRAPHS FOR RECSYS 70

As for Wikidata, we considered categorical information encoded through
the predicate https://www.wikidata.org/wiki/Property:P921 labeled as
main subject and, whenever possible, by https://www.wikidata.org/wiki/

Property:P136 labeled as genre. Since DBpedia skos:broader is not di-
rectly mapped in Wikidata, we used https://www.wikidata.org/wiki/

Property:P279, labeled as subclass of, to identify hierarchical categories as
well.

Regarding factual information, we used the approach proposed in [75] to
automatically identify those DBpedia predicates (listed in Table 7.2) which
turn out to be the most meaningful for a recommendation task; the cor-
responding Wikidata properties were properly collected through SPARQL
queries.

Last.fm LibraryThing MovieLens 1M

dbo:genre dbo:author dbo:starring
dbo:instrument dbo:literaryGenre dbo:director
dbo:occupation dbo:publisher dbo:writer
dbo:associatedBand dbo:mediaType dbo:producer
dbo:associatedMusicalArtist dbo:language dbo:musicComposer
dbo:recordLabel dbo:country dbo:distributor
dbo:hometown dbo:previousWork dbo:language
dbo:birthPlace dbo:subsequentWork dbo:cinematography
dbo:country dbo:nonFictionSubject dbo:country
dbo:influencedBy dbo:series dbo:editing
dbo:voiceType dbo:coverArtist dbp:music
dbo:award dbo:illustrator dbp:studio
dbo:bandMember dbo:translator dbp:extra
dbo:currentMember dbp:awards dbp:screenplay
dbo:pastMember dbp:writer dbp:genre

Table 7.2: DBpedia predicates

7.4.3 Data Settings

Here we show the different configurations we adopted to inject data from
DBpedia and Wikidata in our semantics-aware autoencoder. As stated in
Section 7.3, the input and output layers are always composed by resources
representing items in our recommendation setting (e.g. movies for MovieLens
1M, books for LibraryThing, songs, bands, etc. for Last.fm). The differences

https://www.wikidata.org/wiki/Property:P921
https://www.wikidata.org/wiki/Property:P136
https://www.wikidata.org/wiki/Property:P136
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P279
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of the configurations we propose mainly rely on the information encoded in
the hidden layers. In Figure 7.3 we show only the case for DBpedia, as for
Wikidata we have analogous configurations.
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Figure 7.3: The different configurations used in our experiments.

The first configuration (Figure 7.3a) encodes only categories through the
dct:subject property. Hence, all the nodes in the hidden layer have a
one-to-one mapping with a corresponding category in DBpedia. We will
refer to this configuration with S for subject. As categories are structured
in a hierarchical way through skos:broader, we also tested the following
configurations:

B We considered in the hidden layer only those categories which are one-

dct:subject


CHAPTER 7. KNOWLEDGE GRAPHS FOR RECSYS 72

hop distant through the skos:broader property from those resources
directly connected to an item via dct:subject (Figure 7.3b). In this
configuration, connections between the items and the hidden layer are
represented by the property chain dct:subject/skos:broader;

M (for Mixed) We put in the same hidden layer both the categories connected
via dct:subject and dct:subject/skos:broader;

S-B In this last configuration we considered three hidden layers6 thus mim-
icking the actual topology of the knowledge graph in the structure of
the NN (see Figure 7.3c);

Finally, we have the F (for Factual) configuration where the hidden layer is
composed by all the resources which are at a distance of one-hop from the
input item through the properties in Table 7.2.

7.4.4 Evaluation

Before measuring how different KGs impact on recommendation quality, we
first prove the strength of the proposed method by comparing it with some
state-of-the-art baselines. Then we quantify how our performances vary de-
pending on the different subset of KG used.

For the evaluation of our approach we adopted the ”All Unrated Items”
protocol described in [52]: for each user u, a top-N recommendation list is
provided by computing a score for every item i not rated by u, whether i
appears in the user test set or not. Training and test sets are generated by
splitting each dataset with Hold-Out 80/20, which ensures that every user
has 80% of their ratings in the training set and the remaining 20% in the
test set.
The produced recommendation lists are finally compared with the test set by
computing performance metrics. Precision, Recall and F1-score [94] metrics
have been chosen to evaluate the accuracy of our model in a top-10 recom-
mendation scenario, using threshold values of 4 for MovieLens 1M and 8 for
both LibraryThing and Last.fm.

Accuracy metrics are a valuable way to evaluate the performance of a
recommender system. Nonetheless, it has been argued [95] that also diver-
sity should be taken into account when evaluating how good a recommen-
dation engine is. Gini index is an ideal candidate to measure the distribu-

6Due to the mirrored structure of an autoencoder, the numebr of layers is always odd

dct:subject/skos:broader
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tion/diversity of items across recommendation lists:

Gini =
1

n− 1
·

n∑︂
j=1

(2j − n− 1) · p(ij)

where p(ij) is the proportion of user choices for item ij and i1, ...in is the list
of items ordered according to increasing p(ij). A Gini index value equal to 0
means that all items are chosen equally often, while it is 1 if a single item is
always chosen.

Among the several state-of-the-art techniques used in recommender sce-
narios, we tested the most widely adopted: BPRSLIM, WRMF and a single-
layer autoencoder for rating prediction. BPRSLIM [96, 55] is a Sparse Linear
Method which leverages Bayesian Personalized Ranking as an objective func-
tion. WRMF [56, 57] is a Weighted Regularized Matrix Factorization method
which exploits users’ implicit feedback to provide recommendations. In their
basic version, both strategies rely exclusively on the User-Item matrix in a
pure CF approach. They can be hybridized by exploiting side information
(SI) [96], i.e. additional data associated with items. We used the imple-
mentations of BPRSLIM and WRMF available in MyMediaLite7 [97] and
implemented the autoencoder in TensorFlow8.

7.5 Results discussion

For all the tested approaches, we performed experiments on MovieLens 1M,
Last.fm and LibraryThing.
In Table 7.3 we report the best results9 we gathered on the three datasets
by applying the methods discussed above. As for our SEMAUTO approach,
we tested it for a different number of neighbors k (only the best results are
shown in the table). Further, we report only results for information found in
DBpedia as side information (BPRSLIM + SI and WRMF + SI) because it
turned out that DBpedia gains better accuracy than Wikidata in recommen-
dation tasks. We highlighted in bold the best performing approach overall
while we underline the best performing configuration for our semantics-aware
autoencoder (KG-AUTOENCODER).
We first discuss results obtained in terms of accuracy and then we move
on to diversity. As we can see from the table, our semantics-aware autoen-
coder outperforms all the baselines for Last.fm dataset, while on the other

7http://mymedialite.net
8https://www.tensorflow.org/
9Full results table at https://github.com/sisinflab/papers-results/blob/

master/ISWC/2019/KG-AUTOENCODER/results.pdf

http://mymedialite.net
https://www.tensorflow.org/
https://github.com/sisinflab/papers-results/blob/master/ISWC/2019/KG-AUTOENCODER/results.pdf
https://github.com/sisinflab/papers-results/blob/master/ISWC/2019/KG-AUTOENCODER/results.pdf
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setting KG k F1@10 Prec@10 Recall@10 Gini

LAST.FM

AUTOENCODER − − − 0.00048 0.00027 0.00240 0.00190
BPRSLIM − − − 0.00077 0.00043 0.00400 0.02867
BPRSLIM + SI − DBpedia − 0.00113 0.00064 0.00476 0.05360
WRMF − − − 0.00077 0.00043 0.00400 0.01073
WRMF + SI − DBpedia − 0.00058 0.00032 0.00293 0.00877

SEMAUTO

S DBpedia 5 0.00151 0.00085 0.00644 0.05783
S Wikidata 10 0.00124 0.00069 0.00587 0.03815
B DBpedia 10 0.00113 0.00064 0.00484 0.03812
B Wikidata 30 0.00086 0.00048 0.00391 0.01430
M DBpedia 5 0.00151 0.00085 0.00644 0.05783
M Wikidata 5 0.00067 0.00037 0.00320 0.05317

S-B DBpedia 5 0.00111 0.00064 0.00422 0.05624
S-B Wikidata 5 0.00172 0.00096 0.00844 0.05742
F DBpedia 5 0.00169 0.00096 0.00689 0.05878
F Wikidata 10 0.00143 0.00080 0.00693 0.03689

LIBRARYTHING

AUTOENCODER − − − 0.01562 0.01375 0.01808 0.07628
BPRSLIM − − − 0.01874 0.01577 0.02309 0.09338
BPRSLIM + SI − DBpedia − 0.01939 0.01685 0.02284 0.17915
WRMF − − − 0.01142 0.01071 0.01223 0.00864
WRMF + SI − DBpedia − 0.01136 0.01043 0.01247 0.00832

SEMAUTO

S DBpedia 100 0.01293 0.01168 0.01447 0.01855
S Wikidata 100 0.00993 0.00888 0.01125 0.01124
B DBpedia 45 0.01264 0.01139 0.01420 0.02475
B Wikidata 100 0.00791 0.00741 0.00848 0.00983
M DBpedia 45 0.01299 0.01164 0.01469 0.02938
M Wikidata 150 0.00867 0.00805 0.00941 0.00770

S-B DBpedia 100 0.01390 0.01247 0.01570 0.01205
S-B Wikidata 100 0.00995 0.00892 0.01123 0.00950
F DBpedia 40 0.01468 0.01306 0.01677 0.02888
F Wikidata 45 0.01278 0.01153 0.01435 0.02237

MOVIELENS 1M

AUTOENCODER − − − 0.22969 0.28416 0.19274 0.04536
BPRSLIM − − − 0.17106 0.19581 0.15187 0.14060
BPRSLIM + SI − DBpedia − 0.14986 0.17113 0.13329 0.17294
WRMF − − − 0.20336 0.25343 0.16981 0.03758
WRMF + SI − DBpedia − 0.20373 0.25371 0.17020 0.03750

SEMAUTO

S DBpedia 50 0.18582 0.22419 0.15867 0.02298
S Wikidata 100 0.16809 0.21619 0.13749 0.01712
B DBpedia 45 0.17640 0.21369 0.15019 0.02207
B Wikidata 100 0.15487 0.20555 0.12424 0.01611
M DBpedia 45 0.18633 0.22430 0.15935 0.02421
M Wikidata 100 0.15592 0.20046 0.12757 0.01378

S-B DBpedia 50 0.22001 0.26616 0.18749 0.03653
S-B Wikidata 100 0.15800 0.20394 0.12896 0.01574
F DBpedia 50 0.22447 0.26788 0.19317 0.04446
F Wikidata 50 0.17150 0.21149 0.14423 0.01872

Table 7.3: Experimental results over DBpedia and Wikidata KGs using
both factual and semantics information. For BPRSLIM + SI and WRMF
+ SI in KG column, we indicate only the Knowledge Graph for which we

have the best performance when used to get side information.
In setting column we denote: S = subjects, B = broaders, M = merge S and
B in a single hidden layer, S-B = S and B in multiple hidden layers, F =

factual information.
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two, LibraryThing and MovieLens 1M, it performs quite the same as the
fully-connected autoencoder does. To explain this result, we may assume
that, since hidden nodes in our semantics-aware autoencoder depends on the
number of features retrieved from a Knowledge Graph, more features means
more neurons. According to the Universal Approximation Theorem, more
neurons allows a neural network to approximate better any function hence
we computed the ratio of features associated to items10 as average#features

average#items
and

we found that this approach works better on those datasets having a higher
ratio.

Nonetheless, looking at the sparsity values reported in Table 7.1, we can
notice that even if the KG-AUTOENCODER obtains quite the same values
on LibraryThing and Last.fm datasets, they differ too much in the ratio
of average features per item. In fact, the KG-AUTOENCODER performs
better on the latter where the ratio is higher and worst in the former where
the ratio is lower. Hence, we may assume that this method is less sensitive
to the dataset sparsity with respect to how well data are curated in the KG
and for that reason we suppose it can be used as an assessment tool for data
quality in KGs when used for recommendation tasks.

On the other side, we can observe that factual information (F) brings
more knowledge for a recommendation task than ontological/categorical one
when the datasets are very sparse (as for MovieLens 1M and LibraryThing).
This is a quite interesting result. A possible explanation is that categorical
information introduces fewer connections among items descriptions than the
factual one. Hence, factual statements result more useful in making denser
connections among items (and then users) which are exploited by the latent
collaborative part of the semantics-aware autoencoder.

If we just focus on the absolute numbers, one may argue that our ap-
proach is not competitive as it is slightly beaten in terms of accuracy by
state of the art algorithms such as BPRSLIM and WRMF (although it re-
sults the second best performing approach). Nevertheless, we point out that,
differently from the other approaches based on matrix factorization (or any
deep learning techniques) we compute a meaningful and explicit user profile
which contains user preferences on single features. This may result extremely
useful in case we want to automatically generate a content-based explana-
tion for the ranking computed with the recommendation list as also shown in
[91]. Then, although we rely on a deep learning approach, we can go beyond
the pure black-box and provide a human-understandable explanation for a
recommendation list.

10https://github.com/sisinflab/papers-results/blob/master/ISWC/2019/

KG-AUTOENCODER/summary.pdf

https://github.com/sisinflab/papers-results/blob/master/ISWC/2019/KG-AUTOENCODER/summary.pdf
https://github.com/sisinflab/papers-results/blob/master/ISWC/2019/KG-AUTOENCODER/summary.pdf
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As for diversity, we can observe that when using Wikidata, values for
Gini index are in general lower than the DBpedia case. This means that
using Wikidata we are able to better diversify the items in a catalog. This
result somehow reinforces the one obtained in [98]. Lack of diversity in rec-
ommendation strongly depends on the so-called “popularity bias”. Popular
items tend to be recommended more than those in the long tail. This ob-
servation leads us to a possible interpretation on diversity results we obtain
in our experiments if we consider the popularity of entities in a knowledge
graph as the number of connections they have. In DBpedia we have that
popular resources (e.g. movies) are more connected to other nodes than un-
popular ones. This is not the case with Wikidata where there is a less biased
distribution of connections among resources in the graph. Hence, when the
adopted knowledge graph suffers from a popularity bias in terms of connec-
tions among resources, this is inherited by the recommendation dataset thus
affecting the final recommended list of results.

7.6 Conclusion and future work

In this paper, we presented an evaluation of a semantics-aware autoencoder
used to predict ratings in a recommendation scenario. We showed how such
an approach makes it possible to combine the computational predictive power
of NNs (in the form of autoencoders) with the representational power of
knowledge graphs such as DBpedia and Wikidata. In particular, we evaluated
our autoencoder on different configurations, and we tested and compared its
results in terms of accuracy and diversity in the recommendation list. On
the one hand, we showed that the proposed approach is able to compete
with state of the art approaches with the advantage of, in principle, allowing
a system to automatically generate explanations for the computed results.
On the other hand, we confirmed that the selection of the right information
from the right knowledge graph may affect recommendations both in terms
of accuracy and in terms of diversity of results. As an example, Wikidata
seems to be a better choice than DBpedia if we look for recommendation lists
where the popularity bias is mitigated. We are currently working on a new
version of the SEMAUTO that better exploits collaborative information by
building a global model encoding preferences from all the users at the same
time, as done by state-of-the-art CF approaches.



Chapter 8

Conclusions

The final result of this thesis is an intensive investigation about interpretable
neural network models using Knowledge Graphs with a focus on their ex-
plainability in recommendation scenarios.

First, we proposed a new not fully-connected architecture for Autoen-
coder Neural Networks that leverage Knowledge Graph to map the topology
of the former with the latter. Subsequently, we evaluated this novel approach
against state-of-the-art baselines on different datasets. Then, we performed
an A/B test to evaluate the explanations that the Semantics-Aware Autoen-
coder generates. Moreover, we compared how the use of different features
from a Knowledge Graph affects the satisfaction of users. Finally, since the
proposed method relies on Knowledge Graphs, we evaluated how different
Knowledge Graphs and various features impact the accuracy of recommen-
dations.

Our experiments validate the proposed approach, showing its ability to
overcome the neural network interpretability without losing accuracy. Never-
theless, our method turns out to be very effective in generating discriminative
user profiles; in fact, the number of suggested items is higher with respect
to baselines. Moreover, the proposed approach, since it relies on Knowledge
Graph to compute the recommendations and since the effectiveness of recom-
mendations depends on how features are well-engineering in the Knowledge
Graphs, it turns out that this method can be used as a tool to evaluate the
quality of how well engineered are data in a Knowledge Graph.
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As future work, this method can be enhanced in order to leverage the col-
laborative information within the neural network, instead of using a word2vec-
like approach to infer the most likely missing features for each user profile.
Moreover, the Semantics-Aware Autoencoder can be used as a stand-alone
block to place at the end of a Deep Learning pipeline in order to provide
explanations to the users. Concerning the Linked Open Data quality aspect,
it can be leveraged to perform a Knowledge Graph summarization since it
can weigh the most relevant nodes (features) in a graph, so it can com-
press a Knowledge Graph preserving the its main entities. Nevertheless, this
approach can be investigated even in scenarios different from the recommen-
dation one; for instance, it could be used as an explainable model for decision
making.
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